This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Exploring the Early Afterglow Polarization of GRB 190829A

A. C. Caligula Do E. S. Pedreira Instituto de Astronomía, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., A. Postal 70-264, 04510, CDMX, Mexico N. Fraija Instituto de Astronomía, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., A. Postal 70-264, 04510, CDMX, Mexico S. Dichiara Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA P. Veres Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899, USA M.G. Dainotti Division of Science, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan The Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Space Science Institute, 4750 Walnut Street, Boulder, CO 80301, USA SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA A. Galvan-Gamez Instituto de Astronomía, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., A. Postal 70-264, 04510, CDMX, Mexico R. L. Becerra Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-264, 04510 México, CDMX, Mexico B. Betancourt Kamenetskaia TUM Physics Department, Technical University of Munich, James-Franck-Str, 85748 Garching, Germany Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 Munich, Germany
Abstract

The GRB 190829A has been widely studied due to its nature and the high energy emission presented. Due to the detection of a very-high-energy component by the High Energy Stereoscopic System and the event’s atypically middling luminosity, it has been categorized in a select, limited group of bursts bordering classic GRBs and nearby sub-energetic events. Given the range of models utilized to adequately characterize the afterglow of this burst, it has proven challenging to identify the most probable explanation. Nevertheless, the detection of polarization data provided by the MASTER collaboration has added a new aspect to GRB 190829A that permits us to attempt to explore this degeneracy. In this paper, we present a polarization model coupled with a synchrotron forward-shock model – a component in all models used to describe GRB 190829A’s afterglow – in order to fit the polarization’s temporal evolution with the existing upper limits (Π<6%\Pi<6\%). We find that the polarization generated from an on-axis emission is favored for strongly anisotropic magnetic field ratios, while an off-axis scenario cannot be fully ruled out when a more isotropic framework is taken into account.

polarization – gamma-ray burst: individual: GRB 190829A – acceleration of particles – magnetic fields

1 Introduction

GRBs (gamma-ray bursts) are among the brightest phenomena in the universe. They are originated when massive stars die (Woosley, 1993; Paczyński, 1998; Woosley & Bloom, 2006; Cano et al., 2017) or two compact objects, such as neutron stars (NSs; Duncan & Thompson, 1992; Usov, 1992; Thompson, 1994; Eichler et al., 1989; Metzger et al., 2011) and a NS - black hole (BH, Narayan et al., 1992), merge. Long GRBs (lGRBs) and short GRBs (sGRBs), usually associated with the dying of massive stars and a merging of compact objects, are commonly classified based on their duration:111For a debate of controversial situations, see Kann et al. (2011); Becerra et al. (2019). T902sT_{90}\leq 2\mathrm{\,s} or T902sT_{90}\geq 2\mathrm{\,s},222T90T_{90} is the time over which a GRB releases from 5%5\% to 95%95\% of the total measured counts. respectively (Mazets et al., 1981; Kouveliotou et al., 1993). GRBs are studied according to their phenomenology detected during the early and late temporal phases. From hard X-rays to 100\geq 100 MeV gammagamma-rays, the early and main episode known as the “prompt emission" is detected and explained by interactions with internal shells of material launched by a central engine at varying velocities and therefore, at different Lorentz factors (Rees & Meszaros, 1994; Paczynski & Xu, 1994), the photospheric emission (Thompson et al., 2007; Mizuta et al., 2011; Lazzati et al., 2013) or discharges from a Poynting-flux dominated outflow (Giannios, 2008; Zhang & Yan, 2011; Kumar & Crumley, 2015; Beniamini & Granot, 2016). The long-lasting multi-wavelength emission observed in γ\gamma-rays, X-rays, optical, and radio is known as “afterglow" (e.g., Costa et al., 1997; van Paradijs et al., 1997; Piro et al., 1998; Sari et al., 1998; Granot & Sari, 2002; Gehrels et al., 2009; Wang et al., 2015). It is often modelled with synchrotron radiation occurring when the relativistic outflow is decelerated by an external medium, and a significant portion of its energy is transferred to it (e.g., see Sari et al., 1998).

The synchrotron radiation produced at the afterglow is typically explored in a forward-shock (FS) scenario, and this mechanism is contingent on the existence of magnetic fields in the emission zone. The origin of magnetic fields in GRBs is still a topic of discussion. Magnetic fields can be advected from the burst’s source (Lyutikov & Blandford, 2003; Sironi & Spitkovsky, 2011), be generated from compression of an existing interstellar medium (ISM) magnetic field (Laing, 1980; Teboul & Shaviv, 2021), from shock-generated plasma instabilities (Weibel, 1959; Medvedev & Loeb, 1999), and even by magnetic reconnection in Poyinting-flux dominated outflows (Zhang & Yan, 2011). Probing these fields, and their originating sources, alongside other properties of GRBs, is a challenging task that requires multiple directions of theoretical considerations and observational data. One way is exploring the polarization characteristics of an observed emission. As the polarization relies on the configuration of the magnetic field, it analysis allow us to look into their configurations and, therefore, their origins.

Several authors have implemented polarization models in order to acquire source-related information (e.g., see Granot & Königl, 2003; Lyutikov et al., 2003; Nakar et al., 2003; Rossi et al., 2004; Gill et al., 2020; Stringer & Lazzati, 2020; Teboul & Shaviv, 2021; Shrestha et al., 2022). Unfortunately, despite the number of GRB observations, collecting polarization data remains being a challenge. Nevertheless, afterglow polarization measurements have been obtained for several GRBs at this point: at the early afterglow phase, the observations of GRB 090102 (Π=10.2±1.3%\Pi=10.2\pm 1.3\%, Steele et al. (2009)), GRB 120308A (Π=28±4%\Pi=28\pm 4\%, Mundell et al. (2013)) and the upper limits of GRB 190829A (Π<6%\Pi<6\%, Dichiara et al. (2022)) were obtained; examples at the late afterglow include GRB 191221B (Π=1.2%\Pi=1.2\%; Buckley et al., 2021), GRB 190114C (Π=0.8±0.13%\Pi=0.8\pm 0.13\%; Laskar et al., 2019) on the radio band, and the upper limits of GRB 991216 (with Π<7%\Pi<7\%; Granot & Taylor, 2005) and GRB 170817A (with Π<12%\Pi<12\%, on the 2.8 GHz radio band Corsi et al., 2018). Furthermore, several global collaborations like the POLAR project (Orsi & Polar Collaboration, 2011), the Multicolour OPTimised Optical Polarimeter (MOPTOP; Shrestha et al., 2020), and the MASTER project (Lipunov et al., 2019), which are underway, or in preparation phases, could provide future observations and the much-needed polarization data of different GRB epochs.

In this work, we calculate the temporal evolution of the expected polarization for GRB 190829A in a synchrotron FS scenario, proven to allow for analysis of GRB 190829A’s afterglow in terms of the physical parameters of the system. We use the available polarimetric upper limits from Dichiara et al. (2022) to test the parameters and models required to explain the multi-wavelength afterglow observations of GRB 190829A. The paper is structured as follows; In Section 2, we briefly introduce the polarization model used in this paper in the synchrotron FS framework during the off-axis phase. In Section 3, we apply as particular case our polarization model to GRB 190829A using the best-fit parameters obtained in different scenarios. In Section 4, we discuss the results. Finally, in Section 5, we offer a brief summary and our concluding remarks.

2 Linear Polarization from off-axis Synchrotron afterglow

2.1 Linear Polarization model

Polarization is commonly attributed to synchrotron radiation behind shock waves. This makes it dependent on the arrangement of the magnetic field and the geometry of the shock, as they determine the degree of polarization (Π\Pi) in each position as well the integrated value throughout the entire image (Gill et al., 2020). The Stokes parameters (II, QQ, UU, and VV) set the method for calculating polarization, and only linear polarization is generally taken into account (see Nava et al., 2016, for an analysis of circular polarization in GRBs). Hereinafter, quantities in the observer and comoving frames will be referred to as unprimed and primed, respectively. The linear polarization Stokes parameters are written as:

V=0,\displaystyle V=0,\hskip 56.9055pt θp=12arctan(UQ),\displaystyle\theta_{p}=\frac{1}{2}\arctan{\frac{U}{Q}},\, (1)
UI=Πsin(2θp),\displaystyle\frac{U}{I}=\Pi^{\prime}\sin{2\theta_{p}},\hskip 28.45274pt QI=Πcos(2θp).\displaystyle\frac{Q}{I}=\Pi^{\prime}\cos{2\theta_{p}}. (2)

The sum over the flux returns the measured Stokes parameters (Granot, 2003), so:

UI=dFνΠsin(2θp)dFν,QI=dFνΠcos(2θp)dFν,\displaystyle\frac{U}{I}=\frac{\int\mathrm{d}F_{\nu}\Pi^{\prime}\sin{2\theta_{p}}}{\int\mathrm{d}F_{\nu}},\hskip 28.45274pt\frac{Q}{I}=\frac{\int\mathrm{d}F_{\nu}\Pi^{\prime}\cos{2\theta_{p}}}{\int\mathrm{d}F_{\nu}}, (3)
Π=Q2+U2I.\displaystyle\Pi=\frac{\sqrt{Q^{2}+U^{2}}}{I}. (4)

Considering dFνδD3LνdΩ\mathrm{d}F_{\nu}\propto\delta_{D}^{3}L^{\prime}_{\nu^{\prime}}\mathrm{d}\Omega – where LνL^{\prime}_{\nu^{\prime}} is the spectral luminosity, δD\delta_{D} is the Doppler factor and dΩ\mathrm{d}\Omega is the element of solid angle of the fluid element in relation to the source – the factors regarding the geometry of the magnetic field and outflow can be introduced by (Rybicki & Lightman, 1979) are:

Lν(ν)α(sin(χ))ϵrm(ν)α(1n^B^)ϵ/2rm.\displaystyle L^{\prime}_{\nu^{\prime}}\propto(\nu^{\prime})^{-\alpha}(\sin{\chi^{\prime}})^{\epsilon}r^{m}\propto(\nu^{\prime})^{-\alpha}(1-\hat{n}^{\prime}\cdot\hat{B}^{\prime})^{\epsilon/2}r^{m}. (5)

The term ϵ=1+α\epsilon=1+\alpha, with α\alpha the spectral index, which can be obtained with the electron power-law index pp; i.e., α=(p1)/2\alpha=(p-1)/2 (Granot, 2003). Throughout the text, we also assume the index m=0m=0, i.e., a radially constant emissivity.

The angle between the local magnetic field and the direction of motion of the particle, χ\chi, is also the pitch angle due to the highly beamed effect of the synchrotron emission. The geometrical considerations of polarization can then be taken by averaging this factor over the local probability distribution of the magnetic field (Gill et al., 2020),

Λ=(1n^B^)ϵ/2.\displaystyle\Lambda=\expectationvalue{(1-\hat{n}^{\prime}\cdot\hat{B}^{\prime})^{\epsilon/2}}. (6)

Using the Lorentz transformation of the unit vector n^\hat{n} or a prescription of B^\hat{B}, it is possible to obtain Λ\Lambda in terms of different magnetic field configurations and minimize the number of parameters required to obtain the polarization degree (Lyutikov et al., 2003; Granot, 2003; Granot & Taylor, 2005; Gill et al., 2020):

Λ\displaystyle\Lambda_{\perp} \displaystyle\approx [(1ξ~1+ξ~)cos2φB+sin2φB]ϵ/2φB,\displaystyle\expectationvalue{\left[\left(\frac{1-\tilde{\xi}}{1+\tilde{\xi}}\right)\cos^{2}{\varphi_{B}}+\sin^{2}{\varphi_{B}}\right]^{\epsilon/2}}_{\varphi_{B}}, (7)
Λ\displaystyle\Lambda_{\parallel} \displaystyle\approx [4ξ~1+ξ~]ϵ,\displaystyle\left[\frac{\sqrt{4\tilde{\xi}}}{1+\tilde{\xi}}\right]^{\epsilon}, (8)
Λtor\displaystyle\Lambda_{tor} \displaystyle\approx [(1ξ~1+ξ~)+4ξ~(1+ξ~)2(a+cos(φ~))21+a2+2acos(φ~)]ϵ/2,\displaystyle\left[\left(\frac{1-\tilde{\xi}}{1+\tilde{\xi}}\right)+\frac{{4\tilde{\xi}}}{(1+\tilde{\xi})^{2}}\frac{(a+\cos{\tilde{\varphi}})^{2}}{1+a^{2}+2a\cos{\tilde{\varphi}}}\right]^{\epsilon/2}, (9)

where φB\varphi_{B} is the azimuthal angle of the magnetic field measured from a reference point; ξ~(Γθ~)2\tilde{\xi}\equiv(\Gamma\tilde{\theta})^{2}, taking in consideration the approximations of μ~=cos(θ~)1θ~2/2\tilde{\mu}=\cos{\tilde{\theta}}\approx 1-\tilde{\theta}^{2}/2 and β11/2Γ2\beta\approx 1-1/2\Gamma^{2}, which leads to δD2Γ1+ξ~\delta_{D}\approx\frac{2\Gamma}{1+\tilde{\xi}}; and aθ~/θobsa\equiv\tilde{\theta}/\theta_{obs}, where θ~\tilde{\theta} is the polar angle measured from the Line of Sight (LOS), Γ\Gamma is the bulk Lorentz factor, and β\beta, is the velocity of the material in terms of the speed of light.

The uncertainty regarding the present magnetic field configuration in the region of emission requires the exploration of multiple configurations, as well as consider the relevance of magnetic field geometry regarding the polarization degree evolution. For the early afterglow, three of the most suitable configurations are: a random perpendicular configuration – where the anisotropy factor b2B2B2=0b\equiv\frac{2\expectationvalue{B_{\parallel}^{2}}}{\expectationvalue{B_{\perp}^{2}}}=0 – confined to the shock plane; an ordered configuration parallel to the velocity vector, where bb\rightarrow\infty; and an ordered toroidal magnetic field configuration arising from an axisymmetric field configuration with a poloidal (Bpr2)(B_{\rm p}\propto r^{-2}) and toroidal component (Bϕr1)(B_{\rm\phi}\propto r^{-1}). More complex configurations with multi-component, where the anisotropy is more generalized, magnetic fields have been explored (Corsi et al., 2018; Stringer & Lazzati, 2020; Gill & Granot, 2020; Teboul & Shaviv, 2021), as it is warranted and needed, however, for the purposes of this paper we limit ourselves to the three following cases.

Random magnetic field – Perpendicular (B,b=0B_{\perp},\,b=0).

In this scenario, the symmetry of the random magnetic field configuration, perpendicular to the shock plane, causes the disappearance of the polarization over the image if the beaming cone is wholly contained within the jet aperture or if it is seen along the axis (θobs=0\theta_{\rm obs}=0). To break the symmetry, the jet must be viewed close to its edge (qθobsθj1+ξj1/2q\equiv\frac{\theta_{\rm obs}}{\theta_{\rm j}}\gtrsim 1+\xi_{j}^{-1/2}), where missing emission (from θ>θj\theta>\theta_{\rm j}) results only in partial cancellation (Waxman, 2003). The equation necessary to calculate this polarization is explicitly laid out as Eq. 5 in Granot (2003).

Ordered magnetic field – Parallel (B,bB_{\parallel},\,b\rightarrow\infty).

For the ordered magnetic field, a configuration parallel to the velocity vector, the same symmetry observations hold true and the calculation follows Granot (2003); Gill et al. (2020), with Λ(ξ~)=Λ\Lambda(\tilde{\xi})=\Lambda_{\parallel} from Eq.  8.

Ordered magnetic field – Toroidal (BtorB_{\rm tor}).

For the ordered magnetic field in a toroidal configuration, the same symmetry concerns are maintained. The calculation follows Granot & Taylor (2005); Gill et al. (2020), with Λ(ξ~)=Λtor\Lambda(\tilde{\xi})=\Lambda_{\rm tor} from Eq.  9.

By substituting the following integration limits:

cos(ψ(ξ~))=(1q)2ξjξ~2qξjξ~,\displaystyle\cos{\psi(\tilde{\xi})}=\frac{(1-q)^{2}\xi_{j}-\tilde{\xi}}{2q\sqrt{\xi_{j}\tilde{\xi}}}, (10)
ξj=(Γθj)2,ξ±=(1±q)2ξj,\displaystyle\qquad\xi_{j}=(\Gamma\theta_{\rm j})^{2},\qquad\xi_{\pm}=(1\pm q)^{2}\xi_{j}, (11)

with an appropriate prescription of the bulk Lorentz factor Γ(t)\Gamma(t), the evolution of the opening angle of the jet θj(t)\theta_{\rm j}(t), and the parameters required to describe these expressions, we can obtain the temporal evolution of polarization.

2.2 Synchrotron off-axis afterglow scenario: An homogeneous case

We assume an adiabatic evolution of the forward shock in a homogeneous medium nn with an isotropic equivalent-kinetic energy E=Ω3r3mpc2nΓ2E=\frac{\Omega}{3}r^{3}m_{p}c^{2}n\Gamma^{2} (Blandford-McKee solution; Blandford & McKee, 1976) and a radial distance r=cβt/[(1+z)(1βμ)]r=c\beta t/[(1+z)(1-\beta\mu)]. Then, the evolution of the bulk Lorentz factor is given by:

Γ=(34πmpc5)12(1+z)32(1βcosΔθ)32n12E12t32,\displaystyle\Gamma=\left(\frac{3}{4\pi\,m_{p}c^{5}}\right)^{\frac{1}{2}}\,(1+z)^{\frac{3}{2}}(1-\beta\cos\Delta\theta)^{\frac{3}{2}}\,n^{-\frac{1}{2}}\,E^{\frac{1}{2}}t^{-\frac{3}{2}}\,, (12)

with β=Γ21/Γ\beta=\sqrt{\Gamma^{2}-1}/\Gamma, Δθ=θobsθj\Delta\theta=\theta_{\rm obs}-\theta_{\rm j}, Ω\Omega is the solid angle, mpm_{p} is the proton mass and cc is the speed of light. In forward-shock models, accelerated electrons are described by taking into account their Lorentz factors (γe\gamma_{e}) and the electron power index pp. This leads to a distribution of the form N(γe)dγeγepdγeN(\gamma_{e})\,d\gamma_{e}\propto\gamma_{e}^{-p}\,d\gamma_{e} for γmγe\gamma_{m}\leq\gamma_{\rm e}, where γm=mp/meg(p)εe(Γ1)ζe1\gamma_{m}=m_{\rm p}/m_{\rm e}g(p)\varepsilon_{\rm e}(\Gamma-1)\zeta^{-1}_{e} is the minimum electron Lorentz factor with mem_{\rm e} the electron mass, εe\varepsilon_{\rm e} the fraction of energy given to accelerate electrons, ζe\zeta_{e} the fraction of electrons that were accelerated by the shock front (Fan & Piran, 2006) and g(p)=p2p1g(p)=\frac{p-2}{p-1}. The comoving magnetic field strength in the blast wave can be expressed as B2/(8π)=εBeB^{\prime 2}/(8\pi)=\varepsilon_{B}e, where knowledge of the energy density e=[(γ^Γ+1)/(γ^1)](Γ1)nmpc2e=[(\hat{\gamma}\Gamma+1)/(\hat{\gamma}-1)](\Gamma-1)nm_{p}c^{2}, adiabatic index γ^\hat{\gamma} (Huang et al., 1999), fraction of energy provided to the magnetic field (εB\varepsilon_{B}) is necessary with nn the constant-density medium of the circumburst environment. The cooling electron Lorentz factor is written as γc=(6πmec/σT)(1+Y)1Γ1B2t1\gamma_{\rm c}=(6\pi m_{e}c/\sigma_{T})(1+Y)^{-1}\Gamma^{-1}B^{\prime-2}t^{-1}, where σT\sigma_{T} is the Thomson cross-section and YY is the Compton parameter (Sari & Esin, 2001; Wang et al., 2010). The synchrotron spectral breaks can now be expressed in terms of previously defined quantities as νi=qe/(2πmec)γi2B\nu^{\prime}_{\rm i}=q_{e}/(2\pi m_{e}c)\gamma^{2}_{\rm i}B^{\prime}, where the sub-index i=m{\rm i=m} and c{\rm c} will stand for the characteristic or cooling break, respectively. The constant qeq_{e} represents the elementary charge. The synchrotron radiation power per electron in the comoving frame is given by Pνm3qe3/(mec2)BP^{\prime}_{\nu^{\prime}_{m}}\simeq\sqrt{3}q_{e}^{3}/(m_{e}c^{2})B^{\prime} (e.g., see Sari et al., 1998; Fraija, 2015). Considering the total number of emitting electrons Ne=Ωnr33N_{e}=\frac{\Omega nr^{3}}{3} and also taking into account the transformation laws for the solid angle (Ω=Ω/δD2\Omega=\Omega^{\prime}/\delta^{2}_{D}), the radiation power (Pνm=δD/(1+z)PνmP_{\nu_{m}}=\delta_{D}/(1+z)P^{\prime}_{\nu^{\prime}_{m}}) and the spectral breaks (νi=δD/(1+z)νi\nu_{\rm i}=\delta_{D}/(1+z)\nu^{\prime}_{\rm i}), the maximum flux given by synchrotron radiation is:

Fν,max=(1+z)2δD34πdz2NePνm,\displaystyle F_{\rm\nu,max}=\frac{(1+z)^{2}\delta^{3}_{D}}{4\pi d_{z}^{2}}N_{e}P^{\prime}_{\nu^{\prime}_{m}}\,, (13)

where dz=(1+z)cH00zdz~ΩM(1+z~)3+ΩΛd_{\rm z}=(1+z)\frac{c}{H_{0}}\int^{z}_{0}\,\frac{d\tilde{z}}{\sqrt{\Omega_{\rm M}(1+\tilde{z})^{3}+\Omega_{\Lambda}}} (Weinberg, 1972) is the luminosity distance. For the cosmological constants, we assume a spatially flat universe Λ\LambdaCDM model with H0=69.6kms1Mpc1H_{0}=69.6\,{\rm km\,s^{-1}\,Mpc^{-1}}, ΩM=0.286\Omega_{\rm M}=0.286 and ΩΛ=0.714\Omega_{\Lambda}=0.714 (Planck Collaboration et al., 2016).

3 Application: GRB 190829A

3.1 The Prompt Episode

GRB 190829A was triggered and located by the Fermi/Gamma-ray Monitor (GBM) and Swift/Burst Alert Telescope (BAT) instruments at T=T= 2019 August 29 19:55:53.13 UTC and 19:56:44.60 UTC, respectively (The Fermi GBM team, 2019; Dichiara et al., 2019). Swift/BAT localized GRB 190829A with coordinates RA, DEC(J2000)=44.540, -8.968 with a 90% error radius of 3 arcmin. The Fermi/GBM light curve exhibited an initial pulse followed by a brighter peak released total isotropic-equivalent energies of Eγ,iso=(9.151±0.504)×1049E_{\rm\gamma,iso}=(9.151\pm 0.504)\times 10^{49} erg and (2.967±0.032)×1050(2.967\pm 0.032)\times 10^{50} erg, respectively (Fraija et al., 2021). The Fermi/GBM and Swift/BAT observations are presented and interpreted in several scenarios (e.g., see Fraija et al., 2021; Chand et al., 2020; Zhang et al., 2021a; Sato et al., 2021; Salafia et al., 2022).

3.2 The Afterglow Phase

Long term follow-up observations of this burst were performed by X-ray Telescope (XRT) and UltraViolet Optical Telescope (UVOT) on board the Neil Gehrels Swift Observatory, and MASTER Telescopes (Dichiara et al., 2021). The Swift/XRT instrument started detecting this burst at 19:58:21.9 UTC, 97.3 s after the BAT trigger. The observations with Swift/UVOT at 106 s after the BAT trigger. This instrument detected in V, B, white, U, UVW1, UVW2 and UVM2 filters exhibiting a bright flare peaking at 2×103s\sim 2\times 10^{3}\,{\rm s}. The MASTER network observed GRB 190829A at T+1239T+1239 s after the burst trigger time. GRB 190829A was observed with the Clear (C) and the polarization filters (P). The optical fluxes from the P filter corresponds to superposition of B and R standard Johnson filters (0.2 B + 0.8 R) (Dichiara et al., 2022).

The multi-wavelength afterglow observations of GRB 190829A were modelled by several collaborations (Rhodes et al., 2020; Sato et al., 2021, 2022; Fraija et al., 2021; Salafia et al., 2022; Dichiara et al., 2022; Zhang et al., 2021a, b). These observations have shown to be consistent with a FS plus reverse shock (RS) scenario with Synchrotron Self-Compton (SSC) emission (Rhodes et al., 2020; Salafia et al., 2022; Dichiara et al., 2022). On the other hand, Sato et al. (2021, 2022) applied a dual component model – with a narrow off-axis jet describing the VHE component and early afterglow; while a wide-angle, slower, jet seen closer to its edge describes the late time afterglow observations, to model the complex afterglow of GRB 190829A. Fraija et al. (2021) presented a synchrotron forward shock model originating from a spin-down millisecond magnetar source as a strong candidate for this burst. Zhang et al. (2021a) defined a set of archetypical rules and applied them to a synchotron FS + SSC model to describe GRB 190829A’s observations; while Zhang et al. (2021b) shown the afterglow to be compatible with a synchrotron FS + inverse Compton (iC) case, assuming both SSC and external inverse Compton (eiC) components.

This kind of degeneracy between models is expected in GRB afterglows (Rossi et al., 2004; Kumar & Barniol Duran, 2009, 2010; Fraija et al., 2017), therefore, the approach of a scenario requires a profound analysis of each possibility. GRB 190829A had observed |Q|\absolutevalue{Q} values, and consequently, upper limits imposed upon its early afterglow (Dichiara et al., 2022) and fitting this data can be useful in an attempt to break the models’ degeneracy. In the following subsections we present our semi-analytical model, an off-axis top-hat jet with synchrotron FS dynamics, similar to the ones presented by the authors, mentioned before, to describe the FS, which we use to calculate the polarization evolution of this burst, using the parameters obtained by the aforementioned works.

4 Results and Discussion

Figures 1, 3, 4, 5, 6 and 7 show the polarization degree for three magnetic field configurations, with each figure representing the parameters used by Sato et al. (2021), Sato et al. (2022), Salafia et al. (2022), Dichiara et al. (2022), Fraija et al. (2021) and Zhang et al. (2021a, b), respectively. The magnetic field configurations are arranged from left to right: BB_{\perp}, BB_{\parallel}, and BtorB_{\rm tor}; and from top to bottom: a non-expanding jet configuration (i.e., homogeneous jet where θj\theta_{\rm j} does not evolve) viewed off-axis, an expanding jet configuration333The choice to include both approaches to the homogeneous jet comes from the nearly identical flux light curves, but different polarizations (e.g. see Rossi et al., 2004) (i.e., homogeneous jet where θj=θj(t)\theta_{\rm j}=\theta_{\rm j}(t), according to Huang et al. (2000) hydrodynamical equations) also viewed off-axis, and the same expanding jet viewed from within the jet’s beaming cone (θobs<θj\theta_{\rm obs}<\theta_{\rm j}). For all cases, we present the polarization for a range of initial values of q0=θobsθj,0q_{0}=\frac{\theta_{\rm obs}}{\theta_{\rm j,0}}, with solid lines as markers for the observation angle reported/assumed by the mentioned authors.

Sato et al. (2021, 2022) used a narrow jet FS synchrotron model to describe the early afterglow of GRB 190829A. They reported this model to be satisfactory in explaining the multi-wavelength observations in the range from 8×1028\times 10^{2} to 2×104s2\times 10^{4}{\rm s}. We use the most recent best-fit parameters reported in this work (see the first row of table 1), with the additional parameters of εe=3.5×102\varepsilon_{e}=3.5\times 10^{-2}, εB=6×105\varepsilon_{B}=6\times 10^{-5}, and ζe=0.2\zeta_{e}=0.2 and a maximum flux at time tpeak=2×103st_{\rm peak}=2\times 10^{3}{\rm s}. We present in Figure 1 the polarization evolution considering these parameters. The solid line represents the values presented by Sato et al. (2022). Regardless of the choice of jet (expanding or not), the polarization values returned from these parameters break the upper limits of Π(t[17006000]s)6%\Pi(t\approx[1700-6000]{\rm s})\lesssim 6\%\ imposed by Dichiara et al. (2022). For an expanding jet, the set of parameters presented by the authors return the following polarization values Π(B,t2000s)30%\Pi(B_{\perp},t\approx 2000\,{\rm s})\approx 30\%, Π(B,t4000s)22.2%\Pi(B_{\perp},t\approx 4000\,{\rm s})\approx 22.2\% and Π(B,t6000s)0%\Pi(B_{\perp},t\approx 6000\,{\rm s})\approx 0\%. For a toroidal field, the polarization observed is Π(Btor,t2000s)63%\Pi(B_{\rm tor},t\approx 2000{\rm s})\approx 63\%, Π(Btor,t4000s)2%\Pi(B_{\rm tor},t\approx 4000\,{\rm s})\approx 2\% and Π(Btor,t6000s)0%\Pi(B_{\rm tor},t\approx 6000\,{\rm s})\approx 0\%. At first glance, this should enough to exclude the possibility of a viewing angle this high (θobs=2θj\theta_{\rm obs}=2\theta_{\rm j}). However, it is worth noting that polarization is highly dependent on the magnetic field anisotropy, and we only explore the extremely anisotropic cases (b=0;bb=0;b\rightarrow\infty). A more isotropic field, where bb is closer to unity, would severely reduce the polarization degree (e.g., see Gill & Granot, 2018; Corsi et al., 2018; Gill & Granot, 2020; Teboul & Shaviv, 2021, for the case of GRB 170817A) without any interference on the flux light curves (which does not take into consideration the magnetic field’s geometry). Exploring this parameter set with a more isotropic configuration could amend the discrepancy between polarization and flux fitting.

Figure 2 shows the polarization calculated for a less extreme anisotropy scenario. To obtain this polarization, we use Eq. 4 of Granot & Königl (2003) to sum the contributions of ordered and random components and take the absolute value:

Π=ηΠord(1+η)[1+(ΠrndηΠord)22ΠrndηΠordcos(2δ)]12.\displaystyle\Pi=\frac{\eta\Pi_{\rm ord}}{(1+\eta)}\left[1+\left(\frac{\Pi_{\rm rnd}}{\eta\Pi_{\rm ord}}\right)^{2}-\frac{2\Pi_{\rm rnd}}{\eta\Pi_{\rm ord}}\cos{2\delta}\right]^{\frac{1}{2}}. (14)

This equation introduces two new parameters, η\eta and δ\delta, where η=Bord2Brnd2\eta=\frac{\expectationvalue{B_{\rm ord}^{2}}}{\expectationvalue{B_{\rm rnd}^{2}}} and δ\delta is the angle between the ordered magnetic field and the jet axis (see Fig. 1 of the aforementioned paper). Information regarding these parameters cannot be obtained from Sato et al. (2021, 2022). We explore a possible case where η=0.25\eta=0.25 and δ=π/2\delta=\pi/2. The change to a less extreme anisotropic scenario reduces the polarization significantly and, as is seen in Figure 2, allows to describe the polarization data observed by Dichiara et al. (2022). This implies the requirement of a sub-dominant ordered component a quarter as strong as the random one, perpendicular to the jet axis, to validate this parameter set.

Salafia et al. (2022) described the afterglow of GRB 190829A with a dual component; a RS and FS emission. They proposed that the RS emission describes the early multiwavelength afterglow, while the FS emission dominates after t>1dayt>1{\rm day}. The parameters reported by the authors for the FS emission are found in the second row of table 1, and additionally, εe=3.01.7+2.9×102\varepsilon_{e}=3.0^{+2.9}_{-1.7}\times 10^{-2}, εB=2.51.3+3.5×105\varepsilon_{B}=2.5^{+3.5}_{-1.3}\times 10^{-5}, and ζe=0.04\zeta_{e}=0.04. The authors also constrained Δθ<2deg\Delta\theta<2\,{\rm deg} based on a compactness argument and assumed an on-axis (i.e., the observation angle within the beaming cone of the jet) observation angle. For purposes of the calculation we take θobs=θj\theta_{\rm obs}=\theta_{\rm j} as the authors’ choice, as indicated by Fig. 5 of their work, but also presented the values for θobs=0.25θj\theta_{\rm obs}=0.25\theta_{\rm j} and θobs=0.62θj\theta_{\rm obs}=0.62\theta_{\rm j}. Figure 3 shows that the authors’ chosen values indicate a good fit for the polarization upper limits of Π6%\Pi\lesssim 6\%, with all values of on-axis q0q_{0} returning polarization within the upper limits for the random magnetic field configuration BB_{\perp}. We find a polarization degree of Π(B,t2000s)1.0%\Pi(B_{\perp},t\approx 2000\,{\rm s})\approx 1.0\%, Π(B,t4000s)1.2%\Pi(B_{\perp},t\approx 4000\,{\rm s})\approx 1.2\%, and Π(B,t6000s)1.4%\Pi(B_{\perp},t\approx 6000\,{\rm s})\approx-1.4\%, with q00.62q_{0}\lesssim 0.62 required to allow for a polarization originating from a BB_{\parallel} field and BtorB_{\rm tor} ruled out for q00.25q_{0}\gtrsim 0.25. While we limited ourselves to the forward shock synchrotron calculations in this dual component model, the polarization for iC has been explored before (Gill & Granot, 2020; Lazzati et al., 2004; Toma et al., 2009). These authors have found that polarization for iC is remarkably similar to the corresponding curves for synchrotron emission, with the caveat of a higher possible maximum polarization (Πmax,syn75%,Πmax,iC100%\Pi_{\rm max,syn}\simeq 75\%,\,\Pi_{\rm max,iC}\rightarrow 100\%); however, the maximum polarization is directly linked to the spectral index α\alpha through Πmax=(α+1)/(α+1.66)\Pi_{max}=(\alpha+1)/(\alpha+1.66). As such, with a known α\alpha (or pp) and maximum polarization, the theoretical limit of maximum polarization is of little relevance. The polarization curves would be similar to the ones shown here, with the parameters used to calculate the RS emission.

Dichiara et al. (2022) have also described the afterglow of GRB 190829A with dual component RS plus FS emission. The authors proposed that the rebrightening in the X-ray and optical observations is consistent with the RS component of the emission. The parameters reported by the authors are presented in the third row of table 1. Additionally, the authors expected εe101\varepsilon_{e}\approx 10^{-1} and εB104\varepsilon_{B}\approx 10^{-4}. No fundamental assumptions were made on the observation angle for the emission. However, the authors used the polarization model presented by Rossi et al. (2004) to rule out a homogeneous jet viewed off-axis with a 90%90\% confidence. We then present the curves for q01q_{0}\leq 1 as the authors’ considered values and assume a value of Γ0=100\Gamma_{0}=100, between a minimal value for a typical off-axis jet and the typical values of Γ0\Gamma_{0} for on-axis jets.444This value is also within the constrained values of Salafia et al. (2022), based on their compactness argument. The polarization results are presented in Figure 4. For all configurations, q01q_{0}\geq 1 is ruled out, while a value of q0=0.62q_{0}=0.62 returns the following polarizations Π(B,t2000s)1.8%\Pi(B_{\perp},t\approx 2000{\rm s})\approx 1.8\%, Π(B,t4000s)2.5%\Pi(B_{\perp},t\approx 4000{\rm s})\approx-2.5\%, and Π(B,t6000s)4.0%\Pi(B_{\perp},t\approx 6000{\rm s})\approx-4.0\%. For a parallel field configuration, we note that the upper limits rule out q0=1.0,0.62q_{0}=1.0,0.62, but a value of q0<0.62q_{0}<0.62 can still fit the polarization upper limits. This is in line with the conclusions reached by the authors, who expect that the low radiative efficiency (<1%<1\%) could be explained by a jet viewed from θobs<θj\theta_{\rm obs}<\theta_{\rm j}. The considerations regarding iC done for Salafia et al. (2022) are the same for this model.

Fraija et al. (2021) proposed a synchrotron forward shock model originating from a spin-down millisecond magnetar source to describe the X-ray and optical observations of GRB 190829A, but expect an iC component as necessary to describe the high-energy and VHE photons observed. The parameters reported by the authors are found in the fourth row of table 1, with the additional parameters of εe=0.80.1+0.1×101\varepsilon_{e}=0.8^{+0.1}_{-0.1}\times 10^{-1} and εB=1.10.1+0.1×104\varepsilon_{B}=1.1^{+0.1}_{-0.1}\times 10^{-4}. The authors also assume an on-axis emission to fit the light curves, and we present the polarization assuming q01q_{0}\leq 1 as the canonical choice. Figure 5 shows that, like the parameter set of Salafia et al. (2022), all choices of q01q_{0}\leq 1 are well poised to fit the set upper limits. The highest value of on-axis q0=1q_{0}=1, an observation angle set at the edge of the jet, returns polarization values of Π(B,t2000s)4.3%\Pi(B_{\perp},t\approx 2000\,{\rm s})\approx 4.3\%, Π(B,t4000s)2.1%\Pi(B_{\perp},t\approx 4000\,{\rm s})\approx 2.1\%, and Π(B,t6000s)1.9%\Pi(B_{\perp},t\approx 6000\,{\rm s})\approx-1.9\%. For a parallel field configuration, we note that the q0=1q_{0}=1 is ruled out, but a value of q00.62q_{0}\lesssim 0.62 can still fit the polarization upper limits. As such, a choice of θobs=θj\theta_{\rm obs}=\theta_{\rm j} would make BB_{\perp} the sole possible configuration (assuming an extremely anisotropic configuration), while θobs<θj\theta_{\rm obs}<\theta_{\rm j} would only rule out the globally ordered, toroidal field configuration.

Zhang et al. (2021a) proposed a paradigm to explain GRB 190829A. With the condition of a quasi-isotropic ejecta, the authors fit the X-ray, radio, and optical afterglow light curves with a forward shock model, where the afterglow emission is attributed to synchrotron and iC radiation. The parameters reported by the authors are found in the fifth row of table 1, with the additional parameters of log10εe=0.490.22+0.46\log_{10}\varepsilon_{e}=-0.49^{+0.46}_{-0.22} and log10εB=3.220.80+1.21\log_{10}\varepsilon_{B}=-3.22^{+1.21}_{-0.80}. The authors assume an on-axis observation of the burst. As such, we take q01q_{0}\lesssim 1 as their canonical choice. We see from Figure 6 that for q0=1q_{0}=1 we find Π(B,t2000s)4.1%\Pi(B_{\perp},t\approx 2000\,{\rm s})\approx-4.1\%, Π(B,t4000s)1.0%\Pi(B_{\perp},t\approx 4000\,{\rm s})\approx-1.0\%, and Π(B,t6000s)0.0%\Pi(B_{\perp},t\approx 6000\,{\rm s})\approx 0.0\%. The values of q0=1.0, 0.62q_{0}=1.0,\,0.62 rule out the globally ordered configurations, which require an θobs0.25θj\theta_{\rm obs}\lesssim 0.25\theta_{\rm j} to fit the upper limits with these parameters.

Zhang et al. (2021b) proposed a combination of the external FS and a late prompt emission to describe the afterglow of GRB 190829A. The authors expected an eiC+SSC mechanism to describe the very-high-energy component by the High Energy Stereoscopic System (H.E.S.S.) observations and the typical FS model accounts for the lower-frequency emissions. The parameters reported by the authors are found in the sixth row of table 1, with the additional parameters of εe=0.39\varepsilon_{e}=0.39, εe=8.7×105\varepsilon_{e}=8.7\times 10^{-5}, and ζe=0.34\zeta_{e}=0.34. The authors assumed an on-axis observation of the burst. As such we take q01q_{0}\lesssim 1 as their canonical choice. Figure 7 presents the polarization curves. We see that with this on-axis condition in mind, both a random (BB_{\perp}) and ordered (BB_{\parallel}) return a polarization within the upper limits of <6%<6\%. Taking q0=1q_{0}=1, we find Π(B,t2000s)0.0%\Pi(B_{\perp},t\approx 2000{\rm s})\approx 0.0\%, Π(B,t4000s)0.5%\Pi(B_{\perp},t\approx 4000{\rm s})\approx 0.5\%, and Π(B,t6000s)3.4%\Pi(B_{\perp},t\approx 6000{\rm s})\approx 3.4\% and Π(B,t2000s)0.0%\Pi(B_{\parallel},t\approx 2000{\rm s})\approx 0.0\%, Π(B,t4000s)1.4%\Pi(B_{\parallel},t\approx 4000{\rm s})\approx-1.4\%, and Π(B,t6000s)5.0%\Pi(B_{\parallel},t\approx 6000{\rm s})\approx-5.0\%. A globally ordered toroidal configuration is ruled out.

5 Summary and Conclusions

In this work, we have applied a semi-analytical FS synchrotron model, analogous with a homogeneous jet, to a polarization model and obtained a set of time-dependent polarization curves. This polarization depends on the parameters associated with the evolution of the bulk Lorentz factor and half-opening angle of synchrotron theory. Additionally, the polarization model depends on the geometry of the magnetic field, and we have explored the extremely anisotropic scenarios (b=0,bb=0,\,b\rightarrow\infty) of a random and two ordered field configurations. We have used different parameter sets of previously published works capable of adequately describing the afterglow of GRB 190829A (e.g. see Sato et al., 2021, 2022; Salafia et al., 2022; Dichiara et al., 2022; Fraija et al., 2021; Zhang et al., 2021a, b) to fit the upper limits on polarization set by Dichiara et al. (2022).

The curves obtained favor the scenario where the observation angle is within the jet’s beaming cone (θobsθj\theta_{\rm obs}\lesssim\theta_{\rm j}) while disfavoring an off-axis scenario. This result is in agreement with Salafia et al. (2022); Dichiara et al. (2022); Fraija et al. (2021); Zhang et al. (2021a, b) that predicted GRB 190829A to have been seen on-axis. However, the observations provided by Dichiara et al. (2022) cannot entirely exclude the off-axis scenario. This conclusion comes from the polarization’s dependency on magnetic field anisotropy. The presence of a subdominant field (i.e., b0,bb\neq 0,\,b\nrightarrow\infty) would decrease the observed polarization by a factor >2>2 (model dependent; see Gill & Granot, 2018; Corsi et al., 2018; Gill & Granot, 2020; Teboul & Shaviv, 2021), which is significant enough to reconcile the discrepancy between flux and polarization fitting.

While current evidence indicates that GRB 190829A was seen on-axis, more polarization data and deeper scrutiny of the afterglow fitting would be required to solve the degeneracy present between models properly.

We thank Walas Oliveira, Rodolfo Barniol Duran, Tanmoy Laskar, Paz Beniamini and Bing Zhang for useful discussions. AP acknowledges financial support from CONACyT’s doctorate fellowships, NF acknowledges financial support from UNAM-DGAPA-PAPIIT through grant IN106521. RLB acknowledges support from CONACyT postdoctoral fellowships and the support from the DGAPA/UNAM IG100820 and IN105921.

References

  • Becerra et al. (2019) Becerra R. L., et al., 2019, ApJ, 881, 12
  • Beniamini & Granot (2016) Beniamini P., Granot J., 2016, MNRAS, 459, 3635
  • Blandford & McKee (1976) Blandford R. D., McKee C. F., 1976, Physics of Fluids, 19, 1130
  • Buckley et al. (2021) Buckley D. A. H., et al., 2021, MNRAS, 506, 4621
  • Cano et al. (2017) Cano Z., Wang S.-Q., Dai Z.-G., Wu X.-F., 2017, Advances in Astronomy, 2017, 8929054
  • Chand et al. (2020) Chand V., et al., 2020, ApJ, 898, 42
  • Corsi et al. (2018) Corsi A., et al., 2018, ApJ, 861, L10
  • Costa et al. (1997) Costa E., et al., 1997, Nature, 387, 783
  • Dichiara et al. (2019) Dichiara S., Bernardini M. G., et al. 2019, GRB Coordinates Network, Circular Service, No. 25552, #1 (2019), 25552
  • Dichiara et al. (2021) Dichiara S., et al., 2021, ApJ, 911, L28
  • Dichiara et al. (2022) Dichiara S., et al., 2022, MNRAS, 512, 2337
  • Duncan & Thompson (1992) Duncan R. C., Thompson C., 1992, ApJ, 392, L9
  • Eichler et al. (1989) Eichler D., Livio M., Piran T., Schramm D. N., 1989, Nature, 340, 126
  • Fan & Piran (2006) Fan Y., Piran T., 2006, MNRAS, 369, 197
  • Fraija (2015) Fraija N., 2015, ApJ, 804, 105
  • Fraija et al. (2017) Fraija N., et al., 2017, ApJ, 848, 15
  • Fraija et al. (2021) Fraija N., Veres P., Beniamini P., Galvan-Gamez A., Metzger B. D., Barniol Duran R., Becerra R. L., 2021, ApJ, 918, 12
  • Fraija et al. (2022) Fraija N., Galvan-Gamez A., Betancourt Kamenetskaia B., Dainotti M. G., Dichiara S., Veres P., Becerra R. L., Pedreira A. C. C. d. E. S., 2022, arXiv e-prints, p. arXiv:2205.02459
  • Gehrels et al. (2009) Gehrels N., Ramirez-Ruiz E., Fox D. B., 2009, ARA&A, 47, 567
  • Giannios (2008) Giannios D., 2008, A&A, 480, 305
  • Gill & Granot (2018) Gill R., Granot J., 2018, MNRAS, 478, 4128
  • Gill & Granot (2020) Gill R., Granot J., 2020, MNRAS, 491, 5815
  • Gill et al. (2020) Gill R., Granot J., Kumar P., 2020, MNRAS, 491, 3343
  • Granot (2003) Granot J., 2003, ApJ, 596, L17
  • Granot & Königl (2003) Granot J., Königl A., 2003, ApJ, 594, L83
  • Granot & Sari (2002) Granot J., Sari R., 2002, ApJ, 568, 820
  • Granot & Taylor (2005) Granot J., Taylor G. B., 2005, ApJ, 625, 263
  • Huang et al. (1999) Huang Y. F., Dai Z. G., Lu T., 1999, MNRAS, 309, 513
  • Huang et al. (2000) Huang Y. F., Gou L. J., Dai Z. G., Lu T., 2000, ApJ, 543, 90
  • Kann et al. (2011) Kann D. A., et al., 2011, ApJ, 734, 96
  • Kouveliotou et al. (1993) Kouveliotou C., Meegan C. A., Fishman G. J., Bhat N. P., Briggs M. S., Koshut T. M., Paciesas W. S., Pendleton G. N., 1993, The Astrophysical Journal, 413, L101
  • Kumar & Barniol Duran (2009) Kumar P., Barniol Duran R., 2009, MNRAS, 400, L75
  • Kumar & Barniol Duran (2010) Kumar P., Barniol Duran R., 2010, MNRAS, 409, 226
  • Kumar & Crumley (2015) Kumar P., Crumley P., 2015, MNRAS, 453, 1820
  • Laing (1980) Laing R. A., 1980, MNRAS, 193, 439
  • Laskar et al. (2019) Laskar T., et al., 2019, ApJ, 878, L26
  • Lazzati et al. (2004) Lazzati D., Rossi E., Ghisellini G., Rees M. J., 2004, MNRAS, 347, L1
  • Lazzati et al. (2013) Lazzati D., Morsony B. J., Margutti R., Begelman M. C., 2013, ApJ, 765, 103
  • Lipunov et al. (2019) Lipunov V. M., et al., 2019, Astronomy Reports, 63, 293
  • Lyutikov & Blandford (2003) Lyutikov M., Blandford R., 2003, arXiv e-prints, pp astro–ph/0312347
  • Lyutikov et al. (2003) Lyutikov M., Pariev V. I., Blandford R. D., 2003, ApJ, 597, 998
  • Mazets et al. (1981) Mazets E., et al., 1981, Astrophysics and Space Science, 80, 3
  • Medvedev & Loeb (1999) Medvedev M. V., Loeb A., 1999, ApJ, 526, 697
  • Metzger et al. (2011) Metzger B. D., Giannios D., Thompson T. A., Bucciantini N., Quataert E., 2011, MNRAS, 413, 2031
  • Mizuta et al. (2011) Mizuta A., Nagataki S., Aoi J., 2011, ApJ, 732, 26
  • Mundell et al. (2013) Mundell C. G., et al., 2013, Nature, 504, 119
  • Nakar et al. (2003) Nakar E., Piran T., Waxman E., 2003, J. Cosmology Astropart. Phys, 2003, 005
  • Narayan et al. (1992) Narayan R., Paczynski B., Piran T., 1992, ApJ, 395, L83
  • Nava et al. (2016) Nava L., Nakar E., Piran T., 2016, MNRAS, 455, 1594
  • Orsi & Polar Collaboration (2011) Orsi S., Polar Collaboration 2011, Astrophysics and Space Sciences Transactions, 7, 43
  • Paczyński (1998) Paczyński B., 1998, ApJ, 494, L45
  • Paczynski & Xu (1994) Paczynski B., Xu G., 1994, ApJ, 427, 708
  • Panaitescu & Mészáros (1998) Panaitescu A., Mészáros P., 1998, ApJ, 501, 772
  • Piro et al. (1998) Piro L., et al., 1998, A&A, 331, L41
  • Planck Collaboration et al. (2016) Planck Collaboration Ade P. A. R., Aghanim N., Arnaud M., Ashdown M., Aumont J., et al. 2016, A&A, 594, A13
  • Rees & Meszaros (1994) Rees M. J., Meszaros P., 1994, ApJ, 430, L93
  • Rhodes et al. (2020) Rhodes L., et al., 2020, MNRAS, 496, 3326
  • Rossi et al. (2004) Rossi E. M., Lazzati D., Salmonson J. D., Ghisellini G., 2004, MNRAS, 354, 86
  • Rybicki & Lightman (1979) Rybicki G. B., Lightman A. P., 1979, Radiative processes in astrophysics
  • Salafia et al. (2022) Salafia O. S., et al., 2022, ApJ, 931, L19
  • Sari & Esin (2001) Sari R., Esin A. A., 2001, ApJ, 548, 787
  • Sari et al. (1998) Sari R., Piran T., Narayan R., 1998, ApJ, 497, L17
  • Sato et al. (2021) Sato Y., Obayashi K., Yamazaki R., Murase K., Ohira Y., 2021, MNRAS, 504, 5647
  • Sato et al. (2022) Sato Y., Obayashi K., Theodre Zhang B., Tanaka S. J., Murase K., Ohira Y., Yamazaki R., 2022, arXiv e-prints, p. arXiv:2208.13987
  • Shrestha et al. (2020) Shrestha M., Steele I. A., Piascik A. S., Jermak H., Smith R. J., Copperwheat C. M., 2020, MNRAS, 494, 4676
  • Shrestha et al. (2022) Shrestha M., et al., 2022, MNRAS,
  • Sironi & Spitkovsky (2011) Sironi L., Spitkovsky A., 2011, ApJ, 726, 75
  • Steele et al. (2009) Steele I. A., Mundell C. G., Smith R. J., Kobayashi S., Guidorzi C., 2009, Nature, 462, 767
  • Stringer & Lazzati (2020) Stringer E., Lazzati D., 2020, ApJ, 892, 131
  • Teboul & Shaviv (2021) Teboul O., Shaviv N. J., 2021, MNRAS, 507, 5340
  • The Fermi GBM team (2019) The Fermi GBM team 2019, GRB Coordinates Network, Circular Service, No. 23714, #1 (2019), 25551
  • Thompson (1994) Thompson C., 1994, MNRAS, 270, 480
  • Thompson et al. (2007) Thompson C., Mészáros P., Rees M. J., 2007, ApJ, 666, 1012
  • Toma et al. (2009) Toma K., et al., 2009, ApJ, 698, 1042
  • Usov (1992) Usov V. V., 1992, Nature, 357, 472
  • Wang et al. (2010) Wang X.-Y., He H.-N., Li Z., Wu X.-F., Dai Z.-G., 2010, ApJ, 712, 1232
  • Wang et al. (2015) Wang X.-G., et al., 2015, ApJS, 219, 9
  • Waxman (2003) Waxman E., 2003, Nature, 423, 388
  • Weibel (1959) Weibel E. S., 1959, Phys. Rev. Lett., 2, 83
  • Weinberg (1972) Weinberg S., 1972, Gravitation and Cosmology
  • Woosley (1993) Woosley S. E., 1993, ApJ, 405, 273
  • Woosley & Bloom (2006) Woosley S. E., Bloom J. S., 2006, ARA&A, 44, 507
  • Zhang & Yan (2011) Zhang B., Yan H., 2011, ApJ, 726, 90
  • Zhang et al. (2021a) Zhang L.-L., Ren J., Huang X.-L., Liang Y.-F., Lin D.-B., Liang E.-W., 2021a, ApJ, 917, 95
  • Zhang et al. (2021b) Zhang B. T., Murase K., Veres P., Mészáros P., 2021b, ApJ, 920, 55
  • van Paradijs et al. (1997) van Paradijs J., et al., 1997, Nature, 386, 686
Table 1: Table of parameters reported for GRB 190819A
References E(1053erg)E\,(10^{53}\,{\rm erg}) n(cm3){\rm n}\,({\rm cm^{-3}})\, Γ0{\Gamma}_{\rm 0} θj(deg)\theta_{\rm j}\,\,(\rm deg) θobs(deg)\theta_{\rm obs}\,\,(\rm deg) pp
Sato et al. (2022) 44 10210^{-2} 350350 0.860.86 1.71.7 2.442.44
Salafia et al. (2022) 2.51.3+1.92.5^{+1.9}_{-1.3} 2.11.0+3.7×1012.1^{+3.7}_{-1.0}\times 10^{-1} 575+457^{+4}_{-5} 15.40.9+1.315.4^{+1.3}_{-0.9} 2.012.01
Dichiara et al. (2022) 2×1012\times 10^{-1} 10210110^{-2}-10^{-1} -- 1616 -- 2.52.5
Fraija et al. (2021) 2.40.2+0.2×1022.4^{+0.2}_{-0.2}\times 10^{-2} 10.1+0.1×1011^{+0.1}_{-0.1}\times 10^{-1} 3434 88 -- 2.30.2+0.22.3^{+0.2}_{-0.2}
Zhang et al. (2021a) 1.020.55+1.73×1021.02^{+1.73}_{-0.55}\times 10^{-2} 2.181.74+5.76×1012.18^{+5.76}_{-1.74}\times 10^{-1} 35.519.0+16.935.5^{+16.9}_{-19.0} 3.23.2 -- 2.120.17+0.082.12^{+0.08}_{-0.17}
Zhang et al. (2021b) 9.8×1029.8\times 10^{-2} 9×1029\times 10^{-2} 2525 11.4611.46 -- 2.12.1

The mean values of the distributions were used for calculation of the polarization curves. Additionally to the θobs\theta_{\rm obs} used by the authors, we include the polarization curves for q=[0.25,0.62,1.50,2.00,2.50]q=[0.25,0.62,1.50,2.00,2.50]

Refer to caption
Figure 1: Temporal evolution for the polarization of GRB 190829A, obtained with the parameters used by Sato et al. (2021) (for the narrow jet component) for three configurations of magnetic field - Perpendicular (BB_{\perp}) and Parallel (BB_{\parallel}) and Toroidal (BtorB_{\rm tor}). Dashed lines represent different values of q0q_{0}, used for illustration, while solid lines represent the value of q0q_{0} obtained from the authors’ θobs\theta_{\rm obs} and θj\theta_{\rm j}. Top and middle rows show a non-expanding jet and an expanding jet viewed off-axis, respectively, while bottom row shows an expanding jet viewed within the jet’s beaming cone. Upper limits taken from Dichiara et al. (2022).
Refer to caption
Figure 2: Temporal evolution for the polarization modulus, of GRB 190829A, obtained with the parameters used by Sato et al. (2021) (for the narrow jet component) for a value of η=0.25\eta=0.25 – a dominant random component plus a subdominant ordered component. Dashed lines represent different values of q0q_{0}, used for illustration, while solid lines represent the value of q0q_{0} obtained from the authors’ θobs\theta_{\rm obs} and θj\theta_{\rm j}. Data points taken from Dichiara et al. (2022).
Refer to caption
Figure 3: Temporal evolution for the polarization of GRB 190829A, obtained with the parameters used by Salafia et al. (2022) (for the forward shock component) for three configurations of magnetic field - Perpendicular (BB_{\perp}) and Parallel (BB_{\parallel}) and Toroidal (BtorB_{\rm tor}). Dashed lines represent different values of q0q_{0}, used for illustration, while solid lines represent the value of q0q_{0} obtained from the authors’ θobs\theta_{\rm obs} and θj\theta_{\rm j}. Top and middle rows show a non-expanding jet and an expanding jet viewed off-axis, respectively, while bottom row shows an expanding jet viewed within the jet’s beaming cone. Upper limits taken from Dichiara et al. (2022).
Refer to caption
Figure 4: Temporal evolution for the polarization of GRB 190829A, obtained with the parameters used by Dichiara et al. (2022) (for the forward shock component) for three configurations of magnetic field - Perpendicular (BB_{\perp}) and Parallel (BB_{\parallel}) and Toroidal (BtorB_{\rm tor}). The values of Γ0=100\Gamma_{0}=100 and n=5×102n=5\times 10^{-2} were assumed. Dashed lines represent different values of q0q_{0}, used for illustration, while solid lines represent the value of q0q_{0} obtained from the authors’ θobs\theta_{\rm obs} and θj\theta_{\rm j}. Top and middle rows show a non-expanding jet and an expanding jet viewed off-axis, respectively, while bottom row shows an expanding jet viewed within the jet’s beaming cone. Upper limits taken from Dichiara et al. (2022).
Refer to caption
Figure 5: Temporal evolution for the polarization of GRB 190829A, obtained with the parameters used by Fraija et al. (2021) (for the forward shock component) for three configurations of magnetic field - Perpendicular (BB_{\perp}) and Parallel (BB_{\parallel}) and Toroidal (BtorB_{\rm tor}). Dashed lines represent different values of q0q_{0}, used for illustration, while solid lines represent the value of q0q_{0} obtained from the authors’ θobs\theta_{\rm obs} and θj\theta_{\rm j}. Top and middle rows show a non-expanding jet and an expanding jet viewed off-axis, respectively, while bottom row shows an expanding jet viewed within the jet’s beaming cone. Upper limits taken from Dichiara et al. (2022).
Refer to caption
Figure 6: Temporal evolution for the polarization of GRB 190829A, obtained with the parameters used by Zhang et al. (2021a) (for the forward shock component) for three configurations of magnetic field - Perpendicular (BB_{\perp}) and Parallel (BB_{\parallel}) and Toroidal (BtorB_{\rm tor}). Dashed lines represent different values of q0q_{0}, used for illustration, while solid lines represent the value of q0q_{0} obtained from the authors’ θobs\theta_{\rm obs} and θj\theta_{\rm j}. Top and middle rows show a non-expanding jet and an expanding jet viewed off-axis, respectively, while bottom row shows an expanding jet viewed within the jet’s beaming cone. Upper limits taken from Dichiara et al. (2022).
Refer to caption
Figure 7: Temporal evolution for the polarization of GRB 190829A, obtained with the parameters used by Zhang et al. (2021b) (for the forward shock component) for three configurations of magnetic field - Perpendicular (BB_{\perp}) and Parallel (BB_{\parallel}) and Toroidal (BtorB_{\rm tor}). Dashed lines represent different values of q0q_{0}, used for illustration, while solid lines represent the value of q0q_{0} obtained from the authors’ θobs\theta_{\rm obs} and θj\theta_{\rm j}. Top and middle rows show a non-expanding jet and an expanding jet viewed off-axis, respectively, while bottom row shows an expanding jet viewed within the jet’s beaming cone. Upper limits taken from Dichiara et al. (2022).

Appendix A Synchrotron FS Off-axis Model

During the deceleration phase before afterglow emission enters in the observer’s field of view, the bulk Lorentz factor is given by Eq. 12. The minimum and cooling electron Lorentz factors are given by

γm\displaystyle\gamma_{m} =\displaystyle= 2.8×105(1+z1.078)32ζe1n012εe,1θj,51Δθ83E5112t332\displaystyle 2.8\times 10^{5}\,\left(\frac{1+z}{1.078}\right)^{\frac{3}{2}}\zeta_{e}^{-1}n_{0}^{-\frac{1}{2}}\varepsilon_{e,-1}\theta_{j,5}^{-1}\Delta\theta_{8}^{3}E_{51}^{\frac{1}{2}}t_{3}^{-\frac{3}{2}} (A1)
γc\displaystyle\gamma_{c} =\displaystyle= 2.3×103(1+z1.078)12n012(1+Y)1εB,31θj,5Δθ81E5112t312,\displaystyle 2.3\times 10^{3}\,\left(\frac{1+z}{1.078}\right)^{-\frac{1}{2}}n_{0}^{-\frac{1}{2}}(1+Y)^{-1}\varepsilon_{B,-3}^{-1}\theta_{j,5}\Delta\theta_{8}^{-1}E_{51}^{-\frac{1}{2}}t_{3}^{\frac{1}{2}}\,, (A2)

respectively, which correspond to a comoving magnetic field given by B(1+z1.078)32εB,312θj,51Δθ83E5112t332B^{\prime}\propto\,\left(\frac{1+z}{1.078}\right)^{\frac{3}{2}}\varepsilon_{B,-3}^{\frac{1}{2}}\theta_{j,5}^{-1}\Delta\theta_{8}^{3}E_{51}^{\frac{1}{2}}t_{3}^{-\frac{3}{2}}. The synchrotron spectral breaks can be written as

νm\displaystyle\nu_{\rm m} =\displaystyle= 434.3Hz(1+z1.078)2ζe2n012εe,12εB,312θj,52Δθ84E51t33\displaystyle 434.3\ \mathrm{Hz}\left(\frac{1+z}{1.078}\right)^{2}\zeta_{e}^{-2}n_{0}^{-\frac{1}{2}}\varepsilon_{e,-1}^{2}\varepsilon_{B,-3}^{\frac{1}{2}}\theta_{j,5}^{-2}\Delta\theta_{8}^{4}E_{51}t_{3}^{-3} (A3)
νc\displaystyle\nu_{\rm c} =\displaystyle= 7.3×103Hz(1+z1.078)2n012(1+Y)2εB,332θj,52Δθ84E511t3\displaystyle 7.3\times 10^{-3}\ \mathrm{Hz}\left(\frac{1+z}{1.078}\right)^{-2}n_{0}^{-\frac{1}{2}}(1+Y)^{-2}\varepsilon_{B,-3}^{-\frac{3}{2}}\theta_{j,5}^{2}\Delta\theta_{8}^{-4}E_{51}^{-1}t_{3} (A4)

respectively. The synchrotron spectral breaks in the self-absorption regime are derived from νa,1=νcτ0,m35\nu^{\prime}_{\rm a,1}=\nu^{\prime}_{\rm c}\tau^{\frac{3}{5}}_{0,m}, νa,2=νmτ0,m2p+4\nu^{\prime}_{\rm a,2}=\nu^{\prime}_{\rm m}\tau^{\frac{2}{p+4}}_{0,m} and νa,3=νmτ0,c35\nu^{\prime}_{\rm a,3}=\nu^{\prime}_{\rm m}\tau^{\frac{3}{5}}_{0,c} with the optical depth given by τ0,i53qen(r)rBγi5\tau_{0,i}\simeq\frac{5}{3}\frac{q_{e}n(r)r}{B^{\prime}\gamma^{5}_{\rm i}}, with rr the shock radius (Panaitescu & Mészáros, 1998). Therefore, the spectral breaks in the self-absorption regime are given by

νa,1\displaystyle\nu_{\rm a,1} \displaystyle\simeq 9.7×1015Hz(1+z1.078)4ζe85n085εe,11εB,315θj,585Δθ88E5145t33\displaystyle 9.7\times 10^{-15}\ \mathrm{Hz}\left(\frac{1+z}{1.078}\right)^{-4}\zeta_{e}^{\frac{8}{5}}n_{0}^{\frac{8}{5}}\varepsilon_{e,-1}^{-1}\varepsilon_{B,-3}^{\frac{1}{5}}\theta_{j,5}^{\frac{8}{5}}\Delta\theta_{8}^{-8}E_{51}^{-\frac{4}{5}}t_{3}^{3} (A5)
νa,2\displaystyle\nu_{\rm a,2} \displaystyle\simeq 4.7×105Hz(1+z1.078)2(6p)p+4ζe2(2p)p+4n010p2(p+4)εB,3p+22(p+4)εe,12(p1)p+4θj,52(2p)p+4Δθ84(p6)p+4E51p2p+4t383pp+4\displaystyle 4.7\times 10^{-5}\ \mathrm{Hz}\left(\frac{1+z}{1.078}\right)^{-\frac{2(6-p)}{p+4}}\zeta_{e}^{\frac{2(2-p)}{p+4}}n_{0}^{\frac{10-p}{2(p+4)}}\varepsilon_{B,-3}^{\frac{p+2}{2(p+4)}}\varepsilon_{e,-1}^{\frac{2(p-1)}{p+4}}\theta_{j,5}^{\frac{2(2-p)}{p+4}}\Delta\theta_{8}^{\frac{4(p-6)}{p+4}}E_{51}^{\frac{p-2}{p+4}}t_{3}^{\frac{8-3p}{p+4}} (A6)
νa,3\displaystyle\nu_{\rm a,3} \displaystyle\simeq 3.3×107Hz(1+z1.078)2ζe35(1+Y)n085εB,365θj,525Δθ84E5115t3.\displaystyle 3.3\times 10^{-7}\ \mathrm{Hz}\left(\frac{1+z}{1.078}\right)^{-2}\zeta_{e}^{\frac{3}{5}}(1+Y)n_{0}^{\frac{8}{5}}\varepsilon_{B,-3}^{\frac{6}{5}}\theta_{j,5}^{-\frac{2}{5}}\Delta\theta_{8}^{-4}E_{51}^{\frac{1}{5}}t_{3}\,. (A7)

The deceleration time scale tdect_{\rm dec} can be defined using Eq. 12 and the maximum flux is

Fmax=4.5×1011mJy(1+z1.078)4ζen052εB,312dz,272θj,52Δθ818E511t36.\displaystyle F_{\rm max}=4.5\times 10^{-11}\ \mathrm{mJy}\left(\frac{1+z}{1.078}\right)^{-4}\zeta_{e}n_{0}^{\frac{5}{2}}\varepsilon_{B,-3}^{\frac{1}{2}}d_{z,27}^{-2}\theta_{j,5}^{2}\Delta\theta_{8}^{-18}E_{51}^{-1}t_{3}^{6}\,. (A8)

The dynamics of the model post the off-axis phase, generalized for a stratified ambient, are explored in further detail in Fraija et al. (2022).