This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\thankstext

e1e-mail:allan.moreira@fisica.ufc.br \thankstexte2e-mail:carlos@fisica.ufc.br

11institutetext: Universidade Federal do Ceará (UFC), Departamento de Física,
Campus do Pici, Fortaleza - CE, C.P. 6030, 60455-760 - Brazil
22institutetext: Universidade Federal do Cariri(UFCA), Av. Tenente Raimundo Rocha,
Cidade Universitária, Juazeiro do Norte, Ceará, CEP 63048-080, Brasil

Fermion localization in braneworld teleparallel f(T,B) gravity

A. R. P. Moreira\thanksrefe1,addr1    J. E. G. Silva\thanksrefaddr2    C.A.S. Almeida\thanksrefe2,addr1
(Received: date / Accepted: date)
Abstract

We study a spin 1/2 fermion in a thick braneworld in the context of teleparallel f(T,B)f(T,B) gravity. Here, f(T,B)f(T,B) is such that f1(T,B)=T+k1Bn1f_{1}(T,B)=T+k_{1}B^{n_{1}} and f2(T,B)=B+k2Tn2f_{2}(T,B)=B+k_{2}T^{n_{2}}, where n1,2n_{1,2} and k1,2k_{1,2} are parameters that control the influence of torsion and the boundary term. We assume Yukawa coupling, where one scalar field is coupled to a Dirac spinor field. We show how the n1,2n_{1,2} and k1,2k_{1,2} parameters control the width of the massless Kaluza-Klein mode, the breadth of non-normalized massive fermionic modes and the properties of the analogue quantum-potential near the origin.

journal: Eur. Phys. J. C

1 Introduction

Braneworld scenarios rs ; rs2 , show a new viewpoint of spacetime and enables a new approaches to explain a large number of outstanding issues such as the hierarchy problem rs2 , the cosmological problem cosmologicalconstant , the nature of dark matter darkmatter and dark energy. Furthermore, by assuming a warped geometry, the propagation of the gravitational field Csaki1 ; Rosa2020 and the gauge field, Kehagias , as well as fermionic fields Almeida2009 , are governed by the bulk curvature in general relativity (GR). An equivalent theory is the known teleparallel equivalent of general relativity (TEGR) Hayashi1979 ; deAndrade1997 ; andrade2000 ; ferraro2007 ; lobo2012 ; Aldrovandi ; cai2016 ; koi2020 ; olmo2020 , that is constructed in the Weitzenböck manifold, which has vanishing curvature but nonvanishing torsion. Equivalence with GR is provided by the ratio of the torsion TT scalar and the Ricci RR scalar, which is the boundary term BB, making TEGR have the same field equations as GR.

The localization mechanism employed for matter fields living in a 5D braneworld scenarios has been the subject of many studies. The study of fermion localization on branes is rich and interesting, yet the most popular method for the localization of fermions is formulated in a rather speculative way Almeida2009 ; RandjbarDaemi2000 ; Liu2009 ; Liu2009a ; Liu2008 ; Liu2009b ; Liu2008b ; Obukhov2002 ; Ulhoa2016 . The same is true in 6D Dantas2013 ; Sousa2014 ; Dantas . This is because of the freedom one has to propose the Yukawa coupling term. The location of the fermion was studied in several modified gravity models, such as gravity f(R)f(R) Mitra2017 ; Buyukdag2018 ; Wang2019 and gravity f(T)f(T) Yang2012 ; Yang2017 .

A new teleparallel gravity model is the f(T,B)f(T,B) gravity, where BB is the boundary term Bahamonde2015 ; Wright2016 ; Bahamonde2016 , that has attracted a lot of attention due this model features have, as well as good agreement with observational data to describe the accelerated expansion of the universe Franco2020 ; EscamillaRivera2019 , and their significant results in cosmological perturbations and thermodynamics, and dark energy, and gravitational waves Bahamonde2016a ; Caruana2020 ; Pourbagher2020 ; Bahamonde2020a ; Azhar2020 ; Bhattacharjee2020 ; Abedi2017 . Furthermore, the gravity f(T,B)f(T,B) was studied in a brane scenario, where it was possible to observe that the additional term BB induces changes on the energy density causing a split in the brane, also changing the gravitational perturbations Allan .

Inspired on the results obtained in Yang2012 ; Allan , we investigate the issue of fermion localization in f(T,B)f(T,B) gravity. In section (2) we review the main definitions of the teleparallel f(T,B)f(T,B) theory and build the respective braneworld. In the section (3), we obtain the solutions of the system and we examined the energy density components of the brane. The section (4) deals with the fermionic sector of the model using the Yukawa coupling. Finally, additional comments and results are discussed in section (5).

2 Metric equations

In teleparallel gravity, the vielbein, hMM¯h^{\overline{M}}\ _{M} (rather than the metric) are the actual gravitational dynamic variables. We will use the latin letters (M,N,Q,=0,1,2,3,4M,N,Q,...=0,1,2,3,4 ) for the indices related to the bulk, and barred indices (M¯,N¯,Q¯,=0,1,2,3,4\overline{M},\overline{N},\overline{Q},...=0,1,2,3,4 ) for indices related to tangent space. We assume a mostly plus metric signature, i.e., diag(1,1,1,1,1)diag(-1,1,1,1,1).

The relevant connection for TEGR is the so-called Weitzenböck connection. An important feature of this connection is that the corresponding spin connection vanishes identically. Thus, the Weitzenböck connection is represented as Γ~NMP=hM¯PMhMN¯\widetilde{\Gamma}^{P}\ _{NM}=h_{\overline{M}}\ ^{P}\partial_{M}h^{\overline{N}}\ _{M}, that is, QhMM¯QhMM¯Γ~QMPhPM¯=0\nabla_{Q}h^{\overline{M}}\ _{M}\equiv\partial_{Q}h^{\overline{M}}\ _{M}-\widetilde{\Gamma}^{P}\ _{QM}h^{\overline{M}}\ _{P}=0, which is called the condition of absolute parallelism Aldrovandi . The Weitzenböck and Levi-Civita connections are related by

Γ~NMP=ΓNMP+KNMP,\displaystyle\widetilde{\Gamma}^{P}\ _{NM}=\Gamma^{P}\ _{NM}+K^{P}\ _{NM}, (1)

where ΓNMP\Gamma^{P}\ _{NM} is the Levi-Civita connection of general relativity, and

KNMP=(TNP+MTMPNTNMP)/2\displaystyle K^{P}\ _{NM}=(T_{N}\ ^{P}\ {}_{M}+T_{M}\ ^{P}\ {}_{N}-T^{P}\ _{NM})/2 (2)

is defined as the contortion tensor of the Weitzenböck connection Aldrovandi . We take the torsion as TNMP=Γ~MNPΓ~NMPT^{P}\ _{NM}=\widetilde{\Gamma}^{P}\ _{MN}-\widetilde{\Gamma}^{P}\ _{NM}, and we also define a dual torsion tensor, known as a superpotential SPNM=(KPNMδPMTQQN+δPNTQQM)/2S_{P}\ ^{NM}=(K^{NM}\ _{P}-\delta^{M}_{P}T^{QN}\ _{Q}+\delta^{N}_{P}T^{QM}\ _{Q})/2 Aldrovandi . Therefore, the Lagrangian of TEGR reads

=hT/4,\displaystyle\mathcal{L}=-hT/4, (3)

where T=TPMNSPMNT=T_{PMN}S^{PMN} is the torsional scalar, h=gh=\sqrt{-g} and c4/4πG=1c^{4}/4\pi G=1 for simplicity Aldrovandi . On the other hand, the Riemann tensor in the Levi-Civita connection

RMQNP=QΓMNPNΓMQP+ΓSQPΓMNSΓSNPΓMQS.\displaystyle R^{P}\ _{MQN}=\partial_{Q}\Gamma^{P}\ _{MN}-\partial_{N}\Gamma^{P}\ _{MQ}+\Gamma^{P}\ _{SQ}\Gamma^{S}\ _{MN}-\Gamma^{P}\ _{SN}\Gamma^{S}\ _{MQ}. (4)

From the relation between the Weitzenböck connection and the Levi-Civita connection given by Eq.(1), one can write the Riemann tensor in the form

RMQNP=NKMQPQKMNP+KSNPKMQSKSQPKMNQ,\displaystyle R^{P}\ _{MQN}=\nabla_{N}K^{P}\ _{MQ}-\nabla_{Q}K^{P}\ _{MN}+K^{P}\ _{SN}K^{S}\ _{MQ}-K^{P}\ _{SQ}K^{Q}\ _{MN}, (5)

whose associated Ricci tensor can then be written as

RMN=NKMPPPKMNP+KSNPKMPSKSPPKMNS.\displaystyle R_{MN}=\nabla_{N}K^{P}\ _{MP}-\nabla_{P}K^{P}\ _{MN}+K^{P}\ _{SN}K^{S}\ _{MP}-K^{P}\ _{SP}K^{S}\ _{MN}. (6)

Using the relations K(MN)S=TM(NS)=SM(NS)K^{(MN)S}=T^{M(NS)}=S^{M(NS)} and considering that SPMM=2KPMM=2TPMMS^{M}\ _{PM}=2K^{M}\ _{PM}=-2T^{M}\ _{PM} along with Eq. (2), one can get BLi2010 ; BLi2011 ; Sotiriou2010

RMN=PSNPMgMNPTPSSSNPSKSPN.\displaystyle R_{MN}=-\nabla^{P}S_{NPM}-g_{MN}\nabla^{P}T^{S}\ _{PS}-S^{PS}\ _{N}\ K_{SPN}. (7)

In turn, Ricci scalar is

R=T2MTMNN.\displaystyle R=-T-2\nabla^{M}T^{N}\ _{MN}. (8)

Thus we can identify the boundary term

B2MTMNN=2hM(hTM),\displaystyle B\equiv-2\nabla^{M}T^{N}\ _{MN}=\frac{2}{h}\partial_{M}(hT^{M}), (9)

in which TMT^{M} is the torsion tensor that can be defined as TM=TMNNT_{M}=T^{N}\ _{MN}. We can easily see that GR and TEGR will lead to exactly the same equations Aldrovandi . However, this will not be the case if one uses f(R)f(R) or f(T)f(T) as the Lagrangian of the theory, which therefore corresponds to different gravitational modifications Abedi2017 . However, when we consider f(T,B)f(T,B) as the Lagrangian of the theory, we have that f(T,B)=f(T+B)f(T,B)=f(-T+B) is the teleparallel equivalent of f(R)f(R).

We can consider a modified gravity theory where the gravitational Lagrangian depends on TT and BB Abedi2017 . Therefore, we have a gravitational action to f(T,B)f(T,B), namely

𝒮=14hf(T,B)d5x+md5x,\displaystyle\mathcal{S}=-\frac{1}{4}\int hf(T,B)d^{5}x+\int\mathcal{L}_{m}d^{5}x, (10)

where m\mathcal{L}_{m} is the matter Lagrangian. We can get the field equations by varying the action with respect to the vielbein Abedi2017 ; Pourbagher2020

1hfT[Q(hSNMQ)hΓ~SNRSRMS]+14[fBfB]δNM\displaystyle\frac{1}{h}f_{T}\Big{[}\partial_{Q}(hS_{N}\ ^{MQ})-h\widetilde{\Gamma}^{R}\ _{SN}S_{R}\ ^{MS}\Big{]}+\frac{1}{4}\Big{[}f-Bf_{B}\Big{]}\delta_{N}^{M}
+[(QfT)+(QfB)]SNMQ+12[MNfBδNMfB]\displaystyle+\Big{[}(\partial_{Q}f_{T})+(\partial_{Q}f_{B})\Big{]}S_{N}\ ^{MQ}+\frac{1}{2}\Big{[}\nabla^{M}\nabla_{N}f_{B}-\delta^{M}_{N}\Box f_{B}\Big{]} =\displaystyle= 𝒯NM,\displaystyle-\mathcal{T}_{N}\ ^{M}, (11)

where MM\Box\equiv\nabla^{M}\nabla_{M}, ff(T,B)f\equiv f(T,B), fTf(T,B)/Tf_{T}\equiv\partial f(T,B)/\partial T e fBf(T,B)/Bf_{B}\equiv\partial f(T,B)/\partial B and 𝒯NM\mathcal{T}_{N}\ ^{M} is the stress-energy tensor, which in terms of the matter Lagrangian is given by 𝒯aM=δm/δhMa\mathcal{T}_{a}\ ^{M}=-\delta\mathcal{L}_{m}/\delta h^{a}\ _{M}. The matter Lagrangian density is taken as

m=h[12MϕMϕ+V(ϕ)],\displaystyle\mathcal{L}_{m}=-h\left[\frac{1}{2}\partial^{M}\phi\partial_{M}\phi+V(\phi)\right], (12)

where ϕϕ(y)\phi\equiv\phi(y) is a background scalar field that generates the brane.

In our work, we consider the static codimension one braneworld scenario whose metric can be written as

ds2=e2A(y)ημνdxμdxν+dy2,\displaystyle ds^{2}=e^{2A(y)}\eta_{\mu\nu}dx^{\mu}dx^{\nu}+dy^{2}, (13)

where eA(y)e^{A(y)} is the warped factor. We can choose the vielbein in the form

hM¯M=diag(eA,eA,eA,eA,1).\displaystyle h_{\overline{M}}\ ^{M}=diag(e^{A},e^{A},e^{A},e^{A},1). (14)

Using the Weitzenbock connection, the torsional scalar and the boundary term are given by

T=12A2\displaystyle T=-12A^{\prime 2} , B=8(A′′+4A2),\displaystyle B=-8(A^{\prime\prime}+4A^{\prime 2}), (15)

where the prime ()(^{\prime}) denotes differentiation with respect to yy.

Thus, the gravitational field equations are given as

ϕ′′+4Aϕ\displaystyle\phi^{\prime\prime}+4A^{\prime}\phi =\displaystyle= dVdϕ,\displaystyle\frac{dV}{d\phi}, (16)
14[f+8(A′′+4A2)fB]+6A2fT\displaystyle\frac{1}{4}\Big{[}f+8(A^{\prime\prime}+4A^{\prime 2})f_{B}\Big{]}+6A^{\prime 2}f_{T} =\displaystyle= 12ϕ2V,\displaystyle\frac{1}{2}\phi^{2}-V, (17)
12[A(A′′′+8AA′′)(fBB+fTB)+3A′′A2(fTT+fBT)]\displaystyle 12\Big{[}A^{\prime}(A^{\prime\prime\prime}+8A^{\prime}A^{\prime\prime})(f_{BB}+f_{TB})+3A^{\prime\prime}A^{\prime 2}(f_{TT}+f_{BT})\Big{]}
12(A′′+4A2)(4fB+3fT)+14f\displaystyle-\frac{1}{2}(A^{\prime\prime}+4A^{\prime 2})(4f_{B}+3f_{T})+\frac{1}{4}f =\displaystyle= 12ϕ2+V.\displaystyle\frac{1}{2}\phi^{2}+V. (18)

We can rewrite equations (17) and (2) as

6A2\displaystyle 6A^{\prime 2} =\displaystyle= 1fT(P+PTB),\displaystyle-\frac{1}{f_{T}}\Big{(}P+P_{TB}\Big{)}, (19)
3A′′+12A2\displaystyle 3A^{\prime\prime}+12A^{\prime 2} =\displaystyle= 2fT(ρ+ρTB),\displaystyle-\frac{2}{f_{T}}\Big{(}\rho+\rho_{TB}\Big{)}, (20)

where

PTB\displaystyle P_{TB} =\displaystyle= 14[f+8(A′′+4A2)fB],\displaystyle\frac{1}{4}\Big{[}f+8(A^{\prime\prime}+4A^{\prime 2})f_{B}\Big{]}, (21)
ρTB\displaystyle\rho_{TB} =\displaystyle= 12[A(A′′′+8AA′′)(fBB+fTB)+3A′′A2(fTT+fBT)]\displaystyle-12\Big{[}A^{\prime}(A^{\prime\prime\prime}+8A^{\prime}A^{\prime\prime})(f_{BB}+f_{TB})+3A^{\prime\prime}A^{\prime 2}(f_{TT}+f_{BT})\Big{]} (22)
+2(A′′+4A2)fB+14f.\displaystyle+2(A^{\prime\prime}+4A^{\prime 2})f_{B}+\frac{1}{4}f.

Note that the left side of equations (19) and (20) is equivalent to that obtained in TEGR. So we can state that modified gravity equations of the motion of the f(T,B)f(T,B) gravities are similar to an inclusion of an additional source with ρTB\rho_{TB} and PTBP_{TB}.

The diagonal tetrad (14) represents a good choice among all the possible vielbeins giving metric (13). In fact, the gravitational field equations do not involve any additional constraints on the function f(T,B)f(T,B) or the scalars TT and BB. Thus, the choice in Eq. (14) can be regarded as a "good vielbein". Similarly, in the FRW cosmological models the f(T,B)f(T,B) gravitational dynamics preserves the form of the usual Friedmann equations (two equations) Franco2020 ; Caruana2020 ; EscamillaRivera2019 ; Bahamonde2016a ; Pourbagher2020 ; Bahamonde2020a . The choice of vielbein is a rather important issue, as it fixes the number of degrees of freedom of the theory, as seen particularly in a gravitational wave analysis of f(T,B)f(T,B) gravity Capozziello2019 .

3 Thick brane Solutions

Since the equations (17) and (2) form a second-order derivative system, it is difficult to provide an analytical solution for this case. For simplicity, we can take an ansatz Gremm1999

e2A(y)=cosh2p(λy),\displaystyle e^{2A(y)}=\cosh^{-2p}(\lambda y), (23)

where the pp parameter modifies the warp variation within the brane core, and λ\lambda determines the brane width.

We will then propose the cases where f1(T,B)=T+k1Bn1f_{1}(T,B)=T+k_{1}B^{n_{1}} and f2(T,B)=B+k2Tn2f_{2}(T,B)=B+k_{2}T^{n_{2}} , where k1,2k_{1,2} and n1,2n_{1,2} are parameters controlling the deviation of the usual teleparallel theory Allan .

We follow the approach carried out in Ref. Allan , where by manipulating the (17) and (2) equations, an equation relating the metric components and the scalar field is obtained. In this case, for f1(T,B)f_{1}(T,B) with equations (17),(2) and (23), we get Allan

ϕ2(y)=32pλ2sech2(λy)αn1β2[8n11k1n1(n11)(1+4p)sinh2(λy)],\displaystyle\phi^{\prime 2}(y)=\frac{3}{2}p\lambda^{2}\mathrm{sech}^{2}(\lambda y)-\frac{\alpha^{n_{1}}}{\beta^{2}}\Big{[}8^{n_{1}-1}k_{1}n_{1}(n_{1}-1)(1+4p)\sinh^{2}(\lambda y)\Big{]}, (24)
V(ϕ(y))\displaystyle V(\phi(y)) =\displaystyle= 34α+23n14k1(n11)(pλ2)2αn12{4sech4(λy)+64p2tanh4(λy)\displaystyle\frac{3}{4}\alpha+2^{3n_{1}-4}k_{1}(n_{1}-1)(p\lambda^{2})^{2}\alpha^{n_{1}-2}\Big{\{}4\mathrm{sech}^{4}(\lambda y)+64p^{2}\tanh^{4}(\lambda y) (25)
\displaystyle- [3n1+4(8+3n1)]sech2(λy)tanh2(λy)}.\displaystyle[3n_{1}+4(8+3n_{1})]\mathrm{sech}^{2}(\lambda y)\tanh^{2}(\lambda y)\Big{\}}.

We can solve Eq. (24) to find a function ϕ=g(y)\phi=g(y) that may be inverted to give y=g1(ϕ)y=g^{-1}(\phi), which allows us to write the potential in the usual way V=V(ϕ)V=V(\phi). The thick brane solution for n1=1n_{1}=1 is the same obtained in Refs.Gremm1999 ; Bazeia2007 , which does not depend on the k1k_{1} parameter. For n1=2n_{1}=2 we get as a solution the first and second kind elliptic integrals, which depends on parameter k1k_{1} Allan .

In Fig. 1, we plotted the ϕ(y)\phi(y) field for f1(T,B)f_{1}(T,B). The n1=1n_{1}=1 configuration (figure 1 aa ) is a kink solution. For n1=2n_{1}=2 configuration, for a decreasing value of k1k_{1}, the solution goes from kink to double-kink, as shown in figure 1 (bb). This feature reflects the brane internal structure, which tends to split the brane. A similar result was obtained in Ref. Yang2012 .

Refer to caption Refer to caption
(a)                                                     (b)
Figure 1: The shape of the scalar ϕ(y)\phi(y) for f1(T,B)f_{1}(T,B), where p=λ=1p=\lambda=1. (a) for n1=1n_{1}=1. (b) for n1=2n_{1}=2.

For f2(T,B)f_{2}(T,B), we get

ϕ2(y)=22n23(3)n2p1k2n2(2n21)csch2(λy)[pλtanh(λy)]2n2,\displaystyle\phi^{\prime 2}(y)=-2^{2n_{2}-3}(-3)^{n_{2}}p^{-1}k_{2}n_{2}(2n_{2}-1)\mathrm{csch}^{2}(\lambda y)[p\lambda\tanh(\lambda y)]^{2n_{2}}, (26)
V(ϕ(y))=4n22(3)n2p1k2(2n21)[4pn2csch2(λy)][pλtanh(λy)]2n2.\displaystyle V(\phi(y))=4^{n_{2}-2}(-3)^{n_{2}}p^{-1}k_{2}(2n_{2}-1)[4p-n_{2}\mathrm{csch}^{2}(\lambda y)][p\lambda\tanh(\lambda y)]^{2n_{2}}. (27)

The setting n2=4,6,n_{2}=4,6,... (even numbers) does not present a pleasant solution.

In Fig. 2, we plotted the ϕ(y)\phi(y) field for f2(T,B)f_{2}(T,B) varying the parameter k2k_{2}. For n2=1n_{2}=1 configuration (figure 2 aa ) we have a kink solution, whereas for n2=3n_{2}=3 configuration we have a double-kink solution (figure 2 bb ). Again, this feature reflects the brane internal structure, which tends to split the brane.

Refer to caption Refer to caption
(a)                                                     (b)
Figure 2: The shape of the scalar ϕ(y)\phi(y) for f2(T,B)f_{2}(T,B), where p=λ=1p=\lambda=1. (a) for n2=1n_{2}=1. (b) for n2=3n_{2}=3.

The energy densities for f1(T,B)f_{1}(T,B) are Allan

ρ1(y)\displaystyle\rho_{1}(y) =\displaystyle= α[23n12(n11)k18n11(n11)3n1k1(1+4p)sinh2(λy)β2]\displaystyle\alpha\Bigg{[}2^{3n_{1}-2}(n_{1}-1)k_{1}-\frac{8^{n_{1}-1}(n_{1}-1)3n_{1}k_{1}(1+4p)\sinh^{2}(\lambda y)}{\beta^{2}}\Bigg{]} (28)
\displaystyle- 3[(pλ)212(1+2p)pλ2sech2(λy)],\displaystyle 3\Big{[}(p\lambda)^{2}-\frac{1}{2}(1+2p)p\lambda^{2}\mathrm{sech}^{2}(\lambda y)\Big{]},

where we defined the functions αpλ2[sech2(λy)4ptanh2(λy)]\alpha\equiv p\lambda^{2}[\mathrm{sech}^{2}(\lambda y)-4p\tanh^{2}(\lambda y)], and β1+2[1cosh(2λy)]p\beta\equiv 1+2[1-\cosh(2\lambda y)]p. In Fig. 3, we plotted the energy densities ρ1(y)\rho_{1}(y) for f1(T,B)f_{1}(T,B), with n1=1n_{1}=1 (figure 3 aa ) and n1=2n_{1}=2 (figure 3 bb ), that includes a new peak varying the parameter k1k_{1}.

Refer to caption Refer to caption
(a)                                                     (b)
Figure 3: Energy density in the brane for f1(T,B)f_{1}(T,B), where p=λ=1p=\lambda=1. (a) for n1=1n_{1}=1. (b) for n1=2n_{1}=2.

The energy densities for f2(T,B)f_{2}(T,B) are Allan

ρ2(y)=22n23(3)n2p1k2(2n21)βcsch2(λy)[pλtanh(λy)]2n2.\displaystyle\rho_{2}(y)=-2^{2n_{2}-3}(-3)^{n_{2}}p^{-1}k_{2}(2n_{2}-1)\beta\mathrm{csch}^{2}(\lambda y)[p\lambda\tanh(\lambda y)]^{2n_{2}}. (29)

In Fig. 4, we plotted the energy densities ρ2(y)\rho_{2}(y) for f2(T,B)f_{2}(T,B) varying the parameter k2k_{2}, for n2=1n_{2}=1 (figure 4 aa ) and n2=3n_{2}=3 (figure 4 bb ), which has two peaks.

Refer to caption Refer to caption
(a)                                                     (b)
Figure 4: Energy density in the brane for f2(T,B)f_{2}(T,B), where p=λ=1p=\lambda=1. (a) for n2=1n_{2}=1. (b) for n2=3n_{2}=3.

4 Spin 1/2 Fermions

In this section, we explore the effects of the modified teleparallel f(T,B)f(T,B) on the matter (fermionic) sector. We changed the variable from yy to zz in the metric (13), and so, dz=eA(y)dydz=e^{-A(y)}dy and the metric turns to ds2=e2A(ημνdxμdxν+dz2)ds^{2}=e^{2A}(\eta^{\mu\nu}dx^{\mu}dx^{\nu}+dz^{2}). Considering a well-known Yukawa coupling between the fermion and the scalar field ϕ\phi, the 5-dimensional Dirac action of a spin 1/21/2 fermion minimally coupled to the gravity and to the background scalar ϕ\phi is

𝒮1/2=hΨ¯(ΓMDMΨξϕΨ)d5x,\displaystyle\mathcal{S}_{1/2}=\int h\overline{\Psi}\Big{(}\Gamma^{M}D_{M}\Psi-\xi\phi\Psi\Big{)}d^{5}x, (30)

where ΓM=hM¯MΓM¯\Gamma^{M}=h_{\overline{M}}\ ^{M}\Gamma^{\overline{M}} are the Dirac curved matrices defined from the Dirac flat matrices ΓM¯\Gamma^{\overline{M}} through the vielbeins. These matrices obey Cliford algebra {ΓM,ΓN}=2gMN\{\Gamma^{M},\Gamma^{N}\}=2g^{MN}. DMD_{M} is the covariant derivative given by DM=M+ΩMD_{M}=\partial_{M}+\Omega_{M}, where Obukhov2002 ; Ulhoa2016

ΩM=14(KMN¯Q¯)ΓN¯ΓQ¯,\displaystyle\Omega_{M}=\frac{1}{4}\Big{(}K_{M}\ ^{{\overline{N}}{\overline{Q}}}\Big{)}\ \Gamma_{\overline{N}}\Gamma_{\overline{Q}}, (31)

is the spin connection, which for our case is such that Ωμ=14(zA)ΓμΓz\Omega_{\mu}=\frac{1}{4}(-\partial_{z}A)\Gamma_{\mu}\Gamma^{z} and Ωz=zA\Omega_{z}=\partial_{z}A. By choosing the spinor representation Almeida2009 ; Dantas ; Andrade2001

ΨΨ(x,z)=(ψ0),Γμ¯=(0γμ¯γμ¯0),Γz¯=(0γ4γ40),\displaystyle\Psi\equiv\Psi(x,z)=\left(\begin{array}[]{cccccc}\psi\\ 0\\ \end{array}\right),\ \Gamma^{\overline{\mu}}=\left(\begin{array}[]{cccccc}0&\gamma^{\overline{\mu}}\\ \gamma^{\overline{\mu}}&0\\ \end{array}\right),\ \Gamma^{\overline{z}}=\left(\begin{array}[]{cccccc}0&\gamma^{4}\\ \gamma^{4}&0\\ \end{array}\right), (38)

the Dirac equation takes the form

[γμμ+γ4zξeAϕ]ψ=0.\displaystyle\Big{[}\gamma^{\mu}\partial_{\mu}+\gamma^{4}\partial_{z}-\xi e^{A}\phi\Big{]}\psi=0. (39)

We apply a decomposition to the spinor ψ=n[ψL,n(x)φL,n(z)+ψR,n(x)φR,n(z)]\psi=\sum_{n}[\psi_{L,n}(x)\varphi_{L,n}(z)+\psi_{R,n}(x)\varphi_{R,n}(z)], being γ4ψR,L=±ψR,L\gamma^{4}\psi_{R,L}=\pm\psi_{R,L} e γμμψR,L=mψL,R\gamma^{\mu}\partial_{\mu}\psi_{R,L}=m\psi_{L,R}. So, we have the coupled equations

[z+ξeAϕ]φL(z)=mφR(z),\displaystyle\Big{[}\partial_{z}+\xi e^{A}\phi\Big{]}\varphi_{L}(z)=m\varphi_{R}(z),
[zξeAϕ]φR(z)=mφL(z).\displaystyle\Big{[}\partial_{z}-\xi e^{A}\phi\Big{]}\varphi_{R}(z)=m\varphi_{L}(z). (40)

These equations can be decoupled and reduced to Schroëdinger-like equations

[z2+VL(z)]φL(z)=m2φL(z),\displaystyle\Big{[}-\partial^{2}_{z}+V_{L}(z)\Big{]}\varphi_{L}(z)=m^{2}\varphi_{L}(z),
[z2+VR(z)]φR(z)=m2φR(z),\displaystyle\Big{[}-\partial^{2}_{z}+V_{R}(z)\Big{]}\varphi_{R}(z)=m^{2}\varphi_{R}(z), (41)

where

VL(z)=U2zU,\displaystyle V_{L}(z)=U^{2}-\partial_{z}U,
VR(z)=U2+zU,\displaystyle V_{R}(z)=U^{2}+\partial_{z}U, (42)

and U=ξeAϕU=\xi e^{A}\phi is the so-called superpotential. The supersymmetric structure of the potentials (4) leads to a massless mode in the form

φR0,L0(z)exp[±ξϕeA𝑑z],\displaystyle\varphi_{R0,L0}(z)\propto\exp{\Bigg{[}\pm\int\xi\phi e^{A}dz\Bigg{]}}, (43)

where ϕeA|z±0\phi e^{A}|_{z\rightarrow\pm\infty}\rightarrow 0. In other words, the zero mode for fermions can be localized on the brane for positive ξ\xi Yang2012 .

For f1(T,B)f_{1}(T,B) with n1=1n_{1}=1 only left-chiral fermions can be localized on the brane. For n1=2n_{1}=2 only right-chiral fermions can be localized on the brane. In this case note that the smaller the k1k_{1} parameter, the more localized the mode becomes, as can be seen in the figure (5). For f2(T,B)f_{2}(T,B) with n2=1n_{2}=1 only left-chiral fermions can be localized on the brane. Now, the higher the parameter k1k_{1}, the more localized the mode becomes. On the other hand, for n1=3n_{1}=3 only right-chiral fermions can be localized on the brane, and so, the smaller the k1k_{1} parameter, the more localized the mode becomes, as can be seen in the figure (6).

Refer to caption Refer to caption
(a)                                                     (b)
Refer to caption Refer to caption
(c)                                                     (d)
Figure 5: VLV_{L} (a) and φL\varphi_{L} (b) for f1(T,B)f_{1}(T,B) with n1=1n_{1}=1. VRV_{R} (c) and φR\varphi_{R} (d) for f1(T,B)f_{1}(T,B) with n1=2n_{1}=2 (p=λ=ξ=1p=\lambda=\xi=1).
Refer to caption Refer to caption
(a)                                                     (b)
Refer to caption Refer to caption
(c)                                                     (d)
Figure 6: VLV_{L} (a) and φL\varphi_{L} (b) for f2(T,B)f_{2}(T,B) with n2=1n_{2}=1. VRV_{R} (c) and φR\varphi_{R} (d) for f2(T,B)f_{2}(T,B) with n2=3n_{2}=3 (p=λ=ξ=1p=\lambda=\xi=1).

Note that the effective potentials are even functions, so the wave functions will be either even or odd. We can analyze numerically the Eq.(4). For that we impose the following conditions: φeven(0)=c\varphi_{even}(0)=c, zφeven(0)=0\partial_{z}\varphi_{even}(0)=0, φodd(0)=c\varphi_{odd}(0)=c, and zφodd(0)=0\partial_{z}\varphi_{odd}(0)=0, where cc is a constantAlmeida2009 ; Liu2009 ; Liu2009a . Here φeven\varphi_{even} and φodd\varphi_{odd} denote the even and odd parity modes of φR,L(z)\varphi_{R,L}(z), respectively.

Refer to caption Refer to caption
(a)                                                     (b)
Refer to caption Refer to caption
(c)                                                     (d)
Refer to caption Refer to caption
(e)                                                     (f)
Figure 7: Non-normalized massive fermionic modes for f1(T,B)f_{1}(T,B), with n1=2n_{1}=2 and k1=0.5k_{1}=-0.5. For φeven\varphi_{even} (a) and φodd\varphi_{odd} (b). By varying k1k_{1}, φeven\varphi_{even} with m=3.492m=3.492 (c) and φodd\varphi_{odd} with m=4.233m=4.233 (d). For f2(T,B)f_{2}(T,B) with n2=3n_{2}=3, φeven\varphi_{even} with m=6.72m=6.72 (e) and φodd\varphi_{odd} with m=6.711m=6.711 (f) (p=λ=ξ=1p=\lambda=\xi=1).

As depicted in Fig. 7, the asymptotic divergence of the massive modes shows that they form non-localized states, which is a behavior typical of plane wave oscillations, characteristic of a free mode. This shows that these modes represent massive fermions that certainly will be leaked from the brane.

For f1(T,B)f_{1}(T,B), both for n1=1n_{1}=1 and n1=2n_{1}=2, the greater the mass, the more oscillations we obtain, as can be seen in the figure 7 (aa and bb) for n1=2n_{1}=2. In figure 7 (cc and dd), we observe that when decreasing the value of k1k_{1}, the greater the amplitude of the oscillation, mainly near the brane. For f2(T,B)f_{2}(T,B), both for n2=1n_{2}=1 and n2=3n_{2}=3, the greater the mass, the more oscillations we obtain. Increasing the value of k2k_{2}, greater the amplitude of the oscillation, mainly near the brane as we can see in the figure 7 (ee and ff) for n2=3n_{2}=3.

5 Final remarks

In this work we considered a braneworld in the context of the f(T,B)f(T,B) modified teleparallel gravity constructed with one scalar field. We propose two particular cases for f(T,B)f(T,B), namely f1(T,B)=T+k1Bn1f_{1}(T,B)=T+k_{1}B^{n_{1}} and f2(T,B)=B+k2Tn2f_{2}(T,B)=B+k_{2}T^{n_{2}}. In both cases the torsion and boundary term produce an inner brane structure tending to split the brane. We also find that the n1,2n_{1,2} and k1,2k_{1,2} parameters determines whether the domain wall solution is a kink or double-kink. For f1(T,B)f_{1}(T,B) where n1=2n_{1}=2, with the decreasing of the contribution of k1k_{1}, the configuration of the solution changes from a kink to double-kink. The same is true for f2(T,B)f_{2}(T,B) where n2=3n_{2}=3, when we increase the value of parameter k2k_{2}. The thick brane undergoes a phase transition evinced by the energy density components. Similar behavior was found for f(T)f(T) in Ref Yang2012 .

We considered a simple Yukawa coupling between the scalar and the spinor field. We notice that potentials feel the division of brane when we vary n1,2n_{1,2} and k1,2k_{1,2}, the same happens with the zero modes, which become more localized. We note that for f1(T,B)f_{1}(T,B) where n1=1n_{1}=1, only left-chiral fermions are located, the same is true for f2(T,B)f_{2}(T,B) with n2=1n_{2}=1. For f1(T,B)f_{1}(T,B) where n1=2n_{1}=2, only right-chiral fermions are located, the same is true for f2(T,B)f_{2}(T,B) with n2=3n_{2}=3. The massive fermionic modes are dependent on the parameters that control torsion and boundary term. This is well evidenced for f1(T,B)f_{1}(T,B) with n1=3n_{1}=3 since that decreasing the value of k1k_{1}, increases the amplitude of the ripples making them more intense and presenting ripples within the brane. The same goes for f2(T,B)f_{2}(T,B) when increasing the value of k2k_{2}, which is very evident for n2=3n_{2}=3. Therefore, the brane splitting process leads to modifications of the massive fermionic modes inside the thick brane. The interaction of the massive modes with the torsion and boundary term is more intense in the brane core where the amplitude and the rate of growth depend on the parameters n1,2n_{1,2} and k1,2k_{1,2}.

Although only one massless chiral mode was found for each configuration n1,2n_{1,2} and k1,2k_{1,2}, only left-handed spin 1/21/2 fermions were detected so far. The configurations where the right-handed massless mode is localized on the brane are beyond the standard model states. The absence of left-handed massless mode can be used to rule out those configurations where only right-handed massless mode are trapped.

In addition, it is worthwhile to mention the role played by the parameter k1,2k_{1,2} on the brane internal structure. As k1,2k_{1,2} grows the brane undergoes a transition from a single into a two-brane. Therefore, the parameter k1,2k_{1,2} can be regarded as phase transition parameter controlling the brane splitting process.

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grants no 312356/2017-0 (JEGS) and no 308638/2015-8 (CASA), and Coordenação de Aperfeiçoamento do Pessoal de Nível Superior (CAPES), for financial support. The authors also thank the anonymous referee for valuable comments and suggestions.

References

  • (1) L. Randall and R. Sundrum, Phys. Rev. Lett.  83 (1999) 4690.
  • (2) L. Randall and R. Sundrum, Phys. Rev. Lett.  83 (1999) 3370.
  • (3) J. M. Schwindt and C. Wetterich, Nucl. Phys. B 726 (2005) 75.
  • (4) T. Gherghetta and B. von Harling, JHEP 1004 (2010) 039.
  • (5) C. Csaki, J. Erlich, T. J. Hollowood and Y. Shirman, Nucl. Phys. B 581 (2000) 309.
  • (6) J. L. Rosa, D. A. Ferreira, D. Bazeia and F. S. N. Lobo, Eur. Phys. J. C 81 (2021) 20.
  • (7) A. Kehagias and K. Tamvakis, Phys. Lett. B 504 (2001) 38.
  • (8) C. A. S. Almeida, M. M. Ferreira, Jr., A. R. Gomes and R. Casana, Phys. Rev. D 79 (2009) 125022.
  • (9) K. Hayashi and T. Shirafuji, Phys. Rev. D 19 (1979) 3524.
  • (10) V. C. de Andrade and J. G. Pereira, Phys. Rev. D 56 (1997) 4689.
  • (11) V. C. de Andrade, L. C. T. Guillen, and J. G. Pereira, Phys. Rev. Lett. 84 (2000) 4533.
  • (12) Rafael Ferraro and Franco Fiorini, Phys. Rev. D 75 (2007) 084031.
  • (13) C. G. Böhmer, T. Harko, and Francisco S. N. Lobo, Phys. Rev. D 85 (2012) 044033.
  • (14) R. Aldrovandi and J. G. Pereira, Fundam. Theor. Phys. 173 (2013).
  • (15) Yi-Fu Cai, S. Capozziello, M. De Laurentis, and E. N. Saridakis, Rep. Prog. Phys. 79 (2016) 106901.
  • (16) J. Jiménez, L. Heisenberg, D. Iosifidis, A. Jiménez-Cano, and T. Koivisto, Phys. Lett. B 805 (2020) 135422
  • (17) C. Bejarano, A. Delhom, A. Jiménez-Cano, G. Olmo, and D. Rubiera-Garcia, Phys. Lett. B 802 (2020) 135275
  • (18) S. Randjbar-Daemi and M. E. Shaposhnikov, Phys. Lett. B 492 (2000) 361.
  • (19) Y. X. Liu, J. Yang, Z. H. Zhao, C. E. Fu and Y. S. Duan, Phys. Rev. D 80 (2009) 065019.
  • (20) Y. X. Liu, H. T. Li, Z. H. Zhao, J. X. Li and J. R. Ren, JHEP 10 (2009) 091.
  • (21) Y. X. Liu, L. D. Zhang, L. J. Zhang and Y. S. Duan, Phys. Rev. D 78 (2008) 065025.
  • (22) Y. X. Liu, C. E. Fu, L. Zhao and Y. S. Duan, Phys. Rev. D 80 (2009) 065020.
  • (23) Y. X. Liu, L. D. Zhang, S. W. Wei and Y. S. Duan, JHEP 08(2008) 041.
  • (24) Y. N. Obukhov and J. G. Pereira, Phys. Rev. D 67 (2003) 044016.
  • (25) S. C. Ulhoa, A. F. Santos and F. C. Khanna, Gen. Rel. Grav. 49 (2017) 54.
  • (26) D. M. Dantas, J. E. G. Silva and C. A. S. Almeida, Phys. Lett. B 725 (2013) 425.
  • (27) L. J. S. Sousa, C. A. S. Silva, D. M. Dantas and C. A. S. Almeida, Phys. Lett. B 731 (2014) 64.
  • (28) D. M. Dantas, D. F. S. Veras, J. E. G. Silva and C. A. S. Almeida, Phys. Rev. D 92 (2015) 104007.
  • (29) J. Mitra, T. Paul and S. SenGupta, Eur. Phys. J. C 77 (2017) 833.
  • (30) Y. Buyukdag, T. Gherghetta and A. S. Miller, Phys. Rev. D 99 (2019) 035046.
  • (31) L. L. Wang, H. Guo, C. E. Fu and Q. Y. Xie, “ Gravity and Matters on a pure geometric thick polynomial f(R) brane ”, https://arxiv.org/abs/1912.01396.
  • (32) J. Yang, Y. -L. Li, Y. Zhong and Y. Li, Phys. Rev. D 85 (2012) 084033.
  • (33) K. Yang, W. D. Guo, Z. C. Lin and Y. X. Liu, Phys. Lett. B 782 (2018) 170.
  • (34) S. Bahamonde, C. G. Böhmer and M. Wright, Phys. Rev. D 92 (2015) 104042.
  • (35) M. Wright, Phys. Rev. D 93 (2016) 103002.
  • (36) S. Bahamonde and S. Capozziello, Eur. Phys. J. C 77 (2017) 107.
  • (37) G. A. R. Franco, C. Escamilla-Rivera and J. Levi Said, Eur. Phys. J. C 80 (2020) 677.
  • (38) C. Escamilla-Rivera and J. Levi Said, Class. Quant. Grav. 37 (2020) 165002.
  • (39) S. Bahamonde, M. Zubair and G. Abbas, Phys. Dark Univ. 19 (2018) 78.
  • (40) M. Caruana, G. Farrugia and J. Levi Said, Eur. Phys. J. C 80 (2020) 640.
  • (41) A. Pourbagher and A. Amani, Mod. Phys. Lett. A 35 (2020) 2050166.
  • (42) S. Bahamonde, V. Gakis, S. Kiorpelidi, T. Koivisto, J. Levi Said and E. N. Saridakis, Eur. Phys. J. C 81 (2021) 53.
  • (43) N. Azhar, A. Jawad and S. Rani, Phys. Dark Univ. 30 (2020) 100724.
  • (44) S. Bhattacharjee, Phys. Dark Univ. 30 (2020) 100612.
  • (45) H. Abedi and S. Capozziello, Eur. Phys. J. C 78 (2018) 474.
  • (46) A. R. P. Moreira, J. E. G. Silva, F. C. E. Lima and C. A. S. Almeida, Phys. Rev. D 103 (2021) 064046.
  • (47) B. Li, T. P. Sotiriou and J. D. Barrow, Phys. Rev. D 83 (2011) 064035.
  • (48) B. Li, T. P. Sotiriou and J. D. Barrow, Phys. Rev. D 83 (2011) 104017.
  • (49) T. P. Sotiriou, B. Li and J. D. Barrow, Phys. Rev. D 83 (2011) 104030.
  • (50) S. Capozziello, M. Capriolo and L. Caso, Eur. Phys. J. C 80 (2020) 156.
  • (51) M. Gremm, Phys. Lett. B 478 (2000) 434.
  • (52) D. Bazeia, A. R. Gomes and L. Losano, Int. J. Mod. Phys. A 24 (2009) 1135.
  • (53) V. C. de Andrade, L. C. T. Guillen and J. G. Pereira, Phys. Rev. D 64 (2001) 027502.