This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Experiments on growth series of braid groups

Jean Fromentin Univ. Littoral Côte d’Opale, UR 2597, LMPA, Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville, F-62100 Calais, France fromentin@math.cnrs.fr In memory of Patrick Dehornoy, a great mentor.
Abstract.

We introduce an algorithmic framework to investigate spherical and geodesic growth series of braid groups relatively to the Artin’s or Birman–Ko–Lee’s generators. We present our experimentations in the case of three and four strands and conjecture rational expressions for the spherical growth series with respect to the Birman–Ko–Lee’s generators.

Key words and phrases:
Braid group, spherical growth series, geodesic growth series, algorithm
2020 Mathematics Subject Classification:
Primary 20F36, 20F10; Secondary 20F69, 68R15

1. Introduction

Originally introduced as the group of isotopy classes of nn-strands geometric braids, the braid group BnB_{n} admits many finite presentations by generators and relations. From each finite semigroup generating set SS of BnB_{n} we can define at least two growth series. The spherical growth series counts elements of BnB_{n} by their distance from the identity in the Cayley graph Cay(Bn,S)\text{Cay}(B_{n},S) of BnB_{n} with respect to SS. The geodesic growth series counts geodesic paths starting from the identity by length in Cay(Bn,S)\text{Cay}(B_{n},S).

In case of Artin’s generators Σn={σ1±1,,σn1±1}\Sigma_{n}=\{\sigma_{\!1}^{\raise 0.8pt\hbox{$\scriptscriptstyle\pm$}1},\ldots,\sigma_{\!{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}}^{\raise 0.8pt\hbox{$\scriptscriptstyle\pm$}1}\} of BnB_{n} the only known significant results are for n3n\leqslant 3. L. Sabalka determines [24] both the spherical and geodesic growth series of B3B_{3}. To this end, he constructs an explicit deterministic finite automaton recognizing the language of geodesic Σ3\Sigma_{3}-words. In particular he obtains the rationality of both series. Similar results were obtained by J. Mairesse and F. Mathéus in case of Artin–Tits groups of dihedral type [23]. In page 57 of her PhD thesis [2], M. Albenque gives the first 1313 terms of the spherical series of B4B_{4} relatively to Σ4\Sigma_{4}.

Here we introduce a new algorithmic framework to compute the first terms of the spherical and geodesic growth series of BnB_{n} relatively to both Artin’s or Birman–Ko–Lee’s generators. Experimentations allow us to conjecture rational expressions for the spherical growth series of B3B_{3} and B4B_{4} and geodesic growth series of B3B_{3} relatively to the Birman–Ko–Lee’s generators. We also obtain the first 2626 terms of the spherical and geodesic growth series of B4B_{4} with respect to Σ4\Sigma_{4} but this is not enough to formulate any conjecture in this case. Experiments presented in this paper were carried out using the CALCULCO computing platform [25].

The paper is organized as follows. Section 2 recalls basic definitions and presents already known result on the subject. In section 3 we describe a first algorithm to explore spherical and geodesic combinatorics of braids relatively to Artin’s or Birman–Ko–Lee generators. Section 4 is devoted to the notion of braid template which allows us to parallelize the algorithms obtained in the previous section. In section 5 we show how to reduce the exploration space by introducing reduced braid templates. Experimentation results are detailed in the last section.

2. Context

2.1. Growth series

Let SS be a finite generating set of a semigroup MM. We denote by SS^{\ast} the set of all words on the alphabet SS, which are called SS-words. The empty word is denoted by ε\varepsilon. For every SS-word uu, we denote by |u||u| its length and by u¯\overline{u} the element of MM it represents. We say that two SS-words uu and vv are equivalent, denoted uvu\equiv v, is they represent the same element in MM.

Definition 2.1.

The S-length of an element xMx\in M, denoted |x|S|x|_{S}, is the length of a shortest SS-word representing xx. An SS-word uu satisfying |u|=|u¯|S|u|=|\overline{u}|_{S} is geodesic.

The SS-length of an element xMx\in M corresponds to the distance between xx and the identity in the Cayley graph of MM with respect to the finite generating set SS.

Definition 2.2.

For any \ell\in\mathbb{N}, we denote by g(M,S;)g(M,S;\ell) the number of geodesic SS-words of length \ell. The geodesic growth series of MM with respect to SS is

𝒢(M,S)=g(M,S;)t.\mathcal{G}(M,S)=\sum_{\ell\in\mathbb{N}}g(M,S;\ell)\,t^{\ell}.

If the language of geodesic SS-words is regular then the series 𝒢(M,S)\mathcal{G}(M,S) is rational.

Definition 2.3.

For any \ell\in\mathbb{N}, we denote by s(M,S;)s(M,S;\ell) the number of elements in MM of length \ell. The spherical growth series of MM with respect to SS is

𝒮(M,S)=xMt|x|S=s(M,S;)t.\mathcal{S}(M,S)=\sum_{x\in M}t^{|x|_{S}}=\sum_{\ell\in\mathbb{N}}s(M,S;\ell)t^{\ell}.

If there exists a regular language composed of geodesic SS-words in bijection with MM then the series 𝒮(M,S)\mathcal{S}(M,S) is rational.

2.2. Artin’s braid presentation

The first presentation of the braid group BnB_{n} was given by E. Artin in [4] :

Bnσ1,,σn1|σiσj=σjσifor |ij|2σiσjσi=σjσiσjfor |ij|=1.B_{n}\simeq\left<\sigma_{\!1},...,\sigma_{\!{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}}\left|\begin{array}[]{cl}\sigma_{\!i}\sigma_{\!j}=\sigma_{\!j}\,\sigma_{\!i}&\text{for $|i-j|\geqslant 2$}\\ \sigma_{\!i}\,\sigma_{\!j}\,\sigma_{\!i}=\sigma_{\!j}\,\sigma_{\!i}\,\sigma_{\!j}&\text{for $|i-j|=1$}\end{array}\right.\right>. (1)
Definition 2.4.

For all n2n\geqslant 2, we denote by Σn+\Sigma_{n}^{\raise 0.8pt\hbox{$\scriptscriptstyle+$}} the set {σ1,,σn1}\{\sigma_{\!1},\ldots,\sigma_{\!{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}}\} and by Σn\Sigma_{n} the set Σn+(Σn+)1\Sigma_{n}^{\raise 0.8pt\hbox{$\scriptscriptstyle+$}}\sqcup\left(\Sigma_{n}^{\raise 0.8pt\hbox{$\scriptscriptstyle+$}}\right)^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}.

Artin’s presentation of BnB_{n} implies that Σn+\Sigma_{n}^{\raise 0.8pt\hbox{$\scriptscriptstyle+$}} is a set of group generators of BnB_{n}. However the braid σ11\sigma_{\!1}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1} cannot be represented by any Σn+\Sigma_{n}^{\raise 0.8pt\hbox{$\scriptscriptstyle+$}}-word. For our purpose, it is fundamental to view a monoid (or a group) as a quotient of a finitely generated free monoid. As a monoid, the braid group BnB_{n} is presented by generators Σn\Sigma_{n} and the relations of (1) plus relations

σiσi1=σi1σi=εfor all 1in1.\sigma_{\!i}\,\sigma_{\!i}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}=\sigma_{\!i}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\,\sigma_{\!i}=\varepsilon\quad\text{for all $1\leqslant i\leqslant{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}$.} (2)
iii+1{i\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}σi\sigma_{\!i}iii+1{i\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}σi1\sigma_{\!i}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}σ31\sigma_{\!3}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}σ21\sigma_{\!2}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}σ11\sigma_{\!1}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}σ21\sigma_{\!2}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}σ3\sigma_{\!3}
Figure 1. Geometric interpretation of Artin’s generators and representation of a 44-strands braid as a Σ4\Sigma_{4}-word.

In [24], L. Sabalka constructed an explicit deterministic finite state automaton recognizing the language of geodesic Σ3\Sigma_{3}-words. He obtained the following rational value for the geodesic growth series of B3B_{3} relatively to the Artin’s generators Σ3\Sigma_{3} :

𝒢(B3,Σ3)=t4+3t3+t+1(t2+2t1)(t2+t1).\mathcal{G}(B_{3},\Sigma_{3})=\frac{t^{4}+3t^{3}+t+1}{(t^{2}+2t-1)(t^{2}+t-1)}. (3)

Moreover, using the finite state automaton recognizing the language of short-lex normal form of B3B_{3} [17] he obtains :

𝒮(B3,Σ3)=(t+1)(2t3t2+t1)(t1)(2t1)(t2+t1).\mathcal{S}(B_{3},\Sigma_{3})=\frac{(t+1)(2t^{3}-t^{2}+t-1)}{(t-1)(2t-1)(t^{2}+t-1)}. (4)

The positive braid monoid Bn+B_{n}^{\raise 0.8pt\hbox{$\scriptscriptstyle+$}} is the submonoid of BnB_{n} generated by Σn+\Sigma_{n}^{\raise 0.8pt\hbox{$\scriptscriptstyle+$}}. Since every Σn+\Sigma_{n}^{\raise 0.8pt\hbox{$\scriptscriptstyle+$}}-word is geodesic, the geodesic growth series 𝒢(Bn+,Σn+)\mathcal{G}(B_{n}^{\raise 0.8pt\hbox{$\scriptscriptstyle+$}},\Sigma_{n}^{\raise 0.8pt\hbox{$\scriptscriptstyle+$}}) is irrelevant. An explicit rational formula for the spherical growth series 𝒮(Bn+,Σn+)\mathcal{S}(B_{n}^{\raise 0.8pt\hbox{$\scriptscriptstyle+$}},\Sigma_{n}^{\raise 0.8pt\hbox{$\scriptscriptstyle+$}}) was obtained by A. Bronfman in [8] and later by M. Albenque in [1]. These results were extended to positive braid monoids of type B and D in [3] and for each Artin–Tits monoids of spherical type in [18].

2.3. Dual’s braid presentation

In [7], J. Birman, K. H. Ko and S. J. Lee introduced a new generator family of BnB_{n}, called Birman-Ko-Lee’s or dual generators.

Definition 2.5.

For 1p<qn1\leqslant p<q\leqslant n we define ap,qa_{p,q} to be the braid

ap,q=σpσq2σq1σq21σp1.a_{p,q}=\sigma_{\!p}\ldots\sigma_{\!{q\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2}}\ \sigma_{\!{q\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}}\ \sigma_{\!{q\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2}}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\ldots\sigma_{\!p}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}. (5)

For all n2n\geqslant 2, we put Σn+={ap,q| 1p<qn}\Sigma_{n}^{\raise 0.6pt\hbox{$\scriptscriptstyle+$}*}=\{a_{p,q}\,|\,1\leqslant p<q\leqslant n\} and Σn=Σn+(Σn+)1\Sigma_{n}^{\scriptstyle*}=\Sigma_{n}^{\raise 0.6pt\hbox{$\scriptscriptstyle+$}*}\sqcup\left(\Sigma_{n}^{\raise 0.6pt\hbox{$\scriptscriptstyle+$}*}\right)^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}.

1144\approx
Figure 2. The letter a1,4a_{1,4} codes for the braid in which strands 11 and 44 cross under strands 22 and 33.

We write [p,q][p,q] for the interval {p,,q}\{p,\ldots,q\} of \mathbb{N}, and we say that [p,q][p,q] is nested in [r,s][r,s] if we have r<p<q<sr<p<q<s.

Lemma 2.6.

[7] In terms of Σn+\Sigma_{n}^{\raise 0.6pt\hbox{$\scriptscriptstyle+$}*}, the group BnB_{n} is presented by the relations

ap,qar,s\displaystyle a_{p,q}a_{r,s} =ar,sap,q for [p,q] and [r,s] disjoint or nested,\displaystyle=a_{r,s}a_{p,q}\text{\quad for $[p,q]$ and $[r,s]$ disjoint or nested}, (6)
ap,qaq,r\displaystyle a_{p,q}a_{q,r} =aq,rap,r=ap,rap,q for 1p<q<rn.\displaystyle=a_{q,r}a_{p,r}=a_{p,r}a_{p,q}\text{\quad for $1\leq p<q<r\leq n$}. (7)

Note that the definition of ap,qa_{p,q} given here is not exactly that of [7] but it is coherent with previous papers of the author.

As for Artin’s generators, the braid group BnB_{n} admits a monoid presentation with generators Σn\Sigma_{n}^{\scriptstyle*}, relations (6) and (7) together with

ap,qap,q1=ap,q1ap,q=εfor all 1p<qn.a_{p,q}\,a_{p,q}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}=a_{p,q}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}\,a_{p,q}=\varepsilon\quad\text{for all $1\leqslant p<q\leqslant n$.} (8)

Except in the case n=2n=2, which is trivial, there are no results in the literature on the growth series of BnB_{n} with respect to Σn\Sigma_{n}^{\scriptstyle*}.

The Birman–Ko–Lee monoid Bn+B_{n}^{\raise 0.6pt\hbox{$\scriptscriptstyle+$}*}, also called dual braid monoid in [5] is the submonoid of BnB_{n} generated by Σn+\Sigma_{n}^{\raise 0.6pt\hbox{$\scriptscriptstyle+$}*}. The term dual was used by D. Bessis since the Garside structure of Bn+B_{n}^{\raise 0.8pt\hbox{$\scriptscriptstyle+$}} and Bn+B_{n}^{\raise 0.6pt\hbox{$\scriptscriptstyle+$}*} share symmetric combinatorial values. In [3], M. Albenque and P. Nadeau give a rational expression for the spherical growth series 𝒮(Bn+,Σn+)\mathcal{S}(B_{n}^{\raise 0.6pt\hbox{$\scriptscriptstyle+$}*},\Sigma_{n}^{\raise 0.6pt\hbox{$\scriptscriptstyle+$}*}); they also treat the case of dual braid monoids of type B.

2.4. Some words about Garside presentations

The two monoids Bn+B_{n}^{\raise 0.8pt\hbox{$\scriptscriptstyle+$}} and Bn+B_{n}^{\raise 0.6pt\hbox{$\scriptscriptstyle+$}*} equip the braid group BnB_{n} with two Garside structures : the classical one [21] and the dual one [7, 5]. The reader can consult [14] and [13] for a general introduction to Garside theory. Here it is sufficient to know that each Garside structure provides simple elements which generate the corresponding Garside monoid. Let us denote by CnC_{n} and DnD_{n} the simple elements of the Garisde monoid Bn+B_{n}^{\raise 0.8pt\hbox{$\scriptscriptstyle+$}} and Bn+B_{n}^{\raise 0.6pt\hbox{$\scriptscriptstyle+$}*} respectively.

In [11], P. Dehornoy starts the study of the spherical combinatorics of Bn+B_{n}^{\raise 0.8pt\hbox{$\scriptscriptstyle+$}} relatively to CnC_{n}. In particular he formulates a divisibility conjecture which has been proven by F. Hivert, J.-C. Novelli and J.-Y. Thibon in [22]. A similar result was obtained for braid monoids of type B in [19]. The spherical combinatorics of Bn+B_{n}^{\raise 0.6pt\hbox{$\scriptscriptstyle+$}*} relatively to DnD_{n} was also considered by P. Biane and P. Dehornoy in [6]: they reduce the computation of s(Bn+,Dn;2)s(B_{n}^{\raise 0.6pt\hbox{$\scriptscriptstyle+$}*},D_{n};2) to that of free cumulants for a product of independent variables.

R. Charney establishes in [9] that the spherical growth series of Artin–Tits groups of spherical type with respect to their standard simple elements are rationals. In particular she obtains the rationality of 𝒮(Bn,Cn)\mathcal{S}(B_{n},C_{n}). This result was generalized for all Garside groups by P. Dehornoy in [10]. This implies in particular the rationality of 𝒮(Bn,Dn)\mathcal{S}(B_{n},D_{n}).

3. Counting braids

We fix an integer n2n\geqslant 2 and SnS_{n} denotes either Σn\Sigma_{n} (Artin’s generators of BnB_{n}) or Σn\Sigma_{n}^{\ast} (dual generators of BnB_{n}).

Definition 3.1.

For n2n\geqslant 2 and \ell\in\mathbb{N} we denote by Bn(Sn,)B_{n}(S_{n},\ell) the set of braids of BnB_{n} whose SnS_{n}-length is \ell.

Since the equality s(Bn,Sn;)=card(Bn(Sn,))s(B_{n},S_{n};\ell)=\mathrm{card}\left(B_{n}(S_{n},\ell)\right) holds, we compute s(Bn,Sn;)s(B_{n},S_{n};\ell) by constructing the set Bn(Sn,)B_{n}(S_{n},\ell). Each braid of BnB_{n} with SnS_{n}-length \ell is the product of a braid of SnS_{n}-length 1{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} and a generator xSnx\in S_{n}. In particular we have

Bn(Sn,){βxfor(β,x)Bn(Sn,1)×Sn},B_{n}(S_{n},\ell)\subseteq\{\beta\cdot x\ \text{for}\ (\beta,x)\in B_{n}(S_{n},{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1})\times S_{n}\}, (9)

and so we can construct Bn(Sn,)B_{n}(S_{n},\ell) by induction on 1\ell\geqslant 1.

3.1. Representative sets

From an algorithmic point of view, a braid is naturally represented by a word. We extend this notion to any subset of Bn(Sn,)B_{n}(S_{n},\ell).

Definition 3.2.

We say that a set WW of SnS_{n}-words represents a subset XX of BnB_{n} whenever WW is a set of unique geodesic representatives for XX.

Example 3.3.

For all n2n\geqslant 2, the set {ε}\{\varepsilon\} represents Bn(Sn,0)B_{n}(S_{n},0). Since relations (1), (2), together with relations (6)-(8) of Artin and dual semigroup presentation of BnB_{n} preserve parity of word length we have the following property:

two SnS_{n}-words uu and vv are equivalent only if |u||v| mod 2|u|\equiv|v|\text{ mod }2. (10)

In particular any SnS_{n}-word of length 1\leqslant 1 is geodesic. As two different letters of SnS_{n} represent different braids of BnB_{n} the set SnS_{n} represents Bn(Sn,1)B_{n}(S_{n},1).

The previous example gives a representative set of Bn(Sn,)B_{n}(S_{n},\ell) for 1\ell\leqslant 1. We now tackle the construction of a representative set WW_{\ell} of Bn(Sn,)B_{n}(S_{n},\ell) for 2\ell\geqslant 2. Using an inductive argument we can assume we already have obtained a set W1W_{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} representing Bn(Sn,1)B_{n}(S_{n},{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}) and then consider the set

W={wxfor(w,x)W1×Sn}.W^{\prime}=\{wx\ \text{for}\ (w,x)\in W_{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}\times S_{n}\}. (11)

A first step to obtain WW_{\ell} consists in removing all non-geodesic words from WW^{\prime}. For this we have to test if a given word of WW^{\prime} is geodesic or not. A naive general solution consists in testing if a word uWu\in W^{\prime} is equivalent to a SnS_{n}-word of length at most 1{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}. However, as words of WW^{\prime} are obtained by appending a letter to a geodesic word, we can restrict the search space:

Lemma 3.4.

For 2\ell\geqslant 2, let uu be a geodesic SnS_{n}-word of length 1\ell-1 and xx a letter of SnS_{n}. If the SnS_{n}-word v=uxv=ux is not geodesic then there exists a geodesic SnS_{n}-word ww of length 2\ell-2 which is equivalent to vv.

Proof.

Assume vv is not geodesic. There exists a SnS_{n}-geodesic word ww equivalent to vv and satisfying |w|<|v||w|<|v|. By (10) we must have |w||v|2=2|w|\leqslant|v|-2=\ell-2. From the equality v=uxv=ux we obtain uvx1u\equiv vx^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} and so uwx1u\equiv wx^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}. Since uu is geodesic we must have |wx1|1|wx^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}|\geqslant\ell-1, implying |w|2|w|\geqslant\ell-2 and so |w|=2|w|=\ell-2. ∎

3.2. Geodesic words

For all \ell\in\mathbb{N} the number g(Bn,Sn;)g(B_{n},S_{n};\ell) can be obtained at no cost during the construction of a representative set of Bn(Sn,)B_{n}(S_{n},\ell).

Definition 3.5.

For a braid βBn\beta\in B_{n} we denote by ωSn(β)\omega_{S_{n}}(\beta) the number of geodesic SnS_{n}-words representing β\beta.

Proposition 3.6.

For βBn\beta\in B_{n} a braid with =|β|Sn1\ell=|\beta|_{S_{n}}\geqslant 1, we have

ωSn(β)=xSn|βx1|Sn=1ωSn(βx1).\omega_{S_{n}}(\beta)=\sum_{\begin{subarray}{c}x\in S_{n}\\ |\beta x^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}|_{S_{n}}={\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}\end{subarray}}\omega_{S_{n}}(\beta x^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}).
Proof.

Let WW be the set of geodesic SnS_{n}-words representing β\beta. The cardinality of WW is then ωSn(β)\omega_{S_{n}}(\beta). For all xSnx\in S_{n} we denote by WxW_{x} the words of WW ending with xx. Since all words of WW have length 1\ell\geqslant 1 we must have

W=xSnWx.W=\bigsqcup_{x\in S_{n}}W_{x}.

Let us fix an element ySny\in S_{n}. By construction, any word of WyW_{y} has length 1{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}, represents the braid βy1\beta y^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} and is geodesic. Hence WyW_{y} is not empty if and only if the SnS_{n}-length of βy1\beta y^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} is 1{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}, which gives

ωSn(β)=card(W)=xSncard(Wx)=xSn|βx1|Sn=1card(Wx).\omega_{S_{n}}(\beta)=\mathrm{card}\left(W\right)=\sum_{x\in S_{n}}\mathrm{card}\left(W_{x}\right)=\sum_{\begin{subarray}{c}x\in S_{n}\\ |\beta x^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}|_{S_{n}}={\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}\end{subarray}}\mathrm{card}\left(W_{x}\right).

Assume βy1\beta y^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} has SnS_{n}-length 1{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}. Since for any geodesic SnS_{n}-word vv representing βy1\beta y^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}, the word vyvy is a geodesic representative of β\beta, the braid βy1\beta y^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} has exactly ωSn(βy1)\omega_{S_{n}}(\beta y^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}) geodesic representatives in WyW_{y}. Therefore card(Wy)\mathrm{card}\left(W_{y}\right) is ωSn(βy1)\omega_{S_{n}}(\beta y^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}) and the result follows. ∎

3.3. A first algorithm

We can now give a first algorithm returning a representative set WW_{\ell} of Bn(Sn,)B_{n}(S_{n},\ell) for 2\ell\geqslant 2. In order to determine g(Bn,Sn;)g(B_{n},S_{n};\ell) we also compute the value of ωSn\omega_{S_{n}} for all words in WW_{\ell}.

In order to construct by induction a representative set WW, we must test if a given word uu is equivalent to a word occuring in WW :

Definition 3.7.

For a set WW of SnS_{n}-words we say that a SnS_{n}-word uu appears in WW, denoted by uWu\triangleleft W, if uu is equivalent to a word vv of WW.

In an algorithmic context a SnS_{n}-word is represented as an array of integers plus another integer ω\omega which eventually correspond to ωSn(u¯)\omega_{S_{n}}(\overline{u}). Whenever two variables u and v stand for the SnS_{n}-words uu and vv we use:

uω\texttt{u}\cdot\omega to design the integer ω\omega associated to the word uu;

uv to design the product uvuv.

Algorithm 1 RepSet : For 2\ell\geqslant 2, returns a set W\texttt{W}_{\ell} representing Bn(Sn,)B_{n}(S_{n},\ell) from two sets W1\texttt{W}_{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} and W2\texttt{W}_{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2} representing Bn(Sn,1)B_{n}(S_{n},{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}) and Bn(Sn,2)B_{n}(S_{n},{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2}) respectively. For each word uW1u\in\texttt{W}_{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}, the value of uω\texttt{u}\cdot\omega is assumed to be ωSn(u¯)\omega_{S_{n}}(\overline{u}).
1:function RepSet(W1\texttt{W}_{{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}},W2\texttt{W}_{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2})
2:    W\texttt{W}_{\ell}\leftarrow\emptyset
3:    for xSn\texttt{x}\in S_{n} do
4:         for uW1\texttt{u}\in\texttt{W}_{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} do
5:             vux\texttt{v}\leftarrow\texttt{u}\,\texttt{x}
6:             if vW2\texttt{v}\ntriangleleft\texttt{W}_{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2} then
7:                 if vW\texttt{v}\ntriangleleft\texttt{W}_{\ell} then \triangleright a new braid v¯\overline{v} of SnS_{n}-length \ell is found
8:                     WW{v}\texttt{W}_{\ell}\leftarrow\texttt{W}_{\ell}\sqcup\{\texttt{v}\}
9:                     vωuω\texttt{v}\cdot\omega\leftarrow\texttt{u}\cdot\omega
10:                 else\triangleright vv is another geodesic word representing v¯\overline{v}
11:                     w\texttt{w}\leftarrow the word in W\texttt{W}_{\ell} equivalent to v
12:                     wωwω+uω\texttt{w}\cdot\omega\leftarrow\texttt{w}\cdot\omega+\texttt{u}\cdot\omega
13:                 end if
14:             end if
15:         end for
16:    end for
17:    return WW_{\ell}
18:end function
Proposition 3.8.

Let 2\ell\geqslant 2 be an integer. Running on sets W1W_{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} and W2W_{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2} representing Bn(Sn,1)B_{n}(S_{n},{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}) and Bn(Sn,2)B_{n}(S_{n},{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2}) respectively, algorithm RepSet returns a representing set WW_{\ell} of Bn(Sn,)B_{n}(S_{n},\ell). Moreover for all uWu\in W_{\ell}, the value of uω\emph{{u}}\cdot\omega is the integer ωSn(u¯)\omega_{S_{n}}(\overline{u}).

Proof.

Let WW^{\prime} be the set of (11) and WW_{\ell} be the set returning by RepSet. The two “for loops” on line 3 and 4 guarantee WWW_{\ell}\subseteq W^{\prime}. By lemma 3.4 and hypotheses on W1W_{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} and W2W_{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2}, condition vW2v\ntriangleleft W_{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2} of line 6 tests if the word v=uxv=ux is geodesic. The second if statement line 7 guarantees we append a word vv in WW_{\ell} if and only if vv does not appear in WW_{\ell}. The set WW_{\ell} is then a representative set of Bn(Sn,)B_{n}(S_{n},\ell). The result about ωSn\omega_{S_{n}} is a direct consequence of Proposition 3.6. ∎

To be complete we must explain how to test if a SnS_{n}-word uu appears in a set of SnS_{n}-words. This can be achieved using a normal form (like the Garside’s normal form) but such a normal form doesn’t provide geodesic representatives. As, for our future research, we want to store braids using geodesic representatives, we prefer to use another method.

3.4. Dynnikov’s coordinates

Originally defined in [16] from the geometric interpretation of the braid group BnB_{n} as the mapping class group of the nn-punctured disk of 2\mathbb{R}^{2}, the Dynnikov’s coordinates admit a purely algebraic definition from the action of BnB_{n} on 2n\mathbb{Z}^{2n}.

For xx\in\mathbb{Z}, we denote by x+x^{+} the non-negative integer max(x,0)\max(x,0) and by xx^{-} the non-positive integer min(x,0)\min(x,0). We first define an action of Artin’s generators on 4\mathbb{Z}^{4}.

Definition 3.9.

For all i[1,n1]i\in[1,{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}] and all (x1,y1,x2,y2)4(x_{1},y_{1},x_{2},y_{2})\in\mathbb{Z}^{4} we put

(x1,y1,x2,y2)σi=(x1,y1,x2,y2)and(x1,y1,x2,y2)σi1=(x1′′,y1′′,x2′′,y2′′)(x_{1},y_{1},x_{2},y_{2})\cdot\sigma_{\!i}=(x^{\prime}_{1},y^{\prime}_{1},x^{\prime}_{2},y^{\prime}_{2})\quad\text{and}\quad(x_{1},y_{1},x_{2},y_{2})\cdot\sigma_{\!i}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}=(x^{\prime\prime}_{1},y^{\prime\prime}_{1},x^{\prime\prime}_{2},y^{\prime\prime}_{2})

where

x1\displaystyle x^{\prime}_{1} =x1+y1++(y2+t1)+\displaystyle=x_{1}+y_{1}^{+}+(y_{2}^{+}-t_{1})^{+} x1′′\displaystyle x^{\prime\prime}_{1} =x1y1+(y2++t2)+\displaystyle=x_{1}-y_{1}^{+}-(y_{2}^{+}+t_{2})^{+}
y1\displaystyle y^{\prime}_{1} =y2t1+\displaystyle=y_{2}-t_{1}^{+} y1′′\displaystyle y^{\prime\prime}_{1} =y2+t2\displaystyle=y_{2}+t_{2}^{-}
x2\displaystyle x^{\prime}_{2} =x2+y2+(y1+t1)\displaystyle=x_{2}+y_{2}^{-}+(y_{1}^{-}+t_{1})^{-} x2′′\displaystyle x^{\prime\prime}_{2} =x2y2(y1t2)\displaystyle=x_{2}-y_{2}^{-}-(y_{1}^{-}-t_{2})^{-}
y2\displaystyle y^{\prime}_{2} =y1+t1+\displaystyle=y_{1}+t_{1}^{+} y2′′\displaystyle y^{\prime\prime}_{2} =y1t2\displaystyle=y_{1}-t_{2}^{-}

with t1=x1y1x2+y2+t_{1}=x_{1}-y_{1}^{-}-x_{2}+y_{2}^{+} and t2=x1+y1x2y2+t_{2}=x_{1}+y_{1}^{-}-x_{2}-y_{2}^{+}.

We can now define an action of Σn\Sigma_{n}-words on 2n\mathbb{Z}^{2n}.

Definition 3.10.

For i[1,n1]i\in[1,{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}], e=±1e=\pm 1 and (a1,b1,,an,bn)2n(a_{1},b_{1},\ldots,a_{n},b_{n})\in\mathbb{Z}^{2n} we put

(a1,b1,,an,bn)σie=(a1,b1,,an,bn)(a_{1},b_{1},\ldots,a_{n},b_{n})\cdot\sigma_{\!i}^{e}=(a^{\prime}_{1},b^{\prime}_{1},\ldots,a^{\prime}_{n},b^{\prime}_{n})

where (ai,bi,ai+1,bi+1)=(ai,bi,ai+1,bi+1)σie(a^{\prime}_{i},b^{\prime}_{i},a^{\prime}_{i\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1},b^{\prime}_{i\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1})=(a_{i},b_{i},a_{i\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1},b_{i\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1})\cdot\sigma_{\!i}^{e} and ak=aka^{\prime}_{k}=a_{k}, bk=bkb^{\prime}_{k}=b_{k} for kk not belonging to {i,i+1}\{i,{i\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}\}.

Definition 3.11.

For a Σn\Sigma_{n}-word uu we define Dyn(u)\operatorname{Dyn}(u) to be (0,1,,0,1)u(0,1,\ldots,0,1)\cdot u. Similarly for an Σn\Sigma_{n}^{\scriptstyle*}-word vv we define Dyn(v)\operatorname{Dyn}(v) to be Dyn(u)\operatorname{Dyn}(u) where uu is the Σn\Sigma_{n}-word obtained from uu using relation (5) of Definition 2.5.

Naturally defined on braid words, Dynnikov’s coordinates is a braid invariant.

Proposition 3.12.

For all SnS_{n}-words uu and vv we have Dyn(u)=Dyn(v)\operatorname{Dyn}(u)=\operatorname{Dyn}(v) if and only if uvu\equiv v.

Proof.

Direct consequence of Corollary 2.24 page 225 of [15]. ∎

We now go back to the problem of testing if a given SnS_{n}-word appears in a set WW of SnS_{n}-words. A solution consists in representing the set WW in machine by an array. To test if the word uu appears in WW we can compute Dyn(u)\operatorname{Dyn}(u) and compare it to all the values of Dyn(v)\operatorname{Dyn}(v) whenever vv go through WW. This method needs at most 1+card(W)1+\mathrm{card}\left(W\right) computations of Dynnikov’s coordinates. If words in WW are sorted by their Dynnikov’s coordinates we can test if uu appear in WW using at most log2(card(W))\log_{2}(\mathrm{card}\left(W\right)) computations of Dynnikov’s coordinates. A more efficient solution is obtained using an unordered_set [26] based on a hash function. The insertion and lookup complexity is then constant in average on a RAM machine depending of the hash function.

As the objective of the current paper is to deepen our knowledge on combinatorics of B4B_{4}, we define a hash function for four strand braids. Assume β\beta is a braid of B4B_{4} given by a S4S_{4}-word uu. The hash of β\beta is

hash(β)=i=14(rem(ai,256)×2562i2+rem(bi,256)×2562i1),\text{hash}(\beta)=\sum_{i=1}^{4}\left(\text{rem}(a_{i},256)\times 256^{2i-2}+\text{rem}(b_{i},256)\times 256^{2i-1}\right),

where (a1,b1,,a4,b4)=Dyn(u)(a_{1},b_{1},\ldots,a_{4},b_{4})=\operatorname{Dyn}(u) and rem(k,256)\text{rem}(k,256) is the positive remainder of kk modulo 256256. By construction, hash(β)\text{hash}(\beta) is an integer lying in [0,2641][0,2^{64}-1] and so our hash function is very well suited for 6464 bits computers.

3.5. Space complexity

Here again we focus on the case n=4n=4. The smallest addressable unit of memory on common computers is the byte which can have 256256 different values. As the set Σ4\Sigma_{4} has 66 elements we can store three Σ4\Sigma_{4}-letters using one byte (63=2166^{3}=216). Hence a Σ4\Sigma_{4}-word of length \ell requires 3\lceil\frac{\ell}{3}\rceil bytes to be stored. Since there are 1212 elements in Σ4\Sigma_{4}^{\scriptstyle*}, a Σ4\Sigma_{4}^{\scriptstyle*}-word of length \ell requires 2\lceil\frac{\ell}{2}\rceil bytes to be stored.

Assume we want to determine a representative set of B4(Σ4,21)B_{4}(\Sigma_{4},21). The memory needed by the algorithm RepSet is at least the space needed to store Σ4\Sigma_{4}-words of W21W_{21}. By Table 2 of Section 6 there are approximatively 6010960\cdot 10^{9} elements in this set. With the above storage method of a Σ4\Sigma_{4}-word, the algorithm needs 7601097\cdot 60\cdot 10^{9} bytes, i.e., 391391Go of memory to run, which is too much. To reduce the memory requirement we can split the sets Bn(Sn,)B_{n}(S_{n},\ell) in many subsets depending of the values of certain braid invariants.

In case we want to determine g(Bn,Sn;)g(B_{n},S_{n};\ell) we also store the value of ωSn(u¯)\omega_{S_{n}}(\overline{u}) for all words in obtained representative sets.

4. Braid template

Here again nn is an integer 2\geqslant 2 and SnS_{n} denotes either Σn\Sigma_{n} or Σn\Sigma_{n}^{\ast}. Each braid invariant ι\iota corresponds to a map from BnB_{n} to a set XX.

Definition 4.1.

A set of braid invariants ι1,,ιm\iota_{1},\ldots,\iota_{m} is said to be inductively stable if for every braid βBn(Sn,)\beta\in B_{n}(S_{n},\ell) and every xSnx\in S_{n}, and every k=1,,mk=1,\ldots,m, the value of ιk(βx)\iota_{k}(\beta\cdot x) depends only on ι1(β),,ιm(β)\iota_{1}(\beta),\ldots,\iota_{m}(\beta) and xx but not on β\beta itself.

The aim of this section is to determine an inductively stable set of braid invariants in order to split in many pieces the determination of a representative set of Bn(Sn,)B_{n}(S_{n},\ell).

4.1. Permutation

For n2n\geqslant 2 we denote by 𝔖n\mathfrak{S}_{n} the set of all bijections of {1,,n}\{1,\ldots,n\} into itself. The transposition (ii+1)(i\ {i\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}) of 𝔖n\mathfrak{S}_{n} exchanging ii and i+1{i\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1} is denoted sis_{i}.

Definition 4.2.

We denote by π:Bn𝔖n\pi:B_{n}\to\mathfrak{S}_{n} the surjective homomorphism of (Bn,)(B_{n},\cdot) to (𝔖n,)(\mathfrak{S}_{n},\circ) defined by π(σi)=si\pi(\sigma_{\!i})=s_{i}.

If β\beta is a braid of BnB_{n} then π(β)\pi(\beta) is the permutation of 𝔖n\mathfrak{S}_{n} such that the strand ending at position ii starts at position π(β)(i)\pi(\beta)(i).

Example 4.3.

For β=σ1σ21σ1σ2\beta=\sigma_{\!1}\sigma_{\!2}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\sigma_{\!1}\sigma_{\!2} we have π(β)=s1s2s1s2=(123312)\pi(\beta)=s_{1}\,s_{2}\,s_{1}\,s_{2}=\big{(}\!{\tiny\begin{array}[]{ccc}1&2&3\\ 3&1&2\end{array}}\!\big{)}, as illustrated on the following diagram :

112233π(β)(2)=1\pi(\beta)(2)=1π(β)(3)=2\pi(\beta)(3)=2π(β)(1)=3\pi(\beta)(1)=3

As π\pi is a homomorphism, for all βBn\beta\in B_{n} and xSnx\in S_{n} we have π(βx)=π(β)π(x)\pi(\beta\cdot x)=\pi(\beta)\circ\pi(x) and so the singleton {π}\{\pi\} is inductively stable.

Lemma 4.4.

For 1p<qn1\leqslant p<q\leqslant n we have π(ap,q)=(pq)\pi(a_{p,q})=(p\ q).

Proof.

As π\pi is a homomorphism, Definition 2.5 gives

π(ap,q)\displaystyle\pi(a_{p,q}) =π(σp)π(σq1)π(σq2)1π(σp)1\displaystyle=\pi(\sigma_{\!p})\circ\ldots\circ\pi(\sigma_{\!{q\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}})\circ\pi(\sigma_{\!{q\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2}})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}\circ\ldots\circ\pi(\sigma_{\!p})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}
=(pp+1)(q1q)(q2q1)(pp+1)\displaystyle=(p\ {p\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1})\circ\ldots\circ({q\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}\ q)\circ({q\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2}\ {q\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1})\circ\ldots\circ(p\ {p\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1})
=(pq).\displaystyle=(p\ q).\qed

4.2. Linking numbers

Assume β\beta is a braid of BnB_{n} and let ii and jj be two different integers of [1,n][1,n]. The linking number of the two strands ii and jj in β\beta is the algebraic number of crossings in β\beta involving the strands ii and jj. A positive crossing (σk\sigma_{\!k}) counts for +1+1 whereas a negative one (σk1)(\sigma_{\!k}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}) counts for 1-1 :

+1\rightarrow+11\rightarrow-1
Definition 4.5.

For βBn\beta\in B_{n} and ii, jj two different integers of [1,n][1,n] we denote by i,j(β)\ell_{i,j}(\beta) the linking number of strands ii and jj in β\beta. The map i,j:Bn\ell_{i,j}:B_{n}\to\mathbb{Z} is then a braid invariant.

A priori, our definition of linking numbers depends of a diagram coding the braid and not on the braid itself. An immediate argument using relations (1) and (2) guarantees this is not the case. The reader can consult [12] page 29 for a more formal definition of linking number111In fact, the two definitions are slightly different but we have i,j(β)=2λi,j(β)\ell_{i,j}(\beta)=2\lambda_{i,j}(\beta). based of an integral definition and a geometric realization of β\beta in 3\mathbb{R}^{3}.

Lemma 4.6.

Let i,ji,j be two integers satisfying 1i<jn1\leqslant i<j\leqslant n and e=±1e=\pm 1.

– For all k[1,n1]k\in[1,{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}] we have

i,j(σke)={eif i=k and j=k+1,0otherwise.\ell_{i,j}(\sigma_{\!k}^{e})=\begin{cases}e&\text{if $i=k$ and $j={k\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}$},\\ 0&\text{otherwise}.\end{cases}

– For all 1p<qn1\leqslant p<q\leqslant n we have

i,j(ap,qe)={eif i=p and j=q,1if i=p and j<q,1if p<i and j=q,0otherwise.\ell_{i,j}(a_{p,q}^{e})=\begin{cases}e&\text{if $i=p$ and $j=q$},\\ 1&\text{if $i=p$ and $j<q$},\\ -1&\text{if $p<i$ and $j=q$},\\ 0&\text{otherwise}.\end{cases}
Proof.

The case of σke\sigma_{\!k}^{e} is immediate. The different values of i,j(ap,qe)\ell_{i,j}(a_{p,q}^{e}) can be obtained from the following diagram of ap,qe=σpσq2σq1eσq21σp1a_{p,q}^{e}=\sigma_{\!p}\ldots\sigma_{\!{q\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2}}\ \sigma_{\!{q\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}}^{e}\ \sigma_{\!{q\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2}}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\ldots\sigma_{\!p}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1} :

ppqqee

Lemma 4.7.

For β\beta and γ\gamma two braids of BnB_{n} and 1i<jn1\leqslant i<j\leqslant n we have

i,j(βγ)=i,j(β)+π(β)1(i),π(β)1(j)(γ),\ell_{i,j}(\beta\cdot\gamma)=\ell_{i,j}(\beta)+\ell_{\pi(\beta)^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(i),\pi(\beta)^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(j)}(\gamma),

with the convention p,q=q,p\ell_{p,q}=\ell_{q,p} for p>qp>q.

Proof.

Immediate as soon as we consider the following diagram :

iijjπ(β)1(i)\pi(\beta)^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(i)π(β)1(j)\pi(\beta)^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(j)β\betaγ\gamma

Corollary 4.8.

The set of invariants {π}{i,j, 1i<jn}\{\pi\}\cup\{\ell_{i,j},\ 1\leqslant i<j\leqslant n\} is inductively stable.

Proof.

A direct consequence of Lemma 4.7 together with the fact that π\pi is a homomorphism. ∎

4.3. Template

We now introduce the notion of template of a braid which will be used to parallelize the determination of a representative set of Bn(Sn,)B_{n}(S_{n},\ell).

Definition 4.9.

The template of a braid βBn\beta\in B_{n} is the tuple

τ(β)=(π(β),1,2(β),1,3(β),2,3(β),,1,n(β),,n1,n(β))𝔖n×n(n1)2,\tau(\beta)=(\pi(\beta),\ell_{1,2}(\beta),\ell_{1,3}(\beta),\ell_{2,3}(\beta),\ldots,\ell_{1,n}(\beta),\ldots,\ell_{{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1},n}(\beta))\in\mathfrak{S}_{n}\times\mathbb{Z}^{\frac{n(n-1)}{2}},

where integer i,j(β)\ell_{i,j}(\beta) appears before r,s(β)\ell_{r,s}(\beta) whenever (i,j)(i,j) is smaller than (r,s)(r,s) with respect to the the co-lexicographic ordering on 2\mathbb{N}^{2} : (i,j)<(p,q)(i,j)<(p,q) if j<qj<q or if j=qj=q and i<pi<p. For a braid template tt we denote by t[π]t[\pi], resp. t[i,j]t[\ell_{i,j}] the corresponding component. For \ell\in\mathbb{N} we denote by Tn(Sn,)T_{n}(S_{n},\ell) the set {τ(β),βBn(Sn,)}\{\tau(\beta),\ \beta\in B_{n}(S_{n},\ell)\} and by TnT_{n} the set {τ(β),βBn}\{\tau(\beta),\ \beta\in B_{n}\} of all templates on BnB_{n}.

Lemma 4.10.

For all βBn\beta\in B_{n} and all xSnx\in S_{n}, the template τ(β)x=τ(βx)\tau(\beta)\ast x=\tau(\beta\cdot x) depends only on τ(β)\tau(\beta) and xx.

Proof.

A direct consequence of Corollary 4.8 and Definition 4.9. ∎

Example 4.11.

Let tt be a template of T3T_{3} with t[π]t[\pi] the cycle (1 3 2)(1\ 3\ 2). Let us compute the template ta1,31t\ast a_{1,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}. We write t=(π,1,2,1,3,2,3)t=(\pi,\ell_{1,2},\ell_{1,3},\ell_{2,3}). The inverse of π\pi is the cycle (1 2 3)(1\ 2\ 3) and so we obtain π1({1,2})={2,3}\pi^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(\{1,2\})=\{2,3\}, π1({1,3})={1,2}\pi^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(\{1,3\})=\{1,2\} and π1({2,3})={1,3}\pi^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(\{2,3\})=\{1,3\}. Eventually, from 1,2(a1,31)=1\ell_{1,2}(a_{1,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1})=1, 1,3(a1,31)=1\ell_{1,3}(a_{1,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1})=-1 and 2,3(a1,31)=1\ell_{2,3}(a_{1,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1})=-1 we obtain

ta1,31\displaystyle t\ast a_{1,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} =((1 3 2)(1 3),1,2+2,3(a1,31),1,3+1,2(a1,31),2,3+1,3(a1,31))\displaystyle=\left((1\ 3\ 2)\circ(1\ 3),\ell_{1,2}+\ell_{2,3}(a_{1,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}),\ell_{1,3}+\ell_{1,2}(a_{1,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}),\ell_{2,3}+\ell_{1,3}(a_{1,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1})\right)
=((1 2),1,21,1,3+1,2,31).\displaystyle=\left((1\ 2),\ell_{1,2}-1,\ell_{1,3}+1,\ell_{2,3}-1\right).
Definition 4.12.

For \ell\in\mathbb{N} and tTnt\in T_{n} we denote by Bn(Sn,,t)B_{n}(S_{n},\ell,t) the set of all braids of BnB_{n} with SnS_{n}-length \ell and template tt.

By very definitions we have

Bn(Sn,)=tTn(Sn,)Bn(Sn,,t).B_{n}(S_{n},\ell)=\bigsqcup_{t\in T_{n}(S_{n},\ell)}B_{n}(S_{n},\ell,t). (12)

Algorithm 2TempRepSet is a “template” version of Algorithm 1RepSet for which we assume we dispose of a function Load(n,,t)\textsc{Load}(n,\ell,t) loading a representative set of Bn(Sn,,t)B_{n}(S_{n},\ell,t) from a storage memory like a hard disk. We also assume we have a function Save(W,n,,t)\textsc{Save}(W,n,\ell,t) saving a representative set of Bn(Sn,,t)B_{n}(S_{n},\ell,t) to that storage memory.

Algorithm 2 TempRepSet : For an integer 1\ell\geqslant 1 and a template tt of Tn(Sn,)T_{n}(S_{n},\ell), saves a representative set W,t\texttt{W}_{\ell,t} of Bn(Sn,,t)B_{n}(S_{n},\ell,t) and returns the pair (card(W),uWωSn(u¯))(\mathrm{card}\left(\texttt{W}_{\ell}\right),\sum_{u\in\texttt{W}_{\ell}}\omega_{S_{n}}(\overline{u}))
1:function TempRepSet(,t\ell,\,t)
2:    W,t\texttt{W}_{\ell,t}\leftarrow\emptyset
3:    W2,tLoad(n,2,t)\texttt{W}_{{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2},t}\leftarrow\textsc{Load}(n,{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2},t) \triangleright W2,t\texttt{W}_{{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2},t} is empty whenever =1\ell=1.
4:    ng0n_{\texttt{g}}\leftarrow 0
5:    for xSn\texttt{x}\in S_{n} do
6:         txtx1t_{\texttt{x}}\leftarrow t\ast\texttt{x}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}
7:         W1,xLoad(n,1,tx)\texttt{W}_{{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1},\texttt{x}}\leftarrow\textsc{Load}(n,{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1},t_{\texttt{x}})
8:         for uW1,x\texttt{u}\in\texttt{W}_{{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1},\texttt{x}} do
9:             vux\texttt{v}\leftarrow\texttt{u}\,\texttt{x}
10:             if vW2,t\texttt{v}\ntriangleleft\texttt{W}_{{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}2},t} then
11:                 if vW,t\texttt{v}\ntriangleleft\texttt{W}_{\ell,t} then
12:                     W,tW,t{v}\texttt{W}_{\ell,t}\leftarrow\texttt{W}_{\ell,t}\sqcup\{\texttt{v}\}
13:                     vωuω\texttt{v}\cdot\omega\leftarrow\texttt{u}\cdot\omega
14:                 else
15:                     w\texttt{w}\leftarrow the word in W,t\texttt{W}_{\ell,t} equivalent to v
16:                     wωwω+uω\texttt{w}\cdot\omega\leftarrow\texttt{w}\cdot\omega+\texttt{u}\cdot\omega
17:                 end if
18:                 ngng+uωn_{\texttt{g}}\leftarrow n_{\texttt{g}}+\texttt{u}\cdot\omega
19:             end if
20:         end for
21:    end for
22:    Save(W,t,n,,t)\textsc{Save}(\texttt{W}_{\ell,t},n,\ell,t)
23:    return (card(W,t),ng)(\mathrm{card}\left(\texttt{W}_{\ell,t}\right),n_{\texttt{g}})
24:end function

In order to compute a representative set of Bn(Sn,)B_{n}(S_{n},\ell) using Algorithm TempRepSet we must first compute the template set Tn(Sn,)T_{n}(S_{n},\ell). From inclusion (9) we obtain

Tn(Sn,){txfor(t,x)Tn(Sn,1)×Sn}.T_{n}(S_{n},\ell)\subseteq\{t\ast x\ \text{for}\ (t,x)\in T_{n}(S_{n},{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1})\times S_{n}\}. (13)

A template tt from the set in the right-hand side of (13) belongs to Tn(Sn,)T_{n}(S_{n},\ell) if and only if there exists a braid βBn(Sn,)\beta\in B_{n}(S_{n},\ell) such that τ(β)=t\tau(\beta)=t. Hence a full run consists in calling the function TempRepSet for each template tt from the set in the right-hand side of (13). Such a template tt will belongs to Tn(Sn,)T_{n}(S_{n},\ell) if and only if the returned value is different from (0,0)(0,0). Putting all pieces together we obtain :

Algorithm 3 Combi : Returns a pair of arrays of positive integers (ns,ng)(n_{\texttt{s}},n_{\texttt{g}}) satisfying relations ns[]=s(Bn,Sn;)n_{\texttt{s}}[\ell]=s(B_{n},S_{n};\ell) and ng[]=g(Bn,Sn;)n_{\texttt{g}}[\ell]=g(B_{n},S_{n};\ell) for all max\ell\leqslant\ell_{\text{max}}.
1:function Combi(max\ell_{\text{max}})
2:    ns[0]1n_{\texttt{s}}[0]\leftarrow 1
3:    ng[0]1n_{\texttt{g}}[0]\leftarrow 1
4:    T{(1𝔖n,0,,0)}T\leftarrow\{(1_{\mathfrak{S}_{n}},0,\ldots,0)\} \triangleright template set Tn(Sn,0)T_{n}(S_{n},0)
5:    for \ell from 11 to max\ell_{\text{max}} do
6:         TT^{\prime}\leftarrow\emptyset
7:         ns[]0n_{\texttt{s}}[\ell]\leftarrow 0ng[]0n_{\texttt{g}}[\ell]\leftarrow 0
8:         for tTt\in T do
9:             for xSn\texttt{x}\in S_{n} do
10:                 txtxt_{\texttt{x}}\leftarrow t\ast\texttt{x}
11:                 (ns,ng)TempRepSet(,tx)(n^{\prime}_{\texttt{s}},n^{\prime}_{\texttt{g}})\leftarrow\textsc{TempRepSet}(\ell,t_{\texttt{x}})
12:                 if (ns,ng)(0,0)(n^{\prime}_{\texttt{s}},n^{\prime}_{\texttt{g}})\not=(0,0) then
13:                     TT{t}T^{\prime}\leftarrow T^{\prime}\cup\{t^{\prime}\}
14:                     ns[]ns[]+nsn_{\texttt{s}}[\ell]\leftarrow n_{\texttt{s}}[\ell]+n_{\texttt{s}}^{\prime}
15:                     ng[]ng[]+ngn_{\texttt{g}}[\ell]\leftarrow n_{\texttt{g}}[\ell]+n^{\prime}_{\texttt{g}}
16:                 end if
17:             end for
18:         end for
19:         TTT\leftarrow T^{\prime}\triangleright template set Tn(Sn,)T_{n}(S_{n},\ell)
20:    end for
21:    return (ns,ng)(n_{\texttt{s}},n_{\texttt{g}})
22:end function

5. Reduced braid templates

Here again nn is an integer 2\geqslant 2 and SnS_{n} denotes either Σn\Sigma_{n} or Σn\Sigma_{n}^{\scriptstyle*}. Experiments using Algorithm 2TempRepSet suggest that some sets Bn(Sn,,t)B_{n}(S_{n},\ell,t) are in bijection for a given \ell. We can use this fact to improve the efficiency of Algorithm 3Combi and reduce the needed storage space.

5.1. Stable word maps

Definition 5.1.

A bijection μ\mu of the set of SnS_{n}-words is SnS_{n}-stable if

i)i) for all SnS_{n}-word ww we have |μ(w)|=|w||\mu(w)|=|w|;

ii)ii) for all SnS_{n}-words uu and vv we have μ(u)μ(v)uv\mu(u)\equiv\mu(v)\Leftrightarrow u\equiv v;

iii)iii) for all SnS_{n}-word uu the template τ(μ(u)¯)\tau(\overline{\mu(u)}) depends only on τ(u¯)\tau(\overline{u}).

For such a SnS_{n}-stable map μ\mu we denote by μT\mu^{T} the map of TnT_{n} defined by

μT(t)=τ(μ(u)¯)\mu^{T}(t)=\tau(\overline{\mu(u)})

where uu is any SnS_{n}-word satisfying τ(u¯)=t\tau(\overline{u})=t. We also define a bijection μ¯\overline{\mu} of BnB_{n} by

μ¯(β)=μ(u)¯,\overline{\mu}(\beta)=\overline{\mu(u)},

where uu is any SnS_{n}-word satisfying u¯=β\overline{u}=\beta.

Whenever μ\mu is SnS_{n}-stable, Condition iii)iii) of Definition 5.1 guarantees that the template of the image by μ¯\overline{\mu} of a braid β\beta does not depend on β\beta but on its template tt and so μT\mu^{T} is well defined.

Lemma 5.2.

For every SnS_{n}-stable bijection μ\mu, we have

i)i) μT\mu^{T} is a permutation of TnT_{n},

ii)ii) a SnS_{n}-word uu is geodesic if and only if μ(u)\mu(u) is.

Proof.

By i)i) and ii)ii) of Definition 5.1 we obtain that μ\mu induces a permutation on the finite set Bn(Sn,)B_{n}(S_{n},\ell). It follows that μT\mu^{T} induces a permutation on Tn(Sn,)T_{n}(S_{n},\ell). For a template tt of TnT_{n} there exists an integer \ell\in\mathbb{N} such that tt belongs to Tn(Sn,)=μT(Tn(Sn,))T_{n}(S_{n},\ell)=\mu^{T}\left(T_{n}(S_{n},\ell)\right) and so μT\mu^{T} is surjective. We now prove the injectivity. For tTnt\in T_{n}, we denote by λ(t)\lambda(t) the minimal integer \ell such that tt belongs to Tn(Sn,)T_{n}(S_{n},\ell). Since μT\mu^{T} induces a permutation on Tn(Sn,)T_{n}(S_{n},\ell) for all \ell we have λ(μT(t))=λ(t)\lambda(\mu^{T}(t))=\lambda(t). Let tt and tt^{\prime} be two templates of TnT_{n} satisfying μT(t)=μT(t)\mu^{T}(t)=\mu^{T}(t^{\prime}). By the above we have

λ(t)=λ(μT(t))=λ(μT(t))=λ(t),\lambda(t)=\lambda(\mu^{T}(t))=\lambda(\mu^{T}(t^{\prime}))=\lambda(t^{\prime}),

and so there exists \ell such that tt and tt^{\prime} belong to Tn(Sn,)T_{n}(S_{n},\ell). Since μT\mu^{T} induces a permutation on Tn(Sn,)T_{n}(S_{n},\ell) we obtain t=tt=t^{\prime}, proving the injectivity of μT\mu^{T}.

Let us now prove ii)ii). Let uu be a SnS_{n}-word. If the word v=μ(u)v=\mu(u) is not geodesic then there exists a strictly shorter SnS_{n}-word vv^{\prime} equivalent to vv. As μ\mu is a bijection we put u=μ1(v)u^{\prime}=\mu^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(v^{\prime}). We obtain μ(u)=vv=μ(u)\mu(u)=v\equiv v^{\prime}=\mu(u^{\prime}). From conditions ii)ii) and i)i) of Definition 5.1 we have uuu\equiv u^{\prime} together with |u|=|v|>|v|=|u||u|=|v|>|v^{\prime}|=|u^{\prime}| and so uu is not geodesic. A similar argument establishes the converse implication. ∎

5.2. Examples

Let us now introduce some useful examples of SnS_{n}-stable bijections. Eventually such a SnS_{n}-stable bijection μ\mu will be used to obtain a representative set of Tn(Sn,,μT(t))T_{n}(S_{n},\ell,\mu^{T}(t)) from a representative set of Tn(Sn,,t)T_{n}(S_{n},\ell,t). This is why it is necessary to specify how to obtain μT(t)\mu^{T}(t) from tt in propositions 5.3, 5.4, 5.8 and 5.13. However the reader may choose to ignore these parts without affecting the understanding of the rest ot the article.

5.2.1. First examples

Proposition 5.3.

The map invSn\mathrm{inv}_{S_{n}} of SnS_{n}-words defined by

invSn(x1xt)=xt1x11\mathrm{inv}_{S_{n}}(x_{1}\cdots x_{t})=x_{t}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}\cdots x_{1}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}

is SnS_{n}-stable. Moreover for every template tTnt\in T_{n} we have

invSnT(t)[π]=t[π]1andinvSnT(t)[i,j]=t[t[π](i),t[π](j)]for 1i<jn.\mathrm{inv}_{S_{n}}^{T}(t)[\pi]=t[\pi]^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}\quad\text{and}\quad\mathrm{inv}_{S_{n}}^{T}(t)[\ell_{i,j}]=-t[\ell_{t[\pi](i),t[\pi](j)}]\ \ \text{for $1\leqslant i<j\leqslant n$.}
Proof.

Condition i)i) of Definition 5.1 is immediate. For two SnS_{n}-words uu and vv, the relation uvu\equiv v is equivalent to v1uεv^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}u\equiv\varepsilon which is itself equivalent to v1u1v^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}\equiv u^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}, hence Condition ii)ii) is established. Let uu be a SnS_{n}-word and vv be invSn(u)\mathrm{inv}_{S_{n}}(u). By definition, we have v¯=u¯1\overline{v}=\overline{u}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}. Since π\pi is a homomorphism we have π(v¯)=π(u¯)1\pi(\overline{v})=\pi(\overline{u})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}. Let 1i<jn1\leqslant i<j\leqslant n be two integers. From 1=v¯u¯1=\overline{v}\overline{u}, Lemma 4.7 implies

0=i,j(1)=i,j(v¯)+π(u¯)(i),π(u¯)(j)(u¯)0=\ell_{i,j}(1)=\ell_{i,j}(\overline{v})+\ell_{\pi(\overline{u})(i),\pi(\overline{u})(j)}(\overline{u})

and so i,j(v¯)=π(u¯)(i),π(u¯)(j)(u¯)\ell_{i,j}(\overline{v})=-\ell_{\pi(\overline{u})(i),\pi(\overline{u})(j)}(\overline{u}). Therefore Condition iii)iii) is also satisfied. ∎

We now point out a divergence between the Artin and dual presentations of the braid group BnB_{n}.

Proposition 5.4.

For n3n\geqslant 3, the map of SnS_{n}-words θSn\theta_{S_{n}} defined by

θSn(x1xt)=x11xt1\theta_{S_{n}}(x_{1}\cdots x_{t})=x_{1}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}\cdots x_{t}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}

is SnS_{n}-stable if and only if Sn=ΣnS_{n}=\Sigma_{n}. Moreover for every template tTnt\in T_{n} we have

θΣnT(t)[π]=t[π]andθΣnT(t)[i,j]=t[i,j]for 1i<jn.\theta_{\Sigma_{n}}^{T}(t)[\pi]=t[\pi]\quad\text{and}\quad\theta_{\Sigma_{n}}^{T}(t)[\ell_{i,j}]=-t[\ell_{i,j}]\ \ \text{for $1\leqslant i<j\leqslant n$.}
Proof.

By construction, Condition i)i) of Definition 5.1 is satisfied. Let us verify Condition ii)ii) for θΣn\theta_{\Sigma_{n}}. It is sufficient to prove θ(u)θ(v)\theta(u)\equiv\theta(v) whenever u=vu=v is a relation of the Artin’s semigroup presentation of BnB_{n}. Let i[1,n1]i\in[1,{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}]. We have θ(σiσi1)=σi1σiε\theta(\sigma_{\!i}\sigma_{\!i}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1})=\sigma_{\!i}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\sigma_{\!i}\equiv\varepsilon, θ(σi1σi)=σiσi1ε\theta(\sigma_{\!i}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\sigma_{\!i})=\sigma_{\!i}\sigma_{\!i}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\equiv\varepsilon and so we get

θ(σiσi1)=θ(σi1σi)=θ(ε).\theta(\sigma_{\!i}\sigma_{\!i}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1})=\theta(\sigma_{\!i}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\sigma_{\!i})=\theta(\varepsilon).

Assume now ii and jj are integers of [1,n1][1,{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}] satisfying |ij|2|i-j|\geqslant 2. From σiσjσjσi\sigma_{\!i}\sigma_{\!j}\equiv\sigma_{\!j}\sigma_{\!i} we obtain successively

σj1σiσjσi,σj1σiσiσj1,σi1σj1σiσj1,σi1σj1σj1σi1,\sigma_{\!j}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\sigma_{\!i}\sigma_{\!j}\equiv\sigma_{\!i},\quad\sigma_{\!j}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\sigma_{\!i}\equiv\sigma_{\!i}\sigma_{\!j}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1},\quad\sigma_{\!i}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\sigma_{\!j}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\sigma_{\!i}\equiv\sigma_{\!j}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1},\quad\sigma_{\!i}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\sigma_{\!j}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\equiv\sigma_{\!j}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\sigma_{\!i}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1},

and so θ(σiσj)=σi1σj1σj1σi1=θ(σjσi)\theta(\sigma_{\!i}\sigma_{\!j})=\sigma_{\!i}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\sigma_{\!j}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\equiv\sigma_{\!j}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\sigma_{\!i}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}=\theta(\sigma_{\!j}\sigma_{\!i}). A similar sequence of equivalences implies θ(σiσjσi)θ(σjσiσj)\theta(\sigma_{\!i}\sigma_{\!j}\sigma_{\!i})\equiv\theta(\sigma_{\!j}\sigma_{\!i}\sigma_{\!j}) for i,ji,j in [1,n1][1,{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}] with |ij|1|i-j|\leqslant 1.

Let uu be an Σn\Sigma_{n}-word. For xΣnx\in\Sigma_{n}, the permutation π(x¯)\pi(\overline{x}) is a transposition and so the relation π(x¯)=π(x1¯)\pi(\overline{x})=\pi(\overline{x^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}}) holds. Hence we obtain π(θΣn(u)¯)=π(u¯)\pi(\overline{\theta_{\Sigma_{n}}(u)})=\pi(\overline{u}). We denote by uku_{k} the prefix of uu of length kk. An immediate induction on kk, together with π(θΣn(uk)¯)=π(uk¯)\pi(\overline{\theta_{\Sigma_{n}}(u_{k})})=\pi(\overline{u_{k}}) and Lemma 4.7 establish i,j(θΣn(u)¯)=i,j(u¯)\ell_{i,j}(\overline{\theta_{\Sigma_{n}}(u)})=-\ell_{i,j}(\overline{u}). Condition iii)iii) is then satisfied by θΣn\theta_{\Sigma_{n}}.

Let us focus now on the map θΣn\theta_{\Sigma_{n}^{\scriptstyle*}}. In B4B_{4} we have the relation a1,2a2,3a2,3a1,3a_{1,2}a_{2,3}\equiv a_{2,3}a_{1,3} while a1,21a2,31a_{1,2}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}a_{2,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} is not equivalent to a2,31a1,31a_{2,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}a_{1,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} as shown by the following diagrams.

a1,2a_{1,2}a2,3a_{2,3}a2,3a_{2,3}a1,3a_{1,3}\approxa1,21a_{1,2}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}a2,31a_{2,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}a2,31a_{2,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}a1,31a_{1,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}\not\approxwhile

The non isotopy of the two right-most diagrams can be established evaluating 1,3\ell_{1,3} for example. Indeed we have 1,3(a1,21a2,31)=1\ell_{1,3}(a_{1,2}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}a_{2,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1})=-1 and 1,3(a2,31a1,31)=1\ell_{1,3}(a_{2,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}a_{1,3}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1})=1. ∎

5.2.2. Garside homorphisms

We now consider the “word version” of the classical and dual Garside automorphisms of BnB_{n}.

Definition 5.5.

The Garside automorphism of BnB_{n} is Φ¯n(β)=ΔnβΔn1\overline{\Phi}_{n}(\beta)=\Delta_{n}\,\beta\,\Delta_{n}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} where Δn\Delta_{n} is given by Δ2=σ1\Delta_{2}=\sigma_{\!1} and Δk=σ1σk1Δk1\Delta_{k}=\sigma_{\!1}\cdots\sigma_{\!{k\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}}\Delta_{k\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} for k3k\geqslant 3.

For example we have Δ4=σ1σ2σ3Δ3=σ1σ2σ3σ1σ2Δ2=σ1σ2σ3σ1σ2σ1\Delta_{4}=\sigma_{\!1}\sigma_{\!2}\sigma_{\!3}\cdot\Delta_{3}=\sigma_{\!1}\sigma_{\!2}\sigma_{\!3}\cdot\sigma_{\!1}\sigma_{\!2}\cdot\Delta_{2}=\sigma_{\!1}\sigma_{\!2}\sigma_{\!3}\cdot\sigma_{\!1}\sigma_{\!2}\cdot\sigma_{\!1}, which corresponds to the following diagram:

For all k[1,n]k\in[1,n] we have:

π(Δn)(k)=n+1k.\pi(\Delta_{n})(k)={n\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}-k. (14)

As we can notice in the previous diagram, the braid Δn\Delta_{n} can be represented by a diagram in which each two strands cross exactly once implying

i,j(Δn)=1andi,j(Δn1)=1for all 1i<jn.\ell_{i,j}(\Delta_{n})=1\quad\text{and}\quad\ell_{i,j}(\Delta_{n}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1})=-1\quad\text{for all $1\leqslant i<j\leqslant n$}. (15)

The result involving Δn1\Delta_{n}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} is a direct consequence of that of Δn\Delta_{n} together with Proposition 5.3. The following lemma is a well-known result about the Garside automorphism Φ¯n\overline{\Phi}_{n}.

Lemma 5.6.

For n3n\geqslant 3, the automorphism Φ¯n\overline{\Phi}_{n} has order 22 and for every integer kk in [1,n1][1,{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}] we have Φ¯n(σk)=σnk\overline{\Phi}_{n}(\sigma_{\!k})=\sigma_{\!n-k}.

Proof.

Let k[1,n1]k\in[1,{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}]. Relation Φ¯n(σk)=σnk\overline{\Phi}_{n}(\sigma_{\!k})=\sigma_{\!n-k} is an easy verification from the Artin presentation of BnB_{n} (see Lemma I.3.6 of [12]). We conclude with Φ¯n2(σk)=Φ¯n(σnk)=σn(nk)=σk\overline{\Phi}^{2}_{n}(\sigma_{\!k})=\overline{\Phi}_{n}(\sigma_{\!n-k})=\sigma_{\!n-(n-k)}=\sigma_{\!k}. ∎

Definition 5.7.

We denote by Φn\Phi_{n} the homomorphism of Σn\Sigma_{n}-words defined for every integer kk in [1,n][1,n] by Φn(σk)=σnk\Phi_{n}(\sigma_{\!k})=\sigma_{\!n-k}.

By Lemma 5.6, for every Σn\Sigma_{n}-word uu we have

Φn(u)¯=Φ¯n(u¯)=Δnu¯Δn1.\overline{\Phi_{n}(u)}=\overline{\Phi}_{n}(\overline{u})=\Delta_{n}\,\overline{u}\,\Delta_{n}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}. (16)
Proposition 5.8.

The map Φn\Phi_{n} is Σn\Sigma_{n}-stable. Moreover for every template tTnt\in T_{n} we have:

(ΦnT(t)[π])(k)=n+1t[π](n+1k)for all k[1,n],\displaystyle\left(\Phi_{n}^{T}(t)[\pi]\right)(k)=n+1-t[\pi](n+1-k)\quad\text{for all $k\in[1,n]$},
ΦnT(t)[i,j]=t[n+1j,n+1i]for all 1i<jn.\displaystyle\Phi_{n}^{T}(t)[\ell_{i,j}]=t[\ell_{n+1-j,n+1-i}]\quad\text{for all $1\leqslant i<j\leqslant n$}.
Proof.

Condition i)i) and ii)ii) of Definition 5.1 are easily established since Φn\Phi_{n} is defined from the conjugation Φ¯n\overline{\Phi}_{n} which induces a bijection on Σn\Sigma_{n}. We now prove Condition iii)iii) of Definition 5.1. Let uu be a Σn\Sigma_{n}-word. By (16) we have

π(Φn(u)¯)=π(Δn)π(u¯)π(Δn)1=π(Δn)π(u¯)π(Δn).\pi(\overline{\Phi_{n}(u)})=\pi(\Delta_{n})\circ\pi(\overline{u})\circ\pi(\Delta_{n})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}=\pi(\Delta_{n})\circ\pi(\overline{u})\circ\pi(\Delta_{n}).

Relation (14) implies that for every integer k[1,n]k\in[1,n] we have

π(Φn(u)¯)(k)=n+1π(u¯)(n+1k).\pi(\overline{\Phi_{n}(u)})(k)={n\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}-\pi(\overline{u})({n\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}-k). (17)

Let 1i<jn1\leqslant i<j\leqslant n be two integers. Lemma 4.7 together with (15) give

i,j(Φn(u)¯)=i,j(Δnu¯Δn1)\displaystyle\ell_{i,j}(\overline{\Phi_{n}(u)})=\ell_{i,j}(\Delta_{n}\overline{u}\Delta_{n}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}) =i,j(Δnu¯)+π(Δnu¯)1(i),π(Δnu¯)1(j)(Δn1)\displaystyle=\ell_{i,j}(\Delta_{n}\overline{u})+\ell_{\pi(\Delta_{n}\overline{u})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(i),\pi(\Delta_{n}\overline{u})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(j)}(\Delta_{n}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1})
=i,j(Δnu¯)1\displaystyle=\ell_{i,j}(\Delta_{n}\overline{u})-1
=i,j(Δn)+π(Δn)1(i),π(Δn)1(j)(u¯)1\displaystyle=\ell_{i,j}(\Delta_{n})+\ell_{\pi(\Delta_{n})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(i),\pi(\Delta_{n})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(j)}(\overline{u})-1
=π(Δn)1(i),π(Δn)1(j)(u¯)\displaystyle=\ell_{\pi(\Delta_{n})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(i),\pi(\Delta_{n})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(j)}(\overline{u})
=n+1i,n+1j(u¯)=n+1j,n+1i(u¯).\displaystyle=\ell_{{n\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}-i,{n\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}-j}(\overline{u})=\ell_{{n\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}-j,{n\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}-i}(\overline{u}).\qed
Definition 5.9.

The dual Garside automorphism of BnB_{n} is ϕ¯n(β)=δnβδn1\overline{\phi}_{n}(\beta)=\delta_{n}\,\beta\,\delta_{n}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1} where δn\delta_{n} is given by δn=a1,2an1,n=σ1σn1\delta_{n}=a_{1,2}\cdots a_{{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1},n}=\sigma_{\!1}\cdots\sigma_{\!{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}}.

For example we have δ4=σ1σ2σ3\delta_{4}=\sigma_{\!1}\sigma_{\!2}\sigma_{\!3} and δ41=σ31σ21σ11\delta_{4}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}=\sigma_{\!3}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\sigma_{\!2}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1}\sigma_{\!1}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1} which correspond to the following diagrams:

δ4\delta_{4}\simeqδ41\delta_{4}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}\simeq (18)
Notation 5.10.

For all nn\in\mathbb{N} and k[0,n+1]k\in[0,{n\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}] we put

[k]n={1if k=n+1,nif k=0,kotherwise.[k]_{n}=\begin{cases}1&\text{if $k={n\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}$},\\ n&\text{if $k=0$},\\ k&\text{otherwise}.\end{cases}

Moreover for all integers ii and jj the symbol 1i=j\textbf{1}_{i=j} equals 11 if the relation i=ji=j holds and 0 otherwise.

As we can directly see on diagrams of (18), for all k[1,n]k\in[1,n] we have

π(δn)(k)=[k+1]nandπ(δn1)(k)=[k1]n,\pi(\delta_{n})(k)=[k+1]_{n}\quad\text{and}\quad\pi(\delta_{n}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1})(k)=[k-1]_{n}, (19)

moreover for all 1i<jn1\leqslant i<j\leqslant n we have

i,j(δn)=1i=1andi,j(δn1)=1j=n.\ell_{i,j}(\delta_{n})=\textbf{1}_{i=1}\quad\text{and}\quad\ell_{i,j}(\delta_{n}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1})=-\textbf{1}_{j=n}. (20)
Lemma 5.11.

The automorphism ϕ¯n\overline{\phi}_{n} has order nn and for all 1p<qn1\leqslant p<q\leqslant n we have

ϕ¯n(ap,q)=a[p+1]n,[q+1]n\overline{\phi}_{n}(a_{p,q})=a_{[{p\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}]_{n},[{q\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}]_{n}}

with the convention ai,j=aj,ia_{i,j}=a_{j,i} whenever j>ij>i holds.

Proof.

Computation of ϕ¯n(ap,q)\overline{\phi}_{n}(a_{p,q}) is an easy verification from Birman–Ko–Lee’s presentation of BnB_{n}. The result on the order of ϕ¯n\overline{\phi}_{n} is then an immediate consequence. ∎

Definition 5.12.

We denote by ϕn\phi_{n} the homomorphism of Σn\Sigma_{n}^{\scriptstyle*}-words defined for all integers pp and qq with 1p<qn1\leqslant p<q\leqslant n by

ϕn(ap,q)=a[p+1]n,[q+1]n\phi_{n}(a_{p,q})=a_{[{p\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}]_{n},[{q\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}]_{n}}

By Lemma 5.11, for every Σn\Sigma_{n}^{\scriptstyle*}-word uu we have

ϕn(u)¯=ϕ¯n(u¯)=δnu¯1δn1.\overline{\phi_{n}(u)}=\overline{\phi}_{n}(\overline{u})=\delta_{n}\,\overline{u}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}\,\delta_{n}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}. (21)
Proposition 5.13.

The map ϕn\phi_{n} is Σn\Sigma_{n}^{\scriptstyle*}-stable. Moreover for every template tTnt\in T_{n} we have

(ϕnT(t)[π])(k)=[1+t[π]([k1]n)]nfor all k[1,n],\displaystyle\left(\phi_{n}^{T}(t)[\pi]\right)(k)=[1+t[\pi]([k-1]_{n})]_{n}\quad\text{for all $k\in[1,n]$},
ϕnT(t)[i,j]=t[[i1]n,[j1]n]+1i=11[1+t[π](n)]n=jfor all 1i<jn.\displaystyle\phi_{n}^{T}(t)[\ell_{i,j}]=t[\ell_{[i-1]_{n},[j-1]_{n}}]+\textbf{\emph{1}}_{i=1}-\textbf{\emph{1}}_{[1+t[\pi](n)]_{n}=j}\quad\text{for all $1\leqslant i<j\leqslant n$}.
Proof.

The proof is similar to that of Proposition 5.8. We detail only the case of Condition iii)iii). Let uu be a Σn\Sigma_{n}^{\scriptstyle*}-word and kk be in [1,n][1,n]. From (21) and (19) we obtain

π(ϕn(u)¯)(k)\displaystyle\pi(\overline{\phi_{n}(u)})(k) =π(δn)(π(u¯)(π(δn)1(k)))\displaystyle=\pi(\delta_{n})(\pi(\overline{u})(\pi(\delta_{n})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(k)))
=π(δn)(π(u¯)([k1]n))\displaystyle=\pi(\delta_{n})(\pi(\overline{u})([{k\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}]_{n}))
=[1+π(u¯)([k1]n)]n.\displaystyle=\left[1+\pi(\overline{u})([{k\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}]_{n})\right]_{n}.

Let 1i<jn1\leqslant i<j\leqslant n be two integers. Lemma 4.7 implies

i,j(ϕn(u)¯)\displaystyle\ell_{i,j}(\overline{\phi_{n}(u)}) =i,j(δnu¯δn1)=i,j(δnu¯)+π(δnu¯)1(i),π(δnu¯)1(j)(δn1).\displaystyle=\ell_{i,j}(\delta_{n}\cdot\overline{u}\cdot\delta_{n}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1})=\ell_{i,j}(\delta_{n}\cdot\overline{u})+\ell_{\pi(\delta_{n}\cdot\overline{u})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(i),\pi(\delta_{n}\cdot\overline{u})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(j)}(\delta_{n}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}).

From (20) we get that π(δnu¯)1(i),π(δnu¯)1(j)(δn1)\ell_{\pi(\delta_{n}\cdot\overline{u})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(i),\pi(\delta_{n}\cdot\overline{u})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(j)}(\delta_{n}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}) is non zero iff π(δnu¯)1(j)=n\pi(\delta_{n}\cdot\overline{u})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(j)=n, i.e., iff π(δnu¯)(n)=j\pi(\delta_{n}\cdot\overline{u})(n)=j which is equivalent to [1+π(u¯)(n)]n=j[1+\pi(\overline{u})(n)]_{n}=j. We then obtain

i,j(ϕn(u)¯)\displaystyle\ell_{i,j}(\overline{\phi_{n}(u)}) =i,j(δnu¯)+{1if [1+π(u¯)(n)]n=j,0otherwise,\displaystyle=\ell_{i,j}(\delta_{n}\cdot\overline{u})+\begin{cases}-1&\text{if $[1+\pi(\overline{u})(n)]_{n}=j$},\\ 0&\text{otherwise},\end{cases}
=i,j(δnu¯)1[1+π(u¯)(n)]n=j.\displaystyle=\ell_{i,j}(\delta_{n}\cdot\overline{u})-\textbf{1}_{[1+\pi(\overline{u})(n)]_{n}=j}.

Moreover, by (20) we have

i,j(δnu¯)\displaystyle\ell_{i,j}(\delta_{n}\cdot\overline{u}) =i,j(δn)+π(δn)1(i),π(δn)1(j)(u¯)\displaystyle=\ell_{i,j}(\delta_{n})+\ell_{\pi(\delta_{n})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(i),\pi(\delta_{n})^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(j)}(\overline{u})
=1i=1+[i1]n,[j1]n(u¯),\displaystyle=\textbf{1}_{i=1}+\ell_{[i-1]_{n},[j-1]_{n}}(\overline{u}),

with the convention p,q=q,p\ell_{p,q}=\ell_{q,p} for p>qp>q. Eventually we obtain

i,j(ϕn(u)¯)=[i1]n,[j1]n(u¯)+1i=11[1+π(u¯)(n)]n=j.\ell_{i,j}(\overline{\phi_{n}(u)})=\ell_{[i-1]_{n},[j-1]_{n}}(\overline{u})+\textbf{1}_{i=1}-\textbf{1}_{[1+\pi(\overline{u})(n)]_{n}=j}.\qed

5.3. Action on templates

We now describe an action of a subgroup of bijections of TnT_{n} on TnT_{n} itself. Eventually, for any template tTnt\in T_{n}, braids of Bn(Sn,,t)B_{n}(S_{n},\ell,t) shall be in bijection with Bn(Sn,,t)B_{n}(S_{n},\ell,t^{\prime}) whenever tt^{\prime} belongs in the orbit of tt.

Definition 5.14.

We define GΣnG_{\Sigma_{n}}, resp. GΣnG_{\Sigma_{n}^{\scriptstyle*}}, to be the subgroup of bijections of TnT_{n} generated by {invΣnT,θΣnT,ΦnT}\{\mathrm{inv}_{\Sigma_{n}}^{T},\theta_{\Sigma_{n}}^{T},\Phi_{n}^{T}\}, resp. by {invΣnT,ϕnT}\{\mathrm{inv}_{\Sigma_{n}^{\scriptstyle*}}^{T},\phi_{n}^{T}\}. For tTnt\in T_{n}, we denote

GΣnt={g(t),gGΣn}andGΣnt={g(t),gGΣn}G_{\Sigma_{n}}\star t=\{g(t),\ g\in G_{\Sigma_{n}}\}\quad\text{and}\quad G_{\Sigma_{n}^{\scriptstyle*}}\star t=\{g(t),\ g\in G_{\Sigma_{n}^{\scriptstyle*}}\}

the orbits of tt under the action of GΣnG_{\Sigma_{n}}, resp. GΣnG_{\Sigma_{n}^{\scriptstyle*}}.

Lemma 5.15.

For n3n\geqslant 3, we have GΣn(/2)3G_{\Sigma_{n}}\simeq\left(\mathbb{Z}/2\mathbb{Z}\right)^{3} and GΣn/2×/nG_{\Sigma_{n}^{\scriptstyle*}}\simeq\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}.

Proof.

Let u=σi1e1σimemu=\sigma_{\!i_{1}}^{e_{1}}\cdots\sigma_{\!i_{m}}^{e_{m}} be a Σn\Sigma_{n}-word with e1,,em{1,+1}e_{1},\ldots,e_{m}\in\{-1,+1\}. From

invΣn(θΣn(u))\displaystyle\mathrm{inv}_{\Sigma_{n}}(\theta_{\Sigma_{n}}(u)) =invΣn(σi1e1σimem)=σimemσi1e1,\displaystyle=\mathrm{inv}_{\Sigma_{n}}(\sigma_{\!i_{1}}^{-e_{1}}\cdots\sigma_{\!i_{m}}^{-e_{m}})=\sigma_{\!i_{m}}^{e_{m}}\cdots\sigma_{\!i_{1}}^{e_{1}},
θΣn(invΣn(u))\displaystyle\theta_{\Sigma_{n}}(\mathrm{inv}_{\Sigma_{n}}(u)) =θΣn(σimemσi1e1)=σimemσi1e1,\displaystyle=\theta_{\Sigma_{n}}(\sigma_{\!i_{m}}^{-e_{m}}\cdots\sigma_{\!i_{1}}^{-e_{1}})=\sigma_{\!i_{m}}^{e_{m}}\cdots\sigma_{\!i_{1}}^{e_{1}},

we obtain that the maps invΣn\mathrm{inv}_{\Sigma_{n}} and θΣn\theta_{\Sigma_{n}} commute on Σn\Sigma_{n}-words. Let tt be a template of TnT_{n} and vv be a Σn\Sigma_{n}-word representing a braid of template tt. We have

(invΣnTθΣnT)(t)=τ((invΣnθΣn)(v)¯)=τ((θΣninvΣn)(v)¯)=(θΣnTinvΣnT)(t)(\mathrm{inv}_{\Sigma_{n}}^{T}\circ\theta_{\Sigma_{n}}^{T})(t)=\tau\left(\overline{(\mathrm{inv}_{\Sigma_{n}}\circ\theta_{\Sigma_{n}})(v)}\right)=\tau\left(\overline{(\theta_{\Sigma_{n}}\circ\mathrm{inv}_{\Sigma_{n}})(v)}\right)=(\theta_{\Sigma_{n}}^{T}\circ\mathrm{inv}_{\Sigma_{n}}^{T})(t)

and so invΣnT\mathrm{inv}_{\Sigma_{n}}^{T} and θΣnT\theta_{\Sigma_{n}}^{T} commute. Similar arguments establish the commutation of θΣn\theta_{\Sigma_{n}} and Φn\Phi_{n}, invΣn\mathrm{inv}_{\Sigma_{n}} and Φn\Phi_{n}, invΣn\mathrm{inv}_{\Sigma_{n}^{\scriptstyle*}} and ϕn\phi_{n}. We then obtain that GΣnG_{\Sigma_{n}} and GΣnG_{\Sigma_{n}^{\scriptstyle*}} are quotient of

Hn=invΣnT×θΣnT×ΦnTandHn=invΣnT×ϕnT.H_{n}=\left<\mathrm{inv}_{\Sigma_{n}}^{T}\right>\times\left<\theta_{\Sigma_{n}}^{T}\right>\times\left<\Phi_{n}^{T}\right>\quad\text{and}\quad H_{n}^{\ast}=\left<\mathrm{inv}_{\Sigma_{n}^{\scriptstyle*}}^{T}\right>\times\left<\phi_{n}^{T}\right>.

respectively. The maps θΣnT\theta_{\Sigma_{n}}^{T} and invΣnT\mathrm{inv}_{\Sigma_{n}}^{T} have order 22 since it is the case for θΣn\theta_{\Sigma_{n}} and invΣn\mathrm{inv}_{\Sigma_{n}} by construction. From Lemma 5.6 and Lemma 5.11 the map Φn\Phi_{n} and ϕn\phi_{n} have order 22 and nn respectively. We then obtain the ismorphisms Hn(/2)3H_{n}\simeq\left(\mathbb{Z}/2\mathbb{Z}\right)^{3} and Hn/2×/nH_{n}^{\ast}\simeq\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}.

Immediate computations establish that GΣnτ(σ1σ22)G_{\Sigma_{n}}\star\tau(\sigma_{\!1}\sigma_{\!2}^{2}) and GΣnτ(σ1)G_{\Sigma_{n}^{\scriptstyle*}}\star\tau(\sigma_{\!1}) have respectively 88 and 2n2n elements and so we obtain

GΣn=Hn(/2)3andGΣn=Hn/2×/n.G_{\Sigma_{n}}=H_{n}\simeq\left(\mathbb{Z}/2\mathbb{Z}\right)^{3}\quad\text{and}\quad G_{\Sigma_{n}^{\scriptstyle*}}=H_{n}^{\ast}\simeq\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}.\qed

From a geometric point of view, the maps invΣnT\mathrm{inv}_{\Sigma_{n}}^{T}, θΣnT\theta_{\Sigma_{n}}^{T} and ΦnTθΣnT\Phi_{n}^{T}\circ\theta_{\Sigma_{n}}^{T} can be seen as reflections along the coordinate planes of the 33-space and the result on GΣnG_{\Sigma_{n}} is immediate. If we consider the base points of the braid evenly placed in a circumference, the maps invΣnT\mathrm{inv}_{\Sigma_{n}^{\scriptstyle*}}^{T} and ϕnT\phi_{n}^{T} correspond respectively to a reflection along a plane and to a rotation of order nn along an axis orthogonal to this plane, establishing the result on GΣnG_{\Sigma_{n}^{\scriptstyle*}}.

Remark.

Note that for n=2n=2, the map Φn\Phi_{n} and ϕn\phi_{n} are trivial and that invΣn\mathrm{inv}_{\Sigma_{n}} and θΣn\theta_{\Sigma_{n}} are equals. Hence we obtain GΣn/2GΣnG_{\Sigma_{n}}\simeq\mathbb{Z}/2\mathbb{Z}\simeq G_{\Sigma_{n}^{\scriptstyle*}}

Example 5.16.

We recall that the template of a braid βB4\beta\in B_{4} is

τ(β)=(π(β),1,2(β),1,3(β),2,3(β),1,4(β),2,4(β),3,4(β))\tau(\beta)=\left(\pi(\beta),\ell_{1,2}(\beta),\ell_{1,3}(\beta),\ell_{2,3}(\beta),\ell_{1,4}(\beta),\ell_{2,4}(\beta),\ell_{3,4}(\beta)\right) (22)

The template of σ1σ21\sigma_{\!1}\sigma_{\!2}^{\raise 0.8pt\hbox{$\scriptscriptstyle-$}1} seen in B4B_{4} is t=((1 2 3),1,1,0,0,0,0)t=((1\,2\,3),1,-1,0,0,0,0). Using Propositions 5.3, 5.4 and 5.13 we obtain

invΣ4T(t)\displaystyle\mathrm{inv}_{\Sigma_{4}}^{T}(t) =((1 3 2),0,1,1,0,0,0),\displaystyle=((1\,3\,2),0,-1,1,0,0,0),
θΣ4T(t)\displaystyle\theta_{\Sigma_{4}}^{T}(t) =((1 2 3),1,1,0,0,0,0),\displaystyle=((1\,2\,3),-1,1,0,0,0,0),
Φ4T(t)\displaystyle\Phi_{4}^{T}(t) =((2 4 3),0,0,0,0,1,1),\displaystyle=((2\,4\,3),0,0,0,0,-1,1),
(invΣ4T(t)θΣ4T)(t)\displaystyle(\mathrm{inv}_{\Sigma_{4}}^{T}(t)\circ\theta_{\Sigma_{4}}^{T})(t) =((1 3 2),0,1,1,0,0,0),\displaystyle=((1\,3\,2),0,1,-1,0,0,0),
(invΣ4TΦ4T)(t)\displaystyle(\mathrm{inv}_{\Sigma_{4}}^{T}\circ\Phi_{4}^{T})(t) =((2 3 4),0,0,1,0,1,0),\displaystyle=((2\,3\,4),0,0,1,0,-1,0),
(θΣ4TΦ4T)(t)\displaystyle(\theta_{\Sigma_{4}}^{T}\circ\Phi_{4}^{T})(t) =((2 4 3),0,0,0,0,1,1),\displaystyle=((2\,4\,3),0,0,0,0,1,-1),
(invΣ4TθΣ4TΦ4T)(t)\displaystyle(\mathrm{inv}_{\Sigma_{4}}^{T}\circ\theta_{\Sigma_{4}}^{T}\circ\Phi_{4}^{T})(t) =((2 3 4),0,0,1,0,1,0),\displaystyle=((2\,3\,4),0,0,-1,0,1,0),

and so the set GtG\star t has exactly 88 elements.

5.4. Template reduction

Now we define a total ordering on TnT_{n}. We start with permutations of 𝔖n\mathfrak{S}_{n}.

Definition 5.17.

For σ\sigma and σ\sigma^{\prime} two permutations of 𝔖n\mathfrak{S}_{n} we write σ<σ\sigma<\sigma^{\prime} whenever

(σ(1),,σ(n))<CoLex(σ(1),,σ(n)),(\sigma(1),\ldots,\sigma(n))<_{\textsc{CoLex}}(\sigma^{\prime}(1),\ldots,\sigma^{\prime}(n)),

i.e., whenever there exists k[1,n]k\in[1,n] such that σ(n)=σ(n),,σ(k+1)=σ(k+1)\sigma(n)=\sigma^{\prime}(n),\ldots,\sigma({k\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1})=\sigma^{\prime}({k\mathchoice{\!+\!}{\!+\!}{\raise 0.7pt\hbox{$\scriptscriptstyle+$}\scriptstyle}{+}1}) and σ(k)<σ(k)\sigma(k)<\sigma^{\prime}(k).

For example, the ordering of permutations occurring in Example 5.16 is

(2 3 4)<(2 4 3)<(1 2 3)<(1 3 2).(2\,3\,4)<(2\,4\,3)<(1\,2\,3)<(1\,3\,2). (23)
Definition 5.18.

For two templates t=(σ,(i,j)1i<jn)t=(\sigma,(\ell_{i,j})_{1\leqslant i<j\leqslant n}) and t=(σ,(i,j)1i<jn)t^{\prime}=(\sigma^{\prime},(\ell^{\prime}_{i,j})_{1\leqslant i<j\leqslant n}) we write t<tt<t^{\prime} whenever

(σ,1,2,,1,n,,n1,n)<Lex(σ,1,2,,1,n,,n1,n),(\sigma,\ell_{1,2},\ldots,\ell_{1,n},\ldots,\ell_{{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1},n})<_{\textsc{Lex}}(\sigma^{\prime},\ell^{\prime}_{1,2},\ldots,\ell^{\prime}_{1,n},\ldots,\ell^{\prime}_{{n\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1},n}),

where we recall the integers i,j(β)\ell_{i,j}(\beta) are enumerated following a co-lexicographic ordering on their indices (see Definition 4.9). For a template tt we denote by redSn(t)\text{red}_{S_{n}}(t) the minimal element of GSntG_{S_{n}}\!\star t. We say that a template tTnt\in T_{n} is SnS_{n}-reduced if redSn(t)=t\text{red}_{S_{n}}(t)=t holds. For an integer \ell\in\mathbb{N} we denote by Rn(Sn,)R_{n}(S_{n},\ell) the set of reduced templates lying in Tn(Sn,)T_{n}(S_{n},\ell).

Example 5.19.

We reconsider template tt of Example 5.16. By (23) we obtain

redΣ4(t)=((2 3 4),0,0,1,0,1,0).\text{red}_{\Sigma_{4}}(t)=((2\,3\,4),0,0,-1,0,1,0).

which is equal to (invΣ4TθΣ4TΦ4T)(t)(\mathrm{inv}_{\Sigma_{4}}^{T}\circ\theta_{\Sigma_{4}}^{T}\circ\Phi_{4}^{T})(t).

Proposition 5.20.

For μ\mu a SnS_{n}-stable map of SnS_{n}-words, \ell an integer 0\geqslant 0 and tt a template of TnT_{n} we have

μ¯(Bn(Sn,,t))=Bn(Sn,,μT(t))\overline{\mu}(B_{n}(S_{n},\ell,t))=B_{n}(S_{n},\ell,\mu^{T}(t))

and card(Bn(Sn,,t))=card(Bn(Sn,,μT(t)))\mathrm{card}\left(B_{n}(S_{n},\ell,t)\right)=\mathrm{card}\left(B_{n}(S_{n},\ell,\mu^{T}(t))\right).

Proof.

A direct consequense of Definition 5.1 and Lemma 5.2. ∎

Corollary 5.21.

Let \ell be an integer. We have

s(Bn,Sn;)\displaystyle s(B_{n},S_{n};\ell) =tRn(Sn,)card(Bn(Sn,,t))card(GSnt).\displaystyle=\sum_{t\in\mathrm{R}_{n}(S_{n},\ell)}\mathrm{card}\left(B_{n}(S_{n},\ell,t)\right)\cdot\mathrm{card}\left(G_{S_{n}}\!\star t\right).
Proof.

We have

Bn(Sn,)=tTn(Sn,)Bn(Sn,,t)=trRn(Sn,)tGSntrBn(Sn,,t)B_{n}(S_{n},\ell)=\bigsqcup_{t\in T_{n}(S_{n},\ell)}B_{n}(S_{n},\ell,t)=\bigsqcup_{t_{r}\in\mathrm{R}_{n}(S_{n},\ell)}\bigsqcup_{t\in G_{S_{n}}\!\star t_{r}}B_{n}(S_{n},\ell,t)

Assume trt_{r} is a template of Rn(Sn,)\mathrm{R}_{n}(S_{n},\ell) and tt lies in GSntrG_{S_{n}}\!\star t_{r}. Then there exists a SnS_{n}-stable bijection μGSn\mu\in G_{S_{n}} satisfying t=μT(tr)t=\mu^{T}(t_{r}). It follows from Proposition 5.20 that the set Bn(Sn,,t)B_{n}(S_{n},\ell,t) has the same cardinality as Bn(Sn,,tr)B_{n}(S_{n},\ell,t_{r}). So we obtain

s(Bn,Sn;)\displaystyle s(B_{n},S_{n};\ell) =card(Bn(Sn,))=trRn(Sn,)tG(Sn)trcard(Bn(Sn,,t))\displaystyle=\mathrm{card}\left(B_{n}(S_{n},\ell)\right)=\sum_{t_{r}\in\mathrm{R}_{n}(S_{n},\ell)}\sum_{t\in G(S_{n})\star t_{r}}\mathrm{card}\left(B_{n}(S_{n},\ell,t)\right)
=trRn(Sn,)card(Bn(Sn,,tr))card(GSntr).\displaystyle=\sum_{t_{r}\in\mathrm{R}_{n}(S_{n},\ell)}\mathrm{card}\left(B_{n}(S_{n},\ell,t_{r})\right)\cdot\mathrm{card}\left(G_{S_{n}}\!\star t_{r}\right).\qed

5.5. Algorithmic improvement

We now give an improvement of the algorithms of Section 4 using Corollary 5.21. From Corollary 5.21 we know how to obtain s(Bn,Sn;)s(B_{n},S_{n};\ell) from an enumeration of braids associated to a reduced template. As in Section 4 we assume we have a function LoadRed(n,,t)\textsc{LoadRed}(n,\ell,t) loading from the storage memory a representative set of Bn(Sn,,t)B_{n}(S_{n},\ell,t) where tt is a reduced template. We also assume we have a function SaveRed(W,n,,t)\textsc{SaveRed}(W,n,\ell,t) which saves a representative set WW of Bn(Sn,,t)B_{n}(S_{n},\ell,t) whenever tt is a reduced template.

Enumerating only braids with a reduced template reduces the requirements of storage space. But there is a little difficulty. The template txt_{x} used in the call of Load line 6 of Algorithm 2TempRepSet is not necessarily reduced. However, thanks to Proposition 5.20 we have

Bn(Sn,,t)=g¯1(Bn(Sn,,redSn(t))),B_{n}(S_{n},\ell,t)=\overline{g}^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(B_{n}(S_{n},\ell,\text{red}_{S_{n}}(t))),

where gT(t)=redSn(t)g^{T}(t)=\text{red}_{S_{n}}(t). Hence if WrW_{r} is a representative set of Bn(Sn,,redSn(t))B_{n}(S_{n},\ell,\text{red}_{S_{n}}(t)) then W=g1(Wr)W=g^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(W_{r}) is a representative set of Bn(Sn,,t)B_{n}(S_{n},\ell,t). We then obtain Algorithm 4LoadFromRed that can return any representative set of Bn(Sn,,t)B_{n}(S_{n},\ell,t) from the storage of braids of SnS_{n}-length \ell with a reduced template.

Algorithm 4 LoadFromRed : Returns a representative set W of Bn(Sn,,t)B_{n}(S_{n},\ell,t) from the storage of representative sets of braids of length \ell having a reduced template.
1:function LoadFromRed(n,,tn,\ell,t)
2:    trredSn(t)t_{r}\leftarrow\text{red}_{S_{n}}(t) \triangleright the minimal element of GSntG_{S_{n}}\star t
3:    determine gGSng\in G_{S_{n}} such that t=gT(tr)t=g^{T}(t_{r})
4:    WrLoadRed(n,,tr)\texttt{W}_{\texttt{r}}\leftarrow\textsc{LoadRed}(n,\ell,t_{r})
5:    W\texttt{W}\leftarrow\emptyset
6:    for wWr\texttt{w}\in\texttt{W}_{\texttt{r}} do
7:         WW{g1(w)}\texttt{W}\leftarrow\texttt{W}\sqcup\{g^{\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}(\texttt{w})\}
8:    end for
9:    return W
10:end function

Replacing calls of Load by LoadRed and call of Save by SaveRed in Algorithm 2 – TempRepSet we obtain Algorithm RedTempRepSet(,t)\textsc{RedTempRepSet}(\ell,t) which saves a representative set W,t\texttt{W}_{\ell,t} of Bn(Sn,,t)B_{n}(S_{n},\ell,t) and returns the pair (card(W),uWωSn(u¯))(\mathrm{card}\left(\texttt{W}_{\ell}\right),\sum_{u\in\texttt{W}_{\ell}}\omega_{S_{n}}(\overline{u})) for every integer 1\ell\geqslant 1 and every reduced template tt of Rn(Sn,)\mathrm{R}_{n}(S_{n},\ell).

By Corollary 5.21 the number s(Bn,Sn;)s(B_{n},S_{n};\ell) can be determined by running Algorithm RedTempRepSet on all reduced templates of Tn(Sn,)T_{n}(S_{n},\ell). As for braids we can’t determine reduced templates of Tn(Sn,)T_{n}(S_{n},\ell) considering only reduced templates of Tn(Sn,1)T_{n}(S_{n},{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}). Assume we dispose of the set Rn(Sn,1)\mathrm{R}_{n}(S_{n},{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}) of reduced templates of Tn(Sn,1)T_{n}(S_{n},{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}). First we reconstruct the set Tn(Sn,1)T_{n}(S_{n},{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1}) using

Tn(Sn,1)={g(t)for(g,t)GSn×Rn(Sn,1)}.T_{n}(S_{n},{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1})=\{g(t)\ \text{for}(g,t)\in G_{S_{n}}\times\mathrm{R}_{n}(S_{n},{\ell\mathchoice{\!-\!}{\!-\!}{\raise 0.7pt\hbox{$\scriptscriptstyle-$}\scriptstyle}{-}1})\}.

As a second step we use (13) to obtain a supset TT_{\ell}^{\prime} of Tn(Sn,)T_{n}(S_{n},\ell). Then we filter element of TT_{\ell}^{\prime} keeping only reduced templates by testing if a template is minimal in its orbit under the action of GSnG_{S_{n}}. Eventually we obtain the set Rn(Sn,)\mathrm{R}_{n}^{\prime}(S_{n},\ell) of reduced templates containing the reduced templates of Tn(Sn,)T_{n}(S_{n},\ell). Moreover a template of Rn(Sn,)\mathrm{R}_{n}^{\prime}(S_{n},\ell) is a reduced template of Tn(Sn,)T_{n}(S_{n},\ell) if and only if there exists a braid β\beta of Bn(Sn,)B_{n}(S_{n},\ell) having this precise template. We then obtain Rn(Sn,)\mathrm{R}_{n}(S_{n},\ell) from the set Rn(Sn,)\mathrm{R}_{n}^{\prime}(S_{n},\ell). These lead to Algorithm 5 – RedCombi, which is an improved version of Algorithm 3 – Combi.

Algorithm 5 RedCombi : Returns a pair of arrays of numbers (ns,ng)(n_{\texttt{s}},n_{\texttt{g}}) satisfying ns[]=s(Bn,Sn;)n_{\texttt{s}}[\ell]=s(B_{n},S_{n};\ell) and ng[]=g(Bn,Sn;)n_{\texttt{g}}[\ell]=g(B_{n},S_{n};\ell) for all max\ell\leqslant\ell_{\text{max}}
1:function RedCombi(max\ell_{\text{max}})
2:    ns[0]1n_{\texttt{s}}[0]\leftarrow 1ng[0]1n_{\texttt{g}}[0]\leftarrow 1
3:    R{(1𝔖n,0,,0)}R\leftarrow\{(1_{\mathfrak{S}_{n}},0,\ldots,0)\} \triangleright reduced templates of Tn(Sn,0)T_{n}(S_{n},0)
4:    for \ell from 11 to max\ell_{\text{max}} do
5:         RR^{\prime}\leftarrow\emptyset
6:         ns[]0n_{\texttt{s}}[\ell]\leftarrow 0ng[]0n_{\texttt{g}}[\ell]\leftarrow 0
7:         for trRt_{r}\in R do
8:             for tGSntrt\in G_{S_{n}}\star t_{r} do
9:                 for xSn\texttt{x}\in S_{n} do
10:                     ttxt^{\prime}\leftarrow t\ast\texttt{x}
11:                     if tt^{\prime} is reduced and tRt^{\prime}\not\in R^{\prime} then
12:                         (ns,ng)RedTempRepSet(,t)(n^{\prime}_{\texttt{s}},n^{\prime}_{\texttt{g}})\leftarrow\textsc{RedTempRepSet}(\ell,t^{\prime})
13:                         if ns0n^{\prime}_{\texttt{s}}\not=0 then
14:                             RR{t}R^{\prime}\leftarrow R^{\prime}\cup\{t^{\prime}\}
15:                             ns[]ns[]+ns×card(GSnt)n_{\texttt{s}}[\ell]\leftarrow n_{\texttt{s}}[\ell]+n^{\prime}_{\texttt{s}}\times\mathrm{card}\left(G_{S_{n}}\!\star t^{\prime}\right)
16:                             ng[]ng[]+ng×card(GSnt)n_{\texttt{g}}[\ell]\leftarrow n_{\texttt{g}}[\ell]+n^{\prime}_{\texttt{g}}\times\mathrm{card}\left(G_{S_{n}}\!\star t^{\prime}\right)
17:                         end if
18:                     end if
19:                 end for
20:             end for
21:         end for
22:         RRR\leftarrow R^{\prime}\triangleright reduced templates of Tn(Sn,)T_{n}(S_{n},\ell)
23:    end for
24:    return (ns,ng)(n_{\texttt{s}},n_{\texttt{g}})
25:end function

6. Results

For our experimentations we have coded a distributed version of Algorithm 5 – RedCombi following a client / server model. Roughly speaking the server runs the core of Algorithm 5 while clients run Algorithm 4 – RedTempRepSet in parallel. Technical details are voluntarily omitted. The source code of our program is available on GitHub [20].

These programs were executed on a single computational node222Financed by the project BQR CIMPA 2020 and the laboratory LMPA. of the computing platform CALCULCO [25]. This node is equipped with 256 Go of RAM together with two processors AMD Epyc 7702 with 64 cores each for a total of 128 cores. In addition of this computational node we have used a distributed storage space of 30 To storing files containing representative sets.

6.1. Three strands

As values of 𝒮(B3,Σ3)\mathcal{S}(B_{3},\Sigma_{3}) and 𝒢(B3,Σ3)\mathcal{G}(B_{3},\Sigma_{3}) are already known since the work of L. Sabalka [24] we have started our experimentation on the dual presentation of B3B_{3} (see Table 1).

\ell s(B3,Σ3;)s(B_{3},\Sigma_{3}^{\scriptstyle*};\ell) g(B3,Σ3;)g(B_{3},\Sigma_{3}^{\scriptstyle*};\ell)
0 1 1
1 6 6
2 20 30
3 54 126
4 134 498
5 318 1 926
6 734 7 410
7 1 662 28 566
8 3 710 110 658
9 8 190 431 046
10 17 918 1 687 890
\ell s(B3,Σ3;)s(B_{3},\Sigma_{3}^{\scriptstyle*};\ell) g(B3,Σ3;)g(B_{3},\Sigma_{3}^{\scriptstyle*};\ell)
11 38 910 6 639 606
12 83 966 26 216 418
13 180 222 103 827 366
14 385 022 412 169 970
15 819 198 1 639 212 246
16 1 736 702 6 528 347 778
17 3 670 014 26 027 690 886
18 7 733 246 103 853 269 650
19 16 252 926 414 639 810 486
20 34 078 718 1 656 237 864 738
21 71 303 166 6 617 984 181 606
Table 1. Combinatorics of B3B_{3} relatively to dual generators Σ3\Sigma_{3}^{\scriptstyle*}.

Using Padé approximant on obtained values we can conjecture rational expression for the spherical and geodesic growth series of B3B_{3} relatively to dual generators.

Conjecture 6.1.

The spherical and geodesic growth series of B3B_{3} relatively to dual generators are

𝒮(B3,Σ3)=(t+1)(2t21)(t1)(2t1)2,𝒢(B3,Σ3)=12t32t2+3t1(2t1)(3t1)(4t1).\mathcal{S}(B_{3},\Sigma_{3}^{\scriptstyle*})=\frac{(t+1)(2t^{2}-1)}{(t-1)(2t-1)^{2}},\qquad\mathcal{G}(B_{3},\Sigma_{3}^{\scriptstyle*})=\frac{12t^{3}-2t^{2}+3t-1}{(2t-1)(3t-1)(4t-1)}.

If the previous conjecture is true the growth rate of s(B3,Σ3;)s(B_{3},\Sigma_{3}^{\scriptstyle*};\ell) is 22 while that of g(B3,Σ3;)g(B_{3},\Sigma_{3}^{\scriptstyle*};\ell) is 44.

6.2. Four strands

In her thesis [2], M. Albenque computes the value s(B4,Σ4;)s(B_{4},\Sigma_{4};\ell) up to 12\ell\leqslant 12. Running our algorithm on the 128128-cores node of the CALCULCO platform we determine the spherical and geodesic combinatorics of B4B_{4} relatively to Artin’s generators up to length 2525 (see Table 2).

\ell s(B4,Σ4;)s(B_{4},\Sigma_{4};\ell) g(B4,Σ4;)g(B_{4},\Sigma_{4};\ell)
0 1 1
1 6 6
2 26 30
3 98 142
4 338 646
5 1 110 2 870
6 3 542 12 558
7 11 098 54 026
8 34 362 229 338
9 105 546 963 570
10 322 400 4 016 674
11 980 904 16 641 454
12 2 975 728 68 614 150
\ell s(B4,Σ4;)s(B_{4},\Sigma_{4};\ell) g(B4,Σ4;)g(B_{4},\Sigma_{4};\ell)
13 9 007 466 281 799 158
14 27 218 486 1 153 638 466
15 82 133 734 4 710 108 514
16 247 557 852 19 186 676 438
17 745 421 660 78 004 083 510
18 2 242 595 598 316 591 341 866
19 6 741 618 346 1 283 041 428 650
20 20 252 254 058 5 193 053 664 554
21 60 800 088 680 20 994 893 965 398
22 182 422 321 452 84 795 261 908 498
23 547 032 036 564 342 173 680 884 002
24 1 639 548 505 920 1 379 691 672 165 334
25 4 911 638 066 620 5 559 241 797 216 166
Table 2. Combinatorics of B4B_{4} relatively to Artin’s generators Σ4\Sigma_{4}.

Unfortunately the obtained values do not allow us to guess a rational expression of 𝒮(B4,Σ4)\mathcal{S}(B_{4},\Sigma_{4}) or of 𝒢(B4,Σ4)\mathcal{G}(B_{4},\Sigma_{4}). For information the storage of all braids of B4B_{4} with geodesic Σ4\Sigma_{4}-length 25\leqslant 25 and reduced templates requires 2626 To of disk space.

In case of dual generators we have reached length 1717 (see Table 3).

\ell s(B4,Σ4;)s(B_{4},\Sigma_{4}^{\scriptstyle*};\ell) g(B4,Σ4;)g(B_{4},\Sigma_{4}^{\scriptstyle*};\ell)
0 1 1
1 12 12
2 84 132
3 478 1 340
4 2 500 12 788
5 12 612 117 452
6 62 570 1 053 604
7 303 356 9 311 420
8 1 506 212 81 488 628
\ell S(B4,Σ4;)S(B_{4},\Sigma_{4}^{\scriptstyle*};\ell) g(B4,Σ4;)g(B_{4},\Sigma_{4}^{\scriptstyle*};\ell)
9 7 348 366 708 368 540
10 35 773 324 6 128 211 364
11 173 885 572 52 826 999 612
12 844 277 874 454 136 092 148
13 4 095 929 948 3 895 624 824 092
14 19 858 981 932 33 359 143 410 468
15 96 242 356 958 285 259 736 104 444
16 466 262 144 180 2 436 488 694 821 748
17 2 258 320 991 652 20 790 986 096 580 060
Table 3. Combinatorics of B4B_{4} relatively to dual generators Σ4\Sigma_{4}^{\scriptstyle*}.

Using Padé approximant on our values we can conjecture the value of the spherical growth series of B4B_{4} relatively to dual generators.

Conjecture 6.2.

The spherical growth series of B4B_{4} relatively to dual generators is

𝒮(B4,Σ4)=(t+1)(10t610t53t4+11t34t23t+1)(t1)(5t25t+1)(10t420t3+19t28t+1)\mathcal{S}(B_{4},\Sigma_{4}^{\scriptstyle*})=-\frac{(t+1)(10t^{6}-10t^{5}-3t^{4}+11t^{3}-4t^{2}-3t+1)}{(t-1)(5t^{2}-5t+1)(10t^{4}-20t^{3}+19t^{2}-8t+1)} (24)

If the previous conjecture is true, the growth rate of s(B4,Σ4;)s(B_{4},\Sigma_{4}^{\scriptstyle*};\ell) is given by the inverse of the maximal root of the denominator of (24), which is approximatively 4.84.8. Unfortunately we are not able to formulate such a conjecture for the geodesic growth series of B4B_{4} relatively to dual generators.

Acknowledgments. The author wishes to thank the anonymous referee for his/her very sharp comments.

References

  • [1] M. Albenque. Bijective combinatorics of positive braids. Electronic Notes in Discrete Mathematics, 29:225–229, 2007.
  • [2] M. Albenque. Tresses, animaux , cartes : à l’interaction entre combinatoire et probabilité. PhD thesis, Université Paris Diderot, 2008.
  • [3] M. Albenque and P. Nadeau. Growth function for a class of monoids. In 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), Discrete Math. Theor. Comput. Sci. Proc., AK, pages 25–38. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2009.
  • [4] E. Artin. Theory of braids. Ann. of Math. (2), 48:101–126, 1947.
  • [5] D. Bessis. The dual braid monoid. Ann. Sci. École Norm. Sup. (4), 36(5):647–683, 2003.
  • [6] P. Biane and P. Dehornoy. Dual Garside structure of braids and free cumulants of products. Sém. Lothar. Combin., 72:Art. B72b, 15, 2014/15.
  • [7] J. Birman, K. H. Ko, and S. J. Lee. A new approach to the word and conjugacy problems in the braid groups. Adv. Math., 139(2):322–353, 1998.
  • [8] A. Bronfman. Growth function of a class of monoids (preprint), 2001.
  • [9] R. Charney. Geodesic automation and growth functions for Artin groups of finite type. Math. Ann., 301(2):307–324, 1995.
  • [10] P. Dehornoy. Groupes de Garside. Ann. Sci. École Norm. Sup. (4), 35(2):267–306, 2002.
  • [11] P. Dehornoy. Combinatorics of normal sequences of braids. J. Combin. Theory Ser. A, 114(3):389–409, 2007.
  • [12] P. Dehornoy. Le calcul des tresses. Nano. Calvage & Mounet, 2019.
  • [13] P. Dehornoy, F. Digne, E. Godelle, D. Krammer, and J. Michel. Foundations of Garside theory, volume 22 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2015. Author name on title page: Daan Kramer.
  • [14] P. Dehornoy and L. Paris. Gaussian groups and Garside groups, two generalisations of Artin groups. Proc. London Math. Soc. (3), 79(3):569–604, 1999.
  • [15] Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest. Ordering braids, volume 148 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2008.
  • [16] I. A. Dynnikov. On a Yang-Baxter mapping and the Dehornoy ordering. Uspekhi Mat. Nauk, 57(3(345)):151–152, 2002.
  • [17] D. B. A. Epstein, D. F. Holt, and S. E. Rees. The use of Knuth-Bendix methods to solve the word problem in automatic groups. volume 12, pages 397–414. 1991. Computational group theory, Part 2.
  • [18] R. Flores and J. González-Meneses. On the growth of Artin–Tits monoids and the partial theta function. arXiv:1808.03066, 2018.
  • [19] L. Foissy and J. Fromentin. A divisibility result in combinatorics of generalized braids. J. Combin. Theory Ser. A, 152:190–224, 2017.
  • [20] J. Fromentin. Github – gbraids. https://github.com/jfromentin/gbraids, 2020.
  • [21] F. A. Garside. The braid group and other groups. Quart. J. Math. Oxford Ser. (2), 20:235–254, 1969.
  • [22] F. Hivert, J.-C. Novelli, and J.-Y. Thibon. Sur une conjecture de Dehornoy. C. R. Math. Acad. Sci. Paris, 346(7-8):375–378, 2008.
  • [23] J. Mairesse and F. Mathéus. Growth series for Artin groups of dihedral type. Internat. J. Algebra Comput., 16(6):1087–1107, 2006.
  • [24] L. Sabalka. Geodesics in the braid group on three strands. In Group theory, statistics, and cryptography, volume 360 of Contemp. Math., pages 133–150. Amer. Math. Soc., Providence, RI, 2004.
  • [25] Calculco plateform. https://www-calculco.univ-littoral.fr, 2020.
  • [26] Wikipedia. Standard template librairy. https://en.wikipedia.org/wiki/Standard_Template_Library, 2020.