This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Belle Collaboration

First Simultaneous Determination of Inclusive and Exclusive |Vub|\left|V_{ub}\right|

L. Cao  0000-0001-8332-5668 lu.cao@desy.de    F. Bernlochner 0000-0001-8153-2719 florian.bernlochner@uni-bonn.de    K. Tackmann 0000-0003-3917-3761    I. Adachi  0000-0003-2287-0173    H. Aihara  0000-0002-1907-5964    S. Al Said 0000-0002-4895-3869    D. M. Asner 0000-0002-1586-5790    H. Atmacan 0000-0003-2435-501X    T. Aushev  0000-0002-6347-7055    R. Ayad 0000-0003-3466-9290    V. Babu  0000-0003-0419-6912    S. Bahinipati 0000-0002-3744-5332    Sw. Banerjee  0000-0001-8852-2409    P. Behera  0000-0002-1527-2266    K. Belous 0000-0003-0014-2589    J. Bennett 0000-0002-5440-2668    M. Bessner 0000-0003-1776-0439    B. Bhuyan  0000-0001-6254-3594    T. Bilka 0000-0003-1449-6986    D. Biswas  0000-0002-7543-3471    A. Bobrov  0000-0001-5735-8386    D. Bodrov 0000-0001-5279-4787    J. Borah  0000-0003-2990-1913    A. Bozek 0000-0002-5915-1319    M. Bračko 0000-0002-2495-0524    P. Branchini 0000-0002-2270-9673    T. E. Browder 0000-0001-7357-9007    A. Budano 0000-0002-0856-1131    M. Campajola 0000-0003-2518-7134    D. Červenkov 0000-0002-1865-741X    M.-C. Chang 0000-0002-8650-6058    B. G. Cheon  0000-0002-8803-4429    K. Chilikin 0000-0001-7620-2053    H. E. Cho 0000-0002-7008-3759    K. Cho 0000-0003-1705-7399    S.-J. Cho 0000-0002-1673-5664    S.-K. Choi 0000-0003-2747-8277    Y. Choi 0000-0003-3499-7948    S. Choudhury 0000-0001-9841-0216    D. Cinabro 0000-0001-7347-6585    S. Cunliffe  0000-0003-0167-8641    S. Das  0000-0001-6857-966X    G. de Marino  0000-0002-6509-7793    G. De Nardo 0000-0002-2047-9675    G. De Pietro 0000-0001-8442-107X    R. Dhamija 0000-0001-7052-3163    F. Di Capua 0000-0001-9076-5936    J. Dingfelder 0000-0001-5767-2121    Z. Doležal 0000-0002-5662-3675    T. V. Dong 0000-0003-3043-1939    T. Ferber  0000-0002-6849-0427    D. Ferlewicz 0000-0002-4374-1234    A. Frey 0000-0001-7470-3874    B. G. Fulsom 0000-0002-5862-9739    V. Gaur  0000-0002-8880-6134    A. Garmash  0000-0003-2599-1405    A. Giri 0000-0002-8895-0128    P. Goldenzweig 0000-0001-8785-847X    E. Graziani  0000-0001-8602-5652    T. Gu  0000-0002-1470-6536    Y. Guan 0000-0002-5541-2278    K. Gudkova 0000-0002-5858-3187    C. Hadjivasiliou 0000-0002-2234-0001    S. Halder  0000-0002-6280-494X    T. Hara  0000-0002-4321-0417    O. Hartbrich 0000-0001-7741-4381    K. Hayasaka 0000-0002-6347-433X    H. Hayashii 0000-0002-5138-5903    M. T. Hedges  0000-0001-6504-1872    D. Herrmann 0000-0001-9772-9989    W.-S. Hou  0000-0002-4260-5118    C.-L. Hsu 0000-0002-1641-430X    T. Iijima  0000-0002-4271-711X    K. Inami 0000-0003-2765-7072    N. Ipsita  0000-0002-2927-3366    A. Ishikawa 0000-0002-3561-5633    R. Itoh 0000-0003-1590-0266    M. Iwasaki 0000-0002-9402-7559    W. W. Jacobs  0000-0002-9996-6336    E.-J. Jang 0000-0002-1935-9887    S. Jia  0000-0001-8176-8545    Y. Jin 0000-0002-7323-0830    K. K. Joo 0000-0002-5515-0087    D. Kalita  0000-0003-3054-1222    K. H. Kang  0000-0002-6816-0751    C. Kiesling  0000-0002-2209-535X    C. H. Kim 0000-0002-5743-7698    D. Y. Kim 0000-0001-8125-9070    K.-H. Kim  0000-0002-4659-1112    Y.-K. Kim  0000-0002-9695-8103    K. Kinoshita  0000-0001-7175-4182    P. Kodyš  0000-0002-8644-2349    T. Konno  0000-0003-2487-8080    A. Korobov 0000-0001-5959-8172    S. Korpar 0000-0003-0971-0968    E. Kovalenko 0000-0001-8084-1931    P. Križan  0000-0002-4967-7675    P. Krokovny  0000-0002-1236-4667    T. Kuhr 0000-0001-6251-8049    R. Kumar  0000-0002-6277-2626    K. Kumara 0000-0003-1572-5365    A. Kuzmin  0000-0002-7011-5044    Y.-J. Kwon  0000-0001-9448-5691    J. S. Lange  0000-0003-0234-0474    M. Laurenza 0000-0002-7400-6013    S. C. Lee  0000-0002-9835-1006    P. Lewis  0000-0002-5991-622X    J. Li  0000-0001-5520-5394    L. K. Li  0000-0002-7366-1307    Y. Li  0000-0002-4413-6247    J. Libby  0000-0002-1219-3247    Y.-R. Lin  0000-0003-0864-6693    D. Liventsev  0000-0003-3416-0056    T. Luo 0000-0001-5139-5784    Y. Ma 0000-0001-8412-8308    A. Martini  0000-0003-1161-4983    M. Masuda 0000-0002-7109-5583    T. Matsuda 0000-0003-4673-570X    D. Matvienko 0000-0002-2698-5448    S. K. Maurya 0000-0002-7764-5777    F. Meier 0000-0002-6088-0412    M. Merola 0000-0002-7082-8108    F. Metzner 0000-0002-0128-264X    K. Miyabayashi 0000-0003-4352-734X    R. Mizuk  0000-0002-2209-6969    G. B. Mohanty  0000-0001-6850-7666    M. Mrvar  0000-0001-6388-3005    R. Mussa  0000-0002-0294-9071    I. Nakamura 0000-0002-7640-5456    M. Nakao  0000-0001-8424-7075    Z. Natkaniec  0000-0003-0486-9291    A. Natochii 0000-0002-1076-814X    L. Nayak 0000-0002-7739-914X    M. Nayak 0000-0002-2572-4692    N. K. Nisar  0000-0001-9562-1253    S. Nishida 0000-0001-6373-2346    K. Ogawa  0000-0003-2220-7224    S. Ogawa  0000-0002-7310-5079    H. Ono  0000-0003-4486-0064    P. Oskin  0000-0002-7524-0936    P. Pakhlov  0000-0001-7426-4824    G. Pakhlova 0000-0001-7518-3022    T. Pang 0000-0003-1204-0846    S. Pardi 0000-0001-7994-0537    H. Park 0000-0001-6087-2052    J. Park 0000-0001-6520-0028    S.-H. Park 0000-0001-6019-6218    A. Passeri 0000-0003-4864-3411    S. Patra 0000-0002-4114-1091    S. Paul 0000-0002-8813-0437    T. K. Pedlar 0000-0001-9839-7373    R. Pestotnik 0000-0003-1804-9470    L. E. Piilonen  0000-0001-6836-0748    T. Podobnik 0000-0002-6131-819X    E. Prencipe  0000-0002-9465-2493    M. T. Prim  0000-0002-1407-7450    N. Rout  0000-0002-4310-3638    M. Rozanska 0000-0003-2651-5021    G. Russo 0000-0001-5823-4393    S. Sandilya  0000-0002-4199-4369    A. Sangal 0000-0001-5853-349X    L. Santelj 0000-0003-3904-2956    V. Savinov  0000-0002-9184-2830    G. Schnell  0000-0002-7336-3246    C. Schwanda  0000-0003-4844-5028    Y. Seino  0000-0002-8378-4255    K. Senyo 0000-0002-1615-9118    M. E. Sevior  0000-0002-4824-101X    W. Shan 0000-0003-2811-2218    M. Shapkin 0000-0002-4098-9592    C. Sharma 0000-0002-1312-0429    C. P. Shen  0000-0002-9012-4618    J.-G. Shiu  0000-0002-8478-5639    B. Shwartz 0000-0002-1456-1496    A. Sokolov  0000-0002-9420-0091    E. Solovieva  0000-0002-5735-4059    M. Starič  0000-0001-8751-5944    Z. S. Stottler 0000-0002-1898-5333    M. Sumihama  0000-0002-8954-0585    W. Sutcliffe  0000-0002-9795-3582    M. Takizawa  0000-0001-8225-3973    U. Tamponi 0000-0001-6651-0706    K. Tanida  0000-0002-8255-3746    F. Tenchini  0000-0003-3469-9377    R. Tiwary  0000-0002-5887-1883    K. Trabelsi 0000-0001-6567-3036    M. Uchida  0000-0003-4904-6168    T. Uglov  0000-0002-4944-1830    Y. Unno 0000-0003-3355-765X    K. Uno  0000-0002-2209-8198    S. Uno 0000-0002-3401-0480    Y. Ushiroda  0000-0003-3174-403X    Y. Usov 0000-0003-3144-2920    S. E. Vahsen 0000-0003-1685-9824    G. Varner 0000-0002-0302-8151    K. E. Varvell 0000-0003-1017-1295    A. Vossen  0000-0003-0983-4936    D. Wang  0000-0003-1485-2143    E. Wang 0000-0001-6391-5118    M.-Z. Wang 0000-0002-0979-8341    S. Watanuki  0000-0002-5241-6628    O. Werbycka  0000-0002-0614-8773    E. Won  0000-0002-4245-7442    X. Xu 0000-0001-5096-1182    B. D. Yabsley 0000-0002-2680-0474    W. Yan  0000-0003-0713-0871    S. B. Yang 0000-0002-9543-7971    J. H. Yin  0000-0002-1479-9349    Y. Yook 0000-0002-4912-048X    Y. Yusa  0000-0002-4001-9748    Z. P. Zhang  0000-0001-6140-2044    V. Zhilich 0000-0002-0907-5565    V. Zhukova 0000-0002-8253-641X
Abstract

The first simultaneous determination of the absolute value of the Cabibbo-Kobayashi-Maskawa matrix element VubV_{ub} using inclusive and exclusive decays is performed with the full Belle data set at the Υ(4S)\Upsilon(4S) resonance, corresponding to an integrated luminosity of 711 fb-1. We analyze collision events in which one BB meson is fully reconstructed in hadronic modes. This allows for the reconstruction of the hadronic XuX_{u} system of the semileptonic buν¯b\to u\ell\bar{\nu}_{\ell} decay. We separate exclusive Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} decays from other inclusive BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} and backgrounds with a two-dimensional fit, that utilizes the number of charged pions in the XuX_{u} system and the four-momentum transfer q2q^{2} between the BB and XuX_{u} system. Combining our measurement with information from lattice QCD and QCD calculations of the inclusive partial rate as well as external experimental information on the shape of the Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} form factor, we determine |Vubexcl.|=(3.78±0.23±0.16±0.14)×103\left|V_{ub}^{\mathrm{excl.}}\right|=(3.78\pm 0.23\pm 0.16\pm 0.14)\times 10^{-3} and |Vubincl.|=(3.88±0.20±0.31±0.09)×103\left|V_{ub}^{\mathrm{incl.}}\right|=(3.88\pm 0.20\pm 0.31\pm 0.09)\times 10^{-3}, respectively, with the uncertainties being the statistical error, systematic errors, and theory errors. The ratio of |Vubexcl.|/|Vubincl.|=0.97±0.12\left|V_{ub}^{\mathrm{excl.}}\right|/\left|V_{ub}^{\mathrm{incl.}}\right|=0.97\pm 0.12 is compatible with unity.

pacs:
12.15.Hh, 13.20.-v, 14.40.Nd
preprint: Belle Preprint 2023-04, KEK Preprint 2022-53

In this letter we report the first simultaneous determination of the absolute value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element VubV_{ub} using inclusive and exclusive decays. Exclusive determinations of |Vub||V_{ub}| focus on reconstructing explicit final states such as Bπν¯B\to\pi\ell\bar{\nu}_{\ell} Amhis et al. (2023), Λbpμν¯μ\Lambda_{b}\to p\mu\bar{\nu}_{\mu} Aaij et al. (2015), or BsKμν¯μB_{s}\to K\,\mu\bar{\nu}_{\mu} Aaij et al. (2021), whereas inclusive determinations study BB meson decays undergoing buν¯b\to u\ell\bar{\nu}_{\ell} transitions and are indiscriminate of the uXuu\to X_{u} hadronization process. The world averages of either method are only marginally compatible Amhis et al. (2023),

|Vubexcl.|\displaystyle|V_{ub}^{\mathrm{excl.}}| =(3.51±0.12)×103,\displaystyle=\left(3.51\pm 0.12\right)\times 10^{-3}\,, (1)
|Vubincl.|\displaystyle|V_{ub}^{\mathrm{incl.}}| =(4.19±0.16)×103,\displaystyle=\left(4.19\pm 0.16\right)\times 10^{-3}\,, (2)

with a ratio of |Vubexcl.|/|Vubincl.|=0.84±0.04|V_{ub}^{\mathrm{excl.}}|/|V_{ub}^{\mathrm{incl.}}|=0.84\pm 0.04, which deviates 3.7 standard deviations from unity. The underlying reason for this tension is unknown. New physics explanations are challenging (see e.g. Refs. Crivellin (2010); Enomoto and Tanaka (2015); Bernlochner et al. (2014); Umeeda (2022)), leading to some to speculate the existence of until now unaccounted systematic effects Zyla et al. (2020a). This motivates the simultaneous determination in a single analysis, in which Bπν¯B\to\pi\ell\bar{\nu}_{\ell} and the BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} rates can be simultaneously extracted and systematic effects can be correlated.

The presented measurement of inclusive and exclusive buν¯b\to u\ell\bar{\nu}_{\ell} decays uses the same collision events and a similar analysis strategy as Refs. Cao et al. (2021a, b). Charmless semileptonic decays are reconstructed by relying on the complete reconstruction of the second BB meson in the e+eΥ(4S)BB¯e^{+}e^{-}\to\Upsilon(4S)\to B\bar{B} process. This approach allows for the direct reconstruction of the XuX_{u} system of the BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} process. Specifically, the four-momentum transfer squared, q2=(pBpXu)2q^{2}=\left(p_{B}-p_{X_{u}}\right)^{2}, and the number of charged pion candidates of the XuX_{u} system, Nπ±N_{\pi^{\pm}}, can be reconstructed. This allows for the separation of B+π0+νB^{+}\to\pi^{0}\,\ell^{+}\,\nu_{\ell} and B0π+νB^{0}\to\pi^{-}\,\ell^{+}\,\nu_{\ell} from other BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} decays. The main background in the measurement stems from the much more abundant BXcν¯B\to X_{c}\,\ell\,\bar{\nu}_{\ell} decays and a multivariate suppression strategy is used to reduce this and other background processes. Charge conjugation is implied throughout. The inclusive BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} branching fraction is defined as the average branching fraction of B+B^{+} and B0B^{0} meson decays. Furthermore, we denote =e,μ\ell=e,\mu, and use natural units: =c=1\hbar=c=1.

We analyze (772±10)×106(772\pm 10)\times 10^{6} BB meson pairs recorded at the Υ(4S)\Upsilon(4S) resonance energy and 79 fb179\text{\,}\mathrm{f}\mathrm{b}^{-1} of collision events recorded 60 MeV60\text{\,}\mathrm{M}\mathrm{e}\mathrm{V} below the Υ(4S)\Upsilon(4S) peak. Both data sets were recorded at the KEKB e+ee^{+}e^{-} collider Kurokawa and Kikutani (2003) by the Belle detector. Belle is a large-solid-angle magnetic spectrometer. A detailed description of its performance and subdetectors can be found in Ref. (Abashian et al., 2002). The particle identification and selection criteria are the same as in Ref. Cao et al. (2021a).

Monte Carlo (MC) samples of BB meson decays and continuum processes (e+eqq¯e^{+}e^{-}\to q\bar{q} with q=u,d,s,cq=u,d,s,c) are simulated using the EvtGen generator (Lange, 2001). The normalization of continuum events is calibrated with the measured off-resonance data. A detailed description of all samples and decay models is given in Ref. Cao et al. (2021a). The simulated samples are used for background subtraction and to correct for detector resolution, selection, and acceptance effects. The used sample sizes correspond to approximately ten and five times, respectively, the Belle collision data for the BB meson production and continuum processes.

Semileptonic BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} decays are simulated as a mixture of specific exclusive modes and nonresonant contributions using a “hybrid” approach Ramirez et al. (1990); Prim et al. (2020); Prim (2020): the triple differential rate of inclusive and exclusive predictions are combined such that the partial rates of the inclusive prediction are recovered. This is achieved by assigning weights to the inclusive contribution as a function of the generator-level q2q^{2}, EBE_{\ell}^{B}, and MXM_{X}. Here EBE_{\ell}^{B} and MXM_{X} denote the energy of the lepton in the signal BB rest frame and the invariant mass of the XuX_{u} system produced in the BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} decay. For the inclusive contribution, we use two different calculations: the De Fazio and Neubert (DFN) model De Fazio and Neubert (1999) (with mbKN=(4.66±0.04)GeVm_{b}^{\text{KN}}=(4.66\pm 0.04)\,\mathrm{GeV}, aKN=1.3±0.5a^{\text{KN}}=1.3\pm 0.5) and the Bosch-Lange-Neubert-Paz (BLNP) model Lange et al. (2005) (with mbSF=4.61GeVm_{b}^{\mathrm{SF}}=4.61\,\mathrm{GeV}, μπ2SF=0.20GeV2\mu_{\pi}^{2\,\text{SF}}=0.20\,\mathrm{GeV}^{2}). The difference between the two models is treated as a systematic uncertainty. The simulated inclusive BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} events are hadronized with the JETSET algorithm T. Sjöstrand (1994) into final states with two or more mesons. We study two different tunes of the fragmentation parameters and assign their difference as a systematic uncertainty. The exclusive contributions are modeled as follows: Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} decays are modeled using the Bourrely-Caprini-Lellouch (BCL) form factor parameterization (Bourrely et al., 2009); Bρν¯B\to\rho\,\ell\,\bar{\nu}_{\ell} and Bων¯B\to\omega\,\ell\,\bar{\nu}_{\ell} decays are modeled using the Bharucha-Straub-Zwicky (BSZ) form factors (Bharucha et al., 2016) from the fit of Ref. (Bernlochner et al., 2021) to light-cone sum rule (LCSR) predictions (Bharucha et al., 2016) and the measurements of Refs. Sibidanov et al. (2013a); Lees et al. (2013); del Amo Sanchez et al. (2011a); Bην¯B\to\eta\,\ell\,\bar{\nu}_{\ell} and Bην¯B\to\eta^{\prime}\,\ell\,\bar{\nu}_{\ell} are modeled using pole form factors obtained from fits to LCSR (Duplancic and Melic, 2015). For the branching fractions the world averages from Ref. (Zyla et al., 2020b) are used.

Semileptonic BXcν¯B\to X_{c}\,\ell\,\bar{\nu}_{\ell} decays are dominated by BDν¯B\to D\,\ell\,\bar{\nu}_{\ell} and BDν¯B\to D^{*}\,\ell\,\bar{\nu}_{\ell} decays. We simulate them with the form factors of Refs. Boyd et al. (1995); Grinstein and Kobach (2017); Bigi et al. (2017) and values determined by the measurements of Refs. Glattauer et al. (2016); Waheed et al. (2019). Other BXcν¯B\to X_{c}\,\ell\,\bar{\nu}_{\ell} decays are simulated as a mixture of resonant and nonresonant modes, using the parameterization of Ref. Bernlochner and Ligeti (2017) for the modeling of BDν¯B\to D^{**}\,\ell\,\bar{\nu}_{\ell} form factors. The known difference between inclusive and the sum of measured exclusive BXcν¯B\to X_{c}\,\ell\,\bar{\nu}_{\ell} decays is simulated with BD()η+νB\to D^{(*)}\,\eta\,\ell^{+}\nu_{\ell} decays.

We reconstruct e+ee^{+}e^{-} collision events with the multivariate tagging algorithm of Ref. Feindt et al. (2011). The algorithm uses a hierarchical approach utilizing neural networks to fully reconstruct one of the two BB mesons in hadronic final states (labeled as BtagB_{\mathrm{tag}}). The BtagB_{\mathrm{tag}} reconstruction efficiency is calibrated using BXcν¯B\to X_{c}\,\ell\,\bar{\nu}_{\ell} decays following the prescription outlined in Cao et al. (2021a). The identified final state particles forming the BtagB_{\mathrm{tag}} are masked and buν¯b\to u\ell\bar{\nu}_{\ell} signal candidates are reconstructed by identifying an electron or muon candidate in the events, requiring EB=|𝕡B|>1GeVE_{\ell}^{B}=|\mathbb{p}_{\ell}^{B}|>1\,\mathrm{GeV} as measured in the signal BB rest frame. To reject background from the much more abundant BXcν¯B\to X_{c}\,\ell\,\bar{\nu}_{\ell} decays, eleven distinguishing features are combined into a single discriminant using boosted decision trees (BDTs) and utilizing the implementation of Ref. Chen and Guestrin (2016). The most discriminating training features are the reconstructed neutrino mass, Mmiss2M_{\mathrm{miss}}^{2}, the vertex fit probability of the decay vertex between the hadronic system XX and the signal lepton \ell, and the number of identified K±K^{\pm} and KS0K_{S}^{0} in the XX system. Same as in Cao et al. (2021a), we select a working point that corresponds to a signal efficiency of 18.5%, which rejects 98.7% of BXcν¯B\to X_{c}\,\ell\,\bar{\nu}_{\ell} decays, defined with respect to all events after the BtagB_{\mathrm{tag}} selection. To test the modeling of BXcν¯B\to X_{c}\,\ell\,\bar{\nu}_{\ell} and other backgrounds in the extraction variables, q2q^{2} and Nπ±N_{\pi^{\pm}}, we also utilize the events failing the BDT selection and find good agreement sup . We further separate events by the reconstructed MXM_{X}, categorizing MX<1.7GeVM_{X}<1.7\,\mathrm{GeV} into five q2q^{2} bins ranging in [0,26.4]GeV2[0,26.4]\,\mathrm{GeV}^{2} as a function of the Nπ±N_{\pi^{\pm}} multiplicity for the interval of [0,1,2,3][0,1,2,\geq 3]. Events with MX1.7GeVM_{X}\geq 1.7\,\mathrm{GeV} are analyzed only in bins of Nπ±N_{\pi^{\pm}} as they are dominated by background. To enhance the Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} purity in the low-MXM_{X} Nπ±=0N_{\pi^{\pm}}=0 and Nπ±=1N_{\pi^{\pm}}=1 events, we apply a selection on the thrust of 0.92 and 0.85, respectively. It is defined by max|𝕟|=1(i|𝕡𝕚𝕟|/i|𝕡𝕚|)\max_{|\mathbb{n}|=1}\left(\sum_{i}|\mathbb{p_{i}}\cdot\mathbb{n}|/\sum_{i}|\mathbb{p_{i}}|\right), when summing over the neutral and charged constituents of the reconstructed XX system in the center of mass frame. For Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} events, we expect a more collimated XuX_{u} system than for BXcν¯B\to X_{c}\,\ell\,\bar{\nu}_{\ell} and other BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} processes, resulting in a higher thrust value.

The q2:Nπ±q^{2}:N_{\pi^{\pm}} bins and the MX1.7GeVM_{X}\geq 1.7\,\mathrm{GeV} Nπ±N_{\pi^{\pm}} distribution are analyzed using a simultaneous likelihood fit, which incorporates floating parameters for the modeling of the Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} form factor, the binned templates, and systematic uncertainties as nuisance parameters. Specifically, the shape of Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} template is linked to the form factors by correcting the efficiency and acceptance effects. The fit components we probe are the normalizations of Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} decays, other BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} signal decays, and of background events dominated by BXcν¯B\to X_{c}\,\ell\,\bar{\nu}_{\ell} decays. The f+f_{+} and f0f_{0} form factors describing the Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} decay dynamics are parameterized with expansion coefficients an+a_{n}^{+} and an0a_{n}^{0} using the BCL expansion,

f+(q2)\displaystyle f_{+}(q^{2}) =11q2/mB2n=0N+1an+[zn(1)nN+nN+zN+],\displaystyle=\frac{1}{1-q^{2}/m_{B^{*}}^{2}}\sum_{n=0}^{N^{+}-1}\,a_{n}^{+}\left[z^{n}-(-1)^{n-N^{+}}\frac{n}{N^{+}}\,z^{N^{+}}\right]\,,
f0(q2)\displaystyle f_{0}(q^{2}) =n=0N01an0zn,\displaystyle=\sum_{n=0}^{N^{0}-1}\,a_{n}^{0}\,z^{n}\,, (3)

at expansion order N+=N0=3N^{+}=N^{0}=3 in the conformal variable z=z(q2)z=z(q^{2}) (Bourrely et al., 2009; Aoki et al., 2022), and a20a^{0}_{2} is expressed by the remaining coefficients to keep the kinematical constraint f+(0)=f0(0)f_{+}(0)=f_{0}(0). We constrain the expansion coefficients to the lattice QCD (LQCD) values of Ref. Aoki et al. (2022), combining LQCD calculations from several groups Bailey et al. (2015); Flynn et al. (2015). Note that the measured distributions have no sensitivity for f0f_{0} and we thus neglect its effects in the decay rate. The inclusion of the f0f_{0} expansion coefficients, however, reduces uncertainties on the Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} rate through the correlation to the f+f_{+} shape. In order to utilize the full experimental knowledge of the BπB\to\pi form factors to date, we constrain its shape to the combined lattice QCD and experimental information of Refs. del Amo Sanchez et al. (2011b); Lees et al. (2012); Ha et al. (2011); Sibidanov et al. (2013b). The fit scenario with only lattice QCD constraints is studied for a standalone comparison with other experimental results.

We consider additive and multiplicative systematic uncertainties in the likelihood fit by adding bin-wise nuisance parameters for each template. The parameters are constrained to a multinormal Gaussian distribution with a covariance reflecting the sum of all considered systematic effects, and the correlation structure between templates from common sources is taken into account. This includes detector and reconstruction related uncertainties, such as the tracking efficiency for low and high momentum tracks, particle identification efficiency uncertainties, and the calibration of the BtagB_{\mathrm{tag}} reconstruction efficiency. We further consider uncertainties on the BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} and BXcν¯B\to X_{c}\,\ell\,\bar{\nu}_{\ell} shapes from the form factors, non-perturbative parameters, and their compositions. The uXuu\to X_{u} fragmentation uncertainties are evaluated by changing the default Belle tune of fragmentation parameters to the values used in Ref. Aaij et al. (2014). We further vary the ss¯s\bar{s}-production rate γs=0.30±0.09\gamma_{s}=0.30\pm 0.09, spanning the range of Refs. Althoff et al. (1985); Bartel et al. (1983). The largest uncertainties on the exclusive branching fraction measurements are from the calibration of the tagging efficiency (±4.1%\pm 4.1\%) and the BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} modeling (±3.5%\pm 3.5\%). The largest uncertainties on the inclusive branching fraction measurement are from the BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} (±10.9%\pm 10.9\%) modeling and the uXuu\to X_{u} fragmentation (±5.3%\pm 5.3\%). The uncertainties of the modeling of the BXcν¯B\to X_{c}\,\ell\,\bar{\nu}_{\ell} background are ±1.2%\pm 1.2\% and ±2.8%\pm 2.8\% for the Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} and BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} branching fractions, respectively.

Refer to caption
Figure 1: The q2:Nπ±q^{2}:N_{\pi^{\pm}} spectrum after the 2D fit is shown for the scenario that only uses LQCD information. The uncertainties incorporate all postfit uncertainties discussed in the text.
Refer to caption
Refer to caption
Figure 2: The |Vub||V_{ub}| values obtained with the fits using (top) LQCD or (bottom) LQCD and experimental constraints for the B¯0π+ν¯\overline{B}^{0}\to\pi^{+}\ell^{-}\bar{\nu}_{\ell} form factor are shown. The inclusive |Vub||V_{ub}| value is based on the decay rate from the GGOU calculation. The values obtained from the previous Belle measurement  Cao et al. (2021a) (grey band) and the world averages from Ref. Amhis et al. (2023) (black marker) are also shown. The shown ellipses correspond to 39.3% confidence levels (Δχ2=1\Delta\chi^{2}=1).

Figure 1 shows the q2:Nπ±q^{2}:N_{\pi^{\pm}} distribution of the signal region after the fit and with only using LQCD information: B+π0+νB^{+}\to\pi^{0}\,\ell^{+}\,\nu_{\ell} and B0π+νB^{0}\to\pi^{-}\,\ell^{+}\,\nu_{\ell} events are aggregated in the Nπ+=0N_{\pi^{+}}=0 and Nπ+=1N_{\pi^{+}}=1 bins, respectively, whereas contributions from other BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} processes are in all multiplicity bins. The high MXM_{X} bins constrain the BXcν¯B\to X_{c}\,\ell\,\bar{\nu}_{\ell} and other background contributions. We use the isospin relation and B0/B+B^{0}/B^{+} lifetime ratio to link the yields of B+π0+νB^{+}\to\pi^{0}\,\ell^{+}\,\nu_{\ell} and B0π+νB^{0}\to\pi^{-}\,\ell^{+}\,\nu_{\ell}. The fit has a χ2\chi^{2} of 13.813.8 with 2121 degrees of freedom, corresponding to a p-value of 88%88\%. The measured B+π0+νB^{+}\to\pi^{0}\,\ell^{+}\,\nu_{\ell} and B0π+νB^{0}\to\pi^{-}\,\ell^{+}\,\nu_{\ell} yields are corrected for efficiency effects to determine the corresponding branching fractions \mathcal{B}. The measured inclusive yield is calculated from the sum of B+π0+νB^{+}\to\pi^{0}\,\ell^{+}\,\nu_{\ell}, B0π+νB^{0}\to\pi^{-}\,\ell^{+}\,\nu_{\ell}, and other BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} events and unfolded to correspond to a partial branching fraction Δ\Delta\mathcal{B} with EB>1.0GeVE_{\ell}^{B}>1.0\,\mathrm{GeV}, also correcting for the effect of final state radiation photons. We find

(B¯0π+ν¯)\displaystyle\mathcal{B}(\overline{B}^{0}\to\pi^{+}\ell^{-}\bar{\nu}_{\ell}) =(1.45±0.19±0.14)×104,\displaystyle=\left(1.45\pm 0.19\pm 0.14\right)\times 10^{-4}\,, (4)
Δ(BXuν¯)\displaystyle\Delta\mathcal{B}(B\to X_{u}\ell\bar{\nu}_{\ell}) =(1.39±0.14±0.22)×103,\displaystyle=\left(1.39\pm 0.14\pm 0.22\right)\times 10^{-3}\,, (5)

with the errors denoting statistical and systematic uncertainties and we used the isospin relation between Bπ0ν¯B^{-}\to\pi^{0}\ell^{-}\bar{\nu}_{\ell} and B¯0π+ν¯\overline{B}^{0}\to\pi^{+}\ell^{-}\bar{\nu}_{\ell} to link both branching fractions. The recovered branching fraction for B¯0π+ν¯\overline{B}^{0}\to\pi^{+}\ell^{-}\bar{\nu}_{\ell} is compatible with the world average of (B¯0π+ν¯)=(1.50±0.06)×104\mathcal{B}(\overline{B}^{0}\to\pi^{+}\ell^{-}\bar{\nu}_{\ell})=\left(1.50\pm 0.06\right)\times 10^{-4}  Amhis et al. (2023). The correlation between the exclusive and inclusive branching fractions is ρ=0.11\rho=0.11. Using calculations for the inclusive partial rate and the fitted form factor parameters, we can determine values for |Vub||V_{ub}|. As our baseline we use the GGOU Gambino et al. (2007) calculation for the inclusive partial rate with EB>1.0GeVE_{\ell}^{B}>1.0\,\mathrm{GeV} (ΔΓ/|Vub|2=58.5±2.7\Delta\Gamma/|V_{ub}|^{2}=58.5\pm 2.7 ps-1), but other calculations result in similar values for inclusive |Vub||V_{ub}|. We find

|Vubexcl.|=(4.05±0.30±0.16±0.16)×103,\displaystyle\mbox{$\left|V_{ub}^{\mathrm{excl.}}\right|=(4.05\pm 0.30\pm 0.16\pm 0.16)\times 10^{-3}$}\,, (6)
|Vubincl.|=(3.87±0.20±0.31±0.09)×103,\displaystyle\mbox{$\left|V_{ub}^{\mathrm{incl.}}\right|=(3.87\pm 0.20\pm 0.31\pm 0.09)\times 10^{-3}$}\,, (7)

for exclusive and inclusive |Vub||V_{ub}| with the uncertainties denoting the statistical error, systematic error, and error from theory (either from LQCD or the inclusive calculation). The correlation between the exclusive and inclusive |Vub||V_{ub}| is ρ=0.07\rho=0.07. The determined value for inclusive |Vub||V_{ub}| is compatible with the determination of Ref. Cao et al. (2021a). For the ratio of inclusive and exclusive VubV_{ub} values, we find

|Vubexcl.|/|Vubincl.|=1.05±0.14,\displaystyle\mbox{$\left|V_{ub}^{\mathrm{excl.}}\right|/\left|V_{ub}^{\mathrm{incl.}}\right|=1.05\pm 0.14$}\,, (8)

which is compatible with the SM expectation of unity. The value is higher and compatible with the current world average of |Vubexcl.|/|Vubincl.|=0.84±0.04|V_{ub}^{\mathrm{excl.}}|/|V_{ub}^{\mathrm{incl.}}|=0.84\pm 0.04 Amhis et al. (2023) within 1.5 standard deviations. Fig. 2 (top) compares the measured individual values with the SM expectation and the current world average. We also test what happens if we relax the isospin relation between Bπ0ν¯B^{-}\to\pi^{0}\ell^{-}\bar{\nu}_{\ell} (red ellipse) and B¯0π+ν¯\overline{B}^{0}\to\pi^{+}\ell^{-}\bar{\nu}_{\ell} (blue) branching fractions and find compatible results for exclusive and inclusive |Vub||V_{ub}|, as well as for the exclusive |Vub||V_{ub}| values.

In the nominal result, we utilize the full theoretical and experimental knowledge of the Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} form factor, combining shape information from the measured q2q^{2} spectrum with LQCD predictions, as provided by Ref. Aoki et al. (2022). The determined (partial) branching fractions in this scenario are

(B¯0π+ν¯)\displaystyle\mathcal{B}(\overline{B}^{0}\to\pi^{+}\ell^{-}\bar{\nu}_{\ell}) =(1.53±0.18±0.12)×104,\displaystyle=\left(1.53\pm 0.18\pm 0.12\right)\times 10^{-4}\,, (9)
Δ(BXuν¯)\displaystyle\Delta\mathcal{B}(B\to X_{u}\ell\bar{\nu}_{\ell}) =(1.39±0.14±0.22)×103,\displaystyle=\left(1.39\pm 0.14\pm 0.22\right)\times 10^{-3}\,, (10)

with a correlation of ρ=0.12\rho=0.12 between inclusive and exclusive branching fractions and assuming isospin relation. This fit leads to a more precise value of |Vub||V_{ub}| from Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} and we find with the same inclusive calculation

|Vubexcl.|=(3.78±0.23±0.16±0.14)×103,\displaystyle\mbox{$\left|V_{ub}^{\mathrm{excl.}}\right|=(3.78\pm 0.23\pm 0.16\pm 0.14)\times 10^{-3}$}\,, (11)
|Vubincl.|=(3.88±0.20±0.31±0.09)×103,\displaystyle\mbox{$\left|V_{ub}^{\mathrm{incl.}}\right|=(3.88\pm 0.20\pm 0.31\pm 0.09)\times 10^{-3}$}\,, (12)

with a correlation ρ=0.11\rho=0.11 and a ratio of

|Vubexcl.|/|Vubincl.|=0.97±0.12,\displaystyle\mbox{$\left|V_{ub}^{\mathrm{excl.}}\right|/\left|V_{ub}^{\mathrm{incl.}}\right|=0.97\pm 0.12$}\,, (13)

compatible with the world average within 1.2 standard deviations. Fig. 2 (bottom) compares the obtained values and we also find good agreement between the isospin conjugate exclusive values of |Vub||V_{ub}|. Figure 3 compares the fitted q2q^{2} spectra of the differential rate of B¯0π+ν¯\overline{B}^{0}\to\pi^{+}\ell^{-}\bar{\nu}_{\ell} for both fit scenarios as well as for the LQCD input Aoki et al. (2022). The inclusion of the full experimental and theoretical knowledge leads to a higher rate at low q2q^{2}.

Refer to caption
Figure 3: The q2q^{2} spectra of B¯0π+ν¯\overline{B}^{0}\to\pi^{+}\ell^{-}\bar{\nu}_{\ell} obtained from the fit of the combined LQCD and experimental information (orange, solid) and from the fit to LQCD only (green, dashed) are shown. The data points are the background subtracted post-fit distributions, corrected for resolution and efficiency effects and averaged over both isospin modes. In addition, the LQCD pre-fit prediction of Aoki et al. (2022) for the B¯0π+ν¯\overline{B}^{0}\to\pi^{+}\ell^{-}\bar{\nu}_{\ell} form factor is shown (grey).

In summary, we presented the first simultaneous determination of inclusive and exclusive |Vub||V_{ub}| within a single analysis. In the ratio of both |Vub||V_{ub}| values many systematic uncertainties such as the tagging calibration or the lepton identification uncertainties cancel and one can directly test the SM expectation of unity. We recover ratios that are compatible with this expectation, but 1.5 standard deviations higher than the ratio of the current world averages of inclusive and exclusive |Vub||V_{ub}|. This tension is reduced to 1.2 standard deviations when including the constraint based on the full theoretical and experimental knowledge of the Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} form factor shape. We average our inclusive and exclusive values from both approaches using LQCD or LQCD and additional experimental information and find,

|Vub|\displaystyle|V_{ub}| =(3.96±0.27)×103,(LQCD)\displaystyle=(3.96\pm 0.27)\times 10^{-3}\,,\quad(\mathrm{LQCD}) (14)
|Vub|\displaystyle|V_{ub}| =(3.84±0.26)×103,(LQCD+exp.)\displaystyle=(3.84\pm 0.26)\times 10^{-3}\,,\quad(\mathrm{LQCD+exp.}) (15)

respectively. These values can be compared with the expectation from CKM unitarity of Ref. Charles et al. (2005) of |VubCKM|=(3.64±0.07)×103|V_{ub}^{\mathrm{CKM}}|=(3.64\pm 0.07)\times 10^{-3} and are compatible within 1.2 and 0.8 standard deviations, respectively. The applied approach of simultaneously fitting q2q^{2} and the number of charged pions in the XuX_{u} system will benefit from the large anticipated data set of Belle II. Additional fit scenarios and inclusive |Vub||V_{ub}| values from other theory calculations of the partial rate are provided in the supplemental material sup .

This work, based on data collected using the Belle detector, which was operated until June 2010, was supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the German Research Foundation (DFG) Emmy-Noether Grant No. BE 6075/1-1; the Helmholtz W2/W3-116 grant; the Australian Research Council including grants DP180102629, DP170102389, DP170102204, DE220100462, DP150103061, FT130100303; Austrian Federal Ministry of Education, Science and Research (FWF) and FWF Austrian Science Fund No. P 31361-N36; the National Natural Science Foundation of China under Contracts No. 11675166, No. 11705209; No. 11975076; No. 12135005; No. 12175041; No. 12161141008; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; Project ZR2022JQ02 supported by Shandong Provincial Natural Science Foundation; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Czech Science Foundation Grant No. 22-18469S; Horizon 2020 ERC Advanced Grant No. 884719 and ERC Starting Grant No. 947006 “InterLeptons” (European Union); the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Atomic Energy (Project Identification No. RTI 4002) and the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grant Nos. 2016R1D1A1B02012900, 2018R1A2B3003643, 2018R1A6A1A06024970, RS202200197659, 2019R1I1A3A01058933, 2021R1A6A1A03043957, 2021R1F1A1060423, 2021R1F1A1064008, 2022R1A2C1003993; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement 14.W03.31.0026, and the HSE University Basic Research Program, Moscow; University of Tabuk research grants S-1440-0321, S-0256-1438, and S-0280-1439 (Saudi Arabia); the Slovenian Research Agency Grant Nos. J1-9124 and P1-0135; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation. These acknowledgements are not to be interpreted as an endorsement of any statement made by any of our institutes, funding agencies, governments, or their representatives. We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 6 (SINET6) for valuable network support. We are indebted to Alexander Ermakov for his pioneering work on the subject. We thank Frank Tackmann, Zoltan Ligeti, and Dean Robinson for discussions about the content of this manuscript.

References

Supplemental Material

.1 Determinations with alternative inclusive calculations for the partial rate

Figure 4 compares the inclusive |Vub||V_{ub}| values obtained from the GGOU calculation versus BLNP and DGE, respectively.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: The |Vub||V_{ub}| values obtained using the different theoretical inclusive decay rates are compared: GGOU versus BLNP (up) and GGOU versus DGE (low). The left column shows the fit with only LQCD constraints and the results from combined LQCD-experimental constraints are in the right column.

.2 Data-MC agreement in background dominated sideband

Figure 5 shows the analyzed categories in q2:Nπ±q^{2}:N_{\pi^{\pm}} for MX<1.7GeVM_{X}<1.7\,\mathrm{GeV} and the four MX1.7GeVM_{X}\geq 1.7\,\mathrm{GeV} bins in the BXcν¯B\to X_{c}\,\ell\,\bar{\nu}_{\ell} enriched BDT sideband. We observe fair agreement in the background shapes with a p-value of 87%87\%.

Refer to caption
Figure 5: The BXcν¯B\to X_{c}\,\ell\,\bar{\nu}_{\ell} sideband from the events rejected by the BDT selection is shown in the binning of the 2D fit. The uncertainties incorporate all systematic uncertainties discussed in the text. The bottom panel shows the ratio of observed events and the MC expectation.

.3 Consistency cross-check

The prediction is fitted to the observed data by minimizing

2log\displaystyle-2\log\mathcal{L} =2logiPoisson(ηobs,ηpred(1+ϵθ))+θρθ1θT+χFF2,\displaystyle=-2\log\prod_{i}\operatorname{Poisson}\left(\mathbf{\eta}_{\mathrm{obs}},\mathbf{\eta}_{\mathrm{pred}}\cdot(1+\epsilon\cdot\theta)\right)+\theta\rho_{\theta}^{-1}\theta^{T}+\chi^{2}_{\mathrm{FF}}\,, (16)
χFF2\displaystyle\chi^{2}_{\mathrm{FF}} =(𝐚obs𝐚pred)CovFF1(𝐚obs𝐚pred)T,\displaystyle=(\mathbf{a}_{\mathrm{obs}}-\mathbf{a}_{\mathrm{pred}})\mathrm{Cov}^{-1}_{\mathrm{FF}}(\mathbf{a}_{\mathrm{obs}}-\mathbf{a}_{\mathrm{pred}})^{T}\,, (17)

where the floating parameters η\mathbf{\eta} and 𝐚\mathbf{a} are the template normalization and the BCL form facotrs, respectively. The bin- and template-wise nuisance parameters θ\theta are normalized to the relative bin errors ϵ\epsilon, and the associated bin-to-bin correlations arising from systematics are accounted in the fit by a global correlation matrix ρθ\rho_{\theta}. The BCL form factors are constrained by the covariance matrix CovFF\mathrm{Cov}_{\mathrm{FF}} provided by FLAG.

In this measurement, an additional fit with separate normalizations of the B0π+νB^{0}\to\pi^{-}\,\ell^{+}\,\nu_{\ell} and B+π0+νB^{+}\to\pi^{0}\,\ell^{+}\,\nu_{\ell} decays is applied to check the consistency of the nominal results based on combining the two modes. All of the fitter setups are summarised in the following:

  • Setup 1-a: fit q2:Nπ±q^{2}:N_{\pi^{\pm}} spectra with LQCD and external experimental constraint on the BCL form factor and shared Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} normalization based on the isospin relation.

  • Setup 1-b: same as 1-a, but with only LQCD constraint for the form factor.

  • Setup 2-a: separate normalizations of the B0π+νB^{0}\to\pi^{-}\,\ell^{+}\,\nu_{\ell} and B+π0+νB^{+}\to\pi^{0}\,\ell^{+}\,\nu_{\ell} decays and with LQCD-experimental constraint. We denote the recovered CKM matrix values as |Vub|π0/π+|V_{ub}|^{\pi^{0}/\pi^{+}}.

  • Setup 2-b: same as 2-a, but with only LQCD constraint.

The nominal results are based on setup 1-a and 1-b. With different fit scenarios, the numerical results of the fitted yields are summarised in Table 1 as well as the signal efficiencies. After all selections, the total measured data are 7715±887715\pm 88 events. Figure 6 and Fig. 7 illustrate the post-fit spectra and the pulls of the template- and bin-wise Nuisance parameters, respectively. The featured behaviors are found to be consistent in all setups. The obtained |Vub||V_{ub}| and branching fractions are listed in Table 4 and Table 5 for the setup 2-a and 2-b, where the weighted average of two pion modes is derived based on the total covariance matrix. The final results are found to be fairly compatible with the nominal results in Table 2 and Table 3.

Setup B+π0+νB^{+}\to\pi^{0}\,\ell^{+}\,\nu_{\ell} B0π+νB^{0}\to\pi^{-}\,\ell^{+}\,\nu_{\ell} Other BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} Bkg.
1-a 75±1175\pm 11 138±21138\pm 21 1065±2381065\pm 238 6430±6306430\pm 630
1-b 71±1271\pm 12 132±23132\pm 23 1076±2381076\pm 238 6429±6316429\pm 631
2-a 78±1478\pm 14 132±31132\pm 31 1069±2381069\pm 238 6430±6316430\pm 631
2-b 76±1476\pm 14 117±33117\pm 33 1087±2381087\pm 238 6428±6316428\pm 631
103ϵsig10^{3}\cdot\epsilon_{\mathrm{sig}} 0.300.30 0.310.31 0.260.26 -
Table 1: The fitted yields for B+π0+νB^{+}\to\pi^{0}\,\ell^{+}\,\nu_{\ell}, B0π+νB^{0}\to\pi^{-}\,\ell^{+}\,\nu_{\ell}, other BXuν¯B\to X_{u}\,\ell\,\bar{\nu}_{\ell} decays and backgrounds with various fitter setups. The uncertainties assigned to the fitted yields include the statistical and systematic impacts in the fitting procedure. The signal efficiencies ϵsig\epsilon_{\mathrm{sig}} are also listed.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: The postfit q2:Nπ±q^{2}:N_{\pi^{\pm}} spectra with various setups.From top left to bottom right, the results are shown for the setup 1-a, 1-b, 2-a and 2-b. The uncertainties incorporate all post-fit uncertainties discussed in the main text.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 7: The pulls of bin-wise nuisance parameters. From left to right, the results are shown for the fit setup 1-a, 1-b, 2-a and 2-b. The uncertainty of each pull shows the post-fit error normalized to the pre-fit constraint.
Result
Setup 1-a
|Vub|excl.|V_{ub}|^{\mathrm{excl.}} (3.78±0.23±0.16±0.14)×103(3.78\pm 0.23\pm 0.16\pm 0.14)\times 10^{-3}
|Vub|incl.|V_{ub}|^{\mathrm{incl.}} (3.88±0.20±0.31±0.09)×103(3.88\pm 0.20\pm 0.31\pm 0.09)\times 10^{-3}
|Vub|excl./|Vub|incl.|V_{ub}|^{\mathrm{excl.}}/|V_{ub}|^{\mathrm{incl.}} 0.97±0.120.97\pm 0.12
ρ(|Vub|excl.,|Vub|incl.)\rho(|V_{ub}|^{\mathrm{excl.}},|V_{ub}|^{\mathrm{incl.}}) 0.110.11
Setup 1-b
|Vub|excl.|V_{ub}|^{\mathrm{excl.}} (4.05±0.30±0.16±0.16)×103(4.05\pm 0.30\pm 0.16\pm 0.16)\times 10^{-3}
|Vub|incl.|V_{ub}|^{\mathrm{incl.}} (3.87±0.20±0.31±0.09)×103(3.87\pm 0.20\pm 0.31\pm 0.09)\times 10^{-3}
|Vub|excl./|Vub|incl.|V_{ub}|^{\mathrm{excl.}}/|V_{ub}|^{\mathrm{incl.}} 1.05±0.141.05\pm 0.14
ρ(|Vub|excl.,|Vub|incl.)\rho(|V_{ub}|^{\mathrm{excl.}},|V_{ub}|^{\mathrm{incl.}}) 0.070.07
Table 2: The determined |Vub||V_{ub}| results and various ratios with the setup 1-a and 1-b, respectively.
Result
Setup 1-a
(B0π+ν)\mathcal{B}(B^{0}\to\pi^{-}\,\ell^{+}\,\nu_{\ell}) (1.53±0.18±0.12)×104(1.53\pm 0.18\pm 0.12)\times 10^{-4}
Δ(BXuν¯)\Delta\mathcal{B}(B\to X_{u}\,\ell\,\bar{\nu}_{\ell}) (1.39±0.14±0.22)×103(1.39\pm 0.14\pm 0.22)\times 10^{-3}
ρ(π,ΔXu)\rho(\mathcal{B}^{\pi},\Delta\mathcal{B}^{X_{u}}) 0.120.12
Setup 1-b
(B0π+ν)\mathcal{B}(B^{0}\to\pi^{-}\,\ell^{+}\,\nu_{\ell}) (1.45±0.19±0.14)×104(1.45\pm 0.19\pm 0.14)\times 10^{-4}
Δ(BXuν¯)\Delta\mathcal{B}(B\to X_{u}\,\ell\,\bar{\nu}_{\ell}) (1.39±0.14±0.22)×103(1.39\pm 0.14\pm 0.22)\times 10^{-3}
ρ(π,ΔXu)\rho(\mathcal{B}^{\pi},\Delta\mathcal{B}^{X_{u}}) 0.110.11
Table 3: The measured branching fractions and various correlations based on the setup 1-a and 1-b, respectively.
Result
Setup 2-a
|Vub|π0|V_{ub}|^{\pi^{0}} (3.86±0.30±0.18±0.15)×103(3.86\pm 0.30\pm 0.18\pm 0.15)\times 10^{-3}
|Vub|π+|V_{ub}|^{\pi^{+}} (3.69±0.34±0.24±0.10)×103(3.69\pm 0.34\pm 0.24\pm 0.10)\times 10^{-3}
Avr. |Vub|excl.|V_{ub}|^{\mathrm{excl.}} (3.79±0.31)×103(3.79\pm 0.31)\times 10^{-3}
|Vub|incl.|V_{ub}|^{\mathrm{incl.}} (3.88±0.20±0.31±0.09)×103(3.88\pm 0.20\pm 0.31\pm 0.09)\times 10^{-3}
|Vub|excl./|Vub|incl.|V_{ub}|^{\mathrm{excl.}}/|V_{ub}|^{\mathrm{incl.}} 0.98±0.120.98\pm 0.12
ρ(|Vub|excl.,|Vub|incl.)\rho(|V_{ub}|^{\mathrm{excl.}},|V_{ub}|^{\mathrm{incl.}}) 0.100.10
ρ(|Vub|π+,|Vub|π0)\rho(|V_{ub}|^{\pi^{+}},|V_{ub}|^{\pi^{0}}) 0.200.20
Setup 2-b
|Vub|π0|V_{ub}|^{\pi^{0}} (4.31±0.44±0.25±0.16)×103(4.31\pm 0.44\pm 0.25\pm 0.16)\times 10^{-3}
|Vub|π+|V_{ub}|^{\pi^{+}} (3.88±0.37±0.23±0.14)×103(3.88\pm 0.37\pm 0.23\pm 0.14)\times 10^{-3}
Avr. |Vub|excl.|V_{ub}|^{\mathrm{excl.}} (4.06±0.38)×103(4.06\pm 0.38)\times 10^{-3}
|Vub|incl.|V_{ub}|^{\mathrm{incl.}} (3.87±0.20±0.32±0.09)×103(3.87\pm 0.20\pm 0.32\pm 0.09)\times 10^{-3}
|Vub|excl./|Vub|incl.|V_{ub}|^{\mathrm{excl.}}/|V_{ub}|^{\mathrm{incl.}} 1.05±0.141.05\pm 0.14
ρ(|Vub|excl.,|Vub|incl.)\rho(|V_{ub}|^{\mathrm{excl.}},|V_{ub}|^{\mathrm{incl.}}) 0.060.06
ρ(|Vub|π+,|Vub|π0)\rho(|V_{ub}|^{\pi^{+}},|V_{ub}|^{\pi^{0}}) 0.220.22
Table 4: The determined |Vub||V_{ub}| results and various ratios based on the setup 2-a and 2-b, respectively.
Result
Setup 2-a
(B+π0+ν)\mathcal{B}(B^{+}\to\pi^{0}\,\ell^{+}\,\nu_{\ell}) (0.85±0.13±0.08)×104(0.85\pm 0.13\pm 0.08)\times 10^{-4}
(B0π+ν)\mathcal{B}(B^{0}\to\pi^{-}\,\ell^{+}\,\nu_{\ell}) (1.46±0.26±0.19)×104(1.46\pm 0.26\pm 0.19)\times 10^{-4}
Δ(BXuν¯)\Delta\mathcal{B}(B\to X_{u}\,\ell\,\bar{\nu}_{\ell}) (1.39±0.15±0.22)×103(1.39\pm 0.15\pm 0.22)\times 10^{-3}
ρ(π0,π+)\rho(\mathcal{B}^{\pi^{0}},\mathcal{B}^{\pi^{+}}) 0.080.08
ρ(π0,ΔXu)\rho(\mathcal{B}^{\pi^{0}},\Delta\mathcal{B}^{X_{u}}) 0.080.08
ρ(π+,ΔXu)\rho(\mathcal{B}^{\pi^{+}},\Delta\mathcal{B}^{X_{u}}) 0.080.08
Setup 2-b
(B+π0+ν)\mathcal{B}(B^{+}\to\pi^{0}\,\ell^{+}\,\nu_{\ell}) (0.84±0.13±0.08)×104(0.84\pm 0.13\pm 0.08)\times 10^{-4}
(B0π+ν)\mathcal{B}(B^{0}\to\pi^{-}\,\ell^{+}\,\nu_{\ell}) (1.27±0.27±0.20)×104(1.27\pm 0.27\pm 0.20)\times 10^{-4}
Δ(BXuν¯)\Delta\mathcal{B}(B\to X_{u}\,\ell\,\bar{\nu}_{\ell}) (1.38±0.14±0.22)×103(1.38\pm 0.14\pm 0.22)\times 10^{-3}
ρ(π0,π+)\rho(\mathcal{B}^{\pi^{0}},\mathcal{B}^{\pi^{+}}) 0.140.14
ρ(π0,ΔXu)\rho(\mathcal{B}^{\pi^{0}},\Delta\mathcal{B}^{X_{u}}) 0.080.08
ρ(π+,ΔXu)\rho(\mathcal{B}^{\pi^{+}},\Delta\mathcal{B}^{X_{u}}) 0.060.06
Table 5: The measured branching fractions and various correlations based on the setup 2-a and 2-b, respectively.

.4 BCL parameters of Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} decay form factor

The fitted BCL parameters are summarized in Table 6 and 7 with only LQCD constraints and combined LQCD-experimental constraints, respectively. Figure 8 compares the results obtained in various fit scenarios, which are in good agreement.

|Vub||V_{ub}| ×103\times 10^{3} a0+a^{+}_{0} a1+a^{+}_{1} a2+a^{+}_{2} a00a^{0}_{0} a10a^{0}_{1}
Central 4.055 0.407 -0.597 -0.465 0.496 -1.504
Uncertainty 0.375 0.012 0.080 0.392 0.020 0.096
|Vub||V_{ub}| 1.000 -0.416 -0.473 -0.308 -0.184 -0.462
a0+a^{+}_{0} 1.000 0.275 -0.187 0.254 0.173
a1+a^{+}_{1} 1.000 0.344 0.101 0.720
a2+a^{+}_{2} 1.000 0.193 0.698
a00a^{0}_{0} 1.000 -0.039
a10a^{0}_{1} 1.000
Table 6: The measured BπνB\to\pi\ell\nu form factor BCL parameters and exclusive |Vub||V_{ub}| with full correlations. The shape of q2q^{2} is constrained by the LQCD fit results from FLAG.
|Vub||V_{ub}| ×103\times 10^{3} a0+a^{+}_{0} a1+a^{+}_{1} a2+a^{+}_{2} a00a^{0}_{0} a10a^{0}_{1}
Central 3.777 0.414 -0.493 -0.297 0.500 -1.426
Uncertainty 0.309 0.014 0.053 0.180 0.023 0.054
|Vub||V_{ub}| 1.000 -0.452 -0.168 0.232 -0.109 -0.105
a0+a^{+}_{0} 1.000 0.151 -0.451 0.259 0.142
a1+a^{+}_{1} 1.000 -0.798 -0.096 0.214
a2+a^{+}_{2} 1.000 0.012 -0.097
a00a^{0}_{0} 1.000 -0.451
a10a^{0}_{1} 1.000
Table 7: The measured BπνB\to\pi\ell\nu form factor BCL parameters and exclusive |Vub||V_{ub}| with full correlations. The shape of q2q^{2} is constrained by the combined LQCD and experimental fit results from FLAG.
Refer to caption
Refer to caption
Refer to caption
Figure 8: Top: the q2q^{2} spectra of Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} obtained from the fit of the combined LQCD and experimental information (orange, solid) and from the fit to LQCD only (green, dashed) are shown. The data points are the post-fit signal distributions, corrected for resolution and efficiency effects and averaged over both isospin modes. The input LQCD constraints from FLAG are shown in grey. Bottom left: the q2q^{2} spectra obtained with separated (blue, solid) π+\pi^{+} mode and (red, dashed) π0\pi^{0} using the LQCD only information from FLAG to constrain the Bπν¯B\to\pi\,\ell\,\bar{\nu}_{\ell} form factor (setup 2-b). Bottom right: the results obtained by using the LQCD and experimental constraint (setup 2-a). The combined fit (setup 1-a) result is shown for comparison (black, dotted).