This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

First application of the dispersive optical model to (pp,2p2p) reaction analysis within the distorted-wave impulse approximation framework

K. Yoshida yoshida.kazuki@jaea.go.jp Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan    M. C. Atkinson Theory Group, TRIUMF, vancouver, british columbia V6T 2A3, Canada    K. Ogata Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan Department of Physics, Osaka City University, Osaka 558-8585, Japan Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka City University, Osaka 558-8585, Japan    W. H. Dickhoff Department of Physics, Washington University, St. Louis, Missouri 63130, USA
Abstract
Background

Both (ee,epe^{\prime}p) and (pp,2p2p) reactions have been performed to study the proton single-particle character of nuclear states with its related spectroscopic factor. Recently, the dispersive optical model (DOM) was applied to the (ee,epe^{\prime}p) analysis revealing that the traditional treatment of the single-particle overlap function, distorted waves, and nonlocality must be further improved to achieve quantitative nuclear spectroscopy.

Purpose

We apply the DOM wave functions to the traditional (pp,2p2p) analysis and investigate the consistency of the DOM spectroscopic factor that describes the (ee,epe^{\prime}p) cross section with the result of the (pp,2p2p) analysis. Additionally, we make a comparison with a phenomenological single-particle wave function and optical potential. Uncertainty arising from a choice of pp-pp interaction is also investigated.

Method

We implement the DOM wave functions to the nonrelativistic distorted wave impulse approximation (DWIA) framework for (pp,2p2p) reactions.

Results

DOM + DWIA analysis on 40Ca(pp,2p2p)39K data generates a proton 0d3/20d_{3/2} spectroscopic factor of 0.560, which is meaningfully smaller than the DOM value of 0.71 shown to be consistent with the (ee,epe^{\prime}p) analysis. Uncertainties arising from choices of single-particle wave function, optical potential, and pp-pp interaction do not explain this inconsistency.

Conclusions

The inconsistency in the spectroscopic factor suggests there is urgent need for improving the description of pp-pp scattering in a nucleus and the resulting in-medium interaction with corresponding implications for the analysis of this reaction in inverse kinematics.

preprint: NITEP 119

I Introduction

The independent particle picture provides an excellent first characterization of the structure of a nucleus. An important indicator of this picture is the spectroscopic factor for valence orbitals, which represents the removal probability for each nucleon orbital to a low-lying state of the system with one proton less. The nucleon knockout reaction has been one of the best tools to study this aspect of nuclei. The electron-induced proton knockout reaction, (ee,epe^{\prime}p[1, 2, 3, 4, 5, 6, 7, 8, 9], has been considered the cleanest spectroscopic method for decades. Despite some concerns about the uncertainties associated with proton-induced proton knockout reactions, (pp,2p2p[10, 11, 12, 13, 14, 15, 16, 17], a recent review [16] established (p,2p)(p,2p) as an complementary spectroscopic tool to (ee,epe^{\prime}p) with about 15% uncertainty for incident energy above 200 MeV.

As discussed in Ref. [16], the effect of nonlocality on the distorted waves and the bound-state wave function is considered to be a major source of the theoretical uncertainties in the description of the (pp,2p2p) reactions. Usually, the effect is phenomenologically taken into account by including the Perey factor [18]; the Darwin factor is used when an optical potential based on the Dirac phenomenology [19, 20, 21] is adopted. However, the validity of this phenomenological treatment of nonlocality has not been estimated quantitatively. Recently, a fully nonlocal dispersive optical model (DOM) has been developed [22, 23] extending the original work by Mahaux and Sartor [24]. The DOM describes the nucleon scattering potential and the binding potential that gives single-particle levels on the same footing, making use of a subtracted dispersion relation. The single-particle wave function (SPWF) and its spectroscopic factor as well as the distorted waves obtained by the present DOM framework were applied to the nonrelativistic distorted wave impulse approximation (DWIA) analysis of 40,48Ca(ee,epe^{\prime}p)39,47K reactions [8, 9] without any further adjustment. It was concluded that an accurate treatment of the nonlocality as practised in the DOM is necessary to generate spectroscopic factors that automatically describe the (ee,epe^{\prime}p) knockout cross sections after the DOM potential has been constrained by all available elastic scattering data (up to 200 MeV) and relevant ground-state information.

The finding in Refs. [8, 9] demonstrates the importance of the implementation of the DOM wave functions to the DWIA analysis of (pp,2p2p) processes in which three proton distorted waves are present. Therefore, the use of the DOM wave functions is expected to clarify the role of the effective interaction that is involved in the extraction of spectroscopic factors from (pp,2p2p) data. In this study, we report the first application of such a DWIA analysis with the DOM wave functions to 40Ca(pp,2p2p)39K data at 200 MeV [25].

The organization of this paper is as follows. In Sec. II, we briefly introduce the present DOM + DWIA framework. In Sec. III, a theoretical analysis of 40Ca(pp,2p2p)39K data and the consistency between DOM proton spectroscopic factors that automatically describe (e,ep)(e,e^{\prime}p) cross sections and those obtained from (pp,2p2p) analyses are discussed. We also compare the present framework with a conventional DWIA analysis employing a phenomenological SPWF and optical potentials. Finally, a summary is given in Sec. IV.

II Theoretical framework

II.1 Distorted wave impulse approximation

In the present study, the factorized form of the nonrelativistic DWIA with the spin degrees of freedom is employed. The transition matrix TT within the distorted wave impulse approximation framework is given by

Tμ1μ2μ0μj\displaystyle T_{\mu_{1}\mu_{2}\mu_{0}\mu_{j}} =μ1μ2μ0μpt~μ1μ2μ0μp𝑑𝑹χ1,μ1μ1()(𝑹)χ2,μ2μ2()(𝑹)χ0,μ0μ0(+)(𝑹)eiαR𝑲0𝑹m(lmspμp|jμj)ψljmn(𝑹).\displaystyle=\sum_{\mu^{\prime}_{1}\mu^{\prime}_{2}\mu^{\prime}_{0}\mu_{p}}\tilde{t}_{\mu^{\prime}_{1}\mu^{\prime}_{2}\mu^{\prime}_{0}\mu_{p}}\int d\bm{R}\,\chi_{1,\mu^{\prime}_{1}\mu_{1}}^{(-)*}(\bm{R})\chi_{2,\mu^{\prime}_{2}\mu_{2}}^{(-)*}(\bm{R})\chi_{0,\mu^{\prime}_{0}\mu_{0}}^{(+)}(\bm{R})e^{-i\alpha_{R}\bm{K}_{0}\cdot\bm{R}}\sum_{m}\left(lms_{p}\mu_{p}|j\mu_{j}\right)\psi^{n}_{ljm}(\bm{R}). (1)

The incident and two emitted protons are labeled as particle 022, while the bound proton in the initial state is labeled as pp. χi,μiμi\chi_{i,\mu^{\prime}_{i}\mu_{i}} is a distorted wave of particle i=0,1,2i=0,1,2 having the asymptotic (local) third component μi\mu_{i} (μi\mu^{\prime}_{i}) of its spin si=1/2s_{i}=1/2. The outgoing and incoming boundary conditions of the distorted waves are denoted by superscripts (+)(+) and ()(-), respectively. 𝑲0\bm{K}_{0} is the momentum (wavenumber) of the incident proton and αR\alpha_{R} is the mass ratio of the struck particle and the target, 1/401/40 in this study. nn is the radial quantum number, and l,j,ml,j,m are the single-particle orbital angular momentum, total angular momentum, and third component of ll, respectively. ψljmn\psi^{n}_{ljm} is the SPWF normalized to unity. t~μ1μ2μ0μp\tilde{t}_{\mu^{\prime}_{1}\mu^{\prime}_{2}\mu^{\prime}_{0}\mu_{p}} is the matrix element of the pp-pp effective interaction tppt_{pp},

t~μ1μ2μ0μp\displaystyle\tilde{t}_{\mu^{\prime}_{1}\mu^{\prime}_{2}\mu^{\prime}_{0}\mu_{p}} =𝜿,μ1μ2|tpp|𝜿,μ0μp,\displaystyle=\Braket{\bm{\kappa}^{\prime},\mu^{\prime}_{1}\mu^{\prime}_{2}}{t_{pp}}{\bm{\kappa},\mu^{\prime}_{0}\mu_{p}}, (2)

where 𝜿\bm{\kappa} and 𝜿\bm{\kappa}^{\prime} are relative momenta of two protons in the initial and the final states, respectively. The factorization procedure of tppt_{pp} is explained using the local semiclassical approximation (LSCA) and the asymptotic momentum approximation (AMA) in the appendix. It should be noted that the factorized DWIA is often regarded as a result of the zero-range approximation but tppt_{pp} is finite-range interaction in the present study.

The triple differential cross section (TDX) with respect to the emitted proton energy T1LT_{1}^{\mathrm{L}} and emission angles Ω1L\Omega_{1}^{\mathrm{L}} and Ω2L\Omega_{2}^{\mathrm{L}} is given as

d3σLdT1LdΩ1LdΩ2L\displaystyle\frac{d^{3}\sigma^{\mathrm{L}}}{dT_{1}^{\mathrm{L}}d\Omega_{1}^{\mathrm{L}}d\Omega_{2}^{\mathrm{L}}} =𝒵ljn𝒥LGFkin(2π)4vα1(2s0+1)(2j+1)\displaystyle=\mathcal{Z}^{n}_{lj}\mathcal{J}_{\mathrm{LG}}F_{\mathrm{kin}}\frac{(2\pi)^{4}}{\hbar v_{\alpha}}\frac{1}{(2s_{0}+1)(2j+1)}
×μ1μ2μ0μj|Tμ1μ2μ0μj|2,\displaystyle\times\sum_{\mu_{1}\mu_{2}\mu_{0}\mu_{j}}\left|T_{\mu_{1}\mu_{2}\mu_{0}\mu_{j}}\right|^{2}, (3)

with 𝒵ljn\mathcal{Z}^{n}_{lj}, 𝒥LG\mathcal{J}_{\mathrm{LG}}, FkinF_{\mathrm{kin}}, vαv_{\alpha} being the spectroscopic factor, the Jacobian from the center-of-mass frame to the Laboratory frame, kinetic factor, and the relative velocity of the incident proton and the target, respectively. Quantities with superscript L\mathrm{L} are evaluated in the laboratory frame while the others are in the center-of-mass frame. See Sec. 3.1 of Ref. [16] for details.

II.2 Dispersive optical model

The distorted waves and SPWF in Eq. (1) as well as the spectroscopic factor in Eq. (3) are calculated using the DOM. The nonlocal DOM uses both bound and scattering data to constrain the nucleon self-energy Σ\Sigma^{*} for a given nucleus. This self-energy is a complex and nonlocal potential that unites the nuclear structure and reaction domains [24, 22]. The DOM was originally developed by Mahaux and Sartor [24], employing local real and imaginary potentials connected through dispersion relations. However, only with the introduction of nonlocality can realistic self-energies be obtained [22, 23, 26, 27, 28]. The Dyson equation then determines the single-particle propagator, or Green’s function, from which bound-state and scattering observables can be deduced.

Using the DOM self-energy, a Schrödinger-like equation can be generated to calculate the SPWF in Eq. (1),

γα|T+Σj(E)|γψjn(γ)=εnψjn(α),\displaystyle\sum_{\gamma}\bra{\alpha}T_{\ell}+\Sigma^{*}_{\ell j}(E)\ket{\gamma}\psi_{\ell j}^{n}(\gamma)=\varepsilon_{n}^{-}\psi_{\ell j}^{n}(\alpha), (4)

where α\alpha and γ\gamma are arbitrary basis variables, j\ell j correspond to the orbital and total angular momentum of the orbital, nn is the principle quantum number of the orbital, and α|T|γ\bra{\alpha}T_{\ell}\ket{\gamma} is the kinetic-energy matrix element, including the centrifugal term [8]. These wave functions correspond to overlap functions

ψjn(α)=ΨnA1|aαj|Ψ0A,εn=E0AEnA1.\psi^{n}_{\ell j}(\alpha)=\bra{\Psi_{n}^{A-1}}a_{\alpha\ell j}\ket{\Psi_{0}^{A}},\qquad\varepsilon_{n}^{-}=E_{0}^{A}-E_{n}^{A-1}. (5)

Such discrete solutions to Eq. (4) exist where there is no imaginary part of the self-energy, so near the Fermi energy. The normalization for these wave functions corresponds to the same spectroscopic factor of Eq. (3), which is given by [29]

𝒵jn=(1Σj(αqh,αqh;E)E|εn)1,\mathcal{Z}^{n}_{\ell j}=\bigg{(}1-\frac{\partial\Sigma_{\ell j}^{*}(\alpha_{qh},\alpha_{qh};E)}{\partial E}\bigg{|}_{\varepsilon_{n}^{-}}\bigg{)}^{-1}, (6)

where αqh\alpha_{qh} represents the quasihole state that solves Eq. (4). Note that because of the presence of imaginary parts of the self-energy at other energies, there is also strength located there, and thus the spectroscopic factor will be less than 1 and also less than the occupation probability. The DOM self-energies of 40Ca and 48Ca were used in Refs. [8, 30, 9] to reproduce 40Ca(e,ep)39(e,e^{\prime}p)^{39}K and 48Ca(e,ep)47(e,e^{\prime}p)^{47}K momentum distributions, respectively. The corresponding 40Ca spectroscopic factor of 𝒵0d3/2DOM=0.71±0.04\mathcal{Z}_{0d_{3/2}}^{\mathrm{DOM}}=0.71\pm 0.04, which is consistent with 40Ca(e,ep)39(e,e^{\prime}p)^{39}K data, will now be used alongside the DOM SPWF and distorted waves to analyze the 40Ca(p,2p)39(p,2p)^{39}K knockout reaction.

III Results and discussion

In this section, we discuss extracted spectroscopic factors from the 40Ca(p,2p)39(p,2p)^{39}K reaction in comparison with the DOM result that is consistent with the 40Ca(e,ep)39(e,e^{\prime}p)^{39}K data. We also address uncertainties arising from the choice of the optical potential and the effective pp-pp interaction. The theoretical knockout cross section is calculated using the DWIA framework with the DOM SPWF and distorted waves. Results using phenomenological inputs are also discussed for comparison.

The spectroscopic factor of 0d3/20d_{3/2} is extracted from the ratio of the theoretical cross section and the experimental data of the 40Ca(pp,2p2p)39K reaction at 197 MeV. The reaction kinematics is in a coplanar kinematics and the opening angles of the emitted protons are fixed at the same angle: ϕ1L=0\phi_{1}^{\mathrm{L}}=0^{\circ}, ϕ2L=180\phi_{2}^{\mathrm{L}}=180^{\circ}, and θ1L=θ2L=42.0\theta_{1}^{\mathrm{L}}=\theta_{2}^{\mathrm{L}}=42.0^{\circ} in the Madison convention [31]. The kinematics of the three particles is then uniquely determined once T1LT_{1}^{\mathrm{L}} is given.

The DOM-DWIA result is compared with those of the phenomenological SPWF and the optical potential in Fig 1. For this comparison, the DOM-DWIA cross section is adjusted to the data and the DOM spectroscopic factor was not utilized. The phenomenological SPWF suggested by Kramer et al. [7], the Koning-Delaroche optical potential parameter set (KD) [32], and the Dirac phenomenology (DP) [19, 20, 21] are also considered. Calculated TDXs and the experimental data are shown in Fig. 1. Spectroscopic factors are therefore extracted from the ratio of the present calculations and the experimental data taken by the E258 experiment at RCNP [25] by minimizing

χ2(𝒵0d3/2)\displaystyle\chi^{2}(\mathcal{Z}_{0d_{3/2}}) =i(𝒵0d3/2σiDWIAσi)2δi2.\displaystyle=\sum_{i}\frac{\left(\mathcal{Z}_{0d_{3/2}}\sigma_{i}^{\textrm{DWIA}}-\sigma_{i}\right)^{2}}{\delta_{i}^{2}}. (7)

σiDWIA\sigma_{i}^{\textrm{DWIA}} and σi\sigma_{i} are theoretical and experimental cross sections at data points, respectively, and δi\delta_{i} is associated error of the experimental data. Obtained spectroscopic factors are summarized in Table 1. Following Ref. [16], only the data points around the peak, larger than 25μ25~{}\mub/(MeV sr2), are fitted to reduce the uncertainty.

Refer to caption
Figure 1: TDX with different optical potentials. The solid, dashed, and dotted lines are TDXs with the Koning-Delaroche optical potential (KD) and Dirac phenomenology (DP), respectively. The result with DOM ingredients is also shown as the dot-dashed line. All results reflect cross sections that are normalized with the spectroscopic factors shown in Table 1. The experimental data taken by the E258 experiment at RCNP [25] are also shown.
Table 1: Setup and resulting spectroscopic factors.
SPWF Optical pot. pp-pp int. 𝒵0d3/2\mathcal{Z}_{0d_{3/2}}
Kramer KD FL 0.623±0.0060.623\pm 0.006
Kramer Dirac FL 0.672±0.0060.672\pm 0.006
DOM DOM FL 0.560±0.0050.560\pm 0.005
DOM DOM Mel 0.489±0.0050.489\pm 0.005
DOM DOM Mel (free) 0.515±0.0050.515\pm 0.005

The spectroscopic factors obtained from the phenomenological (pp,2p2p) analysis are consistent with the phenomenological (ee,epe^{\prime}p) analysis which gave 0.65±0.060.65\pm 0.06 [8]. On the other hand, the spectroscopic factor obtained using the DOM wave functions to reproduce the (pp,2p2p) cross section is in disagreement with the DOM-calculated [using Eq. (6)] value of 0.71±0.040.71\pm 0.04. One of the reasons for this inconsistency may lie in a difference in the peripherality of the reaction probes, but it is not yet well understood.

The importance of having to deal with three distorted proton waves in the (pp,2p2p) reaction as compared to just one in the (ee,epe^{\prime}p) case remains an issue. There is an uncertainty associated with the DOM distorted waves due to the experimental data points used in the DOM fit. Considering the strong correlation between the proton reaction cross section and the 48Ca(e,ep)47(e,e^{\prime}p)^{47}K cross section demonstrated in Ref. [9], we look to uncertainties in the experimental proton reaction cross section data points in energy regions corresponding to those of the distorted proton waves to get a rough estimate of the uncertainty associated with the DOM distorted waves. The proton reaction cross-section data points from Refs. [33, 34] suggest an uncertainty in the corresponding DOM distorted waves around 3%. Furthermore, due to the kinematics of the reaction, one of the proton energies is as low as 36 MeV. In the DOM analysis of 40Ca(e,ep)39(e,e^{\prime}p)^{39}K, the description of the experimental cross section for outgoing proton energies of 70 MeV, the lowest of the considered proton energies, is unsatisfactory [8]. This indicates that the impulse approximation may not be applicable at proton energies of 70 MeV and below. Since one of the outgoing proton energies in this 40Ca(p,2p)39(p,2p)^{39}K reaction is even less than 70 MeV, it is reasonable to expect some discrepancy in the 40Ca(p,2p)39(p,2p)^{39}K TDX. This discrepancy may be reduced when higher proton beam energies are considered but this implies that the DOM analysis has to be extended to higher energies.

As a further step to clarify this issue, we also investigated the uncertainty arising from a different choice of the pp-pp effective interactions. Three different types of the pp-pp effective interactions, the Franey-Love effective interaction (FL) [35], the Melbourne gg-matrix interaction at mean density (Mel) [36], and that at zero density (Mel free) were utilized. The mean density of the reaction is defined in Sec. 6.1. of Ref. [16]. The SPWF and the distorted waves from the DOM are adopted in this analysis. The choice of the pp-pp effective interaction only changes the magnitude of the TDX, keeping their shapes unchanged as shown in Fig. 2.

Refer to caption
Figure 2: TDX with different pp-pp effective interactions. The solid, dashed, and dotted lines are TDXs with the Franey-Love effective interaction [35] (FL), Melbourne gg-matrix interaction at mean density [36] (Mel), and that at zero density (Mel free), respectively. The experimental data are the same as in Fig. 1.

Extracted spectroscopic factors are summarized in Table. 1. An uncertainty of the choice of the pp-pp effective interaction results in 𝒵0d3/2=0.489\mathcal{Z}_{0d_{3/2}}=0.4890.5600.560 and does not explain the inconsistency between the DOM (pp,2p2p) result and the successful DOM description of the (ee,epe^{\prime}p) cross section [8].

Validity of the finite-range treatment of tppt_{pp} and factorization approximation as well as the nonlocality correction and the relativistic correction in nonrelativistic DWIA have been discussed for decades [37, 38, 39, 40]. They make certain change in the cross section, but it is still not quantitatively conclusive. In Ref. [41], it is reported that TDX with AMA only differs 6% of that with LSCA in 120Sn(pp,pαp\alpha)116Cd reaction case. Considering this situation, it is very important that we obtained good agreement in spectroscopic factors deduced from phenomenological (ee,epe^{\prime}p) and (pp,2p2p) analyses before discussing DOM + DWIA analysis. It should be noted that the finite-range treatment of tppt_{pp} is more crucial in the relativistic DWIA framework, as pointed out in Ref. [42].

Ideally, the spectroscopic factor should not depend on the reactions to be adopted. As shown in Ref. [16], the spectroscopic factors for the SP levels near the Fermi energies of stable nuclei extracted from (p,2pp,2p) reactions above 200 MeV are consistent with those from (e,epe,e^{\prime}p) with uncertainties ranging from 10% to 15%. It should be noted that the nonlocality correction to the SPWF and distorted waves are considered to be a primary source of the uncertainties of the spectroscopic factor [16]. As mentioned above, 𝒵0d3/2\mathcal{Z}_{0d_{3/2}} obtained with the DOM-DWIA analysis of the 40Ca(p,2pp,2p) data at 200 MeV, in which the nonlocality is treated in a sophisticated manner, differs by at least 21% from the value used to reproduce (e,ep)(e,e^{\prime}p) data using the same SPWF and proton distorted wave calculated with the DOM. This implies the necessity of improving the treatment of pp-pp scattering inside a nucleus beyond the standard tt- or gg-matrix approach. One immediate concern is that present treatments of the effective interaction do not allow for energy transfer in the elementary process. Since in the (p,2pp,2p) reaction a substantial excitation energy is involved, it implies that the mediators of the strong interaction, in particular the pion, must be allowed to propagate in the system and are certainly not static [43].

The ability of the DOM to provide both bound and scattering nucleon wave functions is opening a door to a new research opportunity for the nucleon-nucleon scattering process in many-body systems. This is of particular importance as the (p,2pp,2p) reaction can be employed in inverse kinematics [44, 45]. There is therefore a clear need to pursue an improved description of the effective interaction in the medium which will also depend on the nucleon asymmetry that is studied in exotic systems.

IV Summary

The DOM SPWF and distorted waves have been applied to the DWIA analysis of (pp,2p2p) reaction for the first time. The proton 0d3/20d_{3/2} spectroscopic factor 𝒵0d3/2=0.56±0.005\mathcal{Z}_{0d_{3/2}}=0.56\pm 0.005 of 40Ca was extracted from 40Ca(pp,2p2p)39K analysis with the present framework. The obtained spectroscopic factor is inconsistent with the DOM supplied one that reproduces 40Ca(ee,epe^{\prime}p)39K data, 0.71±0.040.71\pm 0.04. We tested several types of input for the pp-pp effective interaction: the Franey-Love interaction, the Melbourne gg-matrix at mean density, and that at zero density. In addition to using the DOM wave functions, Kramer’s SPWF and distorted waves obtained by the Koning-Delaroche and Dirac phenomenology optical potentials were considered. We conclude from the present analysis that the gap between the above-mentioned (pp,2p2p) and (ee,epe^{\prime}p) spectroscopic factors cannot be explained by the uncertainties arising from these inputs. This result implies there is room for improving the treatment of the pp-pp binary scattering beyond the traditional tt- and gg-matrix approach combined with the impulse approximation.

ACKNOWLEDGMENTS

The authors thank T. Noro for providing them with updated experimental data before publication. This work was supported by JSPS KAKENHI Grant No. JP20K14475. This work was also supported by the U.S. National Science Foundation under Grant No. PHY-1912643. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.

*

Appendix A Factorization of TT matrix

In this appendix, the factorization procedure of the TT matrix is explained by means of the LSCA, following previous research [46, 47, 48, 49]. Equation (1) is originally an integral over two coordinates 𝑹\bm{R} and 𝒔\bm{s}:

Tμ1μ2μ0μj\displaystyle T_{\mu_{1}\mu_{2}\mu_{0}\mu_{j}} =μ1μ2μ0μp𝑑𝑹𝑑𝒔χ1,μ1μ1()(𝑹1)χ2,μ2μ2()(𝑹2)tpp(𝒔)[1P]χ0,μ0μ0(+)(𝑹0)m(lmspμp|jμj)ψljmn(𝑹2).\displaystyle=\sum_{\mu^{\prime}_{1}\mu^{\prime}_{2}\mu^{\prime}_{0}\mu_{p}}\int d\bm{R}\,d\bm{s}\,\chi_{1,\mu^{\prime}_{1}\mu_{1}}^{(-)*}(\bm{R}_{1})\chi_{2,\mu^{\prime}_{2}\mu_{2}}^{(-)*}(\bm{R}_{2})t_{pp}(\bm{s})[1-P]\chi_{0,\mu^{\prime}_{0}\mu_{0}}^{(+)}(\bm{R}_{0})\sum_{m}\left(lms_{p}\mu_{p}|j\mu_{j}\right)\psi^{n}_{ljm}(\bm{R}_{2}). (8)

𝑹\bm{R}, 𝒔\bm{s}, 𝑹0\bm{R}_{0}, 𝑹1\bm{R}_{1}, and 𝑹2\bm{R}_{2} are defined as shown in Fig. 3. tpp(𝒔)t_{pp}(\bm{s}) is a pp-pp effective interaction and PP is the exchange operator for the colliding two protons; thus, as usual, both the direct and exchange terms are considered. 𝑹\bm{R}, 𝒔\bm{s}, 𝑹0\bm{R}_{0}, 𝑹1\bm{R}_{1}, and 𝑹2\bm{R}_{2} are rewritten in terms of 𝑹\bm{R} and 𝒔\bm{s} as

𝑹0\displaystyle\bm{R}_{0} =(1αR)𝑹+A+12A𝒔,\displaystyle=\left(1-\alpha_{R}\right)\bm{R}+\frac{A+1}{2A}\bm{s}, (9)
𝑹1\displaystyle\bm{R}_{1} =𝑹+12𝒔,\displaystyle=\bm{R}+\frac{1}{2}\bm{s}, (10)
𝑹2\displaystyle\bm{R}_{2} =𝑹12𝒔.\displaystyle=\bm{R}-\frac{1}{2}\bm{s}. (11)

The nucleon and the target mass number are 1 and AA, respectively.

Refer to caption
Figure 3: Coordinate of the (pp,2p2p) three-body system.

The factorization of the pp-pp tt-matrix is done by considering three approximations as follows. First, for a short distance Δ𝑹\Delta\bm{R}, the local semiclassical approximation (LSCA) [46, 47, 48, 49] can be applied to the distorted waves:

χ(𝑹+Δ𝑹)\displaystyle\chi(\bm{R}+\Delta\bm{R}) χ(𝑹)ei𝑲(𝑹)Δ𝑹.\displaystyle\approx\chi(\bm{R})e^{i\bm{K}(\bm{R})\cdot\Delta\bm{R}}. (12)

𝑲(𝑹)\bm{K}(\bm{R}) is the local momentum of the scattering particle at 𝑹\bm{R}. Further approximation is made by replacing the local momentum 𝑲(𝑹)\bm{K}(\bm{R}) with its asymptotic one 𝑲\bm{K}. This is called the asymptotic momentum approximation (AMA) In Ref. [49], in which the AMA was referred to as LSCA-A, the AMA was shown to work with almost the same accuracy as of LSCA for a short propagation of the distorted waves of about 1.5 fm. It should be noted that for the factorization of the pp-pp transition matrix, the propagation range of about the half the range of tpp(𝒔)t_{pp}(\bm{s}) needs to be approximated. According to the result of Ref. [49], both the LSCA and AMA are expected to be sufficiently accurate for this purpose. Furthermore, it is reported in Ref. [41] that the knockout cross section with AMA differs only 6%\sim 6\% from that with LSCA in 120Sn(pp,pαp\alpha)116Cd reaction at 392 MeV.

Thus, the AMA (and the LSCA as well) can safely be applied to the distorted waves in Eq. (8), which reads

χ0,μ0μ0(+)(𝑹0)\displaystyle\chi_{0,\mu^{\prime}_{0}\mu_{0}}^{(+)}(\bm{R}_{0})\approx χ0,μ0μ0(+)(𝑹)eαR𝑲0𝑹\displaystyle\chi_{0,\mu^{\prime}_{0}\mu_{0}}^{(+)}(\bm{R})e^{-\alpha_{R}\bm{K}_{0}\cdot\bm{R}}
×ei(A+1)𝑲0𝒔/2A,\displaystyle\times e^{i(A+1)\bm{K}_{0}\cdot\bm{s}/2A}, (13)
χ1,μ1μ1()(𝑹1)\displaystyle\chi_{1,\mu^{\prime}_{1}\mu_{1}}^{(-)*}(\bm{R}_{1})\approx χ1,μ1μ1()(𝑹)ei𝑲1𝒔/2,\displaystyle\chi_{1,\mu^{\prime}_{1}\mu_{1}}^{(-)*}(\bm{R})e^{i\bm{K}_{1}\cdot\bm{s}/2}, (14)
χ2,μ2μ2()(𝑹2)\displaystyle\chi_{2,\mu^{\prime}_{2}\mu_{2}}^{(-)*}(\bm{R}_{2})\approx χ2,μ2μ2()(𝑹)ei𝑲2𝒔/2,\displaystyle\chi_{2,\mu^{\prime}_{2}\mu_{2}}^{(-)*}(\bm{R})e^{-i\bm{K}_{2}\cdot\bm{s}/2}, (15)

with 𝑲i\bm{K}_{i} (i=0,1,2i=0,1,2) being the asymptotic momenta of particle ii. Note that in Eq. (A), we have also used the fact that αR\alpha_{R} is small. As for the single-particle wave function, the Fourier transformation is applied to factorize out the 𝒔\bm{s} dependence

ψljmn(𝑹2)\displaystyle\psi^{n}_{ljm}(\bm{R}_{2}) =1(2π)3𝑑𝑲Nψ~ljmn(𝑲N)ei𝑲N𝑹2\displaystyle=\frac{1}{(2\pi)^{3}}\int d\bm{K}_{N}\,\tilde{\psi}^{n}_{ljm}(\bm{K}_{N})e^{i\bm{K}_{N}\cdot\bm{R}_{2}}
=1(2π)3𝑑𝑲Nψ~ljmn(𝑲N)ei𝑲N(𝑹𝒔/2).\displaystyle=\frac{1}{(2\pi)^{3}}\int d\bm{K}_{N}\,\tilde{\psi}^{n}_{ljm}(\bm{K}_{N})e^{i\bm{K}_{N}\cdot(\bm{R}-\bm{s}/2)}. (16)

The second approximation is to assume the quasi-free pp-pp collision in the (pp,2p2p) reaction. Although the distorted waves are not eigenstates of momenta, the initial (final) pp-pp relative momentum 𝜿\bm{\kappa} (𝜿\bm{\kappa}^{\prime}) relevant to the (pp,2p2p) reaction are approximately given by the asymptotic momenta 𝑲i\bm{K}_{i} as

𝜿\displaystyle\bm{\kappa} A+12A𝑲012𝑲N\displaystyle\approx\frac{A+1}{2A}\bm{K}_{0}-\frac{1}{2}\bm{K}_{N} (17)
𝜿\displaystyle\bm{\kappa}^{\prime} 12𝑲112𝑲2.\displaystyle\approx\frac{1}{2}\bm{K}_{1}-\frac{1}{2}\bm{K}_{2}. (18)

It should be noted that this is a natural outcome of the use of the AMA mentioned above. Similarly, as the last approximation, the momentum conservation of the pp-pp collision is assumed:

A+1A𝑲0+𝑲N𝑲1+𝑲2.\displaystyle\frac{A+1}{A}\bm{K}_{0}+\bm{K}_{N}\approx\bm{K}_{1}+\bm{K}_{2}. (19)

Again, the appearance of the asymptotic momenta in Eq. (19) is due to the use of the AMA.

Under these approximations, once the (pp,2p2p) kinematics is fixed, 𝑲N\bm{K}_{N} and 𝜿\bm{\kappa} are uniquely determined by 𝑲0\bm{K}_{0}, 𝑲1\bm{K}_{1} and 𝑲2\bm{K}_{2}. Inserting Eqs. (A)–(16) into Eq. (8) and applying the inverse Fourier transform of ψ~nlmn(𝑲N)\tilde{\psi}_{nlm}^{n}(\bm{K}_{N}), one obtains the factorized form of the TT matrix

Tμ1μ2μ0μj=\displaystyle T_{\mu_{1}\mu_{2}\mu_{0}\mu_{j}}= μ1μ2μ0μp𝑑𝒔ei𝜿𝒔tpp(𝒔)[1P]ei𝜿𝒔𝑑𝑹χ1,μ1μ1()(𝑹)χ2,μ2μ2()(𝑹)χ0,μ0μ0(+)(𝑹)eiαR𝑲0𝑹m(lmspμp|jμj)ψljmn(𝑹).\displaystyle\sum_{\mu^{\prime}_{1}\mu^{\prime}_{2}\mu^{\prime}_{0}\mu_{p}}\int d\bm{s}\,e^{-i\bm{\kappa}^{\prime}\cdot\bm{s}}t_{pp}(\bm{s})[1-P]e^{i\bm{\kappa}\cdot\bm{s}}\int d\bm{R}\,\chi_{1,\mu^{\prime}_{1}\mu_{1}}^{(-)*}(\bm{R})\chi_{2,\mu^{\prime}_{2}\mu_{2}}^{(-)*}(\bm{R})\chi_{0,\mu^{\prime}_{0}\mu_{0}}^{(+)}(\bm{R})e^{-i\alpha_{\mathrm{R}}\bm{K}_{0}\cdot\bm{R}}\sum_{m}\left(lms_{p}\mu_{p}|j\mu_{j}\right)\psi^{n}_{ljm}(\bm{R}). (20)

This is equivalent to Eqs. (1) and (2), if one takes account of the spin degrees of freedom in the pp-pp tt matrix.

References

  • Steenhoven et al. [1988] G. V. D. Steenhoven, H. Blok, E. Jans, M. D. Jong, L. Lapikás, E. Quint, and P. K. A. de Witt Huberts, Knockout of 1p1p protons from 12C induced by the (ee,epe^{\prime}p) reaction, Nuclear Physics A 480, 547 (1988).
  • den Herder et al. [1988] J. den Herder, H. Blok, E. Jans, P. Keizer, L. Lapikás, E. Quint, G. van der Steenhoven, and P. K. A. de Witt Huberts, Single-particle properties of 51V and 90Zr studied with the (ee,epe^{\prime}p) reaction, Nuclear Physics A 490, 507 (1988).
  • Kramer et al. [1989] G. J. Kramer, H. P. Blok, J. F. J. Van Den Brand, H. J. Bulten, R. Ent, E. Jans, J. B. J. M. Lanen, L. Lapikás, H. Nann, E. N. M. Quint, G. Van Der Steenhoven, P. K. A. De Witt Huberts, and G. J. Wagner, Proton ground-state correlations in 40Ca studied with the reaction 40Ca(ee,epe^{\prime}p)39K, Physics Letters B 227, 199 (1989).
  • de Witt Huberts [1990] P. K. A. de Witt Huberts, Proton spectral functions and momentum distributions in nuclei from high-resolution (ee,e'pe{\textquotesingle}p) experiments, Journal of Physics G: Nuclear and Particle Physics 16, 507 (1990).
  • Lapikás [1993] L. Lapikás, Quasi-elastic electron scattering off nuclei, Nuclear Physics A 553, 297 (1993).
  • Pandharipande et al. [1997] V. R. Pandharipande, I. Sick, and P. K. A. de Witt Huberts, Independent particle motion and correlations in fermion systems, Rev. Mod. Phys. 69, 981 (1997).
  • Kramer et al. [2001] G. Kramer, H. Blok, and L. Lapikás, A consistent analysis of (ee,epe^{\prime}p) and (dd,3He) experiments, Nuclear Physics A 679, 267 (2001).
  • Atkinson et al. [2018] M. C. Atkinson, H. P. Blok, L. Lapikás, R. J. Charity, and W. H. Dickhoff, Validity of the distorted-wave impulse-approximation description of Ca40(e,ep)39K{}^{40}\mathrm{Ca}(e,e^{\prime}p)^{39}\mathrm{K} data using only ingredients from a nonlocal dispersive optical model, Phys. Rev. C 98, 044627 (2018).
  • Atkinson and Dickhoff [2019] M. C. Atkinson and W. H. Dickhoff, Investigating the link between proton reaction cross sections and the quenching of proton spectroscopic factors in 48Ca, Physics Letters B 798, 135027 (2019).
  • Jacob and Maris [1966] G. Jacob and T. A. J. Maris, Quasi-free scattering and nuclear structure, Rev. Mod. Phys. 38, 121 (1966).
  • Jacob and Maris [1973] G. Jacob and T. A. J. Maris, Quasi-free scattering and nuclear structure. ii., Rev. Mod. Phys. 45, 6 (1973).
  • Chant and Roos [1977] N. S. Chant and P. G. Roos, Distorted-wave impulse-approximation calculations for quasifree cluster knockout reactions, Phys. Rev. C 15, 57 (1977).
  • Chant and Roos [1983] N. S. Chant and P. G. Roos, Spin orbit effects in quasifree knockout reactions, Phys. Rev. C 27, 1060 (1983).
  • Samanta et al. [1986] C. Samanta, N. S. Chant, P. G. Roos, A. Nadasen, J. Wesick, and A. A. Cowley, Tests of the factorized distorted wave impulse approximation for (pp,2p2p) reactions, Phys. Rev. C 34, 1610 (1986).
  • Cowley et al. [1991] A. A. Cowley, J. J. Lawrie, G. C. Hillhouse, D. M. Whittal, S. V. Förtsch, J. V. Pilcher, F. D. Smit, and P. G. Roos, Quasifree knockout in 16O(pp,2p2p)15N at an incident energy of 151 MeV, Phys. Rev. C 44, 329 (1991).
  • Wakasa et al. [2017] T. Wakasa, K. Ogata, and T. Noro, Proton-induced knockout reactions with polarized and unpolarized beams, Progress in Particle and Nuclear Physics 96, 32 (2017).
  • Aumann et al. [2021] T. Aumann, C. Barbieri, D. Bazin, C. A. Bertulani, A. Bonaccorso, W. H. Dickhoff, A. Gade, M. Gómez-Ramos, B. P. Kay, A. M. Moro, T. Nakamura, A. Obertelli, K. Ogata, S. Paschalis, and T. Uesaka, Quenching of single-particle strength from direct reactions with stable and rare-isotope beams, Progress in Particle and Nuclear Physics 118, 103847 (2021).
  • Perey and Buck [1962] F. Perey and B. Buck, A non-local potential model for the scattering of neutrons by nuclei, Nuclear Physics 32, 353 (1962).
  • Hama et al. [1990] S. Hama, B. C. Clark, E. D. Cooper, H. S. Sherif, and R. L. Mercer, Global Dirac optical potentials for elastic proton scattering from heavy nuclei, Phys. Rev. C 41, 2737 (1990).
  • Cooper et al. [1993] E. D. Cooper, S. Hama, B. C. Clark, and R. L. Mercer, Global Dirac phenomenology for proton-nucleus elastic scattering, Phys. Rev. C 47, 297 (1993).
  • Cooper et al. [2009] E. D. Cooper, S. Hama, and B. C. Clark, Global dirac optical potential from helium to lead, Phys. Rev. C 80, 034605 (2009).
  • Mahzoon et al. [2014] M. H. Mahzoon, R. J. Charity, W. H. Dickhoff, H. Dussan, and S. J. Waldecker, Forging the link between nuclear reactions and nuclear structure, Phys. Rev. Lett. 112, 162503 (2014).
  • Dickhoff et al. [2017] W. H. Dickhoff, R. J. Charity, and M. H. Mahzoon, Novel applications of the dispersive optical model, J. of Phys. G: Nucl. and Part. Phys. 44, 033001 (2017).
  • Mahaux and Sartor [1991] C. Mahaux and R. Sartor, Single-particle motion in nuclei, in Advances in Nuclear Physics, edited by J. W. Negele and E. Vogt (Springer US, Boston, MA, 1991) pp. 1–223.
  • Noro [2020] T. Noro, private communication. (2020).
  • Atkinson et al. [2020] M. C. Atkinson, M. H. Mahzoon, M. A. Keim, B. A. Bordelon, C. D. Pruitt, R. J. Charity, and W. H. Dickhoff, Dispersive optical model analysis of Pb208{}^{208}\mathrm{Pb} generating a neutron-skin prediction beyond the mean field, Phys. Rev. C 101, 044303 (2020).
  • Pruitt et al. [2020a] C. D. Pruitt, R. J. Charity, L. G. Sobotka, M. C. Atkinson, and W. H. Dickhoff, Systematic matter and binding-energy distributions from a dispersive optical model analysis, Phys. Rev. Lett. 125, 102501 (2020a).
  • Pruitt et al. [2020b] C. D. Pruitt, R. J. Charity, L. G. Sobotka, J. M. Elson, D. E. M. Hoff, K. W. Brown, M. C. Atkinson, W. H. Dickhoff, H. Y. Lee, M. Devlin, N. Fotiades, and S. Mosby, Isotopically resolved neutron total cross sections at intermediate energies, Phys. Rev. C 102, 034601 (2020b).
  • Dickhoff and Van Neck [2008] W. H. Dickhoff and D. Van Neck, Many-Body Theory Exposed!, 2nd edition (World Scientific, Hackensack, NJ, 2008).
  • Atkinson [2020] M. C. Atkinson, Developing Nucleon Self-Energies to Generate the Ingredients for the Description of Nuclear Reactions (Springer, 2020).
  • Darden [1971] S. E. Darden, in Proceedings of the Third International Symposium on Polarization Phenomena in Nuclear Reactions, edited by H. Barschall and W. Haeberli (University of Wisconsin Press, Madison, 1971) p. 39.
  • Koning and Delaroche [2003] A. Koning and J. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV, Nuclear Physics A 713, 231 (2003).
  • Carlson et al. [1975] R. F. Carlson, A. J. Cox, J. R. Nimmo, N. E. Davison, S. A. Elbakr, J. L. Horton, A. Houdayer, A. M. Sourkes, W. T. H. van Oers, and D. J. Margaziotis, Proton total reaction cross sections for the doubly magic nuclei O16{}^{16}\mathrm{O}, Ca40{}^{40}\mathrm{Ca}, and Pb208{}^{208}\mathrm{Pb} in the energy range 20-50 MeV, Phys. Rev. C 12, 1167 (1975).
  • Turner et al. [1964] J. Turner, B. Ridley, P. Cavanagh, G. Gard, and A. Hardacre, Optical model studies of proton scattering at 30 MeV: (ii). proton total reaction cross sections at 28.5±1.5 MeV, Nuclear Physics 58, 509 (1964).
  • Franey and Love [1985] M. A. Franey and W. G. Love, Nucleon-nucleon tt-matrix interaction for scattering at intermediate energies, Phys. Rev. C 31, 488 (1985).
  • Amos et al. [2000] K. Amos, P. J. Dortmans, H. V. von Geramb, S. Karataglidis, and J. Raynal, Nucleon-nucleus scattering: A microscopic nonrelativistic approach, Advances in Nuclear Physics 25, 276 (2000).
  • Jackson [1967] D. F. Jackson, A di-proton model for the (pp,2p2p) reaction, Nuclear Physics A 90, 209 (1967).
  • Austern [1978] N. Austern, Corrections to factorization in high-energy knockout reactions, Phys. Rev. Lett. 41, 1696 (1978).
  • Jackson [1982] D. F. Jackson, Factorization corrections in the (pp,2p2p) reaction, Physica Scripta 25, 514 (1982).
  • Kanayama et al. [1990] N. Kanayama, Y. Kudo, H. Tsunoda, and T. Wakasugi, Various Effects on the Nonrelativistic DWIA for (pp,2p2p) Reactions, Prog. Theor. Phys. 83, 540 (1990).
  • Yoshida et al. [2016] K. Yoshida, K. Minomo, and K. Ogata, Investigating α\alpha clustering on the surface of Sn120{}^{120}\mathrm{Sn} via the (p,pα)(p,p\alpha) reaction, and the validity of the factorization approximation, Phys. Rev. C 94, 044604 (2016).
  • Ikebata [1995] Y. Ikebata, (pp,2p2p) reaction in zero-range and finite-range relativistic distorted-wave impulse approximation, Phys. Rev. C 52, 890 (1995).
  • Morris [2011] J. M. Morris, Ph.D. Thesis (Washington University in St. Louis, 2011).
  • Atar et al. [2018] L. Atar, S. Paschalis, C. Barbieri, C. A. Bertulani, P. Díaz Fernández, M. Holl, M. A. Najafi, V. Panin, H. Alvarez-Pol, T. Aumann, V. Avdeichikov, S. Beceiro-Novo, D. Bemmerer, J. Benlliure, J. M. Boillos, K. Boretzky, M. J. G. Borge, M. Caamaño, C. Caesar, E. Casarejos, W. Catford, J. Cederkall, M. Chartier, L. Chulkov, D. Cortina-Gil, E. Cravo, R. Crespo, I. Dillmann, Z. Elekes, J. Enders, O. Ershova, A. Estrade, F. Farinon, L. M. Fraile, M. Freer, D. Galaviz Redondo, H. Geissel, R. Gernhäuser, P. Golubev, K. Göbel, J. Hagdahl, T. Heftrich, M. Heil, M. Heine, A. Heinz, A. Henriques, A. Hufnagel, A. Ignatov, H. T. Johansson, B. Jonson, J. Kahlbow, N. Kalantar-Nayestanaki, R. Kanungo, A. Kelic-Heil, A. Knyazev, T. Kröll, N. Kurz, M. Labiche, C. Langer, T. Le Bleis, R. Lemmon, S. Lindberg, J. Machado, J. Marganiec-Gała̧zka, A. Movsesyan, E. Nacher, E. Y. Nikolskii, T. Nilsson, C. Nociforo, A. Perea, M. Petri, S. Pietri, R. Plag, R. Reifarth, G. Ribeiro, C. Rigollet, D. M. Rossi, M. Röder, D. Savran, H. Scheit, H. Simon, O. Sorlin, I. Syndikus, J. T. Taylor, O. Tengblad, R. Thies, Y. Togano, M. Vandebrouck, P. Velho, V. Volkov, A. Wagner, F. Wamers, H. Weick, C. Wheldon, G. L. Wilson, J. S. Winfield, P. Woods, D. Yakorev, M. Zhukov, A. Zilges, and K. Zuber (R3\textrm{R}^{3}B Collaboration), Quasifree (pp,2p2p) reactions on oxygen isotopes: Observation of isospin independence of the reduced single-particle strength, Phys. Rev. Lett. 120, 052501 (2018).
  • Kawase et al. [2018] S. Kawase, T. Uesaka, T. L. Tang, D. Beaumel, M. Dozono, T. Fukunaga, T. Fujii, N. Fukuda, A. Galindo-Uribarri, S. Hwang, N. Inabe, T. Kawabata, T. Kawahara, W. Kim, K. Kisamori, M. Kobayashi, T. Kubo, Y. Kubota, K. Kusaka, C. Lee, Y. Maeda, H. Matsubara, S. Michimasa, H. Miya, T. Noro, Y. Nozawa, A. Obertelli, K. Ogata, S. Ota, E. Padilla-Rodal, S. Sakaguchi, H. Sakai, M. Sasano, S. Shimoura, S. Stepanyan, H. Suzuki, T. Suzuki, M. Takaki, H. Takeda, A. Tamii, H. Tokieda, T. Wakasa, T. Wakui, K. Yako, J. Yasuda, Y. Yanagisawa, R. Yokoyama, K. Yoshida, K. Yoshida, and J. Zenihiro, Exclusive quasi-free proton knockout from oxygen isotopes at intermediate energies, Prog. Theor. Exp. Phys. 2018, 021D01 (2018).
  • Luo and Kawai [1991] Y. L. Luo and M. Kawai, Semiclassical distorted wave model of nucleon inelastic scattering to continuum, Phys. Rev. C 43, 2367 (1991).
  • Watanabe et al. [1999] Y. Watanabe, R. Kuwata, S. Weili, M. Higashi, H. Shinohara, M. Kohno, K. Ogata, and M. Kawai, Semiclassical distorted wave model analysis of multistep direct (pp,pxp^{\prime}x) and (pp,nxnx) reactions to the continuum, Phys. Rev. C 59, 2136 (1999).
  • Ogata et al. [2007] K. Ogata, G. C. Hillhouse, and B. I. S. van der Ventel, Quenching of the analyzing power for inclusive quasielastic (p,p\stackrel{{\scriptstyle\rightarrow}}{{p}},{p}^{{}^{\prime}}) scattering, Phys. Rev. C 76, 021602(R) (2007).
  • Minomo et al. [2010] K. Minomo, K. Ogata, M. Kohno, Y. R. Shimizu, and M. Yahiro, Brieva-Rook localization of the microscopic nucleon–nucleus potential, Journal of Physics G: Nuclear and Particle Physics 37, 085011 (2010).