This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Exponential mixing of constrained random dynamical systems via controllability conditions

Laurent Mertz 111Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, China, e-mail: lmertz@cityu.edu.hk    Vahagn Nersesyan 222NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China, e-mail: Vahagn.Nersesyan@nyu.edu    Manuel Rissel 333NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China, e-mail: Manuel.Rissel@nyu.edu
Abstract

We provide deterministic controllability conditions that imply exponential mixing properties for randomly forced constrained dynamical systems with possibly unbounded state space. As an application, new ergodicity results are obtained for non-smooth models in elasto-plasticity driven by various types of noise, including white noise. It is thereby illustrated how tools from control theory can be utilized to tackle regularity issues that commonly arise in the qualitative study of constrained systems.

Keywords

differential inclusions, elasto-plasticity, ergodicity, exponential mixing, controllability, white noise, decomposable noise

MSC2020

37A25, 37A30, 49J52, 60H10, 74C05, 93B05

\@starttoc

toc

1 Introduction

The objective of this work is to show that deterministic controllability conditions can be used to infer ergodic properties of stochastic non-smooth constrained dynamics governed by differential inclusions. Such random dynamical systems (RDS), which are ubiquitous in science and engineering, are often described by variational inequalities and their study is obstructed by irregular coefficients (cf. Chapter 4 in [21]). Over many decades, several notions of controllability have been developed to measure the ability of dynamical systems to transition between prescribed states under certain degrees of freedom (the controls). Here, classical controllability properties of deterministic systems will be exploited for the investigation of constrained stochastic systems that arise when substituting the controls by noise. On an abstract level, we thereby demonstrate that controllability techniques can be used to tackle regularity issues commonly associated with the study of constrained problems. To illustrate the interest of our work from a practical perspective, we consider systems under hysteresis (finite dimensional elasto-plasticity) with random forcing.

1.1 Review on stochastic elasto-plastic models

Materials often react to forces exerted upon them through elastic (reversible) or plastic (permanent) deformations. As we commonly observe, bending and then straightening a metallic object, like a wire or spoon, induces a permanent deformation, a plastic effect, at the initial bend. For many materials in nature, alternating stresses or deformations typically affect the material’s local properties; e.g., the maximum stress (yield strength) tolerated before plastic deformation results in state (integrity and strength) degradation. These are examples of the ”Bauschinger effect”, which can complicate the risk failure analysis of mechanical structures under vibrational forces. This has significant relevance in earthquake engineering, made even more challenging due to the random nature of seismic forces.

Much of the work on stochastic elasto-plasticity was done by engineers [23], with first strides made in the 1960s [14], but using mainly heuristical approaches. Mathematically, the field is still in its infancy, thereby providing rich questions and motivations for the development of a rigorous theory. Stochastic variational inequalities (SVIs) have been identified as a solid mathematical framework [7] for describing the dynamics of various elasto-plastic systems such as white noise driven elasto-plastic oscillators. The existence and uniqueness of invariant probability measures for SVIs modelling white noise driven elasto-plastic oscillators has been shown in [8]. The proof consists of extending Khasminskiĭ’s method [15], which leads to the study of degenerate elliptic problems with non-local Dirichlet boundary conditions.

The existence of a unique invariant measure is useful in engineering, e.g., when evaluating statistics of plastic deformations at large times. Another application of interest is to study the frequency of occurrence of plastic deformations [18]; see also [6, 4]. Large time statistics of plastic deformations contain crucial information for risk analysis of failure. Since closed formulæ are not available, a numerical approximation of the invariant measure by a deterministic algorithm has been proposed in [5]. The latter is based on a class of partial differential equations defining the invariant measure via duality, as introduced in [9].

1.2 Review on controllability methods

In the literature, the ergodicity of stochastic differential equations has been predominantly studied when the vector fields entering the equation are smooth and the driving noise is white. Typically, it is assumed that the system possesses a Lyapunov function, the coefficients are sufficiently smooth, and the Hörmander condition is satisfied everywhere in the phase space. Then the transition function of the solution process has a smooth and almost surely positive density relative to the Lebesgue measure. As a result, the process is strong Feller and irreducible, leading, by virtue of Doob’s theorem, to the existence of a unique stationary measure (see [19, 15, 13]).

Controllability-type arguments allow to considerably relax the assumptions on both the deterministic and stochastic counterparts of the system. Arnold and Kliemann [3] are one of the firsts to explicitly use controllability terminology and methods to establish the uniqueness of stationary measures for degenerate diffusion equations. They assume that Hörmander’s condition is satisfied at one point and the process is irreducible; their proof extensively employs the Gaussian structure of the noise. In a more refined application of control theory, Shirikyan [25] uses a coupling method to prove exponential mixing in the total variation metric for RDS on compact Riemannian manifolds. His approach relies on the solid controllability property from a point and the global approximate controllability to that point; the noise is assumed to satisfy a decomposability condition and is not restricted to being Gaussian. Extensions of this result to non-compact phase spaces were provided by Raquépas [22] in the case of degenerate white noise and by Raquépas and Nersesyan [20] in the case of degenerate Poisson noise. The employed controllability approaches are quite flexible and admit infinite-dimensional generalizations as well; for instance, Kuksin et al. [16] develop a controllability method for studying the ergodicity of the Navier–Stokes system driven by a bounded noise.

In the current paper, motivated by applications to elasto-plastic models driven by random forces, we further develop the abstract criteria for exponential mixing provided in [25]. The main novelty of the version presented here is that the underlying deterministic system is allowed to be non-smooth. Specifically, the differential inclusion modeling elasto-plasticity leads to a lack of time-differentiability at certain instances of time, and the drift of the system is assumed to be differentiable only near an interior point pp. To address these difficulties, inspired by the techniques of [25], we assume that the system is solidly controllable from the point pp, and the dynamics is smooth in a neighborhood of pp which is accessible from everywhere in the phase space. We verify these assumptions for the example of an elasto-plastic system driven by white noise or general decomposable noise.

1.3 Overview of the manuscript

Let us denote M:-×[1,1]{\rm M}\coloneq\mathbb{R}\times[-1,1] and assume that f:Mf\colon{\rm M}\longrightarrow\mathbb{R} is a locally Lipschitz function. We consider a class of non-smooth dynamical systems of the form

y˙=f(y,z)+ζ,yz˙+g(z),\dot{y}=f(y,z)+\zeta,\quad y\in\dot{z}+\partial g(z), (1.1)

where g:{+}g\colon\mathbb{R}\longrightarrow\mathbb{R}\cup\{+\infty\} is the characteristic function (in the sense of convex analysis) of the interval [1,1][-1,1] and g\partial g is its subdifferential. Our present work covers a broad class of noise ζ()\zeta(\cdot); but to fix the ideas, let us assume in this introduction that ζ\zeta is a white noise of the form ζ(t)=β˙(t)\zeta(t)=\dot{\beta}(t), where β(t)\beta(t) is a standard Brownian motion. Furthermore, the system (1.1) is supplemented with the initial condition

(y,z)(0)=(y0,z0)M.(y,z)(0)=(y_{0},z_{0})\in{\rm M}. (1.2)

To have globally well-defined and dissipative dynamics, we assume that the following Lyapunov-type condition is satisfied for the drift

yf(y,z)αy2+Cyf(y,z)\leq-\alpha y^{2}+C (1.3)

with some constants α,C>0\alpha,C>0 and any (y,z)M(y,z)\in{\rm M}. Under the above conditions, we establish the following result.

Theorem.

If ff is smooth (infinitely differentiable) in a neighborhood of some interior point p×(1,1)p\in\mathbb{R}\times(-1,1), then the Markov process associated with the problem (1.1), (1.2) has a unique stationary measure that is exponentially mixing.

To outline the idea of the proof of this theorem, let us first note that the problem can be reduced to the study of a discrete-time RDS in the following way. Let us fix a time T0>0T_{0}>0 and let E{\rm E} be the Banach space C0([0,T0];){\rm C}_{0}([0,T_{0}];\mathbb{R}) of continuous functions η:[0,T0]\eta\colon[0,T_{0}]\longrightarrow\mathbb{R} with η(0)=0\eta(0)=0, endowed with the uniform norm. Furthermore, let us denote by SS the resolving mapping of our problem:

S:M×EM,(x0,η)x(T0),S\colon{\rm M}\times{\rm E}\longrightarrow{\rm M},\quad(x_{0},\eta)\mapsto x(T_{0}),

where x(t):-(y(t),z(t))x(t)\coloneq(y(t),z(t)) solves (1.1), (1.2) with the initial state x0=(y0,z0)x_{0}=(y_{0},z_{0}) and force ζ:-``η˙"\zeta\coloneq``\dot{\eta}". We define a family of independent identically distributed (i.i.d) random variables {ηk}k1\{\eta_{k}\}_{k\geq 1} in E{\rm E} through

ηk(t):-β((k1)T0+t)β((k1)T0),t[0,T0]\eta_{k}(t)\coloneq\beta((k-1)T_{0}+t)-\beta((k-1)T_{0}),\quad t\in[0,T_{0}]

and note that the discrete-time process xk:-x(kT0)x_{k}\coloneq x(kT_{0}), obtained by restricting our original process at integer times, satisfies the relations

xk=S(xk1;ηk).x_{k}=S(x_{k-1};\eta_{k}). (1.4)

In this way, the problem of mixing for (1.1), (1.2) is transformed to a similar problem for the discrete-time RDS (1.4). The exponential mixing for the latter is derived from the following four properties by appropriately extending the abstract theory developed in [25]:

  1. \bullet

    Lyapunov structure;

  2. \bullet

    approximate controllability to an interior point pp;

  3. \bullet

    smoothness of SS near pp and solid controllability from pp,

  4. \bullet

    decomposability of the law of ηk\eta_{k}.

The Lyapunov property follows from the assumption (1.3). Approximate controllability is established essentially by using explicit formulas for the control. The regularity and solid controllability are obtained by choosing T0T_{0} sufficiently small and observing that the problem is exactly controllable with a control function that depends continuously on the target. Decomposability of the law of the Brownian motion is shown to hold with respect to an increasing family of finite-dimensional subspaces formed by trigonometric functions. Finally, the exponential mixing at discrete times, combined with the above Lyapunov-type assumption, implies the exponential mixing for the continuous-time process.

Organization

The goal of Section 2 is to develop general conditions that are sufficient for exponential mixing; the abstract main result of this article is stated in Section 2.2 and proved in Section 2.3. Section 3 showcases concrete applications in finite-dimensional elasto-plasticity. Finally, exponential recurrence estimates and a measure transformation theorem are collected in Appendices A and B.

Notations

Let (X,d)({\rm X},d) be a complete separable metric space and BX(a,R){\rm B}_{{\rm X}}(a,R) the open ball in (X,d)({\rm X},d) of radius R>0R>0 centered at aXa\in{\rm X}. Moreover, the X{\rm X}-closure of AX{\rm A}\subset{\rm X} is indicated by closXA\operatorname{clos}_{{\rm X}}{\rm A}, the Borel σ\sigma-algebra on (X,d)({\rm X},d) is written as (X)\mathcal{B}({\rm X}), and the Banach space L(X;){\rm L}^{\infty}({\rm X};{\mathbb{R}}) of essentially bounded (X)\mathcal{B}({\rm X})-measurable functions f:Xf\colon{\rm X}\longrightarrow\mathbb{R} is endowed with the uniform norm

f:-esssupxX|f(x)|,fL(X;).\|f\|_{\infty}\coloneq\operatorname*{ess\,sup}_{x\in{\rm X}}|f(x)|,\quad f\in{\rm L}^{\infty}({\rm X};{\mathbb{R}}).

Further, the Borel probability measures 𝒫(X)\mathcal{P}({\rm X}) on X{\rm X} are equipped with the total variation distance

μ1μ2var\displaystyle\|\mu_{1}-\mu_{2}\|_{\operatorname{var}} :-supΓ(X)|μ1(Γ)μ2(Γ)|\displaystyle\coloneq\sup_{\Gamma\in\mathcal{B}({\rm X})}|\mu_{1}(\Gamma)-\mu_{2}(\Gamma)| (1.5)
=12supf1|f,μ1Xf,μ2X|,μ1,μ2𝒫(X),\displaystyle\,=\frac{1}{2}\sup_{\|f\|_{\infty}\leq 1}|\langle f,\mu_{1}\rangle_{X}-\langle f,\mu_{2}\rangle_{{\rm X}}|,\quad\mu_{1},\mu_{2}\in\mathcal{P}({\rm X}),

where the bracket

f,μX:-Xf(x)μ(dx)\langle f,\mu\rangle_{{\rm X}}\coloneq\int_{{\rm X}}f(x)\,\mu({{\rm d}x})

is well-defined, in particular, for all fL(X;)f\in{\rm L}^{\infty}({\rm X};{\mathbb{R}}) and μ𝒫(X)\mu\in\mathcal{P}({\rm X}). Regarding the basic property expressed by the second equation of (1.5), see, for instance, [17, Exercise 1.2.10]. Furthermore, when μ1\mu_{1} and μ2\mu_{2} are absolutely continuous with respect to a measure μ𝒫(X)\mu\in\mathcal{P}({\rm X}), with densities ρ1\rho_{1} and ρ2\rho_{2}, one has (cf. [17, Proposition 1.2.7])

μ1μ2var=1Xmin{ρ1(x),ρ2(x)}μ(dx).\|\mu_{1}-\mu_{2}\|_{\operatorname{var}}=1-\int_{{\rm X}}\min\{\rho_{1}(x),\rho_{2}(x)\}\,\mu({{\rm d}x}). (1.6)

Throughout, the symbol CC refers to unessential positive constants that may change during the estimates, and we abbreviate

+:-[0,),:-{0},0:-{0}.\mathbb{R}_{+}\coloneq[0,\infty),\quad\mathbb{R}_{*}\coloneq\mathbb{R}\setminus\{0\},\quad\mathbb{N}_{0}\coloneq\mathbb{N}\cup\{0\}.

2 Exponential mixing via controllability

This section presents sufficient conditions for the exponential mixing of a discrete-time RDS on a connected smooth Riemannian manifold M{\rm M} with or without boundary. The plan is as follows.

  • \triangleright

    Section 2.1. Four conditions for exponential mixing are introduced.

  • \triangleright

    Section 2.2. The abstract main result (2.8) is presented.

  • \triangleright

    Section 2.3. 2.8 is proved.

2.1 Abstract framework

Let dM:M×M+d_{{\rm M}}\colon{\rm M}\times{\rm M}\longrightarrow\mathbb{R}_{+} be the natural Riemannian distance and suppose that (M,dM)({\rm M},d_{{\rm M}}) forms a complete metric space. Given a separable Banach space E{\rm E} (“noise space”), a continuous mapping

S:M×EM,S\colon{\rm M}\times{\rm E}\longrightarrow{\rm M},

and a sequence {ηk}k\{\eta_{k}\}_{k\in\mathbb{N}} of i.i.d. random variables in E{\rm E}, we consider the RDS defined via

xk=S(xk1;ηk),k1.x_{k}=S(x_{k-1};\eta_{k}),\quad k\geq 1. (2.1)

This RDS gives rise to a Markov family {xk,x}k0\{x_{k},\mathbb{P}_{x}\}_{k\in\mathbb{N}_{0}} and the associated transitions {Pk(x,Γ)}k0\{P_{k}(x,\Gamma)\}_{k\in\mathbb{N}_{0}} parametrized by the initial condition x0=xMx_{0}=x\in{\rm M}; the corresponding Markov semigroups are for k0k\geq 0 given by

𝔓k:L(M)\displaystyle\mathfrak{P}_{k}\colon{\rm L}^{\infty}({\rm M}) L(M),𝔓kf(x):-Mf(y)Pk(x,dy),\displaystyle\longrightarrow{\rm L}^{\infty}({\rm M}),\quad\mathfrak{P}_{k}f(x)\coloneq\int_{{\rm M}}f(y)P_{k}(x,{{\rm d}y}),
𝔓k:𝒫(M)\displaystyle\mathfrak{P}_{k}^{*}\colon\mathcal{P}({\rm M}) 𝒫(M),𝔓kμ(Γ):-MPk(x,Γ)μ(dx).\displaystyle\longrightarrow\mathcal{P}({\rm M}),\quad\mathfrak{P}_{k}^{*}\mu(\Gamma)\coloneq\int_{{\rm M}}P_{k}(x,\Gamma)\mu({{\rm d}x}).
Definition 2.1.

A measure μ𝒫(M)\mu\in\mathcal{P}({\rm M}) is called stationary for the family {xk,x}k0\{x_{k},\mathbb{P}_{x}\}_{k\in\mathbb{N}_{0}} provided that 𝔓1μ=μ\mathfrak{P}_{1}^{*}\mu=\mu.

Definition 2.2.

A Lyapunov function for the RDS (2.1) is understood as any continuous functional V:M[1,+)V\colon{\rm M}\longrightarrow[1,+\infty) having compact level sets (that is, {V(x)R}⊂⊂M\{V(x)\leq R\}\subset\joinrel\subset{\rm M} for all RR) such that there are q(0,1)q\in(0,1) and A>0A>0 with

𝔼xV(x1)qV(x)+A\mathbb{E}_{x}V(x_{1})\leq qV(x)+A (2.2)

for all xMx\in{\rm M}. Here, the expectation with respect to x\mathbb{P}_{x} is denoted by 𝔼x\mathbb{E}_{x}; the state x1x_{1} is obtained from the initial data xMx\in{\rm M} via (2.1).

Definition 2.3.

A stationary measure μ𝒫(M)\mu\in\mathcal{P}({\rm M}) for the family {xk,x}k0\{x_{k},\mathbb{P}_{x}\}_{k\in\mathbb{N}_{0}} is exponentially mixing if there are constants γ>0\gamma>0 and C>0C>0, and a Lyapunov function VV satisfying

𝔓kλμvarCeγkV,λM,k1\|\mathfrak{P}_{k}^{*}\lambda-\mu\|_{\operatorname{var}}\leq C\operatorname{e}^{-\gamma k}\langle V,\lambda\rangle_{{\rm M}},\quad k\geq 1 (2.3)

for any λ𝒫(M)\lambda\in\mathcal{P}({\rm M}) with V,λM<+\langle V,\lambda\rangle_{{\rm M}}<+\infty.

2.1.1 Conditions

We describe below four conditions on the mapping SS and the sequence {ηk}k\{\eta_{k}\}_{k\in\mathbb{N}} introduced above; as stated in 2.8, they shall guarantee the existence and exponential mixing of a stationary measure for the Markov family {xk,x}k0\{x_{k},\mathbb{P}_{x}\}_{k\in\mathbb{N}_{0}}.

Condition 1 (Lyapunov structure).

There exists a Lyapunov function for (2.1) in the sense of 2.2.

Remark 2.4.

As a consequence of 1, the standard Bogolyubov–Krylov argument yields the existence of at least one stationary measure μ𝒫(M)\mu\in\mathcal{P}({\rm M}) for the family {xk,x}k0\{x_{k},\mathbb{P}_{x}\}_{k\in\mathbb{N}_{0}}, and V,μM<+\langle V,\mu\rangle_{{\rm M}}<+\infty follows via Fatou’s lemma; cf. Section 2.5 in [17].

The uniqueness of a stationary measure essentially follows from controllability properties of the deterministic system described by SS when viewing {ηk}k1\{\eta_{k}\}_{k\geq 1} in (2.1) as controls. As mentioned in the introduction, we deviate from the abstract theory in [25] by allowing also manifolds with boundary (the constraint) and non-smoothness of the map SS; to this end, we utilize controllability to an interior point pp near which the system is smooth. In what follows, we write for simplicity S2(x;ζ1,ζ2)S_{2}(x;\zeta_{1},\zeta_{2}) instead of S(S(x;ζ1);ζ2)S(S(x;\zeta_{1});\zeta_{2}) and analogously define Sn(x;ζ1,,ζn)S_{n}(x;\zeta_{1},\ldots,\zeta_{n}) for any n1n\geq 1.

Condition 2 (Approximate controllability).

There is an interior point pMMp\in{\rm M}\setminus\partial{\rm M} such that for any

  • accuracy parameter δ>0\delta>0,

  • radius R>0R>0,

  • initial state xclosMBM(p,R)x\in\operatorname{clos}_{{\rm M}}{\rm B}_{{\rm M}}(p,R),

there exist a “time” n=n(R,δ)n=n(R,\delta)\in\mathbb{N} and controls {ζi}i{1,,n}E\{\zeta_{i}\}_{i\in\{1,\dots,n\}}\subset{\rm E} satisfying

Sn(x;ζ1,,ζn)BM(p,δ).S_{n}(x;\zeta_{1},\dots,\zeta_{n})\in{\rm B}_{{\rm M}}(p,\delta).
Remark 2.5.

We will utilize Conditions 1 and 2 to show the exponential recurrence property detailed in Appendix A.

We further resort to the notion of solid controllability introduced by Agrachev and Sarychev in [2] for the regulation of incompressible fluids by means of low mode forcing. Solid controllability is a type of (local) exact controllability that is robust under small perturbations. It has already proved to be useful in a regular setting when studying ergodicity properties of RDS associated with various models; e.g., see [1, 24, 25, 22, 20].

Condition 3 (Solid controllability).

Let pMMp\in{\rm M}\setminus\partial{\rm M} be as in 2. There are numbers ϵ,δ>0\epsilon,\delta>0, non-empty open balls B~M,B^MMM\widetilde{{\rm B}}_{{\rm M}},\widehat{{\rm B}}_{{\rm M}}\subset{\rm M}\setminus\partial{\rm M} and B~EE\widetilde{{\rm B}}_{{\rm E}}\subset{\rm E}, and a compact set 𝒦EB~E\mathcal{K}_{{\rm E}}\subset\widetilde{{\rm B}}_{{\rm E}} such that the following properties hold.

  1. (i)

    (Regularity). Given any xclosMBM(p,δ)x\in\operatorname{clos}_{{\rm M}}{\rm B}_{{\rm M}}(p,\delta), one has S(x;B~E)B~MS(x;\widetilde{{\rm B}}_{{\rm E}})\subset\widetilde{{\rm B}}_{{\rm M}}, the mapping S(x;):B~EB~MS(x;\cdot)\colon\widetilde{{\rm B}}_{{\rm E}}\longrightarrow\widetilde{{\rm B}}_{{\rm M}} is Fréchet differentiable with continuous derivative (x,ζ)DζS(x,ζ)(x,\zeta)\mapsto D_{\zeta}S(x,\zeta) on BM(p,δ)×B~E{\rm B}_{{\rm M}}(p,\delta)\times\widetilde{{\rm B}}_{{\rm E}}, and S(p;):B~EB~MS(p;\cdot)\colon\widetilde{{\rm B}}_{{\rm E}}\longrightarrow\widetilde{{\rm B}}_{{\rm M}} is infinitely Fréchet differentiable.

  2. (ii)

    (Solid controllability). For any continuous function Φ:𝒦EM\Phi\colon\mathcal{K}_{{\rm E}}\longrightarrow{\rm M}, one has the implication

    supζ𝒦EdM(Φ(ζ),S(p;ζ))ϵB^MΦ(𝒦E).\sup_{\zeta\in\mathcal{K}_{{\rm E}}}d_{{\rm M}}(\Phi(\zeta),S(p;\zeta))\leq\epsilon\quad\Longrightarrow\quad\widehat{{\rm B}}_{{\rm M}}\subset\Phi(\mathcal{K}_{{\rm E}}).

The next condition states that the noise in (2.1) is decomposable. To make this more precise, let \ell be the law of η1\eta_{1} from (2.1). Furthermore, given any complemented subspace FE{\rm F}\subset{\rm E}, the projection onto F{\rm F} in E{\rm E} is denoted by 𝖯F\mathsf{P}_{{\rm F}} and the image of \ell under 𝖯F\mathsf{P}_{{\rm F}} is written as (𝖯F):-𝖯F1(\mathsf{P}_{{\rm F}})_{*}\ell\coloneq\ell\circ\mathsf{P}_{{\rm F}}^{-1}.

Condition 4 (Decomposability).

Let 𝒦EE\mathcal{K}_{{\rm E}}\subset{\rm E} be as in 3. There exists an increasing sequence of finite-dimensional subspaces {Fj}jE\{{\rm F}_{j}\}_{j\in\mathbb{N}}\subset{\rm E} with respective complements {Hj}j\{{\rm H}_{j}\}_{j\in\mathbb{N}} in E{\rm E} such that

  • (a)

    j=1+Fj\cup_{j=1}^{+\infty}{\rm F}_{j} is dense in E{\rm E},

  • (b)

    =[(𝖯Fj)][(𝖯Hj)]\ell=[(\mathsf{P}_{{\rm F}_{j}})_{*}\ell]\otimes[(\mathsf{P}_{{\rm H}_{j}})_{*}\ell] for any jj\in\mathbb{N},

  • (c)

    (𝖯Fj)(\mathsf{P}_{{\rm F}_{j}})_{*}\ell possesses for each jj\in\mathbb{N} a positive continuous density with respect to the Lebesgue measure on Fj{\rm F}_{j},

  • (d)

    limj+𝖯Fjζ=ζ\lim_{j\to+\infty}\mathsf{P}_{{\rm F}_{j}}\zeta=\zeta uniformly with respect to ζ𝒦E\zeta\in\mathcal{K}_{{\rm E}}, that is

    supζ𝒦E𝖯FjζζE0, as j.\sup\limits_{\zeta\in\mathcal{K}_{{\rm E}}}\|\mathsf{P}_{{\rm F}_{j}}\zeta-\zeta\|_{{\rm E}}\to 0,\>\mbox{ as }\>j\to\infty.
Remark 2.6.

Conditions 3 and 4 enable the application of a measure transformation theorem from [24] that provides a uniform estimate for the transition function P1(x,)P_{1}(x,\cdot) when xx is close to the point pp (cf. the proof of 2.9).

Example 2.7.

In addition to the case of white noise introduced in Section 1.2, we can treat general decomposable noise. Namely, when E{\rm E} is a separable Hilbert space, 4 is verified for the law \ell of any random variable that admits a representation

η=j=1bjξjej,\eta=\sum_{j=1}^{\infty}b_{j}\xi_{j}e_{j}, (2.4)

where

  • {bj}j\{b_{j}\}_{j\in\mathbb{N}}\subset\mathbb{R}_{*} are square-summable,

  • {ξj}j\{\xi_{j}\}_{j\in\mathbb{N}} are independent scalar random variables having a common positive continuous density ρ\rho with respect to the Lebesgue measure,

  • {ej}j\{e_{j}\}_{j\in\mathbb{N}} form an orthonormal basis in E{\rm E}.

In fact, assuming (2.4), even a stronger version of (d) in 4 holds; namely, the operator sequence {𝖯Fj}j\{\mathsf{P}_{{\rm F}_{j}}\}_{j\in\mathbb{N}} converges to the identity in the norm topology, that is

supζE 1𝖯FjζζE0, as j.\sup\limits_{\|\zeta\|_{{\rm E}}\>\leq\>1}\|\mathsf{P}_{{\rm F}_{j}}\zeta-\zeta\|_{{\rm E}}\to 0,\>\mbox{ as }\>j\to\infty.

A concrete example of a RDS satisfying the four conditions above is given in Section 3. There, we will also discuss several common types of noise that satisfy Condition 4.

2.2 Main result

The core result of this section allows to conclude exponential mixing, and thus ergodicity, from the general conditions listed in Section 2.1.1; it can be stated in the following way.

Theorem 2.8.

Under the Conditions 14, the family {xk,x}k0\{x_{k},\mathbb{P}_{x}\}_{k\in\mathbb{N}_{0}} has a unique stationary measure μ𝒫(M)\mu\in\mathcal{P}({\rm M}) that is exponentially mixing in the sense of 2.3.

The main novelty of 2.8 is that the underlying deterministic system is allowed to be non-smooth in several ways. First, the differential inclusion modeling elasto-plasticity induces irregularities (lack of differentiability of the time-dependent solution at some particular times). Second, the drift of the system is assumed to be differentiable only near an interior point pMMp\in{\rm M}\setminus\partial{\rm M}. To accommodate these difficulties, we exploit controllability techniques. Namely, since the interior point pp in 3 – from which the RDS is solidly controllable – can be reached from everywhere via 2, smoothness of SS will be required only near pp. Moreover, we provide a unified framework for treating white and general decomposable noise.

2.3 Proof of the main result

Inspired by the approach developed in [25], the proof of 2.8 shall involve a combination of controllability and coupling arguments. The argument is structured as follows.

  • (Section 2.3.1). An estimate for the transition function P1P_{1} is proved.

  • (Section 2.3.2). Coupling arguments yield an auxiliary process with improved pathwise properties that has the same law as the original one.

  • (Section 2.3.3). The proof is concluded.

2.3.1 Transition function near pp

The solid controllability and decomposability properties stated in Conditions 3 and 4 yield the subsequent bound for the transition function P1P_{1}.

Lemma 2.9.

There are numbers δ^>0\widehat{\delta}>0 and r(0,1)r\in(0,1) such that

P1(x,)P1(x,)varr\left\|P_{1}(x,\,\cdot\,)-P_{1}(x^{\prime},\,\cdot\,)\right\|_{\operatorname{var}}\leq r (2.5)

for any x,xclosMBM(p,δ^)x,x^{\prime}\in\operatorname{clos}_{{\rm M}}{\rm B}_{\rm M}(p,\widehat{\delta}).

Proof.

To begin with, we fix the objects ϵ,δ,B~E\epsilon,\delta,\widetilde{{\rm B}}_{{\rm E}}, and 𝒦E\mathcal{K}_{{\rm E}} as in 3. In particular, after reducing δ\delta if necessary, we can assume that closMBM(p,δ)\operatorname{clos}_{{\rm M}}{\rm B}_{\rm M}(p,\delta) does not intersect the boundary M\partial{\rm M} of M{\rm M}.

Step 1. Fixing a projection.

Owing to the assumption (d) in 4, combined with the continuity of S(p;):EMS(p;\,\cdot\,)\colon{\rm E}\longrightarrow{\rm M} and the compactness of 𝒦E\mathcal{K}_{{\rm E}}, we obtain the bound

supζ𝒦EdM(S(p;𝖯Fjζ),S(p;ζ))ϵ\sup_{\zeta\in\mathcal{K}_{{\rm E}}}d_{M}(S(p;\mathsf{P}_{{\rm F}_{j}}\zeta),S(p;\zeta))\leq\epsilon

for any sufficiently large j1j\geq 1. Hereafter, we fix such a number jj\in\mathbb{N}.

Step 2. Utilizing solid controllability.

In order to employ the assumption (ii) of 3, we define a continuous function 𝒦EM\mathcal{K}_{{\rm E}}\longrightarrow{\rm M} by means of

ζΦ(ζ):-S(p;𝖯Fjζ).\zeta\mapsto\Phi(\zeta)\coloneq S(p;\mathsf{P}_{{\rm F}_{j}}\zeta).

Then, one can select a ball OFj{\rm O}\subset{\rm F}_{j} so that the image of S(p;):OMS(p;\,\cdot\,)\colon{\rm O}\longrightarrow{\rm M} contains the ball B^MMM\widehat{{\rm B}}_{{\rm M}}\subset{\rm M}\setminus\partial{\rm M}. By increasing jj if necessary, thanks to 4-(d), we have 𝖯Fj(𝒦E)B~E\mathsf{P}_{{\rm F}_{j}}(\mathcal{K}_{{\rm E}})\subset\widetilde{B}_{{\rm E}}. Therefore, one may assume that OB~E{\rm O}\subset\widetilde{{\rm B}}_{{\rm E}}; hence, the mapping S(p;):OMS(p;\,\cdot\,)\colon{\rm O}\longrightarrow{\rm M} is smooth. Thanks to Sard’s theorem, there exists an element ζ^O\widehat{\zeta}\in{\rm O} such that (DζS)(p;ζ^)(D_{\zeta}S)(p;\widehat{\zeta}) has full rank. After possibly reducing δ\delta, we can further suppose that BE(ζ^,δ)B~E{\rm B}_{\rm E}(\widehat{\zeta},\delta)\subset\widetilde{{\rm B}}_{{\rm E}}.

Step 3. Measure transformation.

Let volM()\operatorname{vol}_{\rm M}(\,\cdot\,) denote the Riemannian measure on M{\rm M}. Owing to the previous step, we can now apply B.1 to the mapping

F:-S:X×EM,X:-closMBM(p,δ).F\coloneq S\colon{\rm X}\times{\rm E}\longrightarrow{\rm M},\quad{\rm X}\coloneq\operatorname{clos}_{{\rm M}}{\rm B}_{\rm M}(p,\delta).

As a result, there is a number δ^>0\widehat{\delta}>0 and a continuous function

ψ:closMBM(p,δ^)×M+\psi\colon\operatorname{clos}_{{\rm M}}{\rm B}_{\rm M}(p,\widehat{\delta})\times{\rm M}\longrightarrow\mathbb{R}_{+}

with

ψ(p,y^)>0,(S(x;))(dy)ψ(x,y)volM(dy)\psi(p,\widehat{y})>0,\quad\left(S(x;\,\cdot\,)_{*}\ell\right)({{\rm d}y})\geq\psi(x,y)\operatorname{vol}_{\rm M}({{\rm d}y})

for y^:-S(p;ζ^)\widehat{y}\coloneq S(p;\widehat{\zeta}) and all xclosMBM(p,δ^)x\in\operatorname{clos}_{{\rm M}}{\rm B}_{\rm M}(p,\widehat{\delta}). Even more, by possibly shrinking δ^\widehat{\delta}, one can choose a small number ε>0\varepsilon>0 so that ψ(x,y)ε>0\psi(x,y)\geq\varepsilon>0 for each xclosMBM(p,δ^)x\in\operatorname{clos}_{{\rm M}}{\rm B}_{\rm M}(p,\widehat{\delta}) and yclosMBM(y^,δ^)y\in\operatorname{clos}_{{\rm M}}{\rm B}_{\rm M}(\widehat{y},\widehat{\delta}). Consequently, the inequality

(S(x;))(dy)ε𝕀BM(y^,δ^)(y)volM(dy)\left(S(x;\,\cdot\,)_{*}\ell\right)({{\rm d}y})\geq\varepsilon\,\mathbb{I}_{{\rm B}_{\rm M}(\widehat{y},\widehat{\delta})}(y)\operatorname{vol}_{\rm M}({{\rm d}y})

holds for all points xclosMBM(p,δ^)x\in\operatorname{clos}_{{\rm M}}{\rm B}_{\rm M}(p,\widehat{\delta}). Hence, by using the representation (1.6), while recalling that S(x;)=P1(x,)S(x;\,\cdot\,)_{*}\ell=P_{1}(x,\,\cdot\,), we arrive at the estimate

P1(x,)P1(x,)var1εvolM(BM(y^,δ^)),\|P_{1}(x,\,\cdot\,)-P_{1}(x^{\prime},\,\cdot\,)\|_{\mbox{var}}\leq 1-\varepsilon\operatorname{vol}_{\rm M}({\rm B}_{\rm M}(\widehat{y},\widehat{\delta})),

and set r:-1εvolM(BM(y^,δ^))r\coloneq 1-\varepsilon\,\operatorname{vol}_{\rm M}({\rm B}_{\rm M}(\widehat{y},\widehat{\delta})). ∎

2.3.2 Coupling construction

Given two states x,xMx,x^{\prime}\in{\rm M}, let {xk}k\{x_{k}\}_{k\in\mathbb{N}} and {xk}k\{x_{k}^{\prime}\}_{k\in\mathbb{N}} be the trajectories of (2.1) issued from xx and xx^{\prime}, respectively. As {(xk,xk)}k\{(x_{k},x_{k}^{\prime})\}_{k\in\mathbb{N}} might not be contractive, we resort to a coupling method in order to constract instead an auxiliary process {(x~k,x~k)}k\{(\widetilde{x}_{k},\widetilde{x}_{k}^{\prime})\}_{k\in\mathbb{N}}, such that {x~k}k\{\widetilde{x}_{k}\}_{k\in\mathbb{N}} and {x~k}k\{\widetilde{x}_{k}^{\prime}\}_{k\in\mathbb{N}} have the same laws as {xk}k\{x_{k}\}_{k\in\mathbb{N}} and {xk}k\{x_{k}^{\prime}\}_{k\in\mathbb{N}} respectively, but possesses better pathwise properties. More specifically, the goal is to choose {(x~k,x~k)}k\{(\widetilde{x}_{k},\widetilde{x}_{k}^{\prime})\}_{k\in\mathbb{N}} such that x~k\widetilde{x}_{k} and x~k\widetilde{x}_{k}^{\prime} coincide after a random time σ\sigma of finite exponential moment; it will be seen in Section 2.3.3 that the existence of such a σ\sigma almost immediately implies exponential mixing.

The auxiliary process.

We will define the new process {(x~k,x~k)}k\{(\widetilde{x}_{k},\widetilde{x}_{k}^{\prime})\}_{k\in\mathbb{N}} with the help of coupling operators i:M×MM\mathcal{R}_{i}\colon{\rm M}\times{\rm M}\longrightarrow{\rm M}, i{1,2}i\in\{1,2\}. Their construction is separated into the following three cases.

  • If x=xx=x^{\prime}, we set 1(x,x)=2(x,x)=S(x;η1)\mathcal{R}_{1}(x,x^{\prime})=\mathcal{R}_{2}(x,x^{\prime})=S(x;\eta_{1}).

  • If xxx\neq x^{\prime} and x,xclosMBM(p,δ^)x,x^{\prime}\in\operatorname{clos}_{{\rm M}}{\rm B}_{\rm M}(p,\widehat{\delta}), where δ^>0\widehat{\delta}>0 is fixed via 2.9, then (1(x,x),2(x,x))(\mathcal{R}_{1}(x,x^{\prime}),\mathcal{R}_{2}(x,x^{\prime})) is chosen (by the method described in [17]) as a maximal coupling for the pair (P1(x,),P1(x,))(P_{1}(x,\,\cdot\,),P_{1}(x^{\prime},\,\cdot\,)). More specifically, we apply [17, Theorem 1.2.28] with

    X:-M,Z:-closMBM(p,δ^)×closMBM(p,δ^),\displaystyle X\coloneq{\rm M},\quad Z\coloneq\operatorname{clos}_{{\rm M}}{\rm B}_{\rm M}(p,\widehat{\delta})\times\operatorname{clos}_{{\rm M}}{\rm B}_{\rm M}(p,\widehat{\delta}),
    (μ1(z,),μ2(z,)):-(P1(x,),P1(x,)),z:-(x,x)Z,\displaystyle(\mu_{1}(z,\,\cdot\,),\mu_{2}(z,\,\cdot\,))\coloneq(P_{1}(x,\,\cdot\,),P_{1}(x^{\prime},\,\cdot\,)),\quad z\coloneq(x,x^{\prime})\in Z,

    which provides two random variables 1(x,x)\mathcal{R}_{1}(x,x^{\prime}) and 2(x,x)\mathcal{R}_{2}(x,x^{\prime}), with respective distributions P1(x,)P_{1}(x,\,\cdot\,) and P1(x,)P_{1}(x^{\prime},\,\cdot\,), such that

    {1(x,x)2(x,x)}=P1(x,)P1(x,)var.\mathbb{P}\left\{\mathcal{R}_{1}(x,x^{\prime})\neq\mathcal{R}_{2}(x,x^{\prime})\right\}=\|P_{1}(x,\,\cdot\,)-P_{1}(x^{\prime},\,\cdot\,)\|_{\operatorname{var}}.
  • Otherwise, we set 1(x,x)=S(x;η)\mathcal{R}_{1}(x,x^{\prime})=S(x;\eta) and 2(x,x)=S(x;η)\mathcal{R}_{2}(x,x^{\prime})=S(x^{\prime};\eta^{\prime}), where η\eta and η\eta^{\prime} are independent copies of the random variable η1\eta_{1}.

All above-mentioned random variables are without loss of generality defined on the same probability space (Ω,,)(\Omega,\mathcal{F},\mathbb{P}). Next, in order to construct {(x~k,x~k)}k\{(\widetilde{x}_{k},\widetilde{x}_{k}^{\prime})\}_{k\in\mathbb{N}}, we take independent copies {(Ωk,k,k)}k\{(\Omega_{k},\mathcal{F}_{k},\mathbb{P}_{k})\}_{k\in\mathbb{N}} of (Ω,,)(\Omega,\mathcal{F},\mathbb{P}) and denote by (Ω^,^,^)(\widehat{\Omega},\widehat{\mathcal{F}},\widehat{\mathbb{P}}) their direct product. Then, for any x,xMx,x^{\prime}\in{\rm M}, kk\in\mathbb{N}, and ω=(ω1,ω2,)Ω^\omega=(\omega_{1},\omega_{2},\ldots)\in\widehat{\Omega}, the anticipated process is given by

x~0=x,x~k(ω)=1(x~k1(ω),x~k1(ω),ωk),\displaystyle\widetilde{x}_{0}=x,\quad\widetilde{x}_{k}(\omega)=\mathcal{R}_{1}(\widetilde{x}_{k-1}(\omega),\widetilde{x}_{k-1}^{\prime}(\omega),\omega_{k}),
x~0=x,x~k(ω)=2(x~k1(ω),x~k1(ω),ωk).\displaystyle\widetilde{x}_{0}^{\prime}=x^{\prime},\quad\widetilde{x}_{k}^{\prime}(\omega)=\mathcal{R}_{2}(\widetilde{x}_{k-1}(\omega),\widetilde{x}_{k-1}^{\prime}(\omega),\omega_{k}).

From this construction, it follows that the processes {x~k}k\{\widetilde{x}_{k}\}_{k\in\mathbb{N}} and {x~k}k\{\widetilde{x}_{k}^{\prime}\}_{k\in\mathbb{N}} have the same laws as {xk}k\{x_{k}\}_{k\in\mathbb{N}} and {xk}k\{x_{k}^{\prime}\}_{k\in\mathbb{N}} respectively.

The random time.

Owing to the above constructions, we define the desired random time via

σ:-min{k0|x~n=x~n for all nk}.\sigma\coloneq\min\{k\geq 0\,|\,\widetilde{x}_{n}=\widetilde{x}_{n}^{\prime}\mbox{ for all $n\geq k$}\}.

Throughout, the convention min:-+\min\varnothing\coloneq+\infty is used.

Lemma 2.10 (Finite exponential moment).

There are numbers γ>0\gamma>0 and C>0C>0 such that for all x,xMx,x^{\prime}\in{\rm M} one has the estimate

𝔼(x,x)eγσC(V(x)+V(x)).\mathbb{E}_{(x,x^{\prime})}\operatorname{e}^{\gamma\sigma}\leq C(V(x)+V(x^{\prime})).
Proof.

Let us denote by δ0>0\delta_{0}>0 a number smaller than δ\delta in 3 and δ^\widehat{\delta} from 2.9; in what follows, we again write δ\delta instead of δ0\delta_{0} and might further reduce the value of δ\delta without changing the symbol. To begin with, a sequence of stopping times is given via

τ~δ(0):-0,τ~δ(k):-min{n>τ~δ(k1)|x~n,x~nBM(p,δ)},k1.\widetilde{\tau}_{\delta}(0)\coloneq 0,\quad\widetilde{\tau}_{\delta}(k)\coloneq\min\{n>\widetilde{\tau}_{\delta}(k-1)\,\,|\,\,\widetilde{x}_{n},\widetilde{x}_{n}^{\prime}\in{\rm B}_{\rm M}(p,\delta)\},\quad k\geq 1.

By A.2, there are ϰ>0\varkappa>0 and C>0C>0 with

𝔼(x,x)eϰτ~δ(1)C(V(x)+V(x))\mathbb{E}_{(x,x^{\prime})}\operatorname{e}^{\varkappa\widetilde{\tau}_{\delta}(1)}\leq C(V(x)+V(x^{\prime})) (2.6)

for all x,xMx,x^{\prime}\in{\rm M}. Since VV is continuous and closMBM(p,δ)\operatorname{clos}_{{\rm M}}{\rm B}_{\rm M}(p,\delta) compact, it follows that

supxBM(p,δ)|V(x)|-:D<.\sup_{x\in{\rm B}_{\rm M}(p,\delta)}|V(x)|\eqcolon D<\infty. (2.7)

Combining (2.7) with the inequality in (2.6), the strong Markov property, and the fact that

xτ~δ(k1),xτ~δ(k1)BM(p,δ),x_{\widetilde{\tau}_{\delta}(k-1)},x_{\widetilde{\tau}_{\delta}(k-1)}^{\prime}\in{\rm B}_{\rm M}(p,\delta),

one obtains the estimate

𝔼(x,x)eϰτ~δ(k)\displaystyle\mathbb{E}_{(x,x^{\prime})}\operatorname{e}^{\varkappa\widetilde{\tau}_{\delta}(k)} =𝔼(x,x)eϰτ~δ(k1)𝔼X(k)eϰτ~δ(1)\displaystyle=\mathbb{E}_{(x,x^{\prime})}\operatorname{e}^{\varkappa\widetilde{\tau}_{\delta}(k-1)}\mathbb{E}_{X(k)}\operatorname{e}^{\varkappa\widetilde{\tau}_{\delta}(1)} (2.8)
C𝔼(x,x)((V(xτ~δ(k1))+V(xτ~δ(k1)))eϰτ~δ(k1))\displaystyle\leq C\mathbb{E}_{(x,x^{\prime})}\left(\left(V(x_{\widetilde{\tau}_{\delta}(k-1)})+V(x_{\widetilde{\tau}_{\delta}(k-1)}^{\prime})\right)\operatorname{e}^{\varkappa\widetilde{\tau}_{\delta}(k-1)}\right)
2CD𝔼(x,x)eϰτ~δ(k1),\displaystyle\leq 2CD\mathbb{E}_{(x,x^{\prime})}\operatorname{e}^{\varkappa\widetilde{\tau}_{\delta}(k-1)},

where

X(k):-(xτ~δ(k1),xτ~δ(k1)).X(k)\coloneq(x_{\widetilde{\tau}_{\delta}(k-1)},x_{\widetilde{\tau}_{\delta}(k-1)}^{\prime}).

Iterating (2.8), while utilizing (2.6), we get

𝔼(x,x)eϰτ~δ(k)C0k(V(x)+V(x))\mathbb{E}_{(x,x^{\prime})}\operatorname{e}^{\varkappa\widetilde{\tau}_{\delta}(k)}\leq C_{0}^{k}(V(x)+V(x^{\prime})) (2.9)

for x,xMx,x^{\prime}\in{\rm M} and C0:-2CDC_{0}\coloneq 2CD. Given the number r(0,1)r\in(0,1) from 2.9, let us show that

(x,x){σ>τ~δ(k+1)}rk\mathbb{P}_{(x,x^{\prime})}\{\sigma>\widetilde{\tau}_{\delta}(k+1)\}\leq r^{k} (2.10)

is true for all k0k\geq 0. Indeed, the construction of the process {x~k,x~k}k\{\widetilde{x}_{k},\widetilde{x}_{k}^{\prime}\}_{k\in\mathbb{N}} implies together with (2.5) that

(x,x){x~τ~δ(k)+1x~τ~δ(k)+1}=(x,x){x~τ~δ(k)+1x~τ~δ(k)+1|x~τ~δ(k)x~τ~δ(k)}{x~τ~δ(k)x~τ~δ(k)}r(x,x){x~τ~δ(k)x~τ~δ(k)}r(x,x){x~τ~δ(k1)+1x~τ~δ(k1)+1}\mathbb{P}_{(x,x^{\prime})}\left\{\widetilde{x}_{\widetilde{\tau}_{\delta}(k)+1}\neq\widetilde{x}_{\widetilde{\tau}_{\delta}(k)+1}^{\prime}\right\}\\ \begin{aligned} &=\mathbb{P}_{(x,x^{\prime})}\left\{\widetilde{x}_{\widetilde{\tau}_{\delta}(k)+1}\neq\widetilde{x}_{\widetilde{\tau}_{\delta}(k)+1}^{\prime}|\widetilde{x}_{\widetilde{\tau}_{\delta}(k)}\neq\widetilde{x}_{\widetilde{\tau}_{\delta}(k)}^{\prime}\right\}\mathbb{P}\left\{\widetilde{x}_{\widetilde{\tau}_{\delta}(k)}\neq\widetilde{x}_{\widetilde{\tau}_{\delta}(k)}^{\prime}\right\}\\ &\leq r\,\mathbb{P}_{(x,x^{\prime})}\left\{\widetilde{x}_{\widetilde{\tau}_{\delta}(k)}\neq\widetilde{x}_{\widetilde{\tau}_{\delta}(k)}^{\prime}\right\}\\ &\leq r\,\mathbb{P}_{(x,x^{\prime})}\left\{\widetilde{x}_{\widetilde{\tau}_{\delta}(k-1)+1}\neq\widetilde{x}_{\widetilde{\tau}_{\delta}(k-1)+1}^{\prime}\right\}\end{aligned} (2.11)

for all k1k\geq 1. Iterating (2.11) yields

(x,x){x~τ~δ(k)+1x~τ~δ(k)+1}rk,k0.\mathbb{P}_{(x,x^{\prime})}\left\{\widetilde{x}_{\widetilde{\tau}_{\delta}(k)+1}\neq\widetilde{x}_{\widetilde{\tau}_{\delta}(k)+1}^{\prime}\right\}\leq r^{k},\quad k\geq 0.

After noticing that

(x,x){σ>τ~δ(k+1)}(x,x){x~τ~δ(k)+1x~τ~δ(k)+1},k0,\mathbb{P}_{(x,x^{\prime})}\left\{\sigma>\widetilde{\tau}_{\delta}(k+1)\right\}\leq\mathbb{P}_{(x,x^{\prime})}\left\{\widetilde{x}_{\widetilde{\tau}_{\delta}(k)+1}\neq\widetilde{x}_{\widetilde{\tau}_{\delta}(k)+1}^{\prime}\right\},\quad k\geq 0,

we obtain (2.10), and the Borel–Cantelli lemma subsequently provides

(x,x){σ<+}=1.\mathbb{P}_{(x,x^{\prime})}\left\{\sigma<+\infty\right\}=1.

Now, recalling that ϰ\varkappa is the number from (2.9), a large R>0R>0 and a small γ>0\gamma>0 are selected such that

C01/Rr11/R<1,Rγ<ϰ.C_{0}^{1/R}r^{1-1/R}<1,\quad R\gamma<\varkappa.

Then, by combining Hölder’s inequality with (2.9) and (2.10), one arrives at

𝔼(x,x)eγσ\displaystyle\mathbb{E}_{(x,x^{\prime})}\operatorname{e}^{\gamma\sigma} 1+k=0𝔼(x,x)(𝕀{τ~δ(k)<στ~δ(k+1)}eγσ)\displaystyle\leq 1+\sum_{k=0}^{\infty}\mathbb{E}_{(x,x^{\prime})}\left(\mathbb{I}_{\{\widetilde{\tau}_{\delta}(k)<\sigma\leq\widetilde{\tau}_{\delta}(k+1)\}}\operatorname{e}^{\gamma\sigma}\right)
1+k=0𝔼(x,x)(𝕀{τ~δ(k)<στ~δ(k+1)}eγτ~δ(k+1))\displaystyle\leq 1+\sum_{k=0}^{\infty}\mathbb{E}_{(x,x^{\prime})}\left(\mathbb{I}_{\{\widetilde{\tau}_{\delta}(k)<\sigma\leq\widetilde{\tau}_{\delta}(k+1)\}}\operatorname{e}^{\gamma\widetilde{\tau}_{\delta}(k+1)}\right)
1+k=0(x,x){σ>τ~δ(k)}11R(𝔼(x,x)eRγτ~δ(k+1))1R\displaystyle\leq 1+\sum_{k=0}^{\infty}\mathbb{P}_{(x,x^{\prime})}\left\{\sigma>\widetilde{\tau}_{\delta}(k)\right\}^{1-\frac{1}{R}}\left(\mathbb{E}_{(x,x^{\prime})}\operatorname{e}^{R\gamma\widetilde{\tau}_{\delta}(k+1)}\right)^{\frac{1}{R}}
1+C01Rr1R1(V(x)+V(x))k=0(r11RC01R)k\displaystyle\leq 1+C_{0}^{\frac{1}{R}}r^{\frac{1}{R}-1}(V(x)+V(x^{\prime}))\sum_{k=0}^{\infty}\left(r^{1-\frac{1}{R}}C_{0}^{\frac{1}{R}}\right)^{k}
C(V(x)+V(x))for x,xM.\displaystyle\leq C(V(x)+V(x^{\prime}))\quad\text{for $x,x^{\prime}\in{\rm M}$}.

2.3.3 Completion of the proof

To establish the exponential mixing estimate (2.3), it suffices to show for any k0k\geq 0 and x,xMx,x^{\prime}\in{\rm M} the estimate

𝔓kδx𝔓kδxvarCeγk(V(x)+V(x)),\|\mathfrak{P}_{k}^{*}{\delta}_{x}-\mathfrak{P}_{k}^{*}{\delta}_{x^{\prime}}\|_{\operatorname{var}}\leq C\operatorname{e}^{-\gamma k}(V(x)+V(x^{\prime})), (2.12)

where δx\delta_{x} refers to the Dirac measure concentrated at xx. In order to verify (2.12), we take any fL(M)f\in{\rm L}^{\infty}({\rm M}) with f1\|f\|_{\infty}\leq 1. As the processes {(x~k,x~k)}k\{(\widetilde{x}_{k},\widetilde{x}_{k}^{\prime})\}_{k\in\mathbb{N}} and {(xk,xk)}k\{(x_{k},x_{k}^{\prime})\}_{k\in\mathbb{N}} possess the same law, it follows that

𝔓kf(x)𝔓kf(x)=𝔼(x,x)(f(x~k)f(x~k)).\mathfrak{P}_{k}f(x)-\mathfrak{P}_{k}f(x^{\prime})=\mathbb{E}_{(x,x^{\prime})}\left(f(\widetilde{x}_{k})-f(\widetilde{x}_{k}^{\prime})\right).

The assumption that f1\|f\|_{\infty}\leq 1, the Chebyshev inequality, and 2.10 imply that

|𝔼(x,x)(f(x~k)f(x~k))|\displaystyle\left|\mathbb{E}_{(x,x^{\prime})}\left(f(\widetilde{x}_{k})-f(\widetilde{x}_{k}^{\prime})\right)\right| 𝔼(x,x)|f(x~k)f(x~k)|\displaystyle\leq\mathbb{E}_{(x,x^{\prime})}|f(\widetilde{x}_{k})-f(\widetilde{x}_{k}^{\prime})|
=𝔼(x,x)(𝕀{x~kx~k}|f(x~k)f(x~k)|)\displaystyle=\mathbb{E}_{(x,x^{\prime})}\left(\mathbb{I}_{\{\widetilde{x}_{k}\neq\widetilde{x}_{k}^{\prime}\}}|f(\widetilde{x}_{k})-f(\widetilde{x}_{k}^{\prime})|\right)
2(x,x){x~kx~k}\displaystyle\leq 2\mathbb{P}_{(x,x^{\prime})}\{\widetilde{x}_{k}\neq\widetilde{x}_{k}^{\prime}\}
2(x,x){σ>k}\displaystyle\leq 2\mathbb{P}_{(x,x^{\prime})}\{\sigma>k\}
2Ceγk(V(x)+V(x)).\displaystyle\leq 2C\operatorname{e}^{-\gamma k}\left(V(x)+V(x^{\prime})\right).

As a result, (cf. (1.5))

𝔓kδx𝔓kδxvar\displaystyle\|\mathfrak{P}_{k}^{*}\delta_{x}-\mathfrak{P}_{k}^{*}\delta_{x^{\prime}}\|_{\operatorname{var}} =12supf1|𝔓kf(x)𝔓kf(x)|\displaystyle=\frac{1}{2}\sup_{\|f\|_{\infty}\leq 1}|\mathfrak{P}_{k}f(x)-\mathfrak{P}_{k}f(x^{\prime})|
Ceγk(V(x)+V(x)),\displaystyle\leq C\operatorname{e}^{-\gamma k}(V(x)+V(x^{\prime})),

which completes the proof of 2.8.

3 Low dimensional elasto-plastic models under random forces

This section illustrates 2.8’s effectiveness; Conditions 14 from Section 2.1 are verified for a range of non-smooth elasto-plastic dynamics driven decomposable noise or by white noise. In a systematic manner, new results on the uniqueness of stationary measures and exponential mixing are concluded.

3.1 The model

Let M:-×[1,1]{\rm M}\coloneq\mathbb{R}\times[-1,1], g:{+}g\colon\mathbb{R}\longrightarrow\mathbb{R}\cup\{+\infty\} the characteristic function of the compact interval [1,1][-1,1], and suppose that the drift f:Mf\colon{\rm M}\longrightarrow\mathbb{R} and noise ζ\zeta are fixed; specific requirements are introduced below. We then consider a class of non-smooth dynamical systems having the form

y˙=f(y,z)+ζ,yz˙+g(z),(y,z)(0)=(y0,z0),\dot{y}=f(y,z)+\zeta,\quad y\in\dot{z}+\partial g(z),\quad(y,z)(0)=(y_{0},z_{0}), (3.1)

where the notation g\partial g stands for the subdifferential of gg which is defined as g(𝔷):-{ξ|y:g(𝔷)+ξ(y𝔷)g(y)}\partial g(\mathfrak{z})\coloneq\left\{\xi\in\mathbb{R}\,|\,\forall\>y\in\mathbb{R}\colon g(\mathfrak{z})+\xi(y-\mathfrak{z})\leq g(y)\right\}. Here, that is,

g(z)={0if z[1,1],+otherwise,g(z)={0if z(1,1),±if z=±1,otherwise.g(z)=\begin{cases}0&\mbox{if }z\in[-1,1],\\ +\infty&\mbox{otherwise,}\end{cases}\quad\quad\partial g(z)=\begin{cases}0&\mbox{if }z\in(-1,1),\\ \mathbb{R}_{\pm}&\mbox{if }z=\pm 1,\\ \varnothing&\mbox{otherwise.}\end{cases}
Assumption 3.1.

The mapping f:Mf\colon{\rm M}\longrightarrow\mathbb{R} is locally Lipschitz, it is smooth in a neighborhood B~MMM\widetilde{{\rm B}}_{{\rm M}}\subset{\rm M}\setminus\partial{\rm M} of some point p=(yp,zp)×(1,1)p=(y_{p},z_{p})\in\mathbb{R}\times(-1,1), and there are α,C>0\alpha,C>0 with

yf(y,z)αy2+Cyf(y,z)\leq-\alpha y^{2}+C

for all (y,z)M(y,z)\in{\rm M}.

If yp=0y_{p}=0 in 3.1, we fix T0=1T_{0}=1. Otherwise, for technical reasons (see the proof of 3.9), a reference time T0=T0(f(p))(0,1]T_{0}=T_{0}(f(p))\in(0,1] and any radius r0>0r_{0}>0 are fixed so small that solutions (y,z)(y,z) to (3.1) with ζ=0\zeta=0 satisfy

(y0,z0)BM(p,r0)t[0,T0]:(y(t),z(t))B~M.(y_{0},z_{0})\in{\rm B}_{{\rm M}}(p,r_{0})\quad\Longrightarrow\quad\forall t\in[0,T_{0}]\colon(y(t),z(t))\in\widetilde{{\rm B}}_{{\rm M}}. (3.2)

To see that this choice is possible, note that, for initial states near pp, the system (3.1) stays for a short time away from the plastic phase z=±1z=\pm 1; namely, (3.1) with initial state pp can for small times be treated as a regular ODE or integral equation.

3.2 Decomposable noise

We begin with the consideration of decomposable noise, where the process ζ\zeta satisfies the following assumption (cf. 2.7).

Assumption 3.2.

The collection {η(t)}t+\{\eta(t)\}_{t\in\mathbb{R}_{+}} forms a real-valued random process that admits a representation

ζ(t)=k=1𝕀[(k1)T0,kT0)(t)ηk(t(k1)T0),\zeta(t)=\sum_{k=1}^{\infty}\mathbb{I}_{[(k-1)T_{0},kT_{0})}(t)\eta_{k}(t-(k-1)T_{0}),

where {ηk}k\{\eta_{k}\}_{k\in\mathbb{N}} are i.i.d. random variables taking values in E:-L2((0,T0);){\rm E}\coloneq{\rm L}^{2}((0,T_{0});\mathbb{R}), obeying 𝔼η1E2<+\mathbb{E}\|\eta_{1}\|_{{\rm E}}^{2}<+\infty, and whose law \ell satisfies 4.

Owing to Assumptions 3.1 and 3.2, the initial value problem described by (3.1) is globally well-posed [21]. Given any state x0=(y0,z0)Mx_{0}=(y_{0},z_{0})\in{\rm M}, the associated solution x=(y,z)x=(y,z) to (3.1) induces a proper M{\rm M}-valued random process {x(t)}t+\{x(t)\}_{t\in\mathbb{R}_{+}} such that

{xk}k0:-{x(kT0)}k0\{x_{k}\}_{k\in\mathbb{N}_{0}}\coloneq\{x(kT_{0})\}_{k\in\mathbb{N}_{0}}

forms a Markov family {xk,x}k0\{x_{k},\mathbb{P}_{x}\}_{k\in\mathbb{N}_{0}} with the associated Markov operators 𝔓k\mathfrak{P}_{k} and 𝔓k\mathfrak{P}_{k}^{*}.

Theorem 3.3.

Under Assumptions 3.1 and 3.2, the Markov family {xk,x}k0\{x_{k},\mathbb{P}_{x}\}_{k\in\mathbb{N}_{0}} admits a unique stationary measure μ𝒫(M)\mu\in\mathcal{P}({\rm M}) which is exponentially mixing in the sense of 2.3 with the Lyapunov function

V(y,z)=1+y2,(y,z)M.V(y,z)=1+y^{2},\quad(y,z)\in{\rm M}. (3.3)
Proof.

Let S:M×EMS\colon{\rm M}\times{\rm E}\longrightarrow{\rm M}, (x0,ζ)x(T0)(x_{0},\zeta)\mapsto x(T_{0}) be the resolving operator for the system (3.1). Then, by definition,

x(kT0)=S(x((k1)T0);ηk),k1.x(kT_{0})=S(x((k-1)T_{0});\eta_{k}),\quad k\geq 1.

To check the hypotheses of 2.8, we first observe that 1 is satisfied with V:M[1,+)V\colon{\rm M}\longrightarrow[1,+\infty) from (3.3). Indeed, this function is continuous and has compact level sets. By multiplying (3.1) with its solution yy, involving 3.1, and resorting to Young’s inequality, one finds

12ddty2αy2+C+ζyα2y2+C(1+ζ2),ζE,t[0,T0].\frac{1}{2}\frac{{\rm d}}{{\rm d}t}y^{2}\leq-\alpha y^{2}+C+\zeta y\leq-\frac{\alpha}{2}y^{2}+C\left(1+\zeta^{2}\right),\quad\zeta\in{\rm E},t\in[0,T_{0}]. (3.4)

Applying Grönwall’s inequality in (3.4), taking the expectation, and utilizing the assumption that 𝔼η1E2<+\mathbb{E}\|\eta_{1}\|_{{\rm E}}^{2}<+\infty, one arrives at the inequality (2.2) with q=eαq=\operatorname{e}^{-\alpha}; in particular, this implies 1. The approximate controllability to a distinguished point pMp\in{\rm M}, namely 2, and the solid controllability in 3 are inferred from the respective Propositions 3.5 and 3.9 established below. Next, 4 is enforced via 3.2. Thus, in view of 2.8, we obtain the existence of a unique stationary measure possessing the exponential mixing property (2.3). ∎

3.3 A white noise example

In this section, exponential mixing is established for the elasto-plastic system (3.1) driven by white noise. That is, we consider the problem (3.1) with ζ=β˙\zeta=\dot{\beta}, where β\beta is a standard Brownian motion.

Given any x=x0=(y0,z0)Mx=x_{0}=(y_{0},z_{0})\in{\rm M}, let {xt,x}t0\{x_{t},\mathbb{P}_{x}\}_{t\geq 0} be the continuous-time Markov family (cf. [17, Section 1.3.3]) associated with the RDS (3.1) for ζ=β˙\zeta=\dot{\beta}; the corresponding Markov operators are then denoted as 𝔓t\mathfrak{P}_{t} and 𝔓t\mathfrak{P}_{t}^{*}. Analogously to the discrete case, a measure μ𝒫(M)\mu\in\mathcal{P}({\rm M}) is called stationary for the continuous-time Markov family (xt,x)(x_{t},\mathbb{P}_{x}) if 𝔓tμ=μ\mathfrak{P}_{t}^{*}\mu=\mu holds for any t0t\geq 0.

Theorem 3.4.

Under 3.2, the family (xt,x)(x_{t},\mathbb{P}_{x}) has a unique stationary measure μ𝒫(M)\mu\in\mathcal{P}({\rm M}), and there are positive numbers γ\gamma and CC such that

𝔓tλμvarCeγtV,λM,t0\|\mathfrak{P}_{t}^{*}\lambda-\mu\|_{\operatorname{var}}\leq C\operatorname{e}^{-\gamma t}\langle V,\lambda\rangle_{\rm M},\quad t\geq 0

for any λ𝒫(M)\lambda\in\mathcal{P}({\rm M}) with V,λM<+\langle V,\lambda\rangle_{\rm M}<+\infty, where VV denotes the Lyapunov function specified in (3.3).

Proof.

The idea is to first prove exponential mixing via 2.8 for the system restricted to integer times. Subsequently, this can be generalized to continuous-time by using the Lyapunov structure.

Step 1. Discrete-time.

Let T0>0T_{0}>0 be fixed as explained above 3.2, and take E{\rm E} as the separable Banach space C0([0,T0];){\rm C}_{0}([0,T_{0}];\mathbb{R}) of continuous functions η:[0,T0]\eta\colon[0,T_{0}]\longrightarrow\mathbb{R} with η(0)=0\eta(0)=0; further, denote by SS the mapping

S:M×EM,(x0,η)x(T0),S\colon{\rm M}\times{\rm E}\longrightarrow{\rm M},\quad(x_{0},\eta)\mapsto x(T_{0}),

where x(t):-(y(t),z(t))x(t)\coloneq(y(t),z(t)) solves (3.1) with the initial state x0=(y0,z0)x_{0}=(y_{0},z_{0}) and driving force ζ:-``η˙"\zeta\coloneq``\dot{\eta}". Then a family of i.i.d. random variables {ηk}k1\{\eta_{k}\}_{k\geq 1} is defined in E{\rm E} via

ηk(t):-β((k1)T0+t)β((k1)T0),t[0,T0].\eta_{k}(t)\coloneq\beta((k-1)T_{0}+t)-\beta((k-1)T_{0}),\quad t\in[0,T_{0}].

In particular, given any k1k\geq 1, one has for xk:-x(kT0)x_{k}\coloneq x(kT_{0}) the relation

xk=S(xk1;ηk).x_{k}=S(x_{k-1};\eta_{k}).

In order to prove exponential mixing for the discrete-time Markov family (xk,x)(x_{k},\mathbb{P}_{x}), we need to check Conditions 14.

Accounting for (3.1), 3.1, and Ito^\hat{\text{o}}’s formula, then taking the expectation, it follows that

ddt𝔼xy2=𝔼x(2f(y,z)y+1)2α𝔼xy2+2C+1.\frac{{\rm d}}{{\rm d}t}\mathbb{E}_{x}y^{2}=\mathbb{E}_{x}\left(2f(y,z)y+1\right)\leq-2\alpha\mathbb{E}_{x}y^{2}+2C+1.

An application of Grönwall’s inequality then yields

𝔼xV(x(t))qtV(x)+A,t[0,T0]\mathbb{E}_{x}V(x(t))\leq q^{t}V(x)+A,\quad t\in[0,T_{0}] (3.5)

with

q:-e2α,A:-(2C+1)/2α.q\coloneq\operatorname{e}^{-2\alpha},\quad A\coloneq(2C+1)/2\alpha.

Thus, one obtains 1 by taking t=T0t=T_{0} in (3.5). To verify 2, we apply (3.5) and integrate the obtained control with respect to time. For checking 3, one can repeat the proof of 3.9 below, followed by integrating the so-obtained control with respect to time. Moreover, due to 3.9, the compact set 𝒦E\mathcal{K}\subset{\rm E} in 3 can be fixed as any appropriate closed ball in W01,2([0,T0];){\rm W}^{1,2}_{0}([0,T_{0}];\mathbb{R}).

Finally, 4 is verified as in [22, Appendix A]. Hereto, we denote by {ϕj}j\{\phi_{j}\}_{j\in\mathbb{N}} the trigonometric basis in L2((0,T0);)L^{2}((0,T_{0});\mathbb{R}); then, we set

ej(t):-0tϕj(s)ds,t[0,T0],j1,Fj:-span{en|nj}.e_{j}(t)\coloneq\int_{0}^{t}\phi_{j}(s)\,{{\rm d}s},\quad t\in[0,T_{0}],\quad j\geq 1,\quad{\rm F}_{j}\coloneq\operatorname{span}\{e_{n}\,|\,n\leq j\}.

Since the space W01,2([0,T0];){\rm W}^{1,2}_{0}([0,T_{0}];\mathbb{R}) is dense in E{\rm E} and admits {ej}j\{e_{j}\}_{j\in\mathbb{N}} as an orthonormal basis, one can infer the property (a) in 4. Furthermore, there are independent scalar standard normal random variables {ξj}\{\xi_{j}\} with (cf. [10, Section 3.5])

β(t)=n=1ξnen(t),t[0,T0].\beta(t)=\sum_{n=1}^{\infty}\xi_{n}e_{n}(t),\quad t\in[0,T_{0}].

The independence of the sums n=1jξnen\sum_{n=1}^{j}\xi_{n}e_{n} and n=j+1ξnen\sum_{n=j+1}^{\infty}\xi_{n}e_{n} implies the representation (b) in 4. Property (c) is obvious, and property (d) follows from [22, Lemma A.1].

As a result, we conclude the existence of a unique stationary measure μ𝒫(M)\mu\in\mathcal{P}({\rm M}) associated with 𝔓T0\mathfrak{P}_{T_{0}}^{*} that obeys V,μM<+\langle V,\mu\rangle_{\rm M}<+\infty and satisfies for some fixed positive numbers γ\gamma and CC the estimate

𝔓kT0λμvarCeγkV,λM\|\mathfrak{P}_{kT_{0}}^{*}\lambda-\mu\|_{\operatorname{var}}\leq C\operatorname{e}^{-\gamma k}\langle V,\lambda\rangle_{\rm M} (3.6)

with arbitrary k0k\geq 0 and any λ𝒫(M)\lambda\in\mathcal{P}({\rm M}) that obeys V,λM<+\langle V,\lambda\rangle_{\rm M}<+\infty.

Step 2. Continuous-time.

When t>0t>0, the measure μ\mu in (3.6) is stationary for 𝔓t\mathfrak{P}_{t}^{*}, as well. Indeed, given t[0,T0]t\in[0,T_{0}], the estimate (3.5) yields

V,𝔓tνM\displaystyle\langle V,\mathfrak{P}_{t}^{*}\nu\rangle_{\rm M} qtV,νM+C\displaystyle\leq q^{t}\langle V,\nu\rangle_{\rm M}+C (3.7)
V,νM+CV,νM\displaystyle\leq\langle V,\nu\rangle_{\rm M}+C\langle V,\nu\rangle_{\rm M}
=(C+1)V,νM<+\displaystyle=(C+1)\langle V,\nu\rangle_{\rm M}<+\infty

for any ν𝒫(M)\nu\in\mathcal{P}({\rm M}) with V,νM<+\langle V,\nu\rangle_{\rm M}<+\infty, where we used that V1V\geq 1 in the second line. Thus, we can write t=kT0+st=kT_{0}+s, where k0k\geq 0 is an integer and s[0,T0)s\in[0,T_{0}), followed by employing (3.7) in order to conclude that V,𝔓sμM<+\langle V,\mathfrak{P}_{s}^{*}\mu\rangle_{\rm M}<+\infty. Using (3.6) with λ=𝔓sμ\lambda=\mathfrak{P}_{s}^{*}\mu, one can infer 𝔓sμ=μ\mathfrak{P}_{s}^{*}\mu=\mu, which implies 𝔓tμ=μ\mathfrak{P}_{t}^{*}\mu=\mu for arbitrary t0t\geq 0.

Finally, by decomposing again t=kT0+st=kT_{0}+s, then taking any ν𝒫(M)\nu\in\mathcal{P}({\rm M}) such that V,νM<+\langle V,\nu\rangle_{\rm M}<+\infty, applying (3.6) with λ:-𝔓sν\lambda\coloneq\mathfrak{P}_{s}^{*}\nu, and utilizing the estimate (3.7), one arrives at

𝔓tνμvar\displaystyle\|\mathfrak{P}_{t}^{*}\nu-\mu\|_{\operatorname{var}} =𝔓kT0(𝔓sν)μvar\displaystyle=\|\mathfrak{P}_{kT_{0}}^{*}(\mathfrak{P}_{s}^{*}\nu)-\mu\|_{\operatorname{var}}
CeγkV,𝔓sνM\displaystyle\leq C\operatorname{e}^{-\gamma k}\langle V,\mathfrak{P}_{s}^{*}\nu\rangle_{\rm M}
(C+1)eγtV,νM<+\displaystyle\leq(C+1)\operatorname{e}^{-\gamma t}\langle V,\nu\rangle_{\rm M}<+\infty

for all t0t\geq 0. ∎

3.4 Controllability of deterministic elasto-plasticity

In this section, several controllability properties of deterministic dynamical systems associated with (3.1) are collected. We begin with showing the exact controllability of (3.1) in arbitrary time T>0T>0 to any target state xT×(0,1)x_{T}\in\mathbb{R}_{*}\times(0,1). The resolving operator at time t>0t>0 for the system (3.1) with control ζ=u\zeta=u is now denoted by

St=(Sty,Stz):M×L2((0,t);)M,(x0,u)x(t)=(y,z)(t).\displaystyle S_{t}=(S_{t}^{y},S_{t}^{z})\colon{\rm M}\times{\rm L}^{2}((0,t);\mathbb{R})\longrightarrow{\rm M},\quad(x_{0},u)\mapsto x(t)=(y,z)(t).
Proposition 3.5.

Given any control time T>0T>0, initial data x0=(y0,z0)Mx_{0}=(y_{0},z_{0})\in{\rm M}, and target state xT=(yT,zT)×(1,1)x_{T}=(y_{T},z_{T})\in\mathbb{R}_{*}\times(-1,1), there exists a control uC([0,T];)u\in{\rm C}([0,T];\mathbb{R}) such that ST(x0,u)=xTS_{T}(x_{0},u)=x_{T}.

Proof.

The desired control is obtained by gluing together the below-described building blocks in a continuous way (cf. 3.6). To simplify the presentation, but without loss of generality, it is assumed that yT<0y_{T}<0; when yT>0y_{T}>0, analogous constructions can be employed.

Case 1. y0=0,z0(1,1)y_{0}=0,z_{0}\in(-1,1).

For any u¯\overline{u}\in\mathbb{R} with f(x0)+u¯>0f(x_{0})+\overline{u}>0, there exists ε0>0\varepsilon_{0}>0 so that Sεy(x0;u¯)>0S^{y}_{\varepsilon}(x_{0};\overline{u})>0 and |Sεz(x0;u¯)|<1|S^{z}_{\varepsilon}(x_{0};\overline{u})|<1 for all ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}).

Case 2. y0>0,z0[1,1)y_{0}>0,z_{0}\in[-1,1).

There exists ε0>0\varepsilon_{0}>0 such that for any ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}) there is a control u~C([0,ε];)\widetilde{u}\in{\rm C}([0,\varepsilon];\mathbb{R}) with

Sεy(x0;u~)>0,Sεz(x0;u~)=1,|Stz(x0;u~)|1,t[0,ε].\begin{gathered}S^{y}_{\varepsilon}(x_{0};\widetilde{u})>0,\quad S^{z}_{\varepsilon}(x_{0};\widetilde{u})=1,\quad|S^{z}_{t}(x_{0};\widetilde{u})|\leq 1,\quad t\in[0,\varepsilon].\end{gathered}

Indeed, a desired controlled trajectory (y,z)(t)=St(x0;u~)(y,z)(t)=S_{t}(x_{0};\widetilde{u}) is given by

y(t):-ta+y0,z(t):-t2a2+y0t+z0,u~(t):-af(y(t),z(t)),y(t)\coloneq ta+y_{0},\quad z(t)\coloneq\frac{t^{2}a}{2}+y_{0}t+z_{0},\quad\widetilde{u}(t)\coloneq a-f(y(t),z(t)),

where

a:-2(1z0y0ε)ε2,0<ε<ε0:-1z0y0.a\coloneq\frac{2(1-z_{0}-y_{0}\varepsilon)}{\varepsilon^{2}},\quad 0<\varepsilon<\varepsilon_{0}\coloneq\frac{1-z_{0}}{y_{0}}.
Case 3. y00,z0=1y_{0}\geq 0,z_{0}=1.

For any T~>0\widetilde{T}>0, there exists a control u~C([0,T~];)\widetilde{u}\in{\rm C}([0,\widetilde{T}];\mathbb{R}) with ST~(x0;u~)=(0,1)S_{\widetilde{T}}(x_{0};\widetilde{u})=(0,1). This can be seen by defining

y(t):-y0tT~+y0,z(t):-1,u~(t):-y0T~f(y(t),z(t)).y(t)\coloneq-\frac{y_{0}t}{\widetilde{T}}+y_{0},\quad z(t)\coloneq 1,\quad\widetilde{u}(t)\coloneq-\frac{y_{0}}{\widetilde{T}}-f(y(t),z(t)).
Case 4. x0=(0,1)x_{0}=(0,-1).

Let u¯\overline{u}\in\mathbb{R} with f(x0)+u¯>0f(x_{0})+\overline{u}>0, and select ε>0\varepsilon>0 so small that Sεy(x0;u¯)>0S^{y}_{\varepsilon}(x_{0};\overline{u})>0. Together with the analysis of Case 3, for T~>0\widetilde{T}>0, this provides a control u~C([0,T~];)\widetilde{u}\in{\rm C}([0,\widetilde{T}];\mathbb{R}) such that ST~(x0;u~)=(0,1)S_{\widetilde{T}}(x_{0};\widetilde{u})=(0,1).

Case 5. y00,z0[1,1]y_{0}\neq 0,z_{0}\in[-1,1].

For T~>0\widetilde{T}>0, the previous cases (and similar arguments when y0<0y_{0}<0) lead to a control u~C([0,T~];)\widetilde{u}\in{\rm C}([0,\widetilde{T}];\mathbb{R}) such that ST~(x0;u~)=(0,1)S_{\widetilde{T}}(x_{0};\widetilde{u})=(0,1).

Case 6. x0=(0,1)x_{0}=(0,1).

Given any T~>0\widetilde{T}>0, take a monotonic φC([0,T~];)\varphi\in{\rm C}^{\infty}([0,\widetilde{T}];\mathbb{R}_{-}) with

φ(t)=0t=0,φ(T~)=yT,0T~φ(s)ds=zT1.\displaystyle\varphi(t)=0\iff t=0,\quad\varphi(\widetilde{T})=y_{T},\quad\int_{0}^{\widetilde{T}}\varphi(s){{\rm d}s}=z_{T}-1.

Then, to achieve (y,z)(t)=St(x0;u~)(y,z)(t)=S_{t}(x_{0};\widetilde{u}) for t[0,T~]t\in[0,\widetilde{T}] and ST~(x0;u~)=xTS_{\widetilde{T}}(x_{0};\widetilde{u})=x_{T}, we choose

y(t):-φ(t),z(t):-0tφ(s)ds+1,u~(t):-y˙(t)f(y(t),z(t)).y(t)\coloneq\varphi(t),\quad z(t)\coloneq\int_{0}^{t}\varphi(s){{\rm d}s}+1,\quad\widetilde{u}(t)\coloneq\dot{y}(t)-f(y(t),z(t)).

yyzzx0x_{0}xTx_{T}z=1z=1z=1z=-1
Figure 1: A schematic sketch of a controlled trajectory x=(y,z)x=(y,z). An initial state x0x_{0} which is, for instance, situated in the second quadrant of the yzyz-plane, is connected with a prescribed target state xTx_{T} lying northwest of x0x_{0} (cf. 3.6). The reachable set in the plastic phase is indicated by the shaded parts of the lines z=±1z=\pm 1. Red arrows emphasize the orientation of t(y,z)(t)t\mapsto(y,z)(t).
Example 3.6.

To illustrate the gluing argument implicitly used in the proof of 3.5, let y0<0y_{0}<0, z0(1,1]z_{0}\in(-1,1], yT<y0y_{T}<y_{0}, and zT(z0,1)z_{T}\in(z_{0},1). First, in order to connect x0=(y0,z0)x_{0}=(y_{0},z_{0}) with the line {z=1}\{z=-1\}, one can choose a sufficiently small number ε0>0\varepsilon_{0}>0 and replace (y,z,u~,a)(y,z,\widetilde{u},a) in Case 2 by

y1(t):-y0ta,z1(t):-t2a2+y0t+z0,u1(t):-af(y(t),z(t)),y_{1}(t)\coloneq y_{0}-ta,\quad z_{1}(t)\coloneq-\frac{t^{2}a}{2}+y_{0}t+z_{0},\quad u_{1}(t)\coloneq a-f(y(t),z(t)),

where a=a(ε)>0a=a(\varepsilon)>0 is for ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}) fixed via

a:-2(1+z0+y0ε)ε2.a\coloneq\frac{2(1+z_{0}+y_{0}\varepsilon)}{\varepsilon^{2}}.

Next, we denote a control similar to that from Case 4 with T~:-T/2\widetilde{T}\coloneq T/2 as u2u_{2}, the control given by Case 6 for T~=T/2ε\widetilde{T}=T/2-\varepsilon as u3u_{3}, and eventually define (cf. Figure 1)

u(t):-{u1(t) if t[0,ε],u2(t) if t(ε,T/2+ε],u3(t) if t(T/2+ε,T].u(t)\coloneq\begin{cases}u_{1}(t)&\mbox{ if }t\in[0,\varepsilon],\\ u_{2}(t)&\mbox{ if }t\in(\varepsilon,T/2+\varepsilon],\\ u_{3}(t)&\mbox{ if }t\in(T/2+\varepsilon,T].\end{cases}

The solid controllability of (3.1), as stated in 3, shall be demonstrated next. However, let us first recall a version of an auxiliary lemma which has been established in [25, Proof of Theorem 2.1, Step 1].

Lemma 3.7.

Let X{\rm X} denote a compact metric space and Y{\rm Y} be a separable Banach space. Moreover, assume the existence of

  • two balls GY{\rm G}\subset{\rm Y} and FX\varnothing\neq{\rm F}\subset{\rm X},

  • two functions HC(G;X)H\in{\rm C}({\rm G};{\rm X}) and hC(F;G)h\in{\rm C}({\rm F};{\rm G}) satisfying H(h(x))=xH(h(x))=x for all xFx\in{\rm F}.

There are a number ε>0\varepsilon>0, a nonempty ball BX{\rm B}\subset{\rm X}, and a compact set 𝒦G\mathcal{K}\subset{\rm G} such that for each function ΦC(𝒦;X)\Phi\in{\rm C}(\mathcal{K};{\rm X}) that obeys the inequality

supζ𝒦dX(Φ(ζ),H(ζ))ε\sup_{\zeta\in\mathcal{K}}d_{X}(\Phi(\zeta),H(\zeta))\leq\varepsilon

one has the inclusion BΦ(𝒦){\rm B}\subset\Phi(\mathcal{K}).

Remark 3.8.

The mapping HH in 3.7 shall play the role of ST0(x0,)S_{T_{0}}(x_{0},\cdot), while the continuous function hh produces a suitable control for each admissible target state. In other words, the “continuous exact controllability” of HH implies its “solid controllability”. Thus, verifying 3 essentially reduces to checking the hypotheses of 3.7.

Recall that pp is the point from 3.1, while T0(0,1]T_{0}\in(0,1] denotes the corresponding reference time fixed in Section 3.1. In particular, if p{0}×(1,1)p\in\{0\}\times(-1,1), then T0=1T_{0}=1.

Proposition 3.9.

The resolving operator at t=T0t=T_{0} of (3.1) with control ζ=u\zeta=u, namely

S=ST0:M×EM,(x0,u)x(T0)=(y,z)(T0),\displaystyle S=S_{T_{0}}\colon{\rm M}\times{\rm E}\longrightarrow{\rm M},\quad(x_{0},u)\mapsto x(T_{0})=(y,z)(T_{0}),

satisfies 3.

Proof.

Due to 3.1, there exists an open neighborhood B~MMM\widetilde{{\rm B}}_{{\rm M}}\subset{\rm M}\setminus\partial{\rm M} of a point pMp\in{\rm M} for which the mapping f:B~Mf\colon\widetilde{{\rm B}}_{{\rm M}}\longrightarrow\mathbb{R} in (3.1) is smooth.

Step 1. Regularity.

Due to the choice of T0T_{0} at the beginning of Section 3.2 (see in particular (3.2) if yp0y_{p}\neq 0), one can take δ0>0\delta_{0}>0 so small that

  • BM(p,δ)B~M{\rm B}_{{\rm M}}(p,\delta)\subset\widetilde{{\rm B}}_{{\rm M}},

  • the restriction of S=ST0S=S_{T_{0}} to the set BM(p,δ)×BE(0,δ){\rm B}_{{\rm M}}(p,\delta)\times{\rm B}_{{\rm E}}(0,\delta) constitutes a smooth mapping BM(p,δ)×BE(0,δ)B~M{\rm B}_{{\rm M}}(p,\delta)\times{\rm B}_{{\rm E}}(0,\delta)\longrightarrow\widetilde{{\rm B}}_{{\rm M}}

for any δ(0,δ0]\delta\in(0,\delta_{0}]. From now on, such a number δ(0,δ0]\delta\in(0,\delta_{0}] is fixed.

Step 2. Solid controllability.

The property (ii) of 3 will follow from an application of 3.7 with H=S(p;)H=S(p;\cdot). Hereto, given any element uBE(0,δ)u\in{\rm B}_{{\rm E}}(0,\delta), we denote by

(y(t),z(t))=St(p;u)(y(t),z(t))=S_{t}(p;u)

the solution at time t[0,T0]t\in[0,T_{0}] of the initial value problem

y˙=f(y,z)+u,z˙=y,(y,z)(0)=p.\dot{y}=f(y,z)+u,\quad\dot{z}=y,\quad(y,z)(0)=p. (3.8)

To establish the existence of a continuous state-to-control mapping, we fix any reference point u¯BE(0,δ)\overline{u}\in{\rm B}_{{\rm E}}(0,\delta) and then linearize (3.8) about the trajectory

(y¯,z¯)(t)=St(p;u¯).(\overline{y},\overline{z})(t)=S_{t}(p;\overline{u}).

More precisely, given any control VEV\in{\rm E}, we consider for t[0,T0]t\in[0,T_{0}] the linear problem with vanishing initial states

Y˙=yf(y¯,z¯)Y+zf(y¯,z¯)Z+V,Z˙=Y,(Y,Z)(0)=(0,0),\dot{Y}=\partial_{y}f(\overline{y},\overline{z})Y+\partial_{z}f(\overline{y},\overline{z})Z+V,\quad\dot{Z}=Y,\quad(Y,Z)(0)=(0,0), (3.9)

and denote by {t}t[0,T0]\{\mathscr{R}_{t}\}_{t\in[0,T_{0}]} the associated resolving family. This means that, given any t[0,T0]t\in[0,T_{0}], the linear operator t\mathscr{R}_{t} maps each VEV\in{\rm E} to (Y,Z)(t)(Y,Z)(t), where (Y,Z)(Y,Z) solves (3.9) with (Y,Z)(0)=(0,0)(Y,Z)(0)=(0,0). In symbols,

t(y¯,z¯):E2,V(Y,Z)(t).\mathscr{R}_{t}(\overline{y},\overline{z})\colon{\rm E}\longrightarrow\mathbb{R}^{2},\quad V\mapsto(Y,Z)(t).

In particular, one can show that the map

T0(y¯,z¯):E2\mathscr{R}_{T_{0}}(\overline{y},\overline{z})\colon{\rm E}\longrightarrow\mathbb{R}^{2}

is onto. To see this, we take any target state (Y1,Z1)2(Y_{1},Z_{1})\in\mathbb{R}^{2} and choose a smooth function φ:[0,T0]\varphi\colon[0,T_{0}]\longrightarrow\mathbb{R} with

φ(0)=0,φ(T0)=Y1,0T0φ(s)ds=Z1.\varphi(0)=0,\quad\varphi(T_{0})=Y_{1},\quad\int_{0}^{T_{0}}\varphi(s)\,{{\rm d}s}=Z_{1}.

Then, owing to the well-posedness of (3.9), the profiles

Y(t):-φ(t),Z(t):-0tφ(s)dsY(t)\coloneq\varphi(t),\quad Z(t)\coloneq\int_{0}^{t}\varphi(s)\,{{\rm d}s}

and control

V(t):-Y˙(t)yf(y¯(t),z¯(t))Y(t)zf(y¯(t),z¯(t))Z(t)V(t)\coloneq\dot{Y}(t)-\partial_{y}f(\overline{y}(t),\overline{z}(t))Y(t)-\partial_{z}f(\overline{y}(t),\overline{z}(t))Z(t) (3.10)

satisfy

(Y(t),Z(t))=t(y¯,z¯)V,(Y(T0),Z(T0))=(Y1,Z1),t[0,T0].(Y(t),Z(t))=\mathscr{R}_{t}(\overline{y},\overline{z})V,\quad(Y(T_{0}),Z(T_{0}))=(Y_{1},Z_{1}),\quad t\in[0,T_{0}].

Moreover, the inverse function theorem (cf. [12, Part 2, Section 3.1.1]) provides a closed ball FMM{\rm F}\subset{\rm M}\setminus\partial{\rm M} and a continuous mapping s:FBE(0,δ)s\colon{\rm F}\longrightarrow{\rm B}_{{\rm E}}(0,\delta) such that

S(p;s(x))=x,xF.S(p;s(x))=x,\quad x\in{\rm F}.

Finally, that 3 is verified can be seen by an application of 3.7 with G=BE(0,δ){\rm G}={\rm B}_{{\rm E}}(0,\delta), H()=S(p;)H(\cdot)=S(p;\cdot), and h=sh=s. ∎

Appendix A Exponential recurrence

In what follows, we suppose that the map SS in (2.1) satisfies Conditions 1 and 2; the notations from these conditions are employed below. Let \ell be the law of η1\eta_{1} from Section 2.1, and, given any δ>0\delta>0, denote the first hitting time of BM(p,δ){\rm B}_{\rm M}(p,\delta) as

τ(p,δ):-τδ:-min{k1|xkBM(p,δ)},\tau(p,\delta)\coloneq\tau_{\delta}\coloneq\min\left\{k\geq 1\,|\,x_{k}\in{\rm B}_{\rm M}(p,\delta)\right\},

where min=+\min\varnothing=+\infty by convention.

Lemma A.1.

Assuming that supp=E\operatorname{supp}\ell={\rm E}, one has x{τδ<+}=1\mathbb{P}_{x}\{\tau_{\delta}<+\infty\}=1. Moreover, there are numbers ϰ>0\varkappa>0 and C>0C>0 such that

𝔼xeϰτδCV(x)\mathbb{E}_{x}\operatorname{e}^{\varkappa\tau_{\delta}}\leq CV(x)

for all xMx\in{\rm M}.

Proof.

Given any R>0R>0, we denote the set KR:-{xM|V(x)R}{\rm K}_{R}\coloneq\{x\in{\rm M}\,\,|\,\,V(x)\leq R\}, which is compact due to 1, and consider its first hitting time

TR:-min{k1|xkKR}.T_{R}\coloneq\min\{k\geq 1\,\,|\,\,x_{k}\in{\rm K}_{R}\}.

Then, by literally repeating the stopping times argument from [17, Section 3.3.2], the proof of A.1 reduces to showing the following two properties.

  • (α\alpha)

    There are R,ϰ1,C>0R,\varkappa_{1},C>0 such that 𝔼xeϰ1TRCV(x)\mathbb{E}_{x}\operatorname{e}^{\varkappa_{1}T_{R}}\leq CV(x) for all xMx\in{\rm M}.

  • (β\beta)

    There exist nn\in\mathbb{N} and r(0,1)r\in(0,1) with x{xnBM(p,δ)}r\mathbb{P}_{x}\{x_{n}\in{\rm B}_{\rm M}(p,{\delta})\}\geq r for all xKRx\in{\rm K}_{R}.

Step 1. Verification of (α\alpha).

Thanks to the Lyapunov type inequality (2.2) ensured by 1, it follows that

𝔼xV(xj)q𝔼xV(xj1)+A,j1\mathbb{E}_{x}V(x_{j})\leq q\mathbb{E}_{x}V(x_{j-1})+A,\quad j\geq 1 (A.1)

for some q(0,1)q\in(0,1) and A>0A>0. Let us choose any γ(1,1/q)\gamma\in(1,1/q), multiply (A.1) by γj\gamma^{j}, and sum up the resulting inequalities for j=1,,kj=1,\ldots,k; this yields

j=1kγj𝔼xV(xj)qγj=0k1γj𝔼xV(xj)+Aj=1kγj,k1.\sum_{j=1}^{k}\gamma^{j}\mathbb{E}_{x}V(x_{j})\leq q\gamma\sum_{j=0}^{k-1}\gamma^{j}\mathbb{E}_{x}V(x_{j})+A\sum_{j=1}^{k}\gamma^{j},\quad k\geq 1. (A.2)

Using the fact that V1V\geq 1, the inequality (A.2) can be rewritten as

𝔼xj=1kγj((1qγ)V(xj)A)qγV(x),k1.\mathbb{E}_{x}\sum_{j=1}^{k}\gamma^{j}\left((1-q\gamma)V(x_{j})-A\right)\leq q\gamma V(x),\quad k\geq 1. (A.3)

By choosing R>A/(1qγ)R>A/(1-q\gamma), resorting to the Chebyshev inequality, and using the estimate in (A.3), one then obtains for any k1k\geq 1 that

x{TR>k}\displaystyle\mathbb{P}_{x}\{T_{R}>k\} x{V(xj)>R,j=1,,k}\displaystyle\leq\mathbb{P}_{x}\{V(x_{j})>R,\,\,j=1,\ldots,k\} (A.4)
q(γ1)V(x)((1qγ)RA)(γk1)\displaystyle\leq\frac{q(\gamma-1)V(x)}{((1-q\gamma)R-A)(\gamma^{k}-1)}
CγkV(x).\displaystyle\leq C\gamma^{-k}V(x).

Thus, resorting to the Borel–Cantelli lemma, one finds that x{TR<+}=1\mathbb{P}_{x}\{T_{R}<+\infty\}=1 for all xMx\in{\rm M}. Furthermore, from (A.4) it can be derived that

𝔼xeϰ1TR\displaystyle\mathbb{E}_{x}\operatorname{e}^{\varkappa_{1}T_{R}} 1+eϰ1+k=1𝔼x{eϰ1TR𝕀{k<TRk+1}}\displaystyle\leq 1+\operatorname{e}^{\varkappa_{1}}+\sum_{k=1}^{\infty}\mathbb{E}_{x}\left\{\operatorname{e}^{\varkappa_{1}T_{R}}\mathbb{I}_{\{k<T_{R}\leq k+1\}}\right\}
1+eϰ1+k=1eϰ1(k+1)x{TR>k}\displaystyle\leq 1+\operatorname{e}^{\varkappa_{1}}+\sum_{k=1}^{\infty}\operatorname{e}^{\varkappa_{1}(k+1)}\mathbb{P}_{x}\left\{T_{R}>k\right\}
1+eϰ1+CV(x)k=1eϰ1(k+1)γk.\displaystyle\leq 1+\operatorname{e}^{\varkappa_{1}}+CV(x)\sum_{k=1}^{\infty}\operatorname{e}^{\varkappa_{1}(k+1)}\gamma^{-k}.

Therefore, by taking ϰ1<logγ\varkappa_{1}<\log\gamma, we arrive at the desired inequality.

Step 2. Verification of (β\beta).

Let us fix R>0R^{\prime}>0 so large that KRBM(p,R){\rm K}_{R}\subset{\rm B}_{\rm M}(p,R^{\prime}). Then, by 2, there exist n=n(R,δ)n=n(R^{\prime},\delta)\in\mathbb{N} and vectors ζ1,,ζnE\zeta_{1},\dots,\zeta_{n}\in{\rm E} such that

Sn(x;ζ1,,ζn)BM(p,δ)S_{n}(x;\zeta_{1},\ldots,\zeta_{n})\in{\rm B}_{\rm M}(p,\delta) (A.5)

holds for all xBM(p,R)x\in{\rm B}_{\rm M}(p,R^{\prime}). Furthermore, recalling that η1,,ηn\eta_{1},\ldots,\eta_{n} are i.i.d, and their law obeys supp=E\operatorname{supp}\ell={\rm E} by assumption, one has

rε\displaystyle r_{\varepsilon} :-{η1BE(ζ1,ε),,ηnBE(ζn,ε)}\displaystyle\coloneq\mathbb{P}\{\eta_{1}\in{\rm B}_{\rm E}(\zeta_{1},\varepsilon),\ldots,\eta_{n}\in{\rm B}_{\rm E}(\zeta_{n},\varepsilon)\} (A.6)
=j=1n{ηjBE(ζj,ε)}>0\displaystyle\,\,=\prod_{j=1}^{n}\mathbb{P}\left\{\eta_{j}\in{\rm B}_{\rm E}(\zeta_{j},\varepsilon)\right\}>0

for arbitrary ε>0\varepsilon>0. Therefore, since the mapping Sn:M×EnMS_{n}\colon{\rm M}\times{\rm E}^{n}\longrightarrow{\rm M} is continuous, one can conclude with the help of (A.5) and (A.6) the estimate

y{xnBM(p,δ)}rε\mathbb{P}_{y}\{x_{n}\in{\rm B}_{\rm M}(p,\delta)\}\geq r_{\varepsilon}

for all yBM(x,ε)y\in{\rm B}_{\rm M}(x,\varepsilon) and a sufficiently small choice of ε>0\varepsilon>0. The property (β\beta) is then deduced from the compactness of KR{\rm K}_{R}. ∎

Similar exponential recurrence property holds for the coupling process {(x~k,x~k)}\{(\widetilde{x}_{k},\widetilde{x}_{k}^{\prime})\} constructed in Section 2.3.2.

Lemma A.2.

Under the conditions of 2.8, given any δ>0\delta>0 and the hitting time

τ~δ:-min{k1|x~k,x~kBM(p,δ)},\widetilde{\tau}_{\delta}\coloneq\min\{k\geq 1\,|\,\widetilde{x}_{k},\widetilde{x}_{k}^{\prime}\in{\rm B}_{\rm M}(p,\delta)\},

there are constants ϰ>0\varkappa>0 and C>0C>0 such that

𝔼(x,x)eϰτ~δC(V(x)+V(x))\mathbb{E}_{(x,x^{\prime})}\operatorname{e}^{\varkappa\widetilde{\tau}_{\delta}}\leq C(V(x)+V(x^{\prime}))

for all x,xMx,x^{\prime}\in{\rm M}.

Sketch of the proof.

The proof repeats the arguments of the previous lemma in the case of the process {(x~k,x~k)}k\{(\widetilde{x}_{k},\widetilde{x}_{k})\}_{k\in\mathbb{N}}. For any R>0R>0, let

KR:-{(x,x)M×M|V(x)+V(x)R},{\rm K}_{R}\coloneq\{(x,x^{\prime})\in{\rm M}\times{\rm M}\,\,|\,\,V(x)+V(x^{\prime})\leq R\},

and consider the first hitting time

TR:-min{k1|(x~k,x~k)KR}.T_{R}\coloneq\min\{k\geq 1\,\,|\,\,(\widetilde{x}_{k},\widetilde{x}_{k}^{\prime})\in{\rm K}_{R}\}.

The result will be proved if the following properties are established:

  • (α~\widetilde{\alpha})

    there are R,ϰ1,C>0R,\varkappa_{1},C>0 such that 𝔼(x,x)eϰ1TRC(V(x)+V(x))\mathbb{E}_{(x,x^{\prime})}\operatorname{e}^{\varkappa_{1}T_{R}}\leq C(V(x)+V(x^{\prime})) for all x,xMx,x^{\prime}\in{\rm M};

  • (β~\widetilde{\beta})

    there exist nn\in\mathbb{N} and r(0,1)r\in(0,1) with (x,x){x~n,x~nBM(p,δ)}r\mathbb{P}_{(x,x^{\prime})}\{\widetilde{x}_{n},\widetilde{x}_{n}\in{\rm B}_{\rm M}(p,{\delta})\}\geq r for all (x,x)KR(x,x^{\prime})\in{\rm K}_{R}.

Property (α~\widetilde{\alpha}) is checked by repeating the arguments in Step 1 of A.1’s proof, using that V(x)+V(x)V(x)+V(x^{\prime}) is a Lyapunov function for the process {(x~k,x~k)}k\{(\widetilde{x}_{k},\widetilde{x}_{k}^{\prime})\}_{k\in\mathbb{N}}. Condition 4 garantees that supp=E\operatorname{supp}\ell={\rm E}. Then property (β~\widetilde{\beta}) is obtained as in Step 2 of A.1, using the construction of {(x~k,x~k)}k\{(\widetilde{x}_{k},\widetilde{x}_{k}^{\prime})\}_{k\in\mathbb{N}}. ∎

Appendix B Measure transformation theorem

Given a compact metric space X{\rm X}, a separable Banach space E{\rm E}, and a smooth Riemannian manifold M{\rm M} as in Section 2.1, let

F:X×EM,(x,η)F(x,η)F\colon{\rm X}\times{\rm E}\longrightarrow{\rm M},\quad(x,\eta)\mapsto F(x,\eta)

be a continuous mapping. The following theorem is a consequence of Theorem 2.4 in [24]; see also [11, Chapter 10] for related results.

Theorem B.1.

Let pXp\in{\rm X}, ζE\zeta\in{\rm E}, and δ>0\delta>0 be chosen such that the following conditions are satisfied.

  1. 1.

    F(p,ζ)MMF(p,\zeta)\in{\rm M}\setminus\partial{\rm M},

  2. 2.

    F(x,):BE(ζ,δ)MF(x,\,\cdot\,)\colon{{\rm B}}_{\rm E}(\zeta,\delta)\longrightarrow{\rm M} is Fréchet differentiable for any xBX(p,δ)x\in{{\rm B}}_{\rm X}(p,\delta),

  3. 3.

    DηFD_{\eta}F is continuous on BX(p,δ)×BE(ζ,δ){{\rm B}}_{\rm X}(p,\delta)\times{{\rm B}}_{\rm E}(\zeta,\delta),

  4. 4.

    the image of the linear mapping (DηF)(p,ζ)(D_{\eta}F)(p,\zeta) has full rank,

  5. 5.

    𝒫(E)\ell\in\mathcal{P}({\rm E}) is a measure obeying the properties in 4.

Then there is a number δ^>0\widehat{\delta}>0 and a continuous function ψ:BX(p,δ^)×M+\psi\colon{\rm B}_{\rm X}(p,\widehat{\delta})\times{\rm M}\longrightarrow\mathbb{R}_{+} satisfying for xBX(p,δ^)x\in{\rm B}_{\rm X}(p,\widehat{\delta}) the relations

ψ(p,F(p,ζ))>0,(F(x,))(dy)ψ(x,y)volM(dy),\psi(p,F(p,\zeta))>0,\quad\left(F(x,\,\cdot\,)_{*}\ell\right)({{\rm d}y})\geq\psi(x,y)\,\operatorname{vol}_{\rm M}({{\rm d}y}),

where volM()\operatorname{vol}_{\rm M}(\,\cdot\,) denotes the Riemannian measure on M{\rm M} and F(x,)F(x,\,\cdot\,)_{*}\ell stands for the image of \ell under the mapping ηF(x,η)\eta\mapsto F(x,\eta).

Acknowledgements

L.M. is thankful for support through NSFC Grant No. 12271364 and GRF Grant No. 11302823.

References

  • [1] A. Agrachev, S. Kuksin, A. Sarychev, and A. Shirikyan. On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations. Ann. Inst. H. Poincaré Probab. Statist., 43(4):399–415, 2007.
  • [2] A. Agrachev and A. Sarychev. Navier–Stokes equations: controllability by means of low modes forcing. J. Math. Fluid Mech., 7(1):108–152, 2005.
  • [3] L. Arnold and W. Kliemann. On unique ergodicity for degenerate diffusions. Stochastics, 21(1):41–61, 1987.
  • [4] A. Bensoussan and L. Mertz. An analytic approach to the ergodic theory of a stochastic variational inequality. C. R. Math. Acad. Sci. Paris, 350(7-8):365–370, 2012.
  • [5] A. Bensoussan, L. Mertz, O. Pironneau, and J. Turi. An ultra weak finite element method as an alternative to a Monte Carlo method for an elasto-plastic problem with noise. SIAM J. Numer. Anal., 47(5):3374–3396, 2009.
  • [6] A. Bensoussan, L. Mertz, and S. C. P. Yam. Long cycle behavior of the plastic deformation of an elasto-perfectly-plastic oscillator with noise. C. R. Math. Acad. Sci. Paris, 350(17-18):853–859, 2012.
  • [7] A. Bensoussan and J. Turi. Stochastic variational inequalities for elasto-plastic oscillators. C. R. Math. Acad. Sci. Paris, 343(6):399–406, 2006.
  • [8] A. Bensoussan and J. Turi. Degenerate Dirichlet problems related to the invariant measure of elasto-plastic oscillators. Appl. Math. Optim., 58(1):1–27, 2008.
  • [9] A. Bensoussan and J. Turi. On a class of partial differential equations with nonlocal Dirichlet boundary conditions. In Applied and numerical partial differential equations, volume 15 of Comput. Methods Appl. Sci., pages 9–23. Springer, New York, 2010.
  • [10] V. I. Bogachev. Gaussian measures, volume 62 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1998.
  • [11] V. I. Bogachev. Differentiable measures and the Malliavin calculus, volume 164 of Mathematical Surveys and Monographs. American Mathematical Society, 2010.
  • [12] J.-M. Coron. Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2007.
  • [13] G. Da Prato and J. Zabczyk. Ergodicity for infinite-dimensional systems, volume 229 of London Mathematical Society Lecture Note Series. Cambridge University Press, 1996.
  • [14] D. Karnopp and T. D. Scharton. Plastic deformation in random vibration. The Journal of the Acoustical Society of America, 39:1154–1161, 1966.
  • [15] R. Z. Khasminskiĭ. Stochastic stability of differential equations, volume 7 of Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics and Analysis. Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980. Translated from the Russian by D. Louvish.
  • [16] S. Kuksin, V. Nersesyan, and A. Shirikyan. Exponential mixing for a class of dissipative PDEs with bounded degenerate noise. Geom. Funct. Anal., 30(1):126–187, 2020.
  • [17] S. Kuksin and A. Shirikyan. Mathematics of two-dimensional turbulence, volume 194 of Cambridge Tracts in Mathematics. Cambridge University Press, 2012.
  • [18] L. Mertz and C. Feau. An empirical study on plastic deformations of an elasto-plastic problem with noise. Probabilistic Engineering Mechanics, 30:60–69, 2012.
  • [19] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Springer-Verlag London, Ltd., London, 1993.
  • [20] V. Nersesyan and R. Raquépas. Exponential mixing under controllability conditions for SDEs driven by a degenerate Poisson noise. Stochastic Process. Appl., 138:26–55, 2021.
  • [21] E. Pardoux and A. Răşcanu. Stochastic differential equations, backward SDEs, partial differential equations, volume 69 of Stochastic Modelling and Applied Probability. Springer, Cham, 2014.
  • [22] R. Raquépas. A note on Harris’ ergodic theorem, controllability and perturbations of harmonic networks. Ann. Henri Poincaré, 20(2):605–629, 2019.
  • [23] J. Roberts and P. Spanos. Random Vibration and Statistical Linearization. John Wiley & Sons, Chichester, UK., 1990.
  • [24] A. Shirikyan. Qualitative properties of stationary measures for three-dimensional Navier–Stokes equations. J. Funct. Anal., 249(2):284–306, 2007.
  • [25] A. Shirikyan. Controllability implies mixing. I. Convergence in the total variation metric. Uspekhi Mat. Nauk, 72(5(437)):165–180, 2017.