This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Flavor Constraints in a Generational Three Higgs Doublet Model

Wolfgang Altmannshofer waltmann@ucsc.edu Department of Physics, University of California Santa Cruz, and Santa Cruz Institute for Particle Physics, 1156 High St., Santa Cruz, CA 95064, USA    Kevin Toner ktoner@ucsc.edu Department of Physics, University of California Santa Cruz, and Santa Cruz Institute for Particle Physics, 1156 High St., Santa Cruz, CA 95064, USA
Abstract

We propose a Three Higgs Doublet Model (3HDM) that goes beyond natural flavor conservation and in which each of the three Higgs doublets couples mainly to a single generation of fermions via non-standard Yukawa structures. A hierarchy in the vacuum expectation values of the three Higgs doublets can partially address the SM flavor puzzle. In light of the experimentally observed 125125 GeV Higgs boson, we primarily work within a 3HDM alignment limit such that a Standard Model-like Higgs is recovered. In order to reproduce the observed CKM mixing among quarks, the neutral Higgs bosons of the theory necessarily mediate flavor changing neutral currents at the tree level. We consider constraints from neutral kaon, BB meson, and DD meson mixing as well as from the rare leptonic decays Bs/B0/KLμ+μ/e+eB_{s}/B^{0}/K_{L}\rightarrow\mu^{+}\mu^{-}/e^{+}e^{-}. We identify regions of parameter space in which the new physics Higgs bosons can be as light as a TeV or even lighter.

I Introduction

Measurements of Higgs properties at the LHC [1, 2] indicate that the Higgs is to good approximation Standard Model (SM) like. This is particularly the case for its couplings to gauge bosons and third generation fermions. However, little is still known about the small Higgs couplings to the first and second generation fermions. While evidence for the decay of the Higgs into muons has been established [3, 4], there is still large room for new physics in all its couplings to the first and second generation.

In this context, it is interesting to speculate that not all fermion masses originate from a single source of electroweak symmetry breaking but that the light fermions might obtain their masses from a second, subdominant source. Setups along this line have been proposed e.g. in [5, 6, 7, 8, 9, 10]. Part of the motivation of such scenarios is related to aspects of the SM flavor puzzle [11], i.e. the question of why the observed masses of quarks and leptons and the quark mixing exhibit a very hierarchical pattern. The first and second generation of quarks and leptons might be much lighter than the third generation because their masses are proportional to a much smaller source of electroweak symmetry breaking.

This idea has been implemented in the “flavorful” Two Higgs doublet model (2HDM) [12, 13, 14, 15]. One Higgs couples with approximately SM-like interactions to gauge bosons and the third generation fermions, while a second Higgs provides masses for the first and second generation. A mass hierarchy between the third generation and the first two generation can be explained by a hierarchy in vacuum expectation values of the two Higgs bosons. In this work we explore if this idea can be extended to all three generations in the context of a Three Higgs doublet model (3HDM). We are interested in a “generational” 3HDM, with each of the three Higgs bosons coupling to a single generation of fermions through rank-1 Yukawa matrices. The observed hierarchy between the masses of the three generations (or part of this hierarchy) may then be explained by a hierarchical pattern of the three Higgs vacuum expectation values.

A vast literature exists on the topic of 3HDMs, with many studies appearing within the past decade. Aspects of 3HDMs (or in general models with more than two Higgs doublets) that are extensively discussed include the structure of the scalar potential [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39], the presence of new sources of CP violation and applications to baryogenesis or leptogenesis [40, 41, 42, 43, 44, 45], the possible presence of a dark matter candidate if at least one the doublets is inert [46, 47, 48, 49, 50, 51, 52], interesting collider phenomenology of the additional Higgs bosons [53, 54, 55, 56, 57, 58, 59], as well as other phenomenological implications [60, 61, 62, 63, 64].

The most relevant aspect for our work is the flavor phenomenology of 3HDMs (see e.g. [65, 66, 67, 68, 69, 70, 71, 72, 73, 74]). As we will see, in order to reproduce the observed mixing in the quark sector, our model necessarily violates the principle of natural flavor conservation [75] and therefore features flavor changing neutral currents already at the tree level. The main goal of our paper is to consistently set up the model and to identify the most important flavor constraints. We find that the most generic version of our 3HDM gives large contributions to meson mixing, kaon mixing in particular, from the tree level exchange of neutral Higgs bosons. In such a region of parameter space, the meson mixing constraints push the additional Higgs bosons to scales that are not collider accessible. However, if only the minimal amount of flavor violation required to reproduce the CKM matrix is present, flavor constraints are much more relaxed. In that case, we find that the strongest constraints come from leptonic decays of BB mesons and kaons, and Higgs masses around 1-2 TeV are not excluded. An exploration of the distinct collider phenomenology of such a setup is left for future work.

This paper is structured as follows: In section II, we introduce the generational 3HDM. We discuss in detail the scalar sector, including electroweak symmetry breaking, the physical Higgs spectrum, as well as approximations that are valid in the limit of hierarchical vacuum expectation values. We also spell out our assumptions about the Yukawa sector and determine the couplings of the physical Higgs bosons with quarks and charged leptons. In section III, we discuss the most relevant low-energy flavor constraints of our model. We cover neutral meson mixing and rare leptonic decays of BB mesons and kaons, B0+B^{0}\to\ell^{+}\ell^{-}, Bs+B_{s}\to\ell^{+}\ell^{-}, and K+K\to\ell^{+}\ell^{-}. We conclude and summarize our results in section IV. Details about renormalization group running for meson mixing constraints and a simple setup that generates rank-1 Yukawa couplings are presented in appendices A and B, respectively.

II A generational three Higgs doublet model

II.1 The field content and the Lagrangian

We augment the SM with two additional Higgs doublets. The associated gauge representations under SU(3)c×SU(2)L×U(1)YSU(3)_{c}\times SU(2)_{L}\times U(1)_{Y} are analogous to the SM. All three Higgs doublets transform as Φa(𝟏,𝟐,12)\Phi_{a}\sim({\mathbf{1}},{\mathbf{2}},\frac{1}{2}), with a=1,2,3a=1,2,3 labeling the three Higgs fields.

The terms in the model’s Lagrangian that contain the Higgs fields can be written as

3HDMa=13|DμΦa|2V3HDM+3HDMYuk.\mathcal{L}_{\text{3HDM}}\supset\sum\limits_{a=1}^{3}\lvert D_{\mu}\Phi_{a}\rvert^{2}-V_{\text{3HDM}}+\mathcal{L}_{\text{3HDM}}^{\text{Yuk}}\leavevmode\nobreak\ . (1)

In addition to the kinetic terms, the Lagrangian contains a potential for the Higgs fields and Yukawa interactions with the SM fermions. The most general Yukawa Lagrangian is

3HDMYuk=i,j(λu1ijq¯LiΦ~1uRj+λd1ijq¯LiΦ1dRj+λ1ij¯LiΦ1eRj)+h.c.+i,j(λu2ijq¯LiΦ~2uRj+λd2ijq¯LiΦ2dRj+λ2ij¯LiΦ2eRj)+h.c.+i,j(λu3ijq¯LiΦ~3uRj+λd3ijq¯LiΦ3dRj+λ3ij¯LiΦ3eRj)+h.c.,-\mathcal{L}_{\text{3HDM}}^{\text{Yuk}}=\sum\limits_{i,j}\left(\lambda_{u_{1}}^{ij}\bar{q}_{L_{i}}\tilde{\Phi}_{1}u_{R_{j}}+\lambda_{d_{1}}^{ij}\bar{q}_{L_{i}}\Phi_{1}d_{R_{j}}+\lambda_{\ell_{1}}^{ij}\bar{\ell}_{L_{i}}\Phi_{1}e_{R_{j}}\right)+\text{h.c.}\\ +\sum\limits_{i,j}\left(\lambda_{u_{2}}^{ij}\bar{q}_{L_{i}}\tilde{\Phi}_{2}u_{R_{j}}+\lambda_{d_{2}}^{ij}\bar{q}_{L_{i}}\Phi_{2}d_{R_{j}}+\lambda_{\ell_{2}}^{ij}\bar{\ell}_{L_{i}}\Phi_{2}e_{R_{j}}\right)+\text{h.c.}\\ +\sum\limits_{i,j}\left(\lambda_{u_{3}}^{ij}\bar{q}_{L_{i}}\tilde{\Phi}_{3}u_{R_{j}}+\lambda_{d_{3}}^{ij}\bar{q}_{L_{i}}\Phi_{3}d_{R_{j}}+\lambda_{\ell_{3}}^{ij}\bar{\ell}_{L_{i}}\Phi_{3}e_{R_{j}}\right)+\text{h.c.}\leavevmode\nobreak\ , (2)

where Φ~aiσ2Φa\tilde{\Phi}_{a}\equiv i\sigma_{2}\Phi_{a}^{*} and i,ji,j are flavor indices which run from 1 to 3. q¯L\overline{q}_{L} and ¯L\overline{\ell}_{L} represent the left-handed quark and lepton doublets, while uRu_{R}, dRd_{R}, eRe_{R} are the quark and lepton singlets. The λ\lambda matrices denote the Yukawa couplings. Neutrino masses and mixing are beyond the scope of this paper.

The most general gauge invariant nnHDM potential may contain up to n2n^{2} mass parameters and n22(n2+1)\frac{n^{2}}{2}(n^{2}+1) quartic interactions (see e.g. [28, 33])

V3HDM=a,b=13mab2(ΦaΦb)+a,b,c,d=13λab,cd(ΦaΦb)(ΦcΦd),V_{\text{3HDM}}=\sum\limits_{a,b=1}^{3}m_{ab}^{2}(\Phi_{a}^{{\dagger}}\Phi_{b})+\sum\limits_{a,b,c,d=1}^{3}\lambda_{ab,cd}(\Phi_{a}^{{\dagger}}\Phi_{b})(\Phi_{c}^{{\dagger}}\Phi_{d})\leavevmode\nobreak\ , (3)

where λab,cd=λcd,ab\lambda_{ab,cd}=\lambda_{cd,ab} and, by hermiticity, mab2=(mba2)m_{ab}^{2}=(m_{ba}^{2})^{*} while λab,cd=λba,dc\lambda_{ab,cd}=\lambda^{*}_{ba,dc}. In a 3HDM, this corresponds in general to 54 terms in the Higgs potential.

As discussed in more detail in section II.4 and appendix B, we are interested in a scenario in which the three Higgs fields couple preferentially to a single generation. This can be most readily achieved if the Higgs fields are charged under softly broken U(1)U(1) flavor symmetries. We thus consider it plausible that the Higgs potential respects to a good approximation a softly broken U(1)3U(1)^{3} symmetry, with the three U(1)U(1) factors acting separately on a single Higgs field. This reduces significantly the possible 54 potential terms. Explicitly, we are left with111This setup is sometimes referred to as the U(1)×U(1)U(1)\times U(1) symmetric 3HDM in the literature, see e.g. [32]. In fact, the third U(1)U(1) is automatically guaranteed by hypercharge gauge invariance.

V3HDM\displaystyle V_{\text{3HDM}} =m112(Φ1Φ1)+m222(Φ2Φ2)+m332(Φ3Φ3)\displaystyle=m_{11}^{2}(\Phi_{1}^{{\dagger}}\Phi_{1})+m_{22}^{2}(\Phi_{2}^{{\dagger}}\Phi_{2})+m_{33}^{2}(\Phi_{3}^{{\dagger}}\Phi_{3})
[m122(Φ1Φ2)+m232(Φ2Φ3)+m132(Φ1Φ3)+h.c.]\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ -\left[m_{12}^{2}(\Phi_{1}^{{\dagger}}\Phi_{2})+m_{23}^{2}(\Phi_{2}^{{\dagger}}\Phi_{3})+m_{13}^{2}(\Phi_{1}^{{\dagger}}\Phi_{3})+\text{h.c.}\right]
+λ1(Φ1Φ1)2+λ2(Φ2Φ2)2+λ3(Φ3Φ3)2+λ4(Φ1Φ1)(Φ2Φ2)+λ5(Φ1Φ1)(Φ3Φ3)\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ +\lambda_{1}(\Phi_{1}^{{\dagger}}\Phi_{1})^{2}+\lambda_{2}(\Phi_{2}^{{\dagger}}\Phi_{2})^{2}+\lambda_{3}(\Phi_{3}^{{\dagger}}\Phi_{3})^{2}+\lambda_{4}(\Phi_{1}^{{\dagger}}\Phi_{1})(\Phi_{2}^{{\dagger}}\Phi_{2})+\lambda_{5}(\Phi_{1}^{{\dagger}}\Phi_{1})(\Phi_{3}^{{\dagger}}\Phi_{3})
+λ6(Φ2Φ2)(Φ3Φ3)+λ7(Φ1Φ2)(Φ2Φ1)+λ8(Φ1Φ3)(Φ3Φ1)+λ9(Φ2Φ3)(Φ3Φ2).\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ +\lambda_{6}(\Phi_{2}^{{\dagger}}\Phi_{2})(\Phi_{3}^{{\dagger}}\Phi_{3})+\lambda_{7}(\Phi_{1}^{{\dagger}}\Phi_{2})(\Phi_{2}^{{\dagger}}\Phi_{1})+\lambda_{8}(\Phi_{1}^{{\dagger}}\Phi_{3})(\Phi_{3}^{{\dagger}}\Phi_{1})+\lambda_{9}(\Phi_{2}^{{\dagger}}\Phi_{3})(\Phi_{3}^{{\dagger}}\Phi_{2})\leavevmode\nobreak\ . (4)

The three diagonal mass parameters maa2m_{aa}^{2} as well as all nine quartic interactions λi\lambda_{i} of the potential are real. The three off-diagonal mass parameters, mab2m^{2}_{ab} with aba\neq b, softly break the U(1)3U(1)^{3} symmetry. They can be complex and give rise to CP violation. Note that one can in principle use the freedom to re-phase the Higgs fields and remove the imaginary parts of two of the off-diagonal mass parameters, leaving a single physical CP violating phase.

The quartic couplings are not fully arbitrary but are constrained by bounded from below and vacuum stability conditions (see e.g. [16, 20, 32, 39]), as well as by perturbativity considerations (see e.g. [25]).

II.2 Electroweak symmetry breaking and the Higgs spectrum

We assume that the three Higgs fields acquire vacuum expectation values such that spontaneous symmetry breaking (SSB) occurs: SU(2)L×U(1)YU(1)emSU(2)_{L}\times U(1)_{Y}\rightarrow U(1)_{\text{em}}. In particular, we assume that the vacuum expectation values (vevs) of the Higgs fields are aligned such that U(1)emU(1)_{\text{em}} remains unbroken.

Based on the study of bounded from below constraints in 3HDMs that include charged runaway directions (see e.g. [32, 39]) and the study of electroweak symmetry breaking in multi-Higgs doublet models (see e.g. [17, 23]), we expect that an order 1 amount of parameter space does not break U(1)emU(1)_{\text{em}}, as is common in the 3HDM literature.

In this case, we can parameterize the scalar doublets in terms of charged and neutral components in the usual way

Φa=(ϕa+12(va+φa+iaa)).\Phi_{a}=\begin{pmatrix}\phi^{+}_{a}\\ \frac{1}{\sqrt{2}}\left(v_{a}+\varphi_{a}+ia_{a}\right)\end{pmatrix}\leavevmode\nobreak\ . (5)

The three vevs vav_{a} can, in principle, be complex. We find it convenient to work in a phase convention in which all three vevs are real. Without loss of generality, we label the Higgs fields such that v1<v2<v3v_{1}<v_{2}<v_{3}. As discussed below in section II.4, we will construct the Yukawa sector such that the doublets Φ1\Phi_{1}, Φ2\Phi_{2}, and Φ3\Phi_{3} provide mass mainly to the first, second, and third generation of fermions, respectively. The ordering of the three vevs thus follows the mass ordering of the three generations of fermions, and we will later focus mainly on the limit v1v2v3v_{1}\ll v_{2}\ll v_{3}, which partially addresses the hierarchies in the fermion spectrum of the SM.

In order to reproduce the masses of the WW and ZZ bosons, the individual vevs must sum in quadrature to the SM Higgs vev

vSM2v2=v12+v22+v32(246GeV)2.v_{\text{SM}}^{2}\equiv v^{2}=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\simeq(246\leavevmode\nobreak\ \text{GeV})^{2}\leavevmode\nobreak\ . (6)

This condition is satisfied by construction if we work with the convenient parameterization

v1=vcosβ=vcβ,v2=vsinβcosβ=vsβcβ,v3=vsinβsinβ=vsβsβ,v_{1}=v\,\cos\beta^{\prime}=vc_{\beta^{\prime}}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ v_{2}=v\,\sin\beta^{\prime}\,\cos\beta=vs_{\beta^{\prime}}c_{\beta}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ v_{3}=v\,\sin\beta^{\prime}\,\sin\beta=vs_{\beta^{\prime}}s_{\beta}\leavevmode\nobreak\ , (7)

where we used the notation sx=sinxs_{x}=\sin x, and cx=cosxc_{x}=\cos x. The above definitions imply

tanβ=tβ=v22+v32v1,tanβ=tβ=v3v2,\tan\beta^{\prime}=t_{\beta^{\prime}}=\frac{\sqrt{v_{2}^{2}+v_{3}^{2}}}{v_{1}}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \tan\beta=t_{\beta}=\frac{v_{3}}{v_{2}}\leavevmode\nobreak\ , (8)

which may be viewed as an extension of the 2HDM definition for tanβ\tan\beta. In effect, we may trade v1v_{1}, v2v_{2}, v3v_{3} for vv, tanβ\tan{\beta}, tanβ\tan{\beta^{\prime}}.

Working with real vevs implies in general that m122m^{2}_{12}, m132m^{2}_{13}, and m232m^{2}_{23} all have imaginary parts. We find that these imaginary parts are related by the minimization conditions of the potential in the following way

Im(m132)=v2v3Im(m122),Im(m232)=v1v3Im(m122).\text{Im}(m_{13}^{2})=-\frac{v_{2}}{v_{3}}\leavevmode\nobreak\ \text{Im}(m_{12}^{2})\leavevmode\nobreak\ ,\qquad\text{Im}(m_{23}^{2})=\frac{v_{1}}{v_{3}}\leavevmode\nobreak\ \text{Im}(m_{12}^{2})\leavevmode\nobreak\ . (9)

The remaining minimization conditions allow us to express the mass parameters m112m_{11}^{2}, m222m_{22}^{2}, and m332m_{33}^{2} in terms of the real vacuum expectation values

m112\displaystyle m^{2}_{11} =Re(m122)v2v1+Re(m132)v3v1λ12v1212[(λ4+λ7)v22+(λ5+λ8)v32],\displaystyle=\text{Re}(m^{2}_{12})\frac{v_{2}}{v_{1}}+\text{Re}(m^{2}_{13})\frac{v_{3}}{v_{1}}-\lambda^{2}_{1}v^{2}_{1}-\frac{1}{2}\big{[}(\lambda_{4}+\lambda_{7})v_{2}^{2}+(\lambda_{5}+\lambda_{8})v_{3}^{2}\big{]}\leavevmode\nobreak\ , (10)
m222\displaystyle m^{2}_{22} =Re(m122)v1v2+Re(m232)v3v2λ22v2212[(λ4+λ7)v12+(λ6+λ9)v32],\displaystyle=\text{Re}(m^{2}_{12})\frac{v_{1}}{v_{2}}+\text{Re}(m^{2}_{23})\frac{v_{3}}{v_{2}}-\lambda^{2}_{2}v^{2}_{2}-\frac{1}{2}\big{[}(\lambda_{4}+\lambda_{7})v_{1}^{2}+(\lambda_{6}+\lambda_{9})v_{3}^{2}\big{]}\leavevmode\nobreak\ , (11)
m332\displaystyle m^{2}_{33} =Re(m132)v1v3+Re(m232)v2v3λ32v3212[(λ5+λ8)v12+(λ6+λ9)v22].\displaystyle=\text{Re}(m^{2}_{13})\frac{v_{1}}{v_{3}}+\text{Re}(m^{2}_{23})\frac{v_{2}}{v_{3}}-\lambda^{2}_{3}v^{2}_{3}-\frac{1}{2}\big{[}(\lambda_{5}+\lambda_{8})v_{1}^{2}+(\lambda_{6}+\lambda_{9})v_{2}^{2}\big{]}\leavevmode\nobreak\ . (12)

In what follows, we will make the simplifying assumption that the Higgs potential respects CP invariance and set Im(m122)=Im(m132)=Im(m232)=0\text{Im}(m_{12}^{2})=\text{Im}(m_{13}^{2})=\text{Im}(m_{23}^{2})=0. The general case with CP violation in the Higgs potential and the possible implications will be discussed elsewhere.

In the absence of CP violation, nnHDM models will contain nn physical neutral CP-even Higgs bosons, n1n-1 physical neutral CP-odd Higgs bosons, and 2(n1)2(n-1) physical charged Higgs bosons. The remaining CP-odd and charged degrees of freedom are Goldstone bosons (G0,G±G^{0},G^{\pm}) that provide the longitudinal components of the ZZ and WW bosons of the SM. In our 3HDM case, after SSB, we expect a total of 3 neutral CP-even Higgs bosons (hh, HH, HH^{\prime}), 2 neutral CP-odd Higgs (AA, AA^{\prime}), and 2 pairs of charged Higgs bosons (H±H^{\pm}, H±H^{\pm\,\prime}).

The mass matrix of the CP-odd scalars is independent of the quartic interactions and given by

m^a2=(m122v2v1+m132v3v1m122m132m122m122v1v2+m232v3v2m232m132m232m132v1v3+m232v2v3).\hat{m}^{2}_{a}=\begin{pmatrix}m_{12}^{2}\leavevmode\nobreak\ \frac{v_{2}}{v_{1}}+m_{13}^{2}\leavevmode\nobreak\ \frac{v_{3}}{v_{1}}&-m_{12}^{2}&-m_{13}^{2}\\ -m_{12}^{2}&m_{12}^{2}\leavevmode\nobreak\ \frac{v_{1}}{v_{2}}+m_{23}^{2}\leavevmode\nobreak\ \frac{v_{3}}{v_{2}}&-m_{23}^{2}\\ -m_{13}^{2}&-m_{23}^{2}&m_{13}^{2}\leavevmode\nobreak\ \frac{v_{1}}{v_{3}}+m_{23}^{2}\leavevmode\nobreak\ \frac{v_{2}}{v_{3}}\end{pmatrix}\leavevmode\nobreak\ . (13)

For the charged and CP-even scalar mass matrices, we find

m^±2\displaystyle\hat{m}^{2}_{\pm} =\displaystyle= m^a2+12(v22λ7v32λ8v1v2λ7v1v3λ8v1v2λ7v12λ7v32λ9v2v3λ9v1v3λ8v2v3λ9v12λ8v22λ9)),\displaystyle\hat{m}^{2}_{a}+\frac{1}{2}\begin{pmatrix}-v_{2}^{2}\lambda_{7}-v_{3}^{2}\lambda_{8}&v_{1}v_{2}\lambda_{7}&v_{1}v_{3}\lambda_{8}\\ v_{1}v_{2}\lambda_{7}&-v_{1}^{2}\lambda_{7}-v_{3}^{2}\lambda_{9}&v_{2}v_{3}\lambda_{9}\\ v_{1}v_{3}\lambda_{8}&v_{2}v_{3}\lambda_{9}&-v_{1}^{2}\lambda_{8}-v_{2}^{2}\lambda_{9})\end{pmatrix}\leavevmode\nobreak\ , (14)
m^φ2\displaystyle\hat{m}^{2}_{\varphi} =\displaystyle= m^a2+(2v12λ1v1v2(λ4+λ7)v1v3(λ5+λ8)v1v2(λ4+λ7)2v22λ2v2v3(λ6+λ9)v1v3(λ5+λ8)v2v3(λ6+λ9)2v32λ3).\displaystyle\hat{m}^{2}_{a}+\begin{pmatrix}2\,v_{1}^{2}\lambda_{1}&v_{1}v_{2}(\lambda_{4}+\lambda_{7})&v_{1}v_{3}(\lambda_{5}+\lambda_{8})\\ v_{1}v_{2}(\lambda_{4}+\lambda_{7})&2\,v_{2}^{2}\lambda_{2}&v_{2}v_{3}(\lambda_{6}+\lambda_{9})\\ v_{1}v_{3}(\lambda_{5}+\lambda_{8})&v_{2}v_{3}(\lambda_{6}+\lambda_{9})&2\,v_{3}^{2}\lambda_{3}\end{pmatrix}\leavevmode\nobreak\ . (15)

We rotate into the physical Higgs mass-eigenstate basis through orthogonal, 3-parameter rotations for each of the three Higgs sectors

(AAG0)=OA(a1a2a3),(H±H±G±)=O±(ϕ1±ϕ2±ϕ3±),(HHh)=OH(φ1φ2φ3).\begin{pmatrix}A^{\prime}\\ A\\ G^{0}\end{pmatrix}=O_{A}\begin{pmatrix}a_{1}\\ a_{2}\\ a_{3}\end{pmatrix}\leavevmode\nobreak\ ,\qquad\begin{pmatrix}H^{\pm\prime}\\ H^{\pm}\\ G^{\pm}\end{pmatrix}=O_{\pm}\begin{pmatrix}\phi_{1}^{\pm}\\ \phi_{2}^{\pm}\\ \phi_{3}^{\pm}\end{pmatrix}\leavevmode\nobreak\ ,\qquad\begin{pmatrix}H^{\prime}\\ H\\ h\end{pmatrix}=O_{H}\begin{pmatrix}\varphi_{1}\\ \varphi_{2}\\ \varphi_{3}\end{pmatrix}\leavevmode\nobreak\ . (16)

The diagonalization matrices OAO_{A}, O±O_{\pm}, and OHO_{H} can be parameterized as products of three rotation matrices. We find for the pseudoscalar and charged Higgs sectors

OA=(cosγsinγ0sinγcosγ0001)(sinβ0cosβ010cosβ0sinβ)(1000sinβcosβ0cosβsinβ),O_{A}=\begin{pmatrix}\cos\gamma&-\sin\gamma&0\\ \sin\gamma&\cos\gamma&0\\ 0&0&1\end{pmatrix}\begin{pmatrix}\sin{\beta^{\prime}}&0&-\cos{\beta^{\prime}}\\ 0&1&0\\ \cos{\beta^{\prime}}&0&\sin{\beta^{\prime}}\end{pmatrix}\begin{pmatrix}1&0&0\\ 0&\sin\beta&-\cos\beta\\ 0&\cos\beta&\sin\beta\end{pmatrix}\leavevmode\nobreak\ , (17)
O±=(cosγ±sinγ±0sinγ±cosγ±0001)(sinβ0cosβ010cosβ0sinβ)(1000sinβcosβ0cosβsinβ),O_{\pm}=\begin{pmatrix}\cos{\gamma_{\pm}}&-\sin{\gamma_{\pm}}&0\\ \sin{\gamma_{\pm}}&\cos{\gamma_{\pm}}&0\\ 0&0&1\end{pmatrix}\begin{pmatrix}\sin{\beta^{\prime}}&0&-\cos{\beta^{\prime}}\\ 0&1&0\\ \cos{\beta^{\prime}}&0&\sin{\beta^{\prime}}\end{pmatrix}\begin{pmatrix}1&0&0\\ 0&\sin\beta&-\cos\beta\\ 0&\cos\beta&\sin\beta\end{pmatrix}\leavevmode\nobreak\ , (18)

where β\beta and β\beta^{\prime} where already introduced in (7). After applying the β\beta and β\beta^{\prime} rotations, one obtains partially diagonalized forms of the respective mass matrices, with the massless Goldstone bosons G0G^{0} and G±G^{\pm} already appearing as eigenstates. The final rotations by the angels γ\gamma and γ±\gamma_{\pm} fully diagonalize the mass matrices and define the massive eigenstates AA, AA^{\prime} and H±H^{\pm}, H±H^{\pm\,\prime}.

The pseudoscalar masses mAm_{A}, mAm_{A^{\prime}} and the mixing angle γ\gamma are determined by

mA2mA2\displaystyle m_{A}^{2}m_{A^{\prime}}^{2} =\displaystyle= m232cβsβ(m132cβ+m122sβ)+m122m132cβsβsβ2,\displaystyle\frac{m_{23}^{2}}{c_{\beta^{\prime}}s_{\beta^{\prime}}}\left(\frac{m_{13}^{2}}{c_{\beta}}+\frac{m_{12}^{2}}{s_{\beta}}\right)+\frac{m_{12}^{2}m_{13}^{2}}{c_{\beta}s_{\beta}s_{\beta^{\prime}}^{2}}\leavevmode\nobreak\ , (19)
mA2+mA2\displaystyle m_{A}^{2}+m_{A^{\prime}}^{2} =\displaystyle= m232cβsβ+1cβsβ[m122(sβ2cβ2cβ+cβ)+m132(cβ2cβ2sβ+sβ)],\displaystyle\frac{m_{23}^{2}}{c_{\beta}s_{\beta}}+\frac{1}{c_{\beta^{\prime}}s_{\beta^{\prime}}}\left[m_{12}^{2}\left(\frac{s_{\beta}^{2}c_{\beta^{\prime}}^{2}}{c_{\beta}}+c_{\beta}\right)+m_{13}^{2}\left(\frac{c_{\beta}^{2}c_{\beta^{\prime}}^{2}}{s_{\beta}}+s_{\beta}\right)\right]\leavevmode\nobreak\ , (20)
(mA2mA2)12sin(2γ)\displaystyle(m_{A}^{2}-m_{A^{\prime}}^{2})\frac{1}{2}\sin(2\gamma) =\displaystyle= m132cβsβm122sβsβ.\displaystyle m_{13}^{2}\frac{c_{\beta}}{s_{\beta^{\prime}}}-m_{12}^{2}\frac{s_{\beta}}{s_{\beta^{\prime}}}\leavevmode\nobreak\ . (21)

These relations can be used to trade the Lagrangian parameters m122m_{12}^{2}, m132m_{13}^{2}, m232m_{23}^{2} for mAm_{A}, mAm_{A^{\prime}}, γ\gamma. The charged Higgs masses mH±m_{H^{\pm}}, mH±m_{H^{\pm\,\prime}} and the corresponding mixing angle γ±\gamma_{\pm} can be determined analogously. We find

mH±2mH±2\displaystyle m_{H^{\pm}}^{2}m_{H^{\pm\,\prime}}^{2} =\displaystyle= mA2mA2v22[λ7sβ(m232cβ+m132/tβ)\displaystyle m_{A}^{2}m_{A^{\prime}}^{2}-\frac{v^{2}}{2}\Bigg{[}\frac{\lambda_{7}}{s_{\beta}}\left(m_{23}^{2}c_{\beta}+m_{13}^{2}/t_{\beta^{\prime}}\right) (22)
+λ8cβ(m232sβ+m122/tβ)+λ9tβ(m122cβ+m132sβ)]\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ +\frac{\lambda_{8}}{c_{\beta}}\left(m_{23}^{2}s_{\beta}+m_{12}^{2}/t_{\beta^{\prime}}\right)+\lambda_{9}t_{\beta^{\prime}}\left(m_{12}^{2}c_{\beta}+m_{13}^{2}s_{\beta}\right)\Bigg{]}
+v44[λ7λ8cβ2+λ7λ9cβ2sβ2+λ8λ9sβ2sβ2],\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ +\frac{v^{4}}{4}\Bigg{[}\lambda_{7}\lambda_{8}c_{\beta^{\prime}}^{2}+\lambda_{7}\lambda_{9}c_{\beta}^{2}s_{\beta^{\prime}}^{2}+\lambda_{8}\lambda_{9}s_{\beta}^{2}s_{\beta^{\prime}}^{2}\Bigg{]}\leavevmode\nobreak\ ,
mH±2+mH±2\displaystyle m_{H^{\pm}}^{2}+m_{H^{\pm\,\prime}}^{2} =\displaystyle= mA2+mA2v22[λ7(cβ2+sβ2cβ2)+λ8(sβ2+cβ2cβ2)+λ9sβ2],\displaystyle m_{A}^{2}+m_{A^{\prime}}^{2}-\frac{v^{2}}{2}\Bigg{[}\lambda_{7}\left(c_{\beta}^{2}+s_{\beta}^{2}c_{\beta^{\prime}}^{2}\right)+\lambda_{8}\left(s_{\beta}^{2}+c_{\beta}^{2}c_{\beta^{\prime}}^{2}\right)+\lambda_{9}s_{\beta^{\prime}}^{2}\Bigg{]}\leavevmode\nobreak\ , (23)
(mH±2mH±2)12sin(2γ±)\displaystyle(m_{H^{\pm}}^{2}-m_{H^{\pm\,\prime}}^{2})\frac{1}{2}\sin(2\gamma_{\pm}) =\displaystyle= (mA2mA2)12sin(2γ)+v22(λ7λ8)cβsβcβ.\displaystyle(m_{A}^{2}-m_{A^{\prime}}^{2})\frac{1}{2}\sin(2\gamma)+\frac{v^{2}}{2}\left(\lambda_{7}-\lambda_{8}\right)c_{\beta}s_{\beta}c_{\beta^{\prime}}\leavevmode\nobreak\ . (24)

In the case of the CP-even Higgs bosons, we write

OH=(cosγHsinγH0sinγHcosγH0001)(cosα0sinα010sinα0cosα)(1000cosαsinα0sinαcosα),O_{H}=\begin{pmatrix}\cos{\gamma_{H}}&-\sin{\gamma_{H}}&0\\ \sin{\gamma_{H}}&\cos{\gamma_{H}}&0\\ 0&0&1\end{pmatrix}\begin{pmatrix}\cos{\alpha^{\prime}}&0&\sin{\alpha^{\prime}}\\ 0&1&0\\ -\sin{\alpha^{\prime}}&0&\cos{\alpha^{\prime}}\end{pmatrix}\begin{pmatrix}1&0&0\\ 0&\cos\alpha&\sin\alpha\\ 0&-\sin\alpha&\cos\alpha\end{pmatrix}\leavevmode\nobreak\ , (25)

with all three angles α\alpha, α\alpha^{\prime}, and γH\gamma_{H}, as new parameters. As already anticipated in the introduction, the stringent limits from meson mixing generically suggest that the BSM Higgs bosons may be considerably heavier than the electroweak scale. It is thus motivated to consider the decoupling limit in which v12,v22,v32m122,m132,m232v_{1}^{2},v_{2}^{2},v_{3}^{2}\ll m_{12}^{2},m_{13}^{2},m_{23}^{2}. In this limit, one finds to first approximation

mH2mA2,mH2mA2,OHOA.m_{H}^{2}\simeq m_{A}^{2}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ m_{H^{\prime}}^{2}\simeq m_{A^{\prime}}^{2}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ O_{H}\simeq O_{A}\leavevmode\nobreak\ . (26)

The eigenstate hh has a mass of the order of vv and has at leading order precisely SM-like couplings. It is thus identified with the 125 GeV Higgs. As we will see in section III, in the approximation (26), an exact cancellation of new physics contributions to the meson mixing amplitudes can occur. To assess the constraints from meson mixing, it thus becomes important to systematically include corrections beyond the leading order of the decoupling limit.

II.3 Beyond the leading order of the decoupling limit with large 𝐭𝐚𝐧𝜷\tan\beta and 𝐭𝐚𝐧𝜷\tan\beta^{\prime}

While it is possible to systematically expand the masses and mixing angles in the CP even scalar sector in powers of vk2/mij2v_{k}^{2}/m_{ij}^{2}, the resulting expressions are rather lengthy and will not be presented here. Instead, we will focus on the scenario of large tanβ\tan\beta and tanβ\tan\beta^{\prime} in which the expressions simplify considerably. In fact, one motivation to consider the generational 3HDM model is the possibility of partially addressing the hierarchies in the SM fermion masses. We thus consider a scenario with v1v2v3v_{1}\ll v_{2}\ll v_{3}, corresponding to 1tanβtanβ1\ll\tan\beta\ll\tan\beta^{\prime}.

First of all, assuming no particular hierarchy in the mass parameters m122m132m232m_{12}^{2}\sim m_{13}^{2}\sim m_{23}^{2}, we find that the pseudoscalar AA^{\prime} is parametrically heavier than AA 222According to the minimization conditions in eqs. (10) - (12), this corresponds to a hierarchical set of diagonal masses m112m222m332O(v2)m^{2}_{11}\gg m^{2}_{22}\gg m^{2}_{33}\sim O(v^{2}). Alternatively, one could entertain a scenario with m112m222m332O(v2)m^{2}_{11}\sim m^{2}_{22}\gg m^{2}_{33}\sim O(v^{2}), which gives mA2mA2m_{A^{\prime}}^{2}\sim m_{A}^{2}, but requires m132m232m_{13}^{2}\ll m_{23}^{2}. In our numerical analysis, we do not assume any particular hierarchy in the masses of the heavy Higgs bosons.

mA2m132tanβmA2m232tanβ.m_{A^{\prime}}^{2}\simeq m_{13}^{2}\tan\beta^{\prime}\gg m_{A}^{2}\simeq m_{23}^{2}\tan\beta\leavevmode\nobreak\ . (27)

Moreover, the mixing angle in the pseudoscalar sector, γ\gamma, turns out to be small and is of the order of γ1/tanβ1\gamma\sim 1/\tan\beta^{\prime}\ll 1. More precisely, we find

γAm122m1321tanβ.\displaystyle\gamma_{A}\simeq\frac{m_{12}^{2}}{m_{13}^{2}}\,\frac{1}{\tan\beta^{\prime}}\leavevmode\nobreak\ . (28)

In the charged Higgs sector, the masses and mixing angles are given at leading order by the corresponding pseudoscalar quantities. Including next-to-leading order corrections, we find

mH±2mA2v22λ9,mH±2mA2v22λ8,γ±γ+γv22mA2(λ8λ9).m_{H^{\pm}}^{2}\simeq m_{A}^{2}-\frac{v^{2}}{2}\lambda_{9}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ m_{H^{\pm\,\prime}}^{2}\simeq m_{A^{\prime}}^{2}-\frac{v^{2}}{2}\lambda_{8}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \gamma_{\pm}\simeq\gamma+\frac{\gamma v^{2}}{2m_{A^{\prime}}^{2}}(\lambda_{8}-\lambda_{9})\leavevmode\nobreak\ . (29)

Similarly, for the masses of the scalar Higgs bosons we find

mh22v2λ3,mH2\displaystyle m_{h}^{2}\simeq 2v^{2}\lambda_{3}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ m_{H}^{2} \displaystyle\simeq mA2+2v2tan2β(λ2+λ3λ6λ9)=mA2+2v2tan2βλH,\displaystyle m_{A}^{2}+\frac{2v^{2}}{\tan^{2}\beta}\left(\lambda_{2}+\lambda_{3}-\lambda_{6}-\lambda_{9}\right)=m_{A}^{2}+\frac{2v^{2}}{\tan^{2}\beta}\lambda_{H}\leavevmode\nobreak\ , (30)
mH2\displaystyle m_{H^{\prime}}^{2} \displaystyle\simeq mA2+2v2tan2β(λ1+λ3λ5λ8)=mA2+2v2tan2βλH.\displaystyle m_{A^{\prime}}^{2}+\frac{2v^{2}}{\tan^{2}\beta^{\prime}}\left(\lambda_{1}+\lambda_{3}-\lambda_{5}-\lambda_{8}\right)=m_{A^{\prime}}^{2}+\frac{2v^{2}}{\tan^{2}\beta^{\prime}}\lambda_{H^{\prime}}\leavevmode\nobreak\ . (31)

For the diagonalization matrix in the scalar Higgs sector, we find it convenient to write

OH=(11+Δ)OA,Δ(0Δ12Δ13Δ120Δ23Δ13Δ230),O_{H}=(1\!\!1+\Delta)O_{A}\leavevmode\nobreak\ ,\quad\Delta\simeq\begin{pmatrix}0&\Delta_{12}&\Delta_{13}\\ -\Delta_{12}&0&\Delta_{23}\\ -\Delta_{13}&-\Delta_{23}&0\end{pmatrix}\leavevmode\nobreak\ , (32)

where the matrix Δ=OHOAT11\Delta=O_{H}O_{A}^{\text{T}}-1\!\!1 captures the departure from the decoupling limit. We find

Δ12\displaystyle\Delta_{12} =\displaystyle= v2mA21tβtβ(2λ3+λ4λ5λ6+λ7λ8λ9)v2mA21tβtβλ12,\displaystyle\frac{v^{2}}{m_{A^{\prime}}^{2}}\frac{1}{t_{\beta}t_{\beta^{\prime}}}\left(2\lambda_{3}+\lambda_{4}-\lambda_{5}-\lambda_{6}+\lambda_{7}-\lambda_{8}-\lambda_{9}\right)\equiv\frac{v^{2}}{m_{A^{\prime}}^{2}}\frac{1}{t_{\beta}t_{\beta^{\prime}}}\lambda_{12}\leavevmode\nobreak\ , (33)
Δ13\displaystyle\Delta_{13} =\displaystyle= v2mA21tβ(2λ3λ5λ8)v2mA21tβλ13,\displaystyle-\frac{v^{2}}{m_{A^{\prime}}^{2}}\frac{1}{t_{\beta^{\prime}}}\left(2\lambda_{3}-\lambda_{5}-\lambda_{8}\right)\equiv-\frac{v^{2}}{m_{A^{\prime}}^{2}}\frac{1}{t_{\beta^{\prime}}}\lambda_{13}\leavevmode\nobreak\ , (34)
Δ23\displaystyle\Delta_{23} =\displaystyle= v2mA21tβ(2λ3λ6λ9)v2mA21tβλ23.\displaystyle-\frac{v^{2}}{m_{A}^{2}}\frac{1}{t_{\beta}}\left(2\lambda_{3}-\lambda_{6}-\lambda_{9}\right)\equiv-\frac{v^{2}}{m_{A}^{2}}\frac{1}{t_{\beta}}\lambda_{23}\leavevmode\nobreak\ . (35)

II.4 The Yukawa sector

We consider the following set of Yukawa matrices, with textures that are an extension of the textures previously explored in the context of so-called flavorful 2HDMs [13, 12, 14]

λu1\displaystyle\lambda_{u_{1}} 2v1(mumumumumumumumumu),\displaystyle\sim\frac{\sqrt{2}}{v_{1}}\begin{pmatrix}m_{u}&m_{u}&m_{u}\\ m_{u}&m_{u}&m_{u}\\ m_{u}&m_{u}&m_{u}\end{pmatrix}, λu2\displaystyle\lambda_{u_{2}} 2v2(0000mcmc0mcmc),\displaystyle\sim\frac{\sqrt{2}}{v_{2}}\begin{pmatrix}0&0&0\\ 0&m_{c}&m_{c}\\ 0&m_{c}&m_{c}\end{pmatrix}, λu3\displaystyle\lambda_{u_{3}} 2v3(00000000mt),\displaystyle\sim\frac{\sqrt{2}}{v_{3}}\begin{pmatrix}0&0&0\\ 0&0&0\\ 0&0&m_{t}\end{pmatrix}, (36a)
λd1\displaystyle\lambda_{d_{1}} 2v1(mdmsλmbλ3mdmdmdmdmdmd),\displaystyle\sim\frac{\sqrt{2}}{v_{1}}\begin{pmatrix}m_{d}&m_{s}\lambda&m_{b}\lambda^{3}\\ m_{d}&m_{d}&m_{d}\\ m_{d}&m_{d}&m_{d}\end{pmatrix}, λd2\displaystyle\lambda_{d_{2}} 2v2(0000msmbλ20msms),\displaystyle\sim\frac{\sqrt{2}}{v_{2}}\begin{pmatrix}0&0&0\\ 0&m_{s}&m_{b}\lambda^{2}\\ 0&m_{s}&m_{s}\end{pmatrix}, λd3\displaystyle\lambda_{d_{3}} 2v3(00000000mb),\displaystyle\sim\frac{\sqrt{2}}{v_{3}}\begin{pmatrix}0&0&0\\ 0&0&0\\ 0&0&m_{b}\end{pmatrix}, (36b)
λ1\displaystyle\lambda_{\ell_{1}} 2v1(mememememememememe),\displaystyle\sim\frac{\sqrt{2}}{v_{1}}\begin{pmatrix}m_{e}&m_{e}&m_{e}\\ m_{e}&m_{e}&m_{e}\\ m_{e}&m_{e}&m_{e}\end{pmatrix}, λ2\displaystyle\lambda_{\ell_{2}} 2v2(0000mμmμ0mμmμ),\displaystyle\sim\frac{\sqrt{2}}{v_{2}}\begin{pmatrix}0&0&0\\ 0&m_{\mu}&m_{\mu}\\ 0&m_{\mu}&m_{\mu}\end{pmatrix}, λ3\displaystyle\lambda_{\ell_{3}} 2v3(00000000mτ).\displaystyle\sim\frac{\sqrt{2}}{v_{3}}\begin{pmatrix}0&0&0\\ 0&0&0\\ 0&0&m_{\tau}\end{pmatrix}. (36c)

With \sim we indicate the order of the entries, keeping in mind that non-zero entries in the same matrix can differ by complex 𝒪(1)\mathcal{O}(1) factors. We assume that all of the Yukawa couplings are rank-1 matrices, but otherwise do not contain any specific structure. Because of the assumed rank-1 structure, each Higgs doublet couples only to a single linear combination of the three generations and we dub such a scenario a “generational” 3HDM (or G3HDM). The rank-1 structure of the Yukawas can be realized in a straight-forward way by having the SM fermions mix with three separate generations of vector-like fermions that each couple to only one of the Higgs doublets. More details are given in appendix B.

An interesting feature of the generational 3HDM setup is that one may choose to generate part of the SM fermion mass hierarchies by adjusting the vevs of the three doublets relative to each other. This offers the option to either generate the large mass differences purely in the Yukawa sector, as seen in the SM, or to shift some of the burden over to the Higgs sector. In the limit of a large relative vev hierarchy, v1v2v3v_{1}\ll v_{2}\ll v_{3}, one may begin with a set of rank-1 and 𝒪(1)\mathcal{O}(1) Yukawa couplings, and proceed to have the large parts of the quark and lepton mass hierarchies be generated in the Higgs sector alone.

Without loss of generality, we have expressed the Yukawa couplings in a flavor basis in which the couplings of Φ3\Phi_{3} are diagonal, emphasizing the role of Φ3\Phi_{3} in providing the dominant component of the mass for the third generation of quarks and leptons. Note that the couplings of Φ3\Phi_{3} preserve a SU(2)5SU(2)^{5} flavor symmetry that acts on the first two generations. The couplings of Φ2\Phi_{2} and Φ1\Phi_{1} are in general misaligned in flavor space and both break the SU(2)5SU(2)^{5} symmetry. However, we can use the remaining freedom in choosing a flavor basis to bring the couplings of Φ2\Phi_{2} into the shown block-diagonal form.

The non-minimal breaking of the SM flavor symmetries by the above set of Yukawa couplings is expected to give large contributions to flavor-changing neutral current (FCNC) processes, kaon and DD meson mixing in particular. The corresponding flavor constraints on the model will be analyzed in detail in section III. In order to soften the constraints one may entertain the possibility that some of the off-diagonal entries in λf1\lambda_{f_{1}} and λf2\lambda_{f_{2}} are suppressed compared to what is shown in (36a) - (36c). This could for example be achieved by spontaneously broken flavor symmetries. However, we emphasize that not all off-diagonal entries in the Yukawa couplings can be arbitrarily suppressed. The entries in λd1\lambda_{d_{1}} and λd2\lambda_{d_{2}} of order msλm_{s}\lambda, mbλ3m_{b}\lambda^{3}, and mbλ2m_{b}\lambda^{2}, where λ0.23\lambda\simeq 0.23 is the sine of the Cabibbo angle, are required to reproduce the CKM matrix, once one rotates in the fermion mass eigenstate basis. Note that it is an assumption that the CKM matrix originates from the diagonalization of the down-quark mass matrix. Other Yukawa textures can also be viable (see also footnote 3 below.)

In the fermion mass eigenstate basis, we define the following set of mass parameters which we will use below to write the couplings of the physical Higgs mass eigenstates to fermion mass eigenstates

mfff1=v12fL|λf1|fR,mfff2=v22fL|λf2|fR,mfff3=v32fL|λf3|fR.m^{f_{1}}_{ff^{\prime}}=\frac{v_{1}}{\sqrt{2}}\langle f_{L}|\lambda_{f_{1}}|f_{R}^{\prime}\rangle\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ m^{f_{2}}_{ff^{\prime}}=\frac{v_{2}}{\sqrt{2}}\langle f_{L}|\lambda_{f_{2}}|f_{R}^{\prime}\rangle\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ m^{f_{3}}_{ff^{\prime}}=\frac{v_{3}}{\sqrt{2}}\langle f_{L}|\lambda_{f_{3}}|f_{R}^{\prime}\rangle\leavevmode\nobreak\ . (37)

These parameters obey the relationship

mfff3+mfff2+mfff1=mfδff,m^{f_{3}}_{ff^{\prime}}+m^{f_{2}}_{ff^{\prime}}+m^{f_{1}}_{ff^{\prime}}=m_{f}\delta_{ff^{\prime}}\leavevmode\nobreak\ , (38)

with mfm_{f} (without superscripts) representing the physical masses of the quarks or leptons.

We obtain the following set of explicit mass parameters after expanding each entry to leading order in ratios of first to second and second to third generation masses

mqqu1mu(1xucxutxcuxcuxucxcuxutxtuxtuxucxtuxut),mqqu2mc(mu2mc2xucxcumumcxucmumcxucyctmumcxcu1yctmumcytcxcuytcytcyct),\frac{m^{u_{1}}_{qq^{\prime}}}{m_{u}}\simeq\begin{pmatrix}1&x_{uc}&x_{ut}\\ x_{cu}&x_{cu}x_{uc}&x_{cu}x_{ut}\\ x_{tu}&x_{tu}x_{uc}&x_{tu}x_{ut}\end{pmatrix},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \frac{m^{u_{2}}_{qq^{\prime}}}{m_{c}}\simeq\begin{pmatrix}\frac{m_{u}^{2}}{m_{c}^{2}}x_{uc}x_{cu}&-\frac{m_{u}}{m_{c}}x_{uc}&-\frac{m_{u}}{m_{c}}x_{uc}y_{ct}\\ -\frac{m_{u}}{m_{c}}x_{cu}&1&y_{ct}\\ -\frac{m_{u}}{m_{c}}y_{tc}x_{cu}&y_{tc}&y_{tc}y_{ct}\end{pmatrix}\leavevmode\nobreak\ , (39)
mqqu3mt(mu2mt2(xutxucyct)(xtuytcxcu)mumcmt2(xutxucyct)ytcmumt(xutxucyct)mumcmt2yct(xtuytcxcu)mc2mt2yctytcmcmtyctmumt(xtuytcxcu)mcmtytc1),\frac{m^{u_{3}}_{qq^{\prime}}}{m_{t}}\simeq\begin{pmatrix}\frac{m_{u}^{2}}{m_{t}^{2}}(x_{ut}-x_{uc}y_{ct})(x_{tu}-y_{tc}x_{cu})&\frac{m_{u}m_{c}}{m_{t}^{2}}(x_{ut}-x_{uc}y_{ct})y_{tc}&-\frac{m_{u}}{m_{t}}(x_{ut}-x_{uc}y_{ct})\\ \frac{m_{u}m_{c}}{m_{t}^{2}}y_{ct}(x_{tu}-y_{tc}x_{cu})&\frac{m_{c}^{2}}{m_{t}^{2}}y_{ct}y_{tc}&-\frac{m_{c}}{m_{t}}y_{ct}\\ -\frac{m_{u}}{m_{t}}(x_{tu}-y_{tc}x_{cu})&-\frac{m_{c}}{m_{t}}y_{tc}&1\end{pmatrix}\leavevmode\nobreak\ , (40)
mqqd1md(1msmdVudVusmbmdVudVubxsdxsdmsmdVudVusxsdmbmdVudVubxbdxbdmsmdVudVusxbdmbmdVudVub),mqqd2ms(mdmsVcdVcsxsdVcdVcsmbmsVcdVcbmdmsxsd1mbmsVcsVcbmdmsybsxsdybsybsmbmsVcsVcb),\frac{m^{d_{1}}_{qq^{\prime}}}{m_{d}}\simeq\begin{pmatrix}1&\frac{m_{s}}{m_{d}}V_{ud}^{*}V_{us}&\frac{m_{b}}{m_{d}}V_{ud}^{*}V_{ub}\\ x_{sd}&x_{sd}\frac{m_{s}}{m_{d}}V_{ud}^{*}V_{us}&x_{sd}\frac{m_{b}}{m_{d}}V_{ud}^{*}V_{ub}\\ x_{bd}&x_{bd}\frac{m_{s}}{m_{d}}V_{ud}^{*}V_{us}&x_{bd}\frac{m_{b}}{m_{d}}V_{ud}^{*}V_{ub}\end{pmatrix},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \frac{m^{d_{2}}_{qq^{\prime}}}{m_{s}}\simeq\begin{pmatrix}-\frac{m_{d}}{m_{s}}V_{cd}^{*}V_{cs}x_{sd}&V_{cd}^{*}V_{cs}&\frac{m_{b}}{m_{s}}V_{cd}^{*}V_{cb}\\ -\frac{m_{d}}{m_{s}}x_{sd}&1&\frac{m_{b}}{m_{s}}V_{cs}^{*}V_{cb}\\ -\frac{m_{d}}{m_{s}}y_{bs}x_{sd}&y_{bs}&y_{bs}\frac{m_{b}}{m_{s}}V_{cs}^{*}V_{cb}\end{pmatrix}\leavevmode\nobreak\ , (41)
mqqd3mb(mdmbVtdVtb(xbdybsxsd)msmbVtdVtbybsVtdVtbmdmbVtsVtb(xbdybsxsd)msmbVtsVtbybsVtsVtbmdmb(xbdybsxsd)msmbybs1).\frac{m^{d_{3}}_{qq^{\prime}}}{m_{b}}\simeq\begin{pmatrix}-\frac{m_{d}}{m_{b}}V_{td}^{*}V_{tb}(x_{bd}-y_{bs}x_{sd})&-\frac{m_{s}}{m_{b}}V_{td}^{*}V_{tb}y_{bs}&V_{td}^{*}V_{tb}\\ -\frac{m_{d}}{m_{b}}V_{ts}^{*}V_{tb}(x_{bd}-y_{bs}x_{sd})&-\frac{m_{s}}{m_{b}}V_{ts}^{*}V_{tb}y_{bs}&V_{ts}^{*}V_{tb}\\ -\frac{m_{d}}{m_{b}}(x_{bd}-y_{bs}x_{sd})&-\frac{m_{s}}{m_{b}}y_{bs}&1\end{pmatrix}\leavevmode\nobreak\ . (42)

The lepton mass parameters are completely analogous to the ones in the up quark sector. In the above expressions, the xijx_{ij}, yijy_{ij} are free, in general complex, 𝒪(1)\mathcal{O}(1) parameters. These parameterize new sources of flavor and CP violation. Note that not all entries of the mass matrices are independent. This is due to two reasons: first, they need to reproduce the quark and lepton masses as well as the CKM matrix; second, we have assumed that they originate from rank-1 Yukawa couplings.

It is in principle possible to set all the xijx_{ij}, yijy_{ij} to zero. In that case, one obtains a “generation specific” 3HDM in which the Yukawa couplings are aligned such that Φ1\Phi_{1}, Φ2\Phi_{2}, and Φ3\Phi_{3} couple to a good approximation only to the first, second, and third generation, respectively. The alignment can be exact in the up-quark sector and the lepton sector. However, because in the described setup the CKM matrix originates from the down Yukawa couplings, the alignment cannot be perfect in the down sector. The mass matrices mqqd3m^{d_{3}}_{qq^{\prime}}, mqqd2m^{d_{2}}_{qq^{\prime}}, mqqd1m^{d_{1}}_{qq^{\prime}} contain necessarily also flavor changing entries333Alternatively, the CKM matrix could be generated in the up-sector. In that case one could have an exact alignment in the down quark sector, but the up quark mass matrices mqqu3m^{u_{3}}_{qq^{\prime}}, mqqu2m^{u_{2}}_{qq^{\prime}}, mqqu1m^{u_{1}}_{qq^{\prime}} would contain off-diagonal terms. In the most generic case, the CKM matrix would originate partly from the down-sector and partly from the up-sector. .

II.5 Couplings of the physical Higgs bosons

After bringing both fermions and scalars into the mass eigenstate basis, the couplings of the physical Higgs bosons of the 3HDM to the SM fermions may be parameterized by

Yf=d,i,j(f¯iPRfj)(hκfifjh+HκfifjH+HκfifjH+iAκfifjA+iAκfifjA)mfjv+h.c.+i,j(u¯iPRuj)(hκuiujh+HκuiujH+HκuiujHiAκuiujAiAκuiujA)mujv+h.c.+2i,j(ν¯iPRj)(H+κij±+H+κij±)mjv+h.c.+2i,j,k(u¯iPRdj)Vuidk(H+κdkdj±+H+κdkdj±)mdjv+h.c.2i,j,k(d¯iPRuj)Vukdi(Hκukuj±+Hκukuj±)mujv+h.c..-\mathcal{L}_{Y}\supset\sum\limits_{f=d,\ell}\sum\limits_{i,j}(\overline{f}_{i}P_{R}f_{j})\Big{(}h\kappa^{h}_{f_{i}f_{j}}+H\kappa^{H}_{f_{i}f_{j}}+H^{\prime}\kappa^{H^{\prime}}_{f_{i}f_{j}}+iA\kappa^{A}_{f_{i}f_{j}}+iA^{\prime}\kappa^{A^{\prime}}_{f_{i}f_{j}}\Big{)}\frac{m_{f_{j}}}{v}+\text{h.c.}\\ +\sum\limits_{i,j}(\overline{u}_{i}P_{R}u_{j})\Big{(}h\kappa^{h}_{u_{i}u_{j}}+H\kappa^{H}_{u_{i}u_{j}}+H^{\prime}\kappa^{H^{\prime}}_{u_{i}u_{j}}-iA\kappa^{A}_{u_{i}u_{j}}-iA^{\prime}\kappa^{A^{\prime}}_{u_{i}u_{j}}\Big{)}\frac{m_{u_{j}}}{v}+\text{h.c.}\\ +\sqrt{2}\sum\limits_{i,j}(\overline{\nu}_{i}P_{R}\ell_{j})\Big{(}H^{+}\kappa^{\pm}_{\ell_{i}\ell_{j}}+H^{+\,\prime}\kappa^{\pm\,\prime}_{\ell_{i}\ell_{j}}\Big{)}\frac{m_{\ell_{j}}}{v}+\text{h.c.}\\ +\sqrt{2}\sum\limits_{i,j,k}(\overline{u}_{i}P_{R}d_{j})V_{u_{i}d_{k}}\Big{(}H^{+}\kappa^{\pm}_{d_{k}d_{j}}+H^{+\,\prime}\kappa^{\pm\,\prime}_{d_{k}d_{j}}\Big{)}\frac{m_{d_{j}}}{v}+\text{h.c.}\\ -\sqrt{2}\sum\limits_{i,j,k}(\overline{d}_{i}P_{R}u_{j})V^{*}_{u_{k}d_{i}}\Big{(}H^{-}\kappa^{\pm}_{u_{k}u_{j}}+H^{-\,\prime}\kappa^{\pm\,\prime}_{u_{k}u_{j}}\Big{)}\frac{m_{u_{j}}}{v}+\text{h.c.}\leavevmode\nobreak\ . (43)

We introduced the κ\kappa modifiers that parameterize the deviation from the related SM couplings. In the SM, κfifih=1\kappa^{h}_{f_{i}f_{i}}=1 for the diagonal Higgs couplings, whereas κfifjh=0\kappa^{h}_{f_{i}f_{j}}=0 for the off-diagonal couplings. It is straight-forward to express the κ\kappa factors in terms of mass parameters in (39) - (42) and the mixing angles in the Higgs sector defined in (17), (18), and (25),

(κffAmfvκffAmfvδffmfv)=OA(mfff1v1mfff2v2mfff3v3),(κffHmfvκffHmfvκffhmfv)=OH(mfff1v1mfff2v2mfff3v3),(κff±mfvκff±mfvδffmfv)=O±(mfff1v1mfff2v2mfff3v3).\begin{pmatrix}\kappa^{A^{\prime}}_{ff^{\prime}}\frac{m_{f^{\prime}}}{v}\\ \kappa^{A}_{ff^{\prime}}\frac{m_{f^{\prime}}}{v}\\ \delta_{ff^{\prime}}\frac{m_{f^{\prime}}}{v}\end{pmatrix}=O_{A}\begin{pmatrix}\frac{m^{f_{1}}_{ff^{\prime}}}{v_{1}}\\ \frac{m^{f_{2}}_{ff^{\prime}}}{v_{2}}\\ \frac{m^{f_{3}}_{ff^{\prime}}}{v_{3}}\end{pmatrix}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \begin{pmatrix}\kappa^{H^{\prime}}_{ff^{\prime}}\frac{m_{f^{\prime}}}{v}\\ \kappa^{H}_{ff^{\prime}}\frac{m_{f^{\prime}}}{v}\\ \kappa^{h}_{ff^{\prime}}\frac{m_{f^{\prime}}}{v}\end{pmatrix}=O_{H}\begin{pmatrix}\frac{m^{f_{1}}_{ff^{\prime}}}{v_{1}}\\ \frac{m^{f_{2}}_{ff^{\prime}}}{v_{2}}\\ \frac{m^{f_{3}}_{ff^{\prime}}}{v_{3}}\end{pmatrix}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \begin{pmatrix}\kappa^{\pm\,\prime}_{ff^{\prime}}\frac{m_{f^{\prime}}}{v}\\ \kappa^{\pm}_{ff^{\prime}}\frac{m_{f^{\prime}}}{v}\\ \delta_{ff^{\prime}}\frac{m_{f^{\prime}}}{v}\end{pmatrix}=O_{\pm}\begin{pmatrix}\frac{m^{f_{1}}_{ff^{\prime}}}{v_{1}}\\ \frac{m^{f_{2}}_{ff^{\prime}}}{v_{2}}\\ \frac{m^{f_{3}}_{ff^{\prime}}}{v_{3}}\end{pmatrix}\leavevmode\nobreak\ . (44)

As the resulting explicit expressions are very lengthy, we refrain from showing them here. Instead, we give approximate expressions that are valid in the combined limit v2mA2,mA2v^{2}\ll m_{A}^{2},m_{A^{\prime}}^{2} and 1tanβtanβ1\ll\tan\beta\ll\tan\beta^{\prime}. We find for the CP-odd Higgs couplings

κfifjAmfj\displaystyle\kappa^{A^{\prime}}_{f_{i}f_{j}}m_{f_{j}} \displaystyle\simeq tβmfifjf1tβtγmfifjf21tβmfifjf3,\displaystyle t_{\beta^{\prime}}m^{f_{1}}_{f_{i}f_{j}}-t_{\beta}t_{\gamma}m^{f_{2}}_{f_{i}f_{j}}-\frac{1}{t_{\beta^{\prime}}}m^{f_{3}}_{f_{i}f_{j}}\leavevmode\nobreak\ , (45)
κfifjAmfj\displaystyle\kappa^{A}_{f_{i}f_{j}}m_{f_{j}} \displaystyle\simeq tβmfifjf2+tβtγmfifjf11tβmfifjf3.\displaystyle t_{\beta}m^{f_{2}}_{f_{i}f_{j}}+t_{\beta^{\prime}}t_{\gamma}m^{f_{1}}_{f_{i}f_{j}}-\frac{1}{t_{\beta}}m^{f_{3}}_{f_{i}f_{j}}\leavevmode\nobreak\ . (46)

The κ\kappa factors of the CP even Higgs bosons are tightly related to the ones of the CP odd Higgs bosons. For all types of fermions one has

κfifjH\displaystyle\kappa^{H^{\prime}}_{f_{i}f_{j}} \displaystyle\simeq κfifjAv2mA2λ13tβδij+v2mA2λ12tβtβκfifjA,\displaystyle\kappa^{A^{\prime}}_{f_{i}f_{j}}-\frac{v^{2}}{m_{A^{\prime}}^{2}}\frac{\lambda_{13}}{t_{\beta^{\prime}}}\delta_{ij}+\frac{v^{2}}{m_{A^{\prime}}^{2}}\frac{\lambda_{12}}{t_{\beta^{\prime}}t_{\beta}}\kappa^{A}_{f_{i}f_{j}}\leavevmode\nobreak\ , (47)
κfifjH\displaystyle\kappa^{H}_{f_{i}f_{j}} \displaystyle\simeq κfifjAv2mA2λ23tβδijv2mA2λ12tβtβκfifjA,\displaystyle\kappa^{A}_{f_{i}f_{j}}-\frac{v^{2}}{m_{A}^{2}}\frac{\lambda_{23}}{t_{\beta}}\delta_{ij}-\frac{v^{2}}{m_{A^{\prime}}^{2}}\frac{\lambda_{12}}{t_{\beta^{\prime}}t_{\beta}}\kappa^{A^{\prime}}_{f_{i}f_{j}}\leavevmode\nobreak\ , (48)
κfifjh\displaystyle\kappa^{h}_{f_{i}f_{j}} \displaystyle\simeq δij+v2mA2λ23tβκfifjA+v2mA2λ13tβκfifjA,\displaystyle\delta_{ij}+\frac{v^{2}}{m_{A}^{2}}\frac{\lambda_{23}}{t_{\beta}}\kappa^{A}_{f_{i}f_{j}}+\frac{v^{2}}{m_{A^{\prime}}^{2}}\frac{\lambda_{13}}{t_{\beta^{\prime}}}\kappa^{A^{\prime}}_{f_{i}f_{j}}\leavevmode\nobreak\ , (49)

with the parameters λ12\lambda_{12}, λ13\lambda_{13}, λ23\lambda_{23} defined in eqs. (33) - (35).

Finally, for the charged Higgs bosons we find

κfifjH±κfifjAtγv22mA2(λ8λ9)κfifjA,κfifjH±κfifjA+tγv22mA2(λ8λ9)κfifjA.\kappa^{H^{\pm\,\prime}}_{f_{i}f_{j}}\simeq\kappa^{A^{\prime}}_{f_{i}f_{j}}-\frac{t_{\gamma}v^{2}}{2m_{A^{\prime}}^{2}}(\lambda_{8}-\lambda_{9})\kappa^{A}_{f_{i}f_{j}}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \kappa^{H^{\pm}}_{f_{i}f_{j}}\simeq\kappa^{A}_{f_{i}f_{j}}+\frac{t_{\gamma}v^{2}}{2m_{A^{\prime}}^{2}}(\lambda_{8}-\lambda_{9})\kappa^{A^{\prime}}_{f_{i}f_{j}}\leavevmode\nobreak\ . (50)

III Low Energy Flavor Probes

As seen in the previous section, the Higgs bosons of the considered setup in general all have flavor-changing couplings. One thus expects that flavor-changing neutral current (FCNC) processes can be used to constrain the model. This is particularly the case for neutral meson mixing and rare leptonic decays of neutral mesons, which all receive tree-level contributions from neutral Higgs boson exchange. As detailed below, we indeed find that observables related to the mentioned FCNC processes provide often stringent constraints on our Higgs parameter space as many of the observables have been measured to a high accuracy and there exist robust SM predictions for most cases considered.

III.1 Meson oscillations

The frequencies of neutral kaon and BB meson oscillations are measured with impressive accuracy [76, 77, 78, 79]. Also the parameter ϵK\epsilon_{K} that measures indirect CP violation in kaon oscillations is known experimentally with high precision [78], as are the B0B^{0} and BsB_{s} mixing phases [79, 80, 81]. The experimental status is summarized in the left column of Table 1.

observable experiment SM prediction (from tree level CKM)
ΔMK\Delta M_{K} (3.484±0.006)×1015GeV\left(3.484\pm 0.006\right)\times 10^{-15}\leavevmode\nobreak\ \text{GeV} [78] (3.1±1.2)×1015GeV\left(3.1\pm 1.2\right)\times 10^{-15}\leavevmode\nobreak\ \text{GeV} [82]
ΔMB0\Delta M_{B^{0}} (0.5069±0.0019)ps1(0.5069\pm 0.0019)\leavevmode\nobreak\ \text{ps}^{-1} [79] (0.481±0.040)ps1(0.481\pm 0.040)\leavevmode\nobreak\ \text{ps}^{-1}
ΔMBs\Delta M_{B_{s}} (17.765±0.006)ps1(17.765\pm 0.006)\leavevmode\nobreak\ \text{ps}^{-1} [79] (16.62±1.14)ps1(16.62\pm 1.14)\leavevmode\nobreak\ \text{ps}^{-1}
ϵK\epsilon_{K} (2.228±0.011)×103\left(2.228\pm{0.011}\right)\times 10^{-3} [78] (2.10±0.20)×103\left(2.10\pm{0.20}\right)\times 10^{-3}
ϕd\phi_{d} 45.2±0.945.2^{\circ}\pm 0.9^{\circ} [79, 80] 47.5±3.147.5^{\circ}\pm 3.1^{\circ}
ϕs\phi_{s} 2.29±0.92-2.29^{\circ}\pm 0.92^{\circ} [79, 81] 2.18±0.14-2.18^{\circ}\pm 0.14^{\circ}
Table 1: Experimental measurements and SM predictions for observables in neutral meson oscillations. Note that the SM prediction for ΔMK\Delta M_{K} corresponds to the short-distance contribution only. To account for possible sizable long-distance effects (see [83, 84] for first attempts to calculate those on the lattice), we use instead ΔMKSM=ΔMKexp(1±0.5)\Delta M_{K}^{\text{SM}}=\Delta M_{K}^{\text{exp}}(1\pm 0.5) in our numerical analysis. The SM predictions without reference are based on our own numerical evaluation. See the text for details.

The SM predictions we use are collected in the right column of Table 1. For the neutral kaon oscillation frequency ΔMK\Delta M_{K}, we quote the short-distance contribution [82]. Keeping in mind that there are also long-distance contributions that are poorly controlled so far [83, 84], we use in our numerical analysis ΔMKSM=ΔMKexp(1±0.5)\Delta M_{K}^{\text{SM}}=\Delta M_{K}^{\text{exp}}(1\pm 0.5). We obtain the SM predictions of the remaining observables following [85]. Among the most relevant input parameters are CKM matrix elements that we determine from the PDG values [78]

|Vcb|=(41.1±1.2)×103,|Vub|=(3.82±0.20)×103,γ=65.7±3.0.|V_{cb}|=(41.1\pm 1.2)\times 10^{-3}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ |V_{ub}|=(3.82\pm 0.20)\times 10^{-3}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \gamma=65.7^{\circ}\pm 3.0^{\circ}\leavevmode\nobreak\ . (51)

The values for |Vcb||V_{cb}| and |Vub||V_{ub}| are conservative averages of determinations using inclusive and exclusive tree level BB decays. For the sine of the Cabibbo angle, we use λ0.225\lambda\simeq 0.225 [78], neglecting its tiny uncertainty. The hadronic matrix elements needed for the SM predictions of ΔMd\Delta M_{d} and ΔMs\Delta M_{s} are taken from [86]. Overall, there is very good agreement between the measurements and the corresponding SM predictions. In most cases, the size of possible new physics contributions is limited by the precision of the SM predictions.

The relevant observables in the neutral BB meson systems are the mass differences ΔMq\Delta M_{q} and mixing phases ϕq\phi_{q} that can be calculated from the new physics contributions to the mixing amplitudes, which we denote by M12NPM_{12}^{\text{NP}}

ΔMq=ΔMqSM×|1+M12NPM12SM|,ϕq=ϕqSM+Arg(1+M12NPM12SM).\Delta M_{q}=\Delta M_{q}^{\text{SM}}\times\left|1+\frac{M_{12}^{\text{NP}}}{M_{12}^{\text{SM}}}\right|\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \phi_{q}=\phi_{q}^{\text{SM}}+\text{Arg}\Big{(}1+\frac{M_{12}^{\text{NP}}}{M_{12}^{\text{SM}}}\Big{)}\leavevmode\nobreak\ . (52)

Similarly, the relevant observables for kaon mixing are the mass difference ΔMK\Delta M_{K} and the CP violating parameter ϵK\epsilon_{K}, and they can be expressed as

ΔMK=ΔMKSM+2Re(M12NP),ϵK=ϵKSM+sin(ϕe)Im(M12NP)2ΔMK,\Delta M_{K}=\Delta M_{K}^{\text{SM}}+2\,\text{Re}\left(M_{12}^{\text{NP}}\right)\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \epsilon_{K}=\epsilon_{K}^{\text{SM}}+\sin(\phi_{e})\frac{\text{Im}\left(M_{12}^{\text{NP}}\right)}{\sqrt{2}\Delta M_{K}}\leavevmode\nobreak\ , (53)

where ϕe=(43.52±0.05)\phi_{e}=(43.52\pm 0.05)^{\circ} [78].

In the considered 3HDM setup, the dominant new physics contributions arise from the tree-level exchange of the neutral Higgs bosons. The expressions for B0B^{0} and BsB_{s} mixing are an extension of the flavorful 2HDM expressions [14], and we find

M12NPM12SM=16π2g21S0[2X4i=h,H,H,A,Amqmb(κbqi)(κqbi)(VtqVtb)2mBq2mi2+(X2+X3)(i=h,H,Hi=A,A)((κqbi)2(VtqVtb)2+mq2mb2(κbqi)2(VtqVtb)2)mBq2mi2],\frac{M_{12}^{\text{NP}}}{M_{12}^{\text{SM}}}=\frac{16\pi^{2}}{g^{2}}\frac{1}{S_{0}}\Bigg{[}2X_{4}\sum_{i=h,H,H^{\prime},A,A^{\prime}}\frac{m_{q}}{m_{b}}\frac{\big{(}\kappa^{i\,*}_{bq}\big{)}\big{(}\kappa^{i}_{qb}\big{)}}{(V_{tq}^{*}V_{tb})^{2}}\frac{m_{B_{q}}^{2}}{m_{i}^{2}}\\ +\Big{(}X_{2}+X_{3}\Big{)}\bigg{(}\sum_{i=h,H,H^{\prime}}-\sum_{i=A,A^{\prime}}\bigg{)}\left(\frac{\big{(}\kappa^{i}_{qb}\big{)}^{2}}{(V_{tq}^{*}V_{tb})^{2}}+\frac{m_{q}^{2}}{m_{b}^{2}}\frac{\big{(}\kappa^{i\,*}_{bq}\big{)}^{2}}{(V_{tq}^{*}V_{tb})^{2}}\right)\frac{m_{B_{q}}^{2}}{m_{i}^{2}}\Bigg{]}\leavevmode\nobreak\ , (54)

where S02.31S_{0}\simeq 2.31 is a SM loop function. The parameters X2X_{2}, X3X_{3}, and X4X_{4} encapsulate 1-loop QCD renormalization group running and ratios of hadronic matrix elements. Setting the renormalization scale to μ=1\mu=1 TeV and using hadronic matrix elements from [87], we find

X2d0.42,X3d0.0056,X4d1.14,\displaystyle X_{2}^{d}\simeq-0.42\leavevmode\nobreak\ ,\qquad X_{3}^{d}\simeq-0.0056\leavevmode\nobreak\ ,\qquad X_{4}^{d}\simeq 1.14\leavevmode\nobreak\ , (55)
X2s0.43,X3s0.0055,X4s1.07,\displaystyle X_{2}^{s}\simeq-0.43\leavevmode\nobreak\ ,\qquad X_{3}^{s}\simeq-0.0055\leavevmode\nobreak\ ,\qquad X_{4}^{s}\simeq 1.07\leavevmode\nobreak\ , (56)

for B0B^{0} mixing and for BsB_{s} mixing, respectively. Natural choices for the renormalization scale are the masses of the neutral Higgs bosons. The values of the XiX_{i} depend logarithmically on the scale and stay within ±10%\pm 10\% when varying it between μ=100\mu=100 GeV and μ=10\mu=10 TeV. Explicit expressions for the XiX_{i} factors are provided in appendix A.

The final ingredient to evaluate eq. (54) are the quark mass ratios mq/mbm_{q}/m_{b}. The ratios are to a very good approximation RGE invariant, and we use [78, 88, 89]

md/ms5.0×102,md/mb9.4×104,ms/mb1.9×102.m_{d}/m_{s}\simeq 5.0\times 10^{-2}\leavevmode\nobreak\ ,\qquad m_{d}/m_{b}\simeq 9.4\times 10^{-4}\leavevmode\nobreak\ ,\qquad m_{s}/m_{b}\simeq 1.9\times 10^{-2}\leavevmode\nobreak\ . (57)

In the phenomenologically interesting limit vmA,mAv\ll m_{A},m_{A^{\prime}} there is an approximate cancellation in the terms in the second line of eq. (54). In this case, using the expressions for the κ\kappa factors from section II, we find

B0mixing:\displaystyle B^{0}\leavevmode\nobreak\ \text{mixing}:\quad M12NPM12SM16π2g21S04X4dmdmb(tβ2mB02mA2xbdVudVub(VtdVtb)2tβ2mB02mA2ybsxsdVcdVcb(VtdVtb)2),\displaystyle\frac{M_{12}^{\text{NP}}}{M_{12}^{\text{SM}}}\simeq\frac{16\pi^{2}}{g^{2}}\frac{1}{S_{0}}4X^{d}_{4}\frac{m_{d}}{m_{b}}\left(t_{\beta^{\prime}}^{2}\frac{m_{B^{0}}^{2}}{m_{A^{\prime}}^{2}}\frac{x_{bd}^{*}V_{ud}^{*}V_{ub}}{(V_{td}^{*}V_{tb})^{2}}-t_{\beta}^{2}\frac{m_{B^{0}}^{2}}{m_{A}^{2}}\frac{y_{bs}^{*}x_{sd}^{*}V_{cd}^{*}V_{cb}}{(V_{td}^{*}V_{tb})^{2}}\right)\leavevmode\nobreak\ , (58)
Bsmixing:\displaystyle B_{s}\leavevmode\nobreak\ \text{mixing}:\quad M12NPM12SM16π2g21S04X4smsmb(tβ2mBs2mA2xbdxsdVusVub(VtsVtb)2tβ2mBs2mA2ybsVtsVtb).\displaystyle\frac{M_{12}^{\text{NP}}}{M_{12}^{\text{SM}}}\simeq\frac{16\pi^{2}}{g^{2}}\frac{1}{S_{0}}4X^{s}_{4}\frac{m_{s}}{m_{b}}\left(t_{\beta^{\prime}}^{2}\frac{m_{B_{s}}^{2}}{m_{A^{\prime}}^{2}}\frac{x_{bd}^{*}x_{sd}V_{us}^{*}V_{ub}}{(V_{ts}^{*}V_{tb})^{2}}-t_{\beta}^{2}\frac{m_{B_{s}}^{2}}{m_{A}^{2}}\frac{y_{bs}^{*}}{V_{ts}^{*}V_{tb}}\right)\leavevmode\nobreak\ . (59)

Based on the above expressions and using the values collected in Table 1, we can derive simple analytical bounds on mAm_{A} and mAm_{A^{\prime}}. Assuming that there are no accidental cancellations, setting the absolute values of the xijx_{ij} and yijy_{ij} parameters to 1, and marginalizing over their phases, we find

mAtanβ×492GeV\displaystyle m_{A}\gtrsim\tan\beta\times 492\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ ,mAtanβ×72GeV,fromBsmixing,\displaystyle,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ m_{A^{\prime}}\gtrsim\tan\beta^{\prime}\times 72\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{from}\leavevmode\nobreak\ B_{s}\leavevmode\nobreak\ \text{mixing}\leavevmode\nobreak\ , (60)
mAtanβ×147GeV\displaystyle m_{A}\gtrsim\tan\beta\times 147\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ ,mAtanβ×93GeV,fromB0mixing.\displaystyle,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ m_{A^{\prime}}\gtrsim\tan\beta^{\prime}\times 93\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{from}\leavevmode\nobreak\ B^{0}\leavevmode\nobreak\ \text{mixing}\leavevmode\nobreak\ . (61)

For moderately large values of tanβ5\tan\beta\sim 5 and tanβ25\tan\beta^{\prime}\sim 25, we find that the masses of the additional Higgs bosons get pushed into the multi-TeV range.

In the scenario in which all xij=yij=0x_{ij}=y_{ij}=0, the expressions in eqs. (58) and (59) vanish, and one needs to expand one order higher in v2/mA()2v^{2}/m_{A^{(\prime)}}^{2} to find the leading contribution. An analogous behavior was observed in the context of flavorful 2HDMs [14] and is a well-known phenomenon in 2HDMs in general [90]. Making use of the results in section II.3, we find

B0mixing:\displaystyle B^{0}\leavevmode\nobreak\ \text{mixing}:\quad M12NPM12SM16π2g21S0(X2d+X3d)[mB02v2mA4(VcdVcb)2(VtdVtb)2(λ2322λ32λH)\displaystyle\frac{M_{12}^{\text{NP}}}{M_{12}^{\text{SM}}}\simeq\frac{16\pi^{2}}{g^{2}}\frac{1}{S_{0}}\Big{(}X_{2}^{d}+X_{3}^{d}\Big{)}\Bigg{[}\frac{m_{B^{0}}^{2}v^{2}}{m_{A}^{4}}\frac{(V_{cd}^{*}V_{cb})^{2}}{(V_{td}^{*}V_{tb})^{2}}\left(\frac{\lambda_{23}^{2}}{2\lambda_{3}}-2\lambda_{H}\right)\qquad\qquad\qquad (62)
+mB02v2mA4(VudVub)2(VtdVtb)2(λ1322λ32λH)\displaystyle\qquad\qquad\qquad\qquad\qquad\quad+\frac{m_{B^{0}}^{2}v^{2}}{m_{A^{\prime}}^{4}}\frac{(V_{ud}^{*}V_{ub})^{2}}{(V_{td}^{*}V_{tb})^{2}}\left(\frac{\lambda_{13}^{2}}{2\lambda_{3}}-2\lambda_{H^{\prime}}\right)
+2mB02v2mA2mA2(VudVub)(VcdVcb)(VtdVtb)2(λ13λ232λ3λ12)],\displaystyle\qquad\qquad\qquad\qquad\qquad\quad+\frac{2m_{B^{0}}^{2}v^{2}}{m_{A^{\prime}}^{2}m_{A}^{2}}\frac{(V_{ud}^{*}V_{ub})(V_{cd}^{*}V_{cb})}{(V_{td}^{*}V_{tb})^{2}}\left(\frac{\lambda_{13}\lambda_{23}}{2\lambda_{3}}-\lambda_{12}\right)\Bigg{]}\leavevmode\nobreak\ ,
Bsmixing:\displaystyle B_{s}\leavevmode\nobreak\ \text{mixing}:\quad M12NPM12SM16π2g21S0(X2s+X3s)mBs2v2mA4(λ2322λ32λH),\displaystyle\frac{M_{12}^{\text{NP}}}{M_{12}^{\text{SM}}}\simeq\frac{16\pi^{2}}{g^{2}}\frac{1}{S_{0}}\Big{(}X_{2}^{s}+X_{3}^{s}\Big{)}\frac{m_{B_{s}}^{2}v^{2}}{m_{A}^{4}}\left(\frac{\lambda_{23}^{2}}{2\lambda_{3}}-2\lambda_{H}\right)\leavevmode\nobreak\ , (63)

Interestingly, in this case, the expressions are independent of tanβ\tan\beta and tanβ\tan\beta^{\prime}, and one can directly obtain bounds on the masses mAm_{A} and mAm_{A^{\prime}}. Assuming the absence of accidental cancellations and assuming that the relevant combinations of quartic coupling are 1, we find

mA206GeV,\displaystyle m_{A}\gtrsim 206\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \phantom{m_{A^{\prime}}\gtrsim.....\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ ,} fromBsmixing,\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{from}\leavevmode\nobreak\ B_{s}\leavevmode\nobreak\ \text{mixing}\leavevmode\nobreak\ , (64)
mA215GeV,mA102GeV,\displaystyle m_{A}\gtrsim 215\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ m_{A^{\prime}}\gtrsim 102\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ , fromB0mixing.\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{from}\leavevmode\nobreak\ B^{0}\leavevmode\nobreak\ \text{mixing}\leavevmode\nobreak\ . (65)

We do not obtain a meaningful bound on mAm_{A^{\prime}} from BsB_{s} mixing. The bounds that can be obtained are rather weak, of the order of the electroweak scale. Given our approximations, we expect 𝒪(1)\mathcal{O}(1) uncertainties on those bounds.

Moving on to kaon oscillations, the new physics contributions to the mixing amplitude can be generically written as

M12NP=mKfK2v2[14B4Kη4i=h,H,H,A,Amdms(κsdi)(κdsi)mK2mi2(548B2Kη2148B3Kη3)(i=h,H,Hi=A,A)((κdsi)2+md2ms2(κsdi)2)mK2mi2].M_{12}^{\text{NP}}=m_{K}\frac{f_{K}^{2}}{v^{2}}\Bigg{[}\frac{1}{4}B_{4}^{K}\eta_{4}\sum_{i=h,H,H^{\prime},A,A^{\prime}}\frac{m_{d}}{m_{s}}\big{(}\kappa^{i\,*}_{sd}\big{)}\big{(}\kappa^{i}_{ds}\big{)}\frac{m_{K}^{2}}{m_{i}^{2}}\\ -\bigg{(}\frac{5}{48}B_{2}^{K}\eta_{2}-\frac{1}{48}B_{3}^{K}\eta_{3}\bigg{)}\bigg{(}\sum_{i=h,H,H^{\prime}}-\sum_{i=A,A^{\prime}}\bigg{)}\left(\big{(}\kappa^{i}_{ds}\big{)}^{2}+\frac{m_{d}^{2}}{m_{s}^{2}}\big{(}\kappa^{i\,*}_{sd}\big{)}^{2}\right)\frac{m_{K}^{2}}{m_{i}^{2}}\Bigg{]}\leavevmode\nobreak\ . (66)

For the kaon decay constant and the hadronic bag parameters we use fK155.7f_{K}\simeq 155.7 MeV [91] and B2K0.46B^{K}_{2}\simeq 0.46, B3K0.79B^{K}_{3}\simeq 0.79, B4K0.78B^{K}_{4}\simeq 0.78 [92]. The η\eta factors correspond to corrections from the 1-loop QCD renormalization group running from the high new physics scale to the low scale at which the kaon matrix elements are evaluated. For a new physics scale of μ=1\mu=1 TeV we find

η20.64,η30.032,η4=1.\eta_{2}\simeq 0.64\leavevmode\nobreak\ ,\qquad\eta_{3}\simeq-0.032\leavevmode\nobreak\ ,\qquad\eta_{4}=1\leavevmode\nobreak\ . (67)

Explicit expressions for the η\eta factors are given in appendix A.

In the decoupling limit vmA,mAv\ll m_{A},m_{A^{\prime}}, the expression simplifies considerably

M12NPmKfK2v212B4Kη4mdmsxsdVudVus(tβ2mK2mA2+tβ2mK2mA2).M_{12}^{\text{NP}}\simeq m_{K}\frac{f_{K}^{2}}{v^{2}}\frac{1}{2}B_{4}^{K}\eta_{4}\frac{m_{d}}{m_{s}}x_{sd}^{*}V_{ud}^{*}V_{us}\left(t_{\beta^{\prime}}^{2}\frac{m_{K}^{2}}{m_{A^{\prime}}^{2}}+t_{\beta}^{2}\frac{m_{K}^{2}}{m_{A}^{2}}\right)\leavevmode\nobreak\ . (68)

Setting the absolute value of the parameter xsdx_{sd} to 1 and marginalizing over its phase, we find the following bounds on the Higgs masses

mAtanβ×8.8TeV,mAtanβ×8.8TeV,\displaystyle m_{A}\gtrsim\tan\beta\times 8.8\leavevmode\nobreak\ \text{TeV}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ m_{A^{\prime}}\gtrsim\tan\beta^{\prime}\times 8.8\leavevmode\nobreak\ \text{TeV}\leavevmode\nobreak\ , fromKmixing,\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{from}\leavevmode\nobreak\ K\leavevmode\nobreak\ \text{mixing}\leavevmode\nobreak\ , (69)

In the generic case, we see that the additional Higgs bosons are far outside the reach of the LHC, even for moderate values of tanβ\tan\beta and tanβ\tan\beta^{\prime}.

If we profile over the phase of xsdx_{sd} instead of marginalizing over it, the situation is qualitatively different, as the strong constraint from ϵK\epsilon_{K} is avoided and only the much weaker constraint from ΔMK\Delta M_{K} applies. In this approach, we find

mAtanβ×360GeV,mAtanβ×360GeV,\displaystyle m_{A}\gtrsim\tan\beta\times 360\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ m_{A^{\prime}}\gtrsim\tan\beta^{\prime}\times 360\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ , fromKmixing.\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{from}\leavevmode\nobreak\ K\leavevmode\nobreak\ \text{mixing}\leavevmode\nobreak\ . (70)

If the xsdx_{sd} parameter is set to 0, the leading contribution to the kaon mixing amplitude is given by

M12NPmKfK2(548B2Kη2148B3Kη3)(VudVus)2[mK2mA4(λ2322λ32λH)+mK2mA4(λ1322λ32λH)2mK2mA2mA2(λ13λ232λ3λ12)],M_{12}^{\text{NP}}\simeq-m_{K}f_{K}^{2}\bigg{(}\frac{5}{48}B_{2}^{K}\eta_{2}-\frac{1}{48}B_{3}^{K}\eta_{3}\bigg{)}(V_{ud}^{*}V_{us})^{2}\Bigg{[}\frac{m_{K}^{2}}{m_{A}^{4}}\left(\frac{\lambda_{23}^{2}}{2\lambda_{3}}-2\lambda_{H}\right)\\ +\frac{m_{K}^{2}}{m_{A^{\prime}}^{4}}\left(\frac{\lambda_{13}^{2}}{2\lambda_{3}}-2\lambda_{H^{\prime}}\right)-\frac{2m_{K}^{2}}{m_{A^{\prime}}^{2}m_{A}^{2}}\left(\frac{\lambda_{13}\lambda_{23}}{2\lambda_{3}}-\lambda_{12}\right)\Bigg{]}\leavevmode\nobreak\ , (71)

If the quartic couplings are assumed to be 11 and barring accidental cancellations, we find

mA230GeV,mA230GeV,\displaystyle m_{A}\gtrsim 230\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ m_{A^{\prime}}\gtrsim 230\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ , fromKmixing.\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{from}\leavevmode\nobreak\ K\leavevmode\nobreak\ \text{mixing}\leavevmode\nobreak\ . (72)

These constraints are fairly weak and in the same ballpark as the numbers we found from B0B^{0} and BsB_{s} mixing when the xijx_{ij} and yijy_{ij} were switched off.

For completeness, we also discuss the constraints from neutral DD meson mixing. The expressions for the mixing amplitude are very similar to the case of kaon mixing, with the obvious replacements of couplings, masses, and hadronic parameters

M12NP=mDfD2v2[14B4Dη4i=h,H,H,A,Amumc(κcui)(κuci)mD2mi2(548B2Dη2148B3Dη3)(i=h,H,Hi=A,A)((κuci)2+mu2mc2(κcui)2)mD2mi2].M_{12}^{\text{NP}}=m_{D}\frac{f_{D}^{2}}{v^{2}}\Bigg{[}\frac{1}{4}B_{4}^{D}\eta_{4}\sum_{i=h,H,H^{\prime},A,A^{\prime}}\frac{m_{u}}{m_{c}}\big{(}\kappa^{i\,*}_{cu}\big{)}\big{(}\kappa^{i}_{uc}\big{)}\frac{m_{D}^{2}}{m_{i}^{2}}\\ -\bigg{(}\frac{5}{48}B_{2}^{D}\eta_{2}-\frac{1}{48}B_{3}^{D}\eta_{3}\bigg{)}\bigg{(}\sum_{i=h,H,H^{\prime}}-\sum_{i=A,A^{\prime}}\bigg{)}\left(\big{(}\kappa^{i}_{uc}\big{)}^{2}+\frac{m_{u}^{2}}{m_{c}^{2}}\big{(}\kappa^{i\,*}_{cu}\big{)}^{2}\right)\frac{m_{D}^{2}}{m_{i}^{2}}\Bigg{]}\leavevmode\nobreak\ . (73)

The η\eta parameters have already been introduced in eq. (67). The DD meson decay constant, and the bag parameters are fD211.6f_{D}\simeq 211.6 MeV [91] and B2D0.65B^{D}_{2}\simeq 0.65, B3D0.96B^{D}_{3}\simeq 0.96, B4D0.91B^{D}_{4}\simeq 0.91 [92]. For the ratio of up to charm quark mass, we use [78, 88, 89]

mu/mc2.0×103.m_{u}/m_{c}\simeq 2.0\times 10^{-3}\leavevmode\nobreak\ . (74)

In the decoupling limit, the expression for the mixing amplitude simplifies to

M12NPmDfD2v212B4Dη4mu2mc2xcuxuc(tβ2mD2mA2+tβ2mD2mA2).M_{12}^{\text{NP}}\simeq m_{D}\frac{f_{D}^{2}}{v^{2}}\frac{1}{2}B_{4}^{D}\eta_{4}\frac{m_{u}^{2}}{m_{c}^{2}}x_{cu}^{*}x_{uc}\left(t_{\beta^{\prime}}^{2}\frac{m_{D}^{2}}{m_{A^{\prime}}^{2}}+t_{\beta}^{2}\frac{m_{D}^{2}}{m_{A}^{2}}\right)\leavevmode\nobreak\ . (75)

On the experimental side, neutral DD meson mixing is firmly established [79]. Assuming no direct CP violation in doubly Cabibbo suppressed DD meson decays (which is an excellent approximation in our setup), HFLAV directly provides constraints on the mixing amplitude parameterized by x12=2|M12|τDx_{12}=2|M_{12}|\tau_{D}, with the neutral DD meson lifetime τD4.1×1013\tau_{D}\simeq 4.1\times 10^{-13} s, and the CP violating phase ϕ12\phi_{12}. We find that the confidence regions in the x12ϕ12x_{12}-\phi_{12} plane shown by HFLAV [79] can be reproduced with high accuracy by

x12cos(ϕ12)=(0.407±0.044)%,x12sin(ϕ12)=(0.0045±0.0065)%.x_{12}\cos(\phi_{12})=(0.407\pm 0.044)\%\leavevmode\nobreak\ ,\qquad x_{12}\sin(\phi_{12})=(0.0045\pm 0.0065)\%\leavevmode\nobreak\ . (76)

The SM prediction for the DD mixing amplitude is expected to be real to a good approximation, but its size is not well known (see e.g. [93] for a review). In our numerical analysis, we allow the SM contribution to saturate the experimental central value of the real part with 100% uncertainty

M12SM=12τD×(0.407±0.407)%.M_{12}^{\text{SM}}=\frac{1}{2\tau_{D}}\times(0.407\pm 0.407)\%\leavevmode\nobreak\ . (77)

To find bounds on the Higgs masses, we set the absolute value of the parameter combination xcuxucx_{cu}^{*}x_{uc}, which enters the new physics contribution to the mixing amplitude, to 1 and marginalizing over its phase. We find

mAtanβ×250GeV,mAtanβ×250GeV,\displaystyle m_{A}\gtrsim\tan\beta\times 250\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ m_{A^{\prime}}\gtrsim\tan\beta^{\prime}\times 250\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ , fromDmixing.\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{from}\leavevmode\nobreak\ D\leavevmode\nobreak\ \text{mixing}\leavevmode\nobreak\ . (78)

This is considerably weaker than the corresponding constraint from kaon mixing. We do not find a meaningful bound from DD mixing when we profile over the new physics phase. The constraints from DD mixing can be avoided entirely if the xijx_{ij} parameters in the up sector are set to zero.


So far, we have seen that meson mixing generically puts very strong constraints on the model. In the presence of 𝒪(1)\mathcal{O}(1) flavor violating parameters xijx_{ij}, yijy_{ij} with 𝒪(1)\mathcal{O}(1) CP violating phases, the strongest constraint comes from kaon mixing, and the results above suggest that the additional Higgs bosons have to have masses of at least \sim10 TeV or even \sim100 TeV for moderately large tanβ\tan\beta and tanβ\tan\beta^{\prime}.

If the new flavor violating parameters are very small, |xij|,|yij|1|x_{ij}|,|y_{ij}|\ll 1, an irreducible amount of flavor mixing remains due to the CKM matrix. However, in that case, the new physics contributions to meson mixing turn out to be fairly small, and Higgs boson masses below the 1 TeV scale can be compatible with constraints from meson mixing. Therefore, it is important to consider additional flavor observables that are sensitive to the new Higgs bosons and could provide stronger constraints.

III.2 Rare 𝑩B meson decays 𝑩𝒔+B_{s}\to\ell^{+}\ell^{-} and 𝑩𝟎+B^{0}\to\ell^{+}\ell^{-}

The rare decays of neutral BB mesons into a charged lepton pair, Bs+B_{s}\to\ell^{+}\ell^{-} and B0+B^{0}\to\ell^{+}\ell^{-}, the Bsμ+μB_{s}\to\mu^{+}\mu^{-} decay in particular, are known to be sensitive probes of extended scalar sectors [94, 95, 96].

The branching ratios of these BB meson decays can be predicted with very high precision. The largest uncertainty stems from the relevant CKM matrix elements. Using the results from [97, 98] and the CKM input from eq. (51) we find

BR(Bsμ+μ)SM\displaystyle\text{BR}(B_{s}\to\mu^{+}\mu^{-})_{\text{SM}} =\displaystyle= (3.51±0.22)×109,\displaystyle(3.51\pm 0.22)\times 10^{-9}\leavevmode\nobreak\ , (79)
BR(B0μ+μ)SM\displaystyle\text{BR}(B^{0}\to\mu^{+}\mu^{-})_{\text{SM}} =\displaystyle= (0.966±0.061)×1010,\displaystyle(0.966\pm 0.061)\times 10^{-10}\leavevmode\nobreak\ , (80)
BR(Bse+e)SM\displaystyle\text{BR}(B_{s}\to e^{+}e^{-})_{\text{SM}} =\displaystyle= (8.21±0.50)×1014,\displaystyle(8.21\pm 0.50)\times 10^{-14}\leavevmode\nobreak\ , (81)
BR(B0e+e)SM\displaystyle\text{BR}(B^{0}\to e^{+}e^{-})_{\text{SM}} =\displaystyle= (2.26±0.14)×1015.\displaystyle(2.26\pm 0.14)\times 10^{-15}\leavevmode\nobreak\ . (82)

On the experimental side, Bsμ+μB_{s}\to\mu^{+}\mu^{-} is well established, while only upper bounds exist for B0μ+μB^{0}\to\mu^{+}\mu^{-}. The world averages from the PDG are based on LHCb, CMS, and ATLAS results [99, 100, 101, 78], and read

BR(Bsμ+μ)exp\displaystyle\text{BR}(B_{s}\to\mu^{+}\mu^{-})_{\text{exp}} =\displaystyle= (3.34±0.27)×109,\displaystyle(3.34\pm 0.27)\times 10^{-9}\leavevmode\nobreak\ , (83)
BR(B0μ+μ)exp\displaystyle\text{BR}(B^{0}\to\mu^{+}\mu^{-})_{\text{exp}} <\displaystyle< 1.5×1010@ 95%C.L..\displaystyle 1.5\times 10^{-10}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ @\leavevmode\nobreak\ 95\%\leavevmode\nobreak\ \text{C.L.}\leavevmode\nobreak\ . (84)

The experimental sensitivities to Bse+eB_{s}\to e^{+}e^{-} and B0e+eB^{0}\to e^{+}e^{-} are still far above the SM predictions. The strongest constraints on the branching ratios come from LHCb [102]

BR(Bse+e)exp\displaystyle\text{BR}(B_{s}\to e^{+}e^{-})_{\text{exp}} <\displaystyle< 11.2×109@ 95%C.L.,\displaystyle 11.2\times 10^{-9}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ @\leavevmode\nobreak\ 95\%\leavevmode\nobreak\ \text{C.L.}\leavevmode\nobreak\ , (85)
BR(B0e+e)exp\displaystyle\text{BR}(B^{0}\to e^{+}e^{-})_{\text{exp}} <\displaystyle< 3.0×109@ 95%C.L..\displaystyle 3.0\times 10^{-9}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ @\leavevmode\nobreak\ 95\%\leavevmode\nobreak\ \text{C.L.}\leavevmode\nobreak\ . (86)

In the presence of NP, the expression for BR(Bs+)(B_{s}\rightarrow\ell^{+}\ell^{-}) may be generally written as [103, 95]

BR(Bs+)BR(Bs+)SM=(|SBs|2+|PBs|2)(11+ys+ysys+1Re[(PBs)2]Re[(SBs)2]|SBs|2+|PBs|2),\frac{\text{BR}(B_{s}\to\ell^{+}\ell^{-})}{\text{BR}(B_{s}\to\ell^{+}\ell^{-})_{\text{SM}}}=\big{(}|S^{B_{s}}_{\ell\ell}|^{2}+|P^{B_{s}}_{\ell\ell}|^{2}\big{)}\Big{(}\frac{1}{1+y_{s}}+\frac{y_{s}}{y_{s}+1}\frac{\text{Re}[(P^{B_{s}}_{\ell\ell})^{2}]-\text{Re}[(S^{B_{s}}_{\ell\ell})^{2}]}{|S^{B_{s}}_{\ell\ell}|^{2}+|P^{B_{s}}_{\ell\ell}|^{2}}\Big{)}\leavevmode\nobreak\ , (87)

where the effective lifetime difference in the BsB_{s} meson system is parameterized by ys=(6.4±0.4)%y_{s}=(6.4\pm 0.4)\% [79]. In writing eq. (87), we have ignored a possible non-standard BsB_{s} mixing phase ϕs\phi_{s}, which is justified given the strong constraints from measurements [79, 81] (see Table 1).

The coefficients SS and PP depend on possible new physics contributions. In the SM, PBs=1P^{B_{s}}_{\ell\ell}=1 and SBs=0S^{B_{s}}_{\ell\ell}=0, while in our 3HDM setup we find

SBs=14m2mBs21C10SM4π2e2(i=h,H,HmBs2mi2Re(κi)(msmbκbsiκsbi)1VtbVts+i=A,AmBs2mi2iIm(κi)(msmbκbsi+κsbi)1VtbVts),S^{B_{s}}_{\ell\ell}=-\sqrt{1-\frac{4m_{\ell}^{2}}{m_{B_{s}}^{2}}}\frac{1}{C_{10}^{\text{SM}}}\frac{4\pi^{2}}{e^{2}}\Bigg{(}\sum_{i=h,H,H^{\prime}}\frac{m_{B_{s}}^{2}}{m_{i}^{2}}\leavevmode\nobreak\ \text{Re}(\kappa_{\ell\ell}^{i})\left(\frac{m_{s}}{m_{b}}\kappa_{bs}^{i\,*}-\kappa_{sb}^{i}\right)\frac{1}{V_{tb}V_{ts}^{*}}\\ +\sum_{i=A,A^{\prime}}\frac{m_{B_{s}}^{2}}{m_{i}^{2}}\leavevmode\nobreak\ i\text{Im}(\kappa_{\ell\ell}^{i})\left(\frac{m_{s}}{m_{b}}\kappa_{bs}^{i\,*}+\kappa_{sb}^{i}\right)\frac{1}{V_{tb}V_{ts}^{*}}\Bigg{)}\leavevmode\nobreak\ , (88)
PBs=11C10SM4π2e2(i=h,H,HmBs2mi2iIm(κi)(msmbκbsiκsbi)1VtbVts+i=A,AmBs2mi2Re(κi)(msmbκbsi+κsbi)1VtbVts).P^{B_{s}}_{\ell\ell}=1-\frac{1}{C_{10}^{\text{SM}}}\frac{4\pi^{2}}{e^{2}}\Bigg{(}\sum_{i=h,H,H^{\prime}}\frac{m_{B_{s}}^{2}}{m_{i}^{2}}\leavevmode\nobreak\ i\text{Im}(\kappa_{\ell\ell}^{i})\left(\frac{m_{s}}{m_{b}}\kappa_{bs}^{i\,*}-\kappa_{sb}^{i}\right)\frac{1}{V_{tb}V_{ts}^{*}}\\ +\sum_{i=A,A^{\prime}}\frac{m_{B_{s}}^{2}}{m_{i}^{2}}\leavevmode\nobreak\ \text{Re}(\kappa_{\ell\ell}^{i})\left(\frac{m_{s}}{m_{b}}\kappa_{bs}^{i\,*}+\kappa_{sb}^{i}\right)\frac{1}{V_{tb}V_{ts}^{*}}\Bigg{)}\leavevmode\nobreak\ . (89)

The SM Wilson coefficient is C10SM4.1C^{\text{SM}}_{10}\simeq-4.1. Analogous expressions hold also for B0+B^{0}\to\ell^{+}\ell^{-}. Note that the width difference in the B0B^{0} system is negligibly small yd0y_{d}\simeq 0.

To obtain an analytic understanding of the constraints that can be obtained from these rare decays, we expand the expressions in the limit v2mA2,mA2v^{2}\ll m_{A}^{2},m_{A^{\prime}}^{2} and 1tanβtanβ1\ll\tan\beta\ll\tan\beta^{\prime}. We also assume that the flavor-violating parameters are negligible |xij|,|yij|1|x_{ij}|,|y_{ij}|\ll 1. In that case, the irreducible contributions to Bsμ+μB_{s}\to\mu^{+}\mu^{-} are given by

SμμBs1C10SM4π2e2(mBs2mA2+mBs2mA2tan2γ)tan2β,PμμBs1SμμBs.S_{\mu\mu}^{B_{s}}\simeq-\frac{1}{C_{10}^{\text{SM}}}\frac{4\pi^{2}}{e^{2}}\left(\frac{m_{B_{s}}^{2}}{m_{A}^{2}}+\frac{m_{B_{s}}^{2}}{m_{A^{\prime}}^{2}}\tan^{2}\gamma\right)\tan^{2}\beta\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ P_{\mu\mu}^{B_{s}}\simeq 1-S_{\mu\mu}^{B_{s}}\leavevmode\nobreak\ . (90)

As one can expect, the dominant contributions to Bsμ+μB_{s}\to\mu^{+}\mu^{-} come from the “second generation” Higgs bosons. The contributions from the “first generation” Higgs bosons are suppressed by a factor tan2γ1/tan2β1\tan^{2}\gamma\sim 1/\tan^{2}\beta^{\prime}\ll 1. Also note that tanγ\tan\gamma is a free parameter and can in principle be made arbitrarily small. No robust constraints can therefore be obtained on mAm_{A^{\prime}}.

A similar picture emerges for B0μ+μB^{0}\to\mu^{+}\mu^{-}. For this decay, we find

SμμB01C10SM4π2e2(mB02mA2VcdVcbVtdVtbmB02mA2VudVubVtdVtbtanγtanβtanβ)tan2β,PμμB01SμμB0.S_{\mu\mu}^{B^{0}}\simeq\frac{1}{C_{10}^{\text{SM}}}\frac{4\pi^{2}}{e^{2}}\left(\frac{m_{B^{0}}^{2}}{m_{A}^{2}}\frac{V_{cd}^{*}V_{cb}}{V_{td}^{*}V_{tb}}-\frac{m_{B^{0}}^{2}}{m_{A^{\prime}}^{2}}\frac{V_{ud}^{*}V_{ub}}{V_{td}^{*}V_{tb}}\frac{\tan\gamma\tan\beta^{\prime}}{\tan\beta}\right)\tan^{2}\beta\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ P_{\mu\mu}^{B^{0}}\simeq 1-S_{\mu\mu}^{B^{0}}\leavevmode\nobreak\ . (91)

Focusing on the “second generation” Higgs bosons, we estimate the following bounds

49GeVmAtanβ55GeVormAtanβ×142GeV,\displaystyle 49\leavevmode\nobreak\ \text{GeV}\lesssim\frac{m_{A}}{\tan\beta}\lesssim 55\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ \leavevmode\nobreak\ \text{or}\leavevmode\nobreak\ \leavevmode\nobreak\ m_{A}\gtrsim\tan\beta\times 142\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ , fromBsμ+μ,\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{from}\leavevmode\nobreak\ B_{s}\to\mu^{+}\mu^{-}\leavevmode\nobreak\ , (92)
mAtanβ×50GeV,\displaystyle m_{A}\gtrsim\tan\beta\times 50\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ , fromB0μ+μ.\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{from}\leavevmode\nobreak\ B^{0}\to\mu^{+}\mu^{-}\leavevmode\nobreak\ . (93)

The small low-mass window that is allowed by Bsμ+μB_{s}\to\mu^{+}\mu^{-} corresponds to a large new physics amplitude that interferes destructively with the SM and gives a SM-like branching ratio. Such a scenario is starting to be disfavored by measurements of the effective Bsμ+μB_{s}\to\mu^{+}\mu^{-} lifetime [95, 104], but not fully excluded yet by Bsμ+μB_{s}\to\mu^{+}\mu^{-} alone.

For moderate tanβ\tan\beta, the bounds we find from Bsμ+μB_{s}\to\mu^{+}\mu^{-} and B0μ+μB^{0}\to\mu^{+}\mu^{-} are stronger than the ones from BsB_{s} and B0B^{0} mixing in eqs. (64) and (65), and their strength increases with increasing tanβ\tan\beta.

We checked if relevant bounds can be obtained from Bse+eB_{s}\to e^{+}e^{-} and B0e+eB^{0}\to e^{+}e^{-}. Using the same approximations as above, we find the new physics contributions

SeeBs\displaystyle S_{ee}^{B_{s}} \displaystyle\simeq 1C10SM4π2e2(mBs2mA2mBs2mA2)tanβtanβtanγ,PeeBs1SeeBs,\displaystyle-\frac{1}{C_{10}^{\text{SM}}}\frac{4\pi^{2}}{e^{2}}\left(\frac{m_{B_{s}}^{2}}{m_{A}^{2}}-\frac{m_{B_{s}}^{2}}{m_{A^{\prime}}^{2}}\right)\tan\beta\tan\beta^{\prime}\tan\gamma\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ P_{ee}^{B_{s}}\simeq 1-S_{ee}^{B_{s}}\leavevmode\nobreak\ , (94)
SeeB0\displaystyle S_{ee}^{B^{0}} \displaystyle\simeq 1C10SM4π2e2(mB02mA2VcdVcbVtdVtbtanβtanγtanβ+mB02mA2VudVubVtdVtb)tan2β,PeeB01SeeB0.\displaystyle\frac{1}{C_{10}^{\text{SM}}}\frac{4\pi^{2}}{e^{2}}\left(\frac{m_{B^{0}}^{2}}{m_{A}^{2}}\frac{V_{cd}^{*}V_{cb}}{V_{td}^{*}V_{tb}}\frac{\tan\beta\tan\gamma}{\tan\beta^{\prime}}+\frac{m_{B^{0}}^{2}}{m_{A^{\prime}}^{2}}\frac{V_{ud}^{*}V_{ub}}{V_{td}^{*}V_{tb}}\right)\tan^{2}\beta^{\prime}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ P_{ee}^{B^{0}}\simeq 1-S_{ee}^{B^{0}}\leavevmode\nobreak\ . (95)

Due to the weak experimental constraints, see eqs. (85) and (86), we do not obtain meaningful bounds on the Higgs bosons.

III.3 Rare kaon decays 𝑲𝟎+K^{0}\to\ell^{+}\ell^{-}

We also investigated the constraints that can be obtained from rare kaon decays. In particular, one can expect that the decay KLe+eK_{L}\to e^{+}e^{-} can provide relevant constraints on the “first generation” Higgs bosons. In the following, we will discuss KLe+eK_{L}\to e^{+}e^{-} and KLμ+μK_{L}\to\mu^{+}\mu^{-}. The corresponding KSK_{S} decays are not yet observed, and existing limits on their branching ratios [105, 106] have much weaker sensitivity to our scenario.

The KL+K_{L}\to\ell^{+}\ell^{-} decays receive large long-distance contributions from KLγγK_{L}\to\gamma\gamma. Adapting the results from [107, 108, 109] we find the following expression for the KL+K_{L}\to\ell^{+}\ell^{-} branching ratios in our 3HDM scenario

BR(KL+)BR(KLγγ)=2αem2π2m2mK214m2mK2[(ImCγγ)2+(ReCγγ52+32log(m2μ2)+χγγ()(μ)+χSDSM+χSDP|)2+(χSDS|)2(14m2mK2)].\frac{\text{BR}(K_{L}\to\ell^{+}\ell^{-})}{\text{BR}(K_{L}\to\gamma\gamma)}=\frac{2\alpha_{\text{em}}^{2}}{\pi^{2}}\frac{m_{\ell}^{2}}{m_{K}^{2}}\sqrt{1-\frac{4m_{\ell}^{2}}{m_{K}^{2}}}\Bigg{[}\big{(}\text{Im}\,C_{\gamma\gamma}\big{)}^{2}+\\ \Bigg{(}\text{Re}\,C_{\gamma\gamma}-\frac{5}{2}+\frac{3}{2}\log\left(\frac{m_{\ell}^{2}}{\mu^{2}}\right)+\chi_{\gamma\gamma}^{(\ell)}(\mu)+\chi_{\text{SD}}^{\text{SM}}+\chi_{\text{SD}}^{P}|_{\ell\ell}\Bigg{)}^{2}+\big{(}\chi_{\text{SD}}^{S}|_{\ell\ell}\big{)}^{2}\left(1-\frac{4m_{\ell}^{2}}{m_{K}^{2}}\right)\Bigg{]}\leavevmode\nobreak\ . (96)

The imaginary and real parts of the coefficient CγγC_{\gamma\gamma} are given by

ImCγγ\displaystyle\text{Im}\,C_{\gamma\gamma} =\displaystyle= π2βlog(1β1+β)π2log(m2mK2),\displaystyle\frac{\pi}{2\beta_{\ell}}\log\left(\frac{1-\beta_{\ell}}{1+\beta_{\ell}}\right)\simeq\frac{\pi}{2}\log\left(\frac{m_{\ell}^{2}}{m_{K}^{2}}\right)\leavevmode\nobreak\ , (97)
ReCγγ\displaystyle\text{Re}\,C_{\gamma\gamma} =\displaystyle= 1β[Li2(β1β+1)+π212+14log2(1β1+β)]14log2(m2mK2)+π212,\displaystyle\frac{1}{\beta_{\ell}}\Bigg{[}\text{Li}_{2}\left(\frac{\beta_{\ell}-1}{\beta_{\ell}+1}\right)+\frac{\pi^{2}}{12}+\frac{1}{4}\log^{2}\left(\frac{1-\beta_{\ell}}{1+\beta_{\ell}}\right)\Bigg{]}\simeq\frac{1}{4}\log^{2}\left(\frac{m_{\ell}^{2}}{m_{K}^{2}}\right)+\frac{\pi^{2}}{12}\leavevmode\nobreak\ , (98)

where Li2(z)=0zdxxlog(1x)\text{Li}_{2}(z)=-\int_{0}^{z}\frac{dx}{x}\log(1-x) is the di-logarithm function and β=14m2/mK2\beta_{\ell}=\sqrt{1-4m_{\ell}^{2}/m_{K}^{2}} is the velocity of the leptons in the kaon restframe. The approximate expressions in equations (97) and (98) hold with high accuracy for electrons but not for muons.

The renormalization scale dependent function χγγ()(μ)\chi^{(\ell)}_{\gamma\gamma}(\mu) is a low energy coupling that is related to the off-shell KLγγK_{L}\to\gamma\gamma form factor. Precise predictions have been obtained in [109], χγγ(μ)(mρ)=4.96±0.38\chi_{\gamma\gamma}^{(\mu)}(m_{\rho})=4.96\pm 0.38, χγγ(e)(mρ)=8.0±1.0\chi_{\gamma\gamma}^{(e)}(m_{\rho})=8.0\pm 1.0 (see also the previous evaluations in [110, 107, 108]).

The short distance contributions to the KL+K_{L}\to\ell^{+}\ell^{-} decays are encoded in the SM coefficient χSDSM\chi_{\text{SD}}^{\text{SM}}, and the lepton specific new physics contributions χSDP|\chi_{\text{SD}}^{P}|_{\ell\ell}, and χSDS|\chi_{\text{SD}}^{S}|_{\ell\ell}. Neglecting QED running effects and making use of isospin symmetry for the kaon masses mK0mK+mKm_{K^{0}}\simeq m_{K^{+}}\equiv m_{K} and decay constants fK0fK+fKf_{K^{0}}\simeq f_{K^{+}}\equiv f_{K}, we find

2τK+BR(KLγγ)τKLBR(K+μ+ν)(1mμ2mK2)mμmK(χSDSM+χSDP|)=1sW2Re(VtdVtsY(xt)+VcdVcsYNL)1λ+παem[i=h,H,HmK2mi2Im(κi)Im(mdmsκsdiκdsi)1λ+i=A,AmK2mi2Re(κi)Re(mdmsκsdi+κdsi)1λ],\sqrt{\frac{2\tau_{K^{+}}\text{BR}(K_{L}\to\gamma\gamma)}{\tau_{K_{L}}\text{BR}(K^{+}\to\mu^{+}\nu)}}\left(1-\frac{m_{\mu}^{2}}{m_{K}^{2}}\right)\frac{m_{\mu}}{m_{K}}\big{(}\chi_{\text{SD}}^{\text{SM}}+\chi_{\text{SD}}^{P}|_{\ell\ell}\big{)}=\frac{1}{s_{W}^{2}}\text{Re}\big{(}V_{td}V_{ts}^{*}Y(x_{t})+V_{cd}V_{cs}^{*}Y_{\text{NL}}\big{)}\frac{1}{\lambda}\\ +\frac{\pi}{\alpha_{\text{em}}}\Bigg{[}\sum_{i=h,H,H^{\prime}}\frac{m_{K}^{2}}{m_{i}^{2}}\text{Im}\big{(}\kappa_{\ell\ell}^{i}\big{)}\text{Im}\left(\frac{m_{d}}{m_{s}}\kappa_{sd}^{i}-\kappa_{ds}^{i\,*}\right)\frac{1}{\lambda}\\ +\sum_{i=A,A^{\prime}}\frac{m_{K}^{2}}{m_{i}^{2}}\text{Re}\big{(}\kappa_{\ell\ell}^{i}\big{)}\text{Re}\left(\frac{m_{d}}{m_{s}}\kappa_{sd}^{i}+\kappa_{ds}^{i\,*}\right)\frac{1}{\lambda}\Bigg{]}\leavevmode\nobreak\ , (99)
2τK+BR(KLγγ)τKLBR(K+μ+ν)(1mμ2mK2)mμmKχSDS|=παem[i=h,H,HmK2mi2Re(κi)Im(mdmsκsdiκdsi)1λi=A,AmK2mi2Im(κi)Re(mdmsκsdi+κdsi)1λ],\sqrt{\frac{2\tau_{K^{+}}\text{BR}(K_{L}\to\gamma\gamma)}{\tau_{K_{L}}\text{BR}(K^{+}\to\mu^{+}\nu)}}\left(1-\frac{m_{\mu}^{2}}{m_{K}^{2}}\right)\frac{m_{\mu}}{m_{K}}\leavevmode\nobreak\ \chi_{\text{SD}}^{S}\big{|}_{\ell\ell}=\\ \frac{\pi}{\alpha_{\text{em}}}\Bigg{[}\sum_{i=h,H,H^{\prime}}\frac{m_{K}^{2}}{m_{i}^{2}}\text{Re}\big{(}\kappa_{\ell\ell}^{i}\big{)}\text{Im}\left(\frac{m_{d}}{m_{s}}\kappa_{sd}^{i}-\kappa_{ds}^{i\,*}\right)\frac{1}{\lambda}\\ -\sum_{i=A,A^{\prime}}\frac{m_{K}^{2}}{m_{i}^{2}}\text{Im}\big{(}\kappa_{\ell\ell}^{i}\big{)}\text{Re}\left(\frac{m_{d}}{m_{s}}\kappa_{sd}^{i}+\kappa_{ds}^{i\,*}\right)\frac{1}{\lambda}\Bigg{]}\leavevmode\nobreak\ , (100)

where λ0.225\lambda\simeq 0.225 [78] is the sine of the Cabibbo angle. The SM part, χSDSM\chi_{\text{SD}}^{\text{SM}}, contains the top contribution Y(xt)=0.931±0.005Y(x_{t})=0.931\pm 0.005 [111] and the charm contribution YNL=λ4Pc=(2.84±0.26)×104Y_{\text{NL}}=\lambda^{4}P_{c}=(2.84\pm 0.26)\times 10^{-4} [112, 109]. The KLγγK_{L}\to\gamma\gamma and K+μ+νK^{+}\to\mu^{+}\nu branching ratios and lifetimes that enter the above expressions are BR(KLγγ)=(5.47±0.04)×104\text{BR}(K_{L}\to\gamma\gamma)=(5.47\pm 0.04)\times 10^{-4}, BR(K+μ+ν)=(63.56±0.11)%\text{BR}(K^{+}\to\mu^{+}\nu)=(63.56\pm 0.11)\% and τKL=(5.116±0.021)×108\tau_{K_{L}}=(5.116\pm 0.021)\times 10^{-8} s, τK+=(1.238±0.002)×108\tau_{K^{+}}=(1.238\pm 0.002)\times 10^{-8} s [78].

Experimentally, the KLμ+μK_{L}\to\mu^{+}\mu^{-} decay is measured with high precision, while there is hardly evidence for the extremely rare KLe+eK_{L}\to e^{+}e^{-} decay. Normalizing the corresponding branching ratios to the branching ratio of the KLγγK_{L}\to\gamma\gamma decay one has [78, 109]

BR(KLμ+μ)BR(KLγγ)|exp\displaystyle\frac{\text{BR}(K_{L}\to\mu^{+}\mu^{-})}{\text{BR}(K_{L}\to\gamma\gamma)}\Bigg{|}_{\text{exp}} =\displaystyle= (1.250±0.024)×105,\displaystyle(1.250\pm 0.024)\times 10^{-5}\leavevmode\nobreak\ , (101)
BR(KLe+e)BR(KLγγ)|exp\displaystyle\frac{\text{BR}(K_{L}\to e^{+}e^{-})}{\text{BR}(K_{L}\to\gamma\gamma)}\Bigg{|}_{\text{exp}} =\displaystyle= (1.590.75+1.04)×108.\displaystyle(1.59^{+1.04}_{-0.75})\times 10^{-8}\leavevmode\nobreak\ . (102)

Based on these experimental results, we find the allowed regions in χSDP|\chi_{\text{SD}}^{P}|_{\ell\ell} vs. χSDS|\chi_{\text{SD}}^{S}|_{\ell\ell} parameter space shown in figure 1.

Refer to caption
Figure 1: Constraints on the new physics contributions χSDP|\chi_{\text{SD}}^{P}|_{\ell\ell} and χSDS|\chi_{\text{SD}}^{S}|_{\ell\ell} to the KL+K_{L}\to\ell^{+}\ell^{-} decays. The plot on the left shows KLμ+μK_{L}\to\mu^{+}\mu^{-} and the plot on the right KLe+eK_{L}\to e^{+}e^{-}. The red shaded regions are allowed at the 1σ1\sigma and 2σ2\sigma level.

In the phenomenologically interesting limit v2mA2,mA2v^{2}\ll m_{A}^{2},m_{A^{\prime}}^{2} and 1tanβtanβ1\ll\tan\beta\ll\tan\beta^{\prime}, and assuming that the flavor-violating parameters are negligible |xij|,|yij|1|x_{ij}|,|y_{ij}|\ll 1 we find the following approximate results for the new physics parameters χSDP|\chi_{\text{SD}}^{P}|_{\ell\ell} and χSDS|\chi_{\text{SD}}^{S}|_{\ell\ell} for muons

χSDP|μμ\displaystyle\chi_{\text{SD}}^{P}\big{|}_{\mu\mu} \displaystyle\simeq τKLBR(K+μ+ν)2τK+BR(KLγγ)(1mμ2mK2)1mKmμπαem(mK2mA2+mK2mA2tβtγtβ)tβ2,\displaystyle-\sqrt{\frac{\tau_{K_{L}}\text{BR}(K^{+}\to\mu^{+}\nu)}{2\tau_{K^{+}}\text{BR}(K_{L}\to\gamma\gamma)}}\left(1-\frac{m_{\mu}^{2}}{m_{K}^{2}}\right)^{-1}\frac{m_{K}}{m_{\mu}}\frac{\pi}{\alpha_{\text{em}}}\Bigg{(}\frac{m_{K}^{2}}{m_{A}^{2}}+\frac{m_{K}^{2}}{m_{A^{\prime}}^{2}}\frac{t_{\beta^{\prime}}t_{\gamma}}{t_{\beta}}\Bigg{)}t^{2}_{\beta}\leavevmode\nobreak\ , (103)
χSDS|μμ\displaystyle\chi_{\text{SD}}^{S}\big{|}_{\mu\mu} \displaystyle\simeq 0,\displaystyle 0\leavevmode\nobreak\ , (104)

and for electrons

χSDP|ee\displaystyle\chi_{\text{SD}}^{P}\big{|}_{ee} \displaystyle\simeq τKLBR(K+μ+ν)2τK+BR(KLγγ)(1mμ2mK2)1mKmμπαem(mK2mA2mK2mA2tβtγtβ)tβ2,\displaystyle\sqrt{\frac{\tau_{K_{L}}\text{BR}(K^{+}\to\mu^{+}\nu)}{2\tau_{K^{+}}\text{BR}(K_{L}\to\gamma\gamma)}}\left(1-\frac{m_{\mu}^{2}}{m_{K}^{2}}\right)^{-1}\frac{m_{K}}{m_{\mu}}\frac{\pi}{\alpha_{\text{em}}}\Bigg{(}\frac{m_{K}^{2}}{m_{A^{\prime}}^{2}}-\frac{m_{K}^{2}}{m_{A}^{2}}\frac{t_{\beta}t_{\gamma}}{t_{\beta^{\prime}}}\Bigg{)}t^{2}_{\beta^{\prime}}\leavevmode\nobreak\ , (105)
χSDS|ee\displaystyle\chi_{\text{SD}}^{S}\big{|}_{ee} \displaystyle\simeq 0,\displaystyle 0\leavevmode\nobreak\ , (106)

As one might expect, we find relevant constraints on the second generation Higgs boson from KLμ+μK_{L}\to\mu^{+}\mu^{-} and on the first generation Higgs boson from KLe+eK_{L}\to e^{+}e^{-}. The approximate bounds on the Higgs masses are

mAtanβ×240GeV,\displaystyle m_{A}\gtrsim\tan\beta\times 240\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ , fromKLμ+μ,\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{from}\leavevmode\nobreak\ K_{L}\to\mu^{+}\mu^{-}\leavevmode\nobreak\ , (107)
mAtanβ×31GeV,\displaystyle m_{A}^{\prime}\gtrsim\tan\beta^{\prime}\times 31\leavevmode\nobreak\ \text{GeV}\leavevmode\nobreak\ , fromKLe+e.\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{from}\leavevmode\nobreak\ K_{L}\to e^{+}e^{-}\leavevmode\nobreak\ . (108)

The bound from KLμ+μK_{L}\to\mu^{+}\mu^{-} is particularly strong, surpassing the one from Bsμ+μB_{s}\to\mu^{+}\mu^{-} quoted in equation (92).

III.4 Summary of the flavor constraints

Refer to caption
Figure 2: Flavor constraints on the 3HDM parameter space in the generational limit, xij,yij= 0x_{ij},y_{ij}\leavevmode\nobreak\ =\leavevmode\nobreak\ 0. Left: constraints on the “first generation” Higgs boson parameters mAm_{A^{\prime}} and tanβ\tan\beta^{\prime}. Right: constraints on the “second generation” Higgs boson parameters mAm_{A} and tanβ\tan\beta. The colored regions are excluded at the 95% C.L. by the indicated processes.

As discussed in the previous section, neutral meson mixing constraints push the masses of the additional Higgs bosons far into the multi-TeV range if the flavor parameters xijx_{ij} and yijy_{ij} are generic (i.e. if their magnitudes are of order 1). We therefore focus on the “generation-specific” limit, xij,yij=0x_{ij},y_{ij}=0, which contains only the minimal amount of flavor violation to reproduce the observed quark mixing. In figure 2, we summarize the most important flavor constraints in this limit. The plot on the left shows the constraints on the “first generation” Higgs boson parameters mAm_{A^{\prime}} and tanβ\tan\beta^{\prime}, while the one on the right shows the constraints on the “second generation” Higgs boson parameters mAm_{A} and tanβ\tan\beta. The colored regions are excluded at the 95% C.L. by the indicated processes. Only the most stringent constraints are shown.

To obtain the bounds displayed in figure 2, we use the generation specific relationships for each process within the context of the decoupling limit (i.e. equations (103)-(106) for the leptonic KLK_{L} decays, equations (90), (91), (94), and (95) for the leptonic B0B^{0} and BsB_{s} decays, and equations (62), (63), and (68) for meson mixing). The DD meson mixing expression automatically vanishes in the “generation specific” regime. We further fix tanγ=1/tanβ\tan\gamma=1/\tan\beta^{\prime} and send the masses not being plotted to infinity. In other words, in obtaining constraints on the “first generation” parameters of mAm_{A^{\prime}} and tanβ\tan\beta^{\prime}, we send mAm_{A}\rightarrow\infty and vice versa for the “second generation ” parameter space. This means that the shown bounds hold barring accidental cancellations among the contributions from different Higgs bosons.

In the generation specific limit, we find that KLe+eK_{L}\rightarrow e^{+}e^{-} provides the strongest bounds for the “first-generation” parameters tanβ\tan\beta^{\prime} and mAm_{A^{\prime}}, whereas KLμ+μK_{L}\rightarrow\mu^{+}\mu^{-} provides the strongest bounds for the “second-generation” parameters tanβ\tan\beta and mAm_{A}, in particular for large tanβ\tan\beta^{\prime} and tanβ\tan\beta which is the best motivated region of parameter space. Kaon mixing is the most important constraint from meson mixing in both spaces, but is only relevant for low tanβ\tan\beta^{\prime} and tanβ\tan\beta. As one might expect, the strongest constraints on the first (second) generation Higgs bosons come from observables in which the majority of the fermions in the initial and final states are from the first (second) generation.

For a moderate hierarchy in the vacuum expectation values of the 3HDM, 1tanβ5tanβ251\ll\tan\beta\simeq 5\ll\tan\beta^{\prime}\simeq 25, the new Higgs boson masses can be comfortably as light as 1.5 TeV without violating flavor constraints. For smaller values of tanβ\tan\beta and tanβ\tan\beta^{\prime}, the Higgs bosons could be even lighter.

IV Conclusions and Outlook

In this paper, we explored a Three Higgs Doublet Model (3HDM) in which each of the three Higgs doublets primarily couples to a single generation of Standard Model fermions. One of the motivations for this scenario is its potential to partially address aspects of the SM flavor puzzle. In particular, the observed hierarchies in fermion masses could arise, at least in part, from a hierarchical pattern of Higgs vacuum expectation values, v1v2v3v_{1}\ll v_{2}\ll v_{3}.

In the first part of the paper, we outlined the framework of our “generational 3HDM” in detail. The Yukawa sector is structured such that each Higgs doublet couples exclusively to one generation of fermions through rank-1 Yukawa matrices. A small number of free parameters governs the flavor misalignment among the three sets of up-type, down-type, and lepton Yukawa couplings. We assume that the flavor misalignment of the down-type Yukawas accounts for the observed CKM mixing in the SM quark sector, while the remaining flavor misalignment—parameterized by the coefficients xijx_{ij} and yijy_{ij}—can, in principle, be set to zero. To accommodate the observed SM-like Higgs boson, we focused on the 3HDM alignment limit, which naturally emerges in the decoupling regime, where the additional Higgs bosons are significantly heavier than the electroweak scale. The key parameters governing the properties of the additional Higgs states are their masses, mAm_{A} and mAm_{A^{\prime}}, as well as the ratios of vacuum expectation values tanβ\tan\beta and tanβ\tan\beta^{\prime}, which characterize the “second-generation Higgs” (unprimed) and “first-generation Higgs” (primed), respectively.

Due to the non-trivial flavor structure of the model, the new Higgs bosons generically exhibit flavor-changing couplings. In the second part of the paper, we constrained the model’s parameter space using flavor-changing neutral current processes. For generic flavor violation, where the parameters xijx_{ij} and yijy_{ij} are of order unity, we find that neutral meson mixing, particularly kaon mixing, imposes stringent constraints, pushing the new Higgs bosons well beyond the TeV scale and out of collider reach. However, in a scenario with the minimum amount of flavor violation (where the xijx_{ij} and yijy_{ij} are set to zero), the flavor constraints are significantly relaxed. In this case, the strongest bounds arise from rare leptonic decays of kaons and BB mesons, and Higgs bosons around the TeV scale remain viable. An interesting feature with regard to the flavor phenomenology is that the mAm_{A^{\prime}} - tanβ\tan\beta^{\prime} parameter space is primarily constrained by processes involving mainly first generation fermions (e.g. KLe+eK_{L}\to e^{+}e^{-}), while the mAm_{A} - tanβ\tan\beta parameter space is constrained by processes involving mainly second generation fermions (e.g. KLμ+μK_{L}\to\mu^{+}\mu^{-} or Bsμ+μB_{s}\to\mu^{+}\mu^{-}). The most important bounds are summarized in Figure 2.

Our work motivates various follow up studies. Given that there are regions of parameter space in which the additional neutral Higgs bosons can have masses around the TeV scale, it would be interesting to explore the characteristic collider phenomenology. Based on the generational structure of the new Higgs boson couplings, one can expect that di-lepton resonance searches and di-jet resonance searches might already give relevant constraints on the model. Moreover, the flavor and collider signatures of the charged Higgs bosons warrant further investigation. The charged Higgs bosons can contribute to leptonic decays of charged mesons and might be probed by lepton flavor universality tests in π++ν\pi^{+}\to\ell^{+}\nu [113, 114] and K++νK^{+}\to\ell^{+}\nu decays [115]. Finally, throughout much of our analysis, we have assumed that the tree-level Higgs potential respects CP invariance. It would be interesting to examine how our conclusions might change in the presence of CP violation in the Higgs sector.

Acknowledgments

We thank Aditya Gadam and Stefania Gori for useful discussions. The research of W.A. and K.T. is supported by the U.S. Department of Energy grant number DE-SC0010107.

Appendix A RGE running corrections to meson mixing

In section III.1 we discussed constraints on the Higgs bosons from meson mixing observables and included the effect of RGE running from the scale of the Higgs bosons to the scale of the mesons. In this appendix we provide the relevant RGE factors and ratios of hadronic matrix elements. We obtain the RGE factors from the 1-loop anomalous dimensions given in [116]. For BB meson mixing we find for the XiX_{i} factors

X2(μ)=516B2(mb)B1(mb)[(115241)(αs(μ)αs(mt))25+24121(αs(mt)αs(mb))19+24123+(1+15241)(αs(μ)αs(mt))2524121(αs(mt)αs(mb))1924123],X_{2}(\mu)=-\frac{5}{16}\frac{B_{2}(m_{b})}{B_{1}(m_{b})}\Bigg{[}\left(1-\frac{15}{\sqrt{241}}\right)\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(m_{t})}\right)^{\frac{25+\sqrt{241}}{21}}\left(\frac{\alpha_{s}(m_{t})}{\alpha_{s}(m_{b})}\right)^{\frac{19+\sqrt{241}}{23}}\\ +\left(1+\frac{15}{\sqrt{241}}\right)\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(m_{t})}\right)^{\frac{25-\sqrt{241}}{21}}\left(\frac{\alpha_{s}(m_{t})}{\alpha_{s}(m_{b})}\right)^{\frac{19-\sqrt{241}}{23}}\Bigg{]}\leavevmode\nobreak\ , (109)
X3(μ)=18241B3(mb)B1(mb)[(αs(μ)αs(mt))25+24121(αs(mt)αs(mb))19+24123(αs(μ)αs(mt))2524121(αs(mt)αs(mb))1924123],X_{3}(\mu)=\frac{1}{8\sqrt{241}}\frac{B_{3}(m_{b})}{B_{1}(m_{b})}\Bigg{[}\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(m_{t})}\right)^{\frac{25+\sqrt{241}}{21}}\left(\frac{\alpha_{s}(m_{t})}{\alpha_{s}(m_{b})}\right)^{\frac{19+\sqrt{241}}{23}}\\ -\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(m_{t})}\right)^{\frac{25-\sqrt{241}}{21}}\left(\frac{\alpha_{s}(m_{t})}{\alpha_{s}(m_{b})}\right)^{\frac{19-\sqrt{241}}{23}}\Bigg{]}\leavevmode\nobreak\ , (110)
X4(μ)=34(1+mb2(mb)6mBq2)B4(mb)B1(mb)(αs(mt)αs(mb))623,X_{4}(\mu)=\frac{3}{4}\left(1+\frac{m_{b}^{2}(m_{b})}{6m_{B_{q}}^{2}}\right)\frac{B_{4}(m_{b})}{B_{1}(m_{b})}\left(\frac{\alpha_{s}(m_{t})}{\alpha_{s}(m_{b})}\right)^{-\frac{6}{23}}\leavevmode\nobreak\ , (111)

where we used the definition of the hadronic matrix elements from [87]. The scale μ\mu should be of the order of the heavy Higgs masses mH,mA,mH,mAm_{H},m_{A},m_{H^{\prime}},m_{A^{\prime}}. The ratios of the bag parameters Bi(mb)B_{i}(m_{b}) that enter the above expressions can be taken directly from table XV in [87].

The RGE factors ηi\eta_{i} that are relevant for kaon and DD meson mixing are given by

η2(μ)=12[(115241)(αs(μ)αs(mt))25+24121(αs(mt)αs(mb))25+24123(αs(mb)αs(μlow))25+24125+(1+15241)(αs(μ)αs(mt))2524121(αs(mt)αs(mb))1924123(αs(mb)αs(μlow))2524125],\eta_{2}(\mu)=\frac{1}{2}\Bigg{[}\left(1-\frac{15}{\sqrt{241}}\right)\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(m_{t})}\right)^{\frac{25+\sqrt{241}}{21}}\left(\frac{\alpha_{s}(m_{t})}{\alpha_{s}(m_{b})}\right)^{\frac{25+\sqrt{241}}{23}}\left(\frac{\alpha_{s}(m_{b})}{\alpha_{s}(\mu_{\text{low}})}\right)^{\frac{25+\sqrt{241}}{25}}\\ +\left(1+\frac{15}{\sqrt{241}}\right)\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(m_{t})}\right)^{\frac{25-\sqrt{241}}{21}}\left(\frac{\alpha_{s}(m_{t})}{\alpha_{s}(m_{b})}\right)^{\frac{19-\sqrt{241}}{23}}\left(\frac{\alpha_{s}(m_{b})}{\alpha_{s}(\mu_{\text{low}})}\right)^{\frac{25-\sqrt{241}}{25}}\Bigg{]}\leavevmode\nobreak\ , (112)
η3(μ)=1241[(αs(μ)αs(mt))25+24121(αs(mt)αs(mb))25+24123(αs(mb)αs(μlow))25+24125(αs(μ)αs(mt))2524121(αs(mt)αs(mb))2524123(αs(mb)αs(μlow))2524125],\eta_{3}(\mu)=\frac{1}{\sqrt{241}}\Bigg{[}\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(m_{t})}\right)^{\frac{25+\sqrt{241}}{21}}\left(\frac{\alpha_{s}(m_{t})}{\alpha_{s}(m_{b})}\right)^{\frac{25+\sqrt{241}}{23}}\left(\frac{\alpha_{s}(m_{b})}{\alpha_{s}(\mu_{\text{low}})}\right)^{\frac{25+\sqrt{241}}{25}}\\ -\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(m_{t})}\right)^{\frac{25-\sqrt{241}}{21}}\left(\frac{\alpha_{s}(m_{t})}{\alpha_{s}(m_{b})}\right)^{\frac{25-\sqrt{241}}{23}}\left(\frac{\alpha_{s}(m_{b})}{\alpha_{s}(\mu_{\text{low}})}\right)^{\frac{25-\sqrt{241}}{25}}\Bigg{]}\leavevmode\nobreak\ , (113)
η4(μ)=1.\eta_{4}(\mu)=1\leavevmode\nobreak\ . (114)

As above, the scale μ\mu should be of the order of the heavy Higgs masses. The scale μlow\mu_{\text{low}} is the scale at which the kaon or DD meson bag parameters are evaluated. In our numerical analysis we use the bag parameters from [92].

Appendix B A model for the rank-1 Yukawa couplings

In this appendix we outline a simple construction that gives the rank-1 Yukawa couplings for the three Higgs doublets that we discussed in section II.4. If the three generations of SM fermions do not couple directly to the Higgs doublets but instead mix with three separate generations of vector-like fermions, rank-1 Yukawa couplings automatically arise, see e.g. [117].

We start by introducing three U(1)U(1) symmetries that act separately on the the three Higgs doublets

Φ1=(1,0,0),Φ2=(0,1,0),Φ3=(0,0,1),\Phi_{1}=(1,0,0)\leavevmode\nobreak\ ,\quad\Phi_{2}=(0,1,0)\leavevmode\nobreak\ ,\quad\Phi_{3}=(0,0,1)\leavevmode\nobreak\ , (115)

while all SM fermions remain uncharged. For each U(1)U(1), we introduce a single generation of heavy vector-like matter, charged under the corresponding U(1)U(1) such that Yukawa couplings with a single Higgs are allowed

a(λUaQ¯LaΦ~aURa+λDaQ¯LaΦaDRa+λLaL¯LaΦaERa)+h.c.,\mathcal{L}\supset\sum_{a}\Big{(}\lambda_{U_{a}}\bar{Q}_{L_{a}}\tilde{\Phi}_{a}U_{R_{a}}+\lambda_{D_{a}}\bar{Q}_{L_{a}}\Phi_{a}D_{R_{a}}+\lambda_{L_{a}}\bar{L}_{L_{a}}\Phi_{a}E_{R_{a}}\Big{)}\leavevmode\nobreak\ +\leavevmode\nobreak\ \text{h.c.}\leavevmode\nobreak\ , (116)

where the sum over a=1,2,3a=1,2,3 runs over the three Higgs doublets. We assume that the U(1)U(1) symmetries are softly broken by mass mixing between the vector-like fermions and the SM fermions. After integrating out the vector-like fermions, the effective Yukawa interactions of the SM fermions take the form

λu1ij=λU1ξQ1iξU1j,λu2ij=λU2ξQ2iξU2j,λu3ij=λU3ξQ3iξU3j,\displaystyle\lambda_{u_{1}}^{ij}=\lambda_{U_{1}}\xi_{Q_{1}}^{i}\xi_{U_{1}}^{j}\leavevmode\nobreak\ ,\quad\lambda_{u_{2}}^{ij}=\lambda_{U_{2}}\xi_{Q_{2}}^{i}\xi_{U_{2}}^{j}\leavevmode\nobreak\ ,\quad\lambda_{u_{3}}^{ij}=\lambda_{U_{3}}\xi_{Q_{3}}^{i}\xi_{U_{3}}^{j}\leavevmode\nobreak\ , (117)
λd1ij=λD1ξQ1iξD1j,λd2ij=λD2ξQ2iξD2j,λd3ij=λD3ξQ3iξD3j,\displaystyle\lambda_{d_{1}}^{ij}=\lambda_{D_{1}}\xi_{Q_{1}}^{i}\xi_{D_{1}}^{j}\leavevmode\nobreak\ ,\quad\lambda_{d_{2}}^{ij}=\lambda_{D_{2}}\xi_{Q_{2}}^{i}\xi_{D_{2}}^{j}\leavevmode\nobreak\ ,\quad\lambda_{d_{3}}^{ij}=\lambda_{D_{3}}\xi_{Q_{3}}^{i}\xi_{D_{3}}^{j}\leavevmode\nobreak\ , (118)
λ1ij=λL1ξL1iξE1j,λ2ij=λL2ξL2iξE2j,λ3ij=λL3ξL3iξE3j.\displaystyle\lambda_{\ell_{1}}^{ij}=\lambda_{L_{1}}\xi_{L_{1}}^{i}\xi_{E_{1}}^{j}\leavevmode\nobreak\ ,\quad\lambda_{\ell_{2}}^{ij}=\lambda_{L_{2}}\xi_{L_{2}}^{i}\xi_{E_{2}}^{j}\leavevmode\nobreak\ ,\quad\lambda_{\ell_{3}}^{ij}=\lambda_{L_{3}}\xi_{L_{3}}^{i}\xi_{E_{3}}^{j}\leavevmode\nobreak\ . (119)

These Yukawa interactions are outer products of two flavor vectors and thus rank-1 by construction.

As a by-product, the three U(1)U(1) symmetries also greatly reduce the number of Higgs potential terms as discussed in section II.1.

References