This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Fixed-time Synchronization of Networked Uncertain Euler-Lagrange Systems

Yi Dong and Zhiyong Chen This work has been supported in part by Shanghai Municipal Science and Technology Major Project under grant 2021SHZDZX0100, in part by National Natural Science Foundation of China under grant 62073241 and in part by the Fundamental Research Funds for the Central Universities under grant 22120210127.Y. Dong is with College of Electronic and Information Engineering, Tongji University, Shanghai 200092, China. Email: yidong@tongji.edu.cnZ. Chen is with with the School of Electrical Engineering and Computing, The University of Newcastle, Callaghan, NSW 2308, Australia. E-mail: zhiyong.chen@newcastle.edu.au
Abstract

This paper considers the fixed-time control problem of a multi-agent system composed of a class of Euler-Lagrange dynamics with parametric uncertainty and a dynamic leader under a directed communication network. A distributed fixed-time observer is first proposed to estimate the desired trajectory and then a fixed-time controller is constructed by transforming uncertain Euler-Lagrange systems into second-order systems and utilizing the backstepping design procedure. The overall design guarantees that the synchronization errors converge to zero in a prescribed time independent of initial conditions. The control design conditions can also be relaxed for a weaker finite-time control requirement.

Index Terms:
Finite-time control, fixed-time control, multi-agent systems, Euler-Lagrange systems, directed graph

I Introduction

Fixed-time control for multi-agent systems, requiring exact achievement of a collective behavior in a prescribed time independent of initial conditions, or finite-time control of a weaker requirement allowing the prescribed time dependent on initial conditions, has attracted researchers’ extensive attention over the past years due to its potential advantages in transient performance and robustness property [1]. The early work on finite-time formation control of single-integrator multi-agent systems can be found in [2]. For the leader-following consensus problem of general linear multi-agent systems, [3] proposed two classes of finite-time observers to estimate the second-order leader dynamics, which can work in undirected and directed communication networks, respectively. More efforts have also been devoted to nonlinear systems. For example, [4] considered the finite-time control of first-order multi-agent systems with unknown nonlinear dynamics, while both first-order and second-order nonlinear systems were considered in[5]. In particular, observer-based control was proposed to solve the leader-following fixed-time consensus problem under the strongly connected communication network. The fixed-time consensus problem was also investigated for double-integrator systems under directed communication network and more general multi-agent systems with high-order integrator dynamics in [6, 7], respectively.

Euler-Lagrange systems capture a large class of contemporary engineering problems and finite-time control of this class of systems has been intensively investigated, especially in the individual setting. For example, [8] considered finite-time control for an Euler-Lagrange system based on the method for a double-integrator system, while [9, 10] further dealt with nonlinear systems in the presence of uncertainties. The work in [11] studied a non-singular sliding surface and constructed a continuous finite-time control strategy for uncertain Euler-Lagrange system. Furthermore, [12] designed an adaptive controller to track a desired trajectory in finite time and [13] proposed a method for handing both uncertain dynamics and globally unbounded disturbances.

The research on fixed-time or finite-time control of uncertain Euler-Lagrange systems in a network setting is relatively rare. Some related results can be found in [14] where, by adaptive control technique, a finite-time synchronization controller was constructed for a multi-agent system modeled by some mechanical nonlinear systems with a connected communication network. The recent work reported in [15] studied finite-time coordination behavior of a multiple Euler-Lagrange system with an undirected network in the absence of uncertainties. In particular, with the introduction of auxiliary variables, the system can be converted into a simpler form such that the adding a power integrator method can be applied to ensure the convergence.

This paper provides a solution to the leader-following fixed-time synchronization problem for multiple Euler-Lagrange systems with parametric uncertainty. The strategy is based on a class of observers that can accurately estimate a dynamic trajectory in a fixed time. The design relaxes the undirected and connected assumption for the communication network in [5, 7, 14, 15] and considers a directed network graph. Then an observer-based controller is proposed for the multi-agent system composed of a dynamic leader and multiple heterogeneous Euler-Lagrange dynamics, as opposed to the finite-time control method for multiple special mechanical systems in [14]. In particular, the distributed control law is able to guarantee each Euler-Lagrange system can track a desired trajectory in a prescribed time, independent of initial conditions. It is worth mentioning that the control design conditions can be relaxed for a weaker finite-time control requirement. Also, a reduced continuous controller can be directly applied to the fixed-time synchronization problem for second-order nonlinear systems with a directed graph.

Throughout the paper, we use the following notations. For a vector x=[x1,,xn]Tnx=[x_{1},\cdots,x_{n}]^{T}\in\mathbb{R}^{n}, x1=|x1|++|xn|\|x\|_{1}=|x_{1}|+\cdots+|x_{n}| represents its Manhattan (1{\cal L}_{1}) norm, x=x12+,xn2\|x\|=\sqrt{x_{1}^{2}+\cdots,x_{n}^{2}} its Euclidean (2{\cal L}_{2}) norm, and |x|=[|x1|,,|xn|]T|x|=[|x_{1}|,\cdots,|x_{n}|]^{T} its element-wise absolute valued vector. For a matrix XX, |X||X| is also defined as its element-wise absolute valued matrix. The power function operator is element-wise in terms of xa=[x1a,,xna]Tx^{a}=[x^{a}_{1},\cdots,x^{a}_{n}]^{T} for a>0a>0. For two vectors (matrices) XX and YY, comparison operators are element-wise; for example, XYX\geq Y means xijyijx_{ij}\geq y_{ij} for every xijx_{ij} and yijy_{ij}, the (i,j)(i,j)-elements of XX and YY, respectively. The operator siga(x)=[sign(x1)|x1|a,,sign(xn)|xn|a]T\mbox{sig}^{a}(x)=[\mbox{sign}(x_{1})|x_{1}|^{a},\cdots,\mbox{sign}(x_{n})|x_{n}|^{a}]^{T} is defined for a>0a>0 and the sign function sign()\mbox{sign}(\cdot).

II Problem Formulation

Consider a group of mm-link robotic manipulators of the following Euler-Lagrange dynamics

Mi(qi)q¨i+Ci(qi,q˙i)q˙i+Gi(qi)=τi,i=1,,N,\displaystyle M_{i}(q_{i})\ddot{q}_{i}+C_{i}(q_{i},\dot{q}_{i})\dot{q}_{i}+G_{i}(q_{i})=\tau_{i},\;i=1,\cdots,N, (1)

where qimq_{i}\in\mathbb{R}^{m}, q˙im\dot{q}_{i}\in\mathbb{R}^{m} are the vectors of generalized position and velocity of the ii-th robotic manipulator, also called agent ii, Mi(qi)m×mM_{i}(q_{i})\in\mathbb{R}^{m\times m} is a symmetric and positive definite inertia matrix, Ci(qi,q˙i)q˙imC_{i}(q_{i},\dot{q}_{i})\dot{q}_{i}\in\mathbb{R}^{m} contains the Coriolis and centrifugal forces, Gi(qi)mG_{i}(q_{i})\in\mathbb{R}^{m} is the gravitational torque, and τim\tau_{i}\in\mathbb{R}^{m} is the vector of control force. The reference is generated by a leader system, called agent 0, described as follows:

η˙0\displaystyle\dot{\eta}_{0} =Sη0,q0=Eη0,\displaystyle=S\eta_{0},\;q_{0}=E\eta_{0}, (2)

where η0n\eta_{0}\in\mathbb{R}^{n} is the state, q0mq_{0}\in\mathbb{R}^{m} is the desired trajectory to track, and Sn×nS\in\mathbb{R}^{n\times n}, Em×nE\in\mathbb{R}^{m\times n} are constant matrices.

The multi-agent system under consideration is composed of the NN dynamics in (1) and the dynamic leader (2). The information flow among all the N+1N+1 agents is described by a digraph 𝒢=(𝒱,)\mathcal{G}=(\mathcal{V},\mathcal{E}) where 𝒱={0,1,,N}\mathcal{V}=\{0,1,\cdots,N\} is the node set and 𝒱×𝒱\mathcal{E}\subset\mathcal{V}\times\mathcal{V} is the edge set. Each element (j,i)(j,i)\in\mathcal{E} represents the edge from agent jj to agent ii. For i,j𝒱i,j\in\mathcal{V}, aii=0a_{ii}=0, aij>0a_{ij}>0 if (j,i)(j,i)\in\mathcal{E} and aij=0a_{ij}=0 otherwise. Let H=[hij]i,j=1NH=[h_{ij}]_{i,j=1}^{N} be the Laplacian matrix of the subnetwork composed of agents 1,,N1,\cdots,N, where hii=j=0Naijh_{ii}=\sum_{j=0}^{N}a_{ij} and hij=aijh_{ij}=-a_{ij} for iji\neq j, i,j=1,,Ni,j=1,\cdots,N.

The objective of this paper is to design a distributed control law such that each agent of (1) can track the desired trajectory q0q_{0} in fixed time. More specifically, we consider the class of control laws of the form

τi\displaystyle\tau_{i} =f1i(qi,q˙i,ηi,η˙i)\displaystyle=f_{1i}(q_{i},\dot{q}_{i},\eta_{i},\dot{\eta}_{i})
η˙i\displaystyle\dot{\eta}_{i} =f2i(ηi,j=0Naij(ηiηj)),i=1,,N.\displaystyle=f_{2i}(\eta_{i},\sum_{j=0}^{N}a_{ij}(\eta_{i}-\eta_{j})),\;i=1,\cdots,N. (3)

Let

xi=[qiq0q˙iq˙0ηiη0],i=1,,N,x=[x1xN]nx.\displaystyle x_{i}=\left[\begin{array}[]{c}q_{i}-q_{0}\\ \dot{q}_{i}-\dot{q}_{0}\\ \eta_{i}-\eta_{0}\end{array}\right],i=1,\cdots,N,\;x=\left[\begin{array}[]{c}x_{1}\\ \vdots\\ x_{N}\end{array}\right]\in\mathbb{R}^{n_{x}}.

Suppose the closed-loop system composed of (1), (2) and (3) possesses unique solutions in forward time for all initial conditions. Then the fixed-time synchronization problem can be described as follows based on the concept of fixed-time stability [16].

Fixed-time synchronization problem: Given the system composed of (1) and (2) with the corresponding digraph 𝒢\mathcal{G}, design a distributed control law of the form (3) such that, for all initial conditions x(0)=x0x(0)=x_{0} and η0(0)=η00\eta_{0}(0)=\eta_{00}, the equilibrium x=0x=0 of the closed-loop system is (globally) fixed-time stable. That is, the solution x(t)x(t) exists for t0t\geq 0 and x=0x=0 is Lyapunov stable, and moreover, there exists a fixed time TT^{*}, independent of x0x_{0} or η00\eta_{00}, such that

limtTx(t)=0,\displaystyle\lim_{t\rightarrow T^{*}}x(t)=0,
x(t)=0,tT,x0nx,η00n.\displaystyle x(t)=0,\;t\geq T^{*},\;\forall x_{0}\in\mathbb{R}^{n_{x}},\eta_{00}\in\mathbb{R}^{n}. (4)
Remark II.1

When the existence of a fixed time TT^{*} is relaxed to the existence of a settling-time function T(x0,η00)T(x_{0},\eta_{00}), the above fixed-time synchronization problem is called a finite-time synchronization problem, which is based on the definition of finite-time stability [1]. In practice, there is similarity between finite-time convergence and asymptotical (exponential) convergence, both of which require the convergence of trajectories to (proximity of) an equilibrium point in a finite amount of time which depends on the initial conditions. But fixed-time convergence is a more practically interesting feature which requests it happen in a prescribed time independent of initial conditions. There are more constraints on the controller design conditions that will be studied in this paper.

For the solvability of the aforementioned problem, we need the following standard assumption on the communication network.

Assumption II.1

The graph 𝒢\mathcal{G} contains a spanning tree with node 0 as the root.

Remark II.2

Under Assumption II.1, all the eigenvalues of HH have positive real parts; see, e.g., [17]. By Theorem 2.5.3 of [18], there exists a positive definite diagonal matrix D¯N×N\bar{D}\in\mathbb{R}^{N\times N} such that HTD¯+D¯HH^{T}\bar{D}+\bar{D}H is positive definite. Let λm>0\lambda_{m}>0 be the smallest eigenvalue of HTD¯+D¯HH^{T}\bar{D}+\bar{D}H and D=diag(d1,,dN)=2D¯/λmD=\mbox{diag}(d_{1},\cdots,d_{N})=2\bar{D}/\lambda_{m}. One has HTD+DH2INH^{T}D+DH\geq 2I_{N}.

We end this section with some technical lemmas from, e.g., [6], [16], [19] and [20], which will be used in the proofs of the main results in this paper.

Lemma II.1

For any ξi\xi_{i}\in\mathbb{R}, i=1,,ni=1,\cdots,n, and any p(0,1]p\in(0,1], (i=1n|ξi|)pi=1n|ξi|pn1p(i=1n|ξi|)p(\sum_{i=1}^{n}|\xi_{i}|)^{p}\leq\sum_{i=1}^{n}|\xi_{i}|^{p}\leq n^{1-p}(\sum_{i=1}^{n}|\xi_{i}|)^{p} [19]. For any p>1p>1, i=1n|ξi|p(i=1n|ξi|)pnp1i=1n|ξi|p\sum_{i=1}^{n}|\xi_{i}|^{p}\leq(\sum_{i=1}^{n}|\xi_{i}|)^{p}\leq n^{p-1}\sum_{i=1}^{n}|\xi_{i}|^{p} [6].

Lemma II.2

[19] The inequality |ξipξjp|21p|ξiξj|p|\xi_{i}^{p}-\xi_{j}^{p}|\leq 2^{1-p}|\xi_{i}-\xi_{j}|^{p} holds for ξi,ξj\forall\xi_{i},\xi_{j}\in\mathbb{R} and 0<p10<p\leq 1 and pp is a ratio of two odd integers.

Lemma II.3

[20] The inequality |ξi|c|ξj|dcc+dr|ξi|c+d+dc+drcd|ξj|c+d|\xi_{i}|^{c}|\xi_{j}|^{d}\leq\frac{c}{c+d}r|\xi_{i}|^{c+d}+\frac{d}{c+d}r^{-\frac{c}{d}}|\xi_{j}|^{c+d} holds for ξi,ξj\forall\xi_{i},\xi_{j}\in\mathbb{R} and c,d,r>0c,d,r>0.

Lemma II.4

(Lemma 1, [16]) Consider the system z˙=ϕ(z,t)\dot{z}=\phi(z,t) where ϕ:l×[0,)l\phi:\mathbb{R}^{l}\times[0,\infty)\mapsto\mathbb{R}^{l} satisfies ϕ(0,t)=0\phi(0,t)=0. Suppose there exits a continuously differentiable function V:lV:~{}\mathbb{R}^{l}\mapsto\mathbb{R} such that (i) VV is positive definite and proper; and (ii) there exist real numbers p0,q0,p,q,k>0p_{0},q_{0},p,q,k>0 with pk<1pk<1 and qk>1qk>1 such that V˙(z)(p0(V(z))p+q0(V(z))q)k\dot{V}(z)\leq-(p_{0}(V(z))^{p}+q_{0}(V(z))^{q})^{k}. Then, the equilibrium z=0z=0 is (globally) fixed-time stable and there is a constant settling-time T1p0k(1pk)+1q0k(qk1)T^{*}\leq\frac{1}{p_{0}^{k}(1-pk)}+\frac{1}{q_{0}^{k}(qk-1)}.

III Distributed observer design

As the agents not connected to agent 0 do not have access to the information of the dynamic leader (2), its state needs to be estimated by a properly designed fixed-time observer as follows:

η˙i\displaystyle\dot{\eta}_{i} =Sηic1yic2siga(yi)c3sigb(yi),\displaystyle=S\eta_{i}-c_{1}y_{i}-c_{2}\mbox{sig}^{a}(y_{i})-c_{3}\mbox{sig}^{b}(y_{i}),
yi\displaystyle y_{i} =j=0Naij(ηiηj),i=1,,N.\displaystyle=\sum_{j=0}^{N}a_{ij}(\eta_{i}-\eta_{j}),\;i=1,\cdots,N. (5)

In this section, we construct a lemma based on the fixed-time observer (III). Let ηT=[η0T,η1T,,ηNT]T\eta^{T}=[\eta^{T}_{0},\eta^{T}_{1},\cdots,\eta^{T}_{N}]^{T} for the convenience of presentation.

Lemma III.1

Consider the system composed of (2) and (III) under Assumption II.1 with 0<a<10<a<1, b>1a>1b>\frac{1}{a}>1, c1>DSc_{1}>\|D\otimes S\| and c2,c3>0c_{2},c_{3}>0. There exists a constant settling-time T10T^{*}_{1}\geq 0 such that, η(0)(N+1)n\forall\eta(0)\in\mathbb{R}^{(N+1)n},

limtT1(ηi(t)η0(t))=0,\displaystyle\lim_{t\rightarrow T_{1}^{*}}(\eta_{i}(t)-\eta_{0}(t))=0,
ηi(t)η0(t)=0,tT1,i=1,,N.\displaystyle\eta_{i}(t)-\eta_{0}(t)=0,\;t\geq T_{1}^{*},\;i=1,\cdots,N. (6)

Proof: Let η¯i=ηiη0\bar{\eta}_{i}=\eta_{i}-\eta_{0}, i=0,1,,Ni=0,1,\cdots,N. The observer (III) can be rewritten as

η¯˙i\displaystyle\dot{\bar{\eta}}_{i} =Sη¯ic1yic2siga(yi)c3sigb(yi),\displaystyle=S\bar{\eta}_{i}-c_{1}y_{i}-c_{2}\mbox{sig}^{a}(y_{i})-c_{3}\mbox{sig}^{b}(y_{i}),
yi\displaystyle y_{i} =j=0Naij(η¯iη¯j),i=1,,N.\displaystyle=\sum_{j=0}^{N}a_{ij}(\bar{\eta}_{i}-\bar{\eta}_{j}),\;i=1,\cdots,N. (7)

Let Yi=c1yi+c2siga(yi)+c3sigb(yi)Y_{i}=c_{1}y_{i}+c_{2}\mbox{sig}^{a}(y_{i})+c_{3}\mbox{sig}^{b}(y_{i}) and η¯\bar{\eta}, yy, YY be the column stacks of η¯i\bar{\eta}_{i}, yiy_{i}, YiY_{i}, i=1,,Ni=1,\cdots,N. Note y=(HIn)η¯y=(H\otimes I_{n})\bar{\eta} and

y˙=(INS)y(HIn)Y.\dot{y}=(I_{N}\otimes S)y-(H\otimes I_{n})Y. (8)

And, let

V(y)=\displaystyle V(y)= i=1N(c2di1+ayi1+a1+c3di1+byi1+b1)\displaystyle\sum_{i=1}^{N}\left(\frac{c_{2}d_{i}}{1+a}\|y_{i}^{1+a}\|_{1}+\frac{c_{3}d_{i}}{1+b}\|y_{i}^{1+b}\|_{1}\right)
+c12yT(DIn)y.\displaystyle+\frac{c_{1}}{2}y^{T}(D\otimes I_{n})y. (9)

Along the trajectory of (8), the time derivative of V(y)V(y) satisfies

V˙(y)=\displaystyle\dot{V}(y)= i=1Ndi(c2siga(yi)+c3sigb(yi))Ty˙i+c1yT(DIn)y˙\displaystyle\sum_{i=1}^{N}d_{i}(c_{2}\mbox{sig}^{a}(y_{i})+c_{3}\mbox{sig}^{b}(y_{i}))^{T}\dot{y}_{i}+c_{1}y^{T}(D\otimes I_{n})\dot{y}
=\displaystyle= YT(DIn)y˙\displaystyle Y^{T}(D\otimes I_{n})\dot{y}
=\displaystyle= YT(DS)y12YT((HTD+DH)In)Y\displaystyle Y^{T}(D\otimes S)y-\frac{1}{2}Y^{T}((H^{T}D+DH)\otimes I_{n})Y
\displaystyle\leq 12YTY+12DS2yTyYTY\displaystyle\frac{1}{2}Y^{T}Y+\frac{1}{2}\|D\otimes S\|^{2}y^{T}y-Y^{T}Y
=\displaystyle= 12(Y2DS2y2).\displaystyle-\frac{1}{2}(\|Y\|^{2}-\|D\otimes S\|^{2}\|y\|^{2}).

Further calculation shows that

Yi2=\displaystyle\|Y_{i}\|^{2}= c1yi+c2siga(yi)+c3sigb(yi))2\displaystyle\|c_{1}y_{i}+c_{2}\mbox{sig}^{a}(y_{i})+c_{3}\mbox{sig}^{b}(y_{i}))\|^{2}
\displaystyle\geq c12yi2+c22siga(yi)2+c32sigb(yi)2\displaystyle c_{1}^{2}\|y_{i}\|^{2}+c_{2}^{2}\|\mbox{sig}^{a}(y_{i})\|^{2}+c_{3}^{2}\|\mbox{sig}^{b}(y_{i})\|^{2}
\displaystyle\geq c12yi2+c22yi2a1+c32yi2b1.\displaystyle c_{1}^{2}\|y_{i}\|^{2}+c_{2}^{2}\|y_{i}^{2a}\|_{1}+c_{3}^{2}\|y_{i}^{2b}\|_{1}.

By Lemma II.1, for 0<a<10<a<1 and b>1b>1,

i=1Nyi2a1(i=1Nyi21)a=(y2)a,\displaystyle\sum_{i=1}^{N}\|y_{i}^{2a}\|_{1}\geq(\sum_{i=1}^{N}\|y_{i}^{2}\|_{1})^{a}=(\|y\|^{2})^{a},
i=1Nyi2b11(nN)b1(y2)b.\displaystyle\sum_{i=1}^{N}\|y_{i}^{2b}\|_{1}\geq\frac{1}{(nN)^{b-1}}(\|y\|^{2})^{b}.

As a result,

Y2=\displaystyle\|Y\|^{2}= i=1NYi2c12y2+c22(y2)a+c32(nN)b1(y2)b\displaystyle\sum_{i=1}^{N}\|Y_{i}\|^{2}\geq c_{1}^{2}\|y\|^{2}+c_{2}^{2}(\|y\|^{2})^{a}+\frac{c_{3}^{2}}{(nN)^{b-1}}(\|y\|^{2})^{b}

and hence

V˙(y)\displaystyle\dot{V}(y)\leq 12(c12DS2)y2c222(y2)a\displaystyle-\frac{1}{2}(c_{1}^{2}-\|D\otimes S\|^{2})\|y\|^{2}-\frac{c_{2}^{2}}{2}(\|y\|^{2})^{a}
c322(nN)b1(y2)b\displaystyle-\frac{c_{3}^{2}}{2(nN)^{b-1}}(\|y\|^{2})^{b}
\displaystyle\leq c^1(y2+(y2)a+(y2)b)\displaystyle-\hat{c}_{1}\left(\|y\|^{2}+(\|y\|^{2})^{a}+(\|y\|^{2})^{b}\right) (10)

for

c^1=min{12(c12DS2),c222,c322(nN)b1}>0.\displaystyle\hat{c}_{1}=\min\left\{\frac{1}{2}(c_{1}^{2}-\|D\otimes S\|^{2}),\frac{c_{2}^{2}}{2},\frac{c_{3}^{2}}{2(nN)^{b-1}}\right\}>0.

Analysis on (9) using Lemma II.1 and noting 0<2a1+a<10<\frac{2a}{1+a}<1 and a(1+b)1+a>1\frac{a(1+b)}{1+a}>1 gives

V2a1+a\displaystyle V^{\frac{2a}{1+a}}\leq i=1N((c1di2)2a1+ayi4a1+a1+(c2di1+a)2a1+ayi2a1\displaystyle\sum_{i=1}^{N}\Big{(}(\frac{c_{1}d_{i}}{2})^{\frac{2a}{1+a}}\|y_{i}^{\frac{4a}{1+a}}\|_{1}+(\frac{c_{2}d_{i}}{1+a})^{\frac{2a}{1+a}}\|y_{i}^{2a}\|_{1}
+(c3di1+b)2a1+ayi2a(1+b)1+a1)\displaystyle+(\frac{c_{3}d_{i}}{1+b})^{\frac{2a}{1+a}}\|y_{i}^{\frac{2a(1+b)}{1+a}}\|_{1}\Big{)}
\displaystyle\leq c^2((y2)2a1+a+(y2)a+(y2)a(1+b)1+a)\displaystyle\hat{c}_{2}\left((\|y\|^{2})^{\frac{2a}{1+a}}+(\|y\|^{2})^{a}+(\|y\|^{2})^{\frac{a(1+b)}{1+a}}\right)

for dmax=max{d1,,dN}d_{\max}=\max\{d_{1},\cdots,d_{N}\} and

c^2=\displaystyle\hat{c}_{2}= max{(c1dmax2)2a1+a(nN)12a1+a,\displaystyle\max\Big{\{}(\frac{c_{1}d_{\max}}{2})^{\frac{2a}{1+a}}(nN)^{1-\frac{2a}{1+a}},
(c2dmax1+a)2a1+a(nN)1a,(c3dmax1+b)2a1+a}.\displaystyle(\frac{c_{2}d_{\max}}{1+a})^{\frac{2a}{1+a}}(nN)^{1-a},(\frac{c_{3}d_{\max}}{1+b})^{\frac{2a}{1+a}}\Big{\}}.

Since a<2a1+a<1a<\frac{2a}{1+a}<1 and a<a(1+b)1+a<ba<\frac{a(1+b)}{1+a}<b, we can easily verify

(y2)2a1+a\displaystyle(\|y\|^{2})^{\frac{2a}{1+a}}\leq y2+(y2)a\displaystyle\|y\|^{2}+(\|y\|^{2})^{a}
(y2)a(1+b)1+a\displaystyle(\|y\|^{2})^{\frac{a(1+b)}{1+a}}\leq (y2)a+(y2)b\displaystyle(\|y\|^{2})^{a}+(\|y\|^{2})^{b}

and hence

V2a1+a\displaystyle V^{\frac{2a}{1+a}}\leq c^2(y2+3(y2)a+(y2)b).\displaystyle\hat{c}_{2}\left(\|y\|^{2}+3(\|y\|^{2})^{a}+(\|y\|^{2})^{b}\right). (11)

Similarly, for b>1b>1, 2b1+b>1\frac{2b}{1+b}>1 and b(1+a)1+b>1\frac{b(1+a)}{1+b}>1,

V2b1+b\displaystyle V^{\frac{2b}{1+b}} c^3((y2)2b1+b+(y2)b(1+a)1+b+(y2)b)\displaystyle\leq\hat{c}_{3}\left((\|y\|^{2})^{\frac{2b}{1+b}}+(\|y\|^{2})^{\frac{b(1+a)}{1+b}}+(\|y\|^{2})^{b}\right)

for

c^3=\displaystyle\hat{c}_{3}= max{(c1dmax2)2b1+b,(c2dmax1+a)2bb+1,(c3dmax1+b)2bb+1}\displaystyle\max\left\{(\frac{c_{1}d_{\max}}{2})^{\frac{2b}{1+b}},~{}(\frac{c_{2}d_{\max}}{1+a})^{\frac{2b}{b+1}},(\frac{c_{3}d_{\max}}{1+b})^{\frac{2b}{b+1}}\right\}
×(3nN)b1b+1.\displaystyle\times(3nN)^{\frac{b-1}{b+1}}.

Since 1<2b1+b<b1<\frac{2b}{1+b}<b and a<b(1+a)1+b<ba<\frac{b(1+a)}{1+b}<b, we can easily verify

(y2)2b1+b\displaystyle(\|y\|^{2})^{\frac{2b}{1+b}}\leq y2+(y2)b\displaystyle\|y\|^{2}+(\|y\|^{2})^{b}
(y2)b(1+a)1+b\displaystyle(\|y\|^{2})^{\frac{b(1+a)}{1+b}}\leq (y2)a+(y2)b\displaystyle(\|y\|^{2})^{a}+(\|y\|^{2})^{b}

and hence

V2b1+b\displaystyle V^{\frac{2b}{1+b}}\leq c^3(y2+(y2)a+3(y2)b)\displaystyle\hat{c}_{3}\left(\|y\|^{2}+(\|y\|^{2})^{a}+3(\|y\|^{2})^{b}\right) (12)

Finally, by (11) and (12), one has

1c^2V2a1+a+1c^3V2b1+b4(y2+(y2)a+(y2)b),\displaystyle\frac{1}{\hat{c}_{2}}V^{\frac{2a}{1+a}}+\frac{1}{\hat{c}_{3}}V^{\frac{2b}{1+b}}\leq 4\left(\|y\|^{2}+(\|y\|^{2})^{a}+(\|y\|^{2})^{b}\right),

which, compared with (10), implies

V˙c^14c^2V2a1+ac^14c^3V2b1+b.\displaystyle\dot{V}\leq-\frac{\hat{c}_{1}}{4\hat{c}_{2}}V^{\frac{2a}{1+a}}-\frac{\hat{c}_{1}}{4\hat{c}_{3}}V^{\frac{2b}{1+b}}.

By Lemma II.4, the system (8) is fixed-time stable. In particular, there exists a constant

T14c^2(a+1)c^1(1a)+4c^3(b+1)c^1(b1),\displaystyle T_{1}^{*}\leq\frac{4\hat{c}_{2}(a+1)}{\hat{c}_{1}(1-a)}+\frac{4\hat{c}_{3}(b+1)}{\hat{c}_{1}(b-1)},

such that limtT1y(t)=0\lim_{t\rightarrow T_{1}^{*}}y(t)=0 and y(t)=0y(t)=0, tT1t\geq T_{1}^{*}. Under Assumption II.1, we have η¯=(H1In)y\bar{\eta}=(H^{-1}\otimes I_{n})y and hence (6). The proof is thus completed. \Box

Remark III.1

When c3=0c_{3}=0, the observer (III) reduces to a finite-time observer

η˙i\displaystyle\dot{\eta}_{i} =Sηic1yic2siga(yi),\displaystyle=S\eta_{i}-c_{1}y_{i}-c_{2}\mbox{sig}^{a}(y_{i}),
yi\displaystyle y_{i} =j=0Naij(ηiηj),i=1,,N.\displaystyle=\sum_{j=0}^{N}a_{ij}(\eta_{i}-\eta_{j}),\;i=1,\cdots,N. (13)

Consider the system composed of (2) and (III.1) under Assumption II.1 with 0<a<10<a<1, c1>DSc_{1}>\|D\otimes S\| and c2>0c_{2}>0. There exists a settling-time function T1(η(0))0T_{1}(\eta(0))\geq 0 such that, η(0)(N+1)n\forall\eta(0)\in\mathbb{R}^{(N+1)n},

limtT1(ηi(t)η0(t))=0,i=1,,N\displaystyle\lim_{t\rightarrow T_{1}}(\eta_{i}(t)-\eta_{0}(t))=0,\;i=1,\cdots,N
ηi(t)η0(t)=0,tT1(η(0)).\displaystyle\eta_{i}(t)-\eta_{0}(t)=0,\;t\geq T_{1}(\eta(0)). (14)

The proof of the above statement follows that of Lemma III.1 using simple arguments. In particular, we can obtain

V˙c^13c^2V2a1+a.\displaystyle\dot{V}\leq-\frac{\hat{c}_{1}}{3\hat{c}_{2}}V^{\frac{2a}{1+a}}.

In other words, V˙+ϱV2a1+a\dot{V}+\varrho V^{\frac{2a}{1+a}} is negative definite for any ϱ<c^13c^2\varrho<\frac{\hat{c}_{1}}{3\hat{c}_{2}}. By Theorem 1 in [1], the system (8) is finite-time stable. In particular, there exists a finite settling-time function

T¯1(y(0))3c^2(a+1)V(y(0))12a1+ac^1(1a),\displaystyle\bar{T}_{1}(y(0))\leq\frac{3\hat{c}_{2}(a+1)V(y(0))^{1-\frac{2a}{1+a}}}{\hat{c}_{1}(1-a)},

such that limtT¯1(y(0))y(t)=0\lim_{t\rightarrow\bar{T}_{1}(y(0))}y(t)=0 and y(t)=0y(t)=0, t>T¯1(y(0))t>\bar{T}_{1}(y(0)), y(0)Nn\forall y(0)\in\mathbb{R}^{Nn}. Under Assumption II.1, we have η¯=(H1In)y\bar{\eta}=(H^{-1}\otimes I_{n})y and hence (14) for T1(η(0))=T¯1((HIn)η¯(0))T_{1}(\eta(0))=\bar{T}_{1}((H\otimes I_{n})\bar{\eta}(0)).

IV Robust Controller design

Based on the fixed-time observer (III), we further propose a distributed robust control law to solve the leader-following fixed-time synchronization problem for the multiple Euler-Lagrange systems. It is assumed the model (1) contains uncertainties and the terms Mi(qi)M_{i}(q_{i}), Ci(qi,q˙i)C_{i}(q_{i},\dot{q}_{i}), and Gi(qi)G_{i}(q_{i}) are not completely known, but they satisfy the following bounded conditions

km¯ImMi(qi)km¯Im,\displaystyle k_{\underline{m}}I_{m}\leq M_{i}(q_{i})\leq k_{\overline{m}}I_{m},
Ci(qi,q˙i)kcq˙i,Gi(qi)kg,qi,q˙im,\displaystyle\|C_{i}(q_{i},\dot{q}_{i})\|\leq k_{c}\|\dot{q}_{i}\|,\;\|G_{i}(q_{i})\|\leq k_{g},\;\forall q_{i},\dot{q}_{i}\in\mathbb{R}^{m}, (15)

for some positive constants km¯k_{\underline{m}}, km¯k_{\overline{m}}, kck_{c} and kgk_{g}. Throughout the section, we consider every individual agent i=1,,Ni=1,\cdots,N.

First, the equations in (1) can be rewritten as, with vi=q˙iv_{i}=\dot{q}_{i},

q˙i=vi,v˙i=Mi1(qi)(τiCi(qi,vi)viGi(qi)),\displaystyle\dot{q}_{i}=v_{i},~{}\dot{v}_{i}=M_{i}^{-1}(q_{i})(\tau_{i}-C_{i}(q_{i},v_{i})v_{i}-G_{i}(q_{i})),

which is a second-order system in the presence parametric uncertainty, i.e., the terms Mi(qi)M_{i}(q_{i}), Ci(qi,vi)C_{i}(q_{i},v_{i}) and Gi(qi)G_{i}(q_{i}) are unknown for controller design. Therefore, the conventional fixed-time control laws for second-order systems cannot be directly applied. To introduce a new method, we perform the following transformation:

q¯i=qiEηi,v¯i=viEη˙i,τi=M^ui,M^=2Imkm¯1+km¯1.\displaystyle\bar{q}_{i}=q_{i}-E\eta_{i},\bar{v}_{i}=v_{i}-E\dot{\eta}_{i},\tau_{i}=\hat{M}u_{i},\;\hat{M}=\frac{2I_{m}}{k_{\underline{m}}^{-1}+k_{\overline{m}}^{-1}}.

Also, let ui=u1i+u2iu_{i}=u_{1i}+u_{2i} with u1iu_{1i} and u2iu_{2i} to be designed. As a result, the above equations become

q¯˙i=v¯i,v¯˙i=\displaystyle\dot{\bar{q}}_{i}=\bar{v}_{i},~{}\dot{\bar{v}}_{i}= Mi1(qi)τi+Fi(qi,vi)Eη¨i\displaystyle M_{i}^{-1}(q_{i})\tau_{i}+F_{i}(q_{i},v_{i})-E\ddot{\eta}_{i}
=\displaystyle= u1i+u2i+(Mi1(qi)M^Im)(u1i+u2i)\displaystyle u_{1i}+u_{2i}+(M_{i}^{-1}(q_{i})\hat{M}-I_{m})(u_{1i}+u_{2i})
+Fi(qi,vi)Eη¨i\displaystyle+F_{i}(q_{i},v_{i})-E\ddot{\eta}_{i}

where Fi(qi,vi)=Mi1(qi)(Ci(qi,vi)vi+Gi(qi))F_{i}(q_{i},v_{i})=-M_{i}^{-1}(q_{i})(C_{i}(q_{i},v_{i})v_{i}+G_{i}(q_{i})). Moreover, it can be put in a compact form

q¯˙i=v¯i,v¯˙i=u2iEη¨i+Zi\dot{\bar{q}}_{i}=\bar{v}_{i},~{}~{}\dot{\bar{v}}_{i}=u_{2i}-E\ddot{\eta}_{i}+Z_{i} (16)

with

Zi=u1i+(Mi1(qi)M^Im)(u1i+u2i)+Fi(qi,vi).\displaystyle Z_{i}=u_{1i}+(M_{i}^{-1}(q_{i})\hat{M}-I_{m})(u_{1i}+u_{2i})+F_{i}(q_{i},v_{i}). (17)

Inspired by [13], we construct a lemma that motivates the design of u1iu_{1i}.

Lemma IV.1

Consider the quantity ZiZ_{i} defined in (17) with the control law

u1i={κ1ϵζiζi(ϵu2i+fi(vi)),ζi00,ζi=0\displaystyle u_{1i}=\left\{\begin{array}[]{ll}-\frac{\kappa}{1-\epsilon}\frac{\zeta_{i}}{\|\zeta_{i}\|}(\epsilon\|u_{2i}\|+f_{i}(v_{i})),&\|\zeta_{i}\|\neq 0\\ 0,&\|\zeta_{i}\|=0\\ \end{array}\right. (20)
κ1,ϵ=km¯1km¯1km¯1+km¯1,fi(vi)=km¯1(kcvi2+kg),\displaystyle\kappa\geq 1,\;\epsilon=\frac{k_{\underline{m}}^{-1}-k_{\overline{m}}^{-1}}{k_{\underline{m}}^{-1}+k_{\overline{m}}^{-1}},\;f_{i}(v_{i})=k_{\underline{m}}^{-1}(k_{c}\|v_{i}\|^{2}+k_{g}), (21)

for an arbitrary ζim\zeta_{i}\in\mathbb{R}^{m}. Then, ζiTZi0\zeta_{i}^{T}Z_{i}\leq 0 holds for any u2imu_{2i}\in\mathbb{R}^{m}.

Proof: From the properties of Euler-Lagrange system, we have the following facts:

Mi1(qi)M^Im=\displaystyle\|M_{i}^{-1}(q_{i})\hat{M}-I_{m}\|= 2Mi1km¯1+km¯1Imϵ\displaystyle\|\frac{2M_{i}^{-1}}{k_{\underline{m}}^{-1}+k_{\overline{m}}^{-1}}-I_{m}\|\leq\epsilon
Fi(qi,vi)\displaystyle\|F_{i}(q_{i},v_{i})\|\leq km¯1(kcvi2+kg)=fi(vi),\displaystyle k_{\underline{m}}^{-1}(k_{c}\|v_{i}\|^{2}+k_{g})=f_{i}(v_{i}),

which will be used in the calculation below.

When ζi=0\|\zeta_{i}\|=0, ζiTZi(t)0\zeta_{i}^{T}Z_{i}(t)\leq 0 holds trivially. Otherwise, one has the following direct calculation

ζiTZi\displaystyle\zeta_{i}^{T}Z_{i}\leq ζiTu1i+ζi(Mi1(qi)M^Im(u1i+u2i)\displaystyle\zeta_{i}^{T}u_{1i}+\|\zeta_{i}\|(\|M_{i}^{-1}(q_{i})\hat{M}-I_{m}\|(\|u_{1i}\|+\|u_{2i}\|)
+Fi(qi,vi))\displaystyle+\|F_{i}(q_{i},v_{i})\|)
\displaystyle\leq ζiTu1i+ζi(ϵ(u1i+u2i)+fi(vi))\displaystyle\zeta_{i}^{T}u_{1i}+\|\zeta_{i}\|(\epsilon(\|u_{1i}\|+\|u_{2i}\|)+f_{i}(v_{i}))
\displaystyle\leq (κ1ϵ+1+ϵκ1ϵ)ζi(ϵu2i+fi(vi))\displaystyle(-\frac{\kappa}{1-\epsilon}+1+\frac{\epsilon\kappa}{1-\epsilon})\|\zeta_{i}\|(\epsilon\|u_{2i}\|+f_{i}(v_{i}))
=\displaystyle= (κ1)ζi(ϵu2i+fi(vi))0,\displaystyle-(\kappa-1)\|\zeta_{i}\|(\epsilon\|u_{2i}\|+f_{i}(v_{i}))\leq 0,

which completes the proof. \Box

Remark IV.1

As the system dynamics considered in this paper contain uncertainties, a robust control approach is used in the design of u1iu_{1i}. In particular, to guarantee ζiTZi(t)0\zeta_{i}^{T}Z_{i}(t)\leq 0, which will be used later for proof of convergence, u1iu_{1i} is designed based on the boundaries of the uncertainties characterized by (15) via high gain domination. It is worth noting that the control gains in u1iu_{1i} become higher if kck_{c} and kgk_{g} are larger and/or ϵ\epsilon is closer to 1 (corresponding to a bigger difference between km¯k_{\underline{m}} and km¯k_{\overline{m}}), i.e., the size of uncertainties is larger. It is a general principle in robust control that control gains depend on the size of uncertainties. In practice, when system parameters cannot be precisely measured, a smaller range of uncertainties would be beneficial for controller design.

With Lemma IV.1 ready for u1iu_{1i}, the remaining task is to select a specific ζi\zeta_{i} and design u2iu_{2i} such that the second-order system (16) is fixed-time stable, which is more complicated than finite-time control; see some existing methods in [5, 6],[21]. For solving such problem, we first introduce an explicit procedure of designing a set of parameters to be used for the controller design. It is worth noting that these parameters are independent of system dynamics. Let 12<α<1\frac{1}{2}<\alpha<1 and β>1\beta>1 be two specified rational numbers of ratio of two odd integers. Define four constants

p1=0,p2=βα,p3=βαβ+α1,p4=βα1\displaystyle p_{1}=0,\;p_{2}=\beta-\alpha,\;p_{3}={\frac{\beta}{\alpha}-\beta+\alpha-1},\;p_{4}={\frac{\beta}{\alpha}-1}

and four functions, for p0p\geq 0 and λ>0\lambda>0,

l1(p)\displaystyle l_{1}(p) =21αpp+1+α+p+αp+α+1,l2(p)=p+βp+β+1,\displaystyle=\frac{2^{1-\alpha}p}{p+1+\alpha}+\frac{p+\alpha}{p+\alpha+1},~{}l_{2}(p)=\frac{p+\beta}{p+\beta+1},
l3(p,λ)\displaystyle l_{3}(p,\lambda) =21α(1+α)p+1+αλp+α+11+α+(λγ1)p+α+1p+α+1,\displaystyle=\frac{2^{1-\alpha}(1+\alpha)}{p+1+\alpha}\lambda^{\frac{p+\alpha+1}{1+\alpha}}+\frac{(\lambda\gamma_{1})^{p+\alpha+1}}{p+\alpha+1},
l4(p,λ)\displaystyle l_{4}(p,\lambda) =(λγ2)p+β+1p+β+1.\displaystyle=\frac{(\lambda\gamma_{2})^{p+\beta+1}}{p+\beta+1}.

For the convenience of presentation, we also define

1(p)\displaystyle\ell_{1}(p) =(2α)21αl1(p),2(p)=(2α)21αl2(p),\displaystyle=(2-\alpha)2^{1-\alpha}l_{1}(p),~{}\ell_{2}(p)=(2-\alpha)2^{1-\alpha}l_{2}(p),
3(p,λ)\displaystyle\ell_{3}(p,\lambda) =(2α)21αl3(p,λ),4(p,λ)=(2α)21αl4(p,λ).\displaystyle=(2-\alpha)2^{1-\alpha}l_{3}(p,\lambda),~{}\ell_{4}(p,\lambda)=(2-\alpha)2^{1-\alpha}l_{4}(p,\lambda).

Next, pick L1=max{2(p2),1(p3)}L_{1}=\max\{\ell_{2}(p_{2}),\ell_{1}(p_{3})\} and two positive parameters

γ1>\displaystyle\gamma_{1}> max{21α1+α+1(p1)+2L1,21αβαβα+α+2(p3)+1(p4)}\displaystyle\max\Big{\{}\frac{2^{1-\alpha}}{1+\alpha}+\ell_{1}(p_{1})+2L_{1},\frac{2^{1-\alpha}\frac{\beta}{\alpha}}{\frac{\beta}{\alpha}+\alpha}+\ell_{2}(p_{3})+\ell_{1}(p_{4})\Big{\}}
γ2>\displaystyle\gamma_{2}> max{2(p4)+2L1,2(p1)+1(p2)}.\displaystyle\max\left\{\ell_{2}(p_{4})+2L_{1},\ell_{2}(p_{1})+\ell_{1}(p_{2})\right\}. (22)

Now, it is ready to select

λ1=γ11α,λ2=γ11α1γ2βα,λ3=γ1γ21α1,λ4=γ21αβα.\displaystyle\lambda_{1}=\gamma_{1}^{\frac{1}{\alpha}},\;\lambda_{2}=\gamma_{1}^{\frac{1}{\alpha}-1}\frac{\gamma_{2}\beta}{\alpha},\;\lambda_{3}=\gamma_{1}\gamma_{2}^{\frac{1}{\alpha}-1},\;\lambda_{4}=\gamma_{2}^{\frac{1}{\alpha}}\frac{\beta}{\alpha}.

Then, pick

L2=\displaystyle L_{2}= max{21ααβα+α+4(p3,λ3)+3(p4,λ4),\displaystyle\max\Big{\{}\frac{2^{1-\alpha}\alpha}{\frac{\beta}{\alpha}+\alpha}+\ell_{4}(p_{3},\lambda_{3})+\ell_{3}(p_{4},\lambda_{4}),
4(p1,λ1)+3(p2,λ2),4(p2,λ2),3(p3,λ3)}.\displaystyle\ell_{4}(p_{1},\lambda_{1})+\ell_{3}(p_{2},\lambda_{2}),\ell_{4}(p_{2},\lambda_{2}),\ell_{3}(p_{3},\lambda_{3})\Big{\}}.

Finally, we select the following two parameters

k1>21ααα+1+3(p1,λ1)+4L2,k2>4(p4,λ4)+4L2.\displaystyle k_{1}>\frac{2^{1-\alpha}\alpha}{\alpha+1}+\ell_{3}(p_{1},\lambda_{1})+4L_{2},\;k_{2}>\ell_{4}(p_{4},\lambda_{4})+4L_{2}. (23)

With these parameters obtained, it is ready to have the following lemma.

Lemma IV.2

Consider the system (16) where u1iu_{1i} is given in (21) with

ζi=εi2α\displaystyle\zeta_{i}=\varepsilon_{i}^{2-\alpha} (24)

and

u2i\displaystyle u_{2i} =k1εi2α1k2εiβα+β+α2+ESSηi,\displaystyle=-k_{1}\varepsilon_{i}^{2\alpha-1}-k_{2}\varepsilon_{i}^{\frac{\beta}{\alpha}+\beta+\alpha-2}+ESS\eta_{i},
εi\displaystyle\varepsilon_{i} =v¯i1α+(γ1q¯iα+γ2q¯iβ)1α.\displaystyle=\bar{v}_{i}^{\frac{1}{\alpha}}+(\gamma_{1}\bar{q}_{i}^{\alpha}+\gamma_{2}\bar{q}_{i}^{\beta})^{\frac{1}{\alpha}}. (25)

Suppose the observer governing ηi\eta_{i} satisfies Lemma III.1. If the control parameters γ1,γ2,k1,k2\gamma_{1},\gamma_{2},k_{1},k_{2} satisfy (22) and (23), then the equilibrium of (16) at the origin is fixed-time stable. In particular, there exists a constant settling-time T20T_{2}^{*}\geq 0 such that

limtT1+T2[q¯i(t),v¯i(t)]=0,\displaystyle\lim_{t\rightarrow T_{1}^{*}+T^{*}_{2}}[\bar{q}_{i}(t),\bar{v}_{i}(t)]=0,
[q¯i(t),v¯i(t)]=0,tT1+T2,q¯i(T1),v¯i(T1)m.\displaystyle[\bar{q}_{i}(t),\bar{v}_{i}(t)]=0,\;t\geq T_{1}^{*}+T^{*}_{2},\;\forall\bar{q}_{i}(T^{*}_{1}),\bar{v}_{i}(T^{*}_{1})\in\mathbb{R}^{m}. (26)

Proof: For the convenience of proof, we define the following variables

ε¯i\displaystyle\bar{\varepsilon}_{i} =εi2α1,ε^i=εiβα+β+α2\displaystyle=\varepsilon_{i}^{2\alpha-1},~{}~{}\hat{\varepsilon}_{i}=\varepsilon_{i}^{\frac{\beta}{\alpha}+\beta+\alpha-2}
v^i\displaystyle\hat{v}_{i}^{*} =γ1q¯iαγ2q¯iβ,εi=v¯i1αv^i1α\displaystyle=-\gamma_{1}\bar{q}_{i}^{\alpha}-\gamma_{2}\bar{q}_{i}^{\beta},~{}~{}\varepsilon_{i}=\bar{v}_{i}^{\frac{1}{\alpha}}-\hat{v}_{i}^{*\frac{1}{\alpha}}

Let

W1i(q¯i)=12q¯i2+1β/α+1q¯iβα+11.\displaystyle W_{1i}(\bar{q}_{i})=\frac{1}{2}\|\bar{q}_{i}\|^{2}+\frac{1}{\beta/\alpha+1}\|\bar{q}_{i}^{\frac{\beta}{\alpha}+1}\|_{1}.

Along the trajectory of q¯i\bar{q}_{i}-th subsystem in (16), the derivative of W1i(q¯i)W_{1i}(\bar{q}_{i}) satisfies

W˙1i(q¯i)=\displaystyle\dot{W}_{1i}(\bar{q}_{i})= (q¯i+q¯iβα)Tv¯i=(q¯i+q¯iβα)T(v¯iv^i+v^i)\displaystyle(\bar{q}_{i}+\bar{q}_{i}^{\frac{\beta}{\alpha}})^{T}\bar{v}_{i}=(\bar{q}_{i}+\bar{q}_{i}^{\frac{\beta}{\alpha}})^{T}(\bar{v}_{i}-\hat{v}_{i}^{*}+\hat{v}_{i}^{*})
=\displaystyle= (q¯i+q¯iβα)T(v¯iv^i)(q¯i+q¯iβα)T(γ1q¯iα+γ2q¯iβ).\displaystyle(\bar{q}_{i}+\bar{q}_{i}^{\frac{\beta}{\alpha}})^{T}(\bar{v}_{i}-\hat{v}_{i}^{*})-(\bar{q}_{i}+\bar{q}_{i}^{\frac{\beta}{\alpha}})^{T}(\gamma_{1}\bar{q}_{i}^{\alpha}+\gamma_{2}\bar{q}_{i}^{\beta}).

By Lemma II.2, for 0<α<10<\alpha<1, one has

|v¯iv^i|=|(v¯i1α)α(v^i1α)α|\displaystyle|\bar{v}_{i}-\hat{v}_{i}^{*}|=|(\bar{v}_{i}^{\frac{1}{\alpha}})^{\alpha}-(\hat{v}_{i}^{*\frac{1}{\alpha}})^{\alpha}|
\displaystyle\leq 21α|v¯i1αv^i1α|α=21α|εi|α.\displaystyle 2^{1-\alpha}|\bar{v}_{i}^{\frac{1}{\alpha}}-\hat{v}_{i}^{*\frac{1}{\alpha}}|^{\alpha}=2^{1-\alpha}|\varepsilon_{i}|^{\alpha}. (27)

And, by Lemma II.3,

(q¯i+q¯iβα)T(v¯iv^i)21α|q¯i|T|εi|α+21α|q¯iβα|T|εi|α\displaystyle(\bar{q}_{i}+\bar{q}_{i}^{\frac{\beta}{\alpha}})^{T}(\bar{v}_{i}-\hat{v}_{i}^{*})\leq 2^{1-\alpha}|\bar{q}_{i}|^{T}|\varepsilon_{i}|^{\alpha}+2^{1-\alpha}|\bar{q}_{i}^{\frac{\beta}{\alpha}}|^{T}|\varepsilon_{i}|^{\alpha}
\displaystyle\leq 21α(11+αq¯iα+11+α1+αεiα+11)\displaystyle 2^{1-\alpha}(\frac{1}{1+\alpha}\|\bar{q}_{i}^{\alpha+1}\|_{1}+\frac{\alpha}{1+\alpha}\|\varepsilon_{i}^{\alpha+1}\|_{1})
+21α(βαβα+αq¯iβα+α1+αβα+αεiβα+α1).\displaystyle+2^{1-\alpha}(\frac{\frac{\beta}{\alpha}}{\frac{\beta}{\alpha}+\alpha}\|\bar{q}_{i}^{\frac{\beta}{\alpha}+\alpha}\|_{1}+\frac{\alpha}{\frac{\beta}{\alpha}+\alpha}\|\varepsilon_{i}^{\frac{\beta}{\alpha}+\alpha}\|_{1}). (28)

Using (27) and (28), one has

W˙1i(q¯i)\displaystyle\dot{W}_{1i}(\bar{q}_{i})\leq (γ121α1+α)q¯iα+11γ2q¯iβ+11\displaystyle-(\gamma_{1}-\frac{2^{1-\alpha}}{1+\alpha})\|\bar{q}_{i}^{\alpha+1}\|_{1}-\gamma_{2}\|\bar{q}_{i}^{\beta+1}\|_{1}
(γ121αβαβα+α)q¯iβα+α1γ2q¯iβα+β1\displaystyle-(\gamma_{1}-\frac{2^{1-\alpha}\frac{\beta}{\alpha}}{\frac{\beta}{\alpha}+\alpha})\|\bar{q}_{i}^{\frac{\beta}{\alpha}+\alpha}\|_{1}-\gamma_{2}\|\bar{q}_{i}^{\frac{\beta}{\alpha}+\beta}\|_{1}
+21ααα+1εiα+11+21ααβα+αεiβα+α1.\displaystyle+\frac{2^{1-\alpha}\alpha}{\alpha+1}\|\varepsilon_{i}^{\alpha+1}\|_{1}+\frac{2^{1-\alpha}\alpha}{\frac{\beta}{\alpha}+\alpha}\|\varepsilon_{i}^{\frac{\beta}{\alpha}+\alpha}\|_{1}. (29)

Next, we define a vector function

d(q¯i,v¯i)=v^iv¯i(s1αv^i1α)2α𝑑s.\displaystyle d(\bar{q}_{i},\bar{v}_{i})=\int_{\hat{v}_{i}^{*}}^{\bar{v}_{i}}(s^{\frac{1}{\alpha}}-\hat{v}_{i}^{*\frac{1}{\alpha}})^{2-\alpha}ds.

and hence

W2i(q¯i,v¯i)=d(q¯i,v¯i)1.\displaystyle W_{2i}(\bar{q}_{i},\bar{v}_{i})=\|d(\bar{q}_{i},\bar{v}_{i})\|_{1}.

Before the analysis on its derivative, we give the following calculation in order:

v^iv¯i(s1αv^i1α)1α𝑑sdiag(|v¯iv^i|)|εi|1α,\displaystyle\int_{\hat{v}_{i}^{*}}^{\bar{v}_{i}}(s^{\frac{1}{\alpha}}-\hat{v}_{i}^{*\frac{1}{\alpha}})^{1-\alpha}ds\leq\mbox{diag}(|\bar{v}_{i}-\hat{v}_{i}^{*}|)|\varepsilon_{i}|^{1-\alpha},
|v¯i|Tdiag(|v¯iv^i|)|εi|1α21α|v¯i|T|εi|.\displaystyle|\bar{v}_{i}|^{T}\mbox{diag}(|\bar{v}_{i}-\hat{v}_{i}^{*}|)|\varepsilon_{i}|^{1-\alpha}\leq 2^{1-\alpha}|\bar{v}_{i}|^{T}|\varepsilon_{i}|. (30)

Then, the derivative of W2i(q¯i,v¯i)W_{2i}(\bar{q}_{i},\bar{v}_{i}) along the trajectory of (16) satisfies, using (30),

W˙2i(q¯i,v¯i)\displaystyle\dot{W}_{2i}(\bar{q}_{i},\bar{v}_{i})
=\displaystyle= (2α)q¯˙iTv¯i1αq¯iv^iv¯i(s1αv^i1α)1α𝑑s+(εi2α)Tv¯˙i\displaystyle(2-\alpha)\dot{\bar{q}}_{i}^{T}\frac{-\partial\bar{v}_{i}^{*\frac{1}{\alpha}}}{\partial\bar{q}_{i}}\int_{\hat{v}_{i}^{*}}^{\bar{v}_{i}}(s^{\frac{1}{\alpha}}-\hat{v}_{i}^{*\frac{1}{\alpha}})^{1-\alpha}ds+(\varepsilon_{i}^{2-\alpha})^{T}\dot{\bar{v}}_{i}
\displaystyle\leq A1+A2\displaystyle A_{1}+A_{2} (31)

for

A1=(2α)21α|v¯i|T|(v^i1α)q¯i||εi|\displaystyle A_{1}=(2-\alpha)2^{1-\alpha}|\bar{v}_{i}|^{T}\left|\frac{\partial(\hat{v}_{i}^{*\frac{1}{\alpha}})}{\partial\bar{q}_{i}}\right||\varepsilon_{i}|
A2=(εi2α)T(u2iEη¨i+Zi).\displaystyle A_{2}=(\varepsilon_{i}^{2-\alpha})^{T}(u_{2i}-E\ddot{\eta}_{i}+Z_{i}).

By Lemma II.1, we can obtain

|(v^i1α)q¯i|\displaystyle\left|\frac{\partial(\hat{v}_{i}^{*\frac{1}{\alpha}})}{\partial\bar{q}_{i}}\right|
=\displaystyle= |diag((γ1q¯iα+γ2q¯iβ)1α1)diag(γ1q¯iα1+γ2βαq¯iβ1)|\displaystyle\left|\mbox{diag}((\gamma_{1}\bar{q}_{i}^{\alpha}+\gamma_{2}\bar{q}_{i}^{\beta})^{\frac{1}{\alpha}-1})\mbox{diag}(\gamma_{1}\bar{q}_{i}^{\alpha-1}+\frac{\gamma_{2}\beta}{\alpha}\bar{q}_{i}^{\beta-1})\right|
\displaystyle\leq γ11αIm+γ11α1γ2βαdiag(|q¯iβα|)\displaystyle\gamma_{1}^{\frac{1}{\alpha}}I_{m}+\gamma_{1}^{\frac{1}{\alpha}-1}\frac{\gamma_{2}\beta}{\alpha}\mbox{diag}(|\bar{q}_{i}^{\beta-\alpha}|)
+γ1γ21α1diag(|q¯iβαβ+α1|)+γ21αβαdiag(|q¯iβα1|)\displaystyle+\gamma_{1}\gamma_{2}^{\frac{1}{\alpha}-1}\mbox{diag}(|\bar{q}_{i}^{\frac{\beta}{\alpha}-\beta+\alpha-1}|)+\gamma_{2}^{\frac{1}{\alpha}}\frac{\beta}{\alpha}\mbox{diag}(|\bar{q}_{i}^{\frac{\beta}{\alpha}-1}|)

that implies A1(2α)21αj=14λj|v¯i|Tdiag(|q¯ipj|)|εi|.A_{1}\leq(2-\alpha)2^{1-\alpha}\sum_{j=1}^{4}\lambda_{j}|\bar{v}_{i}|^{T}\mbox{diag}(|\bar{q}_{i}^{p_{j}}|)|\varepsilon_{i}|.

To simplify the presentation, we introduce the following operator

x,yq:=xq¯iy1,x,yε:=xεiy1.\displaystyle\langle x,y\rangle_{q}:=x\|\bar{q}_{i}^{y}\|_{1},\;\langle x,y\rangle_{\varepsilon}:=x\|\varepsilon_{i}^{y}\|_{1}.

Then, using Lemma II.3 and a similar argument as (27) gives

λ|v¯i|Tdiag(|q¯ip|)|εi|\displaystyle\lambda|\bar{v}_{i}|^{T}\mbox{diag}(|\bar{q}_{i}^{p}|)|\varepsilon_{i}|
\displaystyle\leq λ|v¯iv^i|Tdiag(|q¯ip|)|εi|+λ|v^i|Tdiag(|q¯ip|)|εi|\displaystyle\lambda|\bar{v}_{i}-\hat{v}^{*}_{i}|^{T}\mbox{diag}(|\bar{q}_{i}^{p}|)|\varepsilon_{i}|+\lambda|\hat{v}^{*}_{i}|^{T}\mbox{diag}(|\bar{q}_{i}^{p}|)|\varepsilon_{i}|
\displaystyle\leq λ21α|εiα+1|T|q¯i|p+λ|γ1q¯iα+γ2q¯iβ|diag(|q¯ip|)|εi|\displaystyle\lambda 2^{1-\alpha}|\varepsilon_{i}^{\alpha+1}|^{T}|\bar{q}_{i}|^{p}+\lambda|\gamma_{1}\bar{q}_{i}^{\alpha}+\gamma_{2}\bar{q}_{i}^{\beta}|\mbox{diag}(|\bar{q}_{i}^{p}|)|\varepsilon_{i}|
\displaystyle\leq λ21α|εiα+1|T|q¯i|p+λγ1|εi|T|q¯ip+α|+λγ2|εi|T|q¯ip+β|\displaystyle\lambda 2^{1-\alpha}|\varepsilon_{i}^{\alpha+1}|^{T}|\bar{q}_{i}|^{p}+\lambda\gamma_{1}|\varepsilon_{i}|^{T}|\bar{q}_{i}^{p+\alpha}|+\lambda\gamma_{2}|\varepsilon_{i}|^{T}|\bar{q}_{i}^{p+\beta}|
\displaystyle\leq l1(p),p+α+1q+l2(p),p+β+1q\displaystyle\langle l_{1}(p),p+\alpha+1\rangle_{q}+\langle l_{2}(p),p+\beta+1\rangle_{q}
+l3(p,λ),p+α+1ε+l4(p,λ),p+β+1ε\displaystyle+\langle l_{3}(p,\lambda),p+\alpha+1\rangle_{\varepsilon}+\langle l_{4}(p,\lambda),p+\beta+1\rangle_{\varepsilon}

and hence

A1\displaystyle A_{1}\leq j=141(pj),pj+α+1q+2(pj),pj+β+1q+\displaystyle\sum_{j=1}^{4}\langle\ell_{1}(p_{j}),p_{j}+\alpha+1\rangle_{q}+\langle\ell_{2}(p_{j}),p_{j}+\beta+1\rangle_{q}+
3(pj,λj),pj+α+1ε+4(pj,λj),pj+β+1ε.\displaystyle\langle\ell_{3}(p_{j},\lambda_{j}),p_{j}+\alpha+1\rangle_{\varepsilon}+\langle\ell_{4}(p_{j},\lambda_{j}),p_{j}+\beta+1\rangle_{\varepsilon}. (32)

By Lemma III.1, yi(t)=0y_{i}(t)=0 and hence SSηiη¨i=0SS\eta_{i}-\ddot{\eta}_{i}=0 for tT1t\geq T_{1}^{*}. By Lemma IV.1, one has ζiTZi0\zeta_{i}^{T}Z_{i}\leq 0. Since |εjiα+1|=εjiα+1|\varepsilon_{ji}^{\alpha+1}|=\varepsilon_{ji}^{\alpha+1} and |εjiβα+β|=εjiβα+β|\varepsilon_{ji}^{\frac{\beta}{\alpha}+\beta}|=\varepsilon_{ji}^{\frac{\beta}{\alpha}+\beta}, j=1,,mj=1,\cdots,m, for α\alpha and β\beta being two rational numbers of ratio of two odd integers and εji\varepsilon_{ji} being the jj-th entry of εi\varepsilon_{i},

(εi2α)Tεi2α1\displaystyle(\varepsilon_{i}^{2-\alpha})^{T}\varepsilon_{i}^{2\alpha-1} =j=1mεjiα+1=j=1m|εjiα+1|=εiα+11,\displaystyle=\sum_{j=1}^{m}\varepsilon_{ji}^{\alpha+1}=\sum_{j=1}^{m}|\varepsilon_{ji}^{\alpha+1}|=\|\varepsilon_{i}^{\alpha+1}\|_{1},
(εi2α)Tεiβα+β+α2\displaystyle(\varepsilon_{i}^{2-\alpha})^{T}\varepsilon_{i}^{\frac{\beta}{\alpha}+\beta+\alpha-2} =εiβα+β1.\displaystyle=\|\varepsilon_{i}^{\frac{\beta}{\alpha}+\beta}\|_{1}.

Thus,

A2=\displaystyle A_{2}= (εi2α)T(k1εi2α1k2εiβα+β+α2)\displaystyle(\varepsilon_{i}^{2-\alpha})^{T}(-k_{1}\varepsilon_{i}^{2\alpha-1}-k_{2}\varepsilon_{i}^{\frac{\beta}{\alpha}+\beta+\alpha-2})
+(εi2α)T(ESSηiEη¨i)+ζiTZi\displaystyle+(\varepsilon_{i}^{2-\alpha})^{T}(ESS\eta_{i}-E\ddot{\eta}_{i})+\zeta_{i}^{T}Z_{i}
\displaystyle\leq k1εiα+11k2εiβα+β1.\displaystyle-k_{1}\|\varepsilon_{i}^{\alpha+1}\|_{1}-k_{2}\|\varepsilon_{i}^{\frac{\beta}{\alpha}+\beta}\|_{1}. (33)

Let

Wi(q¯i,v¯i)=W1i(q¯i)+W2i(q¯i,v¯i).\displaystyle W_{i}(\bar{q}_{i},\bar{v}_{i})=W_{1i}(\bar{q}_{i})+W_{2i}(\bar{q}_{i},\bar{v}_{i}).

Under the conditions for γ1\gamma_{1}, γ2\gamma_{2}, k1k_{1}, and k2k_{2}, there exist γ^>0\hat{\gamma}>0 and k^>0\hat{k}>0 satisfying

γ121α1+α1(p1)γ^+2L1,γ22(p4)γ^+2L1\displaystyle\gamma_{1}-\frac{2^{1-\alpha}}{1+\alpha}-\ell_{1}(p_{1})\geq\hat{\gamma}+2L_{1},\;\gamma_{2}-\ell_{2}(p_{4})\geq\hat{\gamma}+2L_{1}

and

k121ααα+13(p1,λ1)k^+4L2,k24(p4,λ4)k^+4L2.\displaystyle k_{1}-\frac{2^{1-\alpha}\alpha}{\alpha+1}-\ell_{3}(p_{1},\lambda_{1})\geq\hat{k}+4L_{2},\;k_{2}-\ell_{4}(p_{4},\lambda_{4})\geq\hat{k}+4L_{2}.

Then, combining (29), (31), (32), and (33) gives, for tT1t\geq T_{1}^{*},

W˙i(q¯i,v¯i)B1B2,\displaystyle\dot{W}_{i}(\bar{q}_{i},\bar{v}_{i})\leq-B_{1}-B_{2},

where

B1=\displaystyle B_{1}= γ^+2L1,α+1q+γ^+2L1,βα+βq\displaystyle\langle\hat{\gamma}+2L_{1},\alpha+1\rangle_{q}+\langle\hat{\gamma}+2L_{1},\frac{\beta}{\alpha}+\beta\rangle_{q}
L1,2βα+1qL1,βαβ+2αq\displaystyle-\langle L_{1},2\beta-\alpha+1\rangle_{q}-\langle L_{1},\frac{\beta}{\alpha}-\beta+2\alpha\rangle_{q}
B2=\displaystyle B_{2}= k^+4L2,α+1ε+k^+4L2,βα+βε\displaystyle\langle\hat{k}+4L_{2},\alpha+1\rangle_{\varepsilon}+\langle\hat{k}+4L_{2},\frac{\beta}{\alpha}+\beta\rangle_{\varepsilon}
L2,βα+αεL2,β+1ε\displaystyle-\langle L_{2},\frac{\beta}{\alpha}+\alpha\rangle_{\varepsilon}-\langle L_{2},\beta+1\rangle_{\varepsilon}
L2,2βα+1εL2,βαβ+2αε.\displaystyle-\langle L_{2},2\beta-\alpha+1\rangle_{\varepsilon}-\langle L_{2},\frac{\beta}{\alpha}-\beta+2\alpha\rangle_{\varepsilon}.

It is easy to verify the following inequalities

βα+β>2βα+1>α+1\displaystyle\frac{\beta}{\alpha}+\beta>2\beta-\alpha+1>\alpha+1
βα+β>βαβ+2α>α+1\displaystyle\frac{\beta}{\alpha}+\beta>\frac{\beta}{\alpha}-\beta+2\alpha>\alpha+1
βα+β>βα+α>α+1\displaystyle\frac{\beta}{\alpha}+\beta>\frac{\beta}{\alpha}+\alpha>\alpha+1
βα+β>β+1>α+1.\displaystyle\frac{\beta}{\alpha}+\beta>\beta+1>\alpha+1.

Therefore,

2L1,α+1q+2L1,βα+βq\displaystyle\langle 2L_{1},\alpha+1\rangle_{q}+\langle 2L_{1},\frac{\beta}{\alpha}+\beta\rangle_{q}
\displaystyle\geq L1,2βα+1q+L1,βαβ+2αq\displaystyle\langle L_{1},2\beta-\alpha+1\rangle_{q}+\langle L_{1},\frac{\beta}{\alpha}-\beta+2\alpha\rangle_{q}

that implies B1γ^,α+1q+γ^,βα+βq.B_{1}\geq\langle\hat{\gamma},\alpha+1\rangle_{q}+\langle\hat{\gamma},\frac{\beta}{\alpha}+\beta\rangle_{q}. Similarly, one has B2k^,α+1ε+k^,βα+βε.B_{2}\geq\langle\hat{k},\alpha+1\rangle_{\varepsilon}+\langle\hat{k},\frac{\beta}{\alpha}+\beta\rangle_{\varepsilon}. The above two inequalities conclude

W˙i(q¯i,v¯i)\displaystyle\dot{W}_{i}(\bar{q}_{i},\bar{v}_{i})\leq γ^,α+1qγ^,βα+βq\displaystyle-\langle\hat{\gamma},\alpha+1\rangle_{q}-\langle\hat{\gamma},\frac{\beta}{\alpha}+\beta\rangle_{q}
k^,α+1εk^,βα+βε.\displaystyle-\langle\hat{k},\alpha+1\rangle_{\varepsilon}-\langle\hat{k},\frac{\beta}{\alpha}+\beta\rangle_{\varepsilon}. (34)

Next, since

d(q¯i,v¯i)1diag(|v¯iv^i|)|εi|2α21αεi2,\displaystyle\|d(\bar{q}_{i},\bar{v}_{i})\|_{1}\leq\mbox{diag}(|\bar{v}_{i}-\hat{v}_{i}^{*}|)|\varepsilon_{i}|^{2-\alpha}\leq 2^{1-\alpha}\|\varepsilon_{i}\|^{2},

one has

Wi(q¯i,v¯i)12q¯i2+1β/α+1q¯iβα+11+21αεi2.\displaystyle W_{i}(\bar{q}_{i},\bar{v}_{i})\leq\frac{1}{2}\|\bar{q}_{i}\|^{2}+\frac{1}{\beta/\alpha+1}\|\bar{q}_{i}^{\frac{\beta}{\alpha}+1}\|_{1}+2^{1-\alpha}\|\varepsilon_{i}\|^{2}.

Direct calculation, using Lemma II.2, gives

Wiα+12\displaystyle W_{i}^{\frac{\alpha+1}{2}}\leq ν1,α+1q+ν1,(βα+1)α+12q+ν1,α+1ε\displaystyle\langle\nu_{1},\alpha+1\rangle_{q}+\langle\nu_{1},(\frac{\beta}{\alpha}+1)\frac{\alpha+1}{2}\rangle_{q}+\langle\nu_{1},\alpha+1\rangle_{\varepsilon}

and

Wiβα+ββα+1\displaystyle W_{i}^{\frac{\frac{\beta}{\alpha}+\beta}{\frac{\beta}{\alpha}+1}}\leq ν2,2(βα+β)βα+1q+ν2,βα+βq+ν2,2(βα+β)βα+1ε\displaystyle\langle\nu_{2},\frac{2(\frac{\beta}{\alpha}+\beta)}{\frac{\beta}{\alpha}+1}\rangle_{q}+\langle\nu_{2},\frac{\beta}{\alpha}+\beta\rangle_{q}+\langle\nu_{2},\frac{2(\frac{\beta}{\alpha}+\beta)}{\frac{\beta}{\alpha}+1}\rangle_{\varepsilon}

for some constants ν1,ν2>0\nu_{1},\nu_{2}>0. Again, It is easy to verify the following inequalities

βα+β>(βα+1)α+12>α+1\displaystyle\frac{\beta}{\alpha}+\beta>(\frac{\beta}{\alpha}+1)\frac{\alpha+1}{2}>\alpha+1
βα+β>2(βα+β)βα+1>α+1.\displaystyle\frac{\beta}{\alpha}+\beta>\frac{2(\frac{\beta}{\alpha}+\beta)}{\frac{\beta}{\alpha}+1}>\alpha+1.

Therefore,

Wiα+12\displaystyle W_{i}^{\frac{\alpha+1}{2}}\leq 2ν1,α+1q+ν1,βα+βq+ν1,α+1ε\displaystyle\langle 2\nu_{1},\alpha+1\rangle_{q}+\langle\nu_{1},\frac{\beta}{\alpha}+\beta\rangle_{q}+\langle\nu_{1},\alpha+1\rangle_{\varepsilon}
Wiβα+ββα+1\displaystyle W_{i}^{\frac{\frac{\beta}{\alpha}+\beta}{\frac{\beta}{\alpha}+1}}\leq ν2,α+1q+2ν2,βα+βq\displaystyle\langle\nu_{2},\alpha+1\rangle_{q}+\langle 2\nu_{2},\frac{\beta}{\alpha}+\beta\rangle_{q}
+ν2,α+1ε+ν2,βα+βε.\displaystyle+\langle\nu_{2},\alpha+1\rangle_{\varepsilon}+\langle\nu_{2},\frac{\beta}{\alpha}+\beta\rangle_{\varepsilon}. (35)

Comparing (34) with (35), one can conclude

W˙iρ1Wiα+12ρ2Wiβα+ββα+1\displaystyle\dot{W}_{i}\leq-\rho_{1}W_{i}^{\frac{\alpha+1}{2}}-\rho_{2}W_{i}^{\frac{\frac{\beta}{\alpha}+\beta}{\frac{\beta}{\alpha}+1}}

for ρ1=min{γ^2ν1,κ^ν1}/2,ρ2=min{γ^2ν2,κ^ν2}/2.\rho_{1}=\min\left\{\frac{\hat{\gamma}}{2\nu_{1}},\frac{\hat{\kappa}}{\nu_{1}}\right\}/2,\;\rho_{2}=\min\left\{\frac{\hat{\gamma}}{2\nu_{2}},\frac{\hat{\kappa}}{\nu_{2}}\right\}/2. By Lemma II.4, the equilibrium of (16) is fixed-time stable. In particular, there exists

T22ρ1(1α)+β+αρ2α(β1)\displaystyle T_{2}^{*}\leq\frac{2}{\rho_{1}(1-\alpha)}+\frac{\beta+\alpha}{\rho_{2}\alpha(\beta-1)}

such that (26) holds. \Box

Finally, based on Lemma III.1 and Lemma IV.2, we can obtain the following theorem for the solvability of the fixed-time synchronization problem with T=T1+T2T^{*}=T_{1}^{*}+T_{2}^{*}.

Theorem IV.1

The fixed-time synchronization problem for the multi-agent system composed of (1) and (2) under Assumption II.1 is solvable by the observer (III) and the controller τi=M^(u1i+u2i)\tau_{i}=\hat{M}(u_{1i}+u_{2i}) of the form (21) and (25) with all the parameters given in Lemma III.1 and Lemma IV.2.

Remark IV.2

Suppose the sub-controller u1iu_{1i} follows (21) with (24) but the sub-controller (25) for u2iu_{2i} reduces to the following finite-time controller, by setting k2=0k_{2}=0 and γ2=0\gamma_{2}=0,

u2i\displaystyle u_{2i} =k1εi2α1+ESSηi,εi=v¯i1α+γ11αq¯i,\displaystyle=-k_{1}\varepsilon_{i}^{2\alpha-1}+ESS\eta_{i},~{}~{}\varepsilon_{i}=\bar{v}_{i}^{\frac{1}{\alpha}}+\gamma_{1}^{\frac{1}{\alpha}}\bar{q}_{i}, (36)

where ηi\eta_{i} is governed by the finite-time observer (III.1). If 12<α<1\frac{1}{2}<\alpha<1 is a ratio of two odd integers and γ1,k1\gamma_{1},k_{1} satisfy

γ1>21α1+α+α(2α)21α1+α\displaystyle\gamma_{1}>\frac{2^{1-\alpha}}{1+\alpha}+\frac{\alpha(2-\alpha)2^{1-\alpha}}{1+\alpha}
k1>γ11+1/α(21αα1+α+(2α)21αγ1(21α+γ11+α)),\displaystyle k_{1}>\gamma_{1}^{1+1/\alpha}\left(\frac{2^{1-\alpha}\alpha}{1+\alpha}+\frac{(2-\alpha)2^{1-\alpha}}{\gamma_{1}}(2^{1-\alpha}+\frac{\gamma_{1}}{1+\alpha})\right),

then the equilibrium of the closed-loop system composed of (16) at the origin is finite-time stable. In particular, there exists a finite settling-time function T2i(q¯i(T1(η(0))),v¯i(T1(η(0))))0T_{2i}(\bar{q}_{i}(T_{1}(\eta(0))),\bar{v}_{i}(T_{1}(\eta(0))))\geq 0 such that

limtT1+T2i[q¯i(t),v¯i(t)]=0,\displaystyle\lim_{t\rightarrow T_{1}+T_{2i}}[\bar{q}_{i}(t),\bar{v}_{i}(t)]=0, (37)
[q¯i(t),v¯i(t)]=0,tT1+T2i,q¯i(T1),v¯i(T1)m.\displaystyle[\bar{q}_{i}(t),\bar{v}_{i}(t)]=0,\;t\geq T_{1}+T_{2i},\;\forall\bar{q}_{i}(T_{1}),\bar{v}_{i}(T_{1})\in\mathbb{R}^{m}.

As a result, the finite-time synchronization problem for the multi-agent system composed of (1) and (2) under Assumption II.1 is solvable by the observer (III.1) and the controller τi=M^(u1i+u2i)\tau_{i}=\hat{M}(u_{1i}+u_{2i}) of the form (21) and (36). The proof can similarly follow that of Lemma IV.2 and is thus omitted.

V An Example

Consider a group of six robotic manipulators given by (1) where qi=[q1i,q2i]T2q_{i}=[q_{1i},q_{2i}]^{T}\in\mathbb{R}^{2} and

Mi(qi)=[θ1i+θ2i+2θ3icos(q2i)θ2i+θ3icos(q2i)θ2i+θ3icos(q2i)θ4i]\displaystyle M_{i}(q_{i})=\left[\begin{array}[]{cc}\theta_{1i}+\theta_{2i}+2\theta_{3i}\cos(q_{2i})&\theta_{2i}+\theta_{3i}\cos(q_{2i})\\ \theta_{2i}+\theta_{3i}\cos(q_{2i})&\theta_{4i}\\ \end{array}\right]
Ci(qi,q˙i)q˙i=[θ3isin(q2i)q˙1i22θ3isin(q2i)q˙1iq˙2iθ3isin(q2i)q˙2i2]\displaystyle C_{i}(q_{i},\dot{q}_{i})\dot{q}_{i}=\left[\begin{array}[]{cc}-\theta_{3i}\sin(q_{2i})\dot{q}_{1i}^{2}-2\theta_{3i}\sin(q_{2i})\dot{q}_{1i}\dot{q}_{2i}\\ \theta_{3i}\sin(q_{2i})\dot{q}_{2i}^{2}\\ \end{array}\right]
Gi(qi)=[θ5igcos(q1i)+θ6igcos(q1i+q2i)θ6igcos(q1i+q2i)]\displaystyle G_{i}(q_{i})=\left[\begin{array}[]{cc}\theta_{5i}g\cos(q_{1i})+\theta_{6i}g\cos(q_{1i}+q_{2i})\\ \theta_{6i}g\cos(q_{1i}+q_{2i})\\ \end{array}\right]

for i=1,,6i=1,\cdots,6. In the equations, θji\theta_{ji}, j=1,,6j=1,\cdots,6, i=1,,6i=1,\cdots,6, represent unknown parameters. The leader system is given by (2) with S=[0110]S=\left[\begin{array}[]{ccc}0&1\\ -1&0\\ \end{array}\right] and E=I2E=I_{2}. The information flow among all the subsystems and the leader is described by the digraph in Fig. 1, which contains a spanning tree with node 0 as the root, satisfying Assumption II.1. Let D=8I6D=8I_{6}. Then DH+HTD2INDH+H^{T}D\geq 2I_{N}.

Refer to caption
Figure 1: Illustration of the communication network topology.
Refer to caption
Figure 2: Profile of the estimation errors ηiη0\eta_{i}-\eta_{0}, i=1,,6i=1,\cdots,6, under the fixed-time observer.

By Lemma III.1, let c1=8.4,c2=1,c3=1,a=3/5,b=3c_{1}=8.4,~{}c_{2}=1,~{}c_{3}=1,~{}a=3/5,~{}b=3. Now we can construct the fixed-time observer (III) whose performance is shown in Fig. 2. It is observed that the estimation errors ηiη0\eta_{i}-\eta_{0}, i=1,,6i=1,\cdots,6, approach zero at the time instants marked by the vertical lines. In the simulation, the error tolerance of numerical calculation is set as 10310^{-3} that is used as the criterion of approaching zero.

Next, we apply the observer (III) to solve the fixed-time control problem of Euler-Lagrange systems and design the fixed-time control law τi=M^(u1i+u2i)\tau_{i}=\hat{M}(u_{1i}+u_{2i}) where u1iu_{1i} is given by (21) and u2iu_{2i} is given by (25). Although we we do not know the exact value of Mi(qi)M_{i}(q_{i}), Ci(qi,q˙i)C_{i}(q_{i},\dot{q}_{i}) and Gi(qi)G_{i}(q_{i}), it is assumed that the unknown parameters in the following ranges θ1i[6,8]\theta_{1i}\in[6,8], θ2i[0.8,1]\theta_{2i}\in[0.8,1], θ3i[1,1.4]\theta_{3i}\in[1,1.4], θ5i[1.5,2]\theta_{5i}\in[1.5,2], and θ6i[1,1.3]\theta_{6i}\in[1,1.3]. Simple calculation verifies that the properties in (15) are satisfied for km¯1=0.3,km¯1=0.08,kc=3k_{\underline{m}}^{-1}=0.3,~{}k_{\overline{m}}^{-1}=0.08,~{}k_{c}=3, and kg=50k_{g}=50. We select the parameters in (21) and (25) as κ=3,ϵ=11/19,γ1=10,γ2=10,k1=20,k2=15,α=7/9,β=9/7\kappa=3,~{}\epsilon=11/19,~{}\gamma_{1}=10,~{}\gamma_{2}=10,~{}k_{1}=20,~{}k_{2}=15,~{}\alpha={7}/{9},~{}\beta={9}/{7}. For the purpose of simulation, we provide the values for uncertain parameters θ1i=7,θ2i=0.96,θ3i=1.2,θ4i=5.96,θ5i=2\theta_{1i}=7,~{}\theta_{2i}=0.96,~{}\theta_{3i}=1.2,~{}\theta_{4i}=5.96,~{}\theta_{5i}=2, and θ6i=1.2\theta_{6i}=1.2. The simulation is conducted with arbitrarily selected initial conditions. Fig. 3 shows qiq_{i}, q˙i\dot{q}_{i} respectively converge to q0q_{0}, q˙0\dot{q}_{0} in fixed time instants.

Refer to caption
Refer to caption
Figure 3: Profile of the synchronization errors qiq0q_{i}-q_{0} and q˙iq˙0\dot{q}_{i}-\dot{q}_{0}, i=1,,6i=1,\cdots,6, under the fixed-time controller.

VI Conclusion

This paper has proposed the fixed-time robust control design for the consensus problem of networked Euler-Lagrange systems based on a distributed observer, which is capable of estimating the desired trajectory of the leader in a fixed time under a directed graph. The heterogeneous uncertain Euler-Lagrange systems are converted into second-order systems by a partial design of the control law, and then the backstepping procedure for second-order systems are utilized to accomplished the fixed-time control design.

References

  • [1] S. P. Bhat and D. S. Bernstein, “Continuous finite-time stabilization of the translational and rotational double integrators,” IEEE Transactions on Automatic Control, vol. 43, no. 5, pp. 678–682, 1998.
  • [2] F. Xiao, L. Wang, J. Chen, and Y. Gao, “Finite-time formation control for multi-agent systems,” Automatica, vol. 45, no. 11, pp. 2605–2611, 2009.
  • [3] J. Fu and J. Wang, “Observer-based finite-time coordinated tracking for general linear multi-agent systems,” Automatica, vol. 66, pp. 231–237, 2016.
  • [4] Y. Cao and W. Ren, “Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics,” Automatica, vol. 50, no. 10, pp. 2648–2656, 2014.
  • [5] H. Du, G. Wen, D. Wu, Y. Cheng, and J. Lü, “Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems,” Automatica, vol. 113, p. 108797, 2020.
  • [6] Z. Zuo, “Nonsingular fixed-time consensus tracking for second-order multi-agent networks,” Automatica, vol. 54, pp. 305–309, 2015.
  • [7] Z. Zuo, B. Tian, M. Defoort, and Z. Ding, “Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics,” IEEE Transactions on Automatic Control, vol. 63, no. 2, pp. 563–570, 2018.
  • [8] Y. Hong, Y. Xu, and J. Huang, “Finite-time control for robot manipulators,” Systems & Control Letters, vol. 46, no. 4, pp. 243–253, 2002.
  • [9] Y. Hong, J. Wang, and D. Cheng, “Adaptive finite-time control of nonlinear systems with parametric uncertainty,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp. 858–862, 2006.
  • [10] X. Huang, W. Lin, and B. Yang, “Global finite-time stabilization of a class of uncertain nonlinear systems,” Automatica, vol. 41, pp. 881–888, 2005.
  • [11] S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous finite-time control for robotic manipulators with terminal sliding mode,” Automatica, vol. 41, no. 11, pp. 1957–1964, 2005.
  • [12] D. Zhao, S. Li, and F. Gao, “A new terminal sliding mode control for robotic manipulators,” International Journal of control, vol. 82, no. 10, pp. 1804–1813, 2009.
  • [13] M. Galicki, “Finite-time control of robotic manipulators,” Automatica, vol. 51, pp. 49–54, 2015.
  • [14] J. Huang, C. Wen, W. Wang, and Y.-D. Song, “Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems,” Automatica, vol. 51, pp. 292–301, 2015.
  • [15] H.-X. Hu, G. Wen, W. Yu, J. Cao, and T. Huang, “Finite-time coordination behavior of multiple Euler–Lagrange systems in cooperation-competition networks,” IEEE transactions on cybernetics, vol. 49, no. 8, pp. 2967–2979, 2019.
  • [16] A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of linear control systems,” IEEE Transactions on Automatic Control, vol. 57, no. 8, pp. 2106–2110, 2012.
  • [17] Y. Su, “Cooperative global output regulation of second-order nonlinear multi-agent systems with unknown control direction,” IEEE Transactions on Automatic Control, vol. 60, no. 12, pp. 3275–3280, 2015.
  • [18] R. A. Horn, R. A. Horn, and C. R. Johnson, Topics in Matrix Analysis.   Cambridge University Press, 1994.
  • [19] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities.   Cambridge University Press, 1952.
  • [20] C. Qian and W. Lin, “A continuous feedback approach to global strong stabilization of nonlinear systems,” IEEE Transactions on Automatic Control, vol. 46, no. 7, pp. 1061–1079, 2001.
  • [21] Y. Song, Y. Wang, J. Holloway, and M. Krstic, “Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time,” Automatica, vol. 83, pp. 243–251, 2017.