This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

FEM on nonuniform meshes for nonlocal Laplacian: Semi-analytic Implementation in One Dimension

   Hongbin Chen1,    Changtao Sheng2    and   Li-Lian Wang3
Abstract.

In this paper, we compute stiffness matrix of the nonlocal Laplacian discretized by the piecewise linear finite element on nonuniform meshes, and implement the FEM in the Fourier transformed domain. We derive useful integral expressions of the entries that allow us to explicitly or semi-analytically evaluate the entries for various interaction kernels. Moreover, the limiting cases of the nonlocal stiffness matrix when the interactional radius δ0\delta\rightarrow 0 or δ\delta\rightarrow\infty automatically lead to integer and fractional FEM stiffness matrices, respectively, and the FEM discretisation is intrinsically compatible. We conduct ample numerical experiments to study and predict some of its properties and test on different types of nonlocal problems. To the best of our knowledge, such a semi-analytic approach has not been explored in literature even in the one-dimensional case.

Key words and phrases:
Finite element method, nonlocal operator, nonuniform meshes, nonlocal stiffness matrix, nonlocal Allen-Cahn equation
1College of Computer Science and Mathematics, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China. The research of the author is partially supported by the Natural Science Foundation of Hunan Province (No: 2022JJ30996). Email: hongbinchen@csuft.edu.cn (H. Chen).
2Corresponding author. School of Mathematics, Shanghai University of Finance and Economics, Shanghai, 200433, China. The research of the author is partially supported by the National Natural Science Foundation of China (Nos. 12201385 and 12271365) and the Fundamental Research Funds for the Central Universities (No: 2021110474). Email: ctsheng@sufe.edu.cn (C. Sheng).
3Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University (NTU), 637371, Singapore. The research of the author is partially supported by Singapore MOE AcRF Tier 2 Grants: MOE2018-T2-1-059 and MOE2017-T2-2-144. Email: lilian@ntu.edu.sg (L.-L. Wang).

1. Introduction

We consider the following nonlocal constrained value problem on a nonzero measure volume:

{δu(x)=f(x),onΩ=(a,b),u(x)=0,onΩδ=[aδ,a][b,b+δ],\begin{cases}\mathcal{L}_{\delta}u(x)=f(x),\quad&\text{on}\ \Omega=(a,b),\\[4.0pt] u(x)=0,\quad&\text{on}\ \Omega_{\mathcal{\delta}}=[a-\delta,a]\cup[b,b+\delta],\end{cases} (1.1)

where the nonlocal operator is defined as

δu(x)=12δδ(u(x+s)u(x))ρδ(|s|)ds,\mathcal{L}_{\delta}u(x)=\frac{1}{2}\int_{-\delta}^{\delta}(u(x+s)-u(x))\rho_{\delta}(|s|)\rm{d}s, (1.2)

where δ\delta is called a horizon parameter and the kernel ρδ=ρδ(s)\rho_{\delta}=\rho_{\delta}(s) is a nonnegative, radial function (i.e., ρδ(s)=ρδ(|s|)\rho_{\delta}(s)=\rho_{\delta}(|s|) for any ss), compactly supported in |s|δ|s|\leq\delta, and has a bounded second moment. It is known that nonlocal models (1.1) provides an alternative way to modeling many phenomena and complex systems in diverse fields, for instance, the materials science with crack nucleation and growth, fracture, and failure of composites [5], the peridynamics model for mechanics [9, 28, 36], and nonlocal heat conduction [12]. We also refer to the up-to-date review paper [12, 15, 18] and the monograph [14] for more detail.

There has been much interest in developing numerical algorithms for nonlocal models, particularly for PDEs involving the integral fractional Laplacian, which can be viewed as a limiting case of the nonlocal operator [17, 38], i.e., δ.\delta\rightarrow\infty. The recent works on PDEs involving integral fractional Laplacian operator particularly include finite difference methods [16, 22, 23], finite element methods [2, 3], and spectral methods [31, 33, 35]. The interested readers may also refer to [7, 18, 27] for three up-to-date review papers. It should be noted that finite element method in frequency domain space for integral fractional Laplacian is provided in [10, 29, 34], where the entries of the stiffness matrix can provide exact form in one dimension, and can be simply expressed as one-dimensional integral on a finite interval in two dimension. This fact encourages us to try to extend this method for more general problems involving the nonlocal operator (1.2).

Besides, extensive numerical results have been conducted on various kinds nonlocal models. Chen and Gunzburger [9] provided a systematic study of algorithmic and implementation issues using continuous and discontinuous Galerkin finite element methods for peridynamics model. Tian and Du [37] introduce a finite element and quadrature-based finite difference scheme, compare the similarities and differences of the nonlocal stiffness matrices for the two methods, and study fundamental numerical analysis issues. Wang and Tian [32] develop a fast and faithful collocation method for a two-dimensional nonlocal diffusion model. Liu, Cheng and Wang [28] introduced and analyzed a fast Galerkin and adaptive Galerkin finite element methods to solve a steady-state peridynamic model. Additionally, other numerical methods for nonlocal models have been proposed, including the finite difference method [40], the finite element methods [24, 6], the collocation methods [25, 21, 30, 8], and so on. The development of the aforementioned methods relies on constructing specific quadrature formulas to discretize the underlying nonlocal operators, which unavoidably introduces truncation errors. However, these truncation errors often hinder our ability to analyze the attractive structure of the nonlocal stiffness matrices and affect the numerical stability of our solver on some extreme meshes, e.g., graded and geometric meshes. Recently, Li, Liu, and Wang [26] developed an efficient Hermite spectral-Galerkin method for nonlocal diffusion equations in unbounded domains, where the derivation therein was built upon the convolution property of the Hermite functions.

In this paper, we provide a semi-analytic means for computing the piecewise linear FEM stiffness matrix for nonlocal problem (1.1). Then, we can obtain an explicit form of the one-dimensional integral for the entries of the stiffness matrix without generating any truncation errors. This one-dimensional integral can even be evaluated exactly for most of the kernel functions, such as the fractional kernel ρδ(|s|)=Cδ,α/s1+α\rho_{\delta}(|s|)=C_{\delta,\alpha}/s^{1+\alpha}, with the normalized constant Cδ,αC_{\delta,\alpha} and the index α[1,2)\alpha\in[-1,2). Note that such an integral representation is derived from (i) implementation of FEM in the Fourier transformed domain, and (ii) use of some analytic formulas in the handbook [1, 11] to evaluation of the inner integral. Benefit from this explicit expression, we show the two limiting cases of the nonlocal stiffness matrix: (a) when δ0\delta\rightarrow 0, it reduces to the stiffness matrix associated with the classical Laplacian operator Δ-\Delta, see (2.33), and (b) when δ\delta\rightarrow\infty, it becomes the stiffness matrix corresponding to the integral fractional Laplacian operator (Δ)α2(-\Delta)^{\frac{\alpha}{2}}. As a byproduct, we numerically predicted the condition number of the nonlocal stiffness matrix 𝑺𝜹\bm{{S_{\delta}}} (even for some extreme mesh) behaves like Cond(𝑺𝜹)min{(hmax/hmin)α1Nαδα2,(hmax/hmin)2N2}\text{Cond}(\bm{S_{\delta}})\leq\min\{\left(h_{\max}/h_{\min}\right)^{\alpha-1}N^{\alpha}\delta^{\alpha-2},\,\,\left(h_{\max}/h_{\min}\right)^{2}N^{2}\}, where hmaxh_{\max} and hminh_{\min} denote the maximum and minimum of the mesh size, and NN denotes the number of meshes. Our approach is suitable for wider range of nonlocal interaction kernel on the uniform and nonuniform meshes. Numerical experiments show that our scheme is asymptotically compatible scheme [37]. Note that we only focus on one dimensional problems in this work to better illustrate the idea. The multidimensional generalizations are possible and will be carried out in separate works.

The rest of this paper is organized as follows. In section 2, we present a piecewise linear finite element method on nonuniform and uniform meshes for model problem (1.1), and derive the explicit integral form for the entries of the nonlocal stiffness matrix. In section 3, ample numerical results for nonlocal problems with various both regular and singular kernels, including accuracy testing, limiting behaviors, eigenvalue problem and nonlocal Allen-Cahn equation, are presented to show the efficiency and accuracy. Finally, we give some concluding remarks and discussions in the last section.

2. Finite Element Method in Fourier Domain

{comment}

Following the same notation as in [36], we introduce the energy space

𝒱(Ω)={uL2(ΩΩδ):Ωδδ(u(x+s)u(x))2ρδ(|s|)dsdx<},\mathcal{V}(\Omega)=\Big{\{}u\in L^{2}(\Omega\cup\Omega_{\mathcal{\delta}}):\int_{\Omega}\int_{-\delta}^{\delta}(u(x+s)-u(x))^{2}\rho_{\delta}(|s|){\rm d}s{\rm d}x<\infty\Big{\}}, (2.1)

equipped with the semi-norm

|u|𝒱={Ωδδ(u(x+s)u(x))2ρδ(|s|)dsdx}1/2,|u|_{\mathcal{V}}=\Big{\{}\int_{\Omega}\int_{-\delta}^{\delta}(u(x+s)-u(x))^{2}\rho_{\delta}(|s|){\rm d}s{\rm d}x\Big{\}}^{1/2}, (2.2)

and the norm

u𝒱=(|u|𝒱2+u2)1/2,u2=Ω|u(x)|2dx.\|u\|_{\mathcal{V}}=(|u|_{\mathcal{V}}^{2}+\|u\|^{2})^{1/2},\quad\|u\|^{2}=\int_{\Omega}|u(x)|^{2}{\rm d}x. (2.3)

We further define the constrained energy space as

𝒱0(Ω)={u𝒱(Ω)|u=0inΩδ}.\mathcal{V}_{0}(\Omega)=\big{\{}u\in\mathcal{V}(\Omega)\ \big{|}\,u=0\ {\rm in}\,\,\Omega_{\delta}\big{\}}. (2.4)

The bilinear form on L2(Ω)×L2(Ω)L^{2}(\Omega)\times L^{2}(\Omega) and the inner product on L2(Ω)L^{2}(\Omega) is, respectively, denoted by

𝒜δ(u,v)=12Ωδδ(u(x+s)u(x))(v(x+s)v(x))ρδ(|s|)dsdx,(u,v)Ω=Ωu(x)v(x)dx.\begin{split}&\mathcal{A}_{\delta}(u,v)=\frac{1}{2}\int_{\Omega}\int_{-\delta}^{\delta}(u(x+s)-u(x))(v(x+s)-v(x))\rho_{\delta}(|s|){\rm d}s{\rm d}x,\\ &(u,v)_{\Omega}=\int_{\Omega}u(x)v(x)\,{\rm d}x.\end{split} (2.5)

Then, the weak formulation of (1.1) is to find u𝒱0(Ω)u\in\mathcal{V}_{0}(\Omega) such that

𝒜δ(u,v)=(f,v)Ω,v𝒱0(Ω).\mathcal{A}_{\delta}(u,v)=(f,v)_{\Omega},\quad\forall v\in\mathcal{V}_{0}(\Omega). (2.6)

In this section, we compute the nonlocal FEM stiffness matrix. To fix the idea, we focus on the piecewise linear FEM with the partition:

Ωh:={xj:a=x0<x1<<xN+1=b},\Omega_{h}:=\{x_{j}:a=x_{0}<x_{1}<\cdots<x_{N+1}=b\}, (2.7)

and the piecewise linear finite element basis:

ϕj(x)={xxj1hj,x[xj1,xj],xj+1xhj+1,x(xj,xj+1],0,elsewhere onΩΩ¯δ,hj=xjxj1,\phi_{j}(x)=\begin{dcases}\frac{x-x_{j-1}}{h_{j}},\quad&x\in[x_{j-1},x_{j}],\\ \frac{x_{j+1}-x}{h_{j+1}},\quad&x\in(x_{j},x_{j+1}],\\ 0,\quad&\text{elsewhere on}\;\;\Omega\cup\overline{\Omega}_{\delta},\end{dcases}\;h_{j}=x_{j}-x_{j-1}, (2.8)

for 1jN.1\leq j\leq N. Correspondingly, we have the FE approximation space:

𝒱h0:=span{ϕj: 1jN}.\mathcal{V}_{h}^{0}:={\rm span}\big{\{}\phi_{j}\,:\,1\leq j\leq N\big{\}}.

Then the FE approximation to (1.1) is to find uh𝒱h0u_{h}\in\mathcal{V}_{h}^{0} such that

𝒜δ(uh,vh)=12Ωδδ(uh(x+s)uh(x))(vh(x+s)vh(x))ρδ(|s|)dsdx=(Ihf,vh)Ω,υh𝒱h0,\begin{split}\mathcal{A}_{\delta}(u_{h},v_{h})&=\frac{1}{2}\int_{\Omega}\int_{-\delta}^{\delta}(u_{h}(x+s)-u_{h}(x))(v_{h}(x+s)-v_{h}(x))\rho_{\delta}(|s|)\,\rm{d}s\rm{d}x\\ &=(I_{h}f,v_{h})_{\Omega},\quad\forall\,\upsilon_{h}\in\mathcal{V}_{h}^{0},\end{split} (2.9)

where IhfI_{h}f is the standard piecewise linear interpolation of ff on Ωh\Omega_{h}. We write

uh(x)=j=1Nujϕj(x)𝒱h0,u_{h}(x)=\sum\limits_{j=1}^{N}u_{j}\phi_{j}(x)\in\mathcal{V}_{h}^{0},

and obtain the following linear system of (2.9):

𝑺δ𝒖=𝒇,\bm{S}_{\delta}\bm{u}=\bm{f},

where 𝑺δ\bm{S}_{\delta} is the nonlocal FEM stiffness matrix with entries given by

(𝑺δ)jk=(𝑺δ)kj=12Ωδδ(ϕj(x+s)ϕj(x))(ϕk(x+s)ϕk(x))ρδ(|s|)dsdx,(\bm{S}_{\delta})_{jk}=(\bm{S}_{\delta})_{kj}=\frac{1}{2}\int_{\Omega}\int_{-\delta}^{\delta}(\phi_{j}(x+s)-\phi_{j}(x))(\phi_{k}(x+s)-\phi_{k}(x))\rho_{\delta}(|s|)\,{\rm d}s{\rm d}x, (2.10)

and

𝒖=(u1,u2,,uN),𝒇=(f1,f2,,fN),fk=(Ihf,ϕk)Ω.\bm{u}=(u_{1},u_{2},\cdots,u_{N})^{\top},\;\;\;\bm{f}=(f_{1},f_{2},\cdots,f_{N})^{\top},\;\;\;f_{k}=(I_{h}f,\phi_{k})_{\Omega}.

2.1. FEM nonlocal stiffness matrix

Through the implementation in the Fourier transformed domain, we can derive the following exact integral formulas for computing the stiffness matrix.

Theorem 2.1.

Let

djk=|xjxk|,𝒄j:=(1hj,1hj1hj+1,1hj+1),d_{j}^{k}=|x_{j}-x_{k}|,\quad\bm{c}_{j}:=\Big{(}\frac{1}{h_{j}},-\frac{1}{h_{j}}-\frac{1}{h_{j+1}},\frac{1}{h_{j+1}}\Big{)}, (2.11)

and define

g(z):=g(z;s):=112(|z+s|32|z|3+|zs|3).g(z):=g(z;s):=-\frac{1}{12}(|z+s|^{3}-2|z|^{3}+|z-s|^{3}). (2.12)

Then the stiffness matrix can be evaluated by the component-wise integral

𝑺δ=0δ𝑰(s)ρδ(s)ds,\begin{split}\bm{S}_{\delta}=&\int_{0}^{\delta}\bm{I}(s)\,\rho_{\delta}(s)\,{\rm d}s,\end{split} (2.13)

where the matrix-valued function 𝐈(s)N×N\bm{I}(s)\in{\mathbb{R}}^{N\times N} with the entries given by

𝑰jk(s)=𝑰kj(s)=𝒄jg(𝑫jk)𝒄k,𝑫jk:=(dj1k1dj1kdj1k+1djk1djkdjk+1dj+1k1dj+1kdj+1k+1).\begin{split}\bm{I}_{jk}(s)=\bm{I}_{kj}(s)=\bm{c}_{j}g(\bm{D}_{j}^{k})\bm{c}_{k}^{\top},\quad\bm{D}_{j}^{k}:=\begin{pmatrix}d_{j-1}^{k-1}&d_{j-1}^{k}&d_{j-1}^{k+1}\\[2.0pt] d_{j}^{k-1}&d_{j}^{k}&d_{j}^{k+1}\\[2.0pt] d_{j+1}^{k-1}&d_{j+1}^{k}&d_{j+1}^{k+1}\end{pmatrix}.\end{split} (2.14)

Here, g(𝐃jk)g(\bm{D}_{j}^{k}) means the function gg performs component-wisely upon the matrix 𝐃jk\bm{D}_{j}^{k}.

Proof.

Let ϕ~j(x)\tilde{\phi}_{j}(x) be the zero extension of ϕj(x)\phi_{j}(x) on ΩΩ¯δ\Omega\cup\overline{\Omega}_{\delta} to \mathbb{R}. Then by [10, Lemma 2.1], its Fourier transform is

[ϕ~j(x)](ξ)\displaystyle\mathscr{F}[\tilde{\phi}_{j}(x)](\xi) =12πβjeixj1ξ(βj+βj+1)eixjξ+βj+1eixj+1ξξ2\displaystyle=-\frac{1}{\sqrt{2\pi}}\frac{\beta_{j}e^{-{\rm i}x_{j-1}\xi}-(\beta_{j}+\beta_{j+1})e^{-{\rm i}x_{j}\xi}+\beta_{j+1}e^{-{\rm i}x_{j+1}\xi}}{\xi^{2}} (2.15)
=12πξ2𝒄j𝒆j(ξ),\displaystyle=-\frac{1}{\sqrt{2\pi}\xi^{2}}\bm{c}_{j}\cdot\bm{e}_{j}(\xi),

where

βj=1hj,𝒆j(ξ):=(eixj1ξ,eixjξ,eixj+1ξ).\beta_{j}=\frac{1}{h_{j}},\quad\bm{e}_{j}(\xi):=\big{(}e^{-{\rm i}x_{j-1}\xi},e^{-{\rm i}x_{j}\xi},e^{-{\rm i}x_{j+1}\xi}\big{)}.

Using Parseval identity and the translation property: [u(x+s)](ξ)=eiξs[u(x)](ξ){\mathscr{F}}[u(x+s)](\xi)=e^{{\rm i}\xi s}{\mathscr{F}}[u(x)](\xi), we derive from (2.8), (2.10) and (2.15) that

𝒜δ(ϕj,ϕk)=12Ωδδ(ϕj(x+s)ϕj(x))(ϕk(x+s)ϕk(x))ρδ(|s|)dsdx=12δδ(ϕ~j(x+s)ϕ~j(x))(ϕ~k(x+s)ϕ~k(x))ρδ(|s|)dsdx=12δδρδ(|s|)[ϕ~j(x+s)ϕ~j(x)](ξ)[ϕ~k(x+s)ϕ~k(x)](ξ)¯dξds=12δδρδ(|s|)|eiξs1|2[ϕ~j(x)](ξ)[ϕ~k(x)](ξ)¯dξds=δδρδ(|s|)(1cos(ξs))[ϕ~j(x)](ξ)[ϕ~k(x)](ξ)¯dξds=20δρδ(s)(1cos(ξs))[ϕ~j(x)](ξ)[ϕ~k(x)](ξ)¯dξds.\begin{split}\mathcal{A}_{\delta}(\phi_{j},\phi_{k})&=\frac{1}{2}\int_{\Omega}\int_{-\delta}^{\delta}(\phi_{j}(x+s)-\phi_{j}(x))(\phi_{k}(x+s)-\phi_{k}(x))\rho_{\delta}(|s|){\rm d}s{\rm d}x\\ &=\frac{1}{2}\int_{{\mathbb{R}}}\int_{-\delta}^{\delta}(\tilde{\phi}_{j}(x+s)-\tilde{\phi}_{j}(x))(\tilde{\phi}_{k}(x+s)-\tilde{\phi}_{k}(x))\rho_{\delta}(|s|){\rm d}s{\rm d}x\\ &=\frac{1}{2}\int_{-\delta}^{\delta}\rho_{\delta}(|s|)\int_{{\mathbb{R}}}{\mathscr{F}}[\tilde{\phi}_{j}(x+s)-\tilde{\phi}_{j}(x)](\xi)\overline{{\mathscr{F}}[\tilde{\phi}_{k}(x+s)-\tilde{\phi}_{k}(x)](\xi)}{\rm d}\xi{\rm d}s\\ &=\frac{1}{2}\int_{-\delta}^{\delta}\rho_{\delta}(|s|)\int_{{\mathbb{R}}}|e^{{\rm i}\xi s}-1|^{2}{\mathscr{F}}[\tilde{\phi}_{j}(x)](\xi)\overline{{\mathscr{F}}[\tilde{\phi}_{k}(x)](\xi)}{\rm d}\xi{\rm d}s\\ &=\int_{-\delta}^{\delta}\rho_{\delta}(|s|)\int_{{\mathbb{R}}}(1-\cos(\xi s)){\mathscr{F}}[\tilde{\phi}_{j}(x)](\xi)\overline{{\mathscr{F}}[\tilde{\phi}_{k}(x)](\xi)}{\rm d}\xi{\rm d}s\\ &=2\int_{0}^{\delta}\rho_{\delta}(s)\int_{{\mathbb{R}}}(1-\cos(\xi s)){\mathscr{F}}[\tilde{\phi}_{j}(x)](\xi)\overline{{\mathscr{F}}[\tilde{\phi}_{k}(x)](\xi)}{\rm d}\xi{\rm d}s.\end{split} (2.16)

Using (2.15), we obtain from direct calculation that

(1cos(ξs))[ϕ~j(x)](ξ)[ϕ~k(x)](ξ)¯dξ=12π𝒄j(ξ4(1cos(ξs))𝒆j(ξ)𝒆k(ξ)dξ)𝒄k=1π0ξ4fjk(ξ)dξ,\begin{split}&\int_{{\mathbb{R}}}(1-\cos(\xi s)){\mathscr{F}}[\tilde{\phi}_{j}(x)](\xi)\overline{{\mathscr{F}}[\tilde{\phi}_{k}(x)](\xi)}{\rm d}\xi\\ \quad&=\frac{1}{2\pi}\bm{c}_{j}\Big{(}\int_{\mathbb{R}}{\xi}^{-4}(1-\cos(\xi s))\bm{e}_{j}(\xi)\cdot\bm{e}_{k}(-\xi){\rm d}\xi\Big{)}\bm{c}_{k}^{\top}=\frac{1}{\pi}\int_{0}^{\infty}{\xi}^{-4}f_{jk}(\xi)\,{\rm d}\xi,\end{split} (2.17)

where

fjk(ξ)=𝒄j𝑭jk(ξ)𝒄k,𝑭jk(ξ)=(1cos(ξs))cos(𝑫jkξ).f_{jk}(\xi)=\bm{c}_{j}\bm{F}_{jk}(\xi)\bm{c}_{k}^{\top},\quad\bm{F}_{jk}(\xi)=(1-\cos(\xi s))\cos(\bm{D}_{j}^{k}\xi). (2.18)

Using the trigonometric identities

(1cos(ξs))cos(djkξ)=cos(djkξ)12(cos((djk+s)ξ)+cos((djks)ξ))=12(2cos(djkξ)cos(|djk+s|ξ)cos(|djks|ξ)),\begin{split}(1-\cos(\xi s))\cos(d_{j}^{k}\xi)&=\cos(d_{j}^{k}\xi)-\frac{1}{2}\big{(}\cos((d_{j}^{k}+s)\xi)+\cos((d_{j}^{k}-s)\xi)\big{)}\\ &=\frac{1}{2}\big{(}2\cos(d_{j}^{k}\xi)-\cos(|d_{j}^{k}+s|\xi)-\cos(|d_{j}^{k}-s|\xi)\big{)},\end{split} (2.19)

we obtain from (2.14) and (2.18) readily that

fjk′′′(ξ)=𝒄j𝑭jk′′′(ξ)𝒄kand𝑭jk′′′(ξ)=12g1(𝑫jk;ξ),\begin{split}f^{\prime\prime\prime}_{jk}(\xi)=\bm{c}_{j}\bm{F}^{\prime\prime\prime}_{jk}(\xi)\bm{c}_{k}^{\top}\quad{\rm and}\quad\bm{F}^{\prime\prime\prime}_{jk}(\xi)=\frac{1}{2}g_{1}(\bm{D}_{j}^{k};\xi),\end{split} (2.20)

where we denote

g1(z;ξ):=2|z|3sin(|z|ξ)|z+s|3sin(|z+s|ξ)|zs|3sin(|zs|ξ).g_{1}(z;\xi):=2|z|^{3}\sin(|z|\xi)-|z+s|^{3}\sin(|z+s|\xi)-|z-s|^{3}\sin(|z-s|\xi).

One verifies readily that ξkg1(z;0)=fjk(k)(0)=0\partial_{\xi}^{k}g_{1}(z;0)=f_{jk}^{(k)}(0)=0 for k=0,1,2,3.k=0,1,2,3. Thus, we derive from integration by parts that

0ξ4fjk(ξ)dξ=130ξ3fjk(ξ)dξ=160ξ2fjk′′(ξ)dξ=160ξ1fjk′′′(ξ)dξ.\begin{split}\int_{0}^{\infty}{\xi}^{-4}f_{jk}(\xi)\,{\rm d}\xi&=\frac{1}{3}\int_{0}^{\infty}{\xi}^{-3}f_{jk}^{\prime}(\xi)\,{\rm d}\xi=\frac{1}{6}\int_{0}^{\infty}{\xi}^{-2}f_{jk}^{\prime\prime}(\xi)\,{\rm d}\xi\\ &=\frac{1}{6}\int_{0}^{\infty}{\xi}^{-1}f_{jk}^{\prime\prime\prime}(\xi)\,{\rm d}\xi.\end{split} (2.21)

Recall the sine integral formula (see [11, P. 427]):

0sin(ax)xdx=π2sign(a)=π2{1,ifa<0,0,ifa=0,1,ifa>0.\int_{0}^{\infty}\frac{\sin(ax)}{x}\,{\rm d}x=\frac{\pi}{2}\operatorname{sign}(a)=\frac{\pi}{2}\begin{cases}-1,\;\;&{\rm if}\;\;a<0,\\ 0,\;\;&{\rm if}\;\;a=0,\\ 1,\;\;&{\rm if}\;\;a>0.\end{cases} (2.22)

Inserting (2.20) into (2.21), we find from (2.22) immediately that

0ξ4fjk(ξ)dξ=160ξ1fjk′′′(ξ)dξ=π2𝒄jg(𝑫jk)𝒄k.\int_{0}^{\infty}{\xi}^{-4}f_{jk}(\xi)\,{\rm d}\xi=\frac{1}{6}\int_{0}^{\infty}{\xi}^{-1}f_{jk}^{\prime\prime\prime}(\xi)\,{\rm d}\xi=\frac{\pi}{2}\bm{c}_{j}g(\bm{D}_{j}^{k})\bm{c}_{k}^{\top}. (2.23)

Then we obtain from (2.16)-(2.17) and (2.23) that

(𝑺δ)jk=2π0δρδ(s)(0ξ4fjk(ξ)dξ)ds=𝒄j(0δg(𝑫jk)ρδ(s)ds)𝒄k.(\bm{S}_{\delta})_{jk}=\frac{2}{\pi}\int_{0}^{\delta}\rho_{\delta}(s)\Big{(}\int_{0}^{\infty}{\xi}^{-4}f_{jk}(\xi)\,{\rm d}\xi\Big{)}{\rm d}s=\bm{c}_{j}\Big{(}\int_{0}^{\delta}g(\bm{D}_{j}^{k})\,\rho_{\delta}(s)\,{\rm d}s\Big{)}\bm{c}_{k}^{\top}. (2.24)

This completes the proof. ∎

Theorem 2.1 is valid for the interaction radius δ<.\delta<\infty. The bandwidth of the stiffness matrix increases as δ/h\delta/h increases, which becomes full as δba.\delta\geq b-a. It is known that the nonlocal operator (1.2) tend to integral fractional Laplacian as δ\delta\to\infty when the corresponding kernel function is chosen to satisfy

ρδ(s)=ρ(s)χ(0,δ),\rho_{\delta}(s)=\rho_{\infty}(s)\mathbf{\chi}_{(0,\delta)}, (2.25)

where χ(0,δ)\mathbf{\chi}_{(0,\delta)} denotes the characteristic (indicator) function of (0,δ)(0,\delta) and

ρ(s)=Cαs1+αwithCα=2α1αΓ(1+α2)πΓ(1α2),\rho_{\infty}(s)=\frac{C_{\alpha}}{s^{1+\alpha}}\,\;\text{with}\,\;C_{\alpha}=\frac{2^{\alpha-1}\alpha\Gamma(\frac{1+\alpha}{2})}{\sqrt{\pi}\Gamma(1-\frac{\alpha}{2})}, (2.26)

is the fractional kernel (see [15, 17, 38]).

{comment}
Theorem 2.2 (Case II: δ=\delta=\infty).

Let δ=\delta=\infty, α(0,2)\alpha\in(0,2), and

ρ(s)=Cαs1+α,withCα=2α1αΓ(1+α2)πΓ(1α2),\rho_{\infty}(s)=\frac{C_{\alpha}}{s^{1+\alpha}},\,\;\text{with}\,\;C_{\alpha}=\frac{2^{\alpha-1}\alpha\Gamma(\frac{1+\alpha}{2})}{\sqrt{\pi}\Gamma(1-\frac{\alpha}{2})}, (2.27)

then the entries of the stiffness matrix 𝐒\bm{S}_{\infty} in (2.13) reduces to

(𝑺)jk=𝒄j(𝑫jk)3α𝒄k2Γ(4α)cos(απ/2),(\bm{S}_{\infty})_{jk}=\frac{\bm{c}_{j}\,(\bm{D}^{k}_{j})^{3-\alpha}\,\bm{c}_{k}^{\top}}{2\Gamma(4-\alpha)\cos(\alpha\pi/2)}, (2.28)

where the notation (𝐃jk)3α(\bm{D}_{j}^{k})^{3-\alpha} performs component-wisely upon the matrix 𝐃jk\bm{D}_{j}^{k}, and 𝐜j\bm{c}_{j} and 𝐃jk\bm{D}_{j}^{k} are defined in (2.12) and (2.14), respectively.

With the interchange in the order of integration in the above proof, we can derive the nonlocal stiffness matrix for δ.\delta\to\infty.

Theorem 2.3.

Let α(0,2)\alpha\in(0,2), and choose the kernel function (2.25), then the entries of the stiffness matrix 𝐒\bm{S}_{\infty} in (2.13) reduces to

(𝑺)jk={C^α𝒄j(𝑫jk)3α𝒄k,α1,C^α𝒄j(𝑫jk)2ln𝑫jk𝒄k,α=1,withC^α=12Γ(4α)cos(απ/2),(\bm{S}_{\infty})_{jk}=\begin{dcases}\widehat{C}_{\alpha}\bm{c}_{j}\,(\bm{D}^{k}_{j})^{3-\alpha}\,\bm{c}_{k}^{\top},\quad\alpha\not=1,\\ \widehat{C}_{\alpha}\bm{c}_{j}\,(\bm{D}^{k}_{j})^{2}\ln{\bm{D}^{k}_{j}}\,\bm{c}_{k}^{\top},\quad\alpha=1,\\ \end{dcases}\,\;\text{with}\,\;\widehat{C}_{\alpha}=\frac{1}{2\Gamma(4-\alpha)\cos(\alpha\pi/2)}, (2.29)

where the notation (𝐃jk)3α(\bm{D}_{j}^{k})^{3-\alpha} and (𝐃jk)2ln𝐃jk(\bm{D}^{k}_{j})^{2}\ln{\bm{D}^{k}_{j}} performs component-wisely upon the matrix 𝐃jk\bm{D}_{j}^{k}, and 𝐜j\bm{c}_{j} and 𝐃jk\bm{D}_{j}^{k} are defined in (2.12) and (2.14), respectively.

Proof.

Note that when δ\delta\to\infty, we have ρδ(s)=ρ(s)\rho_{\delta}(s)=\rho_{\infty}(s) is independent of δ\delta. Recall the integral formula (cf. [19, (3.12)]): for any ξ\xi\in\mathbb{R}, we have

1cos(ξs)|s|1+αds=Cα1|ξ|α.\int_{\mathbb{R}}\frac{1-\cos(\xi s)}{|s|^{1+\alpha}}\,{\rm d}s=C_{\alpha}^{-1}|\xi|^{\alpha}. (2.30)

We change the order of integration in the last equality of (2.16), and derive from (2.30) that

(𝑺)jk=2Cα0s1α(1cos(ξs))[ϕ~j(x)](ξ)[ϕ~k(x)](ξ)¯dξds=Cα(1cos(ξs)|s|1+αds)[ϕ~j(x)](ξ)[ϕ~k(x)](ξ)¯dξ=|ξ|α[ϕ~j(x)](ξ)[ϕ~k(x)](ξ)¯dξ,\begin{split}(\bm{S}_{\infty})_{jk}&=2C_{\alpha}\int_{0}^{\infty}s^{-1-\alpha}\int_{{\mathbb{R}}}(1-\cos(\xi s)){\mathscr{F}}[\tilde{\phi}_{j}(x)](\xi)\overline{{\mathscr{F}}[\tilde{\phi}_{k}(x)](\xi)}\,{\rm d}\xi{\rm d}s\\ &=C_{\alpha}\int_{{\mathbb{R}}}\Big{(}\int_{{\mathbb{R}}}\frac{1-\cos(\xi s)}{|s|^{1+\alpha}}\,{\rm d}s\Big{)}{\mathscr{F}}[\tilde{\phi}_{j}(x)](\xi)\overline{{\mathscr{F}}[\tilde{\phi}_{k}(x)](\xi)}\,{\rm d}\xi\\ &=\int_{{\mathbb{R}}}|\xi|^{\alpha}{\mathscr{F}}[\tilde{\phi}_{j}(x)](\xi)\overline{{\mathscr{F}}[\tilde{\phi}_{k}(x)](\xi)}\,{\rm d}\xi,\end{split} (2.31)

which is identical to the FEM stiffness matrix derived in [10, Theorem 1] with the formula given in (2.30). ∎

The above explicit formula allows for the exact evaluation or accurate computation of the stiffness matrix for general interaction kernel function ρδ(s),\rho_{\delta}(s), and study the intrinsic properties of this matrix.

2.2. FEM nonlocal stiffness matrix with δh\delta\leq h

To study the compatibility to the usual FEM stiffness matrix, when δ0\delta\to 0, we consider the special case with

δh=min1jN{hj};ρδ(s)=Cδ,αs1+α,Cδ,α:=2αδ2α,α[1,2),\delta\leq h=\min\limits_{1\leq j\leq N}\{h_{j}\};\quad\rho_{\delta}(s)=\frac{C_{\delta,\alpha}}{s^{1+\alpha}},\quad C_{\delta,\alpha}:=\frac{2-\alpha}{\delta^{2-\alpha}},\;\;\;\alpha\in[-1,2), (2.32)

where Cδ,αC_{\delta,\alpha} is chosen so that it satisfies the second moment condition: 0δs2ρδ(s)ds=1.\int_{0}^{\delta}s^{2}\rho_{\delta}(s){{\rm d}}s=1. We derive from the formulas in Theorem 2.1 straightforwardly the following interesting identity, which leads to the usual FEM stiffness matrix when δ0.\delta\to 0.

Corollary 2.1.

Under (2.32), we have the identity

𝑺δ=𝑺0cαδ𝑺02,cα:=2α6(3α),\bm{S}_{\delta}=\bm{S}_{0}-c_{\alpha}\delta\bm{S}_{0}^{2},\quad c_{\alpha}:=\frac{2-\alpha}{6(3-\alpha)}, (2.33)

where 𝐒0\bm{S}_{0} is the usual FEM stiffness matrix for u′′(x)=f(x)-u^{\prime\prime}(x)=f(x) on (a,b)(a,b) with u(a)=u(b)=0,u(a)=u(b)=0, that is,

𝑺0=diag(1hj,1hj+1hj+1,1hj+1).\bm{S}_{0}={\rm diag}\Big{(}\!\!-\frac{1}{h_{j}},\frac{1}{h_{j}}+\frac{1}{h_{j+1}},-\frac{1}{h_{j+1}}\Big{)}.

Consequently, we have limδ0+𝐒δ=𝐒0.\lim\limits_{\delta\to 0^{+}}\bm{S}_{\delta}=\bm{S}_{0}.

Proof.

As sδh,s\leq\delta\leq h, we can simplify g(z;s)g(z;s) in (2.12) and evaluate (2.14) directly to derive

𝑰jk(s)=𝒄jg(𝑫jk)𝒄k={2(1hj2+(1hj+1hj+1)2+1hj+12)s3+12(1hj+1hj+1)s2,j=k,2hj+1(1hj+2hj+1+1hj+2)s312hj+1s2,j=k1,2hj(1hj1+2hj+1hj+1)s312hjs2,j=k+1,2hj+1hj+2s3,j=k2,2hj1hjs3,j=k+2,0,otherwise.\begin{split}\bm{I}_{jk}(s)&=\bm{c}_{j}g(\bm{D}_{j}^{k})\bm{c}_{k}^{\top}\\ &=\begin{dcases}-2\Big{(}\frac{1}{h_{j}^{2}}+\Big{(}\frac{1}{h_{j}}+\frac{1}{h_{j+1}}\Big{)}^{2}+\frac{1}{h_{j+1}^{2}}\Big{)}s^{3}+12\Big{(}\frac{1}{h_{j}}+\frac{1}{h_{j+1}}\Big{)}s^{2},\;\;&j=k,\\[1.0pt] \frac{2}{h_{j+1}}\Big{(}\frac{1}{h_{j}}+\frac{2}{h_{j+1}}+\frac{1}{h_{j+2}}\Big{)}s^{3}-\frac{12}{h_{j+1}}s^{2},\;\;&j=k-1,\\[1.0pt] \frac{2}{h_{j}}\Big{(}\frac{1}{h_{j-1}}+\frac{2}{h_{j}}+\frac{1}{h_{j+1}}\Big{)}s^{3}-\frac{12}{h_{j}}s^{2},\;\;&j=k+1,\\[1.0pt] -\frac{2}{h_{j+1}h_{j+2}}s^{3},\;\;&j=k-2,\\[1.0pt] -\frac{2}{h_{j-1}h_{j}}s^{3},\;\;&j=k+2,\\[1.0pt] 0,\;\;&{\rm otherwise}.\end{dcases}\end{split}
{comment}

Direct calculation using (2.13) shows that 𝑰(s)\bm{I}(s) is a penta-diagonal symmetric matrix with the nonzero entries on the main diagonal and two upper off-diagonals given by

Together with (2.13), we can obtain the explicit form of stiffness matrix for given nonlocal interaction kernels, e.g., the following nonlocal interaction kernels

ρδ(s)=Cδ,αs1+αwithCδ,α=2αδ2α,s>0,α[1,2),\rho_{\delta}(s)=\frac{C_{\delta,\alpha}}{s^{1+\alpha}}\,\,\text{with}\,\,C_{\delta,\alpha}=\frac{2-\alpha}{\delta^{2-\alpha}},\quad s>0,\quad\alpha\in[-1,2), (2.34)

where Cδ,αC_{\delta,\alpha} is chosen to satisfy the normalization

0δs2ρδ(s)ds=1.\int_{0}^{\delta}s^{2}\rho_{\delta}(s){\rm d}s=1.

Then we have Thus for given ρδ(s)\rho_{\delta}(s) in (2.32), we find

(𝑺δ)jk=0δ𝑰jk(s)ρδ(s)ds={cα(1hj2+(1hj+1hj+1)2+1hj+12)δ+1hj+1hj+1,j=k,cα(1hjhj+1+2hj+12+1hj+1hj+2)δ1hj+1,j=k1,cα(1hj1hj+2hj2+1hjhj+1)δ1hj,j=k+1,cα1hj+1hj+2δ,j=k2,cα1hj1hjδ,j=k+2,0,otherwise,=(𝑺0)jkcαδ(𝑺02)jk,\begin{split}(\bm{S}_{\delta})_{jk}&=\int_{0}^{\delta}\bm{I}_{jk}(s)\,\rho_{\delta}(s)\,{\rm d}s\\ &=\begin{dcases}-c_{\alpha}\Big{(}\frac{1}{h_{j}^{2}}+\Big{(}\frac{1}{h_{j}}+\frac{1}{h_{j+1}}\Big{)}^{2}+\frac{1}{h_{j+1}^{2}}\Big{)}\delta+\frac{1}{h_{j}}+\frac{1}{h_{j+1}},\;\;&j=k,\\[1.0pt] c_{\alpha}\Big{(}\frac{1}{h_{j}h_{j+1}}+\frac{2}{h^{2}_{j+1}}+\frac{1}{h_{j+1}h_{j+2}}\Big{)}\delta-\frac{1}{h_{j+1}},\;\;&j=k-1,\\[1.0pt] c_{\alpha}\Big{(}\frac{1}{h_{j-1}h_{j}}+\frac{2}{h^{2}_{j}}+\frac{1}{h_{j}h_{j+1}}\Big{)}\delta-\frac{1}{h_{j}},\;\;&j=k+1,\\[1.0pt] -c_{\alpha}\frac{1}{h_{j+1}h_{j+2}}\delta,\;\;&j=k-2,\\[1.0pt] -c_{\alpha}\frac{1}{h_{j-1}h_{j}}\delta,\;\;&j=k+2,\\[1.0pt] 0,\;\;&{\rm otherwise},\end{dcases}\\ &=(\bm{S}_{0})_{jk}-c_{\alpha}\delta(\bm{S}_{0}^{2})_{jk},\end{split} (2.35)

by direct calculaton, we can obtain the identity (2.33). ∎

Remark 2.1.

The compatibility of the discretisation is essential for the numerical solution of nonlocal models. With the evaluation of the stiffness matrix by the analytic formulas, the FE scheme is automatically compatible [37, 38].

{comment}
Theorem 2.4.

(Limiting case δ\delta\rightarrow\infty) Let

ρδ(s)=Cαs1+α,withCα=2α1αΓ(1+α2)πΓ(1α2),α(0,2),\rho_{\delta}(s)=\frac{C_{\alpha}}{s^{1+\alpha}},\,\;\text{with}\,\;C_{\alpha}=\frac{2^{\alpha-1}\alpha\Gamma(\frac{1+\alpha}{2})}{\sqrt{\pi}\Gamma(1-\frac{\alpha}{2})},\;\;\;\alpha\in(0,2), (2.36)

then the stiffness matrix 𝐒δ\bm{S}_{\delta} in (2.13) reduces to

𝑺δ=\begin{split}\bm{S}_{\delta}=\end{split} (2.37)
Proof.

In this case, δdiam(Ω)\delta\gg diam(\Omega), then we have

(𝑺δ)jk=(𝑺δ)kj=0δ𝒄jg(𝑫jk)𝒄kρδ(s)ds=C^α𝒄j(𝑫jk)32α𝒄k,\begin{split}(\bm{S}_{\delta})_{jk}&=(\bm{S}_{\delta})_{kj}=\int_{0}^{\delta}\bm{c}_{j}g(\bm{D}_{j}^{k})\bm{c}_{k}^{\top}\,\rho_{\delta}(s)\,{\rm d}s=\widehat{C}_{\alpha}\bm{c}_{j}(\bm{D}_{j}^{k})^{3-2\alpha}\bm{c}_{k}^{\top},\end{split} (2.38)

where

C^α=Cα0δg(ones(N))s(1+α)ds=12Γ(42α)cos(απ).\widehat{C}_{\alpha}=C_{\alpha}\int_{0}^{\delta}g(ones(N))\,s^{-(1+\alpha)}\,{\rm d}s=\frac{1}{2\Gamma(4-2\alpha)\cos(\alpha\pi)}. (2.39)

This completes the proof. ∎

{u(x)=f(x),onΩ=(a,b),u(x)=0,onΩc,\begin{cases}\mathcal{L}_{\infty}u(x)=f(x),\quad&\text{on}\ \Omega=(a,b),\\[4.0pt] u(x)=0,\quad&\text{on}\ \Omega^{c},\end{cases} (2.40)
{comment}
Remark 2.2.

When δ\delta\to\infty, the stiffness matrix 𝐒δ\bm{S}_{\delta} in (2.13) recovers to the FEM stiffness matrix for the integral fractional Laplacian in [10, Theorem 1].

2.3. Nonlocal FEM stiffness matrix on uniform meshes

As a special case of Theorem 2.1, the nonlocal stiffness matrix of FEM on uniform meshes reduces to a symmetric Toeplitz matrix.

Theorem 2.5.

Given a uniform partition {xj=a+jh}j=0N+1\{x_{j}=a+jh\}_{j=0}^{N+1} with h=(ba)/(N+1)h=(b-a)/(N+1), the nonlocal stiffness matrix 𝐒δ\bm{S}_{\delta} is a symmetric Toeplitz matrix of the form

𝑺δ=[t0t1t2tN3tN2tN1t1t0t1tN3tN2t2t1t0tN3tN3t0t1t2tN2tN3t1t0t1tN1tN2tN3t2t1t0],\bm{S}_{\delta}=\begin{bmatrix}t_{0}&t_{1}&t_{2}&\cdots&t_{N-3}&t_{N-2}&t_{N-1}\\[1.0pt] t_{1}&t_{0}&t_{1}&\ddots&\cdots&t_{N-3}&t_{N-2}\\[-1.0pt] t_{2}&t_{1}&t_{0}&\ddots&\ddots&\vdots&t_{N-3}\\[0.0pt] \vdots&\ddots&\ddots&\ddots&\ddots&\ddots&\vdots\\[2.0pt] t_{N-3}&\vdots&\ddots&\ddots&\hskip 8.0ptt_{0}&t_{1}&t_{2}\\[-2.0pt] t_{N-2}&t_{N-3}&\cdots&\ddots&\hskip 8.0ptt_{1}&t_{0}&t_{1}\\[3.0pt] t_{N-1}&t_{N-2}&t_{N-3}&\cdots&\hskip 8.0ptt_{2}&t_{1}&t_{0}\end{bmatrix}, (2.41)

i.e., {(𝐒δ)jk=t|jk|}j,k=1N.\{(\bm{S}_{\delta})_{jk}=t_{|j-k|}\}_{j,k=1}^{N}. Here, the generating vector 𝐭=(t0,t1,,tN1)\bm{t}=(t_{0},t_{1},\cdots,t_{N-1}) can be evaluated by

tp={h20δh𝕀p(τ)ρδ(τh)dτ,0p<δ/h+2,0,pδ/h+2,t_{p}=\begin{dcases}h^{2}\int_{0}^{\frac{\delta}{h}}{\mathbb{I}}_{p}(\tau)\,\rho_{\delta}(\tau h)\,{\rm d}\tau,\quad&0\leq p<\delta/h+2,\\ 0,\quad&p\geq\delta/h+2,\end{dcases} (2.42)

where p=|jk|p=|j-k| and

𝕀p(τ):=112i=22ηi{|p+i+τ|32|p+i|3+|p+iτ|3},\begin{split}\mathbb{I}_{p}(\tau):=-\frac{1}{12}\sum\limits_{i=-2}^{2}\eta_{i}\big{\{}|p+i+\tau|^{3}-2|p+i|^{3}+|p+i-\tau|^{3}\big{\}},\end{split} (2.43)

with the constants η0=6\eta_{0}=6, η±1=4\eta_{\pm 1}=-4 and η±2=1.\eta_{\pm 2}=1.

Proof.

In this case, the entries in (2.14) can be simplified into

𝑰jk(s)=𝑰kj(s)=𝒄jg(𝑫jk)𝒄k=1h2(1,2,1)(g(|jk|h)g(|jk1|h)g(|jk2|h)g(|jk+1|h)g(|jk|h)g(|jk1|h)g(|jk+2|h)g(|jk+1|h)g(|jk|h))(1,2,1)=1h2i=22ηig(|jk+i|h)=1h2i=22ηig((jk+i)h)=1h2i=22ηig((|jk|+i)h),\begin{split}{\bm{I}}_{jk}(s)&={\bm{I}}_{kj}(s)=\bm{c}_{j}g(\bm{D}_{j}^{k})\bm{c}_{k}^{\top}\\ &=\frac{1}{h^{2}}\big{(}1,-2,1\big{)}\begin{pmatrix}g(|j-k|h)&g(|j-k-1|h)&g(|j-k-2|h)\\[2.0pt] g(|j-k+1|h)&g(|j-k|h)&g(|j-k-1|h)\\[2.0pt] g(|j-k+2|h)&g(|j-k+1|h)&g(|j-k|h)\end{pmatrix}\big{(}1,-2,1\big{)}^{\top}\\ &=\frac{1}{h^{2}}\sum\limits_{i=-2}^{2}\eta_{i}g(|j-k+i|h)=\frac{1}{h^{2}}\sum\limits_{i=-2}^{2}\eta_{i}g((j-k+i)h)\\ &=\frac{1}{h^{2}}\sum\limits_{i=-2}^{2}\eta_{i}g((|j-k|+i)h),\end{split}

where we observed from the definition (2.12) that gg is an even function in zz for fixed s0,s\geq 0, and also noted that the symmetric properties of coefficients {ηi}\{\eta_{i}\} and summation in i.i. Thus we can denote

𝑰jk(s)=1h2i=22ηig((p+i)h):=𝕀p(s)=𝕀|jk|(s),\begin{split}\bm{I}_{jk}(s)&=\frac{1}{h^{2}}\sum\limits_{i=-2}^{2}\eta_{i}g((p+i)h):={\mathbb{I}}_{p}(s)={\mathbb{I}}_{|j-k|}(s),\end{split}

which implies the entries on each diagonal are the same, i.e., 𝑰(s)\bm{I}(s) is a symmetric Toeplitz matrix, so is 𝑺δ.\bm{S}_{\delta}. The expression (2.51)-(2.52) is a direct consequence of (2.12)-(2.13).

If pδ/h+2,p\geq\delta/h+2, we find from (2.52) that for τ[0,δ/h],\tau\in[0,\delta/h],

𝕀p(τ)=112i=22ηi{|p+i+τ|32|p+i|3+|p+iτ|3}=112i=22ηi{(p+i+τ)32(p+i)3+(p+iτ)3}=0.\begin{split}{\mathbb{I}}_{p}(\tau)&=-\frac{1}{12}\sum\limits_{i=-2}^{2}\eta_{i}\big{\{}|p+i+\tau|^{3}-2|p+i|^{3}+|p+i-\tau|^{3}\big{\}}\\ &=-\frac{1}{12}\sum\limits_{i=-2}^{2}\eta_{i}\big{\{}(p+i+\tau)^{3}-2(p+i)^{3}+(p+i-\tau)^{3}\big{\}}=0.\end{split}

This completes the proof. ∎

Remark 2.3.

For any τ0\tau\geq 0 and fixed integer p0,p\geq 0, 𝕀p(τ){\mathbb{I}}_{p}(\tau) in (2.52) has the following piecewise representation:

  • (i)

    If p=0,1,p=0,1, then we have

    𝕀0(τ)={12(2τ)τ2,τ[0,1),16+4(τ2)3,τ[1,2),16,τ2,{\mathbb{I}}_{0}(\tau)=\begin{cases}12(2-\tau)\tau^{2},\quad&\tau\in[0,1),\\[1.0pt] 16+4(\tau-2)^{3},\;&\tau\in[1,2),\\[1.0pt] 16,\quad&\tau\geq 2,\end{cases} (2.44)

    and

    𝕀1(τ)={4(32τ)τ2,τ[0,1),1442τ+30τ26τ3,τ[1,2),4+2(τ3)3,τ[2,3),4,τ3.{\mathbb{I}}_{1}(\tau)=\begin{cases}-4(3-2\tau)\tau^{2},\quad&\tau\in[0,1),\\[1.0pt] 14-42\tau+30\tau^{2}-6\tau^{3},\;\;&\tau\in[1,2),\\[1.0pt] 4+2(\tau-3)^{3},\quad&\tau\in[2,3),\\[1.0pt] 4,\quad&\tau\geq 3.\end{cases} (2.45)
  • (ii)

    If p2,p\geq 2, then we have

    𝕀p(τ)={2(p2τ)3,τ[p2,p1),2(p2τ)38(p1τ)3,τ[p1,p),8(p+1τ)32(p+2τ)3,τ[p,p+1),2(p+2τ)3,τ[p+1,p+2),0,otherwise.{\mathbb{I}}_{p}(\tau)=\begin{cases}2(p-2-\tau)^{3},\quad&\tau\in[p-2,\,p-1),\\[1.0pt] 2(p-2-\tau)^{3}-8(p-1-\tau)^{3},\;\;&\tau\in[p-1,\,p),\\[1.0pt] 8(p+1-\tau)^{3}-2(p+2-\tau)^{3},\;&\tau\in[p,\,p+1),\\[1.0pt] -2(p+2-\tau)^{3},\quad&\tau\in[p+1,\,p+2),\\[1.0pt] 0,\quad&{\rm otherwise}.\end{cases} (2.46)
{comment}

Case II (δ\delta\to\infty):  Consider the following fractional Laplacian kernel

ρ(s)=Cαs(1+2α),s>0,α(0,2),\rho_{\infty}(s)=C_{\alpha}s^{-(1+2\alpha)},\quad s>0,\quad\alpha\in(0,2),

with Cα=4ααΓ(12+α)πΓ(1α)C_{\alpha}=\frac{4^{\alpha}\alpha\Gamma(\frac{1}{2}+\alpha)}{\sqrt{\pi}\Gamma(1-\alpha)} and Γ()\Gamma(\cdot) in the Gamma function. Then we have

(𝑺)jk=(𝑺)kj=𝒄j(0g(𝑫jk)ρ(s)ds)𝒄kT=C^α𝒄j(𝑫jk)32α𝒄kT,1j,kN.\begin{split}(\bm{S}_{\infty})_{jk}&=(\bm{S}_{\infty})_{kj}=\bm{c}_{j}\Big{(}\int_{0}^{\infty}g(\bm{D}_{j}^{k})\,\rho_{\infty}(s)\,{\rm d}s\Big{)}\bm{c}_{k}^{T}\\ &=\widehat{C}_{\alpha}\bm{c}_{j}(\bm{D}_{j}^{k})^{3-2\alpha}\bm{c}_{k}^{T},\quad 1\leq j,\,k\leq N.\end{split} (2.47)

where

C^α=Cα0g(ones(N))s(1+2α)ds=12Γ(42α)cos(απ).\widehat{C}_{\alpha}=C_{\alpha}\int_{0}^{\infty}g(ones(N))\,s^{-(1+2\alpha)}\,{\rm d}s=\frac{1}{2\Gamma(4-2\alpha)\cos(\alpha\pi)}. (2.48)
{comment}

Correspondingly, we define piecewise linear FEM basis associated with uniform partition

ψj(x)={xxj1h,ifx(xj1,xj],xj+1xh,ifx(xj,xj+1],0,elsewhereon.\psi_{j}(x)=\begin{cases}\frac{x-x_{j-1}}{h},\quad&{\rm if}\;\;x\in(x_{j-1},x_{j}],\\[2.0pt] \frac{x_{j+1}-x}{h},\quad&{\rm if}\;\;x\in(x_{j},x_{j+1}],\\[2.0pt] 0,\quad&{\rm elsewhere\,\,on\,\,\mathbb{R}}.\end{cases} (2.49)
{comment}

According to (2.13), we can easily obtain the entries of the nonlocal stiffness matrix on uniform mesh, which enjoys the Toeplitz structure.

Corollary 2.2.

For uniform partition {xj=a+jh}\{x_{j}=a+jh\}, the nonlocal stiffness matrix 𝐒δ\bm{S}_{\delta} is a symmetric Toeplitz matrix given by

𝑺δ=h2[t0t1t2tN3tN2tN1t1t0t1tN3tN2t2t1t0tN3tN3t0t1t2tN2tN3t1t0t1tN1tN2tN3t2t1t0],\bm{S}_{\delta}=h^{2}\begin{bmatrix}t_{0}&t_{1}&t_{2}&\cdots&t_{N-3}&t_{N-2}&t_{N-1}\\[1.0pt] t_{1}&t_{0}&t_{1}&\ddots&\cdots&t_{N-3}&t_{N-2}\\[-1.0pt] t_{2}&t_{1}&t_{0}&\ddots&\ddots&\vdots&t_{N-3}\\[0.0pt] \vdots&\ddots&\ddots&\ddots&\ddots&\ddots&\vdots\\[2.0pt] t_{N-3}&\vdots&\ddots&\ddots&\hskip 8.0ptt_{0}&t_{1}&t_{2}\\[-2.0pt] t_{N-2}&t_{N-3}&\cdots&\ddots&\hskip 8.0ptt_{1}&t_{0}&t_{1}\\[3.0pt] t_{N-1}&t_{N-2}&t_{N-3}&\cdots&\hskip 8.0ptt_{2}&t_{1}&t_{0}\end{bmatrix}, (2.50)

is generated by the vector (t0,t1,,tN1)(t_{0},t_{1},\cdots,t_{N-1}) in the first row or column of 𝐒δ\bm{S}_{\delta} with

tp=0δh𝕀p(τ)ρδ(τh)dτ=1h0δ𝕀p(sh)ρδ(s)ds,\begin{split}t_{p}=\int_{0}^{\frac{\delta}{h}}{\mathbb{I}}_{p}(\tau)\,\rho_{\delta}(\tau h)\,{\rm d}\tau=\frac{1}{h}\int_{0}^{\delta}{\mathbb{I}}_{p}\big{(}\frac{s}{h}\big{)}\,\rho_{\delta}(s)\,{\rm d}s,\end{split} (2.51)

where

𝕀p(τ):=112i=22ci{|p+i+τ|32|p+i|3+|p+iτ|3},\begin{split}{\mathbb{I}}_{p}(\tau):=-\frac{1}{12}\sum\limits_{i=-2}^{2}c_{i}\big{\{}|p+i+\tau|^{3}-2|p+i|^{3}+|p+i-\tau|^{3}\big{\}},\end{split} (2.52)

and the constants c±2=1,c±1=4,c0=6c_{\pm 2}=1,c_{\pm 1}=-4,c_{0}=6.

Proof.

One can follow the same procedure as in the proof of Theorem 2.1 to obtain the desired result. ∎

{comment}margin:  Can simplify uniform grid case! Whether can be directly derived from Theorem 2.1?  
Proposition 2.1.

For any τ0\tau\geq 0 and fixed integer p0,p\geq 0, 𝕀p(τ){\mathbb{I}}_{p}(\tau) in (2.52) has the following piecewise representation:

  • (i)

    If p=0,1,p=0,1, then we have

    𝕀0(τ)={12(2τ)τ2,τ[0,1),16+4(τ2)3,τ[1,2),16,τ2,{\mathbb{I}}_{0}(\tau)=\begin{cases}12(2-\tau)\tau^{2},\quad&\tau\in[0,1),\\[1.0pt] 16+4(\tau-2)^{3},\;&\tau\in[1,2),\\[1.0pt] 16,\quad&\tau\geq 2,\end{cases} (2.53)

    and

    𝕀1(τ)={4(32τ)τ2,τ[0,1),1442τ+30τ26τ3,τ[1,2),4+2(τ3)3,τ[2,3),4,τ3.{\mathbb{I}}_{1}(\tau)=\begin{cases}-4(3-2\tau)\tau^{2},\quad&\tau\in[0,1),\\[1.0pt] 14-42\tau+30\tau^{2}-6\tau^{3},\;\;&\tau\in[1,2),\\[1.0pt] 4+2(\tau-3)^{3},\quad&\tau\in[2,3),\\[1.0pt] 4,\quad&\tau\geq 3.\end{cases} (2.54)
  • (ii)

    If p2,p\geq 2, then we have

    𝕀p(τ)={2(p2τ)3,τ[p2,p1),2(p2τ)38(p1τ)3,τ[p1,p),8(p+1τ)32(p+2τ)3,τ[p,p+1),2(p+2τ)3,τ[p+1,p+2),0,otherwise.{\mathbb{I}}_{p}(\tau)=\begin{cases}2(p-2-\tau)^{3},\quad&\tau\in[p-2,\,p-1),\\[1.0pt] 2(p-2-\tau)^{3}-8(p-1-\tau)^{3},\;\;&\tau\in[p-1,\,p),\\[1.0pt] 8(p+1-\tau)^{3}-2(p+2-\tau)^{3},\;&\tau\in[p,\,p+1),\\[1.0pt] -2(p+2-\tau)^{3},\quad&\tau\in[p+1,\,p+2),\\[1.0pt] 0,\quad&{\rm otherwise}.\end{cases} (2.55)
{comment}
Remark 2.4.

We observe from (2.51) that the bandwidth of the above matrix (2.50) is directly determined by the ratio of δ/h\delta/h, which plays an important role in studying the sparsity properties of the stiffness matrix. A particular case is when δh\delta\leq h and the fractional interaction kernels (2.36), we can derive the explicit form of the entries

(𝑺δ)kj=(𝑺δ)jk=h2120δ/h𝕀p(τ)ρδ(τh)dτ=1h{22α3αδh,ifp=0,1+2(2α)3(3α)δh,ifp=1,2α6(3α))δh,ifp=2,0,otherwise,\begin{split}(\bm{S}_{\delta})_{kj}&=(\bm{S}_{\delta})_{jk}=\frac{h^{2}}{12}\int_{0}^{\delta/h}{\mathbb{I}}_{p}(\tau)\,\rho_{\delta}(\tau h)\,{\rm d}\tau=\frac{1}{h}\begin{cases}2-\frac{2-\alpha}{3-\alpha}\frac{\delta}{h},\;\;&{\rm if}\;\;p=0,\\[1.0pt] -1+\frac{2(2-\alpha)}{3(3-\alpha)}\frac{\delta}{h},\;\;&{\rm if}\;\;p=1,\\[1.0pt] -\frac{2-\alpha}{6(3-\alpha))}\frac{\delta}{h},\;\;&{\rm if}\;\;p=2,\\[1.0pt] 0,\;\;&{\rm otherwise},\end{cases}\end{split} (2.56)

which implies that as δ0\delta\rightarrow 0 the matrix 𝐒δ\bm{S}_{\delta} in (2.56) reduces to the usual (tri-diagonal) FEM stiffness matrix 𝐒0=1hdiag(1,2,1)\bm{S}_{0}=\frac{1}{h}{\rm diag}(-1,2,-1).

{comment}
Remark 2.5.

Denote r=δhr=\frac{\delta}{h}, then we can obtain the explicit form of stiffness matrix for given fractional interaction kernels (2.36)

(𝑺δ)kj=(𝑺δ)jk=h2120r𝕀|kj|(τ)ρδ(τh)dτ=1h{22α3αδh,ifj=k,0,otherwise.\begin{split}(\bm{S}_{\delta})_{kj}&=(\bm{S}_{\delta})_{jk}=\frac{h^{2}}{12}\int_{0}^{r}{\mathbb{I}}_{|k-j|}(\tau)\,\rho_{\delta}(\tau h)\,{\rm d}\tau={\color[rgb]{0,0,1}\frac{1}{h}\begin{cases}2-\frac{2-\alpha}{3-\alpha}\frac{\delta}{h},\;\;&{\rm if}\;\;j=k,\\[1.0pt] 0,\;\;&{\rm otherwise}.\end{cases}}\end{split} (2.57)

3. Numerical Studies and Discussions

In this section, we first conduct a numerical study of the conditioning of the stiffness matrix on three sets of typical non-uniform grids used in practice to resolve singular solutions. We then numerically solve several types of nonlocal problems by using the FEM nonlocal matrix to show the efficiency and accuracy of the proposed scheme.

{comment}
  • Two sets of typical non-uniform grids: graded & Geometric (can show the advantage of exact computation)!

  • Numerical results include (i) accuracy test; (ii) the use of non-uniform grids

3.1. Conditioning of the stiffness matrix on nonuniform meshes

An issue of interest is the condition number estimation for the FEM nonlocal stiffness matrix. It is a well-studied topic in the uniform meshes case, but much less known in this nonuniform meshes setting. In general, the mesh geometry affects not only the approximation error of the finite element solution but also the spectral properties of the corresponding stiffness matrix.

Extensive research has been conducted on the condition number of the nonlocal stiffness matrix on uniform grids (cf. [4, 42]), which the entries of the nonlocal stiffness matrix can be computed exactly based on the definition of hypersingular integrals form therein. With the aid of the analytical expressions, the following condition number bounds for uniform mesh were reported in [42, p.1772]:

Cond(𝑺𝜹)min{Nαδα2,N2}.\text{Cond}(\bm{S_{\delta}})\leq\min\{N^{\alpha}\delta^{\alpha-2},\,\,N^{2}\}. (3.1)

However, the study on the condition number of the nonlocal stiffness matrix on the non-uniform mesh is still open. Inspired by the result of the condition number for FEM stiffness on nonuniform mesh in [20, (26)], we predict the condition number of FEM stiffness matrix (2.13) on nonuniform meshes associated with fractional kernel (2.32) is

Cond(𝑺𝜹)min{(hmax/hmin)α1Nαδα2,(hmax/hmin)2N2},\text{\rm Cond}(\bm{S_{\delta}})\leq\min\{\left(h_{\max}/h_{\min}\right)^{\alpha-1}N^{\alpha}\delta^{\alpha-2},\,\,\left(h_{\max}/h_{\min}\right)^{2}N^{2}\}, (3.2)

where hmax=max1jNhjh_{\max}=\max_{1\leq j\leq N}h_{j} and hmin=min1jNhjh_{\min}=\min_{1\leq j\leq N}h_{j}. It is clear that the above prediction can reduce to the result with uniform mesh (3.1) when hmax=hminh_{\max}=h_{\min}.

We will explore this numerically on graded, geometric and Shishkin meshes in order to demonstrate the prediction or conjecture. In the following numerical experiment, we will choose the mesh division as follows:

  • (i)

    Graded meshes:  A graded meshes on the interval (a,b)(a,b) is defined as follows

    xj={a+ba2(2jN)γ,j=0,1,,N/21,bba2(22jN)γ,j=N/2,N/2+1,,N.x_{j}=\begin{cases}a+\dfrac{b-a}{2}\Big{(}\dfrac{2j}{N}\Big{)}^{\gamma},&j=0,1,\cdots,N/2-1,\\[6.0pt] b-\dfrac{b-a}{2}\Big{(}2-\dfrac{2j}{N}\Big{)}^{\gamma},\;\;&j=N/2,N/2+1,\cdots,N.\end{cases} (3.3)

    From (3.2), the condition number of FEM stiffness matrix on the above graded meshes is

    Cond(𝑺𝜹)Nγ(α1)+1.\text{Cond}(\bm{S_{\delta}})\sim N^{\gamma(\alpha-1)+1}. (3.4)
  • (ii)

    Geometric meshes: A geometric meshes on the interval (a,b)(a,b) is defined according to

    xj={a+qNjba2,j=1,2,,N1,bqjNba2,j=N,N+1,,2N1,x_{j}=\begin{cases}a+q^{N-j}\dfrac{b-a}{2},&\quad j=1,2,\cdots,N-1,\\[4.0pt] b-q^{j-N}\dfrac{b-a}{2},&\quad j=N,N+1,\cdots,2N-1,\end{cases} (3.5)

    where qq (0<q<10<q<1, qq is independent of jj) is subdivision ratio.

    Using (3.2), the condition number of FEM stiffness matrix on the above geometric meshes is

    Cond(𝑺𝜹)q1NNα.\text{Cond}(\bm{S_{\delta}})\sim q^{1-N}N^{\alpha}. (3.6)
  • (iii)

    Shishkin meshes: A Shishkin meshes is piecewise uniform mesh over [a,b][a,b] with 2M+N2M+N elements. For η(0,12)\eta\in(0,\frac{1}{2}), we refer to the mesh size over [0,η][0,\eta] and [1η, 1][1-\eta,\,1] as h=ηM(ba)h=\frac{\eta}{M}(b-a) and to the mesh size over [η, 1η][\eta,\,1-\eta] as H=12ηN(ba)H=\frac{1-2\eta}{N}(b-a).

According to (3.2), the condition number of FEM stiffness matrix on the above Shishkin meshes is

Cond(𝑺𝜹)(M(12η)Nη)α1Nα.\text{Cond}(\bm{S_{\delta}})\sim\Big{(}\frac{M(1-2\eta)}{N\eta}\Big{)}^{\alpha-1}N^{\alpha}. (3.7)

In Figure 3.1 (a)-(c), we plot the condition number of the stiffness matrix against various NN, fixed horizon δ=0.3\delta=0.3 and different α\alpha. We observe a good agreement between the numerical results and (3.2), which indicates a clear dependence of the condition number on three parameters: the mesh ratio hmax/hminh_{\max}/h_{\min}, the size of the nonlocality horizon parameter δ\delta, and index of the fractional kernel function α\alpha.

Refer to caption

(a)  Cond(𝑺𝜹)Nγ(α1)+1\text{Cond}(\bm{S_{\delta}})\sim N^{\gamma(\alpha-1)+1}.

Refer to caption

(b)  Cond(𝑺𝜹)q1NNα\text{Cond}(\bm{S_{\delta}})\sim q^{1-N}N^{\alpha}.

Refer to caption

(c)  Cond(𝑺𝜹)(2(12η)η)α1Nα\text{Cond}(\bm{S_{\delta}})\sim(\frac{2(1-2\eta)}{\eta})^{\alpha-1}N^{\alpha}.

Refer to caption

(d)  λminN1\lambda_{\min}\sim N^{-1}.

Figure 3.1. Conditioning and the smallest eigenvalue of the stiffness matrix 𝑺δ\bm{S}_{\delta} for ρδ(s)=2αδ2αs(1+α)\rho_{\delta}(s)=\frac{2-\alpha}{\delta^{2-\alpha}}s^{-(1+\alpha)} on different meshes with δ=0.3\delta=0.3. Condition number: (a) Graded meshes with γ=2\gamma=2, (b) Geometric meshes with q=0.999q=0.999, (c) Shishkin meshes with M=2NM=2N and η=0.2\eta=0.2, (d) The smallest eigenvalue on graded meshes with γ=2\gamma=2.

Meanwhile, we plot the first smallest eigenvalue of the stiffness matrix against various NN and different α\alpha in Figure 3.1 (d), where we observed that the smallest eigenvalue of 𝑺δ\bm{S}_{\delta} satisfy

λmin(𝑺δ)=chmax=cN1,α[1,2].\lambda_{\min}(\bm{S}_{\delta})=ch_{\max}=cN^{-1},\quad\alpha\in[1,2].

This result is consistent with the classical usual Laplacian (i.e., δ=0\delta=0) and the integral fractional Laplacian (i.e., δ\delta\to\infty) (cf. [10]).

{comment}

3.1.1. Diagonal dominance

The study of diagonal dominance of the stiffness matrix has been a research subject of a longstanding interest in numerical linear algebra and numerical analysis. The diagonal dominance property of the stiffness matrix associated with fractional Laplacian operators has been proved in [29], which can be viewed as a limiting case of this paper (cf. [15, 17, 38]). In what follows, we restrict our attention to the uniform meshes case and discuss the intrinsic property of the stiffness matrix as h0h\to 0, that is, we extended the following diagonal dominance property of the stiffness matrix when δh\delta\leq h.

Theorem 3.6.

For δh\delta\leq h, the FEM stiffness matrix 𝐒δ\bm{S}_{\delta} associated with fractional kernel function (2.36) on uniform meshes is diagonally dominant and off-diagonal entries are negative.

Proof.

For δh\delta\leq h, let r=δhr=\frac{\delta}{h}, then 0<r<10<r<1. From (2.56), we have

(𝑺δ)kj\displaystyle(\bm{S}_{\delta})_{kj} =(𝑺δ)jk=1h{22α3αr,ifj=k,1+2(2α)3(3α)r,if|jk|=1,2α6(3α)r,if|jk|=2,0,otherwise.\displaystyle=(\bm{S}_{\delta})_{jk}=\frac{1}{h}\begin{cases}2-\dfrac{2-\alpha}{3-\alpha}r,\qquad\qquad\text{if}\ j=k,\\ -1+\dfrac{2(2-\alpha)}{3(3-\alpha)}r,\qquad\text{if}\ |j-k|=1,\\ -\dfrac{2-\alpha}{6(3-\alpha)}r,\qquad\qquad\text{if}\ |j-k|=2,\\ 0,\qquad\qquad\qquad\qquad\ \text{otherwise.}\end{cases} (3.8)

Define

dk:=|(𝑺δ)kk|kj,j=1N1|(𝑺δ)kj|.d_{k}:=|(\bm{S}_{\delta})_{kk}|-\sum_{k\neq j,\,j=1}^{N-1}|(\bm{S}_{\delta})_{kj}|.

For α[1,2)\alpha\in[-1,2), we can easily obtain 0<2α3α<10<\frac{2-\alpha}{3-\alpha}<1 and

(𝑺δ)kk>0,(𝑺δ)kj<0for|jk|=1,2.(\bm{S}_{\delta})_{kk}>0,\quad(\bm{S}_{\delta})_{kj}<0\quad\text{for}\quad|j-k|=1,2.

It knows that 𝑺δ\bm{S}_{\delta} is a symmetric Toeplitz matrix from Corollary 2.1 and 𝑺δ\bm{S}_{\delta} is a five-diagonal matrix, then we have

d1=dN1,d2=dN2,d3==dN3.d_{1}=d_{N-1},\quad d_{2}=d_{N-2},\quad d_{3}=\cdots=d_{N-3}.

Next, we will consider d1,d2,d3d_{1},d_{2},d_{3}, respectively.

d1\displaystyle d_{1} =|(𝑺δ)11||(𝑺δ)12||(𝑺δ)13|=(𝑺δ)11+(𝑺δ)12+(𝑺δ)13=1h[12α2(3α)r]>0,\displaystyle=|(\bm{S}_{\delta})_{11}|-|(\bm{S}_{\delta})_{12}|-|(\bm{S}_{\delta})_{13}|=(\bm{S}_{\delta})_{11}+(\bm{S}_{\delta})_{12}+(\bm{S}_{\delta})_{13}=\frac{1}{h}\bigg{[}1-\frac{2-\alpha}{2(3-\alpha)}r\bigg{]}>0,
d2\displaystyle d_{2} =|(𝑺δ)22|2|(𝑺δ)21||(𝑺δ)24|=(𝑺δ)22+2(𝑺δ)21+(𝑺δ)24=1h2α6(3α)r>0,\displaystyle=|(\bm{S}_{\delta})_{22}|-2|(\bm{S}_{\delta})_{21}|-|(\bm{S}_{\delta})_{24}|=(\bm{S}_{\delta})_{22}+2(\bm{S}_{\delta})_{21}+(\bm{S}_{\delta})_{24}=\frac{1}{h}\frac{2-\alpha}{6(3-\alpha)}r>0,
d3\displaystyle d_{3} =|(𝑺δ)33|2|(𝑺δ)31|2|(𝑺δ)32|=(𝑺δ)33+2(𝑺δ)31+2(𝑺δ)32=0.\displaystyle=|(\bm{S}_{\delta})_{33}|-2|(\bm{S}_{\delta})_{31}|-2|(\bm{S}_{\delta})_{32}|=(\bm{S}_{\delta})_{33}+2(\bm{S}_{\delta})_{31}+2(\bm{S}_{\delta})_{32}=0.

That is d1=dN1>0,d2=dN2>0,d3==dN3=0d_{1}=d_{N-1}>0,\ d_{2}=d_{N-2}>0,\ d_{3}=\cdots=d_{N-3}=0, so the stiffness matrix 𝑺δ\bm{S}_{\delta} is diagonally dominant and off-diagonal entries are negative. ∎

3.2. Error analysis

In this part, we will give the error analysis for the piecewise linear FEM in analogous to results widely known for local problems.

Following the same notation as in [36], we introduce the energy space

𝒱(Ω)={uL2(ΩΩδ):Ωδδ(u(x+s)u(x))2ρδ(|s|)dsdx<},\mathcal{V}(\Omega)=\Big{\{}u\in L^{2}(\Omega\cup\Omega_{\mathcal{\delta}}):\int_{\Omega}\int_{-\delta}^{\delta}(u(x+s)-u(x))^{2}\rho_{\delta}(|s|){\rm d}s{\rm d}x<\infty\Big{\}}, (3.9)

equipped with the semi-norm

|u|𝒱={Ωδδ(u(x+s)u(x))2ρδ(|s|)dsdx}1/2,|u|_{\mathcal{V}}=\Big{\{}\int_{\Omega}\int_{-\delta}^{\delta}(u(x+s)-u(x))^{2}\rho_{\delta}(|s|){\rm d}s{\rm d}x\Big{\}}^{1/2}, (3.10)

and the norm

u𝒱=(|u|𝒱2+u2)1/2,u2=Ω|u(x)|2dx.\|u\|_{\mathcal{V}}=(|u|_{\mathcal{V}}^{2}+\|u\|^{2})^{1/2},\quad\|u\|^{2}=\int_{\Omega}|u(x)|^{2}{\rm d}x. (3.11)

The following bound plays an important part in the error analysis.

Lemma 3.1.

(see [37], Lemma 3.1) For α(0,2]\alpha\in(0,2] and a kernel ρδ\rho_{\delta} satisfying |s|αρδ(|s|)L1()|s|^{\alpha}\rho_{\delta}(|s|)\in L^{1}(\mathbb{R}), we have a constant CC depending only on Ω\Omega such that

|u|𝒱2C(Ω|s|αρδ(|s|)ds)uHα/2(Ω)2.|u|^{2}_{\mathcal{V}}\leq C\Big{(}\int_{\Omega}|s|^{\alpha}\rho_{\delta}(|s|){\rm d}s\Big{)}\|u\|^{2}_{H^{\alpha/2}(\Omega)}. (3.12)

The following regularity result is already derived in [12].

Lemma 3.2.

(see [12], Theorem 6.2) Let mm be a non-negative integer and 0<r<10<r<1. Suppose that u𝒱(Ω)Hm+tr(Ω)u\in\mathcal{V}(\Omega)\bigcap H^{m+t-r}(\Omega), where rt1r\leq t\leq 1. Then, there exists a constant C>0C>0 with value independent of hh such that, for sufficiently small hh,

uuhHr(Ω)Chm+truHm+t(Ω).\|u-u_{h}\|_{H^{r}(\Omega)}\leq Ch^{m+t-r}\|u\|_{H^{m+t}(\Omega)}. (3.13)

In particular, if m=1m=1, then second-order convergence with respect to the L2(Ω)L^{2}(\Omega) norm is obtain for piecewise linear elements if uu is sufficiently smooth, i.e.,

uuhL2(Ω)Ch2uH2(Ω).\|u-u_{h}\|_{L^{2}(\Omega)}\leq Ch^{2}\|u\|_{H^{2}(\Omega)}. (3.14)

For u𝒱(Ω)u\in\mathcal{V}(\Omega), let us denote Phu𝒱h(Ω)P_{h}u\in\mathcal{V}^{h}(\Omega) be the Ritz-projection of uu given by

𝒜δ(Phu,υh)=𝒜δ(u,υh),υh𝒱h(Ω).\mathcal{A}_{\delta}(P_{h}u,\upsilon_{h})=\mathcal{A}_{\delta}(u,\upsilon_{h}),\quad\forall\upsilon_{h}\in\mathcal{V}^{h}(\Omega).

With the aid of Lemma 3.1, we can derive the error estimate of the Ritz-projection PhuP_{h}u as follows.

Lemma 3.3.

(see [12], Theorem 6.2) Let mm be a non-negative integer and 0<μ<10<\mu<1. Suppose that u𝒱(Ω)Hm+tμ(Ω)u\in\mathcal{V}(\Omega)\bigcap H^{m+t-\mu}(\Omega), where μt1\mu\leq t\leq 1. Then, there exists a constant C>0C>0 with value independent of hh such that, for sufficiently small hh,

|uPhu|𝒱minυh𝒱h|uυh|𝒱Chm+tμuHm+t(Ω).|u-P_{h}u|_{\mathcal{V}}\leq\min\limits_{\upsilon_{h}\in\mathcal{V}_{h}}|u-\upsilon_{h}|_{\mathcal{V}}\leq Ch^{m+t-\mu}\|u\|_{H^{m+t}(\Omega)}. (3.15)

In particular, if m=1m=1, then second-order convergence with respect to the L2(Ω)L^{2}(\Omega) norm is obtain for piecewise linear elements if uu is sufficiently smooth, i.e.,

|uPhu|𝒱minυh𝒱h|uυh|𝒱Ch2uH2(Ω).|u-P_{h}u|_{\mathcal{V}}\leq\min\limits_{\upsilon_{h}\in\mathcal{V}_{h}}|u-\upsilon_{h}|_{\mathcal{V}}\leq Ch^{2}\|u\|_{H^{2}(\Omega)}. (3.16)
Proof.

Using the definition of the Ritz-projection PhuP_{h}u, we have

𝒜δ(uPhu,υh)=0,υh𝒱h(Ω),\mathcal{A}_{\delta}(u-P_{h}u,\upsilon_{h})=0,\quad\forall\upsilon_{h}\in\mathcal{V}^{h}(\Omega),

Using the orthogonality and Cauchy-Schwartz inequality, we have

𝒜δ(uPhu,uPhu)=𝒜δ(uPhu,uυh+υhPhu)=𝒜δ(uPhu,uυh)𝒜δ(uPhu,uPhu)1/2𝒜δ(uυh,uυh)1/2,υh𝒱h(Ω),\begin{split}\mathcal{A}_{\delta}(u-P_{h}u,u-P_{h}u)&=\mathcal{A}_{\delta}(u-P_{h}u,u-\upsilon_{h}+\upsilon_{h}-P_{h}u)=\mathcal{A}_{\delta}(u-P_{h}u,u-\upsilon_{h})\\ &\leq\mathcal{A}_{\delta}(u-P_{h}u,u-P_{h}u)^{1/2}\mathcal{A}_{\delta}(u-\upsilon_{h},u-\upsilon_{h})^{1/2},\quad\forall\upsilon_{h}\in\mathcal{V}^{h}(\Omega),\end{split}

which leads to

𝒜δ(uPhu,uPhu)minυh𝒮h𝒜δ(uυh,uυh).\mathcal{A}_{\delta}(u-P_{h}u,u-P_{h}u)\leq\min\limits_{\upsilon_{h}\in\mathcal{S}_{h}}\mathcal{A}_{\delta}(u-\upsilon_{h},u-\upsilon_{h}).

Using Lemma 3.1, we have

|uPhu|𝒱minυh𝒱h|uυh|𝒱.|u-P_{h}u|_{\mathcal{V}}\leq\min\limits_{\upsilon_{h}\in\mathcal{V}_{h}}|u-\upsilon_{h}|_{\mathcal{V}}.

This completes the proof. ∎

Theorem 3.7.

Let the solution uu of the nonlocal problem (1.1) be sufficiently smooth, then for the piecewise linear elements solutions uhu_{h}, we have

|uuh|𝒱Ch2uH2(Ω).|u-u_{h}|_{\mathcal{V}}\leq{\color[rgb]{0,0,1}Ch^{2}\|u\|_{H^{2}(\Omega)}.} (3.17)
Proof.

Decompose the error eh=uuhe_{h}=u-u_{h} as eh=ηhξhe_{h}=\eta_{h}-\xi_{h}, where

ηh=uPhuandξh=uhPhu.\eta_{h}=u-P_{h}u\quad\text{and}\quad\xi_{h}=u_{h}-P_{h}u.

Subtracting (2.6) to (2.9), we have

𝒜δ(uuh,υh)=𝒜δ(ηhξh,υh)=0,υh𝒮h(Ω).\mathcal{A}_{\delta}(u-u_{h},\upsilon_{h})=\mathcal{A}_{\delta}(\eta_{h}-\xi_{h},\upsilon_{h})=0,\quad\forall\upsilon_{h}\in\mathcal{S}^{h}(\Omega). (3.18)

Choosing υh=ξh\upsilon_{h}=\xi_{h} and applying the Cauchy-Schwartz inequality, we obtain

𝒜δ(ξh,ξh)𝒜δ(ηh,ηh).\mathcal{A}_{\delta}(\xi_{h},\xi_{h})\leq\mathcal{A}_{\delta}(\eta_{h},\eta_{h}).

Thus,

|ξh|𝒱|ηh|𝒱.|\xi_{h}|_{\mathcal{V}}\leq|\eta_{h}|_{\mathcal{V}}.

Using the triangle inequality and (3.14), we finish the proof. ∎

3.3. Nonlocal BVPs with various interaction kernels

In this subsection, we focus on numerical approximation the following nonlocal problems

{δu(x)=λu(x)+f(x),onΩ,u(x)=0,onΩδ,\begin{cases}{\mathcal{L}}_{\delta}u(x)=\lambda u(x)+f(x),\;\;\;&\text{on}\;\Omega,\\ u(x)=0,&\text{on}\;\Omega_{\delta},\end{cases} (3.19)

which can be considered as nonlocal BVP if λ=0\lambda=0; or the nonlocal Helmholtz problem if λ<0\lambda<0 is given; or eigenvalue problem if λ\lambda is unknown and f(x)=0f(x)=0.

3.3.1. Nonlocal BVP with λ=0\lambda=0

In this subsection, we will consider the accuracy test and limiting behaviours for nonlocal BVPs (3.19) with λ=0\lambda=0.

Example 1. (Accuracy test of smooth solutions). We first test the accuracy of the proposed method for the nonlocal BVP (3.19) with λ=0\lambda=0 and involving a fractional kernel function (2.32) with different values of the parameters α\alpha.

In the simulation, we use the FEM on uniform meshes, and take the exact solution u(x)=x2(1x)2u(x)=x^{2}(1-x)^{2} and Ω=(0,1)\Omega=(0,1) (cf. [9, 36]). In Figure 3.2, we plot the numerical errors against various hh with different parameters α=0.1,0.3,0.5,0.7,0.9\alpha=0.1,0.3,0.5,0.7,0.9. We observe from Figure 3.2 that the convergence order of the piecewise linear FEM on uniform meshes is O(h2)O(h^{2}) for fixed horizon hδba2h\leq\delta\leq\frac{b-a}{2}, while for fixed horizon 0δh0\leq\delta\leq h, the convergence rate is O(h)O(h).

Refer to caption

(a)   hδba2h\leq\delta\leq\frac{b-a}{2}.

Refer to caption

(b)   0<δ<h0<\delta<h.

Figure 3.2. The numerical errors for ρδ(s)=2αδ2αs(1+α)\rho_{\delta}(s)=\frac{2-\alpha}{\delta^{2-\alpha}}s^{-(1+\alpha)} with different α(1,0)\alpha\in(-1,0).

Example 2. (Accuracy test of discontinuous solution). Next, we consider the FEM on uniform and graded meshes for the nonlocal BVP (3.19) with λ=0\lambda=0 and the discontinuous exact solution on Ω=(0,1)\Omega=(0,1) given by (cf. [9, 36])

u(x)={2x2,x<0.5,(1x)2,otherwise.u(x)=\begin{cases}2x^{2},\quad&x<0.5,\\[1.0pt] (1-x)^{2},\quad&\text{otherwise}.\end{cases} (3.20)

In this computation, we take the constant box potential ρδ(s)=3δ3\rho_{\delta}(s)=\frac{3}{\delta^{3}}, and choose the following graded meshes

xj={b+a2ba2(12jN)γ,j=0,1,,N21,b+a2+ba2(2jN1)γ,j=N2,N2+1,,N,x_{j}=\begin{cases}\dfrac{b+a}{2}-\dfrac{b-a}{2}\Big{(}1-\dfrac{2j}{N}\Big{)}^{\gamma},&j=0,1,\cdots,\dfrac{N}{2}-1,\\[6.0pt] \dfrac{b+a}{2}+\dfrac{b-a}{2}\Big{(}\dfrac{2j}{N}-1\Big{)}^{\gamma},\;\;&j=\dfrac{N}{2},\dfrac{N}{2}+1,\cdots,N,\end{cases} (3.21)

where γ>1\gamma>1 is a suitable grading exponent. Different from (3.3), the above graded meshes clustering near the discontinuous points x=0.5x=0.5, which is beneficial for capturing the discontinuous nature of the solution.

In Figure 3.3(a)-(b), we plot the numerical errors of the FEM on uniform meshes with various δ\delta, which shows that the convergence order is O(h0.5)O(h^{0.5}) in LL^{\infty}-norm and O(h)O(h) in L2L^{2}-norm. As a comparison, we plot numerical errors of the FEM on graded meshes with various δ\delta in Figure 3.3(c)-(d). We observe that, for fixed grading exponent 1γ21\leq\gamma\leq 2, the L2L^{2}-norm errors are roughly of O(hγ2)O(h^{\frac{\gamma}{2}}). For fixed grading exponent γ2\gamma\geq 2, i.e., the L2L^{2}-norm errors are roughly of O(hmin(2,γ1))O(h^{\min(2,\gamma-1)}). The convergence order of FEM on graded meshes is significantly higher than that of FEM on uniform meshes when there are discontinuities in the solution.

Refer to caption

(a)  LL^{\infty}-norm errors.

Refer to caption

(b)  L2L^{2}-norm errors.

Refer to caption

(c)  1γ<21\leq\gamma<2.

Refer to caption

(d)  γ2\gamma\geq 2.

Figure 3.3. The numerical errors of discontinuous solution. (a)-(b): FEM on uniform meshes, (c)-(d): FEM on graded meshes in L2L^{2}-norm.
Refer to caption

(a)  uniform meshes.

Refer to caption

(b)  graded meshes with γ=2\gamma=2.

Figure 3.4. Analytical and numerical solutions for ρδ(s)=3δ3\rho_{\delta}(s)=\frac{3}{\delta^{3}}.

It should be pointed out that no instability has been observed in any of our computations. The piecewise linear FEM we use is not only convergent to the nonlocal constrained value problem with fixed δ\delta but also convergent to the local differential equation with a fixed ratio between δ\delta and hh. Thus, our scheme is an asymptotically compatible scheme [37]. In addition, we find from Figure 3.4 that the numerical solutions of FEM on graded meshes have a better approximation effect and stability than the FEM on uniform meshes at the discontinuity point.

Example 3. (Limiting behaviours). It is interesting to numerically study the local limit (i.e., δ0\delta\to 0) and the nonlocal interactions approach infinite (i.e., δ\delta\to\infty) of the nonlocal BVP (3.19) with λ=0\lambda=0. More specifically, we compare solutions of the nonlocal BVP (3.19) with λ=0\lambda=0 to the ODE (resp. fractional Laplacian equation) equation with special interest in observing behaviors in the local limit δ0\delta\to 0 (resp. fractional limit δ\delta\to\infty).

Case 1 (local limit): To study the local limit (i.e., δ0\delta\to 0), we adopt the piecewise linear FEM for solving the nonlocal BVP (3.19) with λ=0\lambda=0, source function f(x)=2f(x)=2 and kernel function (2.32). The exact solution is unknown, but the following ODE

{u′′(x)=2,forx(1,1),u(1)=u(1)=0,\begin{cases}-u^{\prime\prime}(x)=2,\;&\text{for}\ x\in(-1,1),\\[4.0pt] u(-1)=u(1)=0,\end{cases} (3.22)

has the exact solution u(x)=1x2u(x)=1-x^{2}.

In our computation, we use the graded meshes (3.3). We compare solutions of the nonlocal model to the ODE (3.22) with special interest in observing behaviors in the local limit δ0\delta\to 0. Figure 3.10 shows the comparison of numerical solutions for the nonlocal model and the solution of the governing equation given by (3.22) for γ=2\gamma=2 and γ=3\gamma=3, respectively. It can be clearly observed that as δ0\delta\to 0, the solution of the nonlocal diffusion model converges to the solution of the local one (3.22).

Refer to caption

(a)   γ=2\gamma=2.

Refer to caption

(b)   γ=3\gamma=3.

Refer to caption

(c)   γ=2\gamma=2.

Refer to caption

(d)   γ=3\gamma=3.

Figure 3.5. The evolution process of the numerical solutions on graded meshes as δ0\delta\rightarrow 0. Top: ρδ(s)=3δ3\rho_{\delta}(s)=\frac{3}{\delta^{3}}, Bottom: ρδ(s)=2αδ2αs(1+α)\rho_{\delta}(s)=\frac{2-\alpha}{\delta^{2-\alpha}}s^{-(1+\alpha)} and α=0.25\alpha=-0.25.
{comment}
Refer to caption
Refer to caption
Figure 3.6. The evolution process of the numerical solutions as δ0\delta\rightarrow 0 with ρδ(s)=2αδ2αs(1+α)\rho_{\delta}(s)=\frac{2-\alpha}{\delta^{2-\alpha}}s^{-(1+\alpha)} and α=0.75\alpha=-0.75 on graded meshes. Left: γ=2\gamma=2, Right: γ=3\gamma=3.

Case 2 (global limit): Now, we turn to the global limit (i.e., δ\delta\rightarrow\infty), that is, consider the nonlocal models with the following fractional Laplacian kernel (2.32). It is known that the solution of the nonlocal problem with a fractional Laplacian kernel exhibits singularities near the boundary of Ω\Omega. We take Ω=(1,1)\Omega=(-1,1) and consider a piecewise linear FEM on graded meshes (3.3) for solving the nonlocal BVP (3.19) with λ=0\lambda=0 and f(x)=1f(x)=1. The exact solution is unknown, but the following fractional Poisson equation

{(Δ)αu(x)=1,xΩ=(1,1),u(x)=0,xΩc=\Ω¯,\begin{cases}(-\Delta)^{\alpha}u(x)=1,\quad&x\in\Omega=(-1,1),\\[4.0pt] u(x)=0,\quad&x\in\Omega^{c}=\mathbb{R}\backslash\bar{\Omega},\end{cases} (3.23)

where

(Δ)αu(x)=Cαp.v.u(x)u(y)|xy|1+2αdy,(-\Delta)^{\alpha}u(x)=C_{\alpha}\,{\rm p.v.}\!\int_{\mathbb{R}}\frac{u(x)-u(y)}{|x-y|^{1+2\alpha}}{\rm d}y,\;\;\;\; (3.24)

with “p.v.” stands for the principle value. The equation (3.23) admits a exact solution u(x)=(1x2)+α/Γ(2α+1)u(x)=(1-x^{2})^{\alpha}_{+}/{\Gamma(2\alpha+1)}.

As we can see from Figure 3.7, the solution of the nonlocal BVP converges to the solution of the fractional Laplacian equation (3.23) as the nonlocal interactions become infinite, i.e., δ\delta\to\infty. Thus the conclusions in [17] are verified numerically.

Refer to caption

(a)   γ=2\gamma=2.

Refer to caption

(b)   γ=3\gamma=3.

Figure 3.7. The evolution process of the numerical solutions on graded meshes with γ=1.1\gamma=1.1 as δ\delta\rightarrow\infty.

3.3.2. Nonlocal BVP with λ<0\lambda<0

In this subsection, we will consider the dynamics of nonlocal BVPs (3.19) with λ<0\lambda<0.

Example 4. (The dynamics of nonlocal Helmholtz problem). In this example, we will consider the FEM on uniform meshes for the following nonlocal Helmholtz problem

{δu(x)k2n(x)u(x)=f(x),onΩ=(L,L),u(x)=0,onΩδ=[Lδ,L+δ].\begin{cases}\mathcal{L}_{\delta}u(x)-k^{2}n(x)u(x)=f(x),\;&\text{on}\;\Omega=(-L,L),\\ u(x)=0,&\text{on}\;\Omega_{\delta}=[-L-\delta,L+\delta].\end{cases} (3.25)

where n(x)n(x) is a given function and k2k^{2} is a given constant. Here, we focus on the dynamics of the solution with the following two cases:

Case 1: n(x)n(x) is continuous function

n(x)=sinx,x(L,L).n(x)=\sin{x},\quad x\in(-L,L). (3.26)

Case 2: n(x)n(x) is piecewise constant

n(x)={0.5,x(L,0),1,x(0,L).n(x)=\begin{cases}0.5,\;&x\in(-L,0),\\[1.0pt] 1,\;&x\in(0,L).\end{cases} (3.27)

For the convenience of description, we take f(x)=k2f(x)=k^{2} and the kernel function (2.32), i.e., ρδ(s)=2αδ2αs(1+α)\rho_{\delta}(s)=\frac{2-\alpha}{\delta^{2-\alpha}}s^{-(1+\alpha)} with fixed α=0.5\alpha=0.5.

In Figure 3.8, we depict the profile of the numerical solution for Case 1 on the computation domain Ω=[4π,4π]\Omega=[-4\pi,4\pi] with different k2k^{2} and δ\delta. We observe from the top of Figure 3.8 that oscillation in regions with sin(x)<0\sin(x)<0 exponential growth and decay in regions with sin(x)>0\sin(x)>0. This observation is consistent with the one described in [39, p.81] for the local model. Moreover, we find from the bottom of Figure 3.8 that as k2k^{2} decreases, the oscillation frequency within the oscillatory region amplifies.

Refer to caption
(a) δ=0.1,k2=1000/3\delta=0.1,\,k^{2}=1000/3
Refer to caption
(b) δ=0.001,k2=1000/3\delta=0.001,\,k^{2}=1000/3
Refer to caption
(c) δ=0.0001,k2=1000/3\delta=0.0001,\,k^{2}=1000/3
Refer to caption
(d) k2=10/3,δ=0.001k^{2}=10/3,\,\delta=0.001
Refer to caption
(e) k2=1000/3,δ=0.001k^{2}=1000/3,\,\delta=0.001
Refer to caption
(f) k2=10000/3,δ=0.001k^{2}=10000/3,\,\delta=0.001
Figure 3.8. The profiles of numerical solutions for Case 1. Top: versus different δ\delta with fixed k2=1000/3k^{2}=1000/3; Bottom: versus different k2k^{2} with fixed δ=0.001\delta=0.001.

In Figure 3.9, we plot the profile of the numerical solution for Case 2 on the computation domain Ω=[100,100]\Omega=[-100,100] with k2=2k^{2}=2. It can be seen that the amplitude of the solution is affected by magnitude of the piecewise constant function n(x)n(x), that is, the amplitude is larger within the interval (100,0)(-100,0), while it is relatively smaller within the interval (0,100)(0,100). We also observe that as δ\delta decreases, the solution converges to the solution of the local Helmholtz problem, i.e., δ=0\delta=0.

Refer to caption
(a) δ=0.1,k2=2\delta=0.1,\,k^{2}=2
Refer to caption
(b) δ=0.01,k2=2\delta=0.01,\,k^{2}=2
Refer to caption
(c) δ=0,k2=2\delta=0,\,k^{2}=2
Figure 3.9. The profiles of numerical solution for Case 2 with α=0.5\alpha=0.5 and k2=2k^{2}=2.
{comment}

3.3.3. Nonlocal BVP with f(x)=0f(x)=0 and λ\lambda is unknown

One fundamental issue in the study of the nonlocal operator is its eigenvalue problem, i.e., (3.19) with f(x)=0f(x)=0 and λ\lambda is unknown. Since the spectrum of nonlocal eigenvalue problems depends on the horizon size δ\delta and the parameters α\alpha, few analytical results of the eigenvalues or eigenfunctions can be found in the literature, which prompts us to numerical study the nonlocal eigenvalue problem.

Example 5. (Eigenvalue problem) Consider the eigenvalue problem of nonlocal problem with a fractional kernel function (2.32) with different values of the parameters α\alpha.

{δu(x)=λu(x),onΩ=(1,1),u(x)=0,onΩδ=[1δ,1][1,1+δ].\begin{cases}\mathcal{L}_{\delta}u(x)=\lambda u(x),\quad&\text{on}\ \Omega=(-1,1),\\[4.0pt] u(x)=0,\quad&\text{on}\ \Omega_{\mathcal{\delta}}=[-1-\delta,-1]\cup[1,1+\delta].\end{cases} (3.28)

Using FEM discretization, we can obtain the following standard matrix eigenvalue problem

𝑺δ𝒖=λ𝑴𝒖,\bm{S}_{\delta}\bm{u}=\lambda\bm{M}\bm{u}, (3.29)

where 𝑴\bm{M} is the usual FEM mass matrix.

When δ0\delta\to 0, δu(x)\mathcal{L}_{\delta}u(x) is approximating Laplacian operator uxx(x)u_{xx}(x). As is well known, the Laplacian operator eigenvalue problem with Dirichlet boundary conditions is

{uxx(x)=λu(x),onΩ=(1,1),u(1)=u(1)=0.\begin{cases}-u_{xx}(x)=\lambda u(x),\;&\text{on}\,\,\Omega=(-1,1),\\[4.0pt] u(-1)=u(1)=0.\end{cases} (3.30)

Its eigenvalues and eigenfunction expressions are

λk=k2π24,uk(x)=sin(kπ2(1+x)).\lambda_{k}=\frac{k^{2}\pi^{2}}{4},\quad u_{k}(x)=\sin(\frac{k\pi}{2}(1+x)).
Table 3.1. The eigenvalues of FEM on graded meshes when N=1024N=1024 .
λ1\lambda_{1} λ2\lambda_{2} λ3\lambda_{3} λ4\lambda_{4} λ5\lambda_{5}
δ=0\delta=0 2.46740110 9.86960440 22.20660990 39.47841760 61.68502751
α\alpha δ=0.1\delta=0.1 λδ1\lambda^{1}_{\delta} λδ2\lambda^{2}_{\delta} λδ3\lambda^{3}_{\delta} λδ4\lambda^{4}_{\delta} λδ5\lambda^{5}_{\delta}
δ/21\delta/2^{1} 2.41759862 9.66390067 21.71945040 38.55295196 60.11616374
δ/22\delta/2^{2} 2.44244850 9.76813715 21.97209805 39.04605489 60.97843581
0.4 δ/23\delta/2^{3} 2.45491393 9.81923809 22.09172241 39.27027858 61.35199331
δ/25\delta/2^{5} 2.46115693 9.84452507 22.14980400 39.37647857 61.52385393
δ/25\delta/2^{5} 2.46428142 9.85710596 22.17843509 39.42816470 61.60622225
δ/26\delta/2^{6} 2.46584534 9.86339180 22.19270072 39.45381799 61.64691606
δ/21\delta/2^{1} 2.42751075 9.70453885 21.81459327 38.73025554 60.41328634
δ/22\delta/2^{2} 2.44745354 9.78841357 22.01868176 39.13126116 61.11637305
0.8 δ/23\delta/2^{3} 2.45742959 9.82936677 22.11476158 39.31185528 61.41820329
δ/24\delta/2^{4} 2.46241914 9.84959215 22.16127618 39.39704646 61.55634551
δ/25\delta/2^{5} 2.46491475 9.85964614 22.18417827 39.43844094 61.62241698
δ/26\delta/2^{6} 2.46616355 9.86466801 22.19558573 39.45897877 61.65504623
δ/21\delta/2^{1} 2.43870151 9.75058814 21.92302394 38.93499308 60.75718811
δ/22\delta/2^{2} 2.45296532 9.81079299 22.07028410 39.22610053 61.27079425
1.2 δ/23\delta/2^{3} 2.46007728 9.84004411 22.13911423 39.35596052 61.48875749
δ/24\delta/2^{4} 2.46362860 9.85445490 22.17231554 39.41690918 61.58786858
δ/25\delta/2^{5} 2.46540354 9.86161116 22.18863941 39.44646660 61.63515483
δ/26\delta/2^{6} 2.46629141 9.86518432 22.19676697 39.46112478 61.65849527
δ/21\delta/2^{1} 2.41843091 9.67125122 21.75106140 38.64553780 60.33751981
δ/22\delta/2^{2} 2.42618623 9.70412710 21.83198239 38.80666199 60.62389058
1.6 δ/23\delta/2^{3} 2.43003864 9.72000928 21.86949303 38.87775885 60.74384622
δ/24\delta/2^{4} 2.43195879 9.72781211 21.88751329 38.91094086 60.79800753
δ/25\delta/2^{5} 2.43291768 9.73168259 21.89635993 38.92700088 60.82378576
δ/26\delta/2^{6} 2.43339712 9.73361430 21.90076261 38.93496166 60.83650391

We will test the accuracy of the FEM discretization for eigenvalue of the nonlocal operator (1.2) with a fractional kernel function of the form

ρδ(s)=2αδ2αs(1+α),s>0,α[1,2),\rho_{\delta}(s)=\frac{2-\alpha}{\delta^{2-\alpha}}s^{-(1+\alpha)},\quad s>0,\quad\alpha\in[-1,2),

with different values of the parameters α\alpha, which lead to different types of singularities.

Table 3.2. The eigenvalues on uniform meshes when N=1024N=1024.
α\alpha δ\delta 0 10410^{-4} 10310^{-3} 10210^{-2} 10110^{-1} 1
0.5-0.5 λ1\lambda_{1} 2.4674 2.4673 2.4668 2.4564 2.3384 1.4074
λ2\lambda_{2} 9.8606 9.8694 9.8671 9.8251 9.3226 4.4369
0.75-0.75 λ1\lambda_{1} 2.4674 2.4673 2.4668 2.4558 2.3320 1.3706
λ2\lambda_{2} 9.8696 9.8694 9.8670 9.8227 9.2957 4.2549
0.50.5 λ1\lambda_{1} 2.4674 2.4673 2.4668 2.4564 2.3384 1.4074
λ2\lambda_{2} 9.8696 9.8694 9.8675 9.8274 9.4741 5.4788
1.51.5 λ1\lambda_{1} 2.4674 2.4673 2.4668 2.4564 2.3384 1.4074
λ2\lambda_{2} 9.8696 9.8694 9.8671 9.8251 9.3226 4.4369
Table 3.3. The errors of eigenvalues on graded meshes when N=1024N=1024 .
α\alpha δ=0.1\delta=0.1 |λ1λδ1||\lambda_{1}-\lambda^{1}_{\delta}| |λ2λδ2||\lambda_{2}-\lambda^{2}_{\delta}| |λ3λδ3||\lambda_{3}-\lambda^{3}_{\delta}| |λ4λδ4||\lambda_{4}-\lambda^{4}_{\delta}| |λ5λδ5||\lambda_{5}-\lambda^{5}_{\delta}|
δ/21\delta/2^{1} 4.98024805e-02 2.05703733e-01 4.87159503e-01 9.26512343e-01 1.56886377e+00
δ/22\delta/2^{2} 2.49526043e-02 1.01467251e-01 2.34511852e-01 4.32362714e-01 7.06591693e-01
0.4 δ/23\delta/2^{3} 1.24871709e-02 5.03663062e-02 1.14887493e-01 2.08139023e-01 3.33034195e-01
δ/24\delta/2^{4} 6.24417136e-03 2.50793326e-02 5.68059049e-02 1.01939032e-01 1.61173579e-01
δ/25\delta/2^{5} 3.11968427e-03 1.24984377e-02 2.81748121e-02 5.02529059e-02 7.88052573e-02
δ/26\delta/2^{6} 1.55576053e-03 6.21259956e-03 1.39091786e-02 2.45996104e-02 3.81114443e-02
δ/21\delta/2^{1} 3.98903502e-02 1.65065555e-01 3.92016628e-01 7.48162060e-01 1.27174116e+00
δ/22\delta/2^{2} 1.99475595e-02 8.11908268e-02 1.87928141e-01 3.47156447e-01 5.68654457e-01
0.8 δ/23\delta/2^{3} 9.97151249e-03 4.02376321e-02 9.18483274e-02 1.66562326e-01 2.66824215e-01
δ/24\delta/2^{4} 4.98195687e-03 2.00122486e-02 4.53337268e-02 8.13711451e-02 1.28681992e-01
δ/25\delta/2^{5} 2.48634990e-03 9.95825886e-03 2.24316343e-02 3.99766639e-02 6.26105263e-02
δ/26\delta/2^{6} 1.23755302e-03 4.93639234e-03 1.10241763e-02 1.94388314e-02 2.99812714e-02
δ/21\delta/2^{1} 2.86995852e-02 1.19016259e-01 2.83585958e-01 5.43424529e-01 9.27839399e-01
δ/22\delta/2^{2} 1.44357763e-02 5.88114115e-02 1.36325797e-01 2.52317070e-01 4.14233255e-01
1.2 δ/23\delta/2^{3} 7.32381792e-03 2.95602930e-02 6.74956675e-02 1.22457082e-01 1.96270021e-01
δ/24\delta/2^{4} 3.77250484e-03 1.51494988e-02 3.42943660e-02 6.15084242e-02 9.71589232e-02
δ/25\delta/2^{5} 1.99755832e-03 7.99324535e-03 1.79704905e-02 3.19510088e-02 4.98726797e-02
δ/26\delta/2^{6} 1.10969274e-03 4.42007585e-03 9.84292928e-03 1.72928194e-02 2.65322374e-02
δ/21\delta/2^{1} 4.89701911e-02 1.98353178e-01 4.55548502e-01 8.32879809e-01 1.34750769e+00
δ/22\delta/2^{2} 4.12148682e-02 1.65477295e-01 3.74627512e-01 6.71755614e-01 1.06113693e+00
1.6 δ/23\delta/2^{3} 3.73624593e-02 1.49595119e-01 3.37116875e-01 6.00658756e-01 9.41181290e-01
δ/24\delta/2^{4} 3.54423138e-02 1.41792288e-01 3.19096612e-01 5.67476741e-01 8.87019975e-01
δ/25\delta/2^{5} 3.44834248e-02 1.37921811e-01 3.10249976e-01 5.51416724e-01 8.61241744e-01
δ/26\delta/2^{6} 3.40039801e-02 1.35990099e-01 3.05847296e-01 5.43455943e-01 8.48523597e-01
Table 3.4. The convergence rates of FEM on graded meshes when N=1024N=1024.
α\alpha δ=0.1\delta=0.1 Rate1Rate_{1} Rate2Rate_{2} Rate3Rate_{3} Rate4Rate_{4} Rate5Rate_{5}
δ/22\delta/2^{2} 0.9970 1.0196 1.0547 1.0996 1.1508
δ/23\delta/2^{3} 0.9987 1.0105 1.0294 1.0547 1.0852
0.4 δ/24\delta/2^{4} 0.9999 1.0060 1.0161 1.0298 1.0471
δ/25\delta/2^{5} 1.0011 1.0048 1.0116 1.0204 1.0323
δ/26\delta/2^{6} 1.0038 1.0085 1.0184 1.0306 1.0481
δ/22\delta/2^{2} 0.9998 1.0237 1.0607 1.1078 1.1612
δ/23\delta/2^{3} 1.0003 1.0128 1.0329 1.0595 1.0917
0.8 δ/24\delta/2^{4} 1.0011 1.0077 1.0187 1.0335 1.0521
δ/25\delta/2^{5} 1.0027 1.0069 1.0151 1.0254 1.0393
δ/26\delta/2^{6} 1.0065 1.0124 1.0249 1.0402 1.0623
δ/22\delta/2^{2} 0.9914 1.0170 1.0567 1.1068 1.1634
δ/23\delta/2^{3} 0.9790 0.9924 1.0142 1.0430 1.0776
1.2 δ/24\delta/2^{4} 0.9571 0.9644 0.9768 0.9934 1.0144
δ/25\delta/2^{5} 0.9173 0.9224 0.9323 0.9449 0.9621
δ/26\delta/2^{6} 0.8481 0.8547 0.8685 0.8857 0.9105
δ/22\delta/2^{2} 0.2487 0.2614 0.2821 0.3102 0.3447
δ/23\delta/2^{3} 0.1416 0.1456 0.1522 0.1614 0.1731
1.6 δ/24\delta/2^{4} 0.0761 0.0773 0.0793 0.0820 0.0855
δ/25\delta/2^{5} 0.0396 0.0399 0.0406 0.0414 0.0425
δ/26\delta/2^{6} 0.0202 0.0203 0.0206 0.0210 0.0215

Tables 3.1 provide numerical eigenvalues of FEM on graded meshes. A large amount of experimental results can observe three phenomena: 1) When δ0\delta\to 0, the eigenvalues of nonlocal operator tend to the corresponding eigenvalues of local Laplacian operator (3.30); 2) The eigenvalues of local Laplacian operator (3.30) are the upper bound of the corresponding eigenvalues of nonlocal operator; 3) The smaller the horizon parameter δ\delta, the larger the eigenvalues of nonlocal operator.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption

(1)δ=0.1\delta=0.1.

Refer to caption

(2)δ=0.3\delta=0.3.

Refer to caption

(3)δ=0.5\delta=0.5.

Refer to caption

(4)δ=0.7\delta=0.7.

Figure 3.10. The different states of on uniform meshes for different δ\delta.(The first row is the ground states, and the second row is the first excited state)
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption

(1)δ=0.1\delta=0.1.

Refer to caption

(2)δ=0.3\delta=0.3.

Refer to caption

(3)δ=0.5\delta=0.5.

Refer to caption

(4)δ=0.7\delta=0.7.

Figure 3.11. The different states of on non-uniform meshes for different δ\delta.(The first row is the ground states, and the second row is the first excited state)

As shown in the Figure 3.10-3.11, whether using a uniform grid or a non-uniform grid, it becomes evident that as δ0\delta\to 0, the eigenvalues and eigenfunctions of nonlocal operator (1.2) all convergence to those of the classical Laplace operator.

Refer to caption

(1)δ=0.01\delta=0.01.

Refer to caption

(2)δ=0.1\delta=0.1.

Refer to caption

(3)δ=0.5\delta=0.5.

Refer to caption

(1)δ=0.01\delta=0.01.

Refer to caption

(2)δ=0.1\delta=0.1.

Refer to caption

(3)δ=0.5\delta=0.5.

Figure 3.12. The first eigenvalue for different δ\delta on two meshes.(λδ1\lambda_{\delta}^{1} represents the first numerical eigenvalue, λ1\lambda_{1} represents the first eigenvalue of the exact solution)

According to the Figure (3.12), we observe that as δ\delta increases, the error between the numerical solution of the eigenvalue and the exact solution becomes progressively larger. However, the calculated numerical solutions are consistently smaller than the exact solutions, allowing us to establish a lower bound for the eigenvalue obtained through this method. We can get the following conclusions (δ0.001\delta\geq 0.001???):

λδ1λ1.\lambda_{\delta}^{1}\leq\lambda_{1}.
Table 3.5. The errors and rates when α=0.5\alpha=0.5 and N=128N=128.
α\alpha δ=0.1\delta=0.1 |λ1λδ1||\lambda_{1}-\lambda^{1}_{\delta}| RateRate |λ2λδ2||\lambda_{2}-\lambda^{2}_{\delta}| RateRate
δ/21\delta/2^{1} 4.03e-02 1.68e-01
δ/22\delta/2^{2} 1.65e-02 1.288 6.76e-02 1.313
0.25 δ/23\delta/2^{3} 7.13e-03 1.210 2.85e-02 1.244
δ/24\delta/2^{4} 3.29e-03 1.118 1.24e-02 1.201
δ/25\delta/2^{5} 1.51e-03 1.125 4.92e-03 1.336
δ/21\delta/2^{1} 3.17e-02 1.32e-01
δ/22\delta/2^{2} 1.31e-02 1.280 5.34e-02 1.310
0.75 δ/23\delta/2^{3} 5.36e-03 1.285 2.13e-02 1.330
δ/24\delta/2^{4} 2.07e-03 1.370 7.46e-03 1.510
δ/25\delta/2^{5} 5.33e-04 1.960 9.74e-04 2.937
δ/21\delta/2^{1} 3.65e-02 1.50e-01
δ/22\delta/2^{2} 2.40e-02 0.606 9.66e-02 0.634
1.25 δ/23\delta/2^{3} 1.85e-02 0.375 7.36e-02 0.392
δ/24\delta/2^{4} 1.61e-02 0.206 6.33e-02 0.219
δ/25\delta/2^{5} 1.49e-02 0.109 5.83e-02 0.117
δ/21\delta/2^{1} 5.51e-01 2.21e+00
δ/22\delta/2^{2} 5.46e-01 - 2.19e+00 -
1.75 δ/23\delta/2^{3} 5.43e-01 - 2.17e+00 -
δ/24\delta/2^{4} 5.43e-01 - 2.17e+00 -
δ/25\delta/2^{5} 5.42e-01 - 2.17e+00 -

3.4. Time-dependent problem

Consider the following nonlocal Allen-Cahn equation:

{ut(x,t)+ϵ2δu(x,t)+f(u)=0,onΩ=(a,b),0<tT,u(x,t)=0,onΩδ=[aδ,a][b,b+δ],0<tT,u(x,0)=u0(x),onΩ=(a,b).\begin{cases}u_{t}(x,t)+\epsilon^{2}\mathcal{L}_{\delta}u(x,t)+f(u)=0,\quad&\text{on}\ \Omega=(a,b),\quad 0<t\leq T,\\[4.0pt] u(x,t)=0,\quad&\text{on}\ \Omega_{\mathcal{\delta}}=[a-\delta,a]\cup[b,b+\delta],\quad 0<t\leq T,\\[4.0pt] u(x,0)=u_{0}(x),\quad&\text{on}\ \Omega=(a,b).\end{cases} (3.31)

where u0(x)u_{0}(x) is the initial data, f(u)f(u) is given function on {\mathbb{R}} satisfies f(u)=F(u)f(u)=F^{\prime}(u) with F(u)=14(u21)2F(u)=\frac{1}{4}(u^{2}-1)^{2}. In the above, δ\mathcal{L}_{\delta} is the nonlocal operator (1.2) and ϵ\epsilon is a constant.

Let NN be a positive integer and τ=T/N\tau=T/N be a time step size. We can get the time grid tn=nτ,0nNt_{n}=n\tau,0\leq n\leq N and use uhn𝒱h0u_{h}^{n}\in\mathcal{V}_{h}^{0} to approximate uh(x,tn)u_{h}(x,t_{n}), n=0,1,,Nn=0,1,\cdots,N. Using backward Euler method to approximate ut(x,tn)u_{t}(x,t_{n}), we can get

ut(x,tn)δtuhn=1τ(uhnuhn1),xΩ,1nN.u_{t}(x,t_{n})\approx\delta_{t}u_{h}^{n}=\frac{1}{\tau}(u^{n}_{h}-u^{n-1}_{h}),\quad x\in\Omega,\quad 1\leq n\leq N.

Here, we employ the fully discrete scheme with the semi-implicit scheme in time and FEM discretization in space for solving the problem (3.31): find uhnH1(0,T;𝒱h0(Ω))u_{h}^{n}\in H^{1}(0,T;\mathcal{V}_{h}^{0}(\Omega)), such that

{(δtuhn,vh)+ϵ2𝒜δ(uhn,vh)+(f(uhn1),vh)=0,vh𝒱h0(Ω),1nN,(uh0,vh)=(u0(x),vh),vh𝒱h0(Ω).\begin{cases}(\delta_{t}u_{h}^{n},v_{h})+\epsilon^{2}\mathcal{A}_{\delta}\left(u_{h}^{n},v_{h}\right)+(f(u_{h}^{n-1}),v_{h})=0,~{}\forall\,v_{h}\in\mathcal{V}_{h}^{0}(\Omega),\quad 1\leq n\leq N,\\ (u_{h}^{0},v_{h})=(u_{0}(x),v_{h}),\quad\forall\,v_{h}\in\mathcal{V}_{h}^{0}(\Omega).\end{cases} (3.32)

Then, it is easy to obtain the matrix form of (3.32) as follows:

(𝑴+τϵ2𝑺𝜹)𝑼𝒏=𝑴𝑼𝒏𝟏τ𝑭𝒏𝟏,(\bm{M}+\tau\epsilon^{2}\bm{S_{\delta}})\bm{U^{n}}=\bm{M}\bm{U^{n-1}}-\tau\bm{F^{n-1}}, (3.33)

where 𝑴\bm{M} is the usual (tridiagonal) FEM mass matrix, the stiffness matrix 𝑺𝜹\bm{S_{\delta}} is defined in (2.13), and 𝑭𝒏𝟏\bm{F^{n-1}} is defined as

𝑭n1=Ωf(uhn1)𝚽dx,𝚽=(φ1(x),φ2(x),,φN1(x)).\bm{F}^{n-1}=\int_{\Omega}f(u_{h}^{n-1})\bm{\Phi}\,{\rm d}x,\;\;\;\bm{\Phi}=\big{(}\varphi_{1}(x),\varphi_{2}(x),\cdots,\varphi_{N-1}(x)\big{)}^{\top}.

In this example, we adopt the proposed fully discrete scheme (3.32) to simulate the phase evolution behavior and energy dissipation. We take Ω=(1,1)\Omega=(-1,1), ϵ=0.01\epsilon=0.01, the initial date u0(x)=e100x2u_{0}(x)=e^{-100x^{2}}, and take the fractional kernel function of the form (2.32).

{comment}
Table 3.6. The errors and time rates of semi-implicit schemes when M=1024M=1024.
α\alpha NN δ=0.01\delta=0.01 δ=0.1\delta=0.1
ErrorError RatetRate_{t} ErrorError RatetRate_{t}
232^{3} 2.45e-03 2.55e-03
242^{4} 1.23e-03 0.995 1.28e-03 0.993
0.25 252^{5} 6.16e-04 0.998 6.43e-04 0.997
262^{6} 3.08e-04 0.999 3.22e-04 0.999
272^{7} 1.54e-04 0.999 1.61e-04 0.999
232^{3} 2.45e-03 2.54e-03
242^{4} 1.23e-03 0.995 1.27e-03 0.994
0.75 252^{5} 6.15e-04 0.998 6.38e-04 0.997
262^{6} 3.08e-04 0.998 3.20e-04 0.999
272^{7} 1.54e-04 0.999 1.60e-04 0.999
232^{3} 2.45e-03 2.52e-03
242^{4} 1.23e-03 0.995 1.26e-03 0.994
1.25 252^{5} 6.16e-04 0.998 6.33e-04 0.997
262^{6} 3.08e-04 0.999 3.17e-04 0.999
272^{7} 1.54e-04 0.999 1.59e-04 0.999
232^{3} 2.57e-03 2.60e-03
242^{4} 1.29e-03 0.995 1.30e-03 0.994
1.75 252^{5} 6.45e-04 0.997 6.53e-04 0.997
262^{6} 3.23e-04 0.999 3.27e-04 0.999
272^{7} 1.61e-04 0.999 1.63e-04 0.999
Table 3.7. The errors and space rates of semi-implicit schemes when N=1024N=1024.
α\alpha MM δ=0.01\delta=0.01 δ=0.1\delta=0.1
ErrorError RatesRate_{s} CPU(s)CPU(s) ErrorError RatesRate_{s} CPU(s)CPU(s)
262^{6} 9.57e-03 0.145 9.90e-03 0.154
272^{7} 2.38e-03 2.006 0.409 2.42e-03 2.034 0.359
0.25 282^{8} 6.02e-04 1.985 1.869 6.05e-04 1.999 1.925
292^{9} 1.51e-04 1.998 8.405 1.51e-04 2.000 8.535
2102^{10} 3.77e-05 1.999 47.98 3.78e-05 2.000 49.09
262^{6} 9.56e-03 0.142 9.87e-03 0.142
272^{7} 2.38e-03 2.006 0.360 2.41e-03 2.032 0.380
0.75 282^{8} 6.01e-04 1.986 1.974 6.04e-04 1.997 1.884
292^{9} 1.50e-04 1.997 8.415 1.51e-04 2.000 8.461
2102^{10} 3.77e-05 1.998 47.17 3.78e-05 1.999 47.11
262^{6} 9.55e-03 0.142 9.81e-03 0.140
272^{7} 2.38e-03 2.006 0.380 2.40e-03 2.029 0.350
1.25 282^{8} 5.99e-04 1.988 1.884 6.04e-04 1.993 1.952
292^{9} 1.50e-04 1.996 8.461 1.51e-04 2.000 8.400
2102^{10} 3.76e-05 1.997 47.11 3.78e-05 1.999 47.10
262^{6} 9.64e-03 0.200 9.78e-03 0.211
272^{7} 2.38e-03 2.017 0.438 2.40e-03 2.027 0.544
1.75 282^{8} 6.00e-04 1.989 2.565 6.04e-04 1.991 2.262
292^{9} 1.51e-04 1.997 12.73 1.51e-04 1.999 13.02
2102^{10} 3.76e-05 1.997 63.23 3.79e-05 1.997 56.96
Refer to caption

(a)  δ=0.01\delta=0.01.

Refer to caption

(b)  δ=0.1\delta=0.1.

Refer to caption

(c)  δ=0.01\delta=0.01.

Refer to caption

(d)  δ=0.1\delta=0.1.

Figure 3.13. Convergence order of FEM with different δ\delta. (a)-(b) are the time convergence order, (c)-(d) are the spatial convergence order.

In Figure 3.13, we plot the numerical errors and the corresponding convergence rates of the proposed method max errors for different α\alpha and δ\delta. As we can see the temporal convergence rate is O(τ)O(\tau), and the space convergence rate is O(h2)O(h^{2}). Moreover, we display the waveform of the numerical solution at the different δ\delta and time, see Figures 3.14. The dates indicate that the δ\delta affects the propagation velocity of the solitary wave. For a smaller δ\delta, the propagation of the soliton becomes slower, thus indicating the presence of quantum sub-diffusion. Finally, we plot the evolution of maximum value at various times with different α\alpha and δ\delta in Figure 3.15, which shows that the maximum principle is preserved numerically. We observe from Figure 3.15 (d) that the maximum value of the steady state is increased as α\alpha increases.

Refer to caption
(a) δ=0.02\delta=0.02
Refer to caption
(b) δ=0.2\delta=0.2
Refer to caption
(c) δ=2\delta=2
Refer to caption
(d) t=10t=10
Figure 3.14. The waveforms of the numerical solution with the α=1.25\alpha=1.25 on nonuniform meshes. (a)-(c) are the snapshots of u(x)u(x) are taken at t=1,5,10t=1,5,10. (d) is the snapshots of u(x)u(x) are taken at t=10t=10 for different δ\delta.
Refer to caption

(a)  α=0.25\alpha=-0.25.

Refer to caption

(b)  α=0.25\alpha=0.25.

Refer to caption

(c)  α=0.75\alpha=0.75.

Refer to caption

(d)  δ=0.1\delta=0.1.

Figure 3.15. Evolution of maximum value as δ\delta increases on nonuniform meshes. (a)-(c) are the maximum value at α=0.25,0.25,0.75\alpha=-0.25,0.25,0.75. (d) is the maximum value at δ=0.1\delta=0.1 for different α\alpha.
{comment}

we consider the following two-grid system based on finite element method, which includes the space coarse mesh HH in SHS_{H} and the space fine mesh hh in ShS_{h}. Now, we use the two-grid method and give its fully discrete scheme.
Step 1: We choose the coarse meshes which the step size is Hj(j=1,2,,J)H_{j}(j=1,2,\cdots,J) in SHS_{H}, then we have

a=x0H<x1H<<xJ1H<xJH=b,Hj=xjHxj1H.a=x^{H}_{0}<x^{H}_{1}<\cdots<x^{H}_{J-1}<x^{H}_{J}=b,\quad H_{j}=x_{j}^{H}-x_{j-1}^{H}.

If uHnH1(0,T;𝒮H0(Ω))u_{H}^{n}\in H^{1}(0,T;\mathcal{S}_{H}^{0}(\Omega)), then we can building the fully implicit finite element scheme of the problem (3.31) such follows:

{(δtuHn,vH)+ϵ2𝒜δ(uHn,vH)+(f(uHn),vH)=0,vH𝒮H0(Ω),  0<tT,(uH0,vH)=(ψ(x),vH),vH𝒮H0(Ω).\begin{cases}(\delta_{t}u_{H}^{n},v_{H})+\epsilon^{2}\mathcal{A}_{\delta}\left(u_{H}^{n},v_{H}\right)+(f(u_{H}^{n}),v_{H})=0,\,\,\forall v_{H}\in\mathcal{S}_{H}^{0}(\Omega),\,\,0<t\leq T,\\ (u_{H}^{0},v_{H})=(\psi(x),v_{H}),~{}\forall v_{H}\in\mathcal{S}_{H}^{0}(\Omega).\end{cases} (3.34)

Step 2: We choose the fine meshes which the step size is hj(j=1,2,,𝒥)h_{j}(j=1,2,\cdots,\mathscr{J}). Then we have

a=x0h<x1h<<xJ1h<xJh=b,hj=xjhxj1h.a=x^{h}_{0}<x^{h}_{1}<\cdots<x^{h}_{J-1}<x^{h}_{J}=b,\quad h_{j}=x_{j}^{h}-x_{j-1}^{h}.

In the fine meshes, the nonlinear term is calculated by uHnu_{H}^{n}, then we can building the semi-implicit finite element scheme as follows:

{(δtuhn,vh)+ϵ2𝒜δ(uhn,vh)+(f(uHn),vh)+(f(uHn)(uhnuHn),vh)=0,vh𝒮h0(Ω),0<tT,(uh0,vh)=(ψ(x),vh),vh𝒮h0(Ω).\begin{cases}(\delta_{t}u_{h}^{n},v_{h})+\epsilon^{2}\mathcal{A}_{\delta}\left(u_{h}^{n},v_{h}\right)+(f(u_{H}^{n}),v_{h})\\ \qquad\qquad+(f^{\prime}(u_{H}^{n})(u_{h}^{n}-u_{H}^{n}),v_{h})=0,~{}\forall v_{h}\in\mathcal{S}_{h}^{0}(\Omega),\quad 0<t\leq T,\\ (u_{h}^{0},v_{h})=(\psi(x),v_{h}),\quad\forall v_{h}\in\mathcal{S}_{h}^{0}(\Omega).\end{cases} (3.35)

Finally, we can give the next matrix equations for completing (3.34)-(3.35) which are:
Step 1: The matrix equation of (3.34) is

(𝑨H+τϵ2𝑺H)𝑼Hn=𝑨H𝑼Hn1τ𝑭Hn,(\bm{A}_{H}\bm{+}\tau\epsilon^{2}\bm{S}_{H})\bm{U}_{H}^{n}=\bm{A}_{H}\bm{U}_{H}^{n-1}-\tau\bm{F}^{n}_{H}, (3.36)

where 𝑨H\bm{A}_{H} is the usual (tridiagonal) FEM stiffness matrix which step size is HjH_{j} on uniform meshes, the stiffness matrix 𝑺H\bm{S}_{H} is defined in the above. 𝑭Hn\bm{F}^{n}_{H} are defined as follows:

𝑭Hn=Ωf(uHn)𝚽𝑑x.\bm{F}_{H}^{n}=\int_{\Omega}f(u_{H}^{n})\bm{\Phi}dx.

In this step, we use (3.37) to complete (3.36). It is

(𝑨H+τϵ2𝑺H)𝑼Hn,(k+1)=𝑨H𝑼Hn1τ𝑭Hn,(k).(\bm{A}_{H}\bm{+}\tau\epsilon^{2}\bm{S}_{H})\bm{U}_{H}^{n,(k+1)}=\bm{A}_{H}\bm{U}_{H}^{n-1}-\tau\bm{F}_{H}^{n,(k)}. (3.37)

where 𝑨H\bm{A}_{H} is the usual (tri-diagonal) FEM stiffness matrix 𝑨\bm{A} in coarse meshes, the stiffness matrix 𝑺\bm{S} is defined in the above. And 𝑭Hn,(k)\bm{F}_{H}^{n,(k)} are defined as follows:

𝑭Hn,(k)=If(uHn,(k))𝚽𝑑x,\bm{F}_{H}^{n,(k)}=\int_{I}f(u_{H}^{n,(k)})\bm{\Phi}dx,

where kk is the iteration steps (k=0,1,2,k=0,1,2,\cdots).
Step 2: Based on the solutions uHnu_{H}^{n} in Step 1 and the basis functions {φj(x)}j=1J1\{\varphi_{j}(x)\}_{j=1}^{J-1} of the finite element method in the coarse meshes, we have

uHn(x)=j=1J1uH,jnφj(x)=xj+1Hxxj+1HxjHuH,jn+xxjHxj+1HxjHuH,j+1n,\displaystyle u^{n}_{H}(x)=\sum_{j=1}^{J-1}u^{n}_{H,j}\varphi_{j}(x)=\frac{x^{H}_{j+1}-x}{x^{H}_{j+1}-x^{H}_{j}}u^{n}_{H,j}+\frac{x-x^{H}_{j}}{x^{H}_{j+1}-x^{H}_{j}}u^{n}_{H,j+1},
x(xjH,xj+1H),j=0,1,2,,J1.\displaystyle x\in(x^{H}_{j},x^{H}_{j+1}),~{}~{}j=0,1,2,\cdots,J-1. (3.38)

Step 3: Utilizing the solutions obtained from Step 2, the matrix equation of (3.35) is

(𝑨h+τϵ2𝑺h+τ𝑮n)𝑼hn=(𝑨h+τ𝑮n)𝑼hn1τ𝑭Hn,(\bm{A}_{h}\bm{+}\tau\epsilon^{2}\bm{S}_{h}+\tau\bm{G}^{n})\bm{U}^{n}_{h}=(\bm{A}_{h}+\tau\bm{G}^{n})\bm{U}^{n-1}_{h}-\tau\bm{F}^{n}_{H}, (3.39)

where 𝑨h\bm{A}_{h} is the usual (tri-diagonal) FEM stiffness matrix 𝑨\bm{A} in the fine meshes, the stiffness matrix 𝑺h\bm{S}_{h} is defined in the above. 𝑭Hn\bm{F}^{n}_{H} is defined as follows:

𝑭Hn=Ωf(uHn)𝚽dx.\bm{F}_{H}^{n}=\int_{\Omega}f(u_{H}^{n})\bm{\Phi}\,{\rm d}x.
Table 3.8. The errors and space rates of semi-implicit schemes when δ=0.01\delta=0.01.
α\alpha JJ 𝒥\mathscr{J} N=128N=128 N=1024N=1024
Max error Rate CPU(s) Max error Rate CPU(s)
232^{3} 262^{6} 6.17e-01 0.269 6.25e-01 2.083
242^{4} 282^{8} 3.04e-02 2.171 1.312 3.08e-02 2.171 10.42
0.25 252^{5} 2102^{10} 1.22e-03 2.320 7.847 1.22e-03 2.328 69.42
262^{6} 2122^{12} 5.96e-05 2.176 73.88 5.96e-05 2.179 664.88
272^{7} 2142^{14} 3.73e-06 2.000 1363.3 3.73e-06 2.000 12720.3

4. Concluding remarks and discussions

Different from the implementation of FEM in the physical space, we evaluated the nonlocal stiffness matrix of piecewise linear FEM for the nonlocal operator in the Fourier-transformed domain, and derived the explicit integral form of the entries on non-uniform meshes. This allowed us to adopt the different meshes for different situations, and enabled us to resort to the Gauss quadrature for one dimension integral accurately. Plenty of numerical examples for solving the nonlocal models are presented to demonstrate the accuracy and efficiency of the proposed method.

The current study is largely based on a simple one-dimensional linear model for the sake of offering insight without being impeded by tedious calculations. More careful studies on the stability and convergence analysis of piecewise linear FEM on non-uniform meshes, and one may extend the study to two-dimensional rectangular elements, but it is more involved, which we shall report in a future work.

Declarations

Conflict of interest   The authors declare that they have no conflict of interest.

{comment}

Appendix A Evaluation of the distance matrix

For j,k=1,2,,N1j,k=1,2,\cdots,N-1, tedious but straightforward calculations show that 𝑫jk(s)\bm{D}_{j}^{k}(s) in (2.14) are

  • (i)

    For j=k,j=k,

    𝑫jj(s)=(g(0)g(hj)g(hj+hj+1)g(hj)g(0)g(hj)g(hj+hj+1)g(hj)g(0)),\begin{split}\bm{D}_{j}^{j}(s)=\begin{pmatrix}g(0)&g(h_{j})&g(h_{j}+h_{j+1})\\[2.0pt] g(h_{j})&g(0)&g(h_{j})\\[2.0pt] g(h_{j}+h_{j+1})&g(h_{j})&g(0)\end{pmatrix},\end{split} (A.1)
  • (ii)

    For j=k+1,j=k+1,

    𝑫jj1(s)=(g(hj1)g(0)g(hj)g(hj1+hj)g(hj)g(0)g(hj1+hj+hj+1)g(hj+hj+1)g(hj+1)),\begin{split}\bm{D}_{j}^{j-1}(s)=\begin{pmatrix}g(h_{j-1})&g(0)&g(h_{j})\\[2.0pt] g(h_{j-1}+h_{j})&g(h_{j})&g(0)\\[2.0pt] g(h_{j-1}+h_{j}+h_{j+1})&g(h_{j}+h_{j+1})&g(h_{j+1})\end{pmatrix},\end{split} (A.2)
  • (iii)

    For j=k1,j=k-1,

    𝑫jj+1(s)=(g(hj)g(hj+hj+1)g(hj+hj+1+hj+2)g(0)g(hj+1)g(hj+1+hj+2)g(hj+1)g(0)g(hj+2)),\begin{split}\bm{D}_{j}^{j+1}(s)=\begin{pmatrix}g(h_{j})&g(h_{j}+h_{j+1})&g(h_{j}+h_{j+1}+h_{j+2})\\[2.0pt] g(0)&g(h_{j+1})&g(h_{j+1}+h_{j+2})\\[2.0pt] g(h_{j+1})&g(0)&g(h_{j+2})\end{pmatrix},\end{split} (A.3)
  • (iv)

    For j=k+2,j=k+2,

    𝑫jj2(s)=(g(hj2+hj1)g(hj1)g(0)g(hj2+hj1+hj)g(hj1+hj)g(hj)g(hj2+hj1+hj+hj+1)g(hj1+hj+hj+1)g(hj+hj+1)),\begin{split}\bm{D}_{j}^{j-2}(s)=\begin{pmatrix}g(h_{j-2}+h_{j-1})&g(h_{j-1})&g(0)\\[2.0pt] g(h_{j-2}+h_{j-1}+h_{j})&g(h_{j-1}+h_{j})&g(h_{j})\\[2.0pt] g(h_{j-2}+h_{j-1}+h_{j}+h_{j+1})&g(h_{j-1}+h_{j}+h_{j+1})&g(h_{j}+h_{j+1})\end{pmatrix},\end{split} (A.4)
  • (v)

    For j=k2,j=k-2,

    𝑫jj+2(s)=(g(hj+hj+1)g(hj+hj+1+hj+2)g(hj+hj+1+hj+2+hj+3)g(hj+1)g(hj+1+hj+2)g(hj+1+hj+2+hj+3)g(0)g(hj+2)g(hj+2+hj+3)),\begin{split}\bm{D}_{j}^{j+2}(s)=\begin{pmatrix}g(h_{j}+h_{j+1})&g(h_{j}+h_{j+1}+h_{j+2})&g(h_{j}+h_{j+1}+h_{j+2}+h_{j+3})\\[2.0pt] g(h_{j+1})&g(h_{j+1}+h_{j+2})&g(h_{j+1}+h_{j+2}+h_{j+3})\\[2.0pt] g(0)&g(h_{j+2})&g(h_{j+2}+h_{j+3})\end{pmatrix},\end{split} (A.5)
  • (vi)

    For j=k+m,(m3)j=k+m,(m\geq 3)

    𝑫jjm(s)=(g(i=1mhji)g(i=1m1hji)g(i=1m2hji)g(i=0mhji)g(i=0m1hji)g(i=0m2hji)g(i=1mhji)g(i=1m1hji)g(i=1m2hji)),\begin{split}\bm{D}_{j}^{j-m}(s)=\begin{pmatrix}g(\sum\limits_{i=1}^{m}h_{j-i})&g(\sum\limits_{i=1}^{m-1}h_{j-i})&g(\sum\limits_{i=1}^{m-2}h_{j-i})\\[2.0pt] g(\sum\limits_{i=0}^{m}h_{j-i})&g(\sum\limits_{i=0}^{m-1}h_{j-i})&g(\sum\limits_{i=0}^{m-2}h_{j-i})\\[2.0pt] g(\sum\limits_{i=-1}^{m}h_{j-i})&g(\sum\limits_{i=-1}^{m-1}h_{j-i})&g(\sum\limits_{i=-1}^{m-2}h_{j-i})\end{pmatrix},\end{split} (A.6)
  • (vii)

    For j=km,(m3)j=k-m,(m\geq 3)

    𝑫jj+m(s)=(g(i=0m1hj+i)g(i=0mhj+i)g(i=0m+1hj+i)g(i=1m1hj+i)g(i=1mhj+i)g(i=1m+1hj+i)g(i=2m1hj+i)g(i=2mhj+i)g(i=2m+1hj+i)).\begin{split}\bm{D}_{j}^{j+m}(s)=\begin{pmatrix}g(\sum\limits_{i=0}^{m-1}h_{j+i})&g(\sum\limits_{i=0}^{m}h_{j+i})&g(\sum\limits_{i=0}^{m+1}h_{j+i})\\[2.0pt] g(\sum\limits_{i=1}^{m-1}h_{j+i})&g(\sum\limits_{i=1}^{m}h_{j+i})&g(\sum\limits_{i=1}^{m+1}h_{j+i})\\[2.0pt] g(\sum\limits_{i=2}^{m-1}h_{j+i})&g(\sum\limits_{i=2}^{m}h_{j+i})&g(\sum\limits_{i=2}^{m+1}h_{j+i})\end{pmatrix}.\end{split} (A.7)

References

  • [1] M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
  • [2] G. Acosta and J. P. Borthagaray, A fractional Laplace equation: regularity of solutions and finite element approximations, SIAM J. Numer. Anal., 55(2017)472–495.
  • [3] M. Ainsworth and C. Glusa, Aspects of an adaptive finite element method for the fractional Laplacian: a priori and a posteriori error estimates, efficient implementation and multigrid solver, Comput. Methods Appl. Mech. Engrg., 327(2017)4-35.
  • [4] B. Aksoylu and Z. Unlu, Conditioning analysis of nonlocal integral operator in fractional Sobolev spaces, SIAM J. Numer. Anal., 52(2014)653-677.
  • [5] E. Askari, F. Bobaru, R. B. Lehoucq, M. L. Parks, S. A. Silling and O. Weckner, Peridynamics for multiscale materials modeling, Journal of Physics: Conference Series, 2008.
  • [6] E. Aulisa, G. Capodaglio, A. Chierici, M. D’Elia, Marta, Efficient quadrature rules for finite element discretizations of nonlocal equations, Numer. Methods Partial Differential Equations, 38(2022)1767–1793.
  • [7] A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otárola and A. J. Salgado, Numerical methods for fractional diffusion, Comput. Vis. Sci., 19 (2018)19-46.
  • [8] R. Cao, M. Chen, Y. Qi, J. Shi, X. Yin, Analysis of (shifted) piecewise quadratic polynomial collocation for nonlocal diffusion model, Appl. Numer. Math. 185(2023)120–140.
  • [9] X. Chen, M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics, Comput. Methods Appl. Mech. Engrg., 200(2011)1237-1250.
  • [10] H. Chen, C. Sheng, and L.-L Wang, On explicit form of the FEM stiffness matrix for the integral fractional Laplacian on non-uniform meshes, Appl. Math. Lett., 113(2021)106864.
  • [11] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Seven Edition, Elsevier, 2007.
  • [12] Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Review, 54(2012)667-696.
  • [13] Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models, Math. Comp., 82(2013)1889-1922.
  • [14] Q. Du, Nonlocal Modeling, Analysis, and Computation, Society for Industrial and Applied Mathematics, Philadelphia, 2019.
  • [15] Q. Du, X. Tian and Z. Zhou Nonlocal diffusion models with consistent local and fractional limits, A³N²M: Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models, The IMA Volumes in Mathematics and its Applications, Springer, Cham. 165(2023)175–213.
  • [16] S. Duo, H. van Wyk and Y. Zhang, A novel and accurate finite difference method for the fractional Laplacian and the fractional poisson problem, J. Comput. Phys., 355(2018)233-252.
  • [17] M. D’Elia, M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator, Comput. Math. Appl., 66(2013)1245– 1260.
  • [18] M. D’Elia, Q. Du, C. Glusa, M. Gunzburger, X. Tian, and Z. Zhou, Numerical methods for nonlocal and fractional models, Acta Numer., 29(2020)1-124.
  • [19] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136(2012)521–573.
  • [20] I. Fried, Condition of finite element matrices generated from nonuniform meshes, AIAA J. 10(1972)219-221.
  • [21] Q. Guan, M. Gunzburger, X. Zhang, Collocation method for one dimensional nonlocal diffusion equations, Numer. Methods Partial Differential Equations, 38(2022)1618–1635.
  • [22] Z. Hao, Z. Zhang and R. Du, Fractional centered difference scheme for high-dimensional integral fractional Laplacian, J. Comput. Phys., 424(2021)109851.
  • [23] Y. Huang, A. Oberman, Numerical methods for the fractional Laplacian: a finite difference-quadrature approach, SIAM J. Numer. Anal., 52(2014)3056-3084.
  • [24] M. Klar, G. Capodaglio, M. D’Elia, C. Glusa, M. Gunzburger, Max, and C. Vollmann, A scalable domain decomposition method for FEM discretizations of nonlocal equations of integrable and fractional type, Comput. Math. Appl. 151(2023)434-448.
  • [25] Y. Leng, X. Tian, N. Trask, J. T. Foster, Asymptotically compatible reproducing kernel collocation and meshfree integration for nonlocal diffusion, SIAM J. Numer. Anal. 59(2021)88–118.
  • [26] H. Li, R. Liu and L.-L. Wang, Efficient Hermite spectral-Galerkin methods for nonlocal diffusion equations in unbounded domains, Numer. Math. Theo. Meth. Appl., 15 (2022)1009-1040.
  • [27] A. Lischke, G. Pang, M. Gulian, and et al., What is the fractional Laplacian? A comparative review with new results, J. Comput. Phys., 404(2020)109009.
  • [28] Z. Liu, A. Cheng and H. Wang, An hp-Galerkin method with fast solution for linear peridynamic models in one dimension, Comp. Math. Appl., 73(2017)1546-1565.
  • [29] H. Liu, C. Sheng, L.-L. Wang, and H. Yuan, On diagonal dominance of FEM stiffness matrix of fractional Laplacian and maximum principle preserving schemes for fractional Allen-Cahn equation, J. Sci. Comput., 86(2021)19.
  • [30] J. Lu, Y. Nie, A reduced-order fast reproducing kernel collocation method for nonlocal models with inhomogeneous volume constraints, Comput. Math. Appl. 121(2022)52–61.
  • [31] Z. Mao, J. Shen, Hermite spectral methods for fractional PDEs in unbounded domains, SIAM J. Sci. Comput., 39(2017)A1928-A1950.
  • [32] H. Wang, H. Tian, A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model, Comput. Methods Appl. Mech. Engrg., 273(2014)19-36.
  • [33] C. Sheng, J. Shen, T. Tang, L. L. Wang and H. Yuan, Fast Fourier-like mapped Chebyshev spectral-Galerkin methods for PDEs with integral fractional Laplacian in unbounded domains, SIAM J. Numer. Anal., 58(2020)2435-2464.
  • [34] C. Sheng, L. L. Wang, H. Chen and H. Li, Fast implementation of FEM for integral fractional Laplacian on rectangular meshes, Commun. Comput. Phys., 35(2024).
  • [35] T. Tang, L.L. Wang, H. Yuan and T. Zhou, Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains, SIAM J. Sci. Comput., 42 (2020)A585-A611.
  • [36] X. Tian and Q. Du, Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations, SIAM J. Numer. Anal., 51(2013)3458-3482.
  • [37] X. Tian and Q. Du, Asymptotically compatible schemes for robust discretization of nonlocal models and their local limits, SIAM J. Numer. Anal., 52(2014)1641-1665.
  • [38] X. Tian, Q. Du and M. Gunzburger, Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal diffusion problems on bounded domains, Adv. Comput. Math., 42(2016)1363–1380.
  • [39] L. Trefethen, Á. Birkisson, and T. A. Driscoll, Exploring ODEs. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2018.
  • [40] Q. Ye and X. Tian, Monotone meshfree methods for linear elliptic equations in non-divergence form via nonlocal relaxation, J. Sci. Comput. 96 (2023)33.
  • [41] C. Zheng, J. Hu, Q. Du, and J. Zhang, Numerical solution of the nonlocal diffusion equation on the real line, SIAM J. Sci. Comput., 39(2017)A1951-A1968.
  • [42] K. Zhou and Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J. Numer. Anal., 48(2010)1759-1780.