This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

First Measurements of 𝝌𝒄𝑱𝚺𝚺¯+(𝑱=𝟎,𝟏,𝟐)\chi_{cJ}\rightarrow\Sigma^{-}\bar{\Sigma}^{+}(J=0,1,2) Decays

M. Ablikim1, M. N. Achasov10,d, P. Adlarson64, S.  Ahmed15, M. Albrecht4, A. Amoroso63A,63C, Q. An60,48,  Anita21, Y. Bai47, O. Bakina29, R. Baldini Ferroli23A, I. Balossino24A, Y. Ban38,l, K. Begzsuren26, J. V. Bennett5, N. Berger28, M. Bertani23A, D. Bettoni24A, F. Bianchi63A,63C, J Biernat64, J. Bloms57, A. Bortone63A,63C, I. Boyko29, R. A. Briere5, H. Cai65, X. Cai1,48, A. Calcaterra23A, G. F. Cao1,52, N. Cao1,52, S. A. Cetin51B, J. F. Chang1,48, W. L. Chang1,52, G. Chelkov29,b,c, D. Y. Chen6, G. Chen1, H. S. Chen1,52, M. L. Chen1,48, S. J. Chen36, X. R. Chen25, Y. B. Chen1,48, W. Cheng63C, G. Cibinetto24A, F. Cossio63C, X. F. Cui37, H. L. Dai1,48, J. P. Dai42,h, X. C. Dai1,52, A. Dbeyssi15, R.  B. de Boer4, D. Dedovich29, Z. Y. Deng1, A. Denig28, I. Denysenko29, M. Destefanis63A,63C, F. De Mori63A,63C, Y. Ding34, C. Dong37, J. Dong1,48, L. Y. Dong1,52, M. Y. Dong1,48,52, S. X. Du68, J. Fang1,48, S. S. Fang1,52, Y. Fang1, R. Farinelli24A,24B, L. Fava63B,63C, F. Feldbauer4, G. Felici23A, C. Q. Feng60,48, M. Fritsch4, C. D. Fu1, Y. Fu1, X. L. Gao60,48, Y. Gao61, Y. Gao38,l, Y. G. Gao6, I. Garzia24A,24B, E. M. Gersabeck55, A. Gilman56, K. Goetzen11, L. Gong37, W. X. Gong1,48, W. Gradl28, M. Greco63A,63C, L. M. Gu36, M. H. Gu1,48, S. Gu2, Y. T. Gu13, C. Y Guan1,52, A. Q. Guo22, L. B. Guo35, R. P. Guo40, Y. P. Guo9,i, Y. P. Guo28, A. Guskov29, S. Han65, T. T. Han41, T. Z. Han9,i, X. Q. Hao16, F. A. Harris53, K. L. He1,52, F. H. Heinsius4, T. Held4, Y. K. Heng1,48,52, M. Himmelreich11,g, T. Holtmann4, Y. R. Hou52, Z. L. Hou1, H. M. Hu1,52, J. F. Hu42,h, T. Hu1,48,52, Y. Hu1, G. S. Huang60,48, L. Q. Huang61, X. T. Huang41, Z. Huang38,l, N. Huesken57, T. Hussain62, W. Ikegami Andersson64, W. Imoehl22, M. Irshad60,48, S. Jaeger4, S. Janchiv26,k, Q. Ji1, Q. P. Ji16, X. B. Ji1,52, X. L. Ji1,48, H. B. Jiang41, X. S. Jiang1,48,52, X. Y. Jiang37, J. B. Jiao41, Z. Jiao18, S. Jin36, Y. Jin54, T. Johansson64, N. Kalantar-Nayestanaki31, X. S. Kang34, R. Kappert31, M. Kavatsyuk31, B. C. Ke43,1, I. K. Keshk4, A. Khoukaz57, P.  Kiese28, R. Kiuchi1, R. Kliemt11, L. Koch30, O. B. Kolcu51B,f, B. Kopf4, M. Kuemmel4, M. Kuessner4, A. Kupsc64, M.  G. Kurth1,52, W. Kühn30, J. J. Lane55, J. S. Lange30, P.  Larin15, L. Lavezzi63C, H. Leithoff28, M. Lellmann28, T. Lenz28, C. Li39, C. H. Li33, Cheng Li60,48, D. M. Li68, F. Li1,48, G. Li1, H. B. Li1,52, H. J. Li9,i, J. L. Li41, J. Q. Li4, Ke Li1, L. K. Li1, Lei Li3, P. L. Li60,48, P. R. Li32, S. Y. Li50, W. D. Li1,52, W. G. Li1, X. H. Li60,48, X. L. Li41, Z. B. Li49, Z. Y. Li49, H. Liang60,48, H. Liang1,52, Y. F. Liang45, Y. T. Liang25, L. Z. Liao1,52, J. Libby21, C. X. Lin49, B. Liu42,h, B. J. Liu1, C. X. Liu1, D. Liu60,48, D. Y. Liu42,h, F. H. Liu44, Fang Liu1, Feng Liu6, H. B. Liu13, H. M. Liu1,52, Huanhuan Liu1, Huihui Liu17, J. B. Liu60,48, J. Y. Liu1,52, K. Liu1, K. Y. Liu34, Ke Liu6, L. Liu60,48, Q. Liu52, S. B. Liu60,48, Shuai Liu46, T. Liu1,52, X. Liu32, Y. B. Liu37, Z. A. Liu1,48,52, Z. Q. Liu41, Y.  F. Long38,l, X. C. Lou1,48,52, H. J. Lu18, J. D. Lu1,52, J. G. Lu1,48, X. L. Lu1, Y. Lu1, Y. P. Lu1,48, C. L. Luo35, M. X. Luo67, P. W. Luo49, T. Luo9,i, X. L. Luo1,48, S. Lusso63C, X. R. Lyu52, F. C. Ma34, H. L. Ma1, L. L.  Ma41, M. M. Ma1,52, Q. M. Ma1, R. Q. Ma1,52, R. T. Ma52, X. N. Ma37, X. X. Ma1,52, X. Y. Ma1,48, Y. M. Ma41, F. E. Maas15, M. Maggiora63A,63C, S. Maldaner28, S. Malde58, Q. A. Malik62, A. Mangoni23B, Y. J. Mao38,l, Z. P. Mao1, S. Marcello63A,63C, Z. X. Meng54, J. G. Messchendorp31, G. Mezzadri24A, T. J. Min36, R. E. Mitchell22, X. H. Mo1,48,52, Y. J. Mo6, N. Yu. Muchnoi10,d, H. Muramatsu56, S. Nakhoul11,g, Y. Nefedov29, F. Nerling11,g, I. B. Nikolaev10,d, Z. Ning1,48, S. Nisar8,j, S. L. Olsen52, Q. Ouyang1,48,52, S. Pacetti23B, X. Pan46, Y. Pan55, A. Pathak1, P. Patteri23A, M. Pelizaeus4, H. P. Peng60,48, K. Peters11,g, J. Pettersson64, J. L. Ping35, R. G. Ping1,52, A. Pitka4, R. Poling56, V. Prasad60,48, H. Qi60,48, H. R. Qi50, M. Qi36, T. Y. Qi2, S. Qian1,48, W.-B. Qian52, Z. Qian49, C. F. Qiao52, L. Q. Qin12, X. P. Qin13, X. S. Qin4, Z. H. Qin1,48, J. F. Qiu1, S. Q. Qu37, K. H. Rashid62, K. Ravindran21, C. F. Redmer28, A. Rivetti63C, V. Rodin31, M. Rolo63C, G. Rong1,52, Ch. Rosner15, M. Rump57, A. Sarantsev29,e, M. Savrié24B, Y. Schelhaas28, C. Schnier4, K. Schoenning64, D. C. Shan46, W. Shan19, X. Y. Shan60,48, M. Shao60,48, C. P. Shen2, P. X. Shen37, X. Y. Shen1,52, H. C. Shi60,48, R. S. Shi1,52, X. Shi1,48, X. D Shi60,48, J. J. Song41, Q. Q. Song60,48, W. M. Song27, Y. X. Song38,l, S. Sosio63A,63C, S. Spataro63A,63C, F. F.  Sui41, G. X. Sun1, J. F. Sun16, L. Sun65, S. S. Sun1,52, T. Sun1,52, W. Y. Sun35, Y. J. Sun60,48, Y. K Sun60,48, Y. Z. Sun1, Z. T. Sun1, Y. H. Tan65, Y. X. Tan60,48, C. J. Tang45, G. Y. Tang1, J. Tang49, V. Thoren64, B. Tsednee26, I. Uman51D, B. Wang1, B. L. Wang52, C. W. Wang36, D. Y. Wang38,l, H. P. Wang1,52, K. Wang1,48, L. L. Wang1, M. Wang41, M. Z. Wang38,l, Meng Wang1,52, W. H. Wang65, W. P. Wang60,48, X. Wang38,l, X. F. Wang32, X. L. Wang9,i, Y. Wang49, Y. Wang60,48, Y. D. Wang15, Y. F. Wang1,48,52, Y. Q. Wang1, Z. Wang1,48, Z. Y. Wang1, Ziyi Wang52, Zongyuan Wang1,52, T. Weber4, D. H. Wei12, P. Weidenkaff28, F. Weidner57, S. P. Wen1, D. J. White55, U. Wiedner4, G. Wilkinson58, M. Wolke64, L. Wollenberg4, J. F. Wu1,52, L. H. Wu1, L. J. Wu1,52, X. Wu9,i, Z. Wu1,48, L. Xia60,48, H. Xiao9,i, S. Y. Xiao1, Y. J. Xiao1,52, Z. J. Xiao35, X. H. Xie38,l, Y. G. Xie1,48, Y. H. Xie6, T. Y. Xing1,52, X. A. Xiong1,52, G. F. Xu1, J. J. Xu36, Q. J. Xu14, W. Xu1,52, X. P. Xu46, L. Yan9,i, L. Yan63A,63C, W. B. Yan60,48, W. C. Yan68, Xu Yan46, H. J. Yang42,h, H. X. Yang1, L. Yang65, R. X. Yang60,48, S. L. Yang1,52, Y. H. Yang36, Y. X. Yang12, Yifan Yang1,52, Zhi Yang25, M. Ye1,48, M. H. Ye7, J. H. Yin1, Z. Y. You49, B. X. Yu1,48,52, C. X. Yu37, G. Yu1,52, J. S. Yu20,m, T. Yu61, C. Z. Yuan1,52, W. Yuan63A,63C, X. Q. Yuan38,l, Y. Yuan1, Z. Y. Yuan49, C. X. Yue33, A. Yuncu51B,a, A. A. Zafar62, Y. Zeng20,m, B. X. Zhang1, Guangyi Zhang16, H. H. Zhang49, H. Y. Zhang1,48, J. L. Zhang66, J. Q. Zhang4, J. W. Zhang1,48,52, J. Y. Zhang1, J. Z. Zhang1,52, Jianyu Zhang1,52, Jiawei Zhang1,52, L. Zhang1, Lei Zhang36, S. Zhang49, S. F. Zhang36, T. J. Zhang42,h, X. Y. Zhang41, Y. Zhang58, Y. H. Zhang1,48, Y. T. Zhang60,48, Yan Zhang60,48, Yao Zhang1, Yi Zhang9,i, Z. H. Zhang6, Z. Y. Zhang65, G. Zhao1, J. Zhao33, J. Y. Zhao1,52, J. Z. Zhao1,48, Lei Zhao60,48, Ling Zhao1, M. G. Zhao37, Q. Zhao1, S. J. Zhao68, Y. B. Zhao1,48, Y. X. Zhao Zhao25, Z. G. Zhao60,48, A. Zhemchugov29,b, B. Zheng61, J. P. Zheng1,48, Y. Zheng38,l, Y. H. Zheng52, B. Zhong35, C. Zhong61, L. P. Zhou1,52, Q. Zhou1,52, X. Zhou65, X. K. Zhou52, X. R. Zhou60,48, A. N. Zhu1,52, J. Zhu37, K. Zhu1, K. J. Zhu1,48,52, S. H. Zhu59, W. J. Zhu37, X. L. Zhu50, Y. C. Zhu60,48, Z. A. Zhu1,52, B. S. Zou1, J. H. Zou1 (BESIII Collaboration) 1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
9 Fudan University, Shanghai 200443, People’s Republic of China
10 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
11 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
12 Guangxi Normal University, Guilin 541004, People’s Republic of China
13 Guangxi University, Nanning 530004, People’s Republic of China
14 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
15 Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
16 Henan Normal University, Xinxiang 453007, People’s Republic of China
17 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
18 Huangshan College, Huangshan 245000, People’s Republic of China
19 Hunan Normal University, Changsha 410081, People’s Republic of China
20 Hunan University, Changsha 410082, People’s Republic of China
21 Indian Institute of Technology Madras, Chennai 600036, India
22 Indiana University, Bloomington, Indiana 47405, USA
23 (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN and University of Perugia, I-06100, Perugia, Italy
24 (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
25 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
26 Institute of Physics and Technology, Peace Ave. 54B, Ulaanbaatar 13330, Mongolia
27 Jilin University, Changchun 130012, People’s Republic of China
28 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
29 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
30 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
31 KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands
32 Lanzhou University, Lanzhou 730000, People’s Republic of China
33 Liaoning Normal University, Dalian 116029, People’s Republic of China
34 Liaoning University, Shenyang 110036, People’s Republic of China
35 Nanjing Normal University, Nanjing 210023, People’s Republic of China
36 Nanjing University, Nanjing 210093, People’s Republic of China
37 Nankai University, Tianjin 300071, People’s Republic of China
38 Peking University, Beijing 100871, People’s Republic of China
39 Qufu Normal University, Qufu 273165, People’s Republic of China
40 Shandong Normal University, Jinan 250014, People’s Republic of China
41 Shandong University, Jinan 250100, People’s Republic of China
42 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
43 Shanxi Normal University, Linfen 041004, People’s Republic of China
44 Shanxi University, Taiyuan 030006, People’s Republic of China
45 Sichuan University, Chengdu 610064, People’s Republic of China
46 Soochow University, Suzhou 215006, People’s Republic of China
47 Southeast University, Nanjing 211100, People’s Republic of China
48 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
49 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
50 Tsinghua University, Beijing 100084, People’s Republic of China
51 (A)Ankara University, 06100 Tandogan, Ankara, Turkey; (B)Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey; (C)Uludag University, 16059 Bursa, Turkey; (D)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
52 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
53 University of Hawaii, Honolulu, Hawaii 96822, USA
54 University of Jinan, Jinan 250022, People’s Republic of China
55 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
56 University of Minnesota, Minneapolis, Minnesota 55455, USA
57 University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster, Germany
58 University of Oxford, Keble Rd, Oxford, UK OX13RH
59 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
60 University of Science and Technology of China, Hefei 230026, People’s Republic of China
61 University of South China, Hengyang 421001, People’s Republic of China
62 University of the Punjab, Lahore-54590, Pakistan
63 (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
64 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
65 Wuhan University, Wuhan 430072, People’s Republic of China
66 Xinyang Normal University, Xinyang 464000, People’s Republic of China
67 Zhejiang University, Hangzhou 310027, People’s Republic of China
68 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Also at Bogazici University, 34342 Istanbul, Turkey
b Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
c Also at the Functional Electronics Laboratory, Tomsk State University, Tomsk, 634050, Russia
d Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
e Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
f Also at Istanbul Arel University, 34295 Istanbul, Turkey
g Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
h Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
i Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
j Also at Harvard University, Department of Physics, Cambridge, MA, 02138, USA
k Currently at: Institute of Physics and Technology, Peace Ave.54B, Ulaanbaatar 13330, Mongolia
l Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
m School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract

We measured the branching fractions of the decays χcJΣΣ¯+\chi_{cJ}\to\Sigma^{-}\bar{\Sigma}^{+} for the first time using the final states nn¯π+πn\bar{n}\pi^{+}\pi^{-}. The data sample exploited here is 448.1×106448.1\times 10^{6} ψ(3686)\psi(3686) events collected with BESIII. We find (χcJΣΣ¯+)=(51.3±2.4±4.1)×105,(5.7±1.4±0.6)×105,and(4.4±1.7±0.5)×105\mathcal{B}(\chi_{cJ}\rightarrow\Sigma^{-}\bar{\Sigma}^{+})=(51.3\pm 2.4\pm 4.1)\times 10^{-5},\,(5.7\pm 1.4\pm 0.6)\times 10^{-5},\,\rm{and}~{}(4.4\pm 1.7\pm 0.5)\times 10^{-5}, for J=0,1,2J=0,1,2, respectively, where the first uncertainties are statistical and the second systematic.

pacs:
13.20.Gd, 13.25.Gv, 14.40.Pq

I INTRODUCTION

Experimental studies of the χcJ(J=0,1,2)\chi_{cJ}(J=0,1,2) states are important for testing models that are based on non-perturbative Quantum Chromodynamics (QCD). The χcJ\chi_{cJ} mesons are PP-wave cc¯c\bar{c} triple-states with a spin parity J++J^{++}, and cannot be produced directly in e+ee^{+}e^{-} annihilation. However, they can be produced in the radiative decays of the vector charmonium state ψ(3686)\psi(3686) with considerable branching fractions (BFs) of 9%\sim 9\% (PDG, ). A large sample of ψ(3686)\psi(3686) decays has been collected at BESIII, which provides a good opportunity to investigate the PP-wave χcJ\chi_{cJ} states pwave .

Many theoretical calculations show that the color octet mechanism (COM) could have a large contribution in describing PP-wave quarkonium decays (COM, ; ppbar, ; COM2, ). The predictions for χcJ\chi_{cJ} decays to meson pairs are in agreement with the experimental results (meson, ), while contradictions are observed in the χcJ\chi_{cJ} decays to baryon pairs (BB¯)(B\bar{B}) (ppbar, ; COM2, ). For example, the predicted BFs of χcJΛΛ¯\chi_{cJ}\to\Lambda\bar{\Lambda} disagree with measured values (BES, ). In addition, the study of χc0BB¯\chi_{c0}\to B\bar{B} is helpful to test the validity of the helicity selection rule (HSR) (HSR, ; HSR1, ), which prohibits χc0BB¯\chi_{c0}\to B\bar{B}. Measured BFs for χc0pp¯,ΛΛ¯andΞΞ¯+\chi_{c0}\to p\bar{p},\,\Lambda\bar{\Lambda}~{}\rm{and}~{}\Xi^{-}\bar{\Xi}^{+} do not vanish (BES, ; BES_hsr1, ), demonstrating a strong violation of HSR in charmonium decay. The quark creation model (QCM) (QCM, ) is developed to explain the strengthened decays of χc0BB¯\chi_{c0}\to B\bar{B} and it predicts the rate of χc0,2Ξ+Ξ\chi_{c0,2}\to\Xi^{+}\Xi^{-} (BES_hsr1, ) well. However, the same model is unable to accurately reproduce the observed decay rates to other BB¯B\bar{B} final states (BES, ). Recent BF data for χc1,2Σ+Σ¯\chi_{c1,2}\to\Sigma^{+}\bar{\Sigma}^{-} and Σ0Σ¯0\Sigma^{0}\bar{\Sigma}^{0} (CLEO, ) are in good agreement with COM predictions (ppbar, ), while measured BFs of χc0Σ+Σ¯\chi_{c0}\to\Sigma^{+}\bar{\Sigma}^{-} and Σ0Σ¯0\Sigma^{0}\bar{\Sigma}^{0} (CLEO, ; BES2, ) are inconsistent with COM models based on the charm-meson-loop mechanism (COM2, ; Charm, ), and violate the HSR, too. Experimentally, there are no BF data of χcJΣΣ¯+\chi_{cJ}\to\Sigma^{-}\bar{\Sigma}^{+}, and therefore those measurements are necessary to further test the validity of COM, HSR and QCM.

In this paper, we report on an analysis of the processes ψ(3686)γχcJ\psi(3686)\rightarrow\gamma\chi_{cJ}, χcJΣΣ¯+\chi_{cJ}\rightarrow\Sigma^{-}\bar{\Sigma}^{+} (Σnπ\Sigma^{-}\to n\pi^{-}, Σ¯+n¯π+\bar{\Sigma}^{+}\to\bar{n}\pi^{+}) using a data sample of (448.1±2.9)×106(448.1\pm 2.9)\times 10^{6} ψ(3686)\psi(3686) events collected with BESIII (psidata, ). The BFs of the decays χcJΣΣ¯+\chi_{cJ}\to\Sigma^{-}\bar{\Sigma}^{+} are measured for the first time.

II BESIII DETECTOR AND MONTE CARLO SIMULATION

The BESIII detector operating at the Beijing electron-positron collider (BEPCII), is a double-ring e+ee^{+}e^{-} collider with a peak luminosity of 1×1033 cm2s11\times 10^{33}\textrm{\ cm}^{-2}\textrm{s}^{-1} at center-of-mass energy s=3.77GeV\sqrt{s}=3.77~{}\mathrm{GeV} (pwave, ; BESDetector, ). The BESIII detector has a geometrical acceptance of 93%93\% over 4π4\pi solid angle. The cylindrical core of the BESIII detector consists of a small-cell, helium-gas-based (60%60\% He, 40%40\% C3H8) main drift chamber (MDC) which is used to track the charged particles. The MDC is surrounded by a time-of-flight (TOF) system built from plastic scintillators that is used for charged-particle identification (PID). Photons are detected and their energies and positions are measured with an electromagnetic calorimeter (EMC) consisting of 6240 CsI(TI) crystals. The sub-detectors are enclosed in a superconducting solenoid magnet with a field strength of 1 T. Outside the magnet coil, the muon detector consists of 1000 m2 resistive plate chambers in nine barrel and eight end-cap layers, providing a spatial resolution of better than 2 cm. The momentum resolution of charged particle is 0.5%0.5\% at 1 GeV. The energy loss (dE/dxdE/dx) measurement provided by the MDC has a resolution of 6%, and the time resolution of the TOF is 80 ps (110 ps) in the barrel (end-caps). The energy resolution for photons is 2.5% (5%) at 1 GeV in the barrel (end-caps) of the EMC.

A dedicated Monte Carlo (MC) simulation of the BESIII detector based on geant4 (geant4, ) is used for the optimization of event selection criteria, the determination of the detection efficiencies, and to estimate the contributions of backgrounds. A generic MC sample with 5.06×1085.06\times 10^{8} events is generated, where the production of the ψ(3686)\psi(3686) resonance is simulated by the MC event generator kkmc (KKMC, ). Particle decays are generated by evtgen (BESEVTGEN, ) for the known decay modes with BFs taken from Particle Data Group (PDG), and by lundcharm (LundCharm, ) for the remaining unknown decays. For the MC simulation of the signal process, the decay of ψ(3686)γχcJ\psi(3686)\rightarrow\gamma\chi_{cJ} is generated by following the angular distributions taken from Ref. (Angular, ), where the polar angles θ\theta of radiation photons are distributed according to (1+cos2θ),(113cos2θ),(1+113cos2θ)(1+\cos^{2}\theta),(1-\frac{1}{3}\cos^{2}\theta),(1+\frac{1}{13}\cos^{2}\theta) for J=0,1,2J=0,~{}1,~{}2. The χcJΣΣ¯+\chi_{cJ}\to\Sigma^{-}\bar{\Sigma}^{+} decays are generated with the angsam (BESEVTGEN, ) model, with helicity angles of the Σ\Sigma satisfying the angular distribution 1+αcos2θ1+\alpha\cos^{2}\theta. Note that α=0\alpha=0 for the decay of the χc0\chi_{c0} because the helicity angular distribution of a scalar particle is isotropic. The subsequent decays Σnπ\Sigma^{-}\to n\pi^{-} and Σ¯+n¯π+\bar{\Sigma}^{+}\to\bar{n}\pi^{+} are generated with uniform momentum distribution in the phase space (PHSP(explan, ).

III EVENT SELECTION AND BACKGROUND ANALYSIS

We reconstruct the candidate events from the decay chain ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ} followed by χcJΣΣ¯+\chi_{cJ}\to\Sigma^{-}\bar{\Sigma}^{+} with subsequent decays Σnπ\Sigma^{-}\to n\pi^{-} and Σ¯+n¯π+\bar{\Sigma}^{+}\to\bar{n}\pi^{+}. The charged tracks are reconstructed with the hit information from the MDC. The polar angles of charged tracks in the MDC have to fulfill |cosθ|<0.93|\cos\theta|<0.93. A loose vertex requirement is applied for charged-track candidates to implement the sizable decay lengths of ΣandΣ¯+\Sigma^{-}~{}\rm{and}~{}\bar{\Sigma}^{+}, and each charged track is required to have a point of closest approach to e+ee^{+}e^{-} interaction point that is within 10 cm in the plane perpendicular to the beam axis and within ±30\pm 30 cm in the beam direction. The combined information of dE/dxdE/dx and TOF is used to calculate PID probabilities for the pion, kaon and proton hypothesis, respectively, and the particle type with the highest probability is assigned to the corresponding track. In this analysis, candidate events are required to have two charged tracks identified as π+\pi^{+} and π\pi^{-}.

There are three neutral particles in the final states of the signal process, the radiative photon γ\gamma, anti-neutron n¯\bar{n} and neutron nn. The radiative photon deposits most of its energy in the EMC with a high efficiency. The n¯\bar{n} annihilates in the EMC and produces several secondary particles with a total energy deposition up to 2 GeV. The nn, on the other hand, is not identifiable due to its low interaction efficiency and its small energy deposition. Therefore, the n¯\bar{n} and radiative photon are selected in this process. The most energetic shower in the EMC is assigned to be the n¯\bar{n} candidate. To discriminate n¯\bar{n} from photons and to suppress the electronic noise, several selection criteria are used. Firstly, the deposited energy of n¯\bar{n} is required to be in the range 0.2-2.0 GeV. Secondly, the second moment of candidate shower, defined as S=iEiri2/iEiS=\sum_{i}E_{i}r_{i}^{2}/\sum_{i}E_{i}, must satisfy S>20S>20 cm2, where EiE_{i} is the energy deposited in the ithi^{th} crystal of the shower and rir_{i} is the distance from the center of that crystal to the center of the shower (nnbar, ). Furthermore, the number of EMC hits in a 40 cone seen from the vertex around the n¯\bar{n} shower direction is required to be greater than 2020. After applying these selection criteria, the n¯\bar{n} candidates have a purity of more than 98% estimated from signal MC sample.

To avoid the secondary showers originating from n¯\bar{n} annihilation, the radiative photon is selected from EMC showers that have an opening angle with respect to the n¯\bar{n} direction that is greater than 4040^{\circ}. Good photon candidates are selected by requiring a minimum energy deposition of 80 MeV in the EMC, and are isolated from all charged tracks by a minimum angle of 1010^{\circ}. The time information of the EMC is used to further suppress electronic noise and energy depositions unrelated to the event. At least one good photon candidate is required in an event.

The momentum or direction information of candidate particles are subjected to a kinematic fit that assumes the ψ(3686)γnn¯π+π\psi(3686)\to\gamma n\bar{n}\pi^{+}\pi^{-} hypothesis, where the direction of n¯\bar{n} in the fit is involved and nn is treated as a missing particle. The kinematic fit is then applied by imposing energy and momentum conservation at the IP and by constraining the n¯π+\bar{n}\pi^{+} invariant mass to match the nominal Σ¯+\bar{\Sigma}^{+} mass PDG . For events with more than one photon candidate, the combination with a minimum χkfit2\chi^{2}_{\rm kfit} is chosen with the requirement that χkfit2<20\chi^{2}_{\rm kfit}<20.

\begin{overpic}[width=247.53888pt,angle={0}]{sigma_inc.eps} \put(85.0,55.0){{(a)}} \end{overpic}
\begin{overpic}[width=247.53888pt,angle={0}]{chicj_inc.eps} \put(85.0,55.0){{(b)}} \end{overpic}
Figure 1: Invariant-mass distributions of reconstructed Σ\Sigma^{-} candidates (a) and the recoil mass of γ\gamma (b). The dots with error bars denote the data. The contributions for each component are obtained using MC simulations and are indicated as the hatched histograms.

After applying the kinematic fit, the backgrounds from ψ(3686)π0π0J/ψ\psi(3686)\to\pi^{0}\pi^{0}J/\psi followed by decays of J/ψBB¯J/\psi\to B\bar{B} and π0γγ\pi^{0}\to\gamma\gamma are suppressed by reconstructing events with two photon candidates. An event is then discarded when the invariant mass of any two photons are located within 120 MeV/c2c^{2} and 150 MeV/c2c^{2}. The contamination of the channel ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi with J/ψnn¯J/\psi\to n\bar{n} is removed by requiring |Mrec(π+π)m(J/ψ)|>10|M_{\rm rec}(\pi^{+}\pi^{-})-m(J/\psi)|>10 MeV/c2c^{2}, where Mrec(π+π)M_{\rm rec}(\pi^{+}\pi^{-}) is the recoil mass of the π+π\pi^{+}\pi^{-} pair and m(J/ψ)m(J/\psi) is the world average mass of the J/ψJ/\psi meson PDG . Another sources of backgrounds are from events containing a KS0K_{\rm S}^{0}. These events are removed by requiring |M(π+π)m(KS0)|>10|M(\pi^{+}\pi^{-})-m(K_{\rm S}^{0})|>10~{}MeV/c2c^{2}, whereby M(π+π)M(\pi^{+}\pi^{-}) and m(KS0)m(K_{\rm S}^{0}) are the reconstructed π+π\pi^{+}\pi^{-} invariant mass and world average mass of the KS0K_{\rm S}^{0} PDG , respectively. The signal could be contaminated with background from ψ(3686)ΣΣ¯+\psi(3686)\to\Sigma^{-}\bar{\Sigma}^{+} whereby one fake photon has been reconstructed. To remove such background, events are rejected for which the χkfit2(ΣΣ¯+)\chi^{2}_{\rm kfit}(\Sigma^{-}\bar{\Sigma}^{+}) is smaller than χkfit2(γΣΣ¯+)\chi^{2}_{\rm kfit}(\gamma\Sigma^{-}\bar{\Sigma}^{+}).

The invariant-mass spectrum of nπn\pi^{-} and the recoil mass spectrum of the γ\gamma are shown in Fig. 1 for both data and MC simulations, where Σ\Sigma^{-} and χcJ\chi_{cJ} signals can be observed. The MC results represent the main characteristics of the various background sources. However, they cannot fully describe the data due to missing or improper modeling of background processes involving BB¯B\bar{B}, especially when the final states contain nn¯n\bar{n}. Using the topology technique (gemc, ), we have categorized the main background sources into three kinds: a) the process ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ} whereby the χcJ\chi_{cJ} decays to hadronic final states, which shows a peak in Mrec(γ)M_{\rm rec}(\gamma) and no peaking structure in M(nπ)M(n\pi^{-}); b) the process ψ(3686)BB¯\psi(3686)\to B\bar{B} or J/ψBB¯J/\psi\to B\bar{B} via the hadronic transition from ψ(3686)\psi(3686), which is not peaking in Mrec(γ)M_{\rm rec}(\gamma) but shows a wide bump in M(nπ)M(n\pi^{-}); c) the decays ψ(3686)\psi(3686) to hadronic final states, which are non-peaking in both Mrec(γ)M_{\rm rec}(\gamma) and M(nπ)M(n\pi^{-}). Besides, a two-dimensional (2D) distribution of M(nπ)M(n\pi^{-}) and Mrec(γ)M_{\rm rec}(\gamma) is shown in Fig. 2 for the data. Clear accumulations of candidate events of the signal process χc0ΣΣ¯+\chi_{c0}\to\Sigma^{-}\bar{\Sigma}^{+} are observed around the intersections of the χc0\chi_{c0} and Σ\Sigma^{-} mass regions, and a signature of the process χc1,2ΣΣ¯+\chi_{c1,2}\to\Sigma^{-}\bar{\Sigma}^{+} can be observed. A data sample corresponding to an integrated luminosity of 44 pb-1, taken at s=3.65\sqrt{s}=3.65 GeV, is used to estimate the continuum background arising from quantum electrodynamics (QED) processes. No peaking backgrounds are observed in the mass spectrum of Mrec(γ)M_{\rm rec}(\gamma) for the continuum data sample, therefore the contribution from QED background can be neglected.

\begin{overpic}[width=250.38434pt,angle={0}]{scatterplot.eps} \end{overpic}
Figure 2: A 2D distribution of Mrec(γ)M_{\rm rec}(\gamma) versus M(nπ)M(n\pi^{-}) for data.

IV EXTRACTION OF THE SIGNAL

To extract the signal yields for χcJΣΣ¯+\chi_{cJ}\to\Sigma^{-}\bar{\Sigma}^{+}, unbinned maximum-likelihood fits to the Mrec(γ)M_{\rm rec}(\gamma) distributions as a function of M(nπ)M(n\pi^{-}) are performed, noted as bin-by-bin fit. The bin width for M(nπ)M(n\pi^{-}) is determined by testing the MC samples, where the MC samples include events from MC-generated background sources, and events randomly sampled from signal MC events with the same amount events as observed in data as signal. The bin width is determined when the minimum input-output difference is obtained for the extraction of the signal and it is found to be 10 MeV/c2c^{2}.

In the fit of Mrec(γ)M_{\rm rec}(\gamma) in each nπn\pi^{-} bin, the χcJ\chi_{cJ} signals are described by the MC shapes convoluted with Gaussian functions to compensate for a possible resolution difference between the data and MC. For a proper modeling of the lineshape of the signal, thereby suppressing photon misidentification, we selected signal MC events for which the opening angle of the reconstructed photon matches the value given by the generator. A second-order Chebychev polynomial function is used to describe the non-χcJ\chi_{cJ} background. It should be noted that the Mrec(γ)M_{\rm rec}(\gamma) resolution of the process ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ}, with inclusive decays of the χcJ\chi_{cJ}, is the same as observed in the signal MC data. Figure 3 shows the results of a bin-by-bin fit of one of the Mrec(γ)M_{\rm rec}(\gamma) distributions selected for a bin in M(nπ)M(n\pi^{-}) at the Σ\Sigma^{-} peak position. Figure 4 shows the fitted signal yields of ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ} as a function of M(nπ)M(n\pi^{-}). Clear signatures of Σ\Sigma^{-} decays can be observed. Binned least-χ2\chi^{2} fits are subsequently performed to these spectra. The signal shapes are described by MC-simulated responses convoluted with Gaussian distributions and backgrounds are described by second-order Chebychev polynomials. The fit results are shown by the lines in Fig. 4. The statistical significances of the signal for the three χcJ\chi_{cJ} cases are found to be 30σ\sigma, 5.8σ\sigma and 3.6σ\sigma, respectively. The significances are calculated from the χ2\chi^{2} differences between fits with and without the signal processes. The corresponding signal yields are summarized in Table 1. The BFs are obtained from:

(χcJΣΣ¯+)=NobsNψ(3686)ϵi,\mathcal{B}(\chi_{cJ}\rightarrow\Sigma^{-}\bar{\Sigma}^{+})=\frac{N^{obs}}{N_{\psi(3686)}\cdot\epsilon\cdot\prod\mathcal{B}_{i}}~{}, (1)

where NobsN^{obs} is the number of signal events obtained from the bin-by-bin fit; ϵ\epsilon is the detection efficiency obtained from signal MC after the photon matching; i\prod\mathcal{B}_{i} is the product of BFs for the ψ(3686)γχcJ\psi(3686)\rightarrow\gamma\chi_{cJ}, Σnπ\Sigma^{-}\to n\pi^{-} and Σ¯+n¯π+\bar{\Sigma}^{+}\to\bar{n}\pi^{+} channels; and Nψ(3686)N_{\psi(3686)} is the total number of ψ(3686)\psi(3686) events. The corresponding detection efficiencies and the resultant BFs are summarized in Table 1. We note that due to the low-energy radiative photon of χcJ(J=1,2)\chi_{cJ}~{}(J=1,2), the detection efficiency tends to get smaller due to the rejection of π0\pi^{0}-mass requirement.

\begin{overpic}[width=247.53888pt,angle={0}]{chicj_bin_11.eps} \end{overpic}
Figure 3: Fit to the Mrec(γ)M_{\rm rec}(\gamma) distribution at the maximum accumulation in the M(nπ)M(n\pi^{-}) bin. Black dots with error bars are from data, the solid blue lines are the best fit result, dashed red lines represent signal contributions, and dashed green lines are the fitted backgrounds.
\begin{overpic}[width=167.87108pt,angle={0}]{chic0_mass.eps} \put(80.0,55.0){{(a)}} \end{overpic}
\begin{overpic}[width=167.87108pt,angle={0}]{chic1_mass.eps} \put(80.0,55.0){{(b)}} \end{overpic}
\begin{overpic}[width=167.87108pt,angle={0}]{chic2_mass.eps} \put(80.0,55.0){{(c)}} \end{overpic}
Figure 4: The χcJΣΣ¯+\chi_{cJ}\to\Sigma^{-}\bar{\Sigma}^{+} signal yields as a function of M(nπ)M(n\pi^{-}) for (a) χc0\chi_{c0} (b) χc1\chi_{c1} and (c) χc2\chi_{c2}. Black dots with error bars correspond to data, the solid blue lines are the overall fit results, dashed red lines represent signal contributions, and dashed green lines are the fitted backgrounds.
Table 1: BFs of χcJΣΣ¯+\chi_{cJ}\rightarrow\Sigma^{-}\bar{\Sigma}^{+} (in units of 10510^{-5}), where the errors are statistical only. The statistical errors of the MC-determined efficiencies are negligible.
Quantity χ𝐜𝟎\mathbf{\chi_{c0}} χ𝐜𝟏\mathbf{\chi_{c1}} χ𝐜𝟐\mathbf{\chi_{c2}}
NobsN^{\rm obs} 2143±1022143\pm 102 214±53214\pm 53 131±51131\pm 51
Efficiency (ϵ)%(\epsilon)\% 9.569.56 8.588.58 6.976.97
\mathcal{B}(ψ(3686)γχcJ)%(\psi{(3686)}\rightarrow\gamma\chi_{cJ})\% 9.799.79 9.759.75 9.529.52
\mathcal{B}(χcJΣΣ¯+)(105)(\chi_{cJ}\rightarrow\Sigma^{-}\bar{\Sigma}^{+})(10^{-5}) 51.3±2.451.3\pm 2.4 5.7±1.45.7\pm 1.4 4.4±1.74.4\pm 1.7

V ESTIMATION OF SYSTEMATIC UNCERTAINTIES

Various sources of systematic uncertainties are studied and summarized in Table 2. The investigated uncertainties are discussed in detail in the following:

Table 2: Systematic uncertainties in the BF measurements in percent.
Source χ𝐜𝟎\mathbf{\chi_{c0}} χ𝐜𝟏\mathbf{\chi_{c1}} χ𝐜𝟐\mathbf{\chi_{c2}}
MDC Tracking 2.82.8 2.82.8 2.82.8
Photon Reconstruction 1.01.0 1.01.0 1.01.0
Kinematic Fit 5.85.8 5.85.8 5.85.8
π0\pi^{0} mass window 1.61.6 - -
π+π\pi^{+}\pi^{-} mass window 0.60.6 - -
Mrec(π+π)M_{\rm rec}({\pi^{+}\pi^{-})} mass window 1.01.0 - -
Bin size of Σ\Sigma^{-}; 0.30.3 1.01.0 1.51.5
Signal Shape 2.62.6 2.82.8 0.00.0
Background Shape 1.21.2 2.92.9 3.23.2
Fitting Range 1.01.0 2.52.5 4.34.3
Signal Shape of χcJ\chi_{cJ}; 0.00.0 0.00.0 0.00.0
Background Shape 0.00.0 1.41.4 1.61.6
Fitting Range 0.20.2 1.81.8 2.32.3
Generator - 4.24.2 4.14.1
Truth Match 0.70.7 0.70.7 0.70.7
Number of ψ(3686)\psi(3686) 0.60.6 0.60.6 0.60.6
(ψ(3686)γχcJ)\mathcal{B}(\psi(3686)\to\gamma\chi_{cJ}) 2.02.0 2.52.5 2.12.1
Total 7.97.9 9.89.8 10.210.2

a. MDC Tracking: The tracking efficiencies for π+/π\pi^{+}/\pi^{-} as functions of the transverse momentum have been studied with the process J/ψΣΣ¯+πΛn¯π+(Λπp)J/\psi\rightarrow\Sigma^{*-}\bar{\Sigma}^{+}\rightarrow\pi^{-}\Lambda~{}\bar{n}~{}\pi^{+}(\Lambda\rightarrow\pi^{-}p). The efficiency difference between data and MC is 1.4%1.4\% for each charged-pion track.

b. Photon Reconstruction: The uncertainty of the photon-detection efficiency is estimated to be 1.0%1.0\% per photon (Sys1, ).

c. n¯\bar{n} Selection and Kinematic Fit: The systematic uncertainties of the n¯\bar{n} selection and the kinematic fit involving the n¯\bar{n} is studied using the control sample of J/ψΣΣ¯+J/\psi\to\Sigma^{*}\bar{\Sigma}^{+}. The relative difference of 5.8% in efficiency between MC and data is assigned as the corresponding systematic uncertainty.

d. Mass Window Requirement: Various cuts in the mass spectra have been used to select events, namely on M(γγ)M(\gamma\gamma), M(π+π)M(\pi^{+}\pi^{-}) and Mrec.(π+π)M_{rec.}(\pi^{+}\pi^{-}). Cross checks of systematic effects for these mass window requirements are considered following the procedure described in Ref. Sys4 . The consistency of the results is checked by comparing the uncorrelated differences between the parameter values, xtest±σtestx_{test}\pm\sigma_{test}, obtained from the fits to the nominal results, xnom.±σnom.x_{nom.}\pm\sigma_{nom.}. The systematic sources cannot be discarded when the significance of uncorrelated differences, Δxuncor.=|xnom.xtest|/|σnom.2σtest2|>2\Delta x_{uncor.}=|x_{nom.}-x_{test}|/\sqrt{|\sigma^{2}_{nom.}-\sigma^{2}_{test}|}>2. By comparing the results of various selections taken within a proper range with the nominal result, the one with the largest difference is taken as an estimate of the corresponding uncertainty. For the χc0\chi_{c0} case, the π0\pi^{0} veto is tested by varying the rejection windows, |M(γγ)m(π0)||M(\gamma\gamma)-m(\pi^{0})| from 3 to 18MeV/c2\;\text{MeV}/c^{2}. The largest deviation Δxuncor.\Delta x_{uncor.} is found when the veto is applied at 12MeV/c212\;\text{MeV}/c^{2}. Similar attempts are performed for the mass windows of Mrec(π+π)andM(π+π)M_{\rm rec}(\pi^{+}\pi^{-})~{}\rm{and}~{}M(\pi^{+}\pi^{-}). The largest deviations are found when the windows are |Mrec(π+π)m(J/ψ)|>16MeV/c2|M_{\rm rec}(\pi^{+}\pi^{-})-m(J/\psi)|>16\;\text{MeV}/c^{2} and |M(π+π)|M(\pi^{+}\pi^{-}) - m(KS0)|>12MeV/c2m(\textrm{K}^{0}_{\rm S})|>12\;\text{MeV}/c^{2}. The differences to the nominal results are then taken as an estimate of the systematic uncertainty. In all cases, we observe no tendency of Δxuncor.\Delta x_{uncor.} along with the selection variations, indicating no bias in these selection criteria. For χc1,2\chi_{c1,2}, it is found that the Δxuncor.\Delta x_{uncor.} for all the tests are less than 2σ2\sigma. Therefore, no systematic uncertainties are considered in that case.

e. Fitting Process: To estimate the uncertainties from the fitting process, the following three studies are made.

(i) Bin Width: The bin width in the bin-by-bin fit is determined to be 10 MeV/c2\;\text{MeV}/c^{2} by testing a series of MC samples as described in Sec. IV. The systematic uncertainties are determined by taking the difference between the determined branching fractions and their input values for χcJΣΣ¯+\chi_{cJ}\to\Sigma^{-}\bar{\Sigma}^{+}.

(ii). Fit of χcJ\chi_{cJ}: To extract the uncertainties associated with the fit procedure on Mrec(γ)M_{\rm rec}(\gamma), alternative fits are performed by replacing the second-order polynomial function with a third-order function for the background description, fixing the width of the Gaussian functions for the signal description, and by varying the fitting range. All the relative changes in the results are taken as the uncertainties from the fit.

(iii) Fit of M(Σ)M(\Sigma^{-}): Similarly, alternative fits are applied by varying the MC-simulated signal and background shapes and fit ranges. The differences are treated as a systematic uncertainty.

f. Generator: For the χc0\chi_{c0} case, the angular distribution of the Σ\Sigma^{-} in the χc0\chi_{c0} rest frame is isotropic since the χc0\chi_{c0} is a scalar particle. Therefore, no systematic uncertainty needs to be considered for the χc0\chi_{c0}. For χc1,2\chi_{c1,2}, on the other hand, we considered two extreme cases in the analysis, namely with α=1\alpha=1 and 1-1, respectively. The resulting differences in efficiency with a factor of 12\sqrt{12} are then assigned as the source of a systematic uncertainty.

g. MC Truth Matching Angle: Since in the analysis of the signal MC data sample only events are selected whereby the difference between the angle of the reconstructed photon and the generated one (MC truth angle) is less than 1010^{\circ}, it might lead to a systematic error in the efficiency determination. Several differences with MC truth angles are considered ranging from 1010^{\circ} to 2020^{\circ}. The largest difference on the efficiencies are considered as the source of systematic uncertainty.

Table 3: Results of the BFs (inunitsof105)(\rm{in~{}units~{}of~{}}10^{-5}) for the measurement of χcJΣΣ¯+\chi_{cJ}\to\Sigma^{-}\bar{\Sigma}^{+}, compared with the χcJΣ+Σ¯\chi_{cJ}\to\Sigma^{+}\bar{\Sigma}^{-} results from BESIII (BES2, ) and theoretical predictions (ppbar, )(COM2, )(QCM, ). The first errors are statistical and the second systematic.
Channel This work Statistical significance BESIII (BES2, ) Theoretical predictions
χcJΣΣ¯+\chi_{cJ}\to\Sigma^{-}\bar{\Sigma}^{+} χcJΣ+Σ¯\chi_{cJ}\to\Sigma^{+}\bar{\Sigma}^{-} COM QCM (QCM, )
χc0ΣΣ¯+\chi_{c0}\rightarrow\Sigma^{-}\bar{\Sigma}^{+} 51.3±2.4±4.151.3\pm 2.4\pm 4.1 30σ30\,\sigma 50.4±2. 5±2.750.4\pm 2.\ 5\pm 2.7 5.9-6.9 (COM2, ) 18.1±3.918.1\pm 3.9
χc1ΣΣ¯+\chi_{c1}\rightarrow\Sigma^{-}\bar{\Sigma}^{+} 5.7±1.4±0.65.7\pm 1.4\pm 0.6 5.8σ5.8\,\sigma 3.7±0.6±0 .23.7\pm 0.6\pm 0\ .2 3.3 (ppbar, )
χc2ΣΣ¯+\chi_{c2}\rightarrow\Sigma^{-}\bar{\Sigma}^{+} 4.4±1.7±0.54.4\pm 1.7\pm 0.5 3.6σ3.6\,\sigma 3.5±0.7±0 .33.5\pm 0.7\pm 0\ .3 5.05.0 (ppbar, ) 4.3±0.44.3\pm 0.4

Other Uncertainties: The total number of ψ(3686)\psi(3686) decays is determined by analyzing the inclusive hadronic events from ψ(3686)\psi(3686) decays with an uncertainty of 0.6%0.6\% (psidata, ). The uncertainties due to the BFs ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ} are quoted from the PDG (PDG, ). The systematic error due to uncertainties in the trigger efficiency is negligible for this analysis.

Total Systematic Uncertainty: We assume that all systematic uncertainties given above are independent and we add them in quadrature to obtain the total systematic uncertainty.

VI SUMMARY

Based on (448.1±2.9)×106ψ(3686)(448.1\pm 2.9)\times 10^{6}\,\psi(3686) events collected with the BESIII detector, the BFs of the processes χcJΣΣ¯+\chi_{cJ}\rightarrow\Sigma^{-}\bar{\Sigma}^{+} are measured and the results are summarized in Table 3. This is the first BF measurement of χcJΣΣ¯+\chi_{cJ}\rightarrow\Sigma^{-}\bar{\Sigma}^{+}. The results of χcJΣΣ¯+\chi_{cJ}\to\Sigma^{-}\bar{\Sigma}^{+} are consistent with χcJΣ+Σ¯\chi_{cJ}\to\Sigma^{+}\bar{\Sigma}^{-} (BES2, ) from BESIII within the uncertainties, which confirm the prediction of isospin symmetry. The BF of χc0ΣΣ¯+\chi_{c0}\to\Sigma^{-}\bar{\Sigma}^{+} does not vanish, which demonstrates a strong violation of the HSR. Both predictions based on the COM (COM2, ) and QCM (QCM, ) fail to describe our measured result. The measured BFs of χc1,2ΣΣ¯+\chi_{c1,2}\to\Sigma^{-}\bar{\Sigma}^{+} are in good agreement with the theoretical predictions based on COM (ppbar, ) and consistent within 1σ1\sigma with the prediction based on QCM (QCM, ) for χc2ΣΣ\chi_{c2}\to\Sigma\Sigma.

ACKNOWLEDGMENTS

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center and the supercomputing center of USTC for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012, 11335008, 11375170, 11475164, 11475169, 11625523, 11605196, 11605198, 11705192; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos.U1732263, U1832207, U1532102, U1832103; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; German Research Foundation DFG under Contracts Nos. Collaborative Research Center CRC 1044, FOR 2359; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Contract No. 2016.0157; Olle Engkvist Foundation (Sweden); The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Swedish Research Council; U. S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0012069.

References

  • (1) M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
  • (2) M. Ablikim et al. (BESIII Collaboration), Chin. Phys.  C 44, 040001 (2020).
  • (3) G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D 51, 1125 (1995); J. Bolz, P. Kroll, and G.A. Schuler, Phys. Lett. B 392, 198 (1997).
  • (4) S. M. H. Wong, Eur. Phys. J. C 14, 643 (2000).
  • (5) X. H. Liu and Q. Zhao, J. Phys. G 38, 035007 (2011).
  • (6) J. Z. Bai et al. (BES Collaboration), Phys. Rev. Lett. 81, 3091 (1998).
  • (7) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 87, 032007 (2013), Erratum: Phys. Rev. D 87, 059901 (2013).
  • (8) S. J. Brodsky, and G. P. Lepage, Phys. Rev. D 24, 2848 (1981).
  • (9) V. L. Chernyak and A. R. Zhitnitsky, Phys. Rept. 112, 173 (1984).
  • (10) M. Ablikim et al. (BES Collaboration), Phys. Rev. D. 73, 052006 (2006).
  • (11) R. G. Ping, B. S. Zou, and H. C. Chiang, Eur. Phys. J. A 23, 129 (2004).
  • (12) P. Naik et al. (CLEO Collaboration), Phys. Rev. D. 78, 031101 (2008).
  • (13) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D. 97, 052011 (2018).
  • (14) X. H. Liu and Q. Zhao, Phys. Rev. D 81, 014017 (2010).
  • (15) M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C. 42, 023001(2018).
  • (16) M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Meth. A 614, 345 (2010).
  • (17) S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Meth. A 506, 250 (2003).
  • (18) S. Jadach, B. F. L. Ward and Z. Was, Phys. Rev. D 63, 113009 (2001); Comput. Phys. Commun. 130, 260 (2000).
  • (19) D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001); R. G. Ping, Chin. Phys. C 32, 599 (2008).
  • (20) J. C. Chen, G. S. Huang, X. R. Qi, D. H. Zhang and Y. S. Zhu, Phys. Rev. D 62, 034003 (2000); R. L. Yang, R. G. Ping and H. Chen, Chin. Phys. Lett. 31, 061301 (2014).
  • (21) W. M. Tanenbaum et al., Phys. Rev. D. 17, 1731 (1978); G. R. Liao, R. G. Ping, and Y. X. Yang, Chin. Phys. Lett. 26, 051101 (2009).
  • (22) Due to the unknown polarization in the production of Σ\Sigma^{-} and small value of asymmetry parameters, α=0.068\alpha=0.068 (PDG, ), the efficiency difference between PHSP and differential helicity amplitude can be neglected.
  • (23) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 86, 032014 (2012).
  • (24) X. Zhou, S. Du, G. Li and C. Shen, arXiv:2001.04016 [hep-ex].
  • (25) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 83, 012006 (2011).
  • (26) R. Wanke, Data Analysis in High Energy Physics, (Wiley-VCH Verlag GmbH and Co. KGaA, 2013) pp. 263-280.