This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Fixed points of compositions of nonexpansive mappings:
finitely many linear reflectors111 Dedicated to Terry Rockafellar on the occasion of his 85th birthday

Salihah Alwadani,  Heinz H. Bauschke  and  Xianfu Wang Mathematics, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada. E-mail: saliha01@mail.ubc.ca. Mathematics, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada. E-mail: heinz.bauschke@ubc.ca. Mathematics, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada. E-mail: shawn.wang@ubc.ca.
(April 26, 2020)
Abstract

Nonexpansive mappings play a central role in modern optimization and monotone operator theory because their fixed points can describe solutions to optimization or critical point problems. It is known that when the mappings are sufficiently “nice”, then the fixed point set of the composition coincides with the intersection of the individual fixed point sets.

In this paper, we explore the situation for compositions of linear reflectors. We provide positive results, upper bounds, and limiting examples. We also discuss classical reflectors in the Euclidean plane.

2020 Mathematics Subject Classification: Primary 47H09, Secondary 47H10, 90C25

Keywords: composition, fixed point set, isometry, linear subspace, projector, reflector, rotation

1 Introduction

Throughout, we assume that

XX is a real Hilbert space with inner product ,:X×X\left\langle{\cdot},{\cdot}\right\rangle\colon X\times X\to\mathbb{R}, (1)

and induced norm :X:xx,x\|\cdot\|\colon X\to\mathbb{R}\colon x\mapsto\sqrt{\left\langle{x},{x}\right\rangle}. A mapping R:XXR\colon X\to X is nonexpansive if (xX)(yX)(\forall x\in X)(\forall y\in X) RxRyxy\|Rx-Ry\|\leq\|x-y\|. Nonexpansive operators play a central role in modern optimization because the set of fixed points FixR:={xX|x=Rx}\operatorname{Fix}R:=\big{\{}{x\in X}~{}\big{|}~{}{x=Rx}\big{\}} often represents solutions to optimization or inclusion problems (see, e.g., [3]). A central question is the following

Given nonexpansive maps R1,,RmR_{1},\ldots,R_{m} on XX with i=1mFixRi\bigcap_{i=1}^{m}\operatorname{Fix}R_{i}\neq\varnothing, what can we say about Fix(RmRm1R1)\operatorname{Fix}(R_{m}R_{m-1}\cdots R_{1})?

Clearly,

i=1mFixRiFix(RmRm1R1).\textstyle\bigcap_{i=1}^{m}\operatorname{Fix}R_{i}\subseteq\operatorname{Fix}(R_{m}R_{m-1}\cdots R_{1}). (2)

Note that one cannot expect equality to hold in 2:

Example 1.1.

Suppose that X{0}X\neq\{0\}. Then Fix(Id)Fix(Id)={0}\operatorname{Fix}(-\operatorname{Id})\cap\operatorname{Fix}(-\operatorname{Id})=\{0\} while Fix(Id)(Id)=Fix(Id)=X\operatorname{Fix}(-\operatorname{Id})(-\operatorname{Id})=\operatorname{Fix}(\operatorname{Id})=X.

However, equality in 2 does hold for “nice” nonexpansive maps such as averaged mappings (see, e.g., [3, Corollary 4.51]) or even strongly nonexpansive mappings (see [5, Lemma 2.1]).

In this note, we aim to study Fix(RmRm1R1)\operatorname{Fix}(R_{m}R_{m-1}\cdots R_{1}) for certain mappings that are not nice but that do have some additional structure. To describe this, let us denote the projector (or nearest point mapping) associated with a nonempty closed convex subset CC of XX by PC{\operatorname{P}}_{C}. The corresponding reflector

RC:=2PCId{\operatorname{R}}_{C}:=2{\operatorname{P}}_{C}-\operatorname{Id} (3)

is known to be nonexpansive (see, e.g., [3, Corollary 4.18]). Note that

FixRC=C\operatorname{Fix}{\operatorname{R}}_{C}=C (4)

and that R{0}=Id{\operatorname{R}}_{\{0\}}=-\operatorname{Id}, so the class of reflectors is “bad” (see Example 1.1). We also have

RC=PCPCprovided that C is a closed linear subspace of X.{\operatorname{R}}_{C}={\operatorname{P}}_{C}-{\operatorname{P}}_{C^{\perp}}\quad\text{provided that $C$ is a closed linear subspace of $X$.} (5)

When CC is a hyperplane containing the origin, then we shall refer to RC{\operatorname{R}}_{C} as a classical reflector. Classical reflectors are basic building blocks: indeed, the Cartan-Dieudonné Theorem (see, e.g., [6, Theorem 8.1] or [10, Section 2.4]) states that every linear isometry on n\mathbb{R}^{n} is the composition of at most nn classical reflectors.

A very satisfying result is available for two general linear reflectors:

Fact 1.2.

(See [2, Proposition 3.6].) Let U1U_{1} and U2U_{2} be closed linear subspaces of XX. Then

Fix(RU2RU1)=(U1U2)(U1U2).\operatorname{Fix}({\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{1}})=(U_{1}\cap U_{2})\oplus(U_{1}^{\perp}\cap U_{2}^{\perp}). (6)

and

PU1Fix(RU2RU1)=U1U2.{\operatorname{P}}_{U_{1}}\operatorname{Fix}({\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{1}})=U_{1}\cap U_{2}. (7)

1.2 was used in [2] to analyze the Douglas–Rachford operator T:=12(Id+RU2RU1)T:=\tfrac{1}{2}(\operatorname{Id}+{\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{1}}). Note that FixT=Fix(RU2RU1)\operatorname{Fix}T=\operatorname{Fix}({\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{1}})! It was shown that PU1TnPU1U2{\operatorname{P}}_{U_{1}}T^{n}\to{\operatorname{P}}_{U_{1}\cap U_{2}} pointwise. Iterating TT is actually a special case of employing Rockafellar’s proximal point algorithm [9].

We also note that 1.2 provides an alternative explanation of Example 1.1: indeed, set U1=U2={0}U_{1}=U_{2}=\{0\} in 1.2. Then RU1=RU2=Id{\operatorname{R}}_{U_{1}}={\operatorname{R}}_{U_{2}}=-\operatorname{Id}, U1=U2=XU_{1}^{\perp}=U_{2}^{\perp}=X, and Fix(RU2RU2)=(U1U2)(U1U2)=X\operatorname{Fix}({\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{2}})=(U_{1}\cap U_{2})\oplus(U_{1}^{\perp}\cap U_{2}^{\perp})=X.

1.2 nurtures the hope that there might exist a nice formula for Fix(RU3RU2RU1)\operatorname{Fix}({\operatorname{R}}_{U_{3}}{\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{1}}) and that there might be a way to recover U1U2U3U_{1}\cap U_{2}\cap U_{3} by projecting Fix(RU3RU2RU1)\operatorname{Fix}({\operatorname{R}}_{U_{3}}{\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{1}}) suitably. Unfortunately, this hope was crushed with the following example:

Example 1.3.

(See [1, Example 2.1].) Suppose that X=2X=\mathbb{R}^{2}, U1=(0,1)U_{1}=\mathbb{R}(0,1), U2=(3,1)U_{2}=\mathbb{R}(\sqrt{3},1), and U3=(3,1)U_{3}=\mathbb{R}(-\sqrt{3},1). Then U1U2U3={0}U_{1}\cap U_{2}\cap U_{3}=\{0\}, x:=(3,1)Fix(RU3RU2RU1)x:=(-\sqrt{3},-1)\in\operatorname{Fix}({\operatorname{R}}_{U_{3}}{\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{1}}) yet {PU1x,PU2x,PU3x}U1U2U3=\{{\operatorname{P}}_{U_{1}}x,{\operatorname{P}}_{U_{2}}x,{\operatorname{P}}_{U_{3}}x\}\cap U_{1}\cap U_{2}\cap U_{3}=\varnothing. The fixed point sets for all six permutations of the reflectors are depicted in Fig. 1.

Refer to caption
Figure 1: The fixed point sets for Example 1.3

We are now in a position to describe precisely our aim.

The goal of this note is to study the fixed point set of the composition of finitely many reflectors associated with closed linear subspaces.

In Section 2, we obtain several positive results (see Lemma 2.3 and Theorem 2.6), an upper bound (see Theorem 2.7) as well as limiting examples. Section 3 focusses mainly on classical reflectors in the Euclidean plane for which precise information is available. The notation employed is standard and follows largely [3].

2 General results

We start with a simple observation.

Lemma 2.1.

Let UU be a closed linear subspace of XX. Then

  1. (i)

    RURU=RURU=Id{\operatorname{R}}_{U^{\perp}}{\operatorname{R}}_{U}={\operatorname{R}}_{U}{\operatorname{R}}_{U^{\perp}}=-\operatorname{Id}

  2. (ii)

    RU=RU(Id)=RU-{\operatorname{R}}_{U}={\operatorname{R}}_{U}\circ(-\operatorname{Id})={\operatorname{R}}_{U^{\perp}}

  3. (iii)

    Fix(RU)=FixRU=U\operatorname{Fix}(-{\operatorname{R}}_{U})=\operatorname{Fix}{\operatorname{R}}_{U^{\perp}}=U^{\perp}.

Proof. We shall employ 5 repeatedly. (i): RURU=(PUPU)(PUPU)=0PUPU+0=Id{\operatorname{R}}_{U^{\perp}}{\operatorname{R}}_{U}=({\operatorname{P}}_{U^{\perp}}-{\operatorname{P}}_{U})({\operatorname{P}}_{U}-{\operatorname{P}}_{U^{\perp}})=0-{\operatorname{P}}_{U}-{\operatorname{P}}_{U\perp}+0=-\operatorname{Id}. (ii): RU=(PUPU)=(PUPU)=RU-{\operatorname{R}}_{U}=-({\operatorname{P}}_{U}-{\operatorname{P}}_{U^{\perp}})=({\operatorname{P}}_{U^{\perp}}-{\operatorname{P}}_{U^{\perp\perp}})={\operatorname{R}}_{U^{\perp}}. (iii): Combine (ii) with 4. \hfill\quad\blacksquare

The following result, which is a consequence of Lemma 2.1, provides a case when we have precise knowledge of the fixed point set of the composition of three reflectors:

Proposition 2.2.

Let UU and VV be closed linear subspaces of XX. Then RVRURU=RVRURU=RURURV=RURURV=RV=RV{\operatorname{R}}_{V}{\operatorname{R}}_{U^{\perp}}{\operatorname{R}}_{U}={\operatorname{R}}_{V}{\operatorname{R}}_{U}{\operatorname{R}}_{U^{\perp}}={\operatorname{R}}_{U^{\perp}}{\operatorname{R}}_{U}{\operatorname{R}}_{V}={\operatorname{R}}_{U}{\operatorname{R}}_{U^{\perp}}{\operatorname{R}}_{V}=-{\operatorname{R}}_{V}={\operatorname{R}}_{V^{\perp}} and thus Fix(RVRURU)=Fix(RVRURU)=Fix(RURURV)=Fix(RURURV)=V\operatorname{Fix}({\operatorname{R}}_{V}{\operatorname{R}}_{U^{\perp}}{\operatorname{R}}_{U})=\operatorname{Fix}({\operatorname{R}}_{V}{\operatorname{R}}_{U}{\operatorname{R}}_{U^{\perp}})=\operatorname{Fix}({\operatorname{R}}_{U^{\perp}}{\operatorname{R}}_{U}{\operatorname{R}}_{V})=\operatorname{Fix}({\operatorname{R}}_{U}{\operatorname{R}}_{U^{\perp}}{\operatorname{R}}_{V})=V^{\perp}.

We now turn to mm operators and obtain a very general result which clearly shows the effect of cyclically shifting a composition:

Lemma 2.3.

Let R1,,RmR_{1},\ldots,R_{m} be arbitrary maps from XX to XX. Then

Fix(RmRm1R2R1)\displaystyle\operatorname{Fix}(R_{m}R_{m-1}\cdots R_{2}R_{1}) =(RmRm1R3R2)(Fix(R1RmRm1R3R2))\displaystyle=(R_{m}R_{m-1}\cdots R_{3}R_{2})\big{(}\operatorname{Fix}(R_{1}R_{m}R_{m-1}\cdots R_{3}R_{2})\big{)} (8a)
=(RmRm1R3)(Fix(R2R1RmRm1R4R3))\displaystyle=(R_{m}R_{m-1}\cdots R_{3})\big{(}\operatorname{Fix}(R_{2}R_{1}R_{m}R_{m-1}\cdots R_{4}R_{3})\big{)} (8b)
\displaystyle\;\,\,\vdots (8c)
=RmRm1(Fix(Rm2Rm3R2R1RmRm1))\displaystyle=R_{m}R_{m-1}\big{(}\operatorname{Fix}(R_{m-2}R_{m-3}\cdots R_{2}R_{1}R_{m}R_{m-1})\big{)} (8d)
=Rm(Fix(Rm1Rm2R2R1Rm)).\displaystyle=R_{m}\big{(}\operatorname{Fix}(R_{m-1}R_{m-2}\cdots R_{2}R_{1}R_{m})\big{)}. (8e)

Proof. Let xFix(RmRm1R2R1)x\in\operatorname{Fix}(R_{m}R_{m-1}\cdots R_{2}R_{1}). Then R1x=R1(RmRm1R2R1)x=(R1RmRm1R3R2)(R1x)R_{1}x=R_{1}(R_{m}R_{m-1}\cdots R_{2}R_{1})x=(R_{1}R_{m}R_{m-1}\cdots R_{3}R_{2})(R_{1}x) and so R1xFix(R1RmRm1R3R2)R_{1}x\in\operatorname{Fix}(R_{1}R_{m}R_{m-1}\cdots R_{3}R_{2}). It follows that

R1(Fix(RmRm1R2R1))Fix(R1RmRm1R3R2).R_{1}\big{(}\operatorname{Fix}(R_{m}R_{m-1}\cdots R_{2}R_{1})\big{)}\subseteq\operatorname{Fix}(R_{1}R_{m}R_{m-1}\cdots R_{3}R_{2}). (9)

The same reasoning gives

(R2R1)(Fix(RmRm1R2R1))\displaystyle(R_{2}R_{1})\big{(}\operatorname{Fix}(R_{m}R_{m-1}\cdots R_{2}R_{1})\big{)} R2(Fix(R1RmRm1R3R2))\displaystyle\subseteq R_{2}\big{(}\operatorname{Fix}(R_{1}R_{m}R_{m-1}\cdots R_{3}R_{2})\big{)} (10a)
Fix(R2R1RmRm1R4R3),\displaystyle\subseteq\operatorname{Fix}(R_{2}R_{1}R_{m}R_{m-1}\cdots R_{4}R_{3}), (10b)

hence

(R3R2R1)(Fix(RmRm1R2R1))\displaystyle(R_{3}R_{2}R_{1})\big{(}\operatorname{Fix}(R_{m}R_{m-1}\cdots R_{2}R_{1})\big{)} (R3R2)(Fix(R1RmRm1R3R2))\displaystyle\subseteq(R_{3}R_{2})\big{(}\operatorname{Fix}(R_{1}R_{m}R_{m-1}\cdots R_{3}R_{2})\big{)} (11a)
R3(Fix(R2R1RmRm1R4R3))\displaystyle\subseteq R_{3}\big{(}\operatorname{Fix}(R_{2}R_{1}R_{m}R_{m-1}\cdots R_{4}R_{3})\big{)} (11b)
Fix(R3R2R1RmRm1R5R4)\displaystyle\subseteq\operatorname{Fix}(R_{3}R_{2}R_{1}R_{m}R_{m-1}\cdots R_{5}R_{4}) (11c)

until finally

Fix(RmRm1R2R1)\displaystyle\operatorname{Fix}(R_{m}R_{m-1}\cdots R_{2}R_{1}) =(RmRm1R2R1)(Fix(RmRm1R2R1))\displaystyle=(R_{m}R_{m-1}\cdots R_{2}R_{1})\big{(}\operatorname{Fix}(R_{m}R_{m-1}\cdots R_{2}R_{1})\big{)} (12a)
(RmRm1R2)(Fix(R1RmRm1R3R2))\displaystyle\subseteq(R_{m}R_{m-1}\cdots R_{2})\big{(}\operatorname{Fix}(R_{1}R_{m}R_{m-1}\cdots R_{3}R_{2})\big{)} (12b)
\displaystyle\;\,\,\vdots (12c)
Rm(Fix(Rm1Rm2R2R1Rm))\displaystyle\subseteq R_{m}\big{(}\operatorname{Fix}(R_{m-1}R_{m-2}\cdots R_{2}R_{1}R_{m})\big{)} (12d)
Fix(RmRm1R2R1).\displaystyle\subseteq\operatorname{Fix}(R_{m}R_{m-1}\cdots R_{2}R_{1}). (12e)

Hence equality holds throughout (12) and we are done. \hfill\quad\blacksquare

Lemma 2.3 allows us to derive a result complementary to Proposition 2.2:

Proposition 2.4.

Let UU and VV be closed linear subspaces of XX. Then

Fix(RURVRU)=Fix(RURVRU)=RU(V).\operatorname{Fix}({\operatorname{R}}_{U^{\perp}}{\operatorname{R}}_{V}{\operatorname{R}}_{U})=\operatorname{Fix}({\operatorname{R}}_{U}{\operatorname{R}}_{V}{\operatorname{R}}_{U^{\perp}})={\operatorname{R}}_{U}(V^{\perp}). (13)

Proof. Using Lemma 2.3 and Proposition 2.2, we obtain

Fix(RURVRU)=RU(Fix(RVRURU))=RU(V).\operatorname{Fix}({\operatorname{R}}_{U}{\operatorname{R}}_{V}{\operatorname{R}}_{U^{\perp}})={\operatorname{R}}_{U}(\operatorname{Fix}({\operatorname{R}}_{V}{\operatorname{R}}_{U}{\operatorname{R}}_{U^{\perp}}))={\operatorname{R}}_{U}(V^{\perp}). (14)

Now RU(V){\operatorname{R}}_{U}(V^{\perp}) is a subspace and thus RU(V)=(RU)(V)=RU(V)=Fix(RURVRU){\operatorname{R}}_{U}(V^{\perp})=(-{\operatorname{R}}_{U})(V^{\perp})={\operatorname{R}}_{U^{\perp}}(V^{\perp})=\operatorname{Fix}({\operatorname{R}}_{U^{\perp}}{\operatorname{R}}_{V}{\operatorname{R}}_{U}) by the first part of the proof. \hfill\quad\blacksquare

Remark 2.5.

Comparing Proposition 2.2 and Proposition 2.4, we note that it is not necessarily true that RU(V)=V{\operatorname{R}}_{U}(V^{\perp})=V^{\perp}; indeed, see Example 3.3 below for a concrete instance. Hence, unlike the case of just two linear reflectors (see 1.2), the order of the operators does influence the fixed point set!

While Remark 2.5 points out the importance of the order of the operators, there does exist a nice permutation of the reflectors yielding the same fixed point set. To describe this result, observe first (RUmRU1)=RU1RUm=RU1RUm({\operatorname{R}}_{U_{m}}\cdots{\operatorname{R}}_{U_{1}})^{*}={\operatorname{R}}_{U_{1}}^{*}\cdots{\operatorname{R}}_{U_{m}}^{*}={\operatorname{R}}_{U_{1}}\cdots{\operatorname{R}}_{U_{m}} because linear projectors and (hence) reflectors are self-adjoint. Combining this with an old result by Riesz and Sz.-Nagy which states that FixT=FixT\operatorname{Fix}T=\operatorname{Fix}T^{*} for any nonexpansive linear operator T:XXT\colon X\to X (see [8, page 408 in Section X.144] or [7]), we obtain the following positive result:

Theorem 2.6.

Let U1,,UmU_{1},\ldots,U_{m} be closed linear subspaces of XX. Then

Fix(RUmRUm1RU2RU1)=Fix(RU1RU2RUm1RUm).\operatorname{Fix}({\operatorname{R}}_{U_{m}}{\operatorname{R}}_{U_{m-1}}\cdots{\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{1}})=\operatorname{Fix}({\operatorname{R}}_{U_{1}}{\operatorname{R}}_{U_{2}}\cdots{\operatorname{R}}_{U_{m-1}}{\operatorname{R}}_{U_{m}}). (15)

We now turn to three linear subspaces. The next result narrows down the location of fixed points.

Theorem 2.7.

Let U,V,WU,V,W be closed linear subspaces of XX. Then

Fix(RWRVRU)=Fix(4PWPVPU2(PWPV+PWPU+PVPU)+PW+PV+PU)\operatorname{Fix}({\operatorname{R}}_{W}{\operatorname{R}}_{V}{\operatorname{R}}_{U})=\operatorname{Fix}\big{(}4{\operatorname{P}}_{W}{\operatorname{P}}_{V}{\operatorname{P}}_{U}-2({\operatorname{P}}_{W}{\operatorname{P}}_{V}+{\operatorname{P}}_{W}{\operatorname{P}}_{U}+{\operatorname{P}}_{V}{\operatorname{P}}_{U})+{\operatorname{P}}_{W}+{\operatorname{P}}_{V}+{\operatorname{P}}_{U}\big{)} (16)

and

Fix(RWRVRU)U+V+W.\operatorname{Fix}({\operatorname{R}}_{W}{\operatorname{R}}_{V}{\operatorname{R}}_{U})\subseteq U+V+W. (17)

Proof. Let xXx\in X. Then xFix(RWRVRU)x\in\operatorname{Fix}({\operatorname{R}}_{W}{\operatorname{R}}_{V}{\operatorname{R}}_{U}) \Leftrightarrow x=(2PWId)(2PVId)(2PUId)xx=(2{\operatorname{P}}_{W}-\operatorname{Id})(2{\operatorname{P}}_{V}-\operatorname{Id})(2{\operatorname{P}}_{U}-\operatorname{Id})x and 16 follows by expanding and simplifying. In turn, Fix(RWRVRU)U+V+W\operatorname{Fix}({\operatorname{R}}_{W}{\operatorname{R}}_{V}{\operatorname{R}}_{U})\subseteq U+V+W because Fix(4PWPVPU2(PWPV+PWPU+PVPU)+PW+PV+PU)ran(4PWPVPU2(PWPV+PWPU+PVPU)+PW+PV+PU)W+V+U\operatorname{Fix}(4{\operatorname{P}}_{W}{\operatorname{P}}_{V}{\operatorname{P}}_{U}-2({\operatorname{P}}_{W}{\operatorname{P}}_{V}+{\operatorname{P}}_{W}{\operatorname{P}}_{U}+{\operatorname{P}}_{V}{\operatorname{P}}_{U})+{\operatorname{P}}_{W}+{\operatorname{P}}_{V}+{\operatorname{P}}_{U})\subseteq{\operatorname{ran}}\,(4{\operatorname{P}}_{W}{\operatorname{P}}_{V}{\operatorname{P}}_{U}-2({\operatorname{P}}_{W}{\operatorname{P}}_{V}+{\operatorname{P}}_{W}{\operatorname{P}}_{U}+{\operatorname{P}}_{V}{\operatorname{P}}_{U})+{\operatorname{P}}_{W}+{\operatorname{P}}_{V}+{\operatorname{P}}_{U})\subseteq W+V+U. \hfill\quad\blacksquare

The approach utilized in the proof of Theorem 2.7 to derive the description of the fixed point set also works for any odd number of reflectors; however, the resulting algebraic expressions don’t seem to provide further insights. The superset obtained; however, will easily generalize to an odd number of reflectors:

Theorem 2.8.

Let U1,,UmU_{1},\ldots,U_{m} be an odd number of closed linear subspaces of XX. Then

Fix(RUmRUm1RU1)U1+U2++Um.\operatorname{Fix}({\operatorname{R}}_{U_{m}}{\operatorname{R}}_{U_{m-1}}\cdots{\operatorname{R}}_{U_{1}})\subseteq U_{1}+U_{2}+\cdots+U_{m}. (18)

Proof. Let xXx\in X. Then xFix(RUmRU1)x\in\operatorname{Fix}({\operatorname{R}}_{U_{m}}\cdots{\operatorname{R}}_{U_{1}}) \Leftrightarrow x=RUmRU1xx={\operatorname{R}}_{U_{m}}\cdots{\operatorname{R}}_{U_{1}}x \Leftrightarrow x=(2PUmId)(2PU1Id)xx=(2{\operatorname{P}}_{U_{m}}-\operatorname{Id})\cdots(2{\operatorname{P}}_{U_{1}}-\operatorname{Id})x \Rightarrow x(1)mx+ran(iPUi)x\in(-1)^{m}x+{\operatorname{ran}}\,(\sum_{i}{\operatorname{P}}_{U_{i}}) \Rightarrow 2xran(iPUi)iUi2x\in{\operatorname{ran}}\,(\sum_{i}{\operatorname{P}}_{U_{i}})\subseteq\sum_{i}U_{i}. \hfill\quad\blacksquare

Remark 2.9.

Theorem 2.8 is false when mm is assumed to be even: indeed, assume that UU is a proper closed linear subspace of XX, and set U1:=U2:=UU_{1}:=U_{2}:=U. Then RU2RU1=Id{\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{1}}=\operatorname{Id} and hence

Fix(RU2RU1)=XU=U1+U2.\operatorname{Fix}({\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{1}})=X\supsetneqq U=U_{1}+U_{2}. (19)

The next example shows that the upper bound provided in Theorem 2.8 is sometimes sharp:

Example 2.10.

Let U1,,UmU_{1},\ldots,U_{m} be closed linear subspaces of XX which are assumed to be pairwise orthogonal: UiUjU_{i}\perp U_{j} whenever iji\neq j. Then either

m is odd and Fix(RUmRUm1RU1)=U1+U2++Um\text{$m$ is odd and~{}}\operatorname{Fix}({\operatorname{R}}_{U_{m}}{\operatorname{R}}_{U_{m-1}}\cdots{\operatorname{R}}_{U_{1}})=U_{1}+U_{2}+\cdots+U_{m} (20)

or

m is even and Fix(RUmRUm1RU1)=U1+U2++Um.\text{$m$ is even and~{}}\operatorname{Fix}(-{\operatorname{R}}_{U_{m}}{\operatorname{R}}_{U_{m-1}}\cdots{\operatorname{R}}_{U_{1}})=U_{1}+U_{2}+\cdots+U_{m}. (21)

Proof. Assume first that mm is odd. Let (x1,,xm)U1××Um(x_{1},\ldots,x_{m})\in U_{1}\times\cdots\times U_{m} and set x=x1++xmx=x_{1}+\cdots+x_{m}. Write RUi=PUiPUj{\operatorname{R}}_{U_{i}}={\operatorname{P}}_{U_{i}}-{\operatorname{P}}_{U_{j}^{\perp}} for each ii (see 5). Then

RU1x=(PU1PU1)(x1++xm)=x1x2xm.{\operatorname{R}}_{U_{1}}x=({\operatorname{P}}_{U_{1}}-{\operatorname{P}}_{U_{1}^{\perp}})(x_{1}+\cdots+x_{m})=x_{1}-x_{2}-\cdots-x_{m}. (22)

Hence

RU2RU1x=(PU2PU2)(x1x2xm)=x1x2+x3+xm.{\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{1}}x=({\operatorname{P}}_{U_{2}}-{\operatorname{P}}_{U_{2}^{\perp}})(x_{1}-x_{2}\cdots-x_{m})=-x_{1}-x_{2}+x_{3}\cdots+x_{m}. (23)

and further

RU3RU2RU1x=(PU3PU3)(x1x2+x3+xm)=x1+x2+x3x4xm.{\operatorname{R}}_{U_{3}}{\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{1}}x=({\operatorname{P}}_{U_{3}}-{\operatorname{P}}_{U_{3}^{\perp}})(-x_{1}-x_{2}+x_{3}\cdots+x_{m})=x_{1}+x_{2}+x_{3}-x_{4}-\cdots-x_{m}. (24)

In general, for 1km1\leq k\leq m, we have

(1)k1RUkRUk1RU1x=(x1++xk)(xk+1++xm).(-1)^{k-1}{\operatorname{R}}_{U_{k}}{\operatorname{R}}_{U_{k-1}}\cdots{\operatorname{R}}_{U_{1}}x=(x_{1}+\cdots+x_{k})-(x_{k+1}+\cdots+x_{m}). (25)

In particular, because m1m-1 is even, we obtain RUmRUm1RU1=x{\operatorname{R}}_{U_{m}}{\operatorname{R}}_{U_{m-1}}\cdots{\operatorname{R}}_{U_{1}}=x. This completes the proof of 20.

Now assume that mm is even. Set Um+1:={0}U_{m+1}:=\{0\}. Then RUm+1=Id{\operatorname{R}}_{U_{m+1}}=-\operatorname{Id} and m+1m+1 is odd. Therefore, we obtain 21 from the odd case we just proved. \hfill\quad\blacksquare

In contrast to Example 2.10, we conclude this section with another example which will illustrate that the upper bound in Theorem 2.8 is not always attained:

Example 2.11.

Assume that UU a closed linear subspace of XX such that {0}U\{0\}\subsetneqq U. Let mm be an odd positive integer, and let i{1,,m}i\in\{1,\ldots,m\}. Then set Ui:={0}U_{i}:=\{0\} and Uj:=UU_{j}:=U for every jij\neq i. Then m1m-1 is even and R{0}=Id{\operatorname{R}}_{\{0\}}=-\operatorname{Id}. Hence RUmRUm1RU1=RUm1=Id{\operatorname{R}}_{U_{m}}{\operatorname{R}}_{U_{m-1}}\cdots{\operatorname{R}}_{U_{1}}=-{\operatorname{R}}_{U}^{m-1}=-\operatorname{Id} and therefore

Fix(RUmRUm1RU1)=Fix(Id)={0}U=U1+U2++Um.\operatorname{Fix}({\operatorname{R}}_{U_{m}}{\operatorname{R}}_{U_{m-1}}\cdots{\operatorname{R}}_{U_{1}})=\operatorname{Fix}(-\operatorname{Id})=\{0\}\subsetneqq U=U_{1}+U_{2}+\cdots+U_{m}. (26)

3 The Euclidean plane 2\mathbb{R}^{2}

Let us now specialize the general result of the last section to the Euclidean plane and classical reflectors. We start with some is well known results whose statements can be found, e.g., in [11].

Set

Refl:2×2:α(cos(2α)sin(2α)sin(2α)cos(2α)).{\operatorname{Refl}}\colon\mathbb{R}\to\mathbb{R}^{2\times 2}\colon\alpha\mapsto\begin{pmatrix}\cos(2\alpha)&\sin(2\alpha)\\ \sin(2\alpha)&-\cos(2\alpha)\end{pmatrix}. (27)

It is clear that Refl{\operatorname{Refl}} is periodic, with minimal period π\pi. The importance of Refl{\operatorname{Refl}} stems from the fact that it describes all classical reflectors on 2\mathbb{R}^{2}; indeed,

R(cos(α),sin(α))=Refl(α){\operatorname{R}}_{\mathbb{R}\cdot(\cos(\alpha),\sin(\alpha))}={\operatorname{Refl}}({\alpha}) (28)

for every α\alpha\in\mathbb{R}. It is convenient to also define

Rot:2×2:α(cos(α)sin(α)sin(α)cos(α)).{\operatorname{Rot}}\colon\mathbb{R}\to\mathbb{R}^{2\times 2}\colon\alpha\mapsto\begin{pmatrix}\cos(\alpha)&-\sin(\alpha)\\ \sin(\alpha)&\cos(\alpha)\end{pmatrix}. (29)

Note that for every α\alpha\in\mathbb{R}, Rot(α){\operatorname{Rot}}({\alpha}) describes the counterclockwise rotation by α\alpha; the operator Rot{\operatorname{Rot}} is periodic with minimal period 2π2\pi.

The following result provides “calculus rules” for the composition of reflectors and rotators. It can be verified using matrix multiplication and addition theorems for sine and cosine.

Fact 3.1.

Let α\alpha and β\beta be in \mathbb{R}. Then the following hold:

  1. (i)

    Rot(β)Rot(α)=Rot(α+β){\operatorname{Rot}}({\beta}){\operatorname{Rot}}({\alpha})={\operatorname{Rot}}({\alpha+\beta}).

  2. (ii)

    Refl(β)Refl(α)=Rot(2(βα)){\operatorname{Refl}}({\beta}){\operatorname{Refl}}({\alpha})={\operatorname{Rot}}({2(\beta-\alpha)}).

  3. (iii)

    Rot(β)Refl(α)=Refl(α+12β){\operatorname{Rot}}({\beta}){\operatorname{Refl}}({\alpha})={\operatorname{Refl}}({\alpha+\tfrac{1}{2}\beta}).

  4. (iv)

    Refl(β)Rot(α)=Refl(β12α){\operatorname{Refl}}({\beta}){\operatorname{Rot}}({\alpha})={\operatorname{Refl}}({\beta-\tfrac{1}{2}\alpha}).

We are now in a position to classify the fixed point sets of compositions of classical reflectors on 2\mathbb{R}^{2}:

Theorem 3.2.

Let α1,,αm\alpha_{1},\ldots,\alpha_{m} be in \mathbb{R}. Consider the composition of mm classical reflectors,

Sm:=Refl(αm)Refl(α1)Refl(α1),S_{m}:={\operatorname{Refl}}({\alpha_{m}})\cdots{\operatorname{Refl}}({\alpha_{1}}){\operatorname{Refl}}({\alpha_{1}}), (30)

and set βm:=αmαm1±(1)mα1\beta_{m}:=\alpha_{m}-\alpha_{m-1}\pm\cdots-(-1)^{m}\alpha_{1}. Then exactly one of the following holds:

  1. (i)

    mm is odd, Sm=Refl(βm)S_{m}={\operatorname{Refl}}({\beta_{m}}), and FixSm=(cos(βm),sin(βm))\operatorname{Fix}S_{m}=\mathbb{R}(\cos(\beta_{m}),\sin(\beta_{m})).

  2. (ii)

    mm is even, Sm=Rot(2βm)S_{m}={\operatorname{Rot}}({2\beta_{m}}), and FixSm={2,if βm𝐙π;{0},otherwise.\displaystyle\operatorname{Fix}S_{m}=\begin{cases}\mathbb{R}^{2},&\text{if $\beta_{m}\in\mathbf{Z}\pi$;}\\ \{0\},&\text{otherwise.}\end{cases}

Proof. We proceed by induction on mm, discussing the odd and even cases separately.

Base case: Case 1: Assume that m=1m=1. Then β1=α1\beta_{1}=\alpha_{1} and S1=Refl(α1)=Refl(β1)S_{1}={\operatorname{Refl}}({\alpha_{1}})={\operatorname{Refl}}({\beta_{1}}) so FixS1=FixRefl(α1)=(cos(α1),sin(α1))=(cos(β1),sin(β1))\operatorname{Fix}S_{1}=\operatorname{Fix}{\operatorname{Refl}}({\alpha_{1}})=\mathbb{R}(\cos(\alpha_{1}),\sin(\alpha_{1}))=\mathbb{R}(\cos(\beta_{1}),\sin(\beta_{1})) by 28 as announced. Case 2: Now assume that m=2m=2. Then β2=α2α1\beta_{2}=\alpha_{2}-\alpha_{1}. Using 3.1(ii), we obtain S2=Refl(α2)Refl(α1)=Rot(2(α2α1))=Rot(2β2)S_{2}={\operatorname{Refl}}({\alpha_{2}}){\operatorname{Refl}}({\alpha_{1}})={\operatorname{Rot}}({2(\alpha_{2}-\alpha_{1})})={\operatorname{Rot}}({2\beta_{2}}) and the claim follows.

Inductive step: We assume that the result is true for some integer m2m\geq 2. Then

Sm+1=Refl(αm+1)Refl(αm)Refl(α2)Refl(α1)=Refl(αm+1)SmS_{m+1}={\operatorname{Refl}}({\alpha_{m+1}}){\operatorname{Refl}}({\alpha_{m}})\cdots{\operatorname{Refl}}({\alpha_{2}}){\operatorname{Refl}}({\alpha_{1}})={\operatorname{Refl}}({\alpha_{m+1}})S_{m} (31)

and

βm+1=αm+1βm.\beta_{m+1}=\alpha_{m+1}-\beta_{m}. (32)

Case 1: m+1m+1 is odd; equivalently, mm is even. Using the inductive hypothesis, 3.1(iv), and 32, we obtain

Sm+1\displaystyle S_{m+1} =Refl(αm+1)Sm=Refl(αm+1)Rot(2βm)\displaystyle={\operatorname{Refl}}({\alpha_{m+1}})S_{m}={\operatorname{Refl}}({\alpha_{m+1}}){\operatorname{Rot}}({2\beta_{m}}) (33a)
=Refl(αm+112(2βm))=Refl(βm+1)\displaystyle={\operatorname{Refl}}({\alpha_{m+1}-\tfrac{1}{2}(2\beta_{m})})={\operatorname{Refl}}({\beta_{m+1}}) (33b)

and the result follows.

Case 2: m+1m+1 is even; equivalently, mm is odd. Using the inductive hypothesis, 3.1(ii), and 32, we obtain

Sm+1\displaystyle S_{m+1} =Refl(αm+1)Sm=Refl(αm+1)Refl(βm)\displaystyle={\operatorname{Refl}}({\alpha_{m+1}})S_{m}={\operatorname{Refl}}({\alpha_{m+1}}){\operatorname{Refl}}({\beta_{m}}) (34a)
=Rot(2(αm+1βm))=Rot(2βm+1)\displaystyle={\operatorname{Rot}}({2(\alpha_{m+1}-\beta_{m})})={\operatorname{Rot}}({2\beta_{m+1}}) (34b)

and the result follows. \hfill\quad\blacksquare

The next example, which was used in an algorithmic context in [4, Example 2.30], illustrates Proposition 2.2, Proposition 2.4, and Theorem 3.2.

Example 3.3.

(See also [4, Example 2.30]) Set U:=(1,0)U:=\mathbb{R}(1,0) so that U=(0,1)U^{\perp}=\mathbb{R}(0,1), and V:=(1,1)V:=\mathbb{R}(1,1). Then RU=Refl(0){\operatorname{R}}_{U}={\operatorname{Refl}}({0}), RU=Refl(π/2){\operatorname{R}}_{U^{\perp}}={\operatorname{Refl}}({\pi/2}), and RV=Refl(π/4){\operatorname{R}}_{V}={\operatorname{Refl}}({\pi/4}). Moreover, the following hold:

  1. (i)

    Fix(RURVRU)=Fix(Refl(π/2)Refl(π/4)Refl(0))=(cos(π/4),sin(π/4))=(1,1)=V=RU(V)\operatorname{Fix}({\operatorname{R}}_{U^{\perp}}{\operatorname{R}}_{V}{\operatorname{R}}_{U})=\operatorname{Fix}({\operatorname{Refl}}({\pi/2}){\operatorname{Refl}}({\pi/4}){\operatorname{Refl}}({0}))=\mathbb{R}(\cos(\pi/4),\sin(\pi/4))=\mathbb{R}(1,1)=V={\operatorname{R}}_{U}(V^{\perp}).

  2. (ii)

    Fix(RURVRU)=Fix(Refl(0)Refl(π/4)Refl(π/2))=(cos(π/4),sin(π/4))=(1,1)=V=RU(V)\operatorname{Fix}({\operatorname{R}}_{U}{\operatorname{R}}_{V}{\operatorname{R}}_{U^{\perp}})=\operatorname{Fix}({\operatorname{Refl}}({0}){\operatorname{Refl}}({\pi/4}){\operatorname{Refl}}({\pi/2}))=\mathbb{R}(\cos(\pi/4),\sin(\pi/4))=\mathbb{R}(1,1)=V={\operatorname{R}}_{U}(V^{\perp}).

  3. (iii)

    Fix(RVRURU)=Fix(Refl(π/4)Refl(π/2)Refl(0))=(cos(π/4),sin(π/4))=(1,1)=V\operatorname{Fix}({\operatorname{R}}_{V}{\operatorname{R}}_{U^{\perp}}{\operatorname{R}}_{U})=\operatorname{Fix}({\operatorname{Refl}}({\pi/4}){\operatorname{Refl}}({\pi/2}){\operatorname{Refl}}({0}))=\mathbb{R}(\cos(-\pi/4),\sin(-\pi/4))=\mathbb{R}(1,-1)=V^{\perp}.

  4. (iv)

    Fix(RVRURU)=Fix(Refl(π/4)Refl(0)Refl(π/2))=(cos(3π/4),sin(3π/4))=(1,1)=V\operatorname{Fix}({\operatorname{R}}_{V}{\operatorname{R}}_{U}{\operatorname{R}}_{U^{\perp}})=\operatorname{Fix}({\operatorname{Refl}}({\pi/4}){\operatorname{Refl}}({0}){\operatorname{Refl}}({\pi/2}))=\mathbb{R}(\cos(3\pi/4),\sin(3\pi/4))=\mathbb{R}(-1,1)=V^{\perp}.

  5. (v)

    Fix(RURURV)=Fix(Refl(π/2)Refl(0)Refl(π/4))=(cos(3π/4),sin(3π/4))=(1,1)=V\operatorname{Fix}({\operatorname{R}}_{U^{\perp}}{\operatorname{R}}_{U}{\operatorname{R}}_{V})=\operatorname{Fix}({\operatorname{Refl}}({\pi/2}){\operatorname{Refl}}({0}){\operatorname{Refl}}({\pi/4}))=\mathbb{R}(\cos(3\pi/4),\sin(3\pi/4))=\mathbb{R}(-1,1)=V^{\perp}.

  6. (vi)

    Fix(RURURV)=Fix(Refl(0)Refl(π/2)Refl(π/4))=(cos(π/4),sin(π/4))=(1,1)=V\operatorname{Fix}({\operatorname{R}}_{U}{\operatorname{R}}_{U^{\perp}}{\operatorname{R}}_{V})=\operatorname{Fix}({\operatorname{Refl}}({0}){\operatorname{Refl}}({\pi/2}){\operatorname{Refl}}({\pi/4}))=\mathbb{R}(\cos(-\pi/4),\sin(-\pi/4))=\mathbb{R}(1,-1)=V^{\perp}.

Refer to caption
Figure 2: The fixed point sets for Example 3.3
Remark 3.4.

Example 3.3 clearly shows that the order of the reflectors influences the fixed point set. See also Fig. 2 for a visualization.

Example 3.5.

Let γ\gamma\in\mathbb{R}, and let ε1,ε2,ε3\varepsilon_{1},\varepsilon_{2},\varepsilon_{3} all be small in absolute value. Set α1:=γ+π/6+ε1\alpha_{1}:=\gamma+\pi/6+\varepsilon_{1}, α2:=γ+ε2\alpha_{2}:=\gamma+\varepsilon_{2}, α3:=γπ/6+ε3\alpha_{3}:=\gamma-\pi/6+\varepsilon_{3}, and ε:=ε1ε2+ε3\varepsilon:=\varepsilon_{1}-\varepsilon_{2}+\varepsilon_{3}, and suppose that Ui=(cos(αi),sin(αi))U_{i}=\mathbb{R}(\cos(\alpha_{i}),\sin(\alpha_{i})) for i{1,2,3}i\in\{1,2,3\}. Then it follows from Theorem 3.2 that

RU3RU2RU1\displaystyle{\operatorname{R}}_{U_{3}}{\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{1}} =Refl(α3)Refl(α2)Refl(α1)=Refl(α3α2+α1)\displaystyle={\operatorname{Refl}}({\alpha_{3}}){\operatorname{Refl}}({\alpha_{2}}){\operatorname{Refl}}({\alpha_{1}})={\operatorname{Refl}}({\alpha_{3}-\alpha_{2}+\alpha_{1}}) (35a)
=Refl(γ+ε)\displaystyle={\operatorname{Refl}}({\gamma+\varepsilon}) (35b)

and

Fix(RU3RU2RU1)=(cos(γ+ε),sin(γ+ε)).\operatorname{Fix}({\operatorname{R}}_{U_{3}}{\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{1}})=\mathbb{R}\big{(}\cos(\gamma+\varepsilon),\sin(\gamma+\varepsilon)\big{)}. (36)

However, U1U2U3={0}U_{1}\cap U_{2}\cap U_{3}=\{0\}.

Remark 3.6.

Consider the setting of Example 3.5.

  1. (i)

    No matter which of the operators in {PU1,PU2,PU3,PU1,PU2,PU3}\{{\operatorname{P}}_{U_{1}},{\operatorname{P}}_{U_{2}},{\operatorname{P}}_{U_{3}},{\operatorname{P}}_{U_{1}^{\perp}},{\operatorname{P}}_{U_{2}^{\perp}},{\operatorname{P}}_{U_{3}^{\perp}}\} we apply to Fix(RU3RU2RU1)\operatorname{Fix}({\operatorname{R}}_{U_{3}}{\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{1}}), we always obtain a line and never the singleton U1U2U3={0}U_{1}\cap U_{2}\cap U_{3}=\{0\}.

  2. (ii)

    If each εi=0\varepsilon_{i}=0, then ε=0\varepsilon=0 and Fix(RU3RU2RU1)=U2\operatorname{Fix}({\operatorname{R}}_{U_{3}}{\operatorname{R}}_{U_{2}}{\operatorname{R}}_{U_{1}})=U_{2}. If additionally γ=π/6\gamma=\pi/6, then U2=(cos(π/6),sin(π/6))=(3/2,1/2)U_{2}=\mathbb{R}(\cos(\pi/6),\sin(\pi/6))=\mathbb{R}(\sqrt{3}/2,1/2) and we recover precisely Example 1.3.

We conclude with a comment on higher-dimensional Euclidean space.

Remark 3.7 (3\mathbb{R}^{3} and beyond).

Considering reflectors and rotations in 3\mathbb{R}^{3} (see, e.g., [12]) or even n\mathbb{R}^{n} is more complicated because there is no “easy” counterpart of 3.1. However, using the fact that eigenvalues of isometries are always drawn from ±1\pm 1 or from nonreal complex conjugate pairs of magnitude 11, one obtains at least the parity result that

m+ndim(Fix(RmRm1R1))mod2m+n\equiv\dim(\operatorname{Fix}(R_{m}R_{m-1}\cdots R_{1}))\mod 2 (37)

for mm classical reflectors R1,,RmR_{1},\ldots,R_{m} on n\mathbb{R}^{n}.

Acknowledgements

The research of HHB and XW was partially supported by Discovery Grants of the Natural Sciences and Engineering Research Council of Canada.

References

  • [1] F.J. Aragón Artacho, J.M. Borwein, and M.K. Tam: Recent results on Douglas-Rachford methods for combinatorial optimization problems, Journal on Optimization Theory and Applications 163 (2014), 1–30.
  • [2] H.H. Bauschke, J.Y. Bello Cruz, T.T.A. Nghia, H.M. Phan, and X. Wang: The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle, Journal of Approximation Theory 185 (2014), 63–79.
  • [3] H.H. Bauschke and P.L. Combettes: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, second edition, Springer, 2017.
  • [4] H.H. Bauschke, H. Ouyang, and X. Wang: Circumcentered methods induced by isometries, Vietnam Journal of Mathematics, in press. https://arxiv.org/abs/1908.11576
  • [5] R.E. Bruck and S. Reich: Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston Journal of Mathematics 3 (1977), 459–470.
  • [6] J. Gallier: Geometric Methods and Applications For Computer Science and Engineering (Second Edition), Springer, 2011.
  • [7] F. Riesz and B. Szökefalvi-Nagy: Über Kontraktionen des Hilbertschen Raumes, Acta Scientiarum Mathematicarum 10 (1943), 202–205.
  • [8] F. Riesz and B. Szökefalvi-Nagy: Functional Analysis, Ungar Publishing New York, 1955.
  • [9] R.T. Rockafellar: Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization 14 (1976), 877–898.
  • [10] J. Stillwell: Naive Lie Theory, Springer, 2008.
  • [11] Wikipedia contributors: Rotations and reflections in two dimensions, Wikipedia, https://en.wikipedia.org/w/index.php?title=Rotations_and_reflections_in_two_dimensions&oldid=950574565
  • [12] Wikipedia contributors: 3D rotation group, Wikipedia, https://en.wikipedia.org/wiki/3D_rotation_group