This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Fingerprints of Mott and Slater gaps in the core-level photoemission spectra of antiferromagnetic iridates

K. Nakagawa Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan    A. Hariki Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan    T. Okauchi Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan    H. Fujiwara RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan    K.-H. Ahn Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czechia    Y. Murakami Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan    S. Hamamoto RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan    Y. Kanai-Nakata    T. Kadono RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan    A. Higashiya RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan    K. Tamasaku    M. Yabashi    T. Ishikawa RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan    A. Sekiyama RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan    S. Imada RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan    J. Kuneš Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia    K. Takase College of Science and Technology, Nihon University, Tokyo 101-8308, Japan    A. Yamasaki yamasaki@konan-u.ac.jp RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
Abstract

We present Ir 4f4f core-level hard-x-ray photoemission spectroscopy (HAXPES) experiments conducted across antiferromagnetic (AFM) ordering transition in Ruddlesden-Popper iridates Sr2IrO4 and Sr3Ir2O7. The Ir 4f4f spectra exhibit distinct changes between the AFM and paramagnetic (PM) phases, with the spectral difference IPMIAFMI_{\text{PM}}-I_{\text{AFM}} showing a contrasting behavior in the two compounds. By employing computational simulations using the local-density approximation combined with the dynamical mean-field theory method, we elucidate that IPMIAFMI_{\text{PM}}-I_{\text{AFM}} primary reflects the Slater or Mott-Hubbard character of the AFM insulating state rather than material specific details. This sensitivity to fine low-energy electronic structure arises from the dependence of charge-transfer responses to the sudden creation of a localized core hole on both metal-insulator transitions and long-range AFM ordering. Our result broadens the applications of core-level HAXPES as a tool for characterization of electronic structure.

preprint: submitted to Physical Review Letters

Antiferromangetic (AFM) materials often exhibit gaps in their charge excitation spectra. Their origin can be traced either to strong electronic correlations present also in the paramagnetic (PM) phase, the Mott mechanism, or to the long-range AFM order and associated doubling of the unit cell, the Slater mechanism. Naively, the distinction between the two mechanisms is straightforward “Is there an intrinsic charge gap in the PM phase or not?”. The reality and its experimental determination are more complex. Detecting a gap using angle-resolved photoemission spectroscopy (ARPES) may prove difficult [1, 2]. Besides an instrumental resolution limitation, at higher Néel transition temperatures TNT_{N} thermal broadening or possible coupling with bosonic excitations obscures small gaps. Moreover, changes in the ARPES spectra are very specific to the band structure of a given material, which makes identification of the Mott or Slater characteristics complicated.

Core-level photoemission spectroscopy, which measures the time evolution of the core hole left by the photoelectron, does not suffer from the above problems. On the other hand, the ability of a local probe to provide useful information about long-range AFM order is not obvious.

In this Letter, we show that it is possible to address the Mott vs Slater question using the core-level hard-x-ray photoemission spectroscopy (HAXPES). With Ruddlesden-Popper iridates Sr2IrO4 (TNT_{N}\simeq240 K) [3, 4] and Sr3Ir2O7 (\simeq280 K) [5] serving as test materials, we observe a distinct signature of the Mott and Slater mechanisms at the AFM transition. The experimental spectra are well reproduced by theoretical calculations based on the local density approximation (LDA) + dynamical mean-field theory (DMFT), which provide an explanation for the observed behavior and link it to a dominant Mott or Slater mechanism.

Experiment. Single crystals of Sr2IrO4 and Sr3Ir2O7 were grown by the flux method using SrCl2 as the flux material, see Ref. 1 for the sample preparation and their characterization. The HAXPES data were collected at the beamline BL19LXU of SPring-8 [6]. The linearly polarized x-ray delivered by the 27m-long undulator was monochromized by the Si (111) double-crystal and Si (620) channel-cut monochromators, with the polarization vector set to be parallel to the photoelectron scattering plane [7]. The incident photon energy was set to 7.9 keV with the total energy resolution of ΔE=400\Delta E=400 meV as the full width at half maximum (FWHM). Clean (001) surfaces were obtained by cleaving the samples in situ in ultrahigh vacuum (1×107\leq 1\times 10^{-7} Pa).

Theory. The LDA+DMFT calculations are performed for the experimental crystal structures of Sr2IrO4 and Sr3Ir2O7 with the implementation used in Refs. 8, 9, 10. The dpdp tight-binding model spanning the Ir 5d5d and O 2pp bands derived from the LDA bands is augmented by the local electron-electron interaction on the Ir 5dd shell parameterized by Hubbard U=4.5U=4.5 eV and Hund’s J=0.8J=0.8 eV. These values are consistent with previous studies based on the density functional theory for iridates [11]. The double-counting correction μdc\mu_{\rm dc} is introduced in order to remove the interaction effects already present in the LDA description [12, 13]. The bare Ir 5d5d site energy εdLDA\varepsilon_{d}^{\rm LDA} is shifted by the μdc\mu_{\rm dc}, which modifies the Ir 5d5d–O 2pp splitting and, consequently, the Ir 5dd band width and the metal-insulator transition (MIT) [10]. This allows us to use μdc\mu_{\rm dc} as a tuning parameter to go between Slater and Mott-Hubbard regimes in the same material and thus demonstrate the impact on the core-level spectra. The realistic values of μdc\mu_{\rm dc} are obtained by comparison to the experimental core-level and valence-band HAXPES spectra. Continuous-time hybridization expansion Monte Carlo method [14] is employed as the DMFT impurity solver. The spectral functions and hybridization densities on the real-frequency axis are computed with the analytically continued self-energy Σ(ω)\Sigma(\omega) by the maximum entropy method [15]. The Ir 4f4f core-level photoemission spectra are calculated using the Anderson impurity model (AIM) with the DMFT hybridization densities where the core-valence interaction (core-hole potential) UcdU_{cd} is included explicitly in the photoemission final states [8, 16].

Figure 1(a) shows the core-level HAXPES spectrum of Sr2IrO4 in the vicinity of Ir 4f4f binding energy (EBE_{B}). Quasi-symmetric peaks corresponding to Ir 5s5s and 5p3/25p_{3/2} states are found around 100 eV and 50 eV, respectively. A complex spectral feature can be seen between them, which is attributed to Ir 4f4f and 5p1/25p_{1/2} states. According to previous studies of metallic Ir and IrO2 [17], the Ir 5p1/25p_{1/2} state has the same EBE_{B} as the Ir 4f4f states. Some spectral weights due to a Sr 4s4s plasmon satellite (EB66E_{B}\simeq 66 eV) also contribute to form the complex Ir 4f4f spectral shape in strontium iridates. The 5p1/25p_{1/2} and plasmon contributions on the 4f4f states are quantitatively evaluated by a line-shape analysis shown in the Supplemental Material (SM) [18]. Unlike the 4f4f features, the 5p1/25p_{1/2} peak and plasmon satellite are essentially insensitive to the magnetic order and thus their contribution cancels out in the spectral difference I300 KI100 KI_{\text{300 K}}-I_{\text{100 K}}.

Refer to caption
Figure 1: (a) HAXPES spectrum of Ir core levels in Sr2IrO4. (b) Temperature dependence of Ir 4f4f spectra for Sr2IrO4 and Sr3Ir2O7. The spectra are normalized by the area under the curves after subtraction of the Shirley-type background [19]. The difference spectra are also shown.

In both Sr2IrO4 and Sr3Ir2O7, fine features labeled as AA and BB in the Ir 4f7/24f_{7/2} component can be identified, see Fig. 1(b). These features were reported in Sr2IrO4 and other Ir oxides. However, their interpretation has been controversial. In early studies [20, 21] the shoulder feature AA was attributed to a charge-transfer final state (c¯d6L¯\underline{c}d^{6}\underline{L}), while the feature BB was interpreted as (unscreened) ionic final states (c¯d5\underline{c}d^{5}) along a textbook interpretation established for 3dd transition-metal oxides (TMOs). In contrast, a recent study [22] associated the two features with Ir3+ and Ir4+ valence states. The Ir 4f4f spectra in Sr2IrO4 and Sr3Ir2O7 look rather similar and both exhibit a change upon cooling below TNT_{N}, as shown in Fig. 1(b). Remarkably, the change in the Ir 4f4f spectra is distinctly different in the two compounds with even opposite signs around the feature AA. Importantly, the position of the distinct peak in I300 KI100 KI_{\text{300 K}}-I_{\text{100 K}} of Sr2IrO4, indicated by the gray solid bar, is substantially higher (1\sim 1 eV) than that of Sr3Ir2O7, indicated by the pink solid bar. The observed qualitative difference arises from a disparate evolution of spectral intensities with temperature across TNT_{N} in the two compounds. Specifically, the intensity of the feature AA is suppressed above TNT_{N} in Sr2IrO4, while a tail (61.3\sim 61.3 eV) associated with the feature AA emerges above TNT_{N} in Sr3Ir2O7.

In the following we use numerical simulations to uncover the microscopic origin of this behavior. We start with analysis of the temperature and material dependence of Ir 4ff spectra of the IrO6 cluster-model, dashed line in Fig. 2. The model includes the charge transfer from the nearest-neighboring ligands, the local valence-valence and core-valence interactions, and the spin-orbit coupling in the 4ff shell 111The one-particle Hamiltonian (including hopping integrals and crystal-field energies) in the IrO6 cluster model are extracted from the LDA (tight-binding) Hamiltonian for the experimental crystal structures.. The cluster model yields sharp structureless 4f7/2f_{7/2} and 4f5/2f_{5/2} peaks and a weak satellite at high EBE_{B} (75\sim 75 eV), see the inset in Fig. 2. The satellite is observed in the experimental spectra as indicated by arrows in Fig. 1(a). Large splitting between the main line and the satellite is due to a strong Ir 5deg5d\ e_{g} – O 2pp hybridization, similar to the origin of the satellite in 2pp core-level spectra of early 3dd TMOs [24, 25, 26]. The shoulder AA is missing in the cluster-model spectrum. No core-valence multiplet effects or interference between Ir 4f7/2f_{7/2} and 4f5/2f_{5/2} excitations are discernible in the cluster-model spectra. This allows us to neglect the orbital structure of the core states and compute the Ir 4f7/2f_{7/2} and 4f5/2f_{5/2} spectra separately, which reduces the computational effort of LDA+DMFT AIM simulations 222Note that in this approximation the Ir 4f7/2f_{7/2} and 4f5/2f_{5/2} are merely shifted and rescaled images of one another due to different energy and degeneracy of the 4f7/2f_{7/2} and 4f5/2f_{5/2} states..

Figure 2 also shows the Ir 4f7/2f_{7/2} core-level spectra of Sr2IrO4 and Sr3Ir2O7 obtained with LDA+DMFT AIM. The LDA+DMFT AIM treatment produces the shoulder AA in both Sr2IrO4 and Sr3Ir2O7, in fair agreement with the experimental 4f7/2f_{7/2} line. While LDA+DMFT AIM implements the same atomic Hamiltonian of the Ir 5dd shell as the cluster model [16, 8], it also includes the long-range hopping beyond the nearest-neighboring ligands. The fine structure of the 4f7/2f_{7/2} peak can thus be attributed to a long-range charge-transfer effect, often referred to as non-local screening in the literature [28, 29, 30, 8, 31].

Refer to caption
Figure 2: Ir 4f7/24f_{7/2} spectra calculated by the LDA+DMFT AIM for Sr2IrO4 (top) and Sr3Ir2O7 (bottom) in the PM (red) and AFM (blue) solutions. The IrO6 cluster-model results for the Ir 4f7/2,5/24f_{7/2,5/2} spectra are shown in the dashed lines. The inset shows the calculated spectra (Sr2IrO4) in a wide EBE_{B} window.

Next, we address the response of the spectra to the AFM ordering, characterized by the spectral difference, IPMIAFMI_{\text{PM}}-I_{\text{AFM}}, and its relation to the insulating mechanism. We take advantage of the fact that, in a computer, we can tune between the Mott-Hubbard- and Slater-insulator regimes in both studied materials by changing the EBE_{B} of the Ir 5d5d states away from its realistic value. In practice, this is achieved by varying μdc\mu_{\rm dc}. The LDA+DMFT valence-band spectra for the two regimes are shown in Figs. 3(a)–(h). In the Mott-Hubbard regime for Sr2IrO4 [μdc=19.4\mu_{\rm dc}=19.4 eV in (a)], the charge gap at the Fermi energy (EFE_{F}) survives in the PM insulating (PMI) solution. The gap size is slightly increased in the AFM insulating (AFI) solution compared with the PMI one, as in the single-band Hubbard model [32] and consistent with previous DMFT studies for Sr2IrO4 [33, 34, 35, 11, 36]. The charge gap collapses in the PM metallic (PMM) solution in the Slater-insulator regime for Sr3Ir2O7 [μdc=20.4\mu_{\rm dc}=20.4 eV in (g)]. The results for IPMIAFMI_{\text{PM}}-I_{\text{AFM}} in Figs. 3(i)–(p) show that the core-level HAXPES spectra reflects the insulating mechanism rather than a specific material. In particular, the spectral weight of the feature AA decreases in a Mott-Hubbard case upon the transition from AFI to PMI phase, indicated by the blue arrow in Fig. 3(i), resulting in a peak with negative sign in IPMIAFMI_{\text{PM}}-I_{\text{AFM}}. In a Slater case, transitioning from AFI to PMM phase, the feature AA increases accompanied by the broad band feature extending to low EBE_{B}, indicated by the red arrow in Fig. 3(k), that produces a positive sign in IPMIAFMI_{\text{PM}}-I_{\text{AFM}}. These behaviors in Fig. 3(i) for Sr2IrO4 and (o) for Sr3Ir2O7 well reproduce the observed spectral changes shown in Fig. 1(b). The spectral evolution with the PMI to PMM transition can be found in Fig. S4 of SM [18]. Experimentally, the electrical resistivity of both compounds presents insulating behavior below TNT_{N} [5, 37, 38, 4]. Near TNT_{N} the resistivity of Sr3Ir2O7 exhibits a sharp drop, whereas such a drop is not observed in Sr2IrO4, suggesting Slater-like and Mott-like character of the gap in the former and latter. Our HAXPES result, with the support of the LDA+DMFT simulations, is consistent with the resistivity measurement.

Refer to caption
Figure 3: LDA+DMFT density of states of the Ir 5dd jeff=1/2j_{\rm eff}=1/2 state and core-level XPS spectra for (a–d, i–l) Sr2IrO4 and (e–h, m–p) Sr3Ir2O7 calculated for different double-counting μdc\mu_{\rm dc} values (from top to bottom panels). The spectra in the PM (red curve) and AFM (blue curve) solutions for each μdc\mu_{\rm dc} value are shown. The results in blue (red) frames exhibit the Mott-Hubbard (Slater) type electronic structure with (without) charge gap in the PM solution.

Why does the Ir 4f4f spectrum, in particular the feature AA, respond differently to the AFM transition in the Mott-Hubbard and Slater insulators? The lower-energy shoulder feature AA is connected with non-local screening facilitated by the states just below EFE_{F} [8, 10]. Two effects affect the non-local screening in the present context: (i) the non-local screening is more efficient in a metal than in an insulator due to the presence of states close to EFE_{F} 333In order to assess whether such states can contribute to non-local screening one should look at hybridization function rather than an electronic spectral density., (ii) the non-local screening is more efficient in the AFM state than in the PM state since more Ir–Ir charge-transfer processes are prohibited by Pauli principle for parallel spin orientations, suppressed in the AFM state. Both (i) and (ii) are active in the Slater regime and the simulations for Sr3Ir2O7 show that the dominant (i) leads to a larger weight of the feature AA in the PM state, in agreement with the experiment. In contrast, only (ii) is active in the Mott-Hubbard regime, resulting in the larger weight of the feature AA in the AFM state as seen in Sr2IrO4. Note that the sensitivity of the core-level photoemission spectroscopy to non-local spin-spin correlations or a long-range AFM ordering in a Mott insulator has been proposed theoretically for 3dd TMOs [40, 8, 41, 42], but has been escaping experimental detection so far, except in a recent report for MnO [43].

Finally we comment on the overestimation of the spectral changes in IPMIAFMI_{\rm PM}-I_{\rm AFM} in the LDA+DMFT result in Fig. 2. This stems primarily from a more pronounced suppression of the feature AA (62\sim 62 eV) in the PM solution against the AF one, compared to the experiment below and above TNT_{N}, indicating that the deactivation of the non-local screening in the PM phase mentioned above is exaggerated in the theory. However, this behavior is not a surprising within the present theory neglecting the short-range AFM correlation. This approximation overcounts the Pauli blocking in the ferromagnetic spin configurations in the time propagation with a core hole and consequently underestimates the intensity of the feature AA. This observation is consistent with the temperature evolution of the Mn 2p3/2p_{3/2} line well above TNT_{N} in MnO due to the short-range AFM correlation [43].

We have reported Ir 4f4f core-level HAXPES experiments across the AFM ordering transition in Sr2IrO4 and Sr3Ir2O7. Using LDA+DMFT AIM simulations, we have explained the microscopic origin of the observed changes in the HAXPES spectra in response to the AFM order. We have shown that the spectral change reflects the Slater or Mott-Hubbard character of the AFM insulating state rather than material details. This broadens the applications of core-level HAXPES as a tool to study the magnetic and metal-to-insulator transitions in correlated systems.

Acknowledgements.
We would like to thank S. Yano, T. Hayashida, and S. Miyazaki for supporting the HAXPES experiments. The HAXPES experiments at SPring-8 were performed with the approval of RIKEN (Proposal No. 20190031 and No. 20200075) under the support of JSPS KAKENHI Grants No. JP19K03753 and No. JP22K03527. A.H. was supported by JSPS KAKENHI with Grant Numbers JP21K13884, JP21H01003, JP23K03324, JP23H03816, JP23H03817. J. K. was supported by the project No. CZ.02.01.01/00/22_008/0004572 of the Programme Johannes Amos Commenius.

References

  • Yamasaki et al. [2016] A. Yamasaki, H. Fujiwara, S. Tachibana, D. Iwasaki, Y. Higashino, C. Yoshimi, K. Nakagawa, Y. Nakatani, K. Yamagami, H. Aratani, O. Kirilmaz, M. Sing, R. Claessen, H. Watanabe, T. Shirakawa, S. Yunoki, A. Naitoh, K. Takase, J. Matsuno, H. Takagi, A. Sekiyama, and Y. Saitoh, Three-dimensional electronic structures and the metal-insulator transition in Ruddlesden-Popper iridates, Phys. Rev. B 94, 115103 (2016).
  • King et al. [2013] P. D. C. King, T. Takayama, A. Tamai, E. Rozbicki, S. M. Walker, M. Shi, L. Patthey, R. G. Moore, D. Lu, K. M. Shen, H. Takagi, and F. Baumberger, Spectroscopic indications of polaronic behavior of the strong spin-orbit insulator Sr3Ir2O7Phys. Rev. B 87, 241106(R) (2013).
  • Cao et al. [1998] G. Cao, J. Bolivar, S. McCall, J. E. Crow, and R. P. Guertin, Weak ferromagnetism, metal-to-nonmetal transition, and negative differential resistivity in single-crystal Sr2IrO4\mathrm{Sr}_{2}\mathrm{IrO}_{4}Phys. Rev. B 57, R11039 (1998).
  • Fujiyama et al. [2012] S. Fujiyama, K. Ohashi, H. Ohsumi, K. Sugimoto, T. Takayama, T. Komesu, M. Takata, T. Arima, and H. Takagi, Weak antiferromagnetism of Jeff{J}_{\rm eff}= 1/2 band in bilayer iridate Sr3Ir2O7, Phys. Rev. B 86, 174414 (2012).
  • Cao et al. [2002] G. Cao, Y. Xin, C. S. Alexander, J. E. Crow, P. Schlottmann, M. K. Crawford, R. L. Harlow, and W. Marshall, Anomalous magnetic and transport behavior in the magnetic insulator Sr3Ir2O7, Phys. Rev. B 66, 214412 (2002).
  • Yabashi et al. [2001] M. Yabashi, K. Tamasaku, and T. Ishikawa, Characterization of the transverse coherence of hard synchrotron radiation by intensity interferometry, Phys. Rev. Lett. 87, 140801 (2001).
  • Fujiwara et al. [2016] H. Fujiwara, S. Naimen, A. Higashiya, Y. Kanai, H. Yomosa, K. Yamagami, T. Kiss, T. Kadono, S. Imada, A. Yamasaki, K. Takase, S. Otsuka, T. Shimizu, S. Shingubara, S. Suga, M. Yabashi, K. Tamasaku, T. Ishikawa, and A. Sekiyama, Polarized hard X-ray photoemission system with micro-positioning technique for probing ground-state symmetry of strongly correlated materials, J. Synchrotron Radiat. 23, 735 (2016).
  • Hariki et al. [2017] A. Hariki, T. Uozumi, and J. Kuneš, LDA+DMFT approach to core-level spectroscopy: Application to 3d3d transition metal compounds, Phys. Rev. B 96, 045111 (2017).
  • Rahn et al. [2022] M. C. Rahn, K. Kummer, A. Hariki, K.-H. Ahn, J. Kuneš, A. Amorese, J. D. Denlinger, D.-H. Lu, M. Hashimoto, E. Rienks, M. Valvidares, F. Haslbeck, D. D. Byler, K. J. McClellan, E. D. Bauer, J. X. Zhu, C. H. Booth, A. D. Christianson, J. M. Lawrence, F. Ronning, and M. Janoschek, Kondo quasiparticle dynamics observed by resonant inelastic x-ray scattering, Nat. Commun. 13, 6129 (2022).
  • Higashi et al. [2021] K. Higashi, M. Winder, J. Kuneš, and A. Hariki, Core-Level X-Ray Spectroscopy of Infinite-Layer Nickelate: LDA+DMFT\mathrm{LDA}+\mathrm{DMFT} study, Phys. Rev. X 11, 041009 (2021).
  • Zhang et al. [2013] H. Zhang, K. Haule, and D. Vanderbilt, Effective J=1/2{J}=1/2 Insulating State in Ruddlesden-Popper Iridates: An LDA+DMFT\mathrm{LDA}\mathbf{+}\mathrm{DMFT} Study, Phys. Rev. Lett. 111, 246402 (2013).
  • Kotliar et al. [2006] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys. 78, 865 (2006).
  • Karolak et al. [2010] M. Karolak, G. Ulm, T. Wehling, V. Mazurenko, A. Poteryaev, and A. Lichtenstein, Double counting in LDA + DMFT - The example of NiO, J. Electron Spectrosc. Relat. Phenom. 181, 11 (2010).
  • Werner et al. [2006] P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J. Millis, Continuous-Time Solver for Quantum Impurity Models, Phys. Rev. Lett. 97, 076405 (2006).
  • Jarrell and Gubernatis [1996] M. Jarrell and J. Gubernatis, Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data, Phys. Rep. 269, 133 (1996).
  • Ghiasi et al. [2019] M. Ghiasi, A. Hariki, M. Winder, J. Kuneš, A. Regoutz, T.-L. Lee, Y. Hu, J.-P. Rueff, and F. M. F. de Groot, Charge-transfer effect in hard x-ray 1s1s and 2p2p photoemission spectra: LDA+DMFT\mathrm{LDA}+\mathrm{DMFT} and cluster-model analysis, Phys. Rev. B 100, 075146 (2019).
  • Freakley et al. [2017] S. J. Freakley, J. Ruiz-Esquius, and D. J. Morgan, The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited, Surf. Interface Anal. 49, 794 (2017).
  • [18] See Supplemental Material for analysis and calcuration details, including Refs. [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58].
  • Shirley [1972] D. A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B 5, 4709 (1972).
  • Kahk et al. [2014] J. M. Kahk, C. G. Poll, F. E. Oropeza, J. M. Ablett, D. Céolin, J.-P. Rueff, S. Agrestini, Y. Utsumi, K. D. Tsuei, Y. F. Liao, F. Borgatti, G. Panaccione, A. Regoutz, R. G. Egdell, B. J. Morgan, D. O. Scanlon, and D. J. Payne, Understanding the Electronic Structure of IrO2\mathrm{IrO}_{2} Using Hard-X-ray Photoelectron Spectroscopy and Density-Functional Theory, Phys. Rev. Lett. 112, 117601 (2014).
  • Yamasaki et al. [2014] A. Yamasaki, O. Kirilmaz, A. Irizawa, A. Higashiya, T. Muro, H. Fujiwara, F. Pfaff, P. Scheiderer, J. Gabel, M. Sing, M. Yabashi, K. Tamasaku, A. Hloskovskyy, H. Okabe, H. Yoshida, M. Isobe, J. Akimitsu, W. Drube, T. Ishikawa, S. Imada, A. Sekiyama, R. Claessen, and S. Suga, Spin-Orbit-Coupling-Induced jeffj_{\rm eff} States in Perovskite Iridates Studied by Photoemission Spectroscopy, JPS Conf. Proc. 3, 013001 (2014).
  • Horie et al. [2023] R. Horie, T. Matsushita, S. Kawamura, T. Hase, K. Horigane, H. Momono, S. Takeuchi, M. Tanaka, H. Tomita, Y. Hashimoto, K. Kobayashi, Y. Haruyama, H. Daimon, Y. Morikawa, M. Taguchi, and J. Akimitsu, Origin of Unexpected Ir3+ in a Superconducting Candidate Sr2IrO4 System Analyzed by Photoelectron Holography, Inorg. Chem. 62, 10897 (2023).
  • Note [1] The one-particle Hamiltonian (including hopping integrals and crystal-field energies) in the IrO6 cluster model are extracted from the LDA (tight-binding) Hamiltonian for the experimental crystal structures.
  • Hariki et al. [2022] A. Hariki, K. Higashi, T. Yamaguchi, J. Li, C. Kalha, M. Mascheck, S. K. Eriksson, T. Wiell, F. M. F. de Groot, and A. Regoutz, Satellites in the Ti 1s1s core level spectra of SrTiO3\mathrm{SrTiO}_{3} and TiO2\mathrm{TiO}_{2}Phys. Rev. B 106, 205138 (2022).
  • Okada et al. [1994] K. Okada, T. Uozumi, and A. Kotani, Split-off state formation in the final state of photoemission in Ti compounds, J. Phys. Soc. Jpn. 63, 3176 (1994).
  • Okada and Kotani [1993] K. Okada and A. Kotani, Theory of core level X-ray photoemission and photoabsorption in Ti compounds, J. Electron Spectrosc. Relat. Phenom. 62, 131 (1993).
  • Note [2] Note that in this approximation the Ir 4f7/2f_{7/2} and 4f5/2f_{5/2} are merely shifted and rescaled images of one another due to different energy and degeneracy of the 4f7/2f_{7/2} and 4f5/2f_{5/2} states.
  • van Veenendaal and Sawatzky [1993] M. A. van Veenendaal and G. A. Sawatzky, Nonlocal screening effects in 2pp x-ray photoemission spectroscopy core-level line shapes of transition metal compounds, Phys. Rev. Lett. 70, 2459 (1993).
  • van Veenendaal [2006] M. van Veenendaal, Competition between screening channels in core-level x-ray photoemission as a probe of changes in the ground-state properties of transition-metal compounds, Phys. Rev. B 74, 085118 (2006).
  • Taguchi and Panaccione [2016] M. Taguchi and G. Panaccione, Depth-dependence of electron screening, charge carriers and correlation: Theory and experiments, in Hard X-ray Photoelectron Spectroscopy (HAXPES), edited by J. C. Woicik (Springer International Publishing, Cham, 2016) pp. 197–216.
  • de Groot and Kotani [2014] F. de Groot and A. Kotani, Core Level Spectroscopy of Solids (CRC Press, Boca Raton, FL, 2014).
  • Sangiovanni et al. [2006] G. Sangiovanni, A. Toschi, E. Koch, K. Held, M. Capone, C. Castellani, O. Gunnarsson, S.-K. Mo, J. W. Allen, H.-D. Kim, A. Sekiyama, A. Yamasaki, S. Suga, and P. Metcalf, Static versus dynamical mean-field theory of Mott antiferromagnets, Phys. Rev. B 73, 205121 (2006).
  • Arita et al. [2012] R. Arita, J. Kuneš, A. V. Kozhevnikov, A. G. Eguiluz, and M. Imada, Ab initio Studies on the Interplay between Spin-Orbit Interaction and Coulomb Correlation in Sr2IrO4\mathrm{Sr}_{2}\mathrm{IrO}_{4} and Ba2IrO4\mathrm{Ba}_{2}\mathrm{IrO}_{4}Phys. Rev. Lett. 108, 086403 (2012).
  • Martins et al. [2011] C. Martins, M. Aichhorn, L. Vaugier, and S. Biermann, Reduced Effective Spin-Orbital Degeneracy and Spin-Orbital Ordering in Paramagnetic Transition-Metal Oxides: Sr2IrO4\mathrm{Sr}_{2}\mathrm{IrO}_{4} versus Sr2RhO4\mathrm{Sr}_{2}\mathrm{RhO}_{4}Phys. Rev. Lett. 107, 266404 (2011).
  • Li et al. [2013a] Q. Li, G. Cao, S. Okamoto, J. Yi, W. Lin, B. C. Sales, J. Yan, R. Arita, J. Kuneš, A. V. Kozhevnikov, A. G. Eguiluz, M. Imada, Z. Gai, M. Pan, and D. G. Mandrus, Atomically resolved spectroscopic study of Sr2IrO4: Experiment and theory, Sci. Rep. 3, 3073 (2013a).
  • Lenz et al. [2019] B. Lenz, C. Martins, and S. Biermann, Spectral functions of Sr2IrO4: theory versus experiment, J. Phys. Condens. 31, 293001 (2019).
  • Chikara et al. [2009] S. Chikara, O. Korneta, W. P. Crummett, L. E. DeLong, P. Schlottmann, and G. Cao, Giant magnetoelectric effect in the Jeff=12{J}_{\mathrm{eff}}=\frac{1}{2} Mott insulator Sr2IrO4Phys. Rev. B 80, 140407(R) (2009).
  • Li et al. [2013b] L. Li, P. P. Kong, T. F. Qi, C. Q. Jin, S. J. Yuan, L. E. DeLong, P. Schlottmann, and G. Cao, Tuning the Jeff=12{J}_{\mathrm{eff}}=\frac{1}{2} insulating state via electron doping and pressure in the double-layered iridate Sr3Ir2O7Phys. Rev. B 87, 235127 (2013b).
  • Note [3] In order to assess whether such states can contribute to non-local screening one should look at hybridization function rather than an electronic spectral density.
  • Hariki et al. [2013] A. Hariki, Y. Ichinozuka, and T. Uozumi, Dynamical Mean-Field Approach to Ni 2pp X-ray Photoemission Spectra of NiO: A Role of Antiferromagnetic Ordering, J. Phys. Soc. Jpn. 82, 043710 (2013).
  • Kim et al. [2004] H.-D. Kim, H.-J. Noh, K. H. Kim, and S.-J. Oh, Core-Level X-Ray Photoemission Satellites in Ruthenates: A New Mechanism Revealing The Mott Transition, Phys. Rev. Lett. 93, 126404 (2004).
  • Haverkort et al. [2014] M. W. Haverkort, G. Sangiovanni, P. Hansmann, A. Toschi, Y. Lu, and S. Macke, Bands, resonances, edge singularities and excitons in core level spectroscopy investigated within the dynamical mean-field theory, Europhys. Lett. 108, 57004 (2014).
  • Kundu et al. [2023] A. K. Kundu, P. M. Sheverdyaeva, P. Moras, K. S. R. Menon, S. Mandal, and C. Carbone, Spin Selective Evolution of Zhang-Rice State in Binary Transition Metal Oxide, arXiv e-prints , arXiv:2310.17833 (2023)arXiv:2310.17833 [cond-mat.str-el] .
  • Georges et al. [1996] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys. 68, 13 (1996).
  • Winder et al. [2020] M. Winder, A. Hariki, and J. Kuneš, X-ray spectroscopy of the rare-earth nickelate LuNiO3\mathrm{LuNiO}_{3}: LDA+DMFT\mathrm{LDA}+\mathrm{DMFT} study, Phys. Rev. B 102, 085155 (2020).
  • Blaha et al. [2018] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universitat Wien, Austria, 2001, ISBN 3-9501031-1-2, 2018).
  • Mostofi et al. [2014] A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, An updated version of wannier90: A tool for obtaining maximally-localised wannier functions, Comput. Phys. Commun. 185, 2309 (2014).
  • Kuneš et al. [2010] J. Kuneš, R. Arita, P. Wissgott, A. Toschi, H. Ikeda, and K. Held, Wien2wannier: From linearized augmented plane waves to maximally localized Wannier functions, Comput. Phys. Commun. 181, 1888 (2010).
  • Pavarini et al. [2011] E. Pavarini, E. Koch, A. Lichtenstein, and D. E. Vollhardt, The LDA+DMFT approach to strongly correlated materials, Schriften des Forschungszentrums Jülich : Modeling and Simulation, Vol. 1 (2011) record converted from VDB: 12.11.2012.
  • Pavarini [2014] E. Pavarini, Electronic Structure Calculations with LDA+DMFT, in Many-Electron Approaches in Physics, Chemistry and Mathematics, Mathematical Physics Studies, ISBN 978-3-319-06378-2. Springer International Publishing Switzerland, edited by V. Bach and L. Delle Site (2014) p. 321.
  • Boehnke et al. [2011] L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann, and O. Parcollet, Orthogonal polynomial representation of imaginary-time Green’s functions, Phys. Rev. B 84, 075145 (2011).
  • Hafermann et al. [2012] H. Hafermann, K. R. Patton, and P. Werner, Improved estimators for the self-energy and vertex function in hybridization-expansion continuous-time quantum Monte Carlo simulations, Phys. Rev. B 85, 205106 (2012).
  • Wang et al. [2009] X. Wang, E. Gull, L. de’ Medici, M. Capone, and A. J. Millis, Antiferromagnetism and the gap of a Mott insulator: Results from analytic continuation of the self-energy, Phys. Rev. B 80, 045101 (2009).
  • Zaanen et al. [1986] J. Zaanen, C. Westra, and G. A. Sawatzky, Determination of the electronic structure of transition-metal compounds: 2pp x-ray photoemission spectroscopy of the nickel dihalides, Phys. Rev. B 33, 8060 (1986).
  • Bocquet et al. [1996] A. E. Bocquet, T. Mizokawa, K. Morikawa, A. Fujimori, S. R. Barman, K. Maiti, D. D. Sarma, Y. Tokura, and M. Onoda, Electronic structure of early 3dd-transition-metal oxides by analysis of the 2pp core-level photoemission spectra, Phys. Rev. B 53, 1161 (1996).
  • Bocquet et al. [1992] A. E. Bocquet, T. Mizokawa, T. Saitoh, H. Namatame, and A. Fujimori, Electronic structure of 3dd-transition-metal compounds by analysis of the 2pp core-level photoemission spectra, Phys. Rev. B 46, 3771 (1992).
  • Matsubara et al. [2005] M. Matsubara, T. Uozumi, A. Kotani, and J. Claude Parlebas, Charge Transfer Excitation in Resonant X-ray Emission Spectroscopy of NiO, J. Phys. Soc. Jpn. 74, 2052 (2005).
  • Park et al. [1988] J. Park, S. Ryu, M.-S. Han, and S.-J. Oh, Charge-transfer satellites in the 2pp core-level photoelectron spectra of heavy-transition-metal dihalides, Phys. Rev. B 37, 10867 (1988).