This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

[Uncaptioned image]

BELLE2-CONF-2022-002

September 19, 2025

Belle II Collaboration

First decay-time-dependent analysis of B0KS0π0B^{0}\rightarrow K^{0}_{\scriptscriptstyle S}\pi^{0} at Belle II

F. Abudinén    I. Adachi    R. Adak    K. Adamczyk    L. Aggarwal    P. Ahlburg    H. Ahmed    J. K. Ahn    H. Aihara    N. Akopov    A. Aloisio    F. Ameli    L. Andricek    N. Anh Ky    D. M. Asner    H. Atmacan    V. Aulchenko    T. Aushev    V. Aushev    T. Aziz    V. Babu    S. Bacher    H. Bae    S. Baehr    S. Bahinipati    A. M. Bakich    P. Bambade    Sw. Banerjee    S. Bansal    M. Barrett    G. Batignani    J. Baudot    M. Bauer    A. Baur    A. Beaubien    A. Beaulieu    J. Becker    P. K. Behera    J. V. Bennett    E. Bernieri    F. U. Bernlochner    M. Bertemes    E. Bertholet    M. Bessner    S. Bettarini    V. Bhardwaj    B. Bhuyan    F. Bianchi    T. Bilka    S. Bilokin    D. Biswas    A. Bobrov    D. Bodrov    A. Bolz    A. Bondar    G. Bonvicini    A. Bozek    M. Bračko    P. Branchini    N. Braun    R. A. Briere    T. E. Browder    D. N. Brown    A. Budano    L. Burmistrov    S. Bussino    M. Campajola    L. Cao    G. Casarosa    C. Cecchi    D. Červenkov    M.-C. Chang    P. Chang    R. Cheaib    P. Cheema    V. Chekelian    C. Chen    Y. Q. Chen    Y.-T. Chen    B. G. Cheon    K. Chilikin    K. Chirapatpimol    H.-E. Cho    K. Cho    S.-J. Cho    S.-K. Choi    S. Choudhury    D. Cinabro    L. Corona    L. M. Cremaldi    S. Cunliffe    T. Czank    S. Das    N. Dash    F. Dattola    E. De La Cruz-Burelo    G. de Marino    G. De Nardo    M. De Nuccio    G. De Pietro    R. de Sangro    B. Deschamps    M. Destefanis    S. Dey    A. De Yta-Hernandez    R. Dhamija    A. Di Canto    F. Di Capua    S. Di Carlo    J. Dingfelder    Z. Doležal    I. Domínguez Jiménez    T. V. Dong    M. Dorigo    K. Dort    D. Dossett    S. Dreyer    S. Dubey    S. Duell    G. Dujany    P. Ecker    S. Eidelman    M. Eliachevitch    D. Epifanov    P. Feichtinger    T. Ferber    D. Ferlewicz    T. Fillinger    C. Finck    G. Finocchiaro    P. Fischer    K. Flood    A. Fodor    F. Forti    A. Frey    M. Friedl    B. G. Fulsom    M. Gabriel    A. Gabrielli    N. Gabyshev    E. Ganiev    M. Garcia-Hernandez    R. Garg    A. Garmash    V. Gaur    A. Gaz    U. Gebauer    A. Gellrich    J. Gemmler    T. Geßler    D. Getzkow    G. Giakoustidis    R. Giordano    A. Giri    A. Glazov    B. Gobbo    R. Godang    P. Goldenzweig    B. Golob    P. Gomis    G. Gong    P. Grace    W. Gradl    E. Graziani    D. Greenwald    T. Gu    Y. Guan    K. Gudkova    J. Guilliams    C. Hadjivasiliou    S. Halder    K. Hara    T. Hara    O. Hartbrich    K. Hayasaka    H. Hayashii    S. Hazra    C. Hearty    M. T. Hedges    I. Heredia de la Cruz    M. Hernández Villanueva    A. Hershenhorn    T. Higuchi    E. C. Hill    H. Hirata    M. Hoek    M. Hohmann    S. Hollitt    T. Hotta    C.-L. Hsu    Y. Hu    K. Huang    T. Humair    T. Iijima    K. Inami    G. Inguglia    N. Ipsita    J. Irakkathil Jabbar    A. Ishikawa    S. Ito    R. Itoh    M. Iwasaki    Y. Iwasaki    S. Iwata    P. Jackson    W. W. Jacobs    I. Jaegle    D. E. Jaffe    E.-J. Jang    M. Jeandron    H. B. Jeon    Q. P. Ji    S. Jia    Y. Jin    C. Joo    K. K. Joo    H. Junkerkalefeld    I. Kadenko    J. Kahn    H. Kakuno    M. Kaleta    A. B. Kaliyar    J. Kandra    K. H. Kang    P. Kapusta    R. Karl    G. Karyan    Y. Kato    H. Kawai    T. Kawasaki    C. Ketter    H. Kichimi    C. Kiesling    B. H. Kim    C.-H. Kim    D. Y. Kim    H. J. Kim    K.-H. Kim    K. Kim    S.-H. Kim    Y.-K. Kim    Y. Kim    T. D. Kimmel    H. Kindo    K. Kinoshita    C. Kleinwort    B. Knysh    P. Kodyš    T. Koga    S. Kohani    I. Komarov    T. Konno    A. Korobov    S. Korpar    N. Kovalchuk    E. Kovalenko    R. Kowalewski    T. M. G. Kraetzschmar    F. Krinner    P. Križan    R. Kroeger    J. F. Krohn    P. Krokovny    H. Krüger    W. Kuehn    T. Kuhr    J. Kumar    M. Kumar    R. Kumar    K. Kumara    T. Kumita    T. Kunigo    M. Künzel    S. Kurz    A. Kuzmin    P. Kvasnička    Y.-J. Kwon    S. Lacaprara    Y.-T. Lai    C. La Licata    K. Lalwani    T. Lam    L. Lanceri    J. S. Lange    M. Laurenza    K. Lautenbach    P. J. Laycock    R. Leboucher    F. R. Le Diberder    I.-S. Lee    S. C. Lee    P. Leitl    D. Levit    P. M. Lewis    C. Li    L. K. Li    S. X. Li    Y. B. Li    J. Libby    K. Lieret    J. Lin    Z. Liptak    Q. Y. Liu    Z. A. Liu    D. Liventsev    S. Longo    A. Loos    A. Lozar    P. Lu    T. Lueck    F. Luetticke    T. Luo    C. Lyu    C. MacQueen    M. Maggiora    R. Maiti    S. Maity    R. Manfredi    E. Manoni    S. Marcello    C. Marinas    L. Martel    A. Martini    L. Massaccesi    M. Masuda    T. Matsuda    K. Matsuoka    D. Matvienko    J. A. McKenna    J. McNeil    F. Meggendorfer    F. Meier    M. Merola    F. Metzner    M. Milesi    C. Miller    K. Miyabayashi    H. Miyake    H. Miyata    R. Mizuk    K. Azmi    G. B. Mohanty    N. Molina-Gonzalez    S. Moneta    H. Moon    T. Moon    J. A. Mora Grimaldo    T. Morii    H.-G. Moser    M. Mrvar    F. J. Müller    Th. Muller    G. Muroyama    C. Murphy    R. Mussa    I. Nakamura    K. R. Nakamura    E. Nakano    M. Nakao    H. Nakayama    H. Nakazawa    M. Naruki    Z. Natkaniec    A. Natochii    L. Nayak    M. Nayak    G. Nazaryan    D. Neverov    C. Niebuhr    M. Niiyama    J. Ninkovic    N. K. Nisar    S. Nishida    K. Nishimura    M. H. A. Nouxman    B. Oberhof    K. Ogawa    S. Ogawa    S. L. Olsen    Y. Onishchuk    H. Ono    Y. Onuki    P. Oskin    F. Otani    E. R. Oxford    H. Ozaki    P. Pakhlov    G. Pakhlova    A. Paladino    T. Pang    A. Panta    E. Paoloni    S. Pardi    K. Parham    H. Park    S.-H. Park    B. Paschen    A. Passeri    A. Pathak    S. Patra    S. Paul    T. K. Pedlar    I. Peruzzi    R. Peschke    R. Pestotnik    F. Pham    M. Piccolo    L. E. Piilonen    G. Pinna Angioni    P. L. M. Podesta-Lerma    T. Podobnik    S. Pokharel    L. Polat    V. Popov    C. Praz    S. Prell    E. Prencipe    M. T. Prim    M. V. Purohit    H. Purwar    N. Rad    P. Rados    S. Raiz    A. Ramirez Morales    R. Rasheed    N. Rauls    M. Reif    S. Reiter    M. Remnev    I. Ripp-Baudot    M. Ritter    M. Ritzert    G. Rizzo    L. B. Rizzuto    S. H. Robertson    D. Rodríguez Pérez    J. M. Roney    C. Rosenfeld    A. Rostomyan    N. Rout    M. Rozanska    G. Russo    D. Sahoo    Y. Sakai    D. A. Sanders    S. Sandilya    A. Sangal    L. Santelj    P. Sartori    Y. Sato    V. Savinov    B. Scavino    C. Schmitt    M. Schnepf    M. Schram    H. Schreeck    J. Schueler    C. Schwanda    A. J. Schwartz    B. Schwenker    M. Schwickardi    Y. Seino    A. Selce    K. Senyo    I. S. Seong    J. Serrano    M. E. Sevior    C. Sfienti    V. Shebalin    C. P. Shen    H. Shibuya    T. Shillington    T. Shimasaki    J.-G. Shiu    B. Shwartz    A. Sibidanov    F. Simon    J. B. Singh    S. Skambraks    J. Skorupa    K. Smith    R. J. Sobie    A. Soffer    A. Sokolov    Y. Soloviev    E. Solovieva    S. Spataro    B. Spruck    M. Starič    S. Stefkova    Z. S. Stottler    R. Stroili    J. Strube    J. Stypula    R. Sugiura    M. Sumihama    K. Sumisawa    T. Sumiyoshi    D. J. Summers    W. Sutcliffe    S. Y. Suzuki    H. Svidras    M. Tabata    M. Takahashi    M. Takizawa    U. Tamponi    S. Tanaka    K. Tanida    H. Tanigawa    N. Taniguchi    Y. Tao    P. Taras    F. Tenchini    R. Tiwary    D. Tonelli    E. Torassa    N. Toutounji    K. Trabelsi    I. Tsaklidis    T. Tsuboyama    N. Tsuzuki    M. Uchida    I. Ueda    S. Uehara    Y. Uematsu    T. Ueno    T. Uglov    K. Unger    Y. Unno    K. Uno    S. Uno    P. Urquijo    Y. Ushiroda    Y. V. Usov    S. E. Vahsen    R. van Tonder    G. S. Varner    K. E. Varvell    A. Vinokurova    L. Vitale    V. Vobbilisetti    V. Vorobyev    A. Vossen    B. Wach    E. Waheed    H. M. Wakeling    K. Wan    W. Wan Abdullah    B. Wang    C. H. Wang    E. Wang    M.-Z. Wang    X. L. Wang    A. Warburton    M. Watanabe    S. Watanuki    J. Webb    S. Wehle    M. Welsch    C. Wessel    J. Wiechczynski    P. Wieduwilt    H. Windel    E. Won    L. J. Wu    X. P. Xu    B. D. Yabsley    S. Yamada    W. Yan    S. B. Yang    H. Ye    J. Yelton    I. Yeo    J. H. Yin    M. Yonenaga    Y. M. Yook    K. Yoshihara    T. Yoshinobu    C. Z. Yuan    Y. Yusa    L. Zani    Y. Zhai    J. Z. Zhang    Y. Zhang    Y. Zhang    Z. Zhang    V. Zhilich    J. Zhou    Q. D. Zhou    X. Y. Zhou    V. I. Zhukova    V. Zhulanov    R. Žlebčík
Abstract

We report measurements of the branching fraction (\mathcal{B}) and direct CPC\hskip-1.30005ptP-violating asymmetry (𝒜CP{\mathcal{A}_{C\hskip-1.0653ptP}}) of the charmless decay B0K0π0B^{0}\rightarrow K^{0}\pi^{0} at Belle II. A sample of e+ee^{+}e^{-} collisions, corresponding to 189.8 fb1189.8\mbox{\,fb}^{-1} of integrated luminosity, recorded at the Υ(4S)\mathchar 28935\relax(4S) resonance is used for the first decay-time-dependent analysis of these decays within the experiment. We reconstruct about 135 signal candidates, and measure (B0K0π0)=[11.0±1.2(stat)±1.0(syst)]×106\mathcal{B}(B^{0}\rightarrow K^{0}\pi^{0})=[11.0\pm 1.2\mathrm{(stat)}\pm 1.0\mathrm{(syst)}]\times 10^{-6} and 𝒜CP(B0K0π0)=0.410.32+0.30(stat)±0.09(syst){\mathcal{A}_{C\hskip-1.0653ptP}}(B^{0}\rightarrow K^{0}\pi^{0})=-0.41_{-0.32}^{+0.30}\mathrm{(stat)}\pm 0.09\mathrm{(syst)}.

Belle II, charmless, CPC\hskip-1.30005ptP-violation

1 Introduction

The B0K0π0B^{0}\rightarrow K^{0}\pi^{0} decay is mediated by flavor-changing neutral currents. In the standard model (SM), the dominant decay amplitude is given by the bsdd¯b\rightarrow sd\overline{d} loop, which is dominated by the top quark contribution and carries a weak phase arg(VtbVts)\left(V_{tb}V_{ts}^{*}\right). Here, VijV_{ij} denote the CKM matrix elements. Such processes are suppressed in the SM and provide an indirect route to search for beyond-the-SM particles that might be exchanged in the loop. In the B0K0π0B^{0}\rightarrow K^{0}\pi^{0} decay, CPC\hskip-1.30005ptP violation can occur either directly in the decay amplitude (𝒜CP{\mathcal{A}_{C\hskip-1.0653ptP}}) or via the interference between decays with and without B0B^{0}B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} mixing (𝒮CP{\mathcal{S}_{C\hskip-1.0653ptP}}). Neglecting subleading contributions to the amplitude, 𝒮CP{\mathcal{S}_{C\hskip-1.0653ptP}} is expected to be equal to sin2ϕ1\sin 2\phi_{1} and 𝒜CP0{\mathcal{A}_{C\hskip-1.0653ptP}}\approx 0, where ϕ1\phi_{1}\equiv arg(VcdVcb/VtdVtb)\left(-V_{cd}V^{*}_{cb}/V_{td}V^{*}_{tb}\right). Deviations from these expectations could be due to larger-than-expected subleading SM contributions or from non-SM physics.

Combining BB-meson lifetimes (τ\tau) with branching fractions (\mathcal{B}) and direct CPC\hskip-1.30005ptP asymmetries of four BKπB\rightarrow K\pi decays related by isospin symmetry, the sum rule proposed in Ref. Gronau ,

𝒜CP(K+π)+𝒜CP(K0π+)(K0π+)(K+π)τB0τB+\displaystyle{\mathcal{A}_{C\hskip-1.0653ptP}}({K^{+}\pi^{-}})+{\mathcal{A}_{C\hskip-1.0653ptP}}({K^{0}\pi^{+}})\frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\tau_{B^{0}}}{\tau_{B^{+}}} (1)
2𝒜CP(K+π0)(K+π0)(K+π)τB0τB+2𝒜CP(K0π0)(K0π0)(K+π)=0,\displaystyle-2{\mathcal{A}_{C\hskip-1.0653ptP}}({K^{+}\pi^{0}})\frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2{\mathcal{A}_{C\hskip-1.0653ptP}}({K^{0}\pi^{0}})\frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}=0,

is expected to hold with an uncertainty below 1%1\% and provides an important consistency test of the SM. Deviations from this isospin sum rule can be caused by an enhancement of color-suppressed tree amplitudes, or by contributions from non-SM physics. The prediction of the CPC\hskip-1.30005ptP asymmetry 𝒜CP(K0π0){\mathcal{A}_{C\hskip-1.0653ptP}}(K^{0}\pi^{0}) from this sum-rule is 0.138±0.025-0.138\pm 0.025 kpisensitivity , using up-to-date known values of other quantities HFLAV . Combining measurements from Belle and BaBar belle ; babar , the Heavy Flavor Averaging Group finds 𝒜CP=0.01±0.10{\mathcal{A}_{C\hskip-1.0653ptP}}=0.01\pm 0.10  HFLAV . The dominant contribution to the uncertainty in this sum-rule comes from the uncertainty in 𝒜CP(K0π0){\mathcal{A}_{C\hskip-1.0653ptP}}({K^{0}\pi^{0}}). Therefore, a precise measurement of 𝒜CP(K0π0){\mathcal{A}_{C\hskip-1.0653ptP}}({K^{0}\pi^{0}}) is crucial for this consistency test of the SM.

Preliminary results on \mathcal{B} and 𝒜CP{\mathcal{A}_{C\hskip-1.0653ptP}} of B0K0π0B^{0}\rightarrow K^{0}\pi^{0} decays have been reported by Belle II using a data sample corresponding to 62.8 fb162.8\mbox{\,fb}^{-1}. In this analysis, we utilize a larger data set (189.8 fb1189.8\mbox{\,fb}^{-1}) and further enhance our sensitivity to 𝒜CP{\mathcal{A}_{C\hskip-1.0653ptP}} by using BB decay-time information.

At Belle II, pairs of neutral BB mesons are coherently produced in the process e+eΥ(4S)B0B¯0e^{+}e^{-}\rightarrow\mathchar 28935\relax(4S)\rightarrow B^{0}\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0}. When one of the BB mesons decays to a CPC\hskip-1.30005ptP eigenstate fCPf_{C\hskip-1.0653ptP}, such as KS0π0K^{0}_{\scriptscriptstyle S}\pi^{0}, and the other to a flavor-specific final state ftagf_{\rm tag}, the time-dependent decay rate is given by

𝒫(Δt)=e|Δt|/τB04τB0[1+q{𝒜CPcos(ΔmdΔt)+𝒮CPsin(ΔmdΔt)}],\displaystyle\mathcal{P}(\Delta t)=\frac{{\rm e}^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}}[1+q\{{\mathcal{A}_{C\hskip-1.0653ptP}}\cos(\Delta m_{d}\Delta t)+{\mathcal{S}_{C\hskip-1.0653ptP}}\sin(\Delta m_{d}\Delta t)\}], (2)

where Δt=tCPttag\Delta t=t_{C\hskip-1.0653ptP}-t_{\rm tag} is the proper-time difference between the decays into fCPf_{C\hskip-1.0653ptP} and ftagf_{\rm tag}, qq equals +1+1 (1-1) for the B0B^{0} (B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0}) decay to ftagf_{\rm tag}, and Δmd\Delta m_{d} is the B0B^{0}B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} mixing frequency. This analysis employs a decay-time-dependent CPC\hskip-1.30005ptP asymmetry fit similar to the previous measurement of sin2ϕ1\sin 2\phi_{1} tsi . The key challenge here lies in the determination of the position of the B0K0π0B^{0}\rightarrow K^{0}\pi^{0} decay vertex. For that, the KS0K^{0}_{\scriptscriptstyle S} flight direction is projected back to the interaction region and the KS0K^{0}_{\scriptscriptstyle S} is required to decay inside the vertex detector (VXD). The full analysis was developed and tested with simulated data, and validated with data control samples before selecting and inspecting the B0K0π0B^{0}\rightarrow K^{0}\pi^{0} candidates. Due to the limited sensitivity provided by the available data sample, we measure 𝒜CP{\mathcal{A}_{C\hskip-1.0653ptP}} by fixing 𝒮CP{\mathcal{S}_{C\hskip-1.0653ptP}}, Δmd\Delta m_{d}, and τB0\tau_{B^{0}} to their known values HFLAV .

2 The Belle II detector and data sample

Belle II belle2det is a particle spectrometer having almost 4π4\pi solid-angle coverage, designed to reconstruct final-state particles of e+ee^{+}e^{-} collisions delivered by the SuperKEKB asymmetric-energy collider supkek . It is located at the KEK laboratory in Tsukuba, Japan. The energies of the positron and electron beams are 44 and 7GeV7\mathrm{\,Ge\kern-1.00006ptV}, respectively. Belle II consists of a number of subdetectors surrounding the interaction region in a cylindrical geometry. The innermost one is the VXD, comprised of several position-sensitive silicon sensors. It samples the trajectories of charged particles (‘tracks’) in the vicinity of the interaction region to determine the decay positions of their parent particles. The VXD includes two inner layers of pixel sensors and four outer layers of double-sided microstrip sensors. The second pixel layer is currently incomplete covering one sixth of the azimuthal angle. Charged-particle momenta and charges are measured by a large-radius, small-cell, central drift chamber (CDC), which also offers particle-identification information via a measurement of specific ionization. A Cherenkov-light angle and time-of-propagation detector surrounding the CDC provides charged-particle identification in the central detector volume, supplemented by proximity-focusing, aerogel, ring-imaging Cherenkov detectors in the forward region with respect to the electron beam. A CsI(Tl)-crystal electromagnetic calorimeter (ECL) provides energy measurements of electrons and photons. A solenoid surrounding the ECL generates a uniform axial 1.5 T magnetic field. Layers of plastic scintillators and resistive-plate chambers, interspersed between the magnetic flux-return iron plates, allow for the identification of KL0K^{0}_{\scriptscriptstyle L} mesons and muons. The subdetectors most relevant for our study are the VXD, CDC, and ECL.

We analyse collision data collected at a center-of-mass (CM) energy near the Υ(4S)\mathchar 28935\relax(4S) resonance, corresponding to an integrated luminosity of 189.8 fb1189.8\mbox{\,fb}^{-1}. We use large samples of simulated e+eqq¯e^{+}e^{-}\rightarrow q\overline{q} (q=u,d,s,c)(q=u,d,s,c), Υ(4S)B0B¯0\mathchar 28935\relax(4S)\rightarrow B^{0}{\kern-1.60004pt\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0}} and B+BB^{+}{\kern-1.60004ptB^{-}} events to optimize the event selection and study possible background contributions. Simulated B0KS0π0B^{0}\rightarrow K^{0}_{\scriptscriptstyle S}\pi^{0} signal events are used to determine signal models and estimate the selection efficiency. We use the EVTGEN package evtgen to generate BB-mesons decays and the PHOTOS package photos to calculate final-state radiation from all charged particles. The simulation of e+eqq¯e^{+}e^{-}\rightarrow q\overline{q} continuum background relies on the KKMC generator kkmc interfaced to Pythia pythia . The interactions of final-state particles with the detector are simulated using Geant4 geant .

3 Reconstruction and selection

Tracks are reconstructed with the VXD and CDC. Photons are identified as isolated energy clusters in the ECL that are not matched to any track. Candidate KS0K^{0}_{\scriptscriptstyle S} mesons are reconstructed from pairs of oppositely-charged particles with the dipion mass between 482482 and 513MeV/c2513{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}}. We reconstruct π0\pi^{0} candidates from pairs of photons that have energies greater than 80 (223) MeV\mathrm{\,Me\kern-1.00006ptV} if detected in the barrel (endcap) ECL. We apply the different energy thresholds to suppress beam background, which is higher in the endcap compared to the barrel region. The selection also requires the diphoton mass to lie between 119119 and 150MeV/c2150{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}} and the absolute value of the cosine of the angle between each photon and the BB meson in the π0\pi^{0} rest frame to be less than 0.953. These criteria suppress contributions from misreconstructed π0\pi^{0} candidates.

A BB-meson candidate is reconstructed by combining a KS0K^{0}_{\scriptscriptstyle S} with a π0\pi^{0} candidate. For this purpose, we use two kinematic variables, the beam-energy-constrained mass (Mbc)(M_{\rm bc}) and the energy difference (ΔE)(\Delta E),

Mbc\displaystyle M_{\rm bc} =Ebeam2pB 2,\displaystyle=\sqrt{E_{\rm beam}^{2}-\vec{p}_{B}^{\,2}}, (3)
ΔE\displaystyle\Delta E =EBEbeam,\displaystyle=E_{B}-E_{\rm beam},

where EbeamE_{\rm beam} is the beam energy, and EBE_{B} and pB\vec{p}_{B} are respectively the reconstructed energy and momentum of the BB meson; all calculated in the CM frame.

The presence of a high momentum π0\pi^{0} causes a significant correlation between MbcM_{\rm bc} and ΔE\Delta E due to the shower leakage of final-state photons. To reduce this correlation, we use a modified version of MbcM_{\rm bc} that is defined in terms of the beam energy and momenta of final-state particles as

Mbc=Ebeam2(pKS0+pπ0|pπ0|(EbeamEKS0)2mπ02)2,\displaystyle M^{\prime}_{\rm bc}=\sqrt{E_{\rm beam}^{2}-\left(\vec{p}_{K^{0}_{\scriptscriptstyle S}}+\frac{\vec{p}_{\pi^{0}}}{|\vec{p}_{\pi^{0}}|}\sqrt{(E_{\rm beam}-E_{K^{0}_{\scriptscriptstyle S}})^{2}-m_{\pi^{0}}^{2}}\right)^{2}}, (4)

where all kinematic quantities are again calculated in the CM frame. We retain candidate events satisfying 5.24<Mbc<5.29GeV/c25.24<M^{\prime}_{\rm bc}<5.29~{\mathrm{\,Ge\kern-1.00006ptV\!/}c^{2}} and |ΔE|<0.30GeV|\Delta E|<0.30~\mathrm{\,Ge\kern-1.00006ptV}.

To measure the proper-time difference Δt\Delta t, we need to determine the signal and tag-side BB decay vertices. The signal BB vertex is obtained by projecting the flight direction of the KS0K^{0}_{\scriptscriptstyle S} candidate back to the interaction region. The KS0K^{0}_{\scriptscriptstyle S} flight direction is determined from its decay vertex and momentum. The intersection of the KS0K^{0}_{\scriptscriptstyle S}-flight projection with the interaction region provides a good approximation of the signal BB decay vertex, since both the transverse flight length of the B0B^{0} meson and the transverse size of the interaction region are small compared to the B0B^{0} flight length along the boost direction. The tag-side vertex is obtained with tracks that are not associated to the B0KS0π0B^{0}\rightarrow K^{0}_{\scriptscriptstyle S}\pi^{0} decay. We obtain Δt\Delta t by dividing the longitudinal distance between the signal and tag vertices by the speed of light and the Lorentz boost of the Υ(4S)\mathchar 28935\relax{(4S)} system in the lab frame. Signal candidates with poorly measured Δt\Delta t, mainly due to KS0K^{0}_{S} mesons decaying outside of the VXD acceptance, are suppressed by requiring the estimated uncertainty on Δt\Delta t to be less than 2.5 ps.

Events from continuum e+eqq¯e^{+}e^{-}\rightarrow q\overline{q} production are suppressed using a boosted-decision-tree (BDT) classifier bdt that exploits several event-topology variables known to provide discrimination between BB-meson signal and continuum background. The following variables are those offering most of the discrimination: modified Fox–Wolfram moments ksfw , CLEO cones cleo , the magnitude of the thrust axis for the reconstructed BB candidate, and the cosine of the angle between the thrust axis of the signal BB and that of rest of event. The BDT is trained on samples of simulated e+eqq¯e^{+}e^{-}\rightarrow q\overline{q}, B0B¯0B^{0}\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} and B+BB^{+}B^{-} events, each equivalent to an integrated luminosity of 1 ab11\mbox{\,ab}^{-1}. The BDT output distribution (CoutC_{\rm out}) is shown in Fig. 1. We apply a criterion Cout>0.60C_{\rm out}>0.60, which rejects about 89%89\% of the continuum background with a 18%18\% relative loss in signal efficiency. We then translate CoutC_{\rm out} into a new variable,

Cout=ln(CoutCout,minCout,maxCout),C_{\rm out}^{\prime}={\rm ln}\left(\frac{C_{\rm out}-C_{\rm out,min}}{C_{\rm out,max}-C_{\rm out}}\right), (5)

where Cout,min=0.60C_{\rm out,min}=0.60 and Cout,max=0.99C_{\rm out,max}=0.99. The distributions of CoutC_{\rm out}^{\prime} can be parametrized with Gaussian functions.

Refer to caption
Figure 1: Distributions of the BDT output CoutC_{\rm out} for simulated signal and e+eqq¯e^{+}e^{-}\rightarrow q\overline{q} events. The downward arrow indicates the position of the applied CoutC_{\rm out} selection.

After applying all selection criteria, the average number of BB candidates per event is 1.009. Multiple candidates arise due to random combinations of final-state particles. To select the best combination in an event with multiple candidates, we first compare the π0\pi^{0} mass-constrained fit χ2\chi^{2} probability (‘p-value’). If there are two or more BB candidates sharing the same π0\pi^{0}, we choose the one with the best p-value of the fit of the KS0K^{0}_{\scriptscriptstyle S} vertex. This selection retains the correct BB candidate in 74%74\% of simulated signal events.

The signal efficiency (ϵ\epsilon) of correctly reconstructed events after all selection criteria have been applied is 12.3%12.3\%. From simulation we find that signal candidates can be incorrectly reconstructed in 1.5%1.5\% of the times by accidentally picking up a particle from the other BB meson decay.

We determine the flavor of the tag-side BB meson (qq) from the properties of the final-state particles that are not associated with the reconstructed B0KS0π0B^{0}\rightarrow K^{0}_{\scriptscriptstyle S}\pi^{0} decay. The Belle II multivariate flavor-tagger algorithm flavortagger uses the information of BB-decay products to determine the quark-flavor of BB mesons. It gives two parameters, the bb-flavor charge, qq and its quality factor rr. The parameter rr is an event-by-event, MC determined flavour-tagging dilution factor that ranges from 0 (no flavor discrimination) to 11 (unambiguous flavor assignment).

4 Determination of branching fraction and CPC\hskip-1.30005ptP asymmetry

We obtain the signal yield and direct CPC\hskip-1.30005ptP asymmetry from an extended maximum-likelihood fit to the unbinned distributions of MbcM^{\prime}_{\rm bc}, ΔE\Delta E, CoutC_{\rm out}^{\prime}, and Δt~\Delta t. For the signal component, MbcM^{\prime}_{\rm bc} is modeled with the sum of a Crystal Ball  CB and a Gaussian function with a common mean; ΔE\Delta E with the sum of a Crystal Ball and two Gaussian functions, all three with a common mean; and CoutC_{\rm out}^{\prime} with the sum of an asymmetric and a regular Gaussian function. The signal Δt\Delta t probability density function (PDF) is given by

𝒫sig(Δt,q)\displaystyle\mathcal{P}_{\rm sig}(\Delta t,q) =\displaystyle= e|Δt|/τB04τB0[{1qΔwr+qμr(12wr)}+{q(12wr)+μr(1qΔwr)}\displaystyle\frac{{\rm e}^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}}[\{1-q\Delta w_{r}+q\mu_{r}(1-2w_{r})\}+\{q(1-2w_{r})+\mu_{r}(1-q\Delta w_{r})\}
{𝒜CPcos(ΔmdΔt)+𝒮CPsin(ΔmdΔt)}]sig,\displaystyle\{{\mathcal{A}_{C\hskip-1.0653ptP}}\cos(\Delta m_{d}\Delta t)+{\mathcal{S}_{C\hskip-1.0653ptP}}\sin(\Delta m_{d}\Delta t)\}]\otimes\mathcal{R}_{\rm sig},

where wrw_{r} is the fraction of incorrectly tagged events, Δwr\Delta w_{r} is the difference in wrw_{r} between B0B^{0} and B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0}, μr\mu_{r} is the difference in their tagging efficiency (that is the fraction of signal B0B^{0} or B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} candidates to which a flavor tag can be assigned), and sig\mathcal{R}_{\rm sig} is the Δt\Delta t resolution function. The function sig\mathcal{R}_{\rm sig} is composed of a sum of two Gaussians with a combined width of \approx 0.9 ps, and its parameters are determined with simulated events. We set τB0\tau_{B^{0}} to 1.520 ps, Δmd\Delta m_{d} to 0.507 ps1\rm{ps}^{-1}, and 𝒮CP{\mathcal{S}_{C\hskip-1.0653ptP}} to 0.57 HFLAV . The data are divided into seven q×rq\times r bins with the tagging parameters for each bin (wrw_{r}, Δwr\Delta w_{r}, and μr\mu_{r}) fixed to the corresponding values flavortagger . The effective tagging efficiency ϵeff\epsilon_{\rm eff} (=rϵr×(12wr)2=\sum_{r}\epsilon_{r}\times(1-2w_{r})^{2}, where ϵr\epsilon_{r} is the partial effective efficiency in the rr-th bin), wrw_{r}, and μr\mu_{r} are (30.0±1.2)%(30.0\pm 1.2)\%, (2(247)%47)\%, and (0.5(0.511)%11)\%, respectively. All signal PDF shapes are fixed to the values determined from a q×rq\times r binned fit to simulated events.

For the continuum background component, an ARGUS function AG is used for MbcM^{\prime}_{\rm bc}, a linear function for ΔE\Delta E, and the sum of an asymmetric and a regular Gaussian function for CoutC_{\rm out}^{\prime}. Its Δt\Delta t distribution is modeled with an exponential function convolved with a Gaussian for the tail; we use a double Gaussian for its resolution function (qq¯\mathcal{R}_{q\overline{q}}). For the continuum background component, we float the PDF shape parameters, which are found to be common for all q×rq\times r bins. For the BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} background component, a two-dimensional Kernel estimation PDF 2D is used to model the ΔE\Delta E vs. MbcM^{\prime}_{\rm bc} distribution, and the sum of an asymmetric and a regular Gaussian function is used for CoutC_{\rm out}^{\prime}. Its Δt\Delta t distribution is modeled with an exponential function convolved with a Gaussian for the tail; we again use a double Gaussian for its resolution function (BB¯\mathcal{R}_{B\kern 1.47495pt\overline{\kern-1.47495ptB}{}}). The BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} background shape parameters are fixed from a fit to the corresponding simulated sample.

The fit parameters are the signal yield NsigN_{\mathrm{sig}}; 𝒜CP{\mathcal{A}_{C\hskip-1.0653ptP}}; BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} background yield, which is Gaussian constrained to the result of a fit to the ΔE\Delta E sideband in data; continuum background yield; MbcM^{\prime}_{\rm bc} ARGUS parameter; ΔE\Delta E slope; and effective width of CoutC^{\prime}_{\rm out} for the qq¯q\overline{q} component. We correct the signal MbcM^{\prime}_{\rm bc}, ΔE\Delta E, and CoutC_{\rm out}^{\prime} PDF shapes for possible data–simulation differences, according to the values obtained with a control sample of B+D¯(K+ππ0)0π+B^{+}\rightarrow\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}(\rightarrow K^{+}\pi^{-}\pi^{0})\pi^{+} (charge conjugated modes are implicitly included hereafter). In order to mimic the signal decay, we apply a similar π0\pi^{0} selection. We use a maximum-likelihood fit to the unbinned distributions of MbcM^{\prime}_{\rm bc}, ΔE\Delta E, and CoutC^{\prime}_{\rm out}, using PDF shapes similar to those employed to describe the signal in data. We use a control sample of B0J/ψ(μ+μ)KS0B^{0}\rightarrow{J\mskip-3.0mu/\mskip-2.0mu\psi\mskip 2.0mu}(\rightarrow\mu^{+}\mu^{-})K^{0}_{\scriptscriptstyle S} decays to validate the time-dependent analysis. To mimic the signal decay, we do not use the two muons coming from the J/ψ{J\mskip-3.0mu/\mskip-2.0mu\psi\mskip 2.0mu} to reconstruct the signal BB decay vertex. We use a maximum-likelihood fit to the unbinned distributions of MbcM_{{\rm bc}} and Δt\Delta t, using PDF shapes and resolution functions similar to those employed in the fit to the signal in data. The B0B^{0} lifetime and 𝒜CP{\mathcal{A}_{C\hskip-1.0653ptP}} are measured to be 1.590.08+0.091.59^{+0.09}_{-0.08} ps and 0.03±0.10-0.03\pm 0.10, respectively, which are consistent with their known values HFLAV . The uncertainties quoted here are statistical only. This provides convincing data-driven support for the time-dependent part of the analysis. The same sample is also used to correct the Δt\Delta t PDF shape parameters for possible data–simulation differences. The estimator properties (mean and uncertainty) have been studied in both simplified and realistic simulated experiments and found to be as expected.

Figure 2 shows the four projections of the fit to the seven q×rq\times r-integrated data samples which include both B0B^{0} and B¯0\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} candidates. For each projection the signal enhancing criteria, 5.27<Mbc<5.29GeV/c25.27<M^{\prime}_{\rm bc}<5.29{\mathrm{\,Ge\kern-1.00006ptV\!/}c^{2}}, 0.15<ΔE<0.10GeV-0.15<\Delta E<0.10\mathrm{\,Ge\kern-1.00006ptV}, |Δt|<|\Delta t|< 10.0 ps, and Cout>0.0C^{\prime}_{\rm out}>0.0, are applied on all except for the variable displayed. The obtained signal yield is 13515+16135^{+16}_{-15}, where the quoted uncertainty is statistical only. We also find 221448+492214^{+49}_{-48} continuum and 44±544\pm 5 BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} background events. We determine the branching fraction using the following formula:

(B0K0π0)=Nsig2×NBB¯×f00×ϵ×s,\mathcal{B}(B^{0}\rightarrow K^{0}\pi^{0})=\frac{N_{\mathrm{sig}}}{2\times N_{B\kern 1.47495pt\overline{\kern-1.47495ptB}{}}\times f^{00}\times\epsilon\times{\mathcal{B}}_{s}}, (7)

where NBB¯=(197.2±5.70)×106N_{B\kern 1.47495pt\overline{\kern-1.47495ptB}{}}=(197.2\pm 5.70)\times 10^{6}, f00=0.487±0.010f^{00}=0.487\pm 0.010 f00 , and s=0.5{\mathcal{B}}_{s}=0.5 are the number of BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} pairs, Υ(4S)B0B¯0\mathchar 28935\relax{(4S)}\rightarrow B^{0}\kern 1.79993pt\overline{\kern-1.79993ptB}{}^{0} branching fraction, and K0KS0K^{0}\rightarrow K^{0}_{\scriptscriptstyle S} branching fraction, respectively. The B0K0π0B^{0}\rightarrow K^{0}\pi^{0} branching fraction and direct CPC\hskip-1.30005ptP asymmetry (𝒜CP{\mathcal{A}_{C\hskip-1.0653ptP}}) are measured to be (11.0±1.2±1.0)×106(11.0\pm 1.2\pm 1.0)\times 10^{-6} and 0.410.32+0.30±0.09-0.41_{-0.32}^{+0.30}\pm 0.09, respectively. The first uncertainties are statistical and the second is systematic (described in Section 5). This extends the previous measurement janice of \mathcal{B} and 𝒜CP{\mathcal{A}_{C\hskip-1.0653ptP}} in B0K0π0B^{0}\rightarrow K^{0}\pi^{0} decays, where no information on the proper-time difference was used.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: Signal enhanced fit projections of ΔE\Delta E (upper-left), MbcM^{\prime}_{\rm bc} (upper-right), CoutC^{\prime}_{\rm out} (lower-left), and Δt\Delta t (lower-right) shown for the data sample integrated in the seven q×rq\times r bins.

5 Systematic uncertainties

The various systematic uncertainties contributing to \mathcal{B} and 𝒜CP{\mathcal{A}_{C\hskip-1.0653ptP}} are listed in Table 1. Assuming these sources to be independent, we add their contributions in quadrature to obtain the total systematic uncertainty. The systematic uncertainty due to possible differences between data and simulation in the reconstruction of charged particles is 0.3%0.3\% per track tracking . We linearly add this uncertainty in \mathcal{B} for each of the two pion tracks coming from the decay of the KS0K^{0}_{\scriptscriptstyle S} in the signal BB. From a comparison of the KS0K^{0}_{\scriptscriptstyle S} yield in data and simulation, we find that the ratio of the KS0K^{0}_{\scriptscriptstyle S} reconstruction efficiency changes approximately as a linear function of its flight length tracking . We apply an uncertainty of 0.4%0.4\% for each centimeter of the average flight length of the KS0K^{0}_{\scriptscriptstyle S} candidates resulting in a 4.2%4.2\% total systematic uncertainty in \mathcal{B}. We estimate the systematic uncertainty due to possible differences between data and simulation in the π0\pi^{0} reconstruction and selection by comparing the inclusive decay sample of D0Kπ+π0D^{0}\rightarrow K^{-}\pi^{+}\pi^{0} with D0Kπ+D^{0}\rightarrow K^{-}\pi^{+} drate . The data–simulation efficiency ratio is found to be close to unity with an uncertainty of 7.5%7.5\%, which we assign as a systematic uncertainty in \mathcal{B}. We evaluate possible data–simulation differences in the continuum-suppression efficiency using the control sample of B+D¯(K+ππ0)0π+B^{+}\rightarrow\kern 1.99997pt\overline{\kern-1.99997ptD}{}^{0}(\rightarrow K^{+}\pi^{-}\pi^{0})\pi^{+}. As the ratio of efficiencies obtained in data and simulation is close to unity, the statistical uncertainty in the ratio (1.6%) is assigned as a systematic uncertainty to \mathcal{B}. We estimate the systematic uncertainty in 𝒜CP{\mathcal{A}_{C\hskip-1.0653ptP}} due to the uncertainty in the wrong-tag fraction by varying the parameter individually for each q×rq\times r region by its uncertainty. The systematic uncertainty due to the Δt\Delta t resolution function is estimated in a similar fashion. As external inputs τB0\tau_{B^{0}}, Δmd\Delta m_{d}, and 𝒮CP{\mathcal{S}_{C\hskip-1.0653ptP}} are fixed to their known values in the fit, the associated systematic uncertainties are estimated by varying the values by their uncertainties. In the nominal fit, we assume the BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{}-background decays to be CPC\hskip-1.30005ptP symmetric. To account for a potential CPC\hskip-1.30005ptP asymmetry in the BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} background, we use an alternative Δt\Delta t PDF given by

𝒫BB¯(Δt,q)\displaystyle\mathcal{P}_{B\kern 1.47495pt\overline{\kern-1.47495ptB}{}}(\Delta t,q) =\displaystyle= e|Δt|/τB04τB0[1+q{𝒜CPcos(ΔmdΔt)+𝒮CPsin(ΔmdΔt)}]RBB¯.\displaystyle\frac{{\rm e}^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}}[1+q\{\mathcal{A}^{\prime}_{C\hskip-1.0653ptP}\cos(\Delta m_{d}\Delta t)+\mathcal{S}^{\prime}_{C\hskip-1.0653ptP}\sin(\Delta m_{d}\Delta t)\}]\otimes R_{B\kern 1.47495pt\overline{\kern-1.47495ptB}{}}. (8)

We perform fits to simplified simulated experiments by varying 𝒮CP\mathcal{S}^{\prime}_{C\hskip-1.0653ptP} and 𝒜CP\mathcal{A}^{\prime}_{C\hskip-1.0653ptP} from +1+1 to 1-1. We then calculate the deviations in signal 𝒜CP{\mathcal{A}_{C\hskip-1.0653ptP}} from its nominal value. These deviations are assigned as a systematic uncertainty to 𝒜CP{\mathcal{A}_{C\hskip-1.0653ptP}} due to the asymmetry of the BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} background. An overall uncertainty of 3.2%3.2\% in \mathcal{B} is taken as a systematic uncertainty due to the number of BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} pairs used, which also includes the uncertainty in f00f^{00}. The uncertainties due to the signal PDF shape parameters are estimated by varying their uncertainties. Similarly, the uncertainties due to the background PDF shape are calculated by varying all fixed parameters by their uncertainties, determined from the fit to simulated samples. We fix the MbcM^{\prime}_{\rm bc} ARGUS endpoint to the value obtained from a fit to the ΔE\Delta E sideband data. Subsequently we vary it by ±1σ\pm 1\sigma to assign a systematic uncertainty, where σ\sigma is the uncertainty from the fit. A potential fit bias is checked by performing an ensemble test comprising 10001000 simplified simulated experiments in which signal events are drawn from the corresponding simulation sample and background events are generated according to their PDF shapes. We calculate the mean shift of the signal yield from the input value and assign it as a systematic uncertainty. Tag-side interference can arise due to the presence of both CKM-favored and -suppressed tree amplitudes. The systematic uncertainty in 𝒜CP{\mathcal{A}_{C\hskip-1.0653ptP}} assigned to this interference is taken from Ref. tsi . A possible systematic uncertainty related to VXD misalignment is neglected in this study.

Table 1: List of systematic uncertainties contributing to the branching fraction and direct CPC\hskip-1.30005ptP asymmetry.
Source δ\delta\mathcal{B} (%) δ𝒜CP\delta{\mathcal{A}_{C\hskip-1.0653ptP}}
Tracking efficiency 0.6
KS0K^{0}_{\scriptscriptstyle S} reconstruction efficiency 4.2
π0\pi^{0} reconstruction efficiency 7.5
Continuum suppression efficiency 1.6
Number of BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} pairs 3.2
Flavor tagging 0.040
Resolution function 0.050
External inputs 0.4 0.021
BB¯B\kern 1.79993pt\overline{\kern-1.79993ptB}{} background asymmetry 0.002
Signal modelling 1.0 0.015
Background modelling 0.9 0.004
Possible fit bias 2.0 0.010
Tag-side interference 0.038
Total 9.6 0.086

6 Summary

We report measurements of the branching fraction and direct CPC\hskip-1.30005ptP asymmetry in B0K0π0B^{0}\rightarrow K^{0}\pi^{0} decays using a data sample, corresponding to 189.8 fb1189.8\mbox{\,fb}^{-1} of integrated luminosity, recorded by Belle II at the Υ(4S)\mathchar 28935\relax(4S) resonance. The observed signal yield is 13515+16135_{-15}^{+16}. We measure (B0K0π0)=[11.0±1.2(stat)±1.0(syst)]×106\mathcal{B}(B^{0}\rightarrow K^{0}\pi^{0})=[11.0\pm 1.2\mathrm{(stat)}\pm 1.0\mathrm{(syst)}]\times 10^{-6} and 𝒜CP=0.410.32+0.30(stat)±0.09(syst){\mathcal{A}_{C\hskip-1.0653ptP}}=-0.41_{-0.32}^{+0.30}\mathrm{(stat)}\pm 0.09\mathrm{(syst)}. This is the first measurement of 𝒜CP{\mathcal{A}_{C\hskip-1.0653ptP}} in B0K0π0B^{0}\rightarrow K^{0}\pi^{0} performed at Belle II using a decay-time-dependent analysis. The results agree with previous determinations janice ; HFLAV .

7 Acknowledgement

We thank the SuperKEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group for on-site computing support.

References

  • (1) M. Gronau, Phys. Lett. B 627, 82 (2005).
  • (2) R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 126, 091802 (2021).
  • (3) Y. Amhis et al. (Heavy Flavor Averaging Group), Eur. Phys. J. C 81, 226 (2021), arXiv:1909.12524.
  • (4) M. Fujikawa et al. (Belle Collaboration), Phys. Rev. D 81, 011101 (2010).
  • (5) B. Aubert et al. (BaBar Collaboration), Phys. Rev. D. 79, 052003 (2009).
  • (6) I. Adachi et al. (Belle Collaboration), Phys. Rev. Lett. 108, 171802 (2012).
  • (7) T. Abe et al. (Belle II Collaboration), KEK Report 2010-1, arXiv:1011.0352.
  • (8) K. Akai, K. Furukawa, and H. Koiso (SuperKEKB Group), Nucl. Instrum. Meth. A 907, 188 (2018).
  • (9) D. Lange, Nucl. Instrum. Meth. A 462, 152 (2001).
  • (10) E. Barberio, B. van Eijk, and Z. Was, Comp. Phys. Comm. 66, 115 (1991).
  • (11) B. Ward, S. Jadach, and Z. Was, Nucl. Phys. B Proc. Suppl. 116, 73 (2003)
  • (12) T. Sjöstrand, S. Mrenna, and P. Skands, Comp. Phys. Comm. 178, 852 (2008).
  • (13) S. Agostinelli et al. (Geant4 Collaboration), Nucl. Instrum. Meth. A 506, 250 (2003).
  • (14) T. Keck, arXiv:1609.06119.
  • (15) G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
  • (16) D. M. Asner et al. (CLEO Collaboration), Phys. Rev. D 53, 1039 (1996).
  • (17) F. Abudinén et al. (Belle II Collaboration), Eur. Phys. J. C 82, 283 (2022).
  • (18) T. Skwarnicki, PhD thesis, INP Krakow, DESY-F31-86-02 (1986).
  • (19) H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
  • (20) K. S. Cranmer, Comp. Phys. Comm. 136, 198 (2001).
  • (21) B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 95, 042001 (2005).
  • (22) F. Abudinén et al. (Belle II Collaboration), BELLE2-CONF-PH-2021-001, arXiv:2104.14871.
  • (23) V. Bertacchi et al. (Belle II Tracking Group), Comp. Phys. Comm. 259, 107610 (2021).
  • (24) G. Bonvicini et al. (CLEO Collaboration), Phys. Rev. D 89, 072002 (2014).
  • (25) L. Sˇ\check{\rm S}antelj et al. (Belle Collaboration), JHEP 10, 165 (2014).