This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Da Chen22institutetext: Laurent D. Cohen 33institutetext: University Paris Dauphine, PSL Research University
CEREMADE, CNRS, UMR 7534, 75016 Paris, France
33email: chenda@ceremade.dauphine.fr
33email: cohen@ceremade.dauphine.fr

Fast Asymmetric Fronts Propagation for Image Segmentation

Da Chen    Laurent D. Cohen
(Received: 07-July-2017/ Accepted: 01-November-2017)
Abstract

In this paper, we introduce a generalized asymmetric fronts propagation model based on the geodesic distance maps and the Eikonal partial differential equations. One of the key ingredients for the computation of the geodesic distance map is the geodesic metric, which can govern the action of the geodesic distance level set propagation. We consider a Finsler metric with the Randers form, through which the asymmetry and anisotropy enhancements can be taken into account to prevent the fronts leaking problem during the fronts propagation. These enhancements can be derived from the image edge-dependent vector field such as the gradient vector flow. The numerical implementations are carried out by the Finsler variant of the fast marching method, leading to very efficient interactive segmentation schemes. We apply the proposed Finsler fronts propagation model to image segmentation applications. Specifically, the foreground and background segmentation is implemented by the Voronoi index map. In addition, for the application of tubularity segmentation, we exploit the level set lines of the geodesic distance map associated to the proposed Finsler metric providing that a thresholding value is given.

Keywords:
Finsler Metric Randers Metric Eikonal Partial Differential Equation Fast Marching Method Image Segmentation Tubular Structure Segmentation
journal: Journal of Mathematical Imaging and Vision   

1 Introduction

Fronts propagation models have been considerably developed for the applications of image segmentation and boundary detection since the original level set framework proposed by Osher and Sethian osher1988fronts . Guaranteed by their solid mathematical background, the fronts propagation models lead to strong abilities in a wide variety of computer vision tasks such as image segmentation and boundary detection caselles1993geometric ; malladi1995shape ; caselles1997geodesic ; yezzi1997geometric . In their basic formulation, the boundaries of an object are modeled as closed contours, each of which can be obtained by evolving an initial closed curve in terms of a speed function till the stopping criteria reached. A typical speed function usually involves a curve regularity penalty, for instance the curvature, and an image data term. The use of curve evolution scheme for image segmentation can be backtrack to the original active contour model kass1988snakes which has inspired a amount of approaches cohen1991active ; xu1998snakes ; cohen1997global ; chen2017global ; kimmel2003regularized ; melonakos2008finsler .

Let Ω2\Omega\subset\mathbb{R}^{2} be an open bounded domain. Based on the level set framework osher1988fronts , a closed contour γ\gamma can be retrieved by identifying the zero level set line of a scalar function ϕ:Ω\phi:\Omega\to\mathbb{R} such that γ:={𝐱Ω;ϕ(𝐱)=0}\gamma:=\{\mathbf{x}\in\Omega;\,\phi(\mathbf{x})=0\}. By this curve representation, the curve evolution can be carried out by evolving the function ϕ\phi

ϕt=ξϕ,\frac{\partial\phi}{\partial t}=\xi\,\|\nabla\phi\|, (1)

where ξ:Ω\xi:\Omega\to\mathbb{R} is a speed function and tt denotes the time. At any time tt, the curve γ\gamma can be recovered by identifying the zero-level set line of the function ϕ\phi. Using the level set evolutional equation in Eq. (1), the contours splitting and merging can be adaptively handled.

Refer to caption
Figure 1: Fronts propagation for interactive image segmentation through different geodesic metrics. (a) The original image and the seeds, where blue and green brushes indicate the seeds which are placed in the foreground and background, respectively. (b) - (d) Segmentation results via the isotropic Riemannian metric, the anisotropic Riemannian metric and the Finsler metric. The blue curves represent the segmented foreground boundaries.

The main drawback of the level set-based front propagation method is its expensive computational burden. In order to alleviate this problem, Adalsteinsson and Sethian adalsteinsson1995fast suggested to restrict the computation for the update of the level set function ϕ\phi within a narrow band. In this case, only the values of ϕ\phi at the points nearby the zero-level set lines are updated according to Eq. (1). Moreover, the distance-preserving level set method li2010distance is able to avoid level set reinitialization by enforcing the level set function ϕ\phi as a signed Euclidean distance function from the current curves during the evolution.

Despite the efforts devoted to the reduction in the computation burden, the classical level set-based fronts propagation scheme (1) is still impractical especially for real-time applications. In order to solve this issue, Malladi and Sethian malladi1998real proposed a new geodesic distance-based front propagation model for real-time image segmentation. It relies on a geodesic distance map 𝒰𝔰:Ω+{0}\mathcal{U}_{\mathfrak{s}}:\Omega\to\mathbb{R}^{+}\cup\{0\} associated to a set 𝔰\mathfrak{s} of source points. The value of 𝒰𝔰(𝐱)\mathcal{U}_{\mathfrak{s}}(\mathbf{x}) at a point 𝐱\mathbf{x} in essence is equivalent to the minimal geodesic curve length between the point 𝐱\mathbf{x} and a source point 𝐬𝔰\mathbf{s}\in\mathfrak{s} in the sense of an isotropic Riemannian metric, which is dependent on a potential function P:Ω+P:\Omega\to\mathbb{R}^{+}. The geodesic distance map 𝒰𝔰\mathcal{U}_{\mathfrak{s}} coincides with the viscosity solution to the Eikonal equation, which can be efficiently computed by the fast marching methods sethian1999fast ; tsitsiklis1995efficient ; mirebeau2014anisotropic ; mirebeau2014efficient ; mirebeau2017anisotropic , leading to a possible real-time solution to the segmentation problem. In the context of segmentation, the potential function usually has small values in the homogeneous region and large values near the boundaries. Based on the geodesic distance map 𝒰𝔰\mathcal{U}_{\mathfrak{s}}, a curve can be denoted by the TT-level set of the distance map 𝒰𝔰\mathcal{U}_{\mathfrak{s}}, where T>0T>0 is a geodesic distance thresholding value. In other words, a curve γ\gamma can be characterized by the distance value TT such that

γ:={𝐱Ω;𝒰𝔰(𝐱)=T}.\gamma:=\{\mathbf{x}\in\Omega;\,\mathcal{U}_{\mathfrak{s}}(\mathbf{x})=T\}. (2)

By assigning large values to the potential function PP around image edges, the basic idea behind malladi1998real is to use the curve γ\gamma defined in Eq. (2) to delineate the boundaries of interesting objects. One difficulty suffered by the geodesic distance-based fronts propagation scheme is that the fronts may leak outside the targeted regions before all the points of these regions have been visited by the fronts. The leakages sometimes occur near the boundaries close to the source positions or in weak boundaries, especially when dealing with long and thin structures. The main reason for this leaking problem is the positivity constraint required by the metric (potential) functions for the Eikonal equation. In order to solve this problem, Cohen and Deschamps cohen2007segmentation suggested an adaptive freezing scheme for tubular structure segmentation. They took into account a Euclidean curve length criterion to prevent the fast marching fronts to travel outside the tubular structures in order to avoid the leaking problem. The main difficulty of this model lies at the choice of a suitable Euclidean curve length thresholding value. Chen and Cohen chen2016vessel considered an anisotropic Riemannian metric for vessel tree segmentation, where the vessel orientations are taken into account to mitigate the leaking problem. Li and Yezzi li2007local proposed a dual fronts propagation model for active contours evolution, where the geodesic metric includes both edge and region statistical information. The basic idea of li2007local is to propagate the fronts simultaneously from the exterior and interior boundaries of the narrowband. The optimal contours can be recovered from the positions where the two fast marching fronts meet. These meeting interfaces also correspond to the boundaries of the adjacent Voronoi regions. Arbeláez and Cohen arbelaez2004energy ; arbelaez2008constrained and Bai and Sapiro bai2009geodesic made use of the Voronoi index map and the Voronoi region for interactive image segmentation, both of which can be constructed through the geodesic distance maps associated to the pseudo path metrics. In their formulation, these models arbelaez2004energy ; arbelaez2008constrained ; bai2009geodesic allow the values of the metrics to be zero and to be dependent on path orientations. The image segmentation can be characterized by the Voronoi regions, each of which involves all the points labeled by the same Voronoi index. In this case, the contours indicating the tagged object boundaries are no longer the level sets of the geodesic distance map, but the common boundaries of the adjacent Voronoi regions. Other interesting geodesic distance map-based image segmentation methods include criminisi2008geos ; price2010geodesic ; cardinal2006intravascular .

A common point of the Eikonal front propagation models mentioned above is that the segmentation procedure is carried out by using the geodesic distance map itself. Finding geodesics through the gradient descent on the geodesic distance map is an alternative way of using the Eikonal equation framework for practical applications. Since the original work by Cohen and Kimmel cohen1997global , a broad variety of minimal path models have been proposed to solve various image analysis problems benmansour2009fast ; mille2015combination; chen2016finsler ; li2007vessels; benmansour2011tubular; kaul2012detecting. Recently, a significant contribution to the minimal path framework lies at the development of the curvature-penalized geodesic models such as bekkers2015pde; chen2017global ; duits2016optimal; mashtakov2017tracking. In the basic formulations of duits2016optimal; chen2017global ; chen2015global, the curve length values of the minimal geodesics with curvature penalization can be approximately measured by strongly anisotropic Riemannian metrics or Finsler metrics established in an orientation-lifted space. As a result, the geodesic distance maps associated to these metrics can be efficiently and accurately estimated by the Hamiltonian fast marching method mirebeau2017fast. The curvature-penalized geodesics can be recovered via a gradient descent scheme on the associated geodesic distance map.

In this paper, we extend the geodesic distance map-based front propagation framework to a Finsler case, where both the edge anisotropy and asymmetry are taken into account simultaneously. Our model thus relies on the geodesic distance map itself instead of minimal paths. Moreover, we also present two ways to construct the Finsler metrics with respect to the applications of foreground and background object segmentation and tubularity segmentation. In order to quickly find suitable and reliable solutions in various situations, it is important for the fronts propagation models with a single-pass manner to be robust against to the leaking problem. The existing front propagation approaches invoking either Riemannian metrics cohen2007segmentation ; chen2016vessel or pseudo path metrics arbelaez2004energy ; arbelaez2008constrained ; bai2009geodesic , do not take into account the edge asymmetry information. This may increase the risk of the leaking problem especially when the provided seeds are close to the targeted boundaries. We show an example of the leaking problem in Fig. 1. In Fig. 1a, the source points inside the foreground and background are indicated by green and blue brushes, respectively. The contours in Figs. 1b and 1c obtained from the Riemannian metrics pass through the boundaries before the whole object has been covered by the fast marching fronts. In contrast, the segmented contour derived from the proposed Finsler metric can avoid such problem as shown in Fig. 1d.

1.1 Paper Outline

The remaining of this paper is organized as follows: In Section 2, we introduce the geodesic distance map associated to a general Finsler metric, the Voronoi regions and the relevant numerical tool. Section 3 presents the construction of the asymmetric Finsler metrics associated to different image segmentation applications. The numerical considerations for the Finsler metrics-based fronts propagation are introduced in Section 4. The experimental results and the conclusion are respectively presented in Sections 5 and 6.

2 Background on Geodesic Distance Map

Refer to caption
Figure 2: The course of the fast marching front propagation for the computation of the geodesic distance map 𝒰𝔰\mathcal{U}_{\mathfrak{s}}. (a) The original image. The blue brush indicates the source point set 𝔰\mathfrak{s} such that 𝒰𝔰(𝐱)=0,𝐱𝔰\mathcal{U}_{\mathfrak{s}}(\mathbf{x})=0,\,\forall\mathbf{x}\in\mathfrak{s}. (b)-(e) The course of the fast marching front propagation.

A Finsler geodesic metric :Ω×2[0,+]\mathcal{F}:\Omega\times\mathbb{R}^{2}\to[0,+\infty] is a continuous function over the domain Ω×2\Omega\times\mathbb{R}^{2}. For each fixed point 𝐱Ω\mathbf{x}\in\Omega, the geodesic metric (𝐱,𝐯)\mathcal{F}(\mathbf{x},\mathbf{v}) can be characterized by an asymmetric norm of 𝐯2\mathbf{v}\in\mathbb{R}^{2}. In other words, the Finsler geodesic metric \mathcal{F} is convex and 1-homogeneous on its second argument. It is also potentially asymmetric such that 𝐱Ω\exists\mathbf{x}\in\Omega and 𝐯2\exists\mathbf{v}\in\mathbb{R}^{2}, the following inequality is held

(𝐱,𝐯)(𝐱,𝐯).\mathcal{F}(\mathbf{x},\mathbf{v})\neq\mathcal{F}(\mathbf{x},-\mathbf{v}). (3)

The geodesic curve length associated to the metric \mathcal{F} along a Lipschitz continuous curve 𝒞\mathcal{C} can be expressed by

(𝒞):=𝒞(𝒞(s),𝒞(s))𝑑s,\ell_{\mathcal{F}}(\mathcal{C}):=\int_{\mathcal{C}}\mathcal{F}(\mathcal{C}(s),\mathcal{C}^{\prime}(s))\,ds, (4)

where 𝒞(s)=dds𝒞(s)\mathcal{C}^{\prime}(s)=\frac{d}{ds}\mathcal{C}(s) is the first-order derivative of the curve 𝒞\mathcal{C} and ss is the arc-length parameter of the curve 𝒞\mathcal{C}.

Letting 𝔰Ω\mathfrak{s}\subset\Omega be a set which involves all the source points. The minimal curve length from 𝐲\mathbf{y} to 𝐱\mathbf{x} with respect to the Finsler metric \mathcal{F} is defined by

𝒟(𝐲,𝐱)=inf𝒞𝒜𝐲,𝐱(𝒞),\mathcal{D}_{\mathcal{F}}(\mathbf{y},\mathbf{x})=\inf_{\mathcal{C}\in\mathcal{A}_{\mathbf{y},\mathbf{x}}}\ell_{\mathcal{F}}(\mathcal{C}), (5)

where 𝒜𝐲,𝐱\mathcal{A}_{\mathbf{y},\mathbf{x}} is the set of all the Lipschitz continuous curves linking from a point 𝐲\mathbf{y} to 𝐱Ω\mathbf{x}\in\Omega.

The geodesic distance map 𝒰𝔰\mathcal{U}_{\mathfrak{s}} associated to the geodesic metric \mathcal{F} can be defined in terms of the minimal curve length 𝒟\mathcal{D}_{\mathcal{F}} in Eq. (5) such that

𝒰𝔰(𝐱):=inf𝐲𝔰𝒟(𝐲,𝐱).\mathcal{U}_{\mathfrak{s}}(\mathbf{x}):=\inf_{\mathbf{y}\in\mathfrak{s}}\,\mathcal{D}_{\mathcal{F}}(\mathbf{y},\mathbf{x}). (6)

The geodesic distance map 𝒰𝔰\mathcal{U}_{\mathfrak{s}} is the unique viscosity solution to the Eikonal equation mirebeau2014efficient ; chen2017global

{max𝐯0𝒰𝔰(𝐱),𝐯(𝐱,𝐯)=1,𝐱Ω\𝔰,𝒰𝔰(𝐱)=0,𝐱𝔰,\begin{cases}\displaystyle\max_{\|\mathbf{v}\|\neq 0}\frac{\langle\nabla\mathcal{U}_{\mathfrak{s}}(\mathbf{x}),\mathbf{v}\rangle}{\mathcal{F}(\mathbf{x},\mathbf{v})}=1,\,&\forall\mathbf{x}\in\Omega\backslash\mathfrak{s},\\ \mathcal{U}_{\mathfrak{s}}(\mathbf{x})=0,\,&\forall\mathbf{x}\in\mathfrak{s},\end{cases} (7)

where 𝒰𝔰\nabla\mathcal{U}_{\mathfrak{s}} denotes the standard Euclidean gradient of 𝒰𝔰\mathcal{U}_{\mathfrak{s}} and ,\langle\cdot,\cdot\rangle is the Euclidean scalar product in the Euclidean space 2\mathbb{R}^{2}.

The Eikonal equation (7) can be interpreted by the Bellman’s optimality principle which states that

𝒰𝔰(𝐱)=min𝐲Λ(𝐱){𝒟(𝐲,𝐱)+𝒰𝔰(𝐲)},\mathcal{U}_{\mathfrak{s}}(\mathbf{x})=\min_{\mathbf{y}\in\partial\Lambda(\mathbf{x})}\,\{\mathcal{D}_{\mathcal{F}}(\mathbf{y},\mathbf{x})+\mathcal{U}_{\mathfrak{s}}(\mathbf{y})\}, (8)

where Λ(𝐱)Ω\Lambda(\mathbf{x})\subset\Omega is a neighbourhood of point 𝐱\mathbf{x} and Λ(𝐱)\partial\Lambda(\mathbf{x}) is the boundary of Λ(𝐱)\Lambda(\mathbf{x}). This interpretation is a key ingredient for the numerical computation of the geodesic distance map via the fast marching method mirebeau2014efficient .

2.1 Voronoi Index Map

In this section, we consider a more general case for which a family of source point sets are provided. Suppose that these source point sets are denoted by 𝔰k\mathfrak{s}_{k} and are indexed by k{1,2,,n}k\in\{1,2,\cdots,n\} with nn the total number of source point sets. For the sake of simplicity, we note 𝔰=k=1n𝔰k\mathfrak{s}=\cup_{k=1}^{n}\mathfrak{s}_{k}.

For a given geodesic metric \mathcal{F}, we can compute the respective geodesic distance map 𝒰k\mathcal{U}_{k} associated to each source point set 𝔰k\mathfrak{s}_{k} by Eq. (6). A Voronoi index map is a function :Ω{1,2,,n}\mathcal{L}:\Omega\to\{1,2,\cdots,n\} such that for any source point 𝐱𝔰k\mathbf{x}\in\mathfrak{s}_{k}

(𝐱)=k,k{1,2,,n},\mathcal{L}(\mathbf{x})=k,\quad k\in\{1,2,\cdots,n\}, (9)

and for any domain point 𝐱Ω\𝔰\mathbf{x}\in\Omega\backslash\mathfrak{s}, the Voronoi index (𝐱)\mathcal{L}(\mathbf{x}) is identical to the index of the closest source point set in the sense of the geodesic distance arbelaez2004energy ; benmansour2009fast . One can construct a Voronoi index map \mathcal{L} in terms of the geodesic distance maps 𝒰k\mathcal{U}_{k} (1kn1\leq k\leq n) by

(𝐱)=argmin1kn𝒰k(𝐱),𝐱Ω.\mathcal{L}(\mathbf{x})=\underset{1\leq k\leq n}{\rm{arg\,min}}~~\mathcal{U}_{k}(\mathbf{x}),\quad\forall\mathbf{x}\in\Omega. (10)

By the Voronoi index map \mathcal{L}, the whole domain Ω\Omega can be partitioned into nn Voronoi regions 𝒱kΩ\mathcal{V}_{k}\subset\Omega

𝒱k:={𝐱Ω;(𝐱)=k}.\mathcal{V}_{k}:=\{\mathbf{x}\in\Omega;\,\mathcal{L}(\mathbf{x})=k\}. (11)

The common boundary Γi,j:=𝒱i𝒱j\Gamma_{i,j}:=\partial\mathcal{V}_{i}\cap\partial\mathcal{V}_{j} of two adjacent Voronoi regions 𝒱i\mathcal{V}_{i} and 𝒱j\mathcal{V}_{j} is comprised of a collection of equidistant points to the source point sets 𝔰i\mathfrak{s}_{i} and 𝔰j\mathfrak{s}_{j}, i.e.,

𝒰i(𝐱)=𝒰j(𝐱),𝐱Γi,j.\mathcal{U}_{i}(\mathbf{x})=\mathcal{U}_{j}(\mathbf{x}),\quad\forall\mathbf{x}\in\Gamma_{i,j}. (12)

Finally, we consider a geodesic distance map 𝒰𝔰\mathcal{U}_{\mathfrak{s}} associated to the set 𝔰=k𝔰k\mathfrak{s}=\cup_{k}\mathfrak{s}_{k} which can be expressed by

𝒰𝔰(𝐱)=min1kn𝒰k(𝐱),\mathcal{U}_{\mathfrak{s}}(\mathbf{x})=\min_{1\leq k\leq n}\,\mathcal{U}_{k}(\mathbf{x}), (13)

where 𝒰k\mathcal{U}_{k} is the geodesic distance map with respect to the source point set 𝔰k\mathfrak{s}_{k} indexed by kk.

2.2 Fast Marching Method

Many approaches bornemann2006finite ; weber2008parallel ; yatziv2006n ; rouy1992viscosity can be used to estimate the geodesic distance map 𝒰𝔰\mathcal{U}_{\mathfrak{s}}. Among them, the fast marching method sethian1999fast ; tsitsiklis1995efficient solves the Eikonal equation in a very efficient way. It has a similar distance estimation scheme with Dijkstra’s graph-based shortest path algorithm dijkstra1959note . One crucial ingredient of the fast marching method is the construction of the stencil map Λ\Lambda, where Λ(𝐱)\Lambda(\mathbf{x}) defines the neighbourhood of a grid point 𝐱\mathbf{x}. The isotropic fast marching methods sethian1999fast ; tsitsiklis1995efficient are established on an orthogonal 4-connectivity neighbourhood system, which suffers some difficulties for the distance computation associated to asymmetric Finsler metrics mirebeau2014efficient . In order to find accurate solutions to the Finsler Eikonal equation, more complicated neighbourhood systems are taken into account mirebeau2014anisotropic ; mirebeau2014efficient ; sethian2003ordered ; mirebeau2017fast. These neighbourhood systems or stencils are usually constructed depending on the geodesic metrics. In this paper, we adopt the Finsler variant of the fast marching method proposed by Mirebeau mirebeau2014efficient . It invokes a geometry tool of anisotropic stencil refinement and leads to a highly accurate solution, but requires a low computation complexity.

2.2.1 Hopf-Lax Operator for Local Distance Update

The Finsler variant of the fast marching method mirebeau2014efficient estimates the geodesic distance map on a regular discretization grid 2\mathbb{Z}^{2} of the domain Ω\Omega. It makes use of the Hopf-Lax operator to approximate (8) by

𝒰𝔰(𝐱)=min𝐲Λ(𝐱){(𝐱,𝐱𝐲)+𝕀Λ(𝐱)𝒰𝔰(𝐲)},\mathcal{U}_{\mathfrak{s}}(\mathbf{x})=\min_{\mathbf{y}\in\partial\Lambda(\mathbf{x})}\{\mathcal{F}(\mathbf{x},\mathbf{x}-\mathbf{y})+\operatorname{\mathbb{I}}_{\Lambda(\mathbf{x})}\mathcal{U}_{\mathfrak{s}}(\mathbf{y})\}, (14)

where Λ(𝐱)\Lambda(\mathbf{x}) denotes the stencil of 𝐱\mathbf{x} involving a set of vertices in 2\mathbb{Z}^{2} and 𝕀Λ(𝐱)\operatorname{\mathbb{I}}_{\Lambda(\mathbf{x})} is a piecewise linear interpolation operator in the neighbourhood Λ(𝐱)\Lambda(\mathbf{x}). The estimate of the quality and order for the solution to (14) can be found in mirebeau2014efficient .

The Hopf-Lax operator is first introduced for the geodesic distance computation by Tsitsiklis tsitsiklis1995efficient from an optimal control point of view. The minimal curve length 𝒟\mathcal{D}_{\mathcal{F}} of a short geodesic from 𝐲\mathbf{y} to 𝐱\mathbf{x} is approximated by the length (𝐱,𝐱𝐲)\mathcal{F}(\mathbf{x},\mathbf{x}-\mathbf{y}) of a line segment 𝐱𝐲¯\overline{\mathbf{x}\mathbf{y}}. The geodesic distance value 𝒰𝔰(𝐲)\mathcal{U}_{\mathfrak{s}}(\mathbf{y}) in Eq. (8) is estimated by a piecewise linear interpolation operator 𝕀Λ(𝐱)\operatorname{\mathbb{I}}_{\Lambda(\mathbf{x})} at 𝐲\mathbf{y} located at the stencil boundary Λ(𝐱)\partial\Lambda(\mathbf{x}). It is comprised of a set 𝒯𝐱\mathcal{T}_{\mathbf{x}} of one-dimensional simplexes or line segments. Each simplex 𝕋i𝒯𝐱\mathbb{T}_{i}\in\mathcal{T}_{\mathbf{x}} connects two adjacent vertices which are involved in the stencil Λ(𝐱)\Lambda(\mathbf{x}). The solution 𝒰𝔰\mathcal{U}_{\mathfrak{s}} to the Hopf-Lax operator (14) can be attained by

𝒰𝔰(𝐱)=min𝕋i𝒯𝐱Ui(𝐱),\mathcal{U}_{\mathfrak{s}}(\mathbf{x})=\min_{\mathbb{T}_{i}\in\mathcal{T}_{\mathbf{x}}}\,U_{i}(\mathbf{x}), (15)

where UiU_{i} is the solution to the minimization problem

Ui(𝐱)=min𝐲𝕋i{(𝐱,𝐱𝐲)+𝕀Λ(𝐱)𝒰𝔰(𝐲)}.U_{i}(\mathbf{x})=\min_{\mathbf{y}\in\mathbb{T}_{i}}\{\mathcal{F}(\mathbf{x},\mathbf{x}-\mathbf{y})+\operatorname{\mathbb{I}}_{\Lambda(\mathbf{x})}\mathcal{U}_{\mathfrak{s}}(\mathbf{y})\}. (16)

For each simplex 𝕋i𝒯𝐱\mathbb{T}_{i}\in\mathcal{T}_{\mathbf{x}} which joins two vertices 𝐳1\mathbf{z}_{1} and 𝐳2\mathbf{z}_{2}, the minimization problem (16) can be approximated by Tsitsiklis’ theorem tsitsiklis1995efficient such that

Ui(𝐱)=minλ(𝐱,𝐱i=12λi𝐳i)+i=12λi𝒰𝔰(𝐳i),U_{i}(\mathbf{x})=\min_{\vec{\lambda}}\,\mathcal{F}\left(\mathbf{x},\mathbf{x}-\sum_{i=1}^{2}\lambda_{i}\mathbf{z}_{i}\right)+\sum_{i=1}^{2}\lambda_{i}\mathcal{U}_{\mathfrak{s}}(\mathbf{z}_{i}), (17)

where λ=(λ1,λ2)\vec{\lambda}=(\lambda_{1},\lambda_{2}) subject to λ1,λ20\lambda_{1},\lambda_{2}\geq 0 and i2λi=1\sum^{2}_{i}\lambda_{i}=1.

2.2.2 Fast Marching Fronts Propagation Scheme

Algorithm 1 Fast Marching Fronts Propagation
1:Source points set 𝔰=k𝔰k\mathfrak{s}=\cup_{k}\mathfrak{s}_{k}.
2:Geodesic distance map 𝒰𝔰\mathcal{U}_{\mathfrak{s}} and Voronoi index map \mathcal{L}.
3:𝐱Ω\𝔰\forall\mathbf{x}\in\Omega\backslash\mathfrak{s}, set 𝒰𝔰(𝐱)\mathcal{U}_{\mathfrak{s}}(\mathbf{x})\leftarrow\infty and b(𝐱)b(\mathbf{x})\leftarrowFar.
4:𝐱𝔰\forall\mathbf{x}\in\mathfrak{s}, set 𝒰𝔰(𝐱)0\mathcal{U}_{\mathfrak{s}}(\mathbf{x})\leftarrow 0 and b(𝐱)b(\mathbf{x})\leftarrowTrial.
5:𝐱𝔰k\forall\mathbf{x}\in\mathfrak{s}_{k}, set (𝐱)=k\mathcal{L}(\mathbf{x})=k.
6:while there remains at least one Trial point do
7:  Find a Trial point 𝐱min\mathbf{x}_{\rm min} globally minimizing 𝒰𝔰\mathcal{U}_{\mathfrak{s}}.
8:  Set b(𝐱min)b(\mathbf{x}_{\rm min})\leftarrowAccepted.
9:  if 𝐱min𝔰\mathbf{x}_{\rm min}\notin\mathfrak{s} then
10:   Update the Voronoi index (𝐱min)\mathcal{L}(\mathbf{x}_{\rm min}) by Eq. (18).
11:  end if
12:  for all 𝐳2\mathbf{z}\in\mathbb{Z}^{2} such that 𝐱minΛ(𝐳)\mathbf{x}_{\rm min}\in\Lambda(\mathbf{z}) do
13:   if b(𝐳)b(\mathbf{z})\neqAccepted and 𝐳𝔰\mathbf{z}\notin\mathfrak{s} then
14:     //* Update some map dyn(𝐳)\mathfrak{C}_{\rm dyn}(\mathbf{z}) if necessary. /*/
15:     Find 𝒰^(𝐳)\hat{\mathcal{U}}(\mathbf{z}) by evaluating the Hopf-Lax formula (15).
16:     Set 𝒰𝔰(𝐳)min{𝒰𝔰(𝐳),𝒰^(𝐳)}\mathcal{U}_{\mathfrak{s}}(\mathbf{z})\leftarrow\min\{\mathcal{U}_{\mathfrak{s}}(\mathbf{z}),\hat{\mathcal{U}}(\mathbf{z})\} and b(𝐳)b(\mathbf{z})\leftarrowTrial.
17:   end if
18:  end for
19:end while

The fast marching method estimates the geodesic distance map 𝒰𝔰\mathcal{U}_{\mathfrak{s}} in a wave front propagation manner. We demonstrate the course of the fast marching fronts propagation in Fig 2 on a synthetic image. In this figure, we invoke a Finsler metric for the computation of the geodesic distance map 𝒰𝔰\mathcal{U}_{\mathfrak{s}}, where the metric will be presented in Section. 4. The fast marching fronts propagation is coupled with a procedure of label assignment operation, during which all the grid points are classified into three categories:

  • Accepted points, for which the values of 𝒰𝔰\mathcal{U}_{\mathfrak{s}} have been estimated and frozen.

  • Far points, for which the values of 𝒰𝔰\mathcal{U}_{\mathfrak{s}} are unknown.

  • Trial points, which are the remaining grid points in 2\mathbb{Z}^{2} and form the fast marching fronts. A Trial point will be assigned a label of Accepted if it has the minimal geodesic distance value among all the Trial points.

In the course of the geodesic distance estimation, each grid point 𝐱2\𝔰\mathbf{x}\in\mathbb{Z}^{2}\backslash\mathfrak{s} will be visited by the monotonically advancing fronts which expand from the source points involved in 𝔰\mathfrak{s}. The values of 𝒰𝔰\mathcal{U}_{\mathfrak{s}} for all the Trial points are stored in a priority queue in order to quickly find the point with minimal 𝒰𝔰\mathcal{U}_{\mathfrak{s}}. The label assignment procedure111Initially, each source point 𝐱𝔰\mathbf{x}\in\mathfrak{s} is tagged as Trial and the remaining grid points are tagged as Far. can be carried out by a binary map b:2{Accepted,Far,Trial}b:\mathbb{Z}^{2}\to\{\emph{Accepted},\,\emph{Far},\,\emph{Trial}\}.

Suppose that 𝔰=k𝔰k\mathfrak{s}=\cup_{k}\mathfrak{s}_{k} with 𝔰k\mathfrak{s}_{k} a source point set. The geodesic distance map 𝒰𝔰\mathcal{U}_{\mathfrak{s}} and the Voronoi index map \mathcal{L} can be simultaneously computed benmansour2009fast ; cohen2001multiple , where the computation scheme in each iteration can be divided into two steps.

Voronoi index update. In each geodesic distance update iteration, among all the Trial points, a point 𝐱min\mathbf{x}_{\rm min} that globally minimizes the geodesic distance map 𝒰𝔰\mathcal{U}_{\mathfrak{s}} is chosen and tagged as Accepted. We set (𝐱min)=k\mathcal{L}(\mathbf{x}_{\rm min})=k if 𝐱min𝔰k\mathbf{x}_{\rm min}\in\mathfrak{s}_{k}. Otherwise, the geodesic distance value 𝒰𝔰(𝐱min)\mathcal{U}_{\mathfrak{s}}(\mathbf{x}_{\rm min}) can be estimated in the simplex 𝕋𝒯𝐱min\mathbb{T}^{*}\in\mathcal{T}_{\mathbf{x}_{\rm min}} (see Eq. (15)), where the vertices relevant to 𝕋\mathbb{T}^{*} are respective 𝐳1\mathbf{z}_{1} and 𝐳2\mathbf{z}_{2}. This is done by finding the solution to (17) with respect to the simplex 𝕋\mathbb{T}^{*}, where the corresponding minimizer is λ=(λ1,λ2)\vec{\lambda}^{*}=(\lambda^{*}_{1},\lambda^{*}_{2}). Then the Voronoi index map \mathcal{L} can be computed by

(𝐱min)={(𝐳1),ifλ1λ2,(𝐳2),otherwise.\mathcal{L}(\mathbf{x}_{\rm min})=\begin{cases}\mathcal{L}(\mathbf{z}_{1}),\quad&\text{if}~\lambda_{1}^{*}\geq\lambda^{*}_{2},\\ \mathcal{L}(\mathbf{z}_{2}),\quad&\text{otherwise}.\end{cases} (18)

Local Geodesic Distance Update. For a grid point 𝐱\mathbf{x}, we denote by Λ(𝐱):={𝐳2;𝐱Λ(𝐳)}\Lambda_{\star}(\mathbf{x}):=\{\mathbf{z}\in\mathbb{Z}^{2};\mathbf{x}\in\Lambda(\mathbf{z})\} the reverse stencil. The remaining step in this iteration is to update 𝒰𝔰(𝐳)\mathcal{U}_{\mathfrak{s}}(\mathbf{z}) for each grid point 𝐳\mathbf{z} such that 𝐳Λ(𝐱min)\mathbf{z}\in\Lambda_{\star}(\mathbf{x}_{\rm min}) and b(𝐳)b(\mathbf{z})\neqAccepted through the solution 𝒰^𝔰(𝐳)\hat{\mathcal{U}}_{\mathfrak{s}}(\mathbf{z}) to the Hopf-Lax operator (14). This is done by assigning to 𝒰𝔰(𝐳)\mathcal{U}_{\mathfrak{s}}(\mathbf{z}) the smaller value between the solution 𝒰^𝔰(𝐳)\hat{\mathcal{U}}_{\mathfrak{s}}(\mathbf{z}) and the current geodesic distance value of 𝒰𝔰(𝐳)\mathcal{U}_{\mathfrak{s}}(\mathbf{z}). Note that the solution 𝒰^𝔰(𝐳)\hat{\mathcal{U}}_{\mathfrak{s}}(\mathbf{z}) to (14) is attained using the stencil Λ(𝐳)\Lambda(\mathbf{z}) mirebeau2014efficient .

The algorithm for the fast marching method is described in Algorithm 1. In this algorithm, the computation of a map dyn\mathfrak{C}_{\rm dyn} in Line 14 of Algorithm 1 is not necessary for the general fast marching fronts propagation scheme, but required by our method as discussed in Section 4.3.

Computation Complexity. The complexity estimate for the isotropic fast marching methods sethian1999fast ; tsitsiklis1995efficient established on the 4-neighbourhood system is bounded by 𝒪(NlnN)\mathcal{O}(N\ln N), where NN denotes the cardinality N:=#2N:=\#\mathbb{Z}^{2} of the discrete domain 2Ω\mathbb{Z}^{2}\cap\Omega. The complexity estimates for the Finsler variant cases sethian2003ordered ; mirebeau2014efficient with adaptive stencil system rely on the anisotropic ratio κ()\kappa(\mathcal{F}) of the geodesic metric \mathcal{F}. The estimate for the ordered upwind method sethian2003ordered is bounded by 𝒪(κ()NlnN)\mathcal{O}(\kappa(\mathcal{F})N\ln N), which is impractical for image segmentation application. In contrast, for the method mirebeau2014efficient used in this paper, the complexity bound reduces to 𝒪(Nlnκ()+NlnN)\mathcal{O}(N\ln\kappa(\mathcal{F})+N\ln N). Note that the anisotropic ratio κ()\kappa(\mathcal{F}) is defined by

κ():=max𝐱2{max𝐮=𝐯=1(𝐱,𝐮)(𝐱,𝐯)}.\kappa(\mathcal{F}):=\max_{\mathbf{x}\in\mathbb{Z}^{2}}\left\{\max_{\|\mathbf{u}\|=\|\mathbf{v}\|=1}\frac{\mathcal{F}(\mathbf{x},\mathbf{u})}{\mathcal{F}(\mathbf{x},\mathbf{v})}\right\}. (19)

3 Finsler Metric Construction

Definition 1

Let S2+S^{+}_{2} be the collection of all the positive definite symmetric matrices with size 2×22\times 2. For any matrix MS2+M\in S_{2}^{+}, we define a norm 𝐮M=𝐮,M𝐮,𝐮2\|\mathbf{u}\|_{M}=\sqrt{\langle\mathbf{u},\,M\mathbf{u}\rangle},\,\forall\mathbf{u}\in\mathbb{R}^{2}.

3.1 Principles for Finsler Metric Construction

In this section, we present the construction method of the Finsler metric which is suitable for fronts propagation and image segmentation. Suppose that a vector field 𝔤:Ω2\mathfrak{g}:\Omega\to\mathbb{R}^{2} has been provided such that 𝔤(𝐱)\mathfrak{g}(\mathbf{x}) points to the object edges at least when 𝐱\mathbf{x} is nearby them. In this case, the orthogonal vector field 𝔤\mathfrak{g}^{\perp} indicates the tangents of the edges.

Basically, the Eikonal equation-based fronts propagation models malladi1998real perform the segmentation scheme through a geodesic distance map. In order to find a good solution for image segmentation, the used geodesic metric should be able to reduce the risk of front leaking problem. For this purpose, we search for a direction-dependent metric 𝔤\mathcal{F}_{\mathfrak{g}} satisfying the following inequality

𝔤(𝐱,𝔤(𝐱))<𝔤(𝐱,𝔤(𝐱))<𝔤(𝐱,𝔤(𝐱)).\mathcal{F}_{\mathfrak{g}}(\mathbf{x},\mathfrak{g}^{\perp}(\mathbf{x}))<\mathcal{F}_{\mathfrak{g}}(\mathbf{x},\mathfrak{g}(\mathbf{x}))<\mathcal{F}_{\mathfrak{g}}(\mathbf{x},-\mathfrak{g}(\mathbf{x})). (20)

Recall that for an edge point 𝐱\mathbf{x}, both the feature vectors 𝔤(𝐱)\mathfrak{g}^{\perp}(\mathbf{x}) or 𝔤(𝐱)-\mathfrak{g}^{\perp}(\mathbf{x}) are propositional to the tangent of the edge at 𝐱\mathbf{x}. When the fast marching front arrives at the vicinity of image edges, it prefers to travel along the edge feature vectors 𝔤(𝐱)\mathfrak{g}^{\perp}(\mathbf{x}) and 𝔤(𝐱)-\mathfrak{g}^{\perp}(\mathbf{x}), instead of passing through the edges, i.e., prefers to travel along the direction 𝔤(𝐱)-\mathfrak{g}(\mathbf{x}).

The inequality (20) requires the geodesic metric 𝔤\mathcal{F}_{\mathfrak{g}} to be anisotropic and asymmetric with respect to its second argument. Thus, we consider a Finsler metric with a Randers form randers1941asymmetrical involving a symmetric quadratic term and a linear asymmetric term for any 𝐱2\mathbf{x}\in\mathbb{R}^{2} and any vector u2\vec{u}\in\mathbb{R}^{2}

(𝐱,𝐮):=(𝐱)(𝐮𝔤(𝐱)ω𝔤(𝐱),𝐮),\mathcal{F}(\mathbf{x},\mathbf{u}):=\mathfrak{C}(\mathbf{x})\left(\|\mathbf{u}\|_{\mathcal{M}_{\mathfrak{g}}(\mathbf{x})}-\langle\vec{\omega}_{\mathfrak{g}}(\mathbf{x}),\mathbf{u}\rangle\right), (21)

where 𝔤:ΩS2+\mathcal{M}_{\mathfrak{g}}:\Omega\to S^{+}_{2} is a positive symmetric definite tensor field and ω𝔤:Ω2\vec{\omega}_{\mathfrak{g}}:\Omega\to\mathbb{R}^{2} is a vector field that is sufficiently small. The function :Ω+\mathfrak{C}:\Omega\to\mathbb{R}^{+} is a positive scalar-valued potential which gets small values in the homogeneous regions and large values around the image edges. It can be derived from the image data such as the coherence measurements of the image features, which will be discussed in detail in Section 4.3.

The tensor field 𝔤\mathcal{M}_{\mathfrak{g}} and the vector field ω𝔤\vec{\omega}_{\mathfrak{g}} should satisfy the constraint

ω𝔤(𝐱)𝔤1(𝐱)<1,𝐱Ω,\|\vec{\omega}_{\mathfrak{g}}(\mathbf{x})\|_{\mathcal{M}_{\mathfrak{g}}^{-1}(\mathbf{x})}<1,\,\forall\mathbf{x}\in\Omega, (22)

in order to guarantee the positiveness mirebeau2014efficient of the Randers metric \mathcal{F}.

Refer to caption
Figure 3: Control sets (𝐪)\mathcal{B}(\mathbf{q}) for different geodesic metrics associated to different values of ψf(𝐪)\psi_{\rm f}(\mathbf{q}) and ψb(𝐪)\psi_{\rm b}(\mathbf{q}). The blue arrow indicates the direction 𝔤(𝐪)=(cos(π/4),sin(π/4))T\mathfrak{g}(\mathbf{q})=(\cos(\pi/4),\sin(\pi/4))^{T}. The blue dots and the contours denote the origins and the boundaries of these control sets, respectively. (a) Control sets for Randers metrics associated to ψf(𝐪)=5\psi_{\rm f}(\mathbf{q})=5 and different values of ψb(𝐪)\psi_{\rm b}(\mathbf{q}). (b) Control sets for anisotropic Riemannian metrics with ψf(𝐪)=ψb(𝐪)>1\psi_{\rm f}(\mathbf{q})=\psi_{\rm b}(\mathbf{q})>1. (c) Control set for an isotropic Riemannian metric with ψf(𝐪)=ψb(𝐪)=1\psi_{\rm f}(\mathbf{q})=\psi_{\rm b}(\mathbf{q})=1.

We reformulate the Randers metric 𝔤\mathcal{F}_{\mathfrak{g}} in Eq. (21) as

𝔤(𝐱,𝐮)=(𝐱)𝒢𝔤(𝐱,𝐮),\mathcal{F}_{\mathfrak{g}}(\mathbf{x},\mathbf{u})=\mathfrak{C}(\mathbf{x})\,\mathcal{G}_{\mathfrak{g}}(\mathbf{x},\mathbf{u}), (23)

where 𝒢𝔤:Ω×2[0,]\mathcal{G}_{\mathfrak{g}}:\Omega\times\mathbb{R}^{2}\to[0,\infty] is still a Randers metric which can be formulated by

𝒢𝔤(𝐱,𝐮)=𝐮𝔤(𝐱)ω𝔤(𝐱),𝐮.\mathcal{G}_{\mathfrak{g}}(\mathbf{x},\mathbf{u})=\|\mathbf{u}\|_{\mathcal{M}_{\mathfrak{g}}(\mathbf{x})}-\langle\vec{\omega}_{\mathfrak{g}}(\mathbf{x}),\mathbf{u}\rangle. (24)

The remaining part of this section will be devoted to the construction of the Randers metric 𝒢𝔤\mathcal{G}_{\mathfrak{g}} in terms of the vector field 𝔤\mathfrak{g} which is able to characterize the directions orthogonal to the image edges.

Let us define a new vector field 𝔤¯:Ω2\bar{\mathfrak{g}}:\Omega\to\mathbb{R}^{2} by

𝔤¯(𝐱):=𝔤(𝐱)𝔤(𝐱)2.\bar{\mathfrak{g}}(\mathbf{x}):=\frac{\mathfrak{g}(\mathbf{x})}{\|\mathfrak{g}(\mathbf{x})\|^{2}}.

The tensor field 𝔤\mathcal{M}_{\mathfrak{g}} used in Eq. (21) can be constructed dependently on two scalar-valued coefficient functions η1\eta_{1} and η2\eta_{2} such that

𝔤(𝐱)=η12(𝐱)𝔤¯(𝐱)𝔤¯(𝐱)+η2(𝐱)𝔤¯(𝐱)𝔤¯(𝐱),\mathcal{M}_{\mathfrak{g}}(\mathbf{x})=\eta_{1}^{2}(\mathbf{x})\bar{\mathfrak{g}}(\mathbf{x})\otimes\bar{\mathfrak{g}}(\mathbf{x})+\eta_{2}(\mathbf{x})\bar{\mathfrak{g}}^{\perp}(\mathbf{x})\otimes\bar{\mathfrak{g}}^{\perp}(\mathbf{x}), (25)

where 𝔤¯(𝐱)\bar{\mathfrak{g}}^{\perp}(\mathbf{x}) is the orthogonal vector of 𝔤¯(𝐱)\bar{\mathfrak{g}}(\mathbf{x}) and \otimes denotes the tensor product, i.e., 𝐮𝐮=𝐮𝐮T\mathbf{u}\otimes\mathbf{u}=\mathbf{u}\mathbf{u}^{T}. Note that the eigenvalues of 𝔤(𝐱)\mathcal{M}_{\mathfrak{g}}(\mathbf{x}) are η12(𝐱)/𝔤(𝐱)2\eta_{1}^{2}(\mathbf{x})/\|\mathfrak{g}(\mathbf{x})\|^{2} and η2(𝐱)/𝔤(𝐱)2\eta_{2}(\mathbf{x})/\|\mathfrak{g}(\mathbf{x})\|^{2}, respectively corresponding to the eigenvectors 𝔤(𝐱)/𝔤(𝐱)\mathfrak{g}(\mathbf{x})/\|\mathfrak{g}(\mathbf{x})\| and 𝔤(𝐱)/𝔤(𝐱)\mathfrak{g}^{\perp}(\mathbf{x})/\|\mathfrak{g}(\mathbf{x})\|.

The vector ω𝔤(𝐱)\vec{\omega}_{\mathfrak{g}}(\mathbf{x}) is positively collinear to field 𝔤(𝐱)\mathfrak{g}(\mathbf{x}) for all 𝐱Ω\mathbf{x}\in\Omega

ω𝔤(𝐱)=τ(𝐱)𝔤¯(𝐱),\vec{\omega}_{\mathfrak{g}}(\mathbf{x})=\tau(\mathbf{x})\,\bar{\mathfrak{g}}(\mathbf{x}), (26)

where τ:Ω\tau:\Omega\to\mathbb{R} is a scalar-valued coefficient function.

Refer to caption
Figure 4: Geodesic distance maps associated to the Randers metric 𝒢𝔤\mathcal{G}_{\mathfrak{g}} with different values of ψf\psi_{\rm f} and ψb\psi_{\rm b}. The red arrow indicate the vector (cos(π/4),sin(π/4))T(\cos(\pi/4),\sin(\pi/4))^{T}. The white dots are the source points. Each white curve indicates a level set line of the respective geodesic distance map. (a) Geodesic distance map associated to ψf3\psi_{\rm f}\equiv 3 and ψb8\psi_{\rm b}\equiv 8. (b) Geodesic distance map associated to ψf3\psi_{\rm f}\equiv 3 and ψb3\psi_{\rm b}\equiv 3. (c) Geodesic distance map associated to ψf8\psi_{\rm f}\equiv 8 and ψb3\psi_{\rm b}\equiv 3. The color bars are on the top of each figure.

We estimate the coefficient functions η1\eta_{1}, η2\eta_{2} and τ\tau through two cost functions ψf,ψb:Ω(1,+)\psi_{\rm f},\,\psi_{\rm b}:\Omega\to(1,\,+\infty), which assign the cost values ψf(𝐱)\psi_{\rm f}(\mathbf{x}), ψb(𝐱)\psi_{\rm b}(\mathbf{x}) and 11 to the Randers metric 𝒢𝔤\mathcal{G}_{\mathfrak{g}} respectively along the directions 𝔤(𝐱)\mathfrak{g}(\mathbf{x}), 𝔤(𝐱)-\mathfrak{g}(\mathbf{x}) and 𝔤(𝐱)\mathfrak{g}^{\perp}(\mathbf{x}) for any point 𝐱Ω\mathbf{x}\in\Omega such that

{𝒢𝔤(𝐱,𝔤(𝐱))=ψf(𝐱),𝒢𝔤(𝐱,𝔤(𝐱))=ψb(𝐱),𝒢𝔤(𝐱,𝔤(𝐱))=1.\begin{cases}\mathcal{G}_{\mathfrak{g}}(\mathbf{x},\mathfrak{g}(\mathbf{x}))&=\psi_{\rm f}(\mathbf{x}),\\ \mathcal{G}_{\mathfrak{g}}(\mathbf{x},-\mathfrak{g}(\mathbf{x}))&=\psi_{\rm b}(\mathbf{x}),\\ \mathcal{G}_{\mathfrak{g}}(\mathbf{x},\mathfrak{g}^{\perp}(\mathbf{x}))&=1.\end{cases} (27)

Combining Eqs. (25) and (27) yields that

{η1(𝐱)τ(𝐱)=ψf(𝐱),η1(𝐱)+τ(𝐱)=ψb(𝐱),η2(𝐱)=1,\begin{cases}\eta_{1}(\mathbf{x})-\tau(\mathbf{x})&=\psi_{\rm f}(\mathbf{x}),\\ \eta_{1}(\mathbf{x})+\tau(\mathbf{x})&=\psi_{\rm b}(\mathbf{x}),\\ \eta_{2}(\mathbf{x})&=1,\end{cases} (28)

for any 𝐱Ω\mathbf{x}\in\Omega.

The positive symmetric definite tensor field 𝔤\mathcal{M}_{\mathfrak{g}} and the vector field ω𝔤\vec{\omega}_{\mathfrak{g}} thus can be respectively expressed in terms of the cost functions ψf\psi_{\rm f} and ψb\psi_{\rm b} by

𝔤(𝐱)=\displaystyle\mathcal{M}_{\mathfrak{g}}(\mathbf{x})= 14(ψf(𝐱)+ψb(𝐱))2𝔤¯(𝐱)𝔤¯(𝐱)\displaystyle\frac{1}{4}(\psi_{\rm f}(\mathbf{x})+\psi_{\rm b}(\mathbf{x}))^{2}\,\bar{\mathfrak{g}}(\mathbf{x})\otimes\bar{\mathfrak{g}}(\mathbf{x})
+𝔤¯(𝐱)𝔤¯(𝐱),\displaystyle+\bar{\mathfrak{g}}^{\perp}(\mathbf{x})\otimes\bar{\mathfrak{g}}^{\perp}(\mathbf{x}), (29)

and

ω𝔤(𝐱)=12(ψb(𝐱)ψf(𝐱))𝔤¯(𝐱).\vec{\omega}_{\mathfrak{g}}(\mathbf{x})=\frac{1}{2}(\psi_{\rm b}(\mathbf{x})-\psi_{\rm f}(\mathbf{x}))\,\bar{\mathfrak{g}}(\mathbf{x}). (30)

Based on the tensor field 𝔤\mathcal{M}_{\mathfrak{g}} and the vector field ω𝔤\vec{\omega}_{\mathfrak{g}} respectively formulated in Eqs. (3.1) and (30), the positiveness constraint (22) is satisfied due to the assumption that ψf(𝐱)>1\psi_{\rm f}(\mathbf{x})>1 and ψb(𝐱)>1,𝐱Ω\psi_{\rm b}(\mathbf{x})>1,\,\forall\mathbf{x}\in\Omega. The cost functions ψf\psi_{\rm f} and ψb\psi_{\rm b} can be derived from the image edge information such as the image gradients, which will be discussed in Section 4.

Note that if we set ψfψb\psi_{\rm f}\equiv\psi_{\rm b}, the vector field ω𝔤\vec{\omega}_{\mathfrak{g}} will vanish, i.e., ω𝔤𝟎\vec{\omega}_{\mathfrak{g}}\equiv\mathbf{0} (see Eq. (30)). In this case, one has ω𝔤(𝐱),𝐮=0\langle\vec{\omega}_{\mathfrak{g}}(\mathbf{x}),\mathbf{u}\rangle=0 for any point 𝐱Ω\mathbf{x}\in\Omega and any vector 𝐮2\mathbf{u}\in\mathbb{R}^{2}, leading to a special form of the Randers metric 𝒢𝔤\mathcal{G}_{\mathfrak{g}}. This special form is a symmetric (potentially anisotropic) Riemannian metric (𝐱,𝐮)=𝐮𝔤(𝐱)\mathcal{R}(\mathbf{x},\mathbf{u})=\|\mathbf{u}\|_{\mathcal{M}_{\mathfrak{g}}(\mathbf{x})} which depends only on the tensor field 𝔤\mathcal{M}_{\mathfrak{g}}.

Remark 1 (Randers Eikonal Equation)

The Eikonal equation for a general Finsler metric can be found in Eq. (7). Associated to the Randers metric 𝒢𝔤\mathcal{G}_{\mathfrak{g}} defined in (24), the general Eikonal equation (7) gets to be the following form

{𝒰𝔰(𝐱)ω𝔤(𝐱)𝔤1(𝐱)=1,𝐱Ω\𝔰,𝒰𝔰(𝐱)=0,𝐱𝔰,\begin{cases}\|\nabla\mathcal{U}_{\mathfrak{s}}(\mathbf{x})-\vec{\omega}_{\mathfrak{g}}(\mathbf{x})\|_{\mathcal{M}^{-1}_{\mathfrak{g}}(\mathbf{x})}=1,\quad&\forall\mathbf{x}\in\Omega\backslash\mathfrak{s},\\ \mathcal{U}_{\mathfrak{s}}(\mathbf{x})=0,\quad&\forall\mathbf{x}\in\mathfrak{s},\end{cases} (31)

where 𝒰𝔰\mathcal{U}_{\mathfrak{s}} is the geodesic distance map and 𝔰\mathfrak{s} is the source point set.

3.2 Tissot’s indicatrix

A basic tool for studying and visualizing the geometry distortion induced from a geodesic metric is the Tissot’s indicatrix defined as the collection of control sets in the tangent space chen2017global . For an arbitrary geodesic metric :Ω×2[0,]\mathcal{F}:\Omega\times\mathbb{R}^{2}\to[0,\infty], the control set (𝐱)\mathcal{B}(\mathbf{x}) for any point 𝐱Ω\mathbf{x}\in\Omega is defined as the unit ball centered at 𝐱\mathbf{x} such that

(𝐱):={𝐮2;(𝐱,𝐮)1}.\mathcal{B}(\mathbf{x}):=\{\mathbf{u}\in\mathbb{R}^{2};\mathcal{F}(\mathbf{x},\mathbf{u})\leq 1\}. (32)

We demonstrate the control sets (𝐪)\mathcal{B}(\mathbf{q}) in Fig. 3 for the Randers metric 𝒢𝔤(𝐪,)\mathcal{G}_{\mathfrak{g}}(\mathbf{q},\cdot) with different values of ψf(𝐪)\psi_{\rm f}(\mathbf{q}) and ψb(𝐪)\psi_{\rm b}(\mathbf{q}) at a point 𝐪Ω\mathbf{q}\in\Omega. The vector 𝔤(𝐪)\mathfrak{g}(\mathbf{q}) is set as

𝔤(𝐪)=(cos(π4),sin(π4))T.\mathfrak{g}(\mathbf{q})=\left(\cos\left(\frac{\pi}{4}\right),\sin\left(\frac{\pi}{4}\right)\right)^{T}.

In Fig. 3a, we show the control sets for the Randers metric 𝒢𝔤\mathcal{G}_{\mathfrak{g}} with respect to different values of ψb(𝐪)\psi_{\rm b}(\mathbf{q}) and a fixed value ψf(𝐪)=5\psi_{\rm f}(\mathbf{q})=5. One can point out that the common origin of these control sets have shifted from the original center of the ellipses222These ellipses are the boundaries of the control sets. due to the asymmetric property as formulated in Eq. (3). In Fig. 3b, the control sets for the Randers metric 𝒢𝔤\mathcal{G}_{\mathfrak{g}} associated to ψf(𝐪)=ψb(𝐪)>1\psi_{\rm f}(\mathbf{q})=\psi_{\rm b}(\mathbf{q})>1 are demonstrated, where 𝒢𝔤(𝐪,)\mathcal{G}_{\mathfrak{g}}(\mathbf{q},\cdot) gets to be anisotropic and symmetric on its second argument. When ψf(𝐪)=ψb(𝐪)=1\psi_{\rm f}(\mathbf{q})=\psi_{\rm b}(\mathbf{q})=1, the values of the Randers metric 𝒢𝔤(𝐪,u)\mathcal{G}_{\mathfrak{g}}(\mathbf{q},\vec{u}) turn to be invariant with respect to u\vec{u} as shown in Fig. 3c. In this case, the tensor 𝔤(𝐪)\mathcal{M}_{\mathfrak{g}}(\mathbf{q}) is propositional to the identity matrix.

In Fig. 4, we show the geodesic distance maps associated to 𝒢𝔤\mathcal{G}_{\mathfrak{g}} with different values of the cost functions ψf\psi_{\rm f} and ψb\psi_{\rm b}. The vector field 𝔤\mathfrak{g} is set to

𝔤(cos(π4),sin(π4))T.\mathfrak{g}\equiv\left(\cos\left(\frac{\pi}{4}\right),\sin\left(\frac{\pi}{4}\right)\right)^{T}.

In Figs. 4a and  4c, we can see that the geodesic distance maps have strongly asymmetric and anisotropic appearance. In Fig. 4b, we observe that the geodesic distance map appears to be symmetric and strongly anisotropic. This is because the respective propagation speed of the fast marching fronts along the directions (cos(π/4),sin(π/4))T(\cos(\pi/4),\sin(\pi/4))^{T} and (cos(π/4),sin(π/4))T-(\cos(\pi/4),\sin(\pi/4))^{T} is identical to each other.

4 Data-Driven Randers Metrics Construction

4.1 Cost Functions ψf\psi_{\rm f} and ψb\psi_{\rm b} for the Application of Foreground and Background Segmentation

In this section, we present the computation method for the cost functions ψf\psi_{\rm f} and ψb\psi_{\rm b} using the image edge information, based on which the image data-driven Randers metric 𝒢𝔤\mathcal{G}_{\mathfrak{g}} can be obtained.

Let 𝐈=(I1,I2,I3):Ω3\mathbf{I}=(I_{1},I_{2},I_{3}):\Omega\to\mathbb{R}^{3} be a vector-valued image in the chosen color space and let GσG_{\sigma} be a Gaussian kernel with variance σ\sigma (We set σ=1\sigma=1 through all the experiments of this paper). The gradient of the image 𝐈\mathbf{I} at each point 𝐱=(x,y)\mathbf{x}=(x,y) is a 2×32\times 3 Jacobian matrix

𝐈σ(𝐱)=Gσ𝐈(𝐱)\nabla\mathbf{I}_{\sigma}(\mathbf{x})=\nabla G_{\sigma}\ast\mathbf{I}\,(\mathbf{x})

involving the Gaussian-smoothed first-order derivatives along the axis directions xx and yy

𝐈σ(𝐱)=(xGσI1xGσI2xGσI3yGσI1yGσI2yGσI3)(𝐱).\nabla\mathbf{I}_{\sigma}(\mathbf{x})=\begin{pmatrix}\partial_{x}G_{\sigma}\ast I_{1}~~&\partial_{x}G_{\sigma}\ast I_{2}~~&\partial_{x}G_{\sigma}\ast I_{3}\\ \partial_{y}G_{\sigma}\ast I_{1}~~&\partial_{y}G_{\sigma}\ast I_{2}~~&\partial_{y}G_{\sigma}\ast I_{3}\\ \end{pmatrix}(\mathbf{x}). (33)

Let ρ:Ω\rho:\Omega\to\mathbb{R} be an edge saliency map. It has high values in the vicinity of image edges and low values inside the flatten regions. For each domain point 𝐱Ω\mathbf{x}\in\Omega, the value of ρ(𝐱)\rho(\mathbf{x}) can be computed by the Frobenius norm of the Jacobian matrix 𝐈σ(𝐱)\nabla\mathbf{I}_{\sigma}(\mathbf{x})

ρ(𝐱)=i=13(|xGσIi(𝐱)|2+|yGσIi(𝐱)|2).\rho(\mathbf{x})=\sqrt{\sum_{i=1}^{3}\Big{(}|\partial_{x}G_{\sigma}\ast I_{i}(\mathbf{x})|^{2}+|\partial_{y}G_{\sigma}\ast I_{i}(\mathbf{x})|^{2}\Big{)}}. (34)

For a gray level image I:ΩI:\Omega\to\mathbb{R}, the edge saliency map ρ\rho can be simply computed by the norm of the Euclidean gradient of the image II such that

ρ(𝐱)=|xGσI(𝐱)|2+|yGσI(𝐱)|2.\rho(\mathbf{x})=\sqrt{|\partial_{x}G_{\sigma}\ast I(\mathbf{x})|^{2}+|\partial_{y}G_{\sigma}\ast I(\mathbf{x})|^{2}}. (35)

Construction of the Vector Field 𝔤\mathfrak{g}. We use the gradient vector flow method xu1998snakes to compute the vector field 𝔤\mathfrak{g} for the construction of the Randers metric 𝔤\mathcal{F}_{\mathfrak{g}}. This can be done by minimizing the following functional gvf\mathcal{E}_{\rm gvf} with respect to a vector field h=(h1,h2)T:Ω2\vec{h}=(h_{1},h_{2})^{T}:\Omega\to\mathbb{R}^{2}, where gvf\mathcal{E}_{\rm gvf} can be expressed as

gvf(h)=ϵreg(h)+data(h),\mathcal{E}_{\rm gvf}(\vec{h})=\epsilon\,\mathcal{E}_{\rm reg}(\vec{h})+\mathcal{E}_{\rm data}(\vec{h}), (36)

where ϵ+\epsilon\in\mathbb{R}^{+} is a constant and

reg(h)=Ω(h1(𝐱)2+h2(𝐱)2)𝑑𝐱,\displaystyle\mathcal{E}_{\rm reg}(\vec{h})=\int_{\Omega}\big{(}\|\nabla h_{1}(\mathbf{x})\|^{2}+\|\nabla h_{2}(\mathbf{x})\|^{2}\big{)}\,d\mathbf{x}, (37)
data(h)=Ωρ(𝐱)2h(𝐱)ρ(𝐱)2𝑑𝐱.\displaystyle\mathcal{E}_{\rm data}(\vec{h})=\int_{\Omega}\|\nabla\rho(\mathbf{x})\|\,^{2}\|\vec{h}(\mathbf{x})-\nabla\rho(\mathbf{x})\|^{2}\,d\mathbf{x}. (38)

The parameter ϵ\epsilon controls the balance between the regularization term reg\mathcal{E}_{\rm reg} and the data fidelity term data\mathcal{E}_{\rm data}. As discussed in xu1998snakes , the values of ϵ\epsilon should depend on the image noise levels such that a large value of ϵ\epsilon is able to suppress the effects from image noise. We set ϵ=0.1\epsilon=0.1 through all the numerical experiments of this paper. The minimization of the functional gvf\mathcal{E}_{\rm gvf} can be carried out by solving the Euler-Lagrange equations of the functional gvf\mathcal{E}_{\rm gvf} with respect to the components h1h_{1} and h2h_{2}. The gradient vector flow h\vec{h} is more dense and smooth than the original gradient filed ρ\nabla\rho. In the vicinity of edges, the values of ρ\|\nabla\rho\| are large and one has the approximation hρ\vec{h}\approx\nabla\rho due to the effects of the data fidelity term data\mathcal{E}_{\rm data}, while in the flatten regions where the gradient ρ\nabla\rho nearly vanishes, the vector field h\vec{h} is forced to keep smooth (i.e., slowly-varying), because within these regions the minimization of the regularization term reg\mathcal{E}_{\rm reg} plays a dominating role for the computation of h\vec{h}. More details for gradient vector flow method can be found from xu1998snakes .

The vector field 𝔤\mathfrak{g} for the construction of the Randers metric 𝒢𝔤\mathcal{G}_{\mathfrak{g}} can be obtained by normalizing the vector field h\vec{h}

𝔤(𝐱)=h(𝐱)h(𝐱),𝐱Ω.\mathfrak{g}(\mathbf{x})=\frac{\vec{h}(\mathbf{x})}{\|\vec{h}(\mathbf{x})\|},\quad\forall\mathbf{x}\in\Omega. (39)

The cost functions ψf\psi_{\rm f} and ψb\psi_{\rm b} used in Eq. (27) for the foreground and background segmentation application can be expressed for any 𝐱Ω\mathbf{x}\in\Omega by

ψf(𝐱)=exp(αfρ(𝐱)ρ),\displaystyle\psi_{\rm f}(\mathbf{x})=\exp\left(\frac{\alpha_{\rm f}\,\rho(\mathbf{x})}{\|\rho\|_{\infty}}\right), (40)
ψb(𝐱)=exp(αbρ(𝐱)ρ)ψf(𝐱),\displaystyle\psi_{\rm b}(\mathbf{x})=\exp\left(\frac{\alpha_{\rm b}\,\rho(\mathbf{x})}{\|\rho\|_{\infty}}\right)\,\psi_{\rm f}(\mathbf{x}), (41)

where αf\alpha_{\rm f} and αb\alpha_{\rm b} are nonnegative constants dominating how anisotropic and asymmetric the Randers metric 𝒢𝔤\mathcal{G}_{\mathfrak{g}} is.

Once the cost functions ψf\psi_{\rm f} and ψb\psi_{\rm b} have been computed by Eqs. (40) and (41), we can construct the tensor filed 𝔤\mathcal{M}_{\mathfrak{g}} and the vector field ω𝔤\vec{\omega}_{\mathfrak{g}} respectively via Eqs. (3.1) and (30). Indeed, one has ψf(𝐱)ψb(𝐱)1\psi_{\rm f}(\mathbf{x})\approx\psi_{\rm b}(\mathbf{x})\approx 1 for the points 𝐱\mathbf{x} located in the homogeneous region of the image 𝐈\mathbf{I} where ρ(𝐱)0\rho(\mathbf{x})\approx 0. In this case, the data-driven Randers metric 𝒢𝔤(𝐱,)\mathcal{G}_{\mathfrak{g}}(\mathbf{x},\cdot) expressed in Eq. (24) approximates to be an isotropic Riemannian metric. For each point 𝐱\mathbf{x} around the image edges such that the value of ρ(𝐱)\rho(\mathbf{x}) is large, the Randers metric 𝒢𝔤(𝐱,)\mathcal{G}_{\mathfrak{g}}(\mathbf{x},\cdot) will appear to be strongly anisotropic and asymmetric.

Refer to caption
Figure 5: Fronts propagation results associated to the Randers metric 𝔤\mathcal{F}_{\mathfrak{g}} with different values of βd\beta_{\rm d}. (a) Original image with source points, respectively, placed in the foreground (green brush) and background (blue brush) regions. (b)-(d) Fronts propagation for the values of βd=0, 5\beta_{\rm d}=0,\,5 and 1010, respectively.

4.2 Cost Functions ψf\psi_{\rm f} and ψb\psi_{\rm b} for Tubularity Segmentation

In this section, we take into account a feature vector field 𝐩:Ω2\mathbf{p}:\Omega\to\mathbb{R}^{2} which extracts local orientation features from the image. A feature vector 𝐩(𝐱)\mathbf{p}(\mathbf{x}) characterizes the orientation that a tubular structure should have at a point 𝐱\mathbf{x} belonging to this structure. The feature vector field 𝐩\mathbf{p} can be estimated by the steerable filters jacob2004design; law2008three; frangi1998multiscale; freeman1991design.

Based on the cost functions ψf\psi_{\rm f} and ψb\psi_{\rm b} in Eqs. (39) and (40), we are able to build a positive symmetric definite tensor field 𝔤\mathcal{M}_{\mathfrak{g}} for the Randers metric 𝒢𝔤\mathcal{G}_{\mathfrak{g}}. For each point 𝐱\mathbf{x} inside the tubular structures where the gray levels vary slowly, the value of the gradient norm ρ(𝐱)\rho(\mathbf{x}) nearly vanishes, leading to ψb(𝐱)ψf(𝐱)1\psi_{\rm b}(\mathbf{x})\approx\psi_{\rm f}(\mathbf{x})\approx 1. In this case, the Randers metric 𝒢𝔤(𝐱,𝐮)\mathcal{G}_{\mathfrak{g}}(\mathbf{x},\mathbf{u}) is approximately independent of the directions 𝐮\mathbf{u} (see Section 4.1). However, with respect to tubular structure segmentation application, we expect that inside the tubular structure the fast marching fronts travel faster along the directions 𝐩()\mathbf{p}(\cdot) or 𝐩()-\mathbf{p}(\cdot) than along the directions 𝐩()\mathbf{p}^{\perp}(\cdot) or 𝐩()-\mathbf{p}^{\perp}(\cdot) in order to reduce the risk of the front leakages. For this purpose, we make use of a new tensor field ~𝔤:ΩS2+\tilde{\mathcal{M}}_{\mathfrak{g}}:\Omega\to S_{2}^{+} based on 𝔤\mathcal{M}_{\mathfrak{g}} in Eq. (3.1) such that

~𝔤(𝐱)=𝔤(𝐱)+μ𝐩(𝐱)𝐩(𝐱),𝐱Ω,\tilde{\mathcal{M}}_{\mathfrak{g}}(\mathbf{x})=\mathcal{M}_{\mathfrak{g}}(\mathbf{x})+\mu\,\mathbf{p}^{\perp}(\mathbf{x})\otimes\mathbf{p}^{\perp}(\mathbf{x}),\quad\forall\mathbf{x}\in\Omega,

where μ+\mu\in\mathbb{R}^{+} is a constant. It is relevant to the anisotropy property of the tensor field ~𝔤\tilde{\mathcal{M}}_{\mathfrak{g}}. In the numerical experiments of this paper, we set μ=ψf2\mu=\|\psi_{\rm f}\|^{2}_{\infty}.

In practice, we observe that inside the tubular structures, the feature vector field 𝐩\mathbf{p} can be well approximated by the vector field 𝔤\mathfrak{g}^{\perp} which is the orthogonal vector field of 𝔤\mathfrak{g} derived from Eqs. (36) and (39). In order to reduce the computation time, we construct the tensor field ~𝔤\tilde{\mathcal{M}}_{\mathfrak{g}} by the vector field 𝔤\mathfrak{g} such that

~𝔤(𝐱)=𝔤(𝐱)+μ𝔤(𝐱)𝔤(𝐱).\tilde{\mathcal{M}}_{\mathfrak{g}}(\mathbf{x})=\mathcal{M}_{\mathfrak{g}}(\mathbf{x})+\mu\,\mathfrak{g}(\mathbf{x})\otimes\mathfrak{g}(\mathbf{x}). (42)

In this case, we obtain a new Randers metric 𝒢~𝔤\tilde{\mathcal{G}}_{\mathfrak{g}} for the application of tubularity segmentation, which depends on the tensor field ~𝔤\tilde{\mathcal{M}}_{\mathfrak{g}} and can be formulated as

𝒢~𝔤(𝐱,𝐮):=𝐮,~𝔤(𝐱)𝐮ω𝔤(𝐱),𝐮.\tilde{\mathcal{G}}_{\mathfrak{g}}(\mathbf{x},\mathbf{u}):=\sqrt{\langle\mathbf{u},\tilde{\mathcal{M}}_{\mathfrak{g}}(\mathbf{x})\,\mathbf{u}\rangle}-\langle\vec{\omega}_{\mathfrak{g}}(\mathbf{x}),\mathbf{u}\rangle. (43)

Note that we build 𝒢~𝔤\tilde{\mathcal{G}}_{\mathfrak{g}} by using the same vector field ω𝔤\vec{\omega}_{\mathfrak{g}} with the Randers metric 𝒢𝔤\mathcal{G}_{\mathfrak{g}}. Based on the new Randers metric 𝒢~𝔤\tilde{\mathcal{G}}_{\mathfrak{g}}, inside the tubular structures the fast marching fronts will travel fast along the directions 𝐩()\mathbf{p}(\cdot) or 𝐩()-\mathbf{p}(\cdot), but slow when the fronts arrive at the boundaries and slower when the fronts tend to pass through them.

4.3 Computing the Potential

We present the computation methods for the potential function \mathfrak{C} used by the data-driven Randers metric that is formulated in Eq. (23). Basically, the potential function \mathfrak{C} should have small values in the homogeneous regions and large values in the vicinity of the image edges.

4.3.1 Foreground and Background Segmentation

For foreground and background segmentation application, the potential function FB:=\mathfrak{C}_{\rm FB}:=\mathfrak{C} has a form of

FB(𝐱)=exp(βsρ(𝐱)ρ)dyn(𝐱),\mathfrak{C}_{\rm FB}(\mathbf{x})=\exp\left(\frac{\beta_{\rm s}\,\rho(\mathbf{x})}{\|\rho\|_{\infty}}\right)\,\mathfrak{C}_{\rm dyn}(\mathbf{x}), (44)

where βs\beta_{\rm s} is a positive constant and ρ\rho is the edge saliency map defined in Eqs. (34) or (35). The term exp(βsρ(𝐱))\exp(\beta_{\rm s}\,\rho(\mathbf{x})) which depends only on the edge saliency map ρ\rho will keep invariant during the fast marching fronts propagation. The dynamic potential function dyn\mathfrak{C}_{\rm dyn} relies on the positions of the fronts. It will be updated in the course of the geodesic distances computation in terms of some consistency measure of image features bai2009geodesic . Basically, the values of the dynamic potential dyn\mathfrak{C}_{\rm dyn} should be small in the homogeneous regions. We use a feature map 𝔉:Ωn\mathfrak{F}:\Omega\to\mathbb{R}^{n} with nn the dimensions of the feature vector to establish the dynamic potential dyn\mathfrak{C}_{\rm dyn}. The feature map 𝔉\mathfrak{F} can be the image color vector (n=3n=3), the image gray level (n=1n=1), or the scalar probability map (n=1n=1) as used in bai2009geodesic .

Recall that in each fast marching distance update iteration, the latest Accepted point 𝐱min\mathbf{x}_{\rm min} is chosen by searching for a Trial point with minimal distance value 𝒰𝔰\mathcal{U}_{\mathfrak{s}} (𝔰\mathfrak{s} is the set of the source points), i.e.,

𝐱min:=argmin𝐱:b(𝐱)=Trial𝒰𝔰(𝐱).\mathbf{x}_{\rm min}:=\underset{\mathbf{x}:b(\mathbf{x})=\emph{Trial}}{\rm{arg\,min}}~\mathcal{U}_{\mathfrak{s}}(\mathbf{x}). (45)

Then the value of dyn(𝐳)\mathfrak{C}_{\rm dyn}(\mathbf{z}) for each point 𝐳2\𝔰\mathbf{z}\in\mathbb{Z}^{2}\backslash\mathfrak{s} such that 𝐱minΛ(𝐳)\mathbf{x}_{\rm min}\in\Lambda(\mathbf{z}) and b(𝐳)b(\mathbf{z})\neqAccepted can be updated by evaluating the Euclidean distance between 𝔉(𝐳)\mathfrak{F}(\mathbf{z}) and 𝔉(𝐱min)\mathfrak{F}(\mathbf{x}_{\rm min}) (see Line 14 of Algorithm 1). In other words, one can compute the dynamic potential dyn\mathfrak{C}_{\rm dyn} in each fast marching update iteration by

dyn(𝐳)=exp(βd𝔉(𝐳)𝔉(𝐱min))\mathfrak{C}_{\rm dyn}(\mathbf{z})=\exp(\,\beta_{\rm d}\,\|\mathfrak{F}(\mathbf{z})-\mathfrak{F}(\mathbf{x}_{\rm min})\|\,) (46)

for all grid points 𝐳2\𝔰\mathbf{z}\in\mathbb{Z}^{2}\backslash\mathfrak{s} such that 𝐱minΛ(𝐳)\mathbf{x}_{\rm min}\in\Lambda(\mathbf{z}) and b(𝐳)b(\mathbf{z})\neqAccepted, where βd\beta_{\rm d} is a positive constant. Note that we initialize the dynamic potential dyn\mathfrak{C}_{\rm dyn} by

dyn(𝐱)=1,𝐱𝔰.\mathfrak{C}_{\rm dyn}(\mathbf{x})=1,\quad\forall\mathbf{x}\in\mathfrak{s}.

Based on the potential FB\mathfrak{C}_{\rm FB} in Eq. (44) and the Randers metric 𝒢𝔤\mathcal{G}_{\mathfrak{g}} (see Section 4.1), the data-driven Randers metric 𝔤\mathcal{F}_{\mathfrak{g}} for the foreground and background segmentation application can be expressed for any point 𝐱Ω\mathbf{x}\in\Omega and any vector 𝐮2\mathbf{u}\in\mathbb{R}^{2} by

𝔤(𝐱,𝐮)=FB(𝐱)𝒢𝔤(𝐱,𝐮).\mathcal{F}_{\mathfrak{g}}(\mathbf{x},\mathbf{u})=\mathfrak{C}_{\rm FB}(\mathbf{x})\,\mathcal{G}_{\mathfrak{g}}(\mathbf{x},\mathbf{u}). (47)

Finally, we show the effects of the dynamic potential dyn\mathfrak{C}_{\rm dyn} in Eq. (46) in the foreground and background segmentation application. The fronts propagation results are shown in Fig. (5) with respect to the Randers metric 𝔤\mathcal{F}_{\mathfrak{g}}. In this experiment, we choose different values for the parameter βd\beta_{\rm d} that is used by the dynamic potential dyn\mathfrak{C}_{\rm dyn} and a fixed parameter βs=10\beta_{\rm s}=10 to compute the edge-based potential FB\mathfrak{C}_{\rm FB}. The values of αf\alpha_{\rm f} and αb\alpha_{\rm b} are set to be 22 and 33, respectively. Indeed, one can point out that the dynamic potential is able to help the fronts propagation scheme to avoid leakages.

4.3.2 Tubularity Segmentation

We assume that the gray levels inside the tubular structures are stronger than outside. For tubularity segmentation, we consider a potential function T:=\mathfrak{C}_{\rm T}:=\mathfrak{C} involving a static term and a dynamic term ~dyn\tilde{\mathfrak{C}}_{\rm dyn} such that

T(𝐱)=exp(βs(ζζ(𝐱)))~dyn(𝐱),\mathfrak{C}_{\rm T}(\mathbf{x})=\exp\big{(}\beta_{\rm s}(\|\zeta\|_{\infty}-\zeta(\mathbf{x}))\big{)}\,\tilde{\mathfrak{C}}_{\rm dyn}(\mathbf{x}), (48)

where ζ:Ω[0,1]\zeta:\Omega\to[0,1] is a feature map that characterizes the tubularity appearance, i.e., the value of ζ(𝐱)\zeta(\mathbf{x}) indicates the probability of a point 𝐱\mathbf{x} belonging to a tubular structure. In practice, the map ζ\zeta can be specified as the image gray levels or as a normalized vesselness map derived from a tubularity detector such as frangi1998multiscale; franken2009crossing; law2008three.

The dynamic potential ~dyn\tilde{\mathfrak{C}}_{\rm dyn} is estimated in the course of the fast marching fronts propagation. The computation scheme of ~dyn\tilde{\mathfrak{C}}_{\rm dyn} is almost identical to the dynamic potential dyn\mathfrak{C}_{\rm dyn} presented in Section 4.3.1, except that the dynamic potential ~dyn\tilde{\mathfrak{C}}_{\rm dyn} for tubularity segmentation is dependent on the feature map ζ\zeta.

We also initialize the dynamic potential by ~dyn(𝐱)=1,𝐱𝔰\tilde{\mathfrak{C}}_{\rm dyn}(\mathbf{x})=1,~\forall\mathbf{x}\in\mathfrak{s}. In each geodesic distance update iteration, we suppose 𝐱min\mathbf{x}_{\rm min} be the latest Accepted point. For each grid point 𝐳2\𝔰\mathbf{z}\in\mathbb{Z}^{2}\backslash\mathfrak{s} such that 𝐱minΛ(𝐳)\mathbf{x}_{\rm min}\in\Lambda(\mathbf{z}) and b(𝐳)b(\mathbf{z})\neqAccepted, we update the dynamic potential ~dyn\tilde{\mathfrak{C}}_{\rm dyn} by

~dyn(𝐳)=exp(βd|min{ζ(𝐳)ζ(𝐱min),0}|).\displaystyle\tilde{\mathfrak{C}}_{\rm dyn}(\mathbf{z})=\exp(\,\beta_{\rm d}\,|\min\{\zeta(\mathbf{z})-\zeta(\mathbf{x}_{\rm min}),0\}|\,). (49)

The reason for the use of (49) is that if the latest Accepted point 𝐱min\mathbf{x}_{\rm min} belongs to a tubular structure, then the inequality ζ(𝐳)>ζ(𝐱min)\zeta(\mathbf{z})>\zeta(\mathbf{x}_{\rm min}) means that the neighbour point 𝐳\mathbf{z} also belongs to this structure. Therefore, we assign a small value to ~dyn\tilde{\mathfrak{C}}_{\rm dyn}. In this paper, we set the map ζ\zeta as the normalized image gray levels, i.e., ζ(𝐱)[0,1],𝐱Ω\zeta(\mathbf{x})\in[0,1],~\forall\mathbf{x}\in\Omega.

The data-driven Randers metric ~𝔤\tilde{\mathcal{F}}_{\mathfrak{g}} for tubularity segmentation can be formulated by

~𝔤(𝐱,𝐮)=T(𝐱)𝒢~𝔤(𝐱,𝐮),𝐱Ω,𝐮2,\tilde{\mathcal{F}}_{\mathfrak{g}}(\mathbf{x},\mathbf{u})=\mathfrak{C}_{\rm T}(\mathbf{x})\,\tilde{\mathcal{G}}_{\mathfrak{g}}(\mathbf{x},\mathbf{u}),\quad\forall\mathbf{x}\in\Omega,\,\forall\mathbf{u}\in\mathbb{R}^{2}, (50)

where the potential T\mathfrak{C}_{\rm T} and the metric 𝒢~𝔤\tilde{\mathcal{G}}_{\mathfrak{g}} are expressed in Eqs. (48) and (43), respectively.

Refer to caption
Figure 6: a shows a synthetic image. The blue dots indicate two sampled points. The arrows indicate the directions 𝔤(𝐱)\mathfrak{g}(\mathbf{x}) and 𝔤(𝐲)\mathfrak{g}(\mathbf{y}). b and c Plots of the cost values of 𝒢𝔤(0,0)\mathcal{G}^{(0,0)}_{\mathfrak{g}}, 𝒢𝔤(2,0)\mathcal{G}^{(2,0)}_{\mathfrak{g}} and 𝒢𝔤(2,1)\mathcal{G}^{(2,1)}_{\mathfrak{g}} at points 𝐱\mathbf{x} and 𝐲\mathbf{y} along different directions.
Refer to caption
Figure 7: a A synthetic image. The blue dots indicate two sampled points. The arrows indicate the directions of 𝔤(𝐱)\mathfrak{g}(\mathbf{x}) and 𝔤(𝐲)\mathfrak{g}(\mathbf{y}). b and c Plots of the cost values of 𝒢~𝔤(0,0)\tilde{\mathcal{G}}^{(0,0)}_{\mathfrak{g}}, 𝒢~𝔤(2,0)\tilde{\mathcal{G}}^{(2,0)}_{\mathfrak{g}} and 𝒢~𝔤(2,1)\tilde{\mathcal{G}}^{(2,1)}_{\mathfrak{g}} at points 𝐱\mathbf{x} and 𝐲\mathbf{y} along different directions.

5 Experimental Results

5.1 Implementation Details

Parameter Setting. The anisotropy and asymmetry of the Randers metrics 𝒢𝔤\mathcal{G}_{\mathfrak{g}} and 𝒢~𝔤\tilde{\mathcal{G}}_{\mathfrak{g}} are determined by the parameters αf\alpha_{\rm f} and αb\alpha_{\rm b} (see Eqs. (40) and (41)). We respectively denote by 𝒢𝔤α\mathcal{G}_{\mathfrak{g}}^{\vec{\alpha}} and 𝒢~𝔤α\tilde{\mathcal{G}}_{\mathfrak{g}}^{\vec{\alpha}} the data-driven Randers metrics 𝒢𝔤\mathcal{G}_{\mathfrak{g}} and 𝒢~𝔤\tilde{\mathcal{G}}_{\mathfrak{g}} with a pair of parameters α=(αf,αb)\vec{\alpha}=(\alpha_{\rm f},\alpha_{\rm b}). In this case, the corresponding Randers metrics 𝔤\mathcal{F}_{\mathfrak{g}} in Eq. (47) and ~𝔤\tilde{\mathcal{F}}_{\mathfrak{g}} in (50) can be noted by 𝔤α\mathcal{F}^{\vec{\alpha}}_{\mathfrak{g}} and ~𝔤α\tilde{\mathcal{F}}^{\vec{\alpha}}_{\mathfrak{g}}, respectively. The potential functions FB\mathfrak{C}_{\rm FB} and T\mathfrak{C}_{\rm T} rely on two parameters βs\beta_{\rm s} and βd\beta_{\rm d}. We fix βd=10\beta_{\rm d}=10 through all the experiments, except in Fig. 8 for which we set βd=5\beta_{\rm d}=5. The values of βs\beta_{\rm s} are individually set for each experiment.

Note that the parameter α=(0,0)\vec{\alpha}=(0,0) indicates that the geodesic metrics 𝒢𝔤(0,0)\mathcal{G}^{(0,0)}_{\mathfrak{g}} and 𝒢~𝔤(0,0)\tilde{\mathcal{G}}^{(0,0)}_{\mathfrak{g}} are isotropic with respect to the second argument. Furthermore, when α=(a,0)\vec{\alpha}=(a,0) with a+a\in\mathbb{R}^{+}, the metrics 𝒢𝔤(a,0)\mathcal{G}_{\mathfrak{g}}^{(a,0)} and 𝒢~𝔤(a,0)\tilde{\mathcal{G}}_{\mathfrak{g}}^{(a,0)} get to be the anisotropic Riemannian cases333Note that metrics 𝒢𝔤α\mathcal{G}_{\mathfrak{g}}^{\vec{\alpha}} and 𝒢~𝔤α\tilde{\mathcal{G}}_{\mathfrak{g}}^{\vec{\alpha}} have the identical anisotropy and asymmetry properties to 𝔤α\mathcal{F}_{\mathfrak{g}}^{\vec{\alpha}} and ~𝔤α\tilde{\mathcal{F}}_{\mathfrak{g}}^{\vec{\alpha}}, respectively..

Image Segmentation Schemes. The interactive foreground and background segmentation task can be converted to the problem of identifying the Voronoi index map or Voronoi regions in terms of geodesic distance bai2009geodesic ; arbelaez2004energy . Let 𝔰1\mathfrak{s}_{1} and 𝔰2\mathfrak{s}_{2} be the sets of source points which are respectively located at the foreground and background regions. The Voronoi regions 𝒱1\mathcal{V}_{1} and 𝒱2\mathcal{V}_{2}, indicating foreground and background regions respectively, can be determined by the Voronoi index map \mathcal{L} through Eq. (11) such that

𝒱i:={𝐱Ω;(𝐱)=i},i=1, 2.\mathcal{V}_{i}:=\{\mathbf{x}\in\Omega;\mathcal{L}(\mathbf{x})=i\},\quad i=1,\,2.

With respect to the foreground and background segmentation, the computation complexity for the geodesic distance computation is consistent to the used fast marching method mirebeau2014efficient , which is bounded by 𝒪(Nlnκ(𝔤)+NlnN)\mathcal{O}(N\ln\kappa(\mathcal{F}_{\mathfrak{g}})+N\ln N) with NN the number of the grid points in 2\mathbb{Z}^{2}.

For tubularity segmentation, all the user-provided seeds are supposed to be placed inside the targeted structures. We make use of the ThT_{h}-level set of the geodesic distance map 𝒰𝔰\mathcal{U}_{\mathfrak{s}} as the boundaries of the targeted tubular structures. We denote by NacceptedN_{\rm accepted} the number of the grid points in 2\mathbb{Z}^{2} tagged as Accepted, i.e.,

Naccepted=#{𝐱2;b(𝐱)=Accepted}.N_{\rm accepted}=\#\{\mathbf{x}\in\mathbb{Z}^{2};\,b(\mathbf{x})=\emph{Accepted}\}.

In order to reduce the computation time of the fast marching method, we terminate the fronts propagation once the number NacceptedN_{\rm accepted} of the grid points tagged as Accepted reaches the given thresholding value NthN_{\rm th}. In this case, the tubular structures can be recovered by the regions which are comprised of all the Accepted points. Let NtrialN_{\rm trial} be the number of Trial grid points when NacceptedN_{\rm accepted} points have been tagged as Accepted and let Nused=Naccepted+NtrialN_{\rm used}=N_{\rm accepted}+N_{\rm trial} be the total number of grid points for which the distance values have been updated. The computation complexity for this application is bounded by 𝒪(Nusedlnκ(~𝔤)+NusedlnNused)\mathcal{O}(N_{\rm used}\ln\kappa(\tilde{\mathcal{F}}_{\mathfrak{g}})+N_{\rm used}\ln N_{\rm used}), since only NusedN_{\rm used} grid points are visited by the fast marching fronts.

Refer to caption
Figure 8: Image segmentation via different geodesic metrics on a synthetic image. Column 1 shows the initializations, where the green and blue brushes indicating the seeds in different regions. Columns 2-4 show the segmentation results by the fronts propagation associated to the isotropic Riemannian metric 𝔤(0,0)\mathcal{F}^{(0,0)}_{\mathfrak{g}}, the anisotropic Riemannian metric 𝔤(2,0)\mathcal{F}^{(2,0)}_{\mathfrak{g}} and the Randers metric 𝔤(2,3)\mathcal{F}_{\mathfrak{g}}^{(2,3)}, respectively. The blue curves are the segmented boundaries of the Voronoi regions.
Refer to caption
Figure 9: Image segmentation via different geodesic metrics on real images. Column 1 shows the initializations, where the green and blue brushes are the seeds indicate the background and foreground regions. Columns 2-4 show the segmentation results by the metrics 𝔤(0,0)\mathcal{F}^{(0,0)}_{\mathfrak{g}}, 𝔤(2,0)\mathcal{F}^{(2,0)}_{\mathfrak{g}} and 𝔤(2,3)\mathcal{F}_{\mathfrak{g}}^{(2,3)}, respectively. The red curves are the segmented boundaries of the respective Voronoi regions.
Refer to caption
Figure 10: Tubularity segmentation results via different geodesic metrics on a Spiral. Column 1 shows the initializations with the blue brushes indicating the seeds. Columns 2-4 show the segmentation results through the geodesic metrics ~𝔤(0,0)\tilde{\mathcal{F}}^{(0,0)}_{\mathfrak{g}}, ~𝔤(2,0)\tilde{\mathcal{F}}^{(2,0)}_{\mathfrak{g}} and ~𝔤(2,3)\tilde{\mathcal{F}}_{\mathfrak{g}}^{(2,3)}, respectively.
Refer to caption
Figure 11: Tubularity segmentation results via different geodesic metrics on a tubular tree. Column 1 shows the initializations with the blue brushes indicating the seeds. Columns 2-4 show the segmentation results through the geodesic metrics ~𝔤(0,0)\tilde{\mathcal{F}}^{(0,0)}_{\mathfrak{g}}, ~𝔤(2,0)\tilde{\mathcal{F}}^{(2,0)}_{\mathfrak{g}} and ~𝔤(2,3)\tilde{\mathcal{F}}_{\mathfrak{g}}^{(2,3)}, respectively.

5.2 Advantages of Using Anisotropy and Asymmetry Enhancements

Let us consider a synthetic image as shown in Fig. 6a with two sampled points 𝐱\mathbf{x} and 𝐲\mathbf{y} indicated by blue dots. The arrows respectively indicate the directions of 𝔤(𝐱)\mathfrak{g}(\mathbf{x}) and 𝔤(𝐲)\mathfrak{g}(\mathbf{y}), where 𝐱\mathbf{x} is near the edges and 𝐲\mathbf{y} is located inside the homogeneous region. In Fig. 6b, we plot the cost values of the metrics 𝒢𝔤(0,0)(𝐱,𝐮j)\mathcal{G}^{(0,0)}_{\mathfrak{g}}(\mathbf{x},\mathbf{u}_{j}), 𝒢𝔤(2,0)(𝐱,𝐮j)\mathcal{G}_{\mathfrak{g}}^{(2,0)}(\mathbf{x},\mathbf{u}_{j}) and 𝒢𝔤(2,1)(𝐱,𝐮j)\mathcal{G}^{(2,1)}_{\mathfrak{g}}(\mathbf{x},\mathbf{u}_{j}), along different directions uj2\vec{u}_{j}\in\mathbb{R}^{2}. The directions 𝐮j\mathbf{u}_{j} are obtained by rotation such that

uj=M(jθs)𝔤(𝐱),j=1,2,,72,\vec{u}_{j}=M(j\,\theta_{\rm s})\,\mathfrak{g}(\mathbf{x}),\quad j=1,2,...,72, (51)

where θs=π/36\theta_{\rm s}=\pi/36 is the angle resolution and M(jθs)M(j\,\theta_{\rm s}) is a rotation matrix with angle jθsj\,\theta_{\rm s} in a countclockwise order. In Fig. 6c, we plot the cost values for the metrics 𝒢𝔤(0,0)(𝐲,vj)\mathcal{G}^{(0,0)}_{\mathfrak{g}}(\mathbf{y},\vec{v}_{j}), 𝒢𝔤(2,0)(𝐲,𝐯j)\mathcal{G}^{(2,0)}_{\mathfrak{g}}(\mathbf{y},\mathbf{v}_{j}) and 𝒢𝔤(2,1)(𝐲,vj)\mathcal{G}^{(2,1)}_{\mathfrak{g}}(\mathbf{y},\vec{v}_{j}) with

vj=M(jθs)𝔤(𝐲).\vec{v}_{j}=M(j\,\theta_{\rm s})\mathfrak{g}(\mathbf{y}).

In Fig. 6b, we can see that all of the three metrics get low values around the directions M(π/2)𝔤(𝐱)M(\pi/2)\,\mathfrak{g}(\mathbf{x}) and M(3π/2)𝔤(𝐱)M(3\pi/2)\,\mathfrak{g}(\mathbf{x}), which are orthogonal to the direction 𝔤(𝐱)\mathfrak{g}(\mathbf{x}). However, around the direction 𝔤(𝐱)-\mathfrak{g}(\mathbf{x}), the Randers metric 𝒢𝔤(2,1)\mathcal{G}^{(2,1)}_{\mathfrak{g}} attains much larger values than the Riemannian cases 𝒢𝔤(0,0)\mathcal{G}_{\mathfrak{g}}^{(0,0)} and 𝒢𝔤(2,0)\mathcal{G}_{\mathfrak{g}}^{(2,0)}. Such an asymmetric property is able to reduce the risk of front leakages.

In Fig. 7, we plot the cost values for the metrics 𝒢~𝔤(0,0)\tilde{\mathcal{G}}^{(0,0)}_{\mathfrak{g}}, 𝒢~𝔤(2,0)\tilde{\mathcal{G}}^{(2,0)}_{\mathfrak{g}} and 𝒢~𝔤(2,1)\tilde{\mathcal{G}}^{(2,1)}_{\mathfrak{g}} at the points 𝐱\mathbf{x} and 𝐲\mathbf{y} along different rotated directions. In Fig. 7b, the cost values (indicated by the red curve) of the Randers metric 𝒢~𝔤(2,1)\tilde{\mathcal{G}}_{\mathfrak{g}}^{(2,1)} at the point 𝐱\mathbf{x} near the edges and outside the tubular structure show strongly asymmetric property. In Fig. 7c, we can see that along all of the rotated directions, the cost values for both the Randers metric 𝒢~𝔤(2,1)\tilde{\mathcal{G}}_{\mathfrak{g}}^{(2,1)} are equivalent to the anisotropic Riemannian metric 𝒢~𝔤(2,0)\tilde{\mathcal{G}}_{\mathfrak{g}}^{(2,0)}. This anisotropic property is able to force the fast marching fronts travel faster along the tubularity orientations which are approximated by the vector field 𝔤\mathfrak{g}^{\perp}.

5.3 Experiments on Synthetic and Real Images

In Fig. 8, we show the fronts propagation results on a synthetic image. In the first column of Fig. 8, we initialize the sets of the source points in different locations, which are indicated by green and blue brushes. The columns 22 to 44 of Fig. 8 are the segmentation results from the isotropic Riemannian metric 𝔤(0,0)\mathcal{F}_{\mathfrak{g}}^{(0,0)}, the anisotropic Riemannian metric 𝔤(2,0)\mathcal{F}^{(2,0)}_{\mathfrak{g}} and the Randers metric 𝔤(2,3)\mathcal{F}^{(2,3)}_{\mathfrak{g}}, respectively. For the purpose of fair comparisons, the three metrics used in this experiment share the same potential function \mathfrak{C} defined in Eq. (44). One can point out that the results from the metrics 𝔤(0,0)\mathcal{F}^{(0,0)}_{\mathfrak{g}} and 𝔤(2,0)\mathcal{F}^{(2,0)}_{\mathfrak{g}} suffer from the leaking problem, while the final boundaries (red curves) associated the proposed Randers metric 𝔤(2,3)\mathcal{F}^{(2,3)}_{\mathfrak{g}} are able to catch the expected edges thanks to the asymmetric enhancement. In this experiment, we choose βd=5\beta_{\rm d}=5.

In Fig. 9, we compare the interactive image segmentation results via different geodesic metrics on real images which are obtained from the Weizmann dataset alpert2012image and the Grabcut dataset rother2004grabcut . The final segmentation results are derived from the boundaries of the corresponding Voronoi index maps. In column 1, we show the initial images with seeds indicating by green and blue brushes respectively inside the foreground and background regions. In columns 22 to 44 of Fig. 9, we demonstrate the segmentation results obtained via the isotropic Riemannian metric 𝔤(0,0)\mathcal{F}_{\mathfrak{g}}^{(0,0)}, the anisotropic Riemannian metric 𝔤(2,0)\mathcal{F}_{\mathfrak{g}}^{(2,0)} and the Randers Metric 𝔤(2,3)\mathcal{F}_{\mathfrak{g}}^{(2,3)}. For the results from the isotropic and anisotropic Riemannian metrics (shown in columns 22 and 33), the final contours leak into the background regions. In contrast, the segmentation contours associated to the Randers metric (2,3)\mathcal{F}^{(2,3)} are able to follow the desired object boundaries.

In Fig. 10, we compare the tubularity segmentation results on a Spiral respectively using the isotropic Riemannian metric ~𝔤(0,0)\tilde{\mathcal{F}}^{(0,0)}_{\mathfrak{g}}, the anisotropic Riemannian metric ~𝔤(2,0)\tilde{\mathcal{F}}^{(2,0)}_{\mathfrak{g}} and the Randers metric ~𝔤(2,3)\tilde{\mathcal{F}}^{(2,3)}_{\mathfrak{g}}. The tubularity boundaries (red curves) are computed through the level set lines of the respective geodesic distance maps with an identical thresholding value of NthN_{\rm th}. The shadow regions indicate the segmented regions involving all the points tagged as Accepted. In the first column of Fig. 10, for each row the respective source points are placed at the end of the Spiral. One can point out that the final segmentation contours corresponding to the isotropic Riemannian metric ~𝔤(0,0)\tilde{\mathcal{F}}_{\mathfrak{g}}^{(0,0)} (shown in column 22) and the anisotropic Riemannian metric ~𝔤(2,0)\tilde{\mathcal{F}}^{(2,0)}_{\mathfrak{g}} (shown in column 33) leak into the background before the whole tubular structure has been covered by the fast marching fronts. Indeed, using the anisotropy enhancement can improve the segmentation results such that the leakages for the contours from the anisotropic Riemannian metric ~𝔤(2,0)\tilde{\mathcal{F}}_{\mathfrak{g}}^{(2,0)} only occur at the locations far from the seeds. Finally, the segmentation contours shown in column 44 resulted by the Randers metric (2,3)\mathcal{F}^{(2,3)} with both anisotropic and asymmetric enhancements are able to delineate the desired tubularity boundaries.

In Fig. 11, we perform the fast marching fronts propagation on a tubular tree structure. We again observe the leaking problem that occurs in the segmentation results derived from the isotropic Riemannian metric ~𝔤(0,0)\tilde{\mathcal{F}}^{(0,0)}_{\mathfrak{g}} and the anisotropic Riemannian metric ~𝔤(2,0)\tilde{\mathcal{F}}_{\mathfrak{g}}^{(2,0)}, which are shown in columns 2 and 3 respectively. While in column 44, the fronts are able to pass through the whole tubular tree structure before they leak into the background.

6 Conclusion

In this paper, we extend the fronts propagation framework from the Riemannian case to a general Finsler case with applications to image segmentation. The Finsler metric with a Randers form allows us to take into account the asymmetric and anisotropic image features in order to reduce the risk of the leaking problem during the fronts propagation. We presented a method for the construction of the Finsler metric with a Randers form using a vector field derived from the image edges. This metric can also integrate with a feature coherence penalization term updated in the course of the fast marching fronts propagation. We applied the fronts propagation model associated to the proposed Randers metrics to foreground and background segmentation and tubularity segmentation. Experimental results show that the proposed model indeed produces promising results.

Acknowledgment

The authors would like to thank all the anonymous reviewers for their detailed remarks that helped us improve the presentation of this paper. The authors thank Dr. Jean-Marie Mirebeau from Université Paris-Sud for his fruitful discussion and creative suggestions. The first author also thanks Dr. Gabriel Peyré from ENS Paris for his financial support. This work was partially supported by the European Research Council (ERC project SIGMA-Vision).

References

  • (1) Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. Journal of Computational Physics 118(2), 269–277 (1995)
  • (2) Alpert, S., Galun, M., Brandt, A., Basri, R.: Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Trans. on Pattern Analysis and Machine Intelligence 34(2), 315–327 (2012)
  • (3) Arbeláez, P., Cohen, L.: Constrained image segmentation from hierarchical boundaries. In: Proceedings of CVPR, pp. 1–8 (2008)
  • (4) Arbeláez, P.A., Cohen, L.D.: Energy partitions and image segmentation. Journal of Mathematical Imaging and Vision 20(1), 43–57 (2004)
  • (5) Bai, X., Sapiro, G.: A geodesic framework for fast interactive image and video segmentation and matting. In: Proceedings of ICCV 2007, pp. 1–8 (2007)
  • (6) Bai, X., Sapiro, G.: Geodesic matting: A framework for fast interactive image and video segmentation and matting. International Journal of Computer Vision 82(2), 113–132 (2009)
  • (7) Benmansour, F., Cohen, L.D.: Fast object segmentation by growing minimal paths from a single point on 2d or 3d images. Journal of Mathematical Imaging and Vision 33(2), 209–221 (2009)
  • (8) Bornemann, F., Rasch, C.: Finite-element discretization of static Hamilton-Jacobi equations based on a local variational principle. Computing and Visualization in Science 9(2), 57–69 (2006)
  • (9) Cardinal, M.H., Meunier, J., et al.: Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions. IEEE Trans. on Medical Imaging 25(5), 590–601 (2006)
  • (10) Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66(1), 1–31 (1993)
  • (11) Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)
  • (12) Chen, D., Cohen, L.D.: Vessel tree segmentation via front propagation and dynamic anisotropic riemannian metric. In: Proceedings of ISBI, pp. 1131–1134 (2016)
  • (13) Chen, D., Mirebeau, J.M., Cohen, L.D.: Finsler geodesic evolution model for region-based active contours. In: Proceedings of BMVC (2016)
  • (14) Chen, D., Mirebeau, J.M., Cohen, L.D.: Global minimum for a Finsler elastica minimal path approach. International Journal of Computer Vision 122(3), 458–483 (2017)
  • (15) Cohen, L.: Multiple contour finding and perceptual grouping using minimal paths. Journal of Mathematical Imaging and Vision 14(3), 225–236 (2001)
  • (16) Cohen, L.D.: On active contour models and balloons. CVGIP: Image Understanding 53(2), 211–218 (1991)
  • (17) Cohen, L.D., Deschamps, T.: Segmentation of 3D tubular objects with adaptive front propagation and minimal tree extraction for 3D medical imaging. Computer Methods in Biomechanics and Biomedical Engineering 10(4), 289–305 (2007)
  • (18) Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. International Journal of Computer Vision 24(1), 57–78 (1997)
  • (19) Criminisi, A., Sharp, T., Blake, A.: Geos: Geodesic image segmentation. In: Proceedings of ECCV, pp. 99–112 (2008)
  • (20) Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)
  • (21) Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)
  • (22) Kimmel, R., Bruckstein, A.M.: Regularized laplacian zero crossings as optimal edge integrators. International Journal of Computer Vision 53(3), 225–243 (2003)
  • (23) Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. on Image Processing 19(12), 3243–3254 (2010)
  • (24) Li, H., Yezzi, A.: Local or global minima: Flexible dual-front active contours. IEEE Trans. on Pattern Analysis and Machine Intelligence 29(1) (2007)
  • (25) Malladi, R., Sethian, J., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence 17(2), 158–175 (1995)
  • (26) Malladi, R., Sethian, J.A.: A real-time algorithm for medical shape recovery. In: Proceeding of ICCV, pp. 304–310 (1998)
  • (27) Melonakos, J., Pichon, E., Angenent, S., Tannenbaum, A.: Finsler active contours. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(3), 412–423 (2008)
  • (28) Mirebeau, J.M.: Anisotropic fast-marching on cartesian grids using lattice basis reduction. SIAM Journal on Numerical Analysis 52(4), 1573–1599 (2014)
  • (29) Mirebeau, J.M.: Efficient fast marching with Finsler metrics. Numerische Mathematik 126(3), 515–557 (2014)
  • (30) Mirebeau, J.M.: Anisotropic fast-marching on cartesian grids using voronoi’s first reduction of quadratic forms. Preprint (2017)
  • (31) Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. JCP 79(1), 12–49 (1988)
  • (32) Price, B.L., Morse, B., Cohen, S.: Geodesic graph cut for interactive image segmentation. In: Proceedings of CVPR, pp. 3161–3168 (2010)
  • (33) Randers, G.: On an asymmetrical metric in the four-space of general relativity. Physical Review 59(2), 195 (1941)
  • (34) Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Trans. on Graphics 23(3), 309–314 (2004)
  • (35) Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM Journal on Numerical Analysis 29(3), 867–884 (1992)
  • (36) Sethian, J.A.: Fast marching methods. SIAM Review 41(2), 199–235 (1999)
  • (37) Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton–Jacobi equations: Theory and algorithms. SIAM Journal on Numerical Analysis 41(1), 325–363 (2003)
  • (38) Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control 40(9), 1528–1538 (1995)
  • (39) Weber, O., Devir, Y.S., et al.: Parallel algorithms for approximation of distance maps on parametric surfaces. ACM Trans. on Graphics 27(4), 104 (2008)
  • (40) Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing 7(3), 359–369 (1998)
  • (41) Yatziv, L., Bartesaghi, A., Sapiro, G.: O (N) implementation of the fast marching algorithm. Journal of Computational Physics 212(2), 393–399 (2006)
  • (42) Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A geometric snake model for segmentation of medical imagery. IEEE Trans. on Medical Imaging 16(2), 199–209 (1997)