This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\cortext

[mycorrespondingauthor]* Corresponding author: Rahul Mansotra

Fixed-Point Theorems in b-Metric Spaces via a Novel Simulation Function

Anuradha Gupta dishna2@yahoo.in    Rahul Mansotra mansotrarahul2@gmail.com Department of Mathematics Delhi College of Arts and Commerce Netaji nagar, New Delhi, 110023, India Department of Mathematics Faculty of Mathematical sciences University of Delhi New Delhi, 110007, India
Abstract

This paper introduces a new type of simulation function within the framework of bb-metric spaces, leading to the derivation of fixed-point results in this general setting. We explore the theoretical implications of these results and demonstrate their utility through a concrete example.

1 Introduction and Preliminaries

Fixed point theory has long been a cornerstone in both theoretical and applied mathematics, offering deep insights into the behavior of nonlinear systems and algorithms. One of its most powerful tools is the Banach Contraction Mapping Theorem bm3 , which provides a rigorous foundation for proving the existence and uniqueness of fixed points under specific conditions. The theorem also guarantees that certain methods will converge to the fixed point, making it an essential result in the study of mathematical structures and solutions. The exploration of fixed points extends across various mathematical disciplines, including optimization, differential equations, numerical analysis, control theory, and game theory.

In recent decades, there has been a growing interest in extending both classical and contemporary results from metric fixed point theory to a wider range of generalized metric spaces. This transition has not only broadened the scope of fixed point theory but also introduced new challenges and opportunities for research in more abstract settings. These advancements have led to a deeper understanding of how fixed point results can be adapted and applied beyond traditional metric spaces. A recent survey by Van An et al. bm23 offers a comprehensive exploration of these developments, highlighting key results and their potential implications in various mathematical contexts.

In most instances, this approach turned out to be remarkably straightforward, as the fixed point theorems developed in more general metric spaces could be easily derived from their counterparts in classical metric spaces through a systematic metrization process. This process is exemplified in several influential studies, including bm7 , bm8 , and bm10 .

However, there are certain generalized metric spaces, such as quasi metric spaces (often referred to as b-metric spaces within fixed point theory), where the transposition process typically leads to meaningful generalizations of fixed point theorems from traditional metric spaces. Bakhtin bm4 and Czerwik bm6 played a pivotal role in this development by extending the classical concept of metric space, introducing the more general notion of b-metric spaces, and thereby expanding the framework of fixed point theory and its related fields.

In 2014, Jleli and Samet bm14 introduced the concept of ϑ\vartheta-contractions, providing an important generalization of the Banach contraction principle in the framework of Branciari distance spaces bm4 . Later, Ahmad et al. bm13 refined the conditions on the auxiliary function ϑ\vartheta (say), leading to a comparable result in standard metric spaces. Alternatively, Khojasteh et al. bm17 established the concept of simulation functions with a view to consider a new class of contractions, called 𝒵\mathcal{Z}-contractions. Such family generalized, extended and improved several results that had been obtained in previous years. The simplicity and usefulness of these contractions have inspirited many researchers to diversify it further (see [ bm12 , bm15 , bm16 , bm19 , bm21 , and bm22 ]).

Building on the concept of simulation functions introduced by Khojasteh et al. bm17 , Cho et al. bm5 made a remarkable advancement in 2018 by introducing the \mathcal{L}-simulation function as a novel structure within the field. This groundbreaking contribution not only set a new standard but also sparked a wave of further research and development, highlighting the transformative influence of innovative methodologies on the evolution of simulation practices.
Throughout this article, 𝒳\mathcal{X} denotes a nonempty set, +\mathbb{R}^{+} represents the set of positive real numbers, \mathbb{N} stands for the set of positive integers, and 0\mathbb{N}_{0} refers to the set of nonnegative integers.
This section begins with the following definition:

Definition 1.1

bm6 A map 𝔟:𝒳×𝒳[0,)\mathfrak{b}:\mathcal{X}\times\mathcal{X}\rightarrow[0,\infty) is said to be bb-metric on 𝒳\mathcal{X} if there exist s1s\geq 1 such that for all x,y,z𝒳,𝔟x,y,z\in\mathcal{X},~{}\mathfrak{b} satisfies the following:

  1. (i)

    𝔟(x,y)=0\mathfrak{b}(x,y)=0 if and only if x=yx=y;

  2. (ii)

    𝔟(x,y)=𝔟(y,x)\mathfrak{b}(x,y)=\mathfrak{b}(y,x);

  3. (iii)

    𝔟(x,z)s[𝔟(x,y)+𝔟(y,z)]\mathfrak{b}(x,z)\leq s[\mathfrak{b}(x,y)+\mathfrak{b}(y,z)].

Then, (𝒳,𝔟,s)(\mathcal{X},\mathfrak{b},s) is called a bb-metric space with coefficient ss.

Definition 1.2

bm6 Let (𝒳,𝔟,s)(\mathcal{X},\mathfrak{b},s) be a bb-metric space. Then:

  1. (i)

    A sequence (ak)(a_{k}) in 𝒳\mathcal{X} is said to be convergent if there is a𝒳a\in\mathcal{X} such that limk𝔟(ak,a)=0;\lim\limits_{k\rightarrow\infty}\mathfrak{b}(a_{k},a)=0;

  2. (ii)

    A sequence (ak)(a_{k}) in 𝒳\mathcal{X} is said to be cauchy in 𝒳\mathcal{X} if limk,m𝔟(ak,am)\lim\limits_{k,m\rightarrow\infty}\mathfrak{b}(a_{k},a_{m}) exists and is finite;

  3. (iii)

    𝒳\mathcal{X} is said to be complete if for every Cauchy sequence (ak)(a_{k}) in 𝒳\mathcal{X} there is a𝒳a\in\mathcal{X} such that limk,m𝔟(ak,am)=limk𝔟(ak,a)=0;\lim\limits_{k,m\rightarrow\infty}\mathfrak{b}(a_{k},a_{m})=\lim\limits_{k\rightarrow\infty}\mathfrak{b}(a_{k},a)=0;

  4. (iv)

    A function 𝒮:𝒳𝒳\mathcal{S}:\mathcal{X}\to\mathcal{X} is said to be bb-continuous if for (an)𝒳(a_{n})\subseteq\mathcal{X}, anaa_{n}\to a in (𝒳,𝔟)(\mathcal{X},\mathfrak{b}) we have 𝒮an𝒮a\mathcal{S}a_{n}\to\mathcal{S}a in (𝒳,𝔟)(\mathcal{X},\mathfrak{b}).

Following bm14 , Θ\Theta denotes the set of all mappings ϑ:(0,)(1,)\vartheta:(0,\infty)\to(1,\infty) satisfies the following properties:
(a)(a) ϑ\vartheta is increasing;
(b)(b) for each sequence {an}(0,),limnϑ(an)=1limnan=0;\{a_{n}\}\subseteq(0,\infty),\lim\limits_{n\to\infty}\vartheta(a_{n})=1\iff\lim\limits_{n\to\infty}a_{n}=0;
(c)(c) there exist t(0,1)t\in(0,1) and d(0,]d\in(0,\infty] such that limx0+ϑ(x)1xt=d.\lim\limits_{x\to 0^{+}}\dfrac{\vartheta(x)-1}{x^{t}}=d.
Further, Ahmad et al. bm13 replaced the condition (c)(c) with the following:
(d)(d) ϑ\vartheta is continuous.
The symbol Θ\Theta^{*} denotes the collection of all mappings satisfying conditions (a),(b) and (d)(a),(b)\text{ and }(d).

Accordingly, authors in bm13 established the following Fixed Point Theorem:

Theorem 1.3

Every ϑ\vartheta-contraction on a complete metric space has a unique fixed point.

Recently, Cho in bm5 introduced the \mathcal{L}-simulation function as follows:

Definition 1.4

A map \mathcal{L} from [1,)×[1,)[1,\infty)\times[1,\infty) to \mathbb{R} defines a \mathcal{L}-simulation function if for all a,b[1,)a,b\in[1,\infty), \mathcal{L} satisfies the following properties:

  1. (i)

    (1,1)=1;\mathcal{L}(1,1)=1;

  2. (ii)

    (a,b)<ba\mathcal{L}(a,b)<\dfrac{b}{a} for all a,b>1a,b>1;

  3. (iii)

    if (an)(a_{n}) and (bn)(b_{n}) are sequences in (1,)(1,\infty) such that 1<limnan=limnbn1<\lim\limits_{n\to\infty}a_{n}=\lim\limits_{n\to\infty}b_{n}, then lim supn(an,bn)<1\limsup\limits_{n\to\infty}\mathcal{L}(a_{n},b_{n})<1.

By \mathscr{L} we denote the family of all \mathcal{L}-simulation functions.

Hasanuzzaman et al. bm12 introduced the \mathcal{L}-contraction in metric space as follows:

Definition 1.5

Let (𝒳,d)(\mathcal{X},d) be a metric space. Then 𝒯:𝒳𝒳\mathcal{T}:\mathcal{X}\to\mathcal{X} is called \mathcal{L}-contraction with respect to \mathcal{L} if there exist \mathcal{L}\in\mathscr{L} and ϑΘ\vartheta\in\Theta^{*} such that

(ϑ(d(𝒯x,𝒯y)),ϑ(d(x,y)))1\mathcal{L}(\vartheta(d(\mathcal{T}x,\mathcal{T}y)),\vartheta(d(x,y)))\geq 1

for all a,b𝒳a,b\in\mathcal{X} with d(𝒯x,𝒯y)>0d(\mathcal{T}x,\mathcal{T}y)>0.

Inspired by Cho’s work bm5 on \mathcal{L}-contractions in metric spaces and the contributions of Gupta and Rohilla bm9 on simulation functions in bb-metric spaces, this article introduces the concept of 𝔸\mathbb{A}_{\mathbb{R}}-simulation functions. To underscore the importance and applicability of this concept, fixed point theorems are developed and substantiated with a comprehensive example that demonstrates its practical relevance.

2 Fixed Point Theorems Using 𝔍𝔸\mathfrak{J}_{{}_{\mathbb{A}_{\mathbb{R}}}}-Contractions

This section begins by introducing the essential definitions and notations that underpin the theorems and proofs presented.
Let 𝔉𝔠\mathfrak{F_{c}} denote the class of all the operators c from [1,)×[1,) to \mathcal{F}_{c}\text{ from }[1,\infty)\times[1,\infty)\text{ to }\mathbb{R} such that for all a,b[1,)a,b\in[1,\infty), satisfying the following properties:

  1. (i)

    c\mathcal{F}_{c} is continuous;

  2. (ii)

    c(x,y)x\mathcal{F}_{c}(x,y)\leq x;

  3. (iii)

    c(x,y)=x\mathcal{F}_{c}(x,y)=x implies that either x=1x=1 or y=1y=1;

  4. (iv)

    there exist c1c\geq 1 such that c(x,y)>c\mathcal{F}_{c}(x,y)>c implies that x>yx>y and c(x,x)c.\mathcal{F}_{c}(x,x)\leq c.

Example 2.1

c(x,y)=xy\mathcal{F}_{c}(x,y)=\frac{x}{y}. Here c=1c=1.

We define 𝔸\mathbb{A}_{\mathbb{R}}-simulation function in the following:

Definition 2.2

A map 𝔍\mathfrak{J} from [1,)×[1,)[1,\infty)\times[1,\infty) to \mathbb{R} defines a 𝔸\mathbb{A}_{\mathbb{R}}-simulation function if there exist s1s\geq 1, c𝔉𝔠\mathcal{F}_{c}\in\mathfrak{F_{c}} and ϑΘ\vartheta\in\Theta^{*} such that for all x,y(1,)x,y\in(1,\infty), 𝔍\mathfrak{J} satisfying the following properties:

  1. (i)

    𝔍(x,y)<c(y,x)\mathfrak{J}(x,y)<\mathcal{F}_{c}(y,x);

  2. (ii)

    if (an)(a_{n}) and (bn)(b_{n}) are sequences in (0,)(0,\infty) such that

    0<lim infnans(lim supnbn)s2(lim infnan)<0<\liminf\limits_{n\to\infty}a_{n}\leq s(\limsup\limits_{n\to\infty}b_{n})\leq s^{2}(\liminf\limits_{n\to\infty}a_{n})<\infty

    and

    0<lim infnbns(lim supnan)s2(lim infnbn)<,0<\liminf\limits_{n\to\infty}b_{n}\leq s(\limsup\limits_{n\to\infty}a_{n})\leq s^{2}(\liminf\limits_{n\to\infty}b_{n})<\infty,

    then lim supn𝔍(ϑ(an),ϑ(bn))<c\limsup\limits_{n\to\infty}\mathfrak{J}(\vartheta(a_{n}),\vartheta(b_{n}))<c.

Let 𝒥\bf{\mathscr{J}} denote the set of all 𝔸\mathbb{A}_{\mathbb{R}}-simulation functions.

Example 2.3

Define 𝔍:[1,)×[1,)\mathfrak{J}:[1,\infty)\times[1,\infty)\rightarrow\mathbb{R}, c:[1,)×[1,)\mathcal{F}_{c}:[1,\infty)\times[1,\infty)\rightarrow\mathbb{R} and ϑ:(0,)(1,)\vartheta:(0,\infty)\to(1,\infty) by

𝔍(x,y)=y4x , c(y,x)=yx and ϑ(x)=x+1.\mathfrak{J}(x,y)=\frac{y}{4x}\text{ , }\mathcal{F}_{c}(y,x)=\frac{y}{x}\text{ and }\vartheta(x)=x+1.

Note that 𝔍(x,y)<c(y,x)\mathfrak{J}(x,y)<\mathcal{F}_{c}(y,x), for all x,y(1,)x,y\in(1,\infty) and c=1c=1. Further, If (an)(a_{n}) and (bn)(b_{n}) are sequences in (0,)(0,\infty) such that

0<lim infnan4(lim supnbn)16(lim infnan)<0<\liminf\limits_{n\to\infty}a_{n}\leq 4(\limsup\limits_{n\to\infty}b_{n})\leq 16(\liminf\limits_{n\to\infty}a_{n})<\infty

and

0<lim infnbn4(lim supnan)16(lim infnbn)<,0<\liminf\limits_{n\to\infty}b_{n}\leq 4(\limsup\limits_{n\to\infty}a_{n})\leq 16(\liminf\limits_{n\to\infty}b_{n})<\infty,

then lim supn𝔍(ϑ(an),ϑ(bn))=lim supn(bn+14(an+1))=lim supn(bn+1)lim infn4(an+1)\limsup\limits_{n\to\infty}\mathfrak{J}(\vartheta(a_{n}),\vartheta(b_{n}))=\limsup\limits_{n\to\infty}(\dfrac{b_{n}+1}{4(a_{n}+1)})=\dfrac{\limsup\limits_{n\to\infty}(b_{n}+1)}{\liminf\limits_{n\to\infty}4(a_{n}+1)}.
Since lim supnbnlim infn4an,lim supn𝔍(ϑ(an),ϑ(bn))<1\limsup\limits_{n\to\infty}b_{n}\leq\liminf\limits_{n\to\infty}4a_{n},~{}\limsup\limits_{n\to\infty}\mathfrak{J}(\vartheta(a_{n}),\vartheta(b_{n}))<1. Thus 𝔍\mathfrak{J} is a 𝔸\mathbb{A}_{\mathbb{R}}-simulation function.

Definition 2.4

An operator 𝒮\mathcal{S} from 𝒳\mathcal{X} to 𝒳\mathcal{X} defines a 𝔍𝔸\mathfrak{J}_{{}_{\mathbb{A}_{\mathbb{R}}}}-contraction if there exist 𝔍𝒥,ϑΘ\mathfrak{J}\in\mathscr{J},\vartheta\in\Theta^{*} such that for all x,y𝒳x,y\in\mathcal{X} with 𝔟(𝒮x,𝒮y)>0\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)>0 implies

𝔍(ϑ(𝔟(𝒮x,𝒮y)),ϑ(𝔟(x,y)))c.\mathfrak{J}(\vartheta(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)),\vartheta(\mathfrak{b}(x,y)))\geq c. (2.1)
Theorem 2.5

Let (𝒳,𝔟,s)(\mathcal{X},\mathfrak{b},s) be a complete bb-metric space with coefficient s1s\geq 1 and 𝒮:𝒳𝒳\mathcal{S}:\mathcal{X}\rightarrow\mathcal{X} be a given mapping. Suppose that 𝒮\mathcal{S} is a 𝔍𝔸\mathfrak{J}_{{}_{\mathbb{A}_{\mathbb{R}}}}-contraction. Then 𝒮\mathcal{S} has a unique fixed point.

Proof 2.6.

Let a0𝒳a_{0}\in\mathcal{X} and define 𝒮na0=an\mathcal{S}^{n}a_{0}=a_{n}, for all n0n\in\mathbb{N}_{0}. If 𝔟(an,an+1)=0\mathfrak{b}(a_{n},a_{n+1})=0 then an=an+1=𝒮ana_{n}=a_{n+1}=\mathcal{S}a_{n} becomes fixed point of 𝒮\mathcal{S}. From this point onward, we can consider that 𝔟(an,an+1)0,\mathfrak{b}(a_{n},a_{n+1})\neq 0, for all n0n\geq 0. Put x=an and y=an+1x=a_{n}\text{ and }y=a_{n+1} in inequality (2.1)(2.1) then

c\displaystyle c 𝔍(ϑ(𝔟(𝒮an,𝒮an+1)),ϑ(𝔟(an,an+1)))\displaystyle\leq\mathfrak{J}(\vartheta(\mathfrak{b}(\mathcal{S}a_{n},\mathcal{S}a_{n+1})),\vartheta(\mathfrak{b}(a_{n},a_{n+1})))
=𝔍(ϑ(𝔟(an+1,an+2)),ϑ(𝔟(an,an+1)))\displaystyle=\mathfrak{J}(\vartheta(\mathfrak{b}(a_{n+1},a_{n+2})),\vartheta(\mathfrak{b}(a_{n},a_{n+1}))) (2.2)
<c(ϑ(𝔟(an,an+1)),ϑ(𝔟(an+1,an+2))).\displaystyle<\mathcal{F}_{c}(\vartheta(\mathfrak{b}(a_{n},a_{n+1})),\vartheta(\mathfrak{b}(a_{n+1},a_{n+2}))).

Thus, by the property of c\mathcal{F}_{c}, we get ϑ(𝔟(an+1,an+2))<ϑ(𝔟(an,an+1))\vartheta(\mathfrak{b}(a_{n+1},a_{n+2}))<\vartheta(\mathfrak{b}(a_{n},a_{n+1})). Let us suppose that 𝔟(an,an+1)<𝔟(an+1,an+2)\mathfrak{b}(a_{n},a_{n+1})<\mathfrak{b}(a_{n+1},a_{n+2}). As ϑ\vartheta is increasing, ϑ(𝔟(an,an+1))ϑ(𝔟(an+1,an+2))\vartheta(\mathfrak{b}(a_{n},a_{n+1}))\leq\vartheta(\mathfrak{b}(a_{n+1},a_{n+2})), which is a contradiction. Thus, 𝔟(an+1,an+2)𝔟(an,an+1)\mathfrak{b}(a_{n+1},a_{n+2})\leq\mathfrak{b}(a_{n},a_{n+1}), for all n0.n\geq 0. So, (𝔟(an,an+1))(\mathfrak{b}(a_{n},a_{n+1})) is a decreasing sequence of positive real numbers; hence limn𝔟(an,an+1)=a0\lim\limits_{n\to\infty}\mathfrak{b}(a_{n},a_{n+1})=a\geq 0. We will show that a=0.a=0. Suppose a>0a>0 then 0<asas2a<0<a\leq sa\leq s^{2}a<\infty. Let rn=𝔟(an,an+1)r_{n}=\mathfrak{b}(a_{n},a_{n+1}), then

0<lim infnrn+1s(lim supnrn)s2(lim infnrn)<0<\liminf\limits_{n\to\infty}r_{n+1}\leq s(\limsup\limits_{n\to\infty}r_{n})\leq s^{2}(\liminf\limits_{n\to\infty}r_{n})<\infty

and

0<lim infnrns(lim supnrn+1)s2(lim infnrn)<,0<\liminf\limits_{n\to\infty}r_{n}\leq s(\limsup\limits_{n\to\infty}r_{n+1})\leq s^{2}(\liminf\limits_{n\to\infty}r_{n})<\infty,

hence by the property of 𝔍\mathfrak{J}, we get lim supn𝔍(ϑ(rn+1),ϑ(rn))<c.\limsup\limits_{n\to\infty}\mathfrak{J}(\vartheta(r_{n+1}),\vartheta(r_{n}))<c.
Also, by inequality (2.2)(2.2), clim supn𝔍(ϑ(rn+1),ϑ(rn))c\leq\limsup\limits_{n\to\infty}\mathfrak{J}(\vartheta(r_{n+1}),\vartheta(r_{n})), which leads to a contradiction. Hence limnrn=0.\lim\limits_{n\to\infty}r_{n}=0. Now, we aim to prove that (an)(a_{n}) is a Cauchy sequence. Let us suppose that (an)(a_{n}) is not a Cauchy sequence in (𝒳,𝔟)(\mathcal{X},\mathfrak{b}). Then, there exist ε>0\varepsilon>0 and subsequences (ani)(a_{n_{i}}) and (ami)(a_{m_{i}}) of sequence (an)(a_{n}) such that nin_{i} is the smallest integer for which ni>mi>in_{i}>m_{i}>i with

𝔟(ami,ani)ε and 𝔟(ami,ani1)<ε.\mathfrak{b}(a_{m_{i}},a_{n_{i}})\geq\varepsilon\mbox{ and }\mathfrak{b}(a_{m_{i}},a_{n_{i}-1})<\varepsilon. (2.3)

Now, ε𝔟(ami,ani)s(𝔟(ami,ani1)+𝔟(ani1,ani))\varepsilon\leq\mathfrak{b}(a_{m_{i}},a_{n_{i}})\leq s(\mathfrak{b}(a_{m_{i}},a_{n_{i}-1})+\mathfrak{b}(a_{n_{i}-1},a_{n_{i}})), which implies that

εlim infi𝔟(ami,ani)sε and εlim supi𝔟(ami,ani)sε.\varepsilon\leq\liminf\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}},a_{n_{i}})\leq s\varepsilon\text{ and }\varepsilon\leq\limsup\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}},a_{n_{i}})\leq s\varepsilon. (2.4)

Note that amiania_{m_{i}}\neq a_{n_{i}} as 𝔟(ami,ani)ε\mathfrak{b}(a_{m_{i}},a_{n_{i}})\geq\varepsilon. Substitute x=ami1 and y=ani1x=a_{m_{i}-1}\text{ and }y=a_{n_{i}-1} in inequality (2.1)(2.1), we get

c\displaystyle c 𝔍(ϑ(𝔟(𝒮an,𝒮an+1)),ϑ(𝔟(an,an+1)))\displaystyle\leq\mathfrak{J}(\vartheta(\mathfrak{b}(\mathcal{S}a_{n},\mathcal{S}a_{n+1})),\vartheta(\mathfrak{b}(a_{n},a_{n+1})))
=𝔍(ϑ(𝔟(ami,ani)),ϑ(𝔟(ami1,ani1)))\displaystyle=\mathfrak{J}(\vartheta(\mathfrak{b}(a_{m_{i}},a_{n_{i}})),\vartheta(\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1}))) (2.5)
<c(ϑ(𝔟(ami1,ani1)),ϑ(𝔟(ami,ani)))\displaystyle<\mathcal{F}_{c}(\vartheta(\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1})),\vartheta(\mathfrak{b}(a_{m_{i}},a_{n_{i}})))

which implies ϑ(𝔟(ami,ani))<ϑ(𝔟(ami1,ani1)))\vartheta(\mathfrak{b}(a_{m_{i}},a_{n_{i}}))<\vartheta(\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1}))). Let it be the case that 𝔟(ami1,ani1)<𝔟(ami,ani).\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1})<\mathfrak{b}(a_{m_{i}},a_{n_{i}}). As ϑ\vartheta is increasing, ϑ(𝔟(ami1,ani1))ϑ(𝔟(ami,ani))\vartheta(\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1}))\leq\vartheta(\mathfrak{b}(a_{m_{i}},a_{n_{i}})) which leads to a contradiction. Also, ε𝔟(ami,ani)<𝔟(ami1,ani1)\varepsilon\leq\mathfrak{b}(a_{m_{i}},a_{n_{i}})<\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1})\leq
s(𝔟(ami1,ami)+𝔟(ami,ani1))s(\mathfrak{b}(a_{m_{i}-1},a_{m_{i}})+\mathfrak{b}(a_{m_{i}},a_{n_{i}-1})). Thus, using inequality (2.3)(2.3) and taking limit superior and limit inferior as ii goes to infinity, we get

εlim infi𝔟(ami1,ani1)sε and εlim supi𝔟(ami1,ani1)sε.\varepsilon\leq\liminf\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1})\leq s\varepsilon\text{ and }\varepsilon\leq\limsup\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1})\leq s\varepsilon. (2.6)

Using inequalities (2.3)(2.3), (2.4)(2.4) and (2.6)(2.6), we have

0<lim infi𝔟(ami,ani)sεs(lim supi𝔟(ami1,ani1))s2εs2(lim infi𝔟(ami,ani))<\displaystyle 0<\liminf\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}},a_{n_{i}})\leq s\varepsilon\leq s(\limsup\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1}))\leq s^{2}\varepsilon\leq s^{2}(\liminf\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}},a_{n_{i}}))<\infty
and
0<lim infi𝔟(ami1,ani1)sεs(lim supi𝔟(ami,ani))s2εs2(lim infi𝔟(ami1,ani1))<.\displaystyle 0<\liminf\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1})\leq s\varepsilon\leq s(\limsup\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}},a_{n_{i}}))\leq s^{2}\varepsilon\leq s^{2}(\liminf\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1}))<\infty.

Therefore, in light of the property of 𝔍\mathfrak{J}, we have

lim supi𝔍(ϑ(𝔟(ami,ani)),ϑ(𝔟(ami1,ani1)))<c.\limsup_{i\to\infty}\mathfrak{J}(\vartheta(\mathfrak{b}(a_{m_{i}},a_{n_{i}})),\vartheta(\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1})))<c.

Also, by inequality (2.5)(2.5), we get clim supi𝔍(ϑ(𝔟(ami,ani)),ϑ(𝔟(ami1,ani1))),c\leq\limsup\limits_{i\to\infty}\mathfrak{J}(\vartheta(\mathfrak{b}(a_{m_{i}},a_{n_{i}})),\vartheta(\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1}))), which leads to a contradiction. Hence, limn𝔟(an,am)=0\lim\limits_{n\to\infty}\mathfrak{b}(a_{n},a_{m})=0.
Since (𝒳,𝔟,s)(\mathcal{X},\mathfrak{b},s) is a complete bb-metric space,

limn,m𝔟(an,am)=limn𝔟(an,z)=0, for some z𝒳.\lim\limits_{n,m\to\infty}\mathfrak{b}(a_{n},a_{m})=\lim\limits_{n\to\infty}\mathfrak{b}(a_{n},z)=0,\text{ for some }z\in\mathcal{X}.

We will show that zz is the unique fixed point of 𝒮\mathcal{S}. Suppose 𝔟(an1,z)0\mathfrak{b}(a_{n-1},z)\neq 0 and 𝔟(an,𝒮z)0\mathfrak{b}(a_{n},\mathcal{S}z)\neq 0 for infinitely many nn. Substitute x=an1x=a_{n-1} and y=zy=z in inequality (2.1)(2.1), we get

c\displaystyle c 𝔍(ϑ(𝔟(𝒮an1,𝒮z)),ϑ(𝔟(an1,z)))\displaystyle\leq\mathfrak{J}(\vartheta(\mathfrak{b}(\mathcal{S}a_{n-1},\mathcal{S}z)),\vartheta(\mathfrak{b}(a_{n-1},z)))
=𝔍(ϑ(𝔟(an,𝒮z)),ϑ(𝔟(an1,z)))\displaystyle=\mathfrak{J}(\vartheta(\mathfrak{b}(a_{n},\mathcal{S}z)),\vartheta(\mathfrak{b}(a_{n-1},z)))
<c(ϑ(𝔟(an1,z)),ϑ(𝔟(an,𝒮z))),\displaystyle<\mathcal{F}_{c}(\vartheta(\mathfrak{b}(a_{n-1},z)),\vartheta(\mathfrak{b}(a_{n},\mathcal{S}z))),

hence, by the property of c\mathcal{F}_{c}, we get ϑ(𝔟(an,𝒮z))<ϑ(𝔟(an1,z))\vartheta(\mathfrak{b}(a_{n},\mathcal{S}z))<\vartheta(\mathfrak{b}(a_{n-1},z)). Assume 𝔟(an1,z)<𝔟(an,𝒮z)\mathfrak{b}(a_{n-1},z)<\mathfrak{b}(a_{n},\mathcal{S}z). As ϑ\vartheta is increasing, ϑ(𝔟(an,𝒮z))<ϑ(𝔟(an1,z))\vartheta(\mathfrak{b}(a_{n},\mathcal{S}z))<\vartheta(\mathfrak{b}(a_{n-1},z)), which is a contradiction. Thus, 𝔟(an,𝒮z)𝔟(an1,z)\mathfrak{b}(a_{n},\mathcal{S}z)\leq\mathfrak{b}(a_{n-1},z), which implies that limn𝔟(an,𝒮z)=0.\lim\limits_{n\to\infty}\mathfrak{b}(a_{n},\mathcal{S}z)=0. Now, 𝔟(z,𝒮z)s(𝔟(z,an)+𝔟(an,𝒮z))\mathfrak{b}(z,\mathcal{S}z)\leq s(\mathfrak{b}(z,a_{n})+\mathfrak{b}(a_{n},\mathcal{S}z)) which on applying limit, gives z=𝒮zz=\mathcal{S}z. Finally, we will prove the uniqueness of the fixed point. Suppose ww be the another fixed point such that zwz\neq w. Then 𝔟(z,w)>0\mathfrak{b}(z,w)>0. On substituting x=zx=z and y=wy=w in inequality (2.1)(2.1), we have

c𝔍(ϑ(𝔟(𝒮z,𝒮w)),ϑ(𝔟(z,w)))<c(ϑ(𝔟(z,w)),ϑ(𝔟(z,w)))c,c\leq\mathfrak{J}(\vartheta(\mathfrak{b}(\mathcal{S}z,\mathcal{S}w)),\vartheta(\mathfrak{b}(z,w)))<\mathcal{F}_{c}(\vartheta(\mathfrak{b}(z,w)),\vartheta(\mathfrak{b}(z,w)))\leq c,

which is a contradiction. Hence zz becomes the unique fixed point.

Example 2.7.

Let 𝒳={1,2,3,4}\mathcal{X}=\{1,2,3,4\}. Define 𝔟:𝒳×𝒳+\mathfrak{b}:\mathcal{X}\times\mathcal{X}\rightarrow\mathbb{R^{+}} given by
𝔟(x,x)=0\mathfrak{b}(x,x)=0 for all x𝒳x\in\mathcal{X},
𝔟(1,2)=𝔟(2,1)=3\mathfrak{b}(1,2)=\mathfrak{b}(2,1)=3,
𝔟(2,3)=𝔟(3,2)=𝔟(1,3)=𝔟(3,1)=1\mathfrak{b}(2,3)=\mathfrak{b}(3,2)=\mathfrak{b}(1,3)=\mathfrak{b}(3,1)=1,
𝔟(1,4)=𝔟(4,1)=𝔟(2,4)=𝔟(4,2)=𝔟(3,4)=𝔟(4,3)=4.\mathfrak{b}(1,4)=\mathfrak{b}(4,1)=\mathfrak{b}(2,4)=\mathfrak{b}(4,2)=\mathfrak{b}(3,4)=\mathfrak{b}(4,3)=4.
Clearly, (𝒳,𝔟,s)(\mathcal{X},\mathfrak{b},s) is a complete bb-metric space with coefficient s=3.s=\sqrt{3}.
Also, define 𝔍:[1,)×[1,)\mathfrak{J}:[1,\infty)\times[1,\infty)\rightarrow\mathbb{R}, c:[1,)×[1,)\mathcal{F}_{c}:[1,\infty)\times[1,\infty)\rightarrow\mathbb{R} and ϑ:(0,)(1,)\vartheta:(0,\infty)\to(1,\infty) by

𝔍(x,y)=y3x , c(y,x)=yx and ϑ(x)=x+1.\mathfrak{J}(x,y)=\frac{y}{\sqrt{3}x}\text{ , }\mathcal{F}_{c}(y,x)=\frac{y}{x}\text{ and }\vartheta(x)=x+1.

Note that 𝔍(x,y)<c(y,x)\mathfrak{J}(x,y)<\mathcal{F}_{c}(y,x), for all x,y(1,)x,y\in(1,\infty) and c=1c=1. Further, If (an)(a_{n}) and (bn)(b_{n}) are sequences in (0,)(0,\infty) such that

0<lim infnan3(lim supnbn)3(lim infnan)<0<\liminf\limits_{n\to\infty}a_{n}\leq\sqrt{3}(\limsup\limits_{n\to\infty}b_{n})\leq 3(\liminf\limits_{n\to\infty}a_{n})<\infty

and

0<lim infnbn3(lim supnan)3(lim infnbn)<,0<\liminf\limits_{n\to\infty}b_{n}\leq\sqrt{3}(\limsup\limits_{n\to\infty}a_{n})\leq 3(\liminf\limits_{n\to\infty}b_{n})<\infty,

then lim supn𝔍(ϑ(an),ϑ(bn))=lim supn(bn+13(an+1))=lim supn(bn+1)lim infn3(an+1)\limsup\limits_{n\to\infty}\mathfrak{J}(\vartheta(a_{n}),\vartheta(b_{n}))=\limsup\limits_{n\to\infty}(\dfrac{b_{n}+1}{\sqrt{3}(a_{n}+1)})=\dfrac{\limsup\limits_{n\to\infty}(b_{n}+1)}{\liminf\limits_{n\to\infty}\sqrt{3}(a_{n}+1)}.
As lim supnbnlim infn3an.\limsup\limits_{n\to\infty}b_{n}\leq\liminf\limits_{n\to\infty}\sqrt{3}a_{n}. Hence, lim supn𝔍(ϑ(an),ϑ(bn))<1\limsup\limits_{n\to\infty}\mathfrak{J}(\vartheta(a_{n}),\vartheta(b_{n}))<1. Thus 𝔍\mathfrak{J} is a 𝔸\mathbb{A}_{\mathbb{R}}-simulation function. Moreover, define 𝒮:𝒳𝒳\mathcal{S}:\mathcal{X}\rightarrow\mathcal{X} by

𝒮x={3, when x4,1, else .\mathcal{S}x=\begin{cases}3,\text{ when }x\neq 4,\\ 1,\text{ else }.\end{cases}

We will now verify that 𝒮\mathcal{S} is a 𝔍𝔸\mathfrak{J}_{{}_{\mathbb{A}_{\mathbb{R}}}}-contraction. Note that

𝔟(𝒮x,𝒮y)={𝔟(1,3)=1,if x=4,y4,𝔟(1,1)=0,if x=4,y=4,𝔟(3,3)=0,if x4,y4,𝔟(3,1)=1,if x4,y=4,\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)=\begin{cases}\mathfrak{b}(1,3)=1,&\text{if }x=4,y\neq 4,\\ \mathfrak{b}(1,1)=0,&\text{if }x=4,y=4,\\ \mathfrak{b}(3,3)=0,&\text{if }x\neq 4,y\neq 4,\\ \mathfrak{b}(3,1)=1,&\text{if }x\neq 4,y=4,\end{cases}

hence 𝔟(𝒮x,𝒮y)>0\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)>0 if and only if x=4,y4,x=4,y\neq 4, and x4,y=4x\neq 4,y=4. Now, if x=4,y4,x=4,y\neq 4, and x4,y=4,x\neq 4,y=4, then 𝔟(x,y)=4\mathfrak{b}(x,y)=4 and 𝔟(𝒮x,𝒮y)=1.\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)=1. Further, for all x,y𝒳x,y\in\mathcal{X} with 𝔟(𝒮x,𝒮y)>0,\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)>0, we have

𝔍(ϑ(𝔟(𝒮x,𝒮y)),ϑ(𝔟(x,y)))=ϑ(𝔟(x,y))3ϑ(𝔟(𝒮x,𝒮y))=𝔟(x,y)+13(𝔟(𝒮x,𝒮y)+1)=4+13(1+1)=523>1\mathfrak{J}(\vartheta(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)),\vartheta(\mathfrak{b}(x,y)))=\dfrac{\vartheta(\mathfrak{b}(x,y))}{\sqrt{3}\vartheta(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y))}=\dfrac{\mathfrak{b}(x,y)+1}{\sqrt{3}(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)+1)}=\dfrac{4+1}{\sqrt{3}(1+1)}=\dfrac{5}{2\sqrt{3}}>1

Hence, 𝒮\mathcal{S} is a 𝔍𝔸\mathfrak{J}_{{}_{\mathbb{A}_{\mathbb{R}}}}-contraction. By Theorem 2.52.5, 𝒮\mathcal{S} has a unique fixed point 33.

Theorem 2.8.

Let (𝒳,𝔟,s)(\mathcal{X},\mathfrak{b},s) be a complete b-metric space with coefficient s1s\geq 1 and 𝒮:𝒳𝒳\mathcal{S}:\mathcal{X}\rightarrow\mathcal{X} be a 𝔟\mathfrak{b}-continuous self-mapping. Suppose 𝔍𝒥\mathfrak{J}\in\bf{\mathscr{J}}, ϑΘ\vartheta\in\Theta^{*} and satisfies

𝔍(ϑ(𝔟(𝒮x,𝒮y)),ϑ(max{𝔟(x,y),𝔟(x,𝒮x),𝔟(y,𝒮y),𝔟(𝒮x,y)+𝔟(x,𝒮y)2s}))c,\mathfrak{J}\left(\vartheta(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)),\vartheta(\max\{\mathfrak{b}(x,y),\mathfrak{b}(x,\mathcal{S}x),\mathfrak{b}(y,\mathcal{S}y),\frac{\mathfrak{b}(\mathcal{S}x,y)+\mathfrak{b}(x,\mathcal{S}y)}{2s}\})\right)\geq c, (2.7)

for all 𝒮x𝒮y,x,y𝒳\mathcal{S}x\neq\mathcal{S}y,~{}x,y\in\mathcal{X}. Then 𝒮\mathcal{S} has a unique fixed point.

Proof 2.9.

Proceeding in the similar manner as the proof of Theorem 2.52.5, substitute x=an,y=an+1x=a_{n},y=a_{n+1} in inequality (2.7)(2.7), we get

𝔍(ϑ(𝔟(𝒮an,𝒮an+1)),ϑ(max{𝔟(an,an+1),𝔟(an,𝒮an),𝔟(an+1,𝒮an+1),𝔟(𝒮an,an+1)+𝔟(an,𝒮an+1)2s}))=\displaystyle\mathfrak{J}(\vartheta(\mathfrak{b}(\mathcal{S}a_{n},\mathcal{S}a_{n+1})),\vartheta(\max\{\mathfrak{b}(a_{n},a_{n+1}),\mathfrak{b}(a_{n},\mathcal{S}a_{n}),\mathfrak{b}(a_{n+1},\mathcal{S}a_{n+1}),\frac{\mathfrak{b}(\mathcal{S}a_{n},a_{n+1})+\mathfrak{b}(a_{n},\mathcal{S}a_{n+1})}{2s}\}))=
𝔍(ϑ(𝔟(an+1,an+2)),ϑ(max{𝔟(an,an+1),𝔟(an,an+1),𝔟(an+1,an+2),𝔟(an+1,an+1)+𝔟(an,an+2)2s}))c.\displaystyle\hskip 28.45274pt\mathfrak{J}(\vartheta(\mathfrak{b}(a_{n+1},a_{n+2})),\vartheta(\max\{\mathfrak{b}(a_{n},a_{n+1}),\mathfrak{b}(a_{n},a_{n+1}),\mathfrak{b}(a_{n+1},a_{n+2}),\frac{\mathfrak{b}(a_{n+1},a_{n+1})+\mathfrak{b}(a_{n},a_{n+2})}{2s}\}))\geq c.

Let rn=𝔟(an,an+1)r_{n}=\mathfrak{b}(a_{n},a_{n+1}), Then 𝔍(ϑ(rn+1),ϑ(max{rn,rn,rn+1,0+𝔟(an,an+2)2s}))c.\mathfrak{J}(\vartheta(r_{n+1}),\vartheta(\max\{r_{n},r_{n},r_{n+1},\dfrac{0+\mathfrak{b}(a_{n},a_{n+2})}{2s}\}))\geq c. Using the property of 𝔍\mathfrak{J}, it follows that 𝔍(ϑ(rn+1),ϑ(max{rn,rn+1,𝔟(an,an+2)2s}))<c(ϑ(max{rn,rn+1,𝔟(an,an+2)2s}),ϑ(rn+1)),\mathfrak{J}(\vartheta(r_{n+1}),\vartheta(\max\{r_{n},r_{n+1},\dfrac{\mathfrak{b}(a_{n},a_{n+2})}{2s}\}))<\mathcal{F}_{c}(\vartheta(\max\{r_{n},r_{n+1},\dfrac{\mathfrak{b}(a_{n},a_{n+2})}{2s}\}),\vartheta(r_{n+1})), using the property of c\mathcal{F}_{c}, it follows that ϑ(rn+1)<ϑ(max{rn,rn+1,𝔟(an,an+2)2s})\vartheta(r_{n+1})<\vartheta(\max\{r_{n},r_{n+1},\dfrac{\mathfrak{b}(a_{n},a_{n+2})}{2s}\}). Considering that max{rn,rn+1,𝔟(an,an+2)2s}<rn+1\max\{r_{n},r_{n+1},\dfrac{\mathfrak{b}(a_{n},a_{n+2})}{2s}\}<r_{n+1}. As ϑ\vartheta is increasing, ϑ(max{rn,rn+1,𝔟(an,an+2)2s})ϑ(rn+1)\vartheta(\max\{r_{n},r_{n+1},\dfrac{\mathfrak{b}(a_{n},a_{n+2})}{2s}\})\leq\vartheta(r_{n+1}), which leads to a contradiction. Hence, rn+1<max{rn,rn+1,𝔟(an,an+2)2s}r_{n+1}<\max\{r_{n},r_{n+1},\dfrac{\mathfrak{b}(a_{n},a_{n+2})}{2s}\}. Further, rn+1<max{rn,rn+1,𝔟(an,an+2)2s}max{rn,rn+1,rn+rn+12}=rnr_{n+1}<\max\{r_{n},r_{n+1},\dfrac{\mathfrak{b}(a_{n},a_{n+2})}{2s}\}\leq\max\{r_{n},r_{n+1},\dfrac{r_{n}+r_{n+1}}{2}\}=r_{n}. Thus, (rn)(r_{n}) is a decreasing sequence of positive reals; hence limnrn=a0\lim\limits_{n\to\infty}r_{n}=a\geq 0. Following the steps in Theorem 2.52.5, we get limnrn=0.\lim\limits_{n\to\infty}r_{n}=0. Now, we aim to prove that (an)(a_{n}) is a Cauchy sequence. Assume on contrary, that there exists an ε>0\varepsilon>0 such that subsequences (ani)(a_{n_{i}}) and (ami)(a_{m_{i}}) of sequence (an)(a_{n}) such that nin_{i} is the smallest integer for which

ni>mi>i,𝔟(ami,ani)εand𝔟(ami,ani1)<ε.n_{i}>m_{i}>i,~{}\mathfrak{b}(a_{m_{i}},a_{n_{i}})\geq\varepsilon~{}\text{and}~{}\mathfrak{b}(a_{m_{i}},a_{n_{i}-1})<\varepsilon.

Now, ε𝔟(ami,ani)s(𝔟(ami,ani1)+𝔟(ani1,ani))\varepsilon\leq\mathfrak{b}(a_{m_{i}},a_{n_{i}})\leq s(\mathfrak{b}(a_{m_{i}},a_{n_{i}-1})+\mathfrak{b}(a_{n_{i}-1},a_{n_{i}})), which implies that

εlim infi𝔟(ami,ani)sε and εlim supi𝔟(ami,ani)sε.\varepsilon\leq\liminf\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}},a_{n_{i}})\leq s\varepsilon\text{ and }\varepsilon\leq\limsup\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}},a_{n_{i}})\leq s\varepsilon. (2.8)

Note amiani as 𝔟(ami,ani)εa_{m_{i}}\neq a_{n_{i}}\text{ as }\mathfrak{b}(a_{m_{i}},a_{n_{i}})\geq\varepsilon. Substitute x=amix=a_{m_{i}} and y=aniy=a_{n_{i}} in inequality (2.7)(2.7), we get

c\displaystyle c 𝔍(ϑ(𝔟(ami,ani)),ϑ(max{𝔟(ami1,ani1),rmi,rni,𝔟(ami,ani1)+𝔟(ami1,ani)2s}))\displaystyle\leq\mathfrak{J}(\vartheta(\mathfrak{b}(a_{m_{i}},a_{n_{i}})),\vartheta(\max\{\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1}),r_{m_{i}},r_{n_{i}},\frac{\mathfrak{b}(a_{m_{i}},a_{n_{i}-1})+\mathfrak{b}(a_{m_{i}-1},a_{n_{i}})}{2s}\})) (2.9)
<c(ϑ(max{𝔟(ami1,ani1),rmi,rni,𝔟(ami,ani1)+𝔟(ami1,ani)2s}),ϑ(𝔟(ami,ani))).\displaystyle<\mathcal{F}_{c}(\vartheta(\max\{\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1}),r_{m_{i}},r_{n_{i}},\frac{\mathfrak{b}(a_{m_{i}},a_{n_{i}-1})+\mathfrak{b}(a_{m_{i}-1},a_{n_{i}})}{2s}\}),\vartheta(\mathfrak{b}(a_{m_{i}},a_{n_{i}}))).

By the property (iv)(iv) of c\mathcal{F}_{c}, we have

ϑ(𝔟(ami,ani))<ϑ(max{𝔟(ami1,ani1),rmi,rni,𝔟(ami,ani1)+𝔟(ami1,ani)2s}).\vartheta(\mathfrak{b}(a_{m_{i}},a_{n_{i}}))<\vartheta(\max\{\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1}),r_{m_{i}},r_{n_{i}},\frac{\mathfrak{b}(a_{m_{i}},a_{n_{i}-1})+\mathfrak{b}(a_{m_{i}-1},a_{n_{i}})}{2s}\}).

Suppose max{𝔟(ami1,ani1),rmi,rni,𝔟(ami,ani1)+𝔟(ami1,ani)2s}<𝔟(ami,ani).\max\{\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1}),r_{m_{i}},r_{n_{i}},\dfrac{\mathfrak{b}(a_{m_{i}},a_{n_{i}-1})+\mathfrak{b}(a_{m_{i}-1},a_{n_{i}})}{2s}\}<\mathfrak{b}(a_{m_{i}},a_{n_{i}}). As ϑ\vartheta is increasing,
ϑ(max{𝔟(ami1,ani1),rmi,rni,𝔟(ami,ani1)+𝔟(ami1,ani)2s})ϑ(𝔟(ami,ani))\vartheta(\max\{\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1}),r_{m_{i}},r_{n_{i}},\dfrac{\mathfrak{b}(a_{m_{i}},a_{n_{i}-1})+\mathfrak{b}(a_{m_{i}-1},a_{n_{i}})}{2s}\})\leq\vartheta(\mathfrak{b}(a_{m_{i}},a_{n_{i}})), which is a contradiction. Hence, 𝔟(ami,ani)max{𝔟(ami1,ani1),rmi,rni,𝔟(ami,ani1)+𝔟(ami1,ani)2s}.\mathfrak{b}(a_{m_{i}},a_{n_{i}})\leq\max\{\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1}),r_{m_{i}},r_{n_{i}},\dfrac{\mathfrak{b}(a_{m_{i}},a_{n_{i}-1})+\mathfrak{b}(a_{m_{i}-1},a_{n_{i}})}{2s}\}. Now, consider the following three cases:
Case (i)(i): If 𝔟(ami,ani)<rmi\mathfrak{b}(a_{m_{i}},a_{n_{i}})<r_{m_{i}} or rni~{}r_{n_{i}} holds for infinitely many ii then limi𝔟(ami,ani)=0\lim\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}},a_{n_{i}})=0, which is contrary to inequality (2.8)(2.8).
Case (ii)(ii): If 𝔟(ami,ani)<𝔟(ami1,ani1)\mathfrak{b}(a_{m_{i}},a_{n_{i}})<\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1})~{} holds for infinitely many ii then it follows from Theorem 2.52.5, (an)(a_{n}) is a Cauchy sequence.
Case (iii)(iii): Let pi=12s(𝔟(ami,ani1)+𝔟(ami1,ani))p_{i}=\dfrac{1}{2s}(\mathfrak{b}(a_{m_{i}},a_{n_{i}-1})+\mathfrak{b}(a_{m_{i}-1},a_{n_{i}})). If 𝔟(ami,ani)<pi\mathfrak{b}(a_{m_{i}},a_{n_{i}})<p_{i} holds for infinitely many ii then pi12(𝔟(ami,ani)+2rni1+𝔟(ami1,ani1))p_{i}\leq\dfrac{1}{2}(\mathfrak{b}(a_{m_{i}},a_{n_{i}})+2r_{n_{i}-1}+\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1})). Hence 𝔟(ami,ani)<pi12(𝔟(ami,ani)+2rni1+𝔟(ami1,ani1))\mathfrak{b}(a_{m_{i}},a_{n_{i}})<p_{i}\leq\dfrac{1}{2}(\mathfrak{b}(a_{m_{i}},a_{n_{i}})+2r_{n_{i}-1}+\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1})). Also, 𝔟(ani1,ami1)s(𝔟(ami1,ami)+𝔟(ami,ani1))\mathfrak{b}(a_{n_{i}-1},a_{m_{i}-1})\leq s(\mathfrak{b}(a_{m_{i}-1},a_{m_{i}})+\mathfrak{b}(a_{m_{i}},a_{n_{i}-1})) hence, lim supi𝔟(ami1,ani1)sε.\limsup\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}-1},a_{n_{i}-1})\leq s\varepsilon. By inequality (2.8)(2.8) and limnrn=0\lim\limits_{n\to\infty}r_{n}=0, we get

0<lim infi𝔟(ami,ani)s(lim supipi)s2εs2(lim infi𝔟(ami,ani))<0<\liminf\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}},a_{n_{i}})\leq s(\limsup\limits_{i\to\infty}p_{i})\leq s^{2}\varepsilon\leq s^{2}(\liminf\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}},a_{n_{i}}))<\infty

and

0<lim infipisεs(lim supi𝔟(ami,ani))s2εs2(lim infipi)<.0<\liminf\limits_{i\to\infty}p_{i}\leq s\varepsilon\leq s(\limsup\limits_{i\to\infty}\mathfrak{b}(a_{m_{i}},a_{n_{i}}))\leq s^{2}\varepsilon\leq s^{2}(\liminf\limits_{i\to\infty}p_{i})<\infty.

Hence by the property of 𝔍\mathfrak{J}, we get lim supi𝔍(ϑ(𝔟(ami,ani)),ϑ(pi))<c,\limsup\limits_{i\to\infty}\mathfrak{J}(\vartheta(\mathfrak{b}(a_{m_{i}},a_{n_{i}})),\vartheta(p_{i}))<c, which is a contradiction to the inequality (2.9)(2.9). Hence (an)(a_{n}) is a Cauchy sequence.
Since (𝒳,𝔟,s)(\mathcal{X},\mathfrak{b},s) is complete bb-metric space,

limn,m𝔟(an,am)=limn𝔟(an,z)=0,for somez𝒳.\lim\limits_{n,m\to\infty}\mathfrak{b}(a_{n},a_{m})=\lim_{n\to\infty}\mathfrak{b}(a_{n},z)=0,~{}\text{for some}~{}z\in\mathcal{X}.

We will prove that zz becomes the unique fixed point of 𝒮\mathcal{S}. Also, 𝔟(𝒮z,z)s(𝔟(𝒮z,𝒮an1)+𝔟(𝒮an1,z)).\mathfrak{b}(\mathcal{S}z,z)\leq s(\mathfrak{b}(\mathcal{S}z,\mathcal{S}a_{n-1})+\mathfrak{b}(\mathcal{S}a_{n-1},z)). Using continuity of 𝒮\mathcal{S} and limnan=z\lim\limits_{n\to\infty}a_{n}=z, we get 𝔟(𝒮z,z)=0.\mathfrak{b}(\mathcal{S}z,z)=0. Hence, zz becomes the fixed point of 𝒮.\mathcal{S}. Let ww be another fixed point of 𝒮\mathcal{S} such that zwz\neq w. On substitution of x=zx=z and y=wy=w in inequality (2.7)(2.7), we have

c\displaystyle c 𝔍(ϑ(𝔟(𝒮z,𝒮z)),ϑ(max{𝔟(z,z),𝔟(z,𝒮z),𝔟(x,𝒮z),𝔟(𝒮z,z)+𝔟(z,𝒮z)2s}))\displaystyle\leq\mathfrak{J}\left(\vartheta(\mathfrak{b}(\mathcal{S}z,\mathcal{S}z)),\vartheta(\max\{\mathfrak{b}(z,z),\mathfrak{b}(z,\mathcal{S}z),\mathfrak{b}(x,\mathcal{S}z),\frac{\mathfrak{b}(\mathcal{S}z,z)+\mathfrak{b}(z,\mathcal{S}z)}{2s}\})\right)
<c(ϑ(max{𝔟(z,z),𝔟(z,z),𝔟(z,z),𝔟(z,z)+𝔟(z,z)2s}),ϑ(𝔟(z,z)))\displaystyle<\mathcal{F}_{c}\left(\vartheta(\max\{\mathfrak{b}(z,z),\mathfrak{b}(z,z),\mathfrak{b}(z,z),\frac{\mathfrak{b}(z,z)+\mathfrak{b}(z,z)}{2s}\}),\vartheta(\mathfrak{b}(z,z))\right)
<c(ϑ(max{𝔟(z,z),0,0,𝔟(z,z)s},ϑ(𝔟(z,z)))\displaystyle<\mathcal{F}_{c}\left(\vartheta(\max\{\mathfrak{b}(z,z),0,0,\frac{\mathfrak{b}(z,z)}{s}\},\vartheta(\mathfrak{b}(z,z))\right)
<c(ϑ(𝔟(z,z)),ϑ(𝔟(z,z)))\displaystyle<\mathcal{F}_{c}\left(\vartheta(\mathfrak{b}(z,z)),\vartheta(\mathfrak{b}(z,z))\right)
c,\displaystyle\leq c,

which is a contradiction. Hence zz becomes the unique fixed point.

Example 2.10.

Let 𝒳={1,2,3,4}\mathcal{X}=\{1,2,3,4\}. Define 𝔟:𝒳×𝒳+\mathfrak{b}:\mathcal{X}\times\mathcal{X}\rightarrow\mathbb{R^{+}} given by
𝔟(x,x)=0\mathfrak{b}(x,x)=0 for all x𝒳x\in\mathcal{X},
𝔟(1,2)=𝔟(2,1)=3\mathfrak{b}(1,2)=\mathfrak{b}(2,1)=3,
𝔟(2,3)=𝔟(3,2)=𝔟(1,3)=𝔟(3,1)=1\mathfrak{b}(2,3)=\mathfrak{b}(3,2)=\mathfrak{b}(1,3)=\mathfrak{b}(3,1)=1,
𝔟(1,4)=𝔟(4,1)=15,\mathfrak{b}(1,4)=\mathfrak{b}(4,1)=15,
𝔟(2,4)=𝔟(4,2)=𝔟(3,4)=𝔟(4,3)=4.\mathfrak{b}(2,4)=\mathfrak{b}(4,2)=\mathfrak{b}(3,4)=\mathfrak{b}(4,3)=4.
Clearly, (𝒳,𝔟,s)(\mathcal{X},\mathfrak{b},s) is a complete bb-metric space with coefficient s=3.s=3.
Also, define 𝔍:[1,)×[1,)\mathfrak{J}:[1,\infty)\times[1,\infty)\rightarrow\mathbb{R}, c:[1,)×[1,)\mathcal{F}_{c}:[1,\infty)\times[1,\infty)\rightarrow\mathbb{R} and ϑ:(0,)(1,)\vartheta:(0,\infty)\to(1,\infty) by

𝔍(x,y)=y3x , c(y,x)=yx and ϑ(x)=x+1.\mathfrak{J}(x,y)=\frac{y}{3x}\text{ , }\mathcal{F}_{c}(y,x)=\frac{y}{x}\text{ and }\vartheta(x)=x+1.

Note that 𝔍(x,y)<c(y,x)\mathfrak{J}(x,y)<\mathcal{F}_{c}(y,x), for all x,y(1,)x,y\in(1,\infty) and c=1c=1. Further, If (an)(a_{n}) and (bn)(b_{n}) are sequences in (0,)(0,\infty) such that

0<lim infnan3(lim supnbn)32(lim infnan)<0<\liminf\limits_{n\to\infty}a_{n}\leq 3(\limsup\limits_{n\to\infty}b_{n})\leq 3^{2}(\liminf\limits_{n\to\infty}a_{n})<\infty

and

0<lim infnbn3(lim supnan)32(lim infnbn)<,0<\liminf\limits_{n\to\infty}b_{n}\leq 3(\limsup\limits_{n\to\infty}a_{n})\leq 3^{2}(\liminf\limits_{n\to\infty}b_{n})<\infty,

then lim supn𝔍(ϑ(an),ϑ(bn))=lim supn(bn+13(an+1))=lim supn(bn+1)lim infn3(an+1)\limsup\limits_{n\to\infty}\mathfrak{J}(\vartheta(a_{n}),\vartheta(b_{n}))=\limsup\limits_{n\to\infty}(\dfrac{b_{n}+1}{3(a_{n}+1)})=\dfrac{\limsup\limits_{n\to\infty}(b_{n}+1)}{\liminf\limits_{n\to\infty}3(a_{n}+1)}.
As lim supnbnlim infn3an.\limsup\limits_{n\to\infty}b_{n}\leq\liminf\limits_{n\to\infty}3a_{n}. Hence, lim supn𝔍(ϑ(an),ϑ(bn))<1\limsup\limits_{n\to\infty}\mathfrak{J}(\vartheta(a_{n}),\vartheta(b_{n}))<1. Thus 𝔍\mathfrak{J} is a 𝔸\mathbb{A}_{\mathbb{R}}-simulation function. Moreover, define 𝒮:𝒳𝒳\mathcal{S}:\mathcal{X}\rightarrow\mathcal{X} by

𝒮x={3, when x41, else .\mathcal{S}x=\begin{cases}3,\text{ when }x\neq 4\\ 1,\text{ else }\end{cases}.

We will now verify that 𝒮\mathcal{S} is a 𝔍𝔸\mathfrak{J}_{{}_{\mathbb{A}_{\mathbb{R}}}}-contraction. Note that

𝔟(𝒮x,𝒮y)={𝔟(1,3)=1,if x=4,y4,𝔟(1,1)=0,if x=4,y=4,𝔟(3,3)=0,if x4,y4,𝔟(3,1)=1,if x4,y=4,\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)=\begin{cases}\mathfrak{b}(1,3)=1,&\text{if }x=4,y\neq 4,\\ \mathfrak{b}(1,1)=0,&\text{if }x=4,y=4,\\ \mathfrak{b}(3,3)=0,&\text{if }x\neq 4,y\neq 4,\\ \mathfrak{b}(3,1)=1,&\text{if }x\neq 4,y=4,\end{cases}

hence 𝔟(𝒮x,𝒮y)>0\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)>0 if and only if x=4,y4,x=4,y\neq 4, and x4,y=4x\neq 4,y=4. Now, consider the following cases:
Case 1: if x=4x=4 and y4,y\neq 4, then

1<15+13(1+1)=𝔟(1,4)+13(𝔟(𝒮x,𝒮y)+1)=𝔟(𝒮x,x)+13(𝔟(𝒮x,𝒮y)+1)𝔍(ϑ(𝔟(𝒮x,𝒮y)),ϑ(Ms(x,y))=Ms(x,y)+13(𝔟(𝒮x,𝒮y)+1)1<\dfrac{15+1}{3(1+1)}=\dfrac{\mathfrak{b}(1,4)+1}{3(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)+1)}=\dfrac{\mathfrak{b}(\mathcal{S}x,x)+1}{3(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)+1)}\leq\mathfrak{J}(\vartheta(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)),\vartheta(M_{s}(x,y))=\dfrac{M_{s}(x,y)+1}{3(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)+1)}

where Ms(x,y)=max{𝔟(x,y),𝔟(x,𝒮x),𝔟(y,𝒮y),𝔟(𝒮x,y)+𝔟(x,𝒮y)2s}M_{s}(x,y)=\max\{\mathfrak{b}(x,y),\mathfrak{b}(x,\mathcal{S}x),\mathfrak{b}(y,\mathcal{S}y),\dfrac{\mathfrak{b}(\mathcal{S}x,y)+\mathfrak{b}(x,\mathcal{S}y)}{2s}\}. Hence, 𝒮\mathcal{S} is a 𝔍𝔸\mathfrak{J}_{{}_{\mathbb{A}_{\mathbb{R}}}}-contraction.
Case 2:2: if x=1x=1, and y=4y=4, then

1<15+13(1+1)=𝔟(1,4)+13(𝔟(𝒮x,𝒮y)+1)=𝔟(x,y)+13(𝔟(𝒮x,𝒮y)+1)𝔍(ϑ(𝔟(𝒮x,𝒮y)),ϑ(Ms(x,y))=Ms(x,y)+13(𝔟(𝒮x,𝒮y)+1)1<\dfrac{15+1}{3(1+1)}=\dfrac{\mathfrak{b}(1,4)+1}{3(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)+1)}=\dfrac{\mathfrak{b}(x,y)+1}{3(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)+1)}\leq\mathfrak{J}(\vartheta(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)),\vartheta(M_{s}(x,y))=\dfrac{M_{s}(x,y)+1}{3(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)+1)}

where Ms(x,y)=max{𝔟(x,y),𝔟(x,𝒮x),𝔟(y,𝒮y),𝔟(𝒮x,y)+𝔟(x,𝒮y)2s}M_{s}(x,y)=\max\{\mathfrak{b}(x,y),\mathfrak{b}(x,\mathcal{S}x),\mathfrak{b}(y,\mathcal{S}y),\dfrac{\mathfrak{b}(\mathcal{S}x,y)+\mathfrak{b}(x,\mathcal{S}y)}{2s}\}. Hence, 𝒮\mathcal{S} is a 𝔍𝔸\mathfrak{J}_{{}_{\mathbb{A}_{\mathbb{R}}}}-contraction.
Case 3:3: if x{2,3}x\in\{2,3\}, and y=4y=4, then

1<15+13(1+1)=𝔟(1,4)+13(𝔟(𝒮x,𝒮y)+1)=𝔟(𝒮y,y)+13(𝔟(𝒮x,𝒮y)+1)𝔍(ϑ(𝔟(𝒮x,𝒮y)),ϑ(Ms(x,y))=Ms(x,y)+13(𝔟(𝒮x,𝒮y)+1)1<\dfrac{15+1}{3(1+1)}=\dfrac{\mathfrak{b}(1,4)+1}{3(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)+1)}=\dfrac{\mathfrak{b}(\mathcal{S}y,y)+1}{3(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)+1)}\leq\mathfrak{J}(\vartheta(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)),\vartheta(M_{s}(x,y))=\dfrac{M_{s}(x,y)+1}{3(\mathfrak{b}(\mathcal{S}x,\mathcal{S}y)+1)}

where Ms(x,y)=max{𝔟(x,y),𝔟(x,𝒮x),𝔟(y,𝒮y),𝔟(𝒮x,y)+𝔟(x,𝒮y)2s}M_{s}(x,y)=\max\{\mathfrak{b}(x,y),\mathfrak{b}(x,\mathcal{S}x),\mathfrak{b}(y,\mathcal{S}y),\dfrac{\mathfrak{b}(\mathcal{S}x,y)+\mathfrak{b}(x,\mathcal{S}y)}{2s}\}. Hence, 𝒮\mathcal{S} is a 𝔍𝔸\mathfrak{J}_{{}_{\mathbb{A}_{\mathbb{R}}}}-contraction.
Therefore, in all cases, 𝒮\mathcal{S} is a 𝔍𝔸\mathfrak{J}_{{}_{\mathbb{A}_{\mathbb{R}}}}-contraction. So, by Theorem 2.72.7, 𝒮\mathcal{S} has a unique fixed point 33.

Remark 2.11.

Only increasing property of ϑ\vartheta and property (iv)(iv) of c\mathcal{F}_{c} is used throughout.

References

  • (1) Abduletif Mamud, M., and Koyas Tola, K.; Fixed point theorems for generalized (α,ϕ)(\alpha,\phi)-Meir–Keeler type hybrid contractive mappings via simulation function in bb-metric spaces; Fixed Point Theory Algorithms Sci. Eng.; Article number 4, 2024; https://doi.org/10.1186/s13663-023-00758-7
  • (2) Antil, M. K., and Sharma, R.; A new approach to the study of fixed point theorems for simulation functions in G-metric spaces; Bol. Soc. Paran. Mat.; 37(2), 113–119 (2019); https://doi.org/10.5269/bspm.v37i2.34690
  • (3) Banach S.; Sur les opèrations dans les ensembles abstraits et leur applications aux èquations intègrales; Fundam. Math.; 3, 133-181 (1922).
  • (4) Bakhtin, I. A; Contracting mapping principle in an almost metric space; (Russian) Funkts. Anal.; 30, 26–37 (1989).
  • (5) Cho, S.H.; Fixed Point Theorems for mathematical equation-Contractions in Generalized Metric Spaces; Abstr. Appl. Anal.; Article ID 1327691, 6 pp. (2018); https://doi.org/10.1155/2018/1327691
  • (6) Czerwik, S.; Contraction Mappings in bb-Metric Spaces; Acta Math. Inform. Univ. Ostraviensis; 1, 5-11 (1993).
  • (7) Du, W. S., and Karapınar, E.; A note on cone bb-metric and its related results: generalizations or equivalence?; Fixed Point Theory Appl.; Article number 210, 7 pp. (2013); https://doi.org/10.1186/1687-1812-2013-210
  • (8) Feng, Y., and Mao, W.; The equivalence of cone metric spaces and metric spaces; Fixed Point Theory; 11(2), 259–263 (2010).
  • (9) Gupta, A., and Rohilla, M.; Coincidence point results in bb-metric spaces via CFC_{F}-s-simulation function; Miskolc Math. Notes; 20(2), 911-924 (2019); https://doi.org/10.18514/MMN.2019.2782
  • (10) Haghi, R. H., Rezapour, S., and Shahzad, N.; Be careful on partial metric fixed point results; Topology Appl.; 160(3), 450–454 (2013); https://doi.org/10.1016/j.topol.2012.11.004
  • (11) Hala, N., Habita, K. and Beloul, S.; Fixed point results for generalized contractions via simulation functions in dislocated quasi bb-metric space; J. Anal. 32, 2833–2846 (2024); https://doi.org/10.1007/s41478-024-00763-y
  • (12) Hasanuzzaman, M., and Imdad, M.; Relation theoretic metrical fixed point results for Suzuki type 𝒵\mathcal{Z_{\mathcal{R}}}-contraction with an application; AIMS Math.; 5(3), 2071-2087 (2020); https://doi.org/10.3934/math.2020137
  • (13) Jamshaid, A., Abdullah, A.E., Cho Y.J., and Yang Y.O.; Fixed point results for generalized θ\theta-contractions; J. Nonlinear Sci. Appl.; 10(5), 2350-2358 (2017); https://doi.org/10.22436/jnsa.010.05.07
  • (14) Jleli, M., and Samet, B.; A new generalization of the Banach contraction principle; J. Inequal. App.; Article number 38, 8 pages (2014); https://doi.org/10.1186/1029-242X-2014-38
  • (15) Karapınar, E.; Fixed points results via simulation functions; Filomat, 30, 2343-2350 (2016); https://doi.org/10.2298/FIL1608343K
  • (16) Karapınar, E., Ali, A., Hussain, A., and Aydi H.; On interpolative Hardy-Rogers type multivalued contractions via a simulation function; Filomat; 36(8), 2847-2856 (2022); https://doi.org/10.2298/FIL2208847K
  • (17) Khojasteh, F., Shukla, S., and Radenovic, S.; A new approach to the study of fixed point theory for simulation functions; Filomat; 29(6), 1189–1194 (2015); https://doi: 10.2298/FIL1506189K
  • (18) Kostić, A., Rahimi, H., and Soleimani Rad, G.; wt0wt_{0}-Distance and best proximity points involving bb-simulation functions; Publ. Inst. Math.; 113(127), 67-81 (2023); https://doi.org/10.2298/PIM2327067K
  • (19) Moustafa, S.I.; New fixed point results in extended b-metric-like spaces via simulation functions with applications; Afr. Mat. 33, Article number 80 (2022). https://doi.org/10.1007/s13370-022-01017-5
  • (20) Özgür, N., and Taş, N.; Geometric properties of fixed points and simulation functions; Adv. Stud. Euro-Tbil. Math. J.; 16(4), 91-108 (2023); https://doi.org/10.32513/asetmj/193220082336
  • (21) Radenovic̀, S., Vetro, F., and Vujakovic̀, J.; An alternative and easy approach to fixed point results via simulation functions; Demonstr. Math.; 50(1), 223–230 (2017); https://doi.org/10.1515/dema-2017-0022
  • (22) Taqbibt, A., Elomari, M., Savatović, M., Melliani, S., and Radenović, S.; Fixed point results for a new α\alpha-θ\theta-Geraghty type contraction mapping in metric-like space via 𝒞𝒢\mathcal{C}_{\mathcal{G}}-simulation functions; AIMS Math.; 8(12): 30313-30334 (2023); https://doi.org/10.3934/math.20231548.
  • (23) Van An, T., Van Dung, N., Kadelburg, Z., and Radenovic̀, S.; Various generalizations of metric spaces and fixed point theorems; Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM; 109(1), 175–198 (2015); https://doi.org/10.1007/s13398-014-0173-7