This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apdo. Postal 14-740, 07000 México D.F., México

Flavor violating leptonic decays of τ\tau and μ\mu leptons in the Standard Model with massive neutrinos

G. Hernández-Tomé 1    , G. López Castro 1    and P. Roig ghernandez@fis.cinvestav.mx glopez@fis.cinvestav.mx proig@fis.cinvestav.mx
Abstract

We have revisited the computations of the flavor violating leptonic decays of the τ\tau and μ\mu leptons into three lighter charged leptons in the Standard Model with non-vanishing neutrino masses. We were driven by a claimed unnaturally large branching ratio predicted for the τμ+\tau^{-}\to\mu^{-}\ell^{+}\ell^{-} (=μ,e\ell=\mu,e) decays Pham:1998fq , which was at odds with the corresponding predictions for the μeee+\mu^{-}\to e^{-}e^{-}e^{+} processes Petcov:1976ff . In contrast with the prediction in Pham:1998fq , our results are strongly suppressed and in good agreement with the approximation done in ref. Petcov:1976ff , where masses and momenta of the external particles were neglected in order to deal with the loop integrals. However, as a result of keeping external momenta and masses in the computation of the dominant penguin and box diagrams- we even find slightly smaller branching fractions. Therefore, we confirm that any future observation of such processes would be an unambiguous manifestation of new physics beyond the Standard Model.

1 Introduction

Lepton flavor violating (LFV) processes are forbidden in the standard model (SM) SM with massless neutrinos. However, the experimental evidence of neutrino oscillations nuosc claims for an extended model with neutrino mass terms. For massive neutrinos, the mass matrix will be nondiagonal in the interaction (weak) basis, as occurs in the quark sector CKM , and the mixing of three light neutrinos could be described through the 3×33\times 3 unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix PMNS . In such scenario, charged LFV transitions could arise, for instance, from one loop diagrams involving a couple of WνW\ell\nu_{\ell} vertices with different flavor neutrinos each. However, it turns out natural having a strong suppression for this class of processes owing to a GIM-like mechanism Glashow:1970gm , just as it has been reported for the μeγ\mu^{-}\to e^{-}\gamma decay, with a prediction at an unobservable low rate: BR(μeγ)𝒪(1055)BR(\mu^{-}\to e^{-}\gamma)\sim\mathcal{O}(10^{-55}) Petcov:1976ff ; LibroCheng ; Calibbi:2017uvl , which is far away from the capacity of any current or foreseen experimental facility.

By way of contrast, the prediction for the τμ+\tau^{-}\to\mu^{-}\ell^{+}\ell^{-} (=μ,e\ell=\mu,e) decays given by ref. Pham:1998fq indicates that the GIM cancellation for these processes is much milder and a value of BR(τμ+)1014BR(\tau^{-}\to\mu^{-}\ell^{+}\ell^{-})\geq 10^{-14} is reported. An updated evaluation using the amplitude derived in ref. Pham:1998fq , employing the latest global fit results for neutrino mixing Patrignani:2016xqp ; Fits yields a branching fraction 41016\sim 4\cdot 10^{-16} for the three muon channel. Both values are still far away from the PDG upper bounds, 1.51081.5\cdot 10^{-8} (for =e\ell=e) and 2.11082.1\cdot 10^{-8} (=μ\ell=\mu) at 90%90\% confidence level 111More stringent bounds of 1.11081.1\cdot 10^{-8} and 1.21081.2\cdot 10^{-8}, respectively, can be obtained by combining results of different experiments according to the HFLAV group Referencia . Belle-II shall be able to set limits on the τμμ+μ\tau^{-}\to\mu^{-}\mu^{+}\mu^{-} decay at the level of 310103\cdot 10^{-10} with their full data set (5050 ab-1) Kou:2018nap .. Similarly, we verified that using the values reported in refs. Patrignani:2016xqp ; Fits for the neutrino mixing parameters, Pham’s result Pham:1998fq would predict a μee+e\mu^{-}\to e^{-}e^{+}e^{-} branching ratio of 21021\sim 2\cdot 10^{-21}, larger than Petcov’s prediction (1053\sim 10^{-53} evaluated with updated neutrino masses and mixings input) Petcov:1976ff by at least some thirty orders of magnitude. Again, the current upper limit on this decay channel (110121\cdot 10^{-12} at 90%90\% C.L. Patrignani:2016xqp ) is still far from testing Pham’s result Pham:1998fq . This author claims that this unexpectedly large estimation is due to the presence of a divergent logarithmic term depending on the neutrino mass, which comes from a one-loop diagram that involves two neutrino propagators (diag. (d) in our fig. 1).

Certainly, considering effects or processes that arise from quantum corrections could involve divergent loop integrals. However, in any renormalizable theory, the possible divergences must vanish order by order (in the loop or effective field theory expansion) to be able to define (finite) observables. In fact, in a QFT the divergences can be classified into two types: ultraviolet (UV) and infrared divergences (IR). The former (UV) appear in the high-energy regime and they can be healed redefining the theory parameters, whereas the latter (IR) occur in the low-energy regime and can be classified in soft and collinear divergences, which cancel however in properly defined (IR-safe) observables KLN . We show that the seeming logarithmic divergent behavior of the LFV amplitude reported in ref. Pham:1998fq is not present, as the vanishing momentum transfer approximation considered in that paper lies outside the physical region. Consequently, the rates of L+L^{-}\to\ell^{-}\ell^{\prime-}\ell^{\prime+} decays in the SM extended with massive neutrinos are extremely suppressed, in agreement with ref. Petcov:1976ff . It is worth noting that the LFV amplitudes must vanish in the limit of massless neutrinos. This requirement is satisfied by the result of Ref. [8], but it is not the case in ref, [10] which behaves as jULjUjlog(mj/mW)\sum_{j}U_{Lj}U_{\ell j}^{*}\log(m_{j}/m_{W}) for very small neutrino masses. Our result, as it will be shown below, satisfies the expected agreement with the SM.

In section 2 and 3 we discuss in detail our computation of these processes and compare it to those in refs. Petcov:1976ff and Pham:1998fq , showing explicitly why the approximation in Pham:1998fq is unreliable, and reproducing the results of Petcov:1976ff in the approximation where masses and momenta of the external particles are neglected from the beginning. However, we also analize the numerical accuracy of this approximation. Finally, we state our conclusions in section 4. Several appendices complete technical details of our calculation.

Refer to caption
Figure 1: Feynman diagrams for the L+L^{-}\to\ell^{-}\ell^{\prime-}\ell^{\prime+} decays, in the presence of lepton mixing (i. e., non-vanishing neutrino masses). In ‘renormalizable’ RξR_{\xi} gauges, similar diagrams need to be added, which are obtained replacing the WW gauge bosons by the respective would-be Goldstone bosons. Notice that diagram (d) only involves the ZZ gauge boson, whereas the (a), (b) and (c) diagrams can also be mediated by the photon. Additionally, when =\ell=\ell^{\prime} similar contributions (exchanging pp1p\leftrightarrow p_{1}) to the amplitudes of diagrams (a) to (e) must be subtracted in order to antisymmetrize the amplitude. On the other hand, when \ell\neq\ell^{\prime}, owing to the fact that the neutral gauge bosons γ\gamma and ZZ do not change flavor, only a similar (e) box diagram must be added interchanging (p)(p1)\ell(p)\leftrightarrow\ell^{\prime}(p_{1}).

2 Z-Penguin contribution emission from internal neutrino line

The L+L^{-}\to\ell^{-}\ell^{\prime-}\ell^{\prime+} decays can be induced through the diagrams depicted in fig. 1. Since the main purpose of this work is to falsify the existence of the logarithmic divergent term claimed in ref. Pham:1998fq , we first concentrate on the amplitude of the diagram (d). We have, however, verified the corresponding expressions for the loop integrals in ref. Petcov:1976ff for the particular process μeee+\mu^{-}\to e^{-}e^{-}e^{+}, when masses and momenta of external leptons are neglected in the computations. Particularly, in Ref. Petcov:1976ff it is shown that the corresponding branching ratio is completely dominated by those diagrams with two neutrino propagators, i. e. (d) and (e) in fig. 1, which contribute comparably.

In our analysis, we keep employing the convention used by ref. Pham:1998fq , in order to denote the masses and momenta (see fig. 1) of the external leptons, that is MM and PP (mm and pp) stand for the mass and momentum of the LL^{-} (\ell^{-}) lepton, respectively. In this way, the amplitude of the diagram (d) can be written as

d\displaystyle\mathcal{M}_{d} \displaystyle\sim imZ2lLλ×λ,\displaystyle\frac{i}{m_{Z}^{2}}l_{L\ell}^{\lambda}\times\ell_{\ell^{\prime}\ell^{\prime}\lambda}, (1)

where λ=ig/(2cW)u¯(p1)γλ(gvgaγ5)v(p2)\ell_{\ell^{\prime}\ell^{\prime}}^{\lambda}=-ig/(2c_{W})\bar{u}(p_{1})\gamma^{\lambda}(g_{v}^{\ell^{\prime}}-g_{a}^{\ell^{\prime}}\gamma_{5})v(p_{2}) 222gg is the SU(2)LSU(2)_{L} coupling and cW(sW)c_{W}(s_{W}) is short for the cosine(sine) of the weak mixing angle θW\theta_{W}. In the SM, gv=1/2+2sW2g_{v}^{\ell^{\prime}}=-1/2+2s_{W}^{2} and ga=1/2g_{a}^{\ell^{\prime}}=-1/2. is independent of the loop integration, whereas the relevant part for the latter is given by the effective ZLZL\ell transition as follows:

lLλ=(ig4cW)(ig22)2j=13UjULju¯(p)Γjλu(P),l_{L\ell}^{\lambda}=\left(\frac{-ig}{4c_{W}}\right)\left(\frac{-ig}{2\sqrt{2}}\right)^{2}\sum_{j=1}^{3}U^{*}_{\ell j}U_{Lj}\bar{u}(p)\Gamma^{\lambda}_{j}u(P), (2)

where UimU_{im} are entries of the PMNS mixing matrix. In the Feynman-’t Hooft gauge we have

Γjλ=d4k(2π)4γρ(1γ5)i[(+)+mj]γλ(1γ5)i[(+)+mj]γσ(1γ5)(igρσ)[(p+k)2mj2][(P+k)2mj2][k2mW2].\Gamma^{\lambda}_{j}=\int\frac{d^{4}k}{(2\pi)^{4}}\frac{\gamma_{\rho}(1-\gamma_{5})i\left[(\not{p}+\not{k})+m_{j}\right]\gamma^{\lambda}(1-\gamma_{5})i\left[(\not{P}+\not{k})+m_{j}\right]\gamma_{\sigma}(1-\gamma_{5})(-ig^{\rho\sigma})}{\left[(p+k)^{2}-m_{j}^{2}\right]\left[(P+k)^{2}-m_{j}^{2}\right]\left[k^{2}-m_{W}^{2}\right]}. (3)

After making the loop integration using dimensional regularization in order to deal with the (logarithmic) UV divergences, the Lorentz structure for the Γjλ\Gamma^{\lambda}_{j} factor can be written as follows,

Γjλ\displaystyle\Gamma^{\lambda}_{j} =\displaystyle= Faγλ(1γ5)+Fbγλ(1+γ5)+Fc(P+p)λ(1+γ5)\displaystyle F_{a}\gamma^{\lambda}(1-\gamma_{5})+F_{b}\gamma^{\lambda}(1+\gamma_{5})+F_{c}(P+p)^{\lambda}(1+\gamma_{5}) (4)
+\displaystyle+ Fd(P+p)λ(1γ5)+Feqλ(1+γ5)+Ffqλ(1γ5),\displaystyle F_{d}(P+p)^{\lambda}(1-\gamma_{5})+F_{e}q^{\lambda}(1+\gamma_{5})+F_{f}q^{\lambda}(1-\gamma_{5}),

where in general Fk=Fk(q2,mj2)F_{k}=F_{k}(q^{2},m_{j}^{2}) (k=a,b,f)(k=a,\,b...,\,f) are functions given in terms of the momentum transfer q2q^{2}, and the neutrino mass squared (of course FkF_{k} functions will also depend on the mass of the WW gauge boson and external masses, but these have well-defined values).

At this point, it is worth to note that in the approximation where the momenta of the external particles are neglected in equation (3), such as it is done in ref. Petcov:1976ff for the μ3e\mu\to 3e decay, the computation is simplified considerably, as the only possible contribution is given by the Fa0F^{0}_{a} function, where we are using a superscript 0 in order to distinguish this approximation. In this simple case, the Fa0F^{0}_{a} function will not depend on q2q^{2} and is given in terms of the Feynman parameters as follows

Fa0(mj2)=12π20101x[2+log(Dj0/μ2)]𝑑x𝑑y,F^{0}_{a}(m_{j}^{2})=\frac{1}{2\pi^{2}}\int_{0}^{1}\int_{0}^{1-x}\left[2+\log\left(D^{0}_{j}/\mu^{2}\right)\right]dxdy, (5)

where Dj0(mj2)=(1x)mj2+xmW2D^{0}_{j}(m_{j}^{2})=(1-x)m_{j}^{2}+xm_{W}^{2}. Whereas in terms of PaVe functions it is given by

Fa0(mj2)\displaystyle F^{0}_{a}(m_{j}^{2}) =\displaystyle= 18π2(mj2mW2)2[2mj2(mj22mW2)B0(0,mj2,mj2)+2mW4B0(0,mW2,mW2)\displaystyle-\frac{1}{8\pi^{2}\left(m_{j}^{2}-m_{W}^{2}\right){}^{2}}\left[2m_{j}^{2}\left(m_{j}^{2}-2m_{W}^{2}\right)B_{0}(0,m_{j}^{2},m_{j}^{2})+2m_{W}^{4}B_{0}(0,m_{W}^{2},m_{W}^{2})\right. (6)
+\displaystyle+ 4mj2mW23mj4mW4].\displaystyle\left.4m_{j}^{2}m_{W}^{2}-3m_{j}^{4}-m_{W}^{4}\right].

Now, one analytical expression for the Fa0F_{a}^{0} function can be obtained in a straightforward way either integrating over the Feynman parameters in eq. (5) or using the definition of the B0(0,m2,m2)B_{0}(0,m^{2},m^{2}) scalar function in eq. (6). In such a way that after making an expansion around mj2=0m_{j}^{2}=0 we obtained

Fa0=12π2[mj2mW2log(mW2mj2)mj22mW2+12log(mW2μ2)+14+ϑ(mj2mW2)2].F^{0}_{a}=\frac{1}{2\pi^{2}}\left[\frac{m_{j}^{2}}{m_{W}^{2}}\log\left(\frac{m_{W}^{2}}{m_{j}^{2}}\right)-\frac{m_{j}^{2}}{2m_{W}^{2}}+\frac{1}{2}\log\left(\frac{m_{W}^{2}}{\mu^{2}}\right)+\frac{1}{4}+\vartheta\left(\frac{m_{j}^{2}}{m_{W}^{2}}\right)^{2}\right]. (7)

From eq. (7) it turns clear that, in this approximation, the amplitude will be proportional to the neutrino mass squared, where the dominant contribution, due to the big gap between the neutrino and WW boson mass scales, comes from the first term as it involves a relative factor log(mW2mj2)\log\left(\frac{m_{W}^{2}}{m_{j}^{2}}\right) compared to the second one 333A similar relative suppression operates for the diagrams in fig. 1 (a), (b) and (c) with respect to the diagrams in fig. 1 (d) and (e)., whereas the independent terms on neutrino mass will vanish by the GIM-like mechanism.

Therefore, the structure of the matrix element for the contribution of the diagram (d) in fig. 1 in the approximation where masses and momenta of the external particles are neglected is given by

d\displaystyle\mathcal{M}_{d} =\displaystyle= iGF2mW2βFa04u¯(p)γλ(1γ5)u(P)×u¯(p1)γλ(1γ5)v(p2)\displaystyle-i\frac{G_{F}^{2}m_{W}^{2}\beta_{F^{0}_{a}}}{4}\,\bar{u}(p)\gamma_{\lambda}(1-\gamma_{5})u(P)\times\bar{u}(p_{1})\gamma^{\lambda}(1-\gamma_{5})v(p_{2}) (8)
+\displaystyle+ iGF2mW2sW2βFa0u¯(p)γλ(1γ5)u(P)×u¯(p1)γλv(p2),\displaystyle iG_{F}^{2}m_{W}^{2}s_{W}^{2}\beta_{F^{0}_{a}}\,\bar{u}(p)\gamma_{\lambda}(1-\gamma_{5})u(P)\times\bar{u}(p_{1})\gamma^{\lambda}v(p_{2})\,,

where we have defined

βFa0=jULjUjFa0(mj2).\beta_{F^{0}_{a}}=\sum_{j}U_{Lj}U^{*}_{\ell j}F^{0}_{a}(m_{j}^{2}). (9)

We verified that eq. (8) reproduces the result reported in ref. Petcov:1976ff considering only the first term in eq. (7) and the simple case of two families.

Returning to the general case (non-zero masses and momentum of the external particles), we also have obtained the FkF_{k} functions using both Feynman parametrization (we will denote the corresponding expressions by FFkF_{F_{k}}) and the Passarino-Veltman (PaVe) technique (denoted by FPVkF_{PV_{k}}) tHooft:1978jhc ; Passarino:1978jh , employing FeynCalc Mertig:1990an . In particular, we agree with the expressions previously reported in ref. Pham:1998fq in terms of the Feynman parameters 444We have found some irrelevant differences in the numerators of the fdf_{d} and fff_{f} functions, as can be seen comparing eqs. (11), (12) and (13) with the corresponding expressions in ref. Pham:1998fq ., namely the FFkF_{F_{k}} functions can be written as

FFk(q2,mj2)=12π201𝑑x01xfk(q2,mj2)𝑑y,F_{F_{k}}(q^{2},m_{j}^{2})=\frac{1}{2\pi^{2}}\int_{0}^{1}dx\int_{0}^{1-x}f_{k}(q^{2},m_{j}^{2})dy, (10)

where

fa\displaystyle f_{a} =\displaystyle= 2+log(Dj(q2)/μ2)+(q2m2)x(y1)+M2x(x+y)+q2y(y1)Dj,\displaystyle 2+\log\left(D_{j}(q^{2})/\mu^{2}\right)+\frac{(q^{2}-m^{2})x(y-1)+M^{2}x(x+y)+q^{2}y(y-1)}{D_{j}}, (11)
fb\displaystyle f_{b} =\displaystyle= mMxDj,fc=Mx(x+y)Dj,fd=mx(1y)Dj,\displaystyle\frac{mMx}{D_{j}},\quad f_{c}=-\frac{Mx(x+y)}{D_{j}},\quad f_{d}=-\frac{mx(1-y)}{D_{j}}, (12)
fe\displaystyle f_{e} =\displaystyle= Mx(23yx)2My(y1)Dj,ff=xm(y1)+2my(y1)Dj,\displaystyle\frac{Mx(2-3y-x)-2My(y-1)}{D_{j}},\quad f_{f}=\frac{xm(y-1)+2my(y-1)}{D_{j}}, (13)

and DjD_{j} is defined as

Dj(q2,mj2)=(x1)mj2m2xy+xmW2+M2x(x+y1)q2y(1xy).D_{j}(q^{2},m_{j}^{2})=-(x-1)m_{j}^{2}-m^{2}xy+xm_{W}^{2}+M^{2}x(x+y-1)-q^{2}y(1-x-y). (14)

We have omitted in faf_{a} the term associated with the UV divergence since it is independent of mjm_{j} and vanishes owing to the GIM-like mechanism.

On the other hand, the FkF_{k} functions in terms of the PaVe scalar functions are given as follows

FPVk(q2,mj2)=12π2NFkDFk,F_{PV_{k}}(q^{2},m_{j}^{2})=\frac{1}{2\pi^{2}}\frac{N_{F_{k}}}{D_{F_{k}}}, (15)

with

DFa=2DFb\displaystyle D_{F_{a}}=2D_{F_{b}} =\displaystyle= 2λ(m2,M2,q2),\displaystyle-2\lambda(m^{2},M^{2},q^{2}), (16)
DFc=DFe\displaystyle D_{F_{c}}=D_{F_{e}} =\displaystyle= M2DFa2DFd=DFf=m2DFa2,\displaystyle\frac{M}{2}D_{F_{a}}^{2}\quad D_{F_{d}}\,=\,D_{F_{f}}\,=\,\frac{m}{2}D_{F_{a}}^{2}\,, (17)
NFk\displaystyle N_{F_{k}} =\displaystyle= ξk1B0(m2,mj2,mW2)+ξk2B0(M2,mj2,mW2)+ξk3B0(q2,mj2,mj2)+ξk4B0(0,mj2,mW2)\displaystyle\xi_{k_{1}}B_{0}(m^{2},m_{j}^{2},m_{W}^{2})+\xi_{k_{2}}B_{0}(M^{2},m_{j}^{2},m_{W}^{2})+\xi_{k_{3}}B_{0}(q^{2},m_{j}^{2},m_{j}^{2})+\xi_{k_{4}}B_{0}(0,m_{j}^{2},m_{W}^{2}) (18)
+ξk5C0(m2,M2,q2,mj2,mW2,mj2)+ξk0,\displaystyle+\xi_{k_{5}}C_{0}(m^{2},M^{2},q^{2},m_{j}^{2},m_{W}^{2},m_{j}^{2})+\xi_{k_{0}},

where λ\lambda is the Kallen function λ(x,y,z)=x2+y2+z22(xy+xz+yz)\lambda(x,y,z)=x^{2}+y^{2}+z^{2}-2(xy+xz+yz), and the ξk\xi_{k} factors can be found in the appendix A.555The cancellation of the UV divergences for the FmF_{m} functions in terms of the PaVe functions occurs again by the GIM mechanism. This can be verified easily owing to the fact that the sums over the coefficients of the different scalar B0B_{0} functions, which contain an isolated divergent term, are independent of mjm_{j}. That is i=14ξaiDPVa=12\sum_{i=1}^{4}\frac{\xi_{a_{i}}}{D_{PV_{a}}}=-\frac{1}{2}, and i=14ξliDPVl=0\sum_{i=1}^{4}\frac{\xi_{l_{i}}}{D_{PV_{l}}}=0 for (l=b,c,d,e,fl=b,c,d,e,f).

Unlike the approximation made in ref. Petcov:1976ff , the presence of masses and momenta of the external particles in the computation hinders the way for the derivation of analytical expressions for the integrals in eqs. (10) or (15)  666The analytical expressions of the first integrals over the yy parameter in eqs. (11), (12) and (13) can be derived from the formulas reported in appendix B.. Nevertheless, we have done a numerical cross-check between both expressions, where we have employed the Looptools package vanOldenborgh:1989wn ; Hahn:1998yk for the evaluation of the PaVe functions and a numerical Mathematica Mathematica routine for the evaluation of the parametric integrals (see fig. 2). We have found an excellent agreement between these two expressions for values of q2<4mj2q^{2}<4m_{j}^{2}, which are, however, out side of the physical domain for the considered decays, since qmin2=4m2mj2q^{2}_{\rm{min}}=4m_{\ell^{\prime}}^{2}\gg m_{j}^{2}. In this way, owing to the simpler integrals, we verified that a better precision is found in terms of PaVe functions than using Feynman parameters, this feature is illustrated, as an example, for the particular case of the ZτμZ\tau\mu transition in fig. 2 for the (dominant, as we will show) FaF_{a} factor.

Refer to caption
Figure 2: Numerical evaluation of the FaF_{a} function for the effective ZτμZ\tau\mu vertex as a function of the neutrino mass, taking the minimal value of q2=4mμ2q^{2}=4m_{\mu}^{2} for the particular τμμμ+\tau^{-}\to\mu^{-}\mu^{-}\mu^{+} channel. Black dashed line stands for the numerical evaluation of the FaF_{a} function in terms of the Feynman parameters depicted by FFaF_{F_{a}} (eq. (10)), whereas the red line corresponds to the evaluation in terms of the PaVe functions represented by FPVaF_{PV_{a}} (eq. (15)). We have found some numerical instabilities for the evaluation of the FFaF_{F_{a}} function in the region 0.010.01 GeV<mj<0.1<m_{j}<0.1 GeV. On the other hand, a better precision is achieved in the evaluation of the FPVaF_{PV_{a}} function with the help of the Looptools package. In order to perform a comparison with the approximation done in ref. Petcov:1976ff , we also show the complete Fa0F_{a}^{0} given by the eqs. (5) or (6) (purple dotdashed line).

At this point, we want to stress that we disagree with the approximation done in ref. Pham:1998fq in order to estimate the relevant dependence on the neutrino mass of the FkF_{k} functions. We highlight that we are studying a process where the momentum transfer q2q^{2} must be non-vanishing and in principle is much larger than the neutrino squared mass, mj2m_{j}^{2}, which comes from the loop computation. Therefore, using an expansion around q2=0q^{2}=0 in order to simplify the integration over the Feynman parameters keeping the terms proportional to mj2m_{j}^{2} in the denominators of equations (11), (12) and (13), as it is done in ref. Pham:1998fq , modifies substantially the behavior of the original functions in the interesting physical region for the neutrino masses and, as a consequence, it gives rise to an incorrect infrared logarithmically divergent behavior of the FkF_{k} functions when mjm_{j} goes to zero, without any possible cure. In particular, the dependence on the momentum transfer, q2q^{2}, plays a crucial role in the behavior of the FkF_{k} functions. In this respect, we point out the presence of a small imaginary part in the FaF_{a} function, which emerges for the physical values 4mj2<q24m_{j}^{2}<q^{2}.

As we mentioned before, the q2q^{2} minimum in the L+L^{-}\to\ell^{-}\ell^{\prime-}\ell^{\prime+} decay is given by 4m24m_{\ell^{\prime}}^{2}, which is much larger than neutrinos masses. This, together with the difficulties in obtaining analytical expressions directly for the FkF_{k} functions suggests employing some numerical approximation to deal with the problem. Because of this, we approximate the FkF_{k} functions in the physical region for the neutrinos masses by fitting the curves for the real and imaginary parts of the FkF_{k} functions evaluated in terms of the PaVe function 777Our fits for the FkF_{k} functions are taken with the precision of the Looptools package considering a neutrino mass varying from 101510^{-15} GeV to the benchmark point mμm_{\mu} (mem_{e}), for a fixed value of q2=4mμ2q^{2}=4m_{\mu}^{2} (q2=4me2q^{2}=4m_{e}^{2}) for the ZτμZ\tau\mu (ZτeZ\tau e and ZμeZ\mu e) vertices.. We have found a reasonably good fit of the form

Fk\displaystyle F_{k} =\displaystyle= 12π2u(Qk+mj2mW2Rk),\displaystyle\frac{1}{2\pi^{2}u}\left(Q_{k}+\frac{m_{j}^{2}}{m_{W}^{2}}R_{k}\right),

where u=1u=1 for k=a,bk=a,b and u=Mu=M for k=c,d,e,fk=c,d,e,f and the respective values for the Qk=QRk+iQRIQ_{k}=Q_{R_{k}}+iQ_{R_{I}} and Rk=RRk+iRRIR_{k}=R_{R_{k}}+iR_{R_{I}} factors of all considered channels are given in appendix D.

From eq. (LABEL:fit), it turns clear that the QkQ_{k} factors will not contribute owing to the GIM-like mechanism, whereas the relevant contributions is given by the RkR_{k} factors. Then, according to our numerical results, we find that the relevant factors of the FbF_{b}, FcF_{c} and FdF_{d} functions are suppressed with respect to the FaF_{a} factor. On the other hand, despite the respective factors of FeF_{e} and FfF_{f} functions are larger than those of the FaF_{a} function, when the momentum transfer becomes smaller and smaller their helicity suppression makes them negligible. Therefore, we will concentrate on the contribution of the FaF_{a} function. Furthermore, in order to justify our results, we have made an expansion for the PaVe functions involved in eq. (18), following the same strategy that Cheng and Li for the μeγ\mu\to e\gamma decay LibroCheng , that is expanding the loop integrals around mj2=0m_{j}^{2}=0 (more details of our expansions are given in appendix E), and with the help of Package-X program Patel:2015tea , we have been able to rewrite the FPVaF_{PV_{a}} contribution as follows,

FPVa(q2,mj2)=12π2[Qa+mj2mW2Ra+ϑ(mj4mW4)],F_{PV_{a}}(q^{2},m_{j}^{2})=\frac{1}{2\pi^{2}}\left[Q_{a}+\frac{m_{j}^{2}}{m_{W}^{2}}R_{a}+\vartheta\left(\frac{m_{j}^{4}}{m_{W}^{4}}\right)\right], (20)

where

Qa\displaystyle Q_{a} =\displaystyle= λ(m2,M2,q2)1[fQa1C0(m2,M2,q2,0,mW2,0)+fQa2log(mW2mW2m2)\displaystyle-\lambda(m^{2},M^{2},q^{2})^{-1}\left[f_{Q_{a_{1}}}C_{0}(m^{2},M^{2},q^{2},0,m_{W}^{2},0)+f_{Q_{a_{2}}}\log\left(\frac{m_{W}^{2}}{m_{W}^{2}-m^{2}}\right)\right. (21)
+\displaystyle+ fQa3log(mW2mW2M2)+fQa4log(mW2q2)+fQa5]12Δ,\displaystyle\left.f_{Q_{a_{3}}}\log\left(\frac{m_{W}^{2}}{m_{W}^{2}-M^{2}}\right)+f_{Q_{a_{4}}}\log\left(\frac{m_{W}^{2}}{q^{2}}\right)+f_{Q_{a_{5}}}\right]-\frac{1}{2}\Delta,
Ra\displaystyle R_{a} =\displaystyle= mW2λ(m2,M2,q2)1[fRa1C0(m2,M2,q2,0,mW2,0)+fRa2log(mW2mW2m2)\displaystyle-m_{W}^{2}\lambda(m^{2},M^{2},q^{2})^{-1}\left[f_{R_{a_{1}}}C_{0}(m^{2},M^{2},q^{2},0,m_{W}^{2},0)+f_{R_{a_{2}}}\log\left(\frac{m_{W}^{2}}{m_{W}^{2}-m^{2}}\right)\right. (22)
+\displaystyle+ fRa3log(mW2mW2M2)+fRa4log(mW2q2)+fRa5],\displaystyle\left.f_{R_{a_{3}}}\log\left(\frac{m_{W}^{2}}{m_{W}^{2}-M^{2}}\right)+f_{R_{a_{4}}}\log\left(\frac{m_{W}^{2}}{q^{2}}\right)+f_{R_{a_{5}}}\right],

where Δ=1ϵγE+log(4π)\Delta=\frac{1}{\textstyle{\epsilon}}-\gamma_{E}+\log(4\pi), and the fQf_{Q} and fRf_{R} factors can be found in the appendix E. We verified that our numerical fits for the ZτμZ\tau\mu and ZτeZ\tau e vertex are in a very good agreement with eq. (22), whereas a deviation is found for the ZμeZ\mu e vertex, as can be seen in Table 9, we consider the results obtained from eq. (22) for the effective vertices as our reference ones.

In this way, we can approximate the amplitude for diagram (d) according to eq. (8) replacing Fa0F_{a}^{0} by

Fa12π2mj2mW2Ra,F_{a}\approx\frac{1}{2\pi^{2}}\frac{m_{j}^{2}}{m_{W}^{2}}R_{a}, (23)

Now, in order to evaluate the respective branching fractions for the L+L^{-}\to\ell^{-}\ell^{\prime-}\ell^{\prime+} decays we considered the state of the art best fit values of the three neutrino oscillation parameters Patrignani:2016xqp ; Fits . Without lose of generality, we assume the CPCP-conserving scenario 888In general, the leptonic mixing matrix can involve three CPCP-violating phases, one Dirac phase δ\delta, and two additional physical phases in case neutrinos are Majorana particles. Lepton number conserving observables (as those considered here) are not sensitive to the latter, so that for L+L^{-}\to\ell^{-}\ell^{\prime-}\ell^{\prime+} decays they can only depend on the phase δ\delta. Once the unitarity condition has been used to write the lightest neutrino mass eigenstate contribution in terms of the other two, it can be seen that the term with the largest logarithm (Log(m32/m12)(m_{3}^{2}/m_{1}^{2}) in the normal hierarchy) has a PMNS pre-factor (we are using the PDG parametrization) which does not depend on δ\delta, which justifies our approach., and we use the following values reported for the mixing angles sin2θ12=0.307(13)\sin^{2}\theta_{12}=0.307(13), sin2θ23=0.51(4)\sin^{2}\theta_{23}=0.51(4), and sin2θ13=0.0210(11)\sin^{2}\theta_{13}=0.0210(11), whereas the neutrino mass squared differences are taken as Δm322=2.45(5)×103\Delta m^{2}_{32}=2.45(5)\times 10^{-3}eV2 and Δm212=7.53(18)×105\Delta m^{2}_{21}=7.53(18)\times 10^{-5}eV2 999These numbers correspond to the normal hierarchy (m1<m2<m3m_{1}<m_{2}<m_{3}); different (though very similar) values are reported for the inverted hierarchy (m3<m1<m2m_{3}<m_{1}<m_{2}). Changing hierarchy is immaterial for our numerical evaluations. We have verified that results are not sensitive to the lightest neutrino mass value, but only to the mass squared differences.. The kinematics for the L+L^{-}\to\ell^{-}\ell^{\prime-}\ell^{\prime+} decays can be found in Appendix C.

Neglecting for the moment the box contributions, we get the branching fractions reported in table 1.

Decay channel Our result Ref. Petcov:1976ff
μee+e\mu^{-}\to e^{-}e^{+}e^{-} 9.510559.5\cdot 10^{-55} 1.010531.0\cdot 10^{-53}
τee+e\tau^{-}\to e^{-}e^{+}e^{-} 5.010565.0\cdot 10^{-56} 1.810541.8\cdot 10^{-54}
τμμ+μ\tau^{-}\to\mu^{-}\mu^{+}\mu^{-} 1.010541.0\cdot 10^{-54} 3.710533.7\cdot 10^{-53}
τeμ+μ\tau^{-}\to e^{-}\mu^{+}\mu^{-} 2.910562.9\cdot 10^{-56} 1.010541.0\cdot 10^{-54}
τμe+e\tau^{-}\to\mu^{-}e^{+}e^{-} 7.310557.3\cdot 10^{-55} 2.510532.5\cdot 10^{-53}
Table 1: Branching ratios for the L+L^{-}\to\ell^{-}\ell^{\prime-}\ell^{\prime+} decays (neglecting the box and the subdominant penguin contributions with only one neutrino propagator), which are obtained using the current knowledge of the PMNS matrix. The last column values correspond to the approximation where external masses and momenta are neglected Petcov:1976ff . Our results are smaller than those by around one (two) orders of magnitude for the μ\mu (τ\tau) decays.

3 Contributions of the box diagrams

Now, in order to make a complete comparison with the approximation done in ref. Petcov:1976ff we have also obtained the amplitude for the box diagram (e) in fig. 1. Note that unlike the penguin diagram (d), which involves two neutrino propagators of the same flavor, the box diagram (e) can involve two neutrino propagators with different flavors. Thus, in full generality, the amplitude can be written as follows

e=(ig22)4i,jULjUljUiUiTσσIσσ,\mathcal{M}_{e}=\left(\frac{-ig}{2\sqrt{2}}\right)^{4}\sum_{i,j}U_{Lj}U^{*}_{lj}U_{\ell^{\prime}i}U^{*}_{\ell^{\prime}i}T_{\sigma\sigma^{\prime}}I^{\sigma\sigma^{\prime}}, (24)

where we defined

Tσσ\displaystyle T_{\sigma\sigma^{\prime}} =\displaystyle= 4u¯(p)γμγσγν(1γ5)u(P)×u¯(p1)γνγσγμ(1γ5)v(p2)\displaystyle 4\,\bar{u}(p)\gamma_{\mu}\gamma_{\sigma}\gamma_{\nu}(1-\gamma_{5})u(P)\times\bar{u}(p_{1})\gamma^{\nu}\gamma_{\sigma^{\prime}}\gamma^{\mu}(1-\gamma_{5})v(p_{2}) (25)

and the relevant loop integral is given by (see fig. 1 (e))

Iσσ=d4k(2π)4(P+k)σ(k+p1)σ(k2mW2)[(p1+p2+k)2mW2][(P+k)2mj2][(k+p1)2mi2].I^{\sigma\sigma^{\prime}}=\int\frac{d^{4}k}{(2\pi)^{4}}\frac{(P+k)^{\sigma}(k+p_{1})^{\sigma^{\prime}}}{(k^{2}-m_{W}^{2})[(p_{1}+p_{2}+k)^{2}-m_{W}^{2}][(P+k)^{2}-m_{j}^{2}][(k+p_{1})^{2}-m_{i}^{2}]}. (26)

Since we have written the equation (26) in terms of PP, p1p_{1} and p2p_{2} momenta the integral must take the form

Iσσ\displaystyle I^{\sigma\sigma^{\prime}} =\displaystyle= i(gσσHa+PσPσHb+Pσp1σHc+Pσp2σHd+p1σPσHe\displaystyle i\left(g^{\sigma\sigma^{\prime}}H_{a}+P^{\sigma}P^{\sigma^{\prime}}H_{b}+P^{\sigma}p_{1}^{\sigma^{\prime}}H_{c}+P^{\sigma}p_{2}^{\sigma^{\prime}}H_{d}+p_{1}^{\sigma}P^{\sigma^{\prime}}H_{e}\right. (27)
+\displaystyle+ p1σp1σHf+p1σp2σHg+p2σPσHh+p2σp1σHi+p2σp2σHj).\displaystyle\left.p_{1}^{\sigma}p_{1}^{\sigma^{\prime}}H_{f}+p_{1}^{\sigma}p_{2}^{\sigma^{\prime}}H_{g}+p_{2}^{\sigma}P^{\sigma^{\prime}}H_{h}+p_{2}^{\sigma}p_{1}^{\sigma^{\prime}}H_{i}+p_{2}^{\sigma}p_{2}^{\sigma^{\prime}}H_{j}\right).

The HkH_{k} factors depend upon the kinematical variables s12=(p1+p2)2=q2s_{12}=(p_{1}+p_{2})^{2}=q^{2} and s13=(p1+p)2s_{13}=(p_{1}+p)^{2}, in addition of mim_{i} and mjm_{j}.

Anew, in the approximation where momenta of the external particles are neglected in eq. (26), the only contribution is given by the Ha0H^{0}_{a} function, which will not depend either on s12s_{12} or s13s_{13}. In such case, we obtained the following simplified expression

Ha0(mj2,mi2)=116π201𝑑x01x𝑑y01xy12MF02𝑑z,H_{a}^{0}(m_{j}^{2},m_{i}^{2})=\frac{1}{16\pi^{2}}\int_{0}^{1}dx\int_{0}^{1-x}dy\int_{0}^{1-x-y}\frac{-1}{2M_{F_{0}}^{2}}dz, (28)

where

MF02\displaystyle M_{F_{0}}^{2} =\displaystyle= mW2(x+y)mj2(x+y1)+(mi2mj2)z.\displaystyle m_{W}^{2}(x+y)-m_{j}^{2}(x+y-1)+(m_{i}^{2}-m_{j}^{2})z. (29)

Whereas, in terms of PaVe functions, Ha0H^{0}_{a} reads

Ha0(mj2,mi2)\displaystyle H^{0}_{a}(m_{j}^{2},m_{i}^{2}) =\displaystyle= 116π2(mj44(mj2mi2)(mj2mW2)2B0(0,mj2,mj2)+mi44(mi2mj2)(mi2mW2)2B0(0,mi2,mi2)\displaystyle\frac{1}{16\pi^{2}}\left(\frac{m_{j}^{4}}{4\left(m_{j}^{2}-m_{i}^{2}\right)\left(m_{j}^{2}-m_{W}^{2}\right){}^{2}}B_{0}(0,m_{j}^{2},m_{j}^{2})+\frac{m_{i}^{4}}{4\left(m_{i}^{2}-m_{j}^{2}\right)\left(m_{i}^{2}-m_{W}^{2}\right){}^{2}}B_{0}(0,m_{i}^{2},m_{i}^{2})\right. (30)
+\displaystyle+ 2mi2mj2mW2mW4(mi2+mj2)4(mi2mW2)(mj2mW2)22B0(0,mW2,mW2)+mW24(mi2mW2)(mW2mj2)).\displaystyle\left.\frac{2m_{i}^{2}m_{j}^{2}m_{W}^{2}-m_{W}^{4}\left(m_{i}^{2}+m_{j}^{2}\right)}{4\left(m_{i}^{2}-m_{W}^{2}\right){}^{2}\left(m_{j}^{2}-m_{W}^{2}\right)^{2}}B_{0}(0,m_{W}^{2},m_{W}^{2})+\frac{m_{W}^{2}}{4\left(m_{i}^{2}-m_{W}^{2}\right)\left(m_{W}^{2}-m_{j}^{2}\right)}\right)\,.

In the same way that Fa0F_{a}^{0} form factor, an analytical expression for Ha0H_{a}^{0} can be obtained easily from either eq. (28) or eq. (30). This time, making a double Taylor expansion, first around mi2=0m_{i}^{2}=0 and then around mj2=0m_{j}^{2}=0, we obtained that

Ha0(mj2,mi2)\displaystyle H^{0}_{a}(m_{j}^{2},m_{i}^{2}) =\displaystyle= 164π2mW4[(mi2+mj2)(log(mW2mj2)1)\displaystyle\frac{1}{64\pi^{2}m_{W}^{4}}\left[\left(m_{i}^{2}+m_{j}^{2}\right)\left(\log\left(\frac{m_{W}^{2}}{m_{j}^{2}}\right)-1\right)\right. (31)
+\displaystyle+ mi2mj2mW2(2log(mW2mj2)1)mW2+ϑ(mi4mW2)+ϑ(mj4mW2)].\displaystyle\left.\frac{m_{i}^{2}m_{j}^{2}}{m_{W}^{2}}\left(2\log\left(\frac{m_{W}^{2}}{m_{j}^{2}}\right)-1\right)-m_{W}^{2}+\vartheta\left(\frac{m_{i}^{4}}{m_{W}^{2}}\right)+\vartheta\left(\frac{m_{j}^{4}}{m_{W}^{2}}\right)\right].

Using that Tσσgσσ=16u¯(p)γλ(1γ5)u(P)×u¯(p1)γλ(1γ5)v(p2)T_{\sigma\sigma^{\prime}}g^{\sigma\sigma^{\prime}}=16\bar{u}(p)\gamma_{\lambda}(1-\gamma_{5})u(P)\times\bar{u}(p_{1})\gamma^{\lambda}(1-\gamma_{5})v(p_{2}), the amplitude -in this approximation- is given by

e\displaystyle\mathcal{M}_{e} =\displaystyle= i8GF2mW4βHa0u¯(p)γλ(1γ5)u(P)×u¯(p1)γλ(1γ5)v(p2),\displaystyle i8G_{F}^{2}m_{W}^{4}\beta_{H^{0}_{a}}\,\bar{u}(p)\gamma_{\lambda}(1-\gamma_{5})u(P)\times\bar{u}(p_{1})\gamma^{\lambda}(1-\gamma_{5})v(p_{2}), (32)

with

βHa0=j,iULjUjUiUiHa0(mi2,mj2).\beta_{H^{0}_{a}}=\sum_{j,i}U_{Lj}U^{*}_{\ell j}U_{\ell^{\prime}i}U^{*}_{\ell^{\prime}i}H^{0}_{a}(m_{i}^{2},m_{j}^{2}). (33)

Again, we verified that taking into account the first term in eq. (31) and considering only two families, eq. (32) reproduces the expression reported in ref. Petcov:1976ff for the amplitude of the box diagram 1 (e) in the μ3e\mu\to 3e decay.

In the general case, we also obtained the HkH_{k} (k=a,b,,jk=a,b,...,j) functions in terms of both Feynman parameters integrals, HFkH_{F_{k}}, and PaVe functions, HPVkH_{PV_{k}}. This time, the HkH_{k} functions will depend on the squared masses of two different neutrinos, mj2m_{j}^{2} and mi2m_{i}^{2}, and on two independent phase space variables s12s_{12} and s13s_{13}. Using Feynman parametrization these functions read

HFk(s12,s13,mi2,mj2)=116π201𝑑x01x𝑑y01xyhk(s12,s13,mi2,mj2)𝑑z,H_{F_{k}}(s_{12},s_{13},m_{i}^{2},m_{j}^{2})=\frac{1}{16\pi^{2}}\int_{0}^{1}dx\int_{0}^{1-x}dy\int_{0}^{1-x-y}h_{k}(s_{12},s_{13},m_{i}^{2},m_{j}^{2})dz\,, (34)

where

ha=12MF2,hb=z(z1)MF4,hc=(z1)(x+z)MF4,hd=y(z1)MF4he=z(x+z1)MF4,h_{a}=-\frac{1}{2M_{F}^{2}},\quad h_{b}=\frac{z(z-1)}{M_{F}^{4}},\quad h_{c}=-\frac{(z-1)(x+z)}{M_{F}^{4}},\quad h_{d}=\frac{y(z-1)}{M_{F}^{4}}\quad h_{e}=-\frac{z(x+z-1)}{M_{F}^{4}}\,, (35)
hf=(x+z1)(x+z)MF4,hg=y(x+z1)MF4,hh=yzMF4hi=y(x+z)MF4,hj=y2MF4.h_{f}=\frac{(x+z-1)(x+z)}{M_{F}^{4}},\quad h_{g}=-\frac{y(x+z-1)}{M_{F}^{4}},\quad h_{h}=\frac{yz}{M_{F}^{4}}\quad h_{i}=-\frac{y(x+z)}{M_{F}^{4}},\quad h_{j}=\frac{y^{2}}{M_{F}^{4}}. (36)

In the previous expressions, the denominator function is given by

MF2\displaystyle M_{F}^{2} =\displaystyle= mj2(x+y1)+m2(x+y1)(x+y)+mW2(x+y)s12xy+z2(2m2+m2+M2s12s13)\displaystyle-m_{j}^{2}(x+y-1)+m_{\ell^{\prime}}^{2}(x+y-1)(x+y)+m_{W}^{2}(x+y)-s_{12}xy+z^{2}\left(2m_{\ell^{\prime}}^{2}+m^{2}+M^{2}-s_{12}-s_{13}\right) (37)
+\displaystyle+ z[mi2mj2+(x+y)(3m2s12s13)2m2+m2(x1)+M2(y1)+s12+s13].\displaystyle z\left[m_{i}^{2}-m_{j}^{2}+(x+y)\left(3m_{\ell^{\prime}}^{2}-s_{12}-s_{13}\right)-2m_{\ell^{\prime}}^{2}+m^{2}(x-1)+M^{2}(y-1)+s_{12}+s_{13}\right].

Expressions are rather lengthy in terms of the PaVe functions, so that here we only present the expression for the dominant HaH_{a} function, which can be written as

HPVa(s12,s13,mj2,mi2)=116π2NHaDHa,H_{PV_{a}}(s_{12},s_{13},m_{j}^{2},m_{i}^{2})=\frac{1}{16\pi^{2}}\frac{N_{H_{a}}}{D_{H_{a}}}, (38)

with

DHa\displaystyle D_{H_{a}} =\displaystyle= 4(m4m2m2[M2(2m2s12)+s12(m2+s13)]+M4m2M2s12(m2+s13)\displaystyle 4\big{(}m^{4}m_{\ell^{\prime}}^{2}-m^{2}\big{[}M^{2}\big{(}2m_{\ell^{\prime}}^{2}-s_{12}\big{)}+s_{12}\big{(}m_{\ell^{\prime}}^{2}+s_{13}\big{)}\big{]}+M^{4}m_{\ell^{\prime}}^{2}-M^{2}s_{12}\big{(}m_{\ell^{\prime}}^{2}+s_{13}\big{)} (39)
+\displaystyle+ s12(2s13m2+m4+s13(s12+s13))),\displaystyle s_{12}\big{(}-2s_{13}m_{\ell^{\prime}}^{2}+m_{\ell^{\prime}}^{4}+s_{13}\big{(}s_{12}+s_{13}\big{)}\big{)}\big{)},

and

NHa\displaystyle N_{H_{a}} =\displaystyle= χk1C0(m2,M2,s12,mW2,mi2,mW2)+χk2C0(m2,m2,s12,mW2,mj2,mW2)\displaystyle\chi_{k_{1}}C_{0}(m^{2},M^{2},s_{12},m_{W}^{2},m_{i}^{2},m_{W}^{2})+\chi_{k_{2}}C_{0}(m_{\ell^{\prime}}^{2},m_{\ell^{\prime}}^{2},s_{12},m_{W}^{2},m_{j}^{2},m_{W}^{2}) (40)
+\displaystyle+ χk3C0(M2,m2,m2+M2+2m2s12s13,mi2,mW2,mj2)\displaystyle\chi_{k_{3}}C_{0}(M^{2},m_{\ell^{\prime}}^{2},m^{2}+M^{2}+2m_{\ell^{\prime}}^{2}-s_{12}-s_{13},m_{i}^{2},m_{W}^{2},m_{j}^{2})
+\displaystyle+ χk4C0(m2,m2,m2+M2+2m2s12s13,mi2,mW2,mj2)\displaystyle\chi_{k_{4}}C_{0}(m^{2},m_{\ell^{\prime}}^{2},m^{2}+M^{2}+2m_{\ell^{\prime}}^{2}-s_{12}-s_{13},m_{i}^{2},m_{W}^{2},m_{j}^{2})
+\displaystyle+ χk5D0(m2,M2,m2,m2,s12,m2+M2+2m2s12s13,mW2,mi2,mW2,mj2).\displaystyle\chi_{k_{5}}D_{0}(m^{2},M^{2},m_{\ell^{\prime}}^{2},m_{\ell^{\prime}}^{2},s_{12},m^{2}+M^{2}+2m_{\ell^{\prime}}^{2}-s_{12}-s_{13},m_{W}^{2},m_{i}^{2},m_{W}^{2},m_{j}^{2}).

where χk\chi_{k} factors are reported in Appendix A.

Refer to caption
Figure 3: Numerical evaluation of the HaH_{a} function versus the neutrino mass. We are considering that Δmij2=103\Delta m_{ij}^{2}=10^{-3} eV2 and the values of s12=108s_{12}=10^{8} eV2 and s13=109s_{13}=10^{9} eV2 associated with a representative point in the physical phase space for the particular τμμμ+\tau^{-}\to\mu^{-}\mu^{-}\mu^{+} channel. In analogous way to the fig. 2, black dashed line stands for the numerical evaluation of the HaH_{a} function in terms of the Feynman parameters depicted by HFaH_{F_{a}} (eq. (34)), whereas the red line corresponds to the evaluation in terms of the PaVe functions represented by HPVaH_{PV_{a}} (eq. (38)). Numerical instabilities for the evaluation of the HFaH_{F_{a}} function around 0.0010.001 GeV<mj<1<m_{j}<1 GeV are found. A better precision is achieved for the evaluation of the FPVaF_{PV_{a}} function with the help of the Looptools package. In order to perform a comparison with the approximation done in ref. Petcov:1976ff , we also show the complete Ha0H_{a}^{0} given by the eqs. (28) or (30) (purple dotdashed line).

As far as the general case is concerned, we can see that although there are additional contributions associated with the HkH_{k} functions, with k=bk=b, cc, dd, \ldots jj; they are expected to be suppressed, as they correspond to higher-dimensional operators, with respect to the HaH_{a} function associated with a (VA)×(VA)(V-A)\times(V-A) operator. Therefore, we will concentrate on the HaH_{a} function in order to estimate the box diagram contribution. We also have done a numerical cross-check between the expressions for the HaH_{a} function given in terms of the Feynman parameters eq. (34) and the PaVe functions eq. (38), as can be seen in fig. 3. In this case, it turns very complicated and far away of the purpose of this work to obtain an analytical expression for the HaH_{a} function in eq. (40) making an expansion for the respective scalar PaVe functions, owing to the number of propagators involved and the dependence on two different neutrino masses. However, we can expect a good approximation through our numerical results, such as occurs with the penguin contribution.

Thus, we estimate the relevant dependence on the neutrino mass for the HaH_{a} function fitting the curve for the real and imaginary parts of the HaH_{a} function evaluated in terms of the PaVe functions considering fixed values for the mim_{i}, s12s_{12}, and s13s_{13} parameters 101010Our fits for the HaH_{a} function are taken considering an interval for the neutrino mass varying from 101510^{-15} GeV to 1010 GeV.. We obtained a good fit of the form

Ha\displaystyle H_{a} =\displaystyle= 116π2(QHa+mj2mW4RHa),\displaystyle\frac{1}{16\pi^{2}}\left(Q_{H_{a}}+\frac{m_{j}^{2}}{m_{W}^{4}}R_{H_{a}}\right), (41)

where RHa1.5+i0.007R_{H_{a}}\approx 1.5+i0.007, for all different τ+\tau\to\ell^{-}\ell^{\prime-}\ell^{\prime+} channels, whereas RHa1.5R_{H_{a}}\approx 1.5, for the μeee+\mu^{-}\to e^{-}e^{-}e^{+} channel. These numbers were obtained considering that Δmij2=103\Delta m^{2}_{ij}=10^{-3} eV2, and representative values for s12s_{12} and s13s_{13} within the corresponding phase space.

Now we can evaluate the branching ratios for the L+L^{-}\to\ell^{-}\ell^{\prime-}\ell^{\prime+} decays using the previous results. We will first make a partial evaluation neglecting the penguin contributions (only box diagrams are considered), which yields the values in table 2.

Decay channel Our Result Ref. Petcov:1976ff
μee+e\mu^{-}\to e^{-}e^{+}e^{-} 2.110562.1\cdot 10^{-56} 2.610532.6\cdot 10^{-53}
τee+e\tau^{-}\to e^{-}e^{+}e^{-} 3.610573.6\cdot 10^{-57} 4.510544.5\cdot 10^{-54}
τμμ+μ\tau^{-}\to\mu^{-}\mu^{+}\mu^{-} 7.610567.6\cdot 10^{-56} 9.710539.7\cdot 10^{-53}
τeμ+μ\tau^{-}\to e^{-}\mu^{+}\mu^{-} 1.710571.7\cdot 10^{-57} 2.210542.2\cdot 10^{-54}
τμe+e\tau^{-}\to\mu^{-}e^{+}e^{-} 4.010564.0\cdot 10^{-56} 5.010535.0\cdot 10^{-53}
Table 2: Branching ratios for the L+L^{-}\to\ell^{-}\ell^{\prime-}\ell^{\prime+} decays (neglecting the penguin contributions), which are obtained using the current knowledge of the PMNS matrix. Our results are obtained taking into account only the contribution from the dominant HaH_{a} function. The last column values correspond to the approximation where external masses and momenta are neglected Petcov:1976ff . Our results are smaller than those by three orders of magnitude, approximately.

Our final results, where the dominant penguin and box contributions are considered, are collected in table 3, where they are compared to those obtained using Petcov’s results Petcov:1976ff with updated input. Our predictions are even smaller than Petcov’s updated results, as a consequence of keeping external masses and momenta in our computations.

Decay channel Our Result Ref. Petcov:1976ff
μee+e\mu^{-}\to e^{-}e^{+}e^{-} 7.410557.4\cdot 10^{-55} 8.510548.5\cdot 10^{-54}
τee+e\tau^{-}\to e^{-}e^{+}e^{-} 3.210563.2\cdot 10^{-56} 1.410541.4\cdot 10^{-54}
τμμ+μ\tau^{-}\to\mu^{-}\mu^{+}\mu^{-} 6.410556.4\cdot 10^{-55} 3.210533.2\cdot 10^{-53}
τeμ+μ\tau^{-}\to e^{-}\mu^{+}\mu^{-} 2.110562.1\cdot 10^{-56} 9.410559.4\cdot 10^{-55}
τμe+e\tau^{-}\to\mu^{-}e^{+}e^{-} 5.210555.2\cdot 10^{-55} 2.110532.1\cdot 10^{-53}
Table 3: Branching ratios including all contributions (interferences are not neglected), which are obtained using the current knowledge of the PMNS matrix. Our results are obtained taking into account only the contribution from the dominant HaH_{a} function. The last column values correspond to the approximation where external masses and momenta are neglected Petcov:1976ff . Our results are smaller than those by around one (two) orders of magnitude for the μ\mu (τ\tau) decays

These extremely suppressed branching ratios for lepton flavor violating L+L^{-}\to\ell^{-}\ell^{\prime-}\ell^{\prime+} decays due to massive light neutrinos are found at similar rates in the case of LFV Z Illana:2000ic and Higgs boson decays Arganda:2004bz .

4 Conclusions

We have revisited the L+L^{-}\to\ell^{-}\ell^{\prime-}\ell^{\prime+} decays in the SM with massive neutrinos. We obtained expressions in terms of both Feynman parameters and scalar Passarino-Veltman functions for the relevant loop integrals of the (dominant) diagrams that involve two neutrino propagators considering non-vanishing masses and momenta of the external particles. Opposed to the previous calculation reported in ref. Pham:1998fq , we found that all the different amplitudes for these processes are strongly suppressed (as they are proportional to the neutrino mass squared). In the particular case of the penguin contribution with two neutrino propagators, we highlight that it is crucial to save the dependence on the momentum transfer in the Feynman integrals in order to evaluate the amplitude in the physical region for the neutrino masses. This fact avoids the incorrect divergent logarithmic behavior in the amplitude claimed in ref. Pham:1998fq . As far as the box contribution is concerned, we found that the dominant term comes from HaH_{a} function that is associated with a (V-A)×\times(V-A) operator, and it is in good agreement with the approximation done in Ref. Petcov:1976ff .

Current and forthcoming experiments were approaching the limits predicted by ref. Pham:1998fq on the SM prediction for the lepton flavor violating τμ+\tau^{-}\to\mu^{-}\ell^{+}\ell^{-} (=μ,e\ell=\mu,e) decays due to non-zero neutrino masses. This prediction was at odds with ref. Petcov:1976ff corresponding computation for the μee+e\mu^{-}\to e^{-}e^{+}e^{-} decays predicting an extremely suppressed, unmeasurable branching ratio (as in LγL^{-}\to\ell^{-}\gamma processes). The most important result of our analysis is the confirmation (in agreement with ref. Petcov:1976ff ) that any future observation of L+L^{-}\to\ell^{-}\ell^{\prime-}\ell^{\prime+} decays would imply the existence of New Physics.

Acknowledgements.
The authors are indebted to Swagato Banerjee and Simon Eidelman for pointing us the interest of this calculation. We are thankful to Serguey Petcov for fruitful discussions. Finally, we also acknowledge support from Conacyt through projects FOINS-296-2016 (‘Fronteras de la Ciencia’), and 236394 and 250628 (Ciencia Básica).

Appendix A One-loop PaVe scalar functions

In this appendix we collect the {ξij}i=a,,f;j=0,..,5\left\{\xi_{i_{j}}\right\}_{{i=a,...,f;j=0,..,5}} factors entering our results in eq. (18):

ξa0\displaystyle\xi_{a_{0}} =\displaystyle= DFa,\displaystyle D_{F_{a}}, (42)
ξa1\displaystyle\xi_{a_{1}} =\displaystyle= m2(mj2mW2+M2+q2)+(M2q2)(mj2mW2+2M22q2)m4,\displaystyle-m^{2}\left(m_{j}^{2}-m_{W}^{2}+M^{2}+q^{2}\right)+\left(M^{2}-q^{2}\right)\left(m_{j}^{2}-m_{W}^{2}+2M^{2}-2q^{2}\right)-m^{4}, (43)
ξa2\displaystyle\xi_{a_{2}} =\displaystyle= q2(mj2+4m2mW2+M2)+(m2M2)(mj2+2m2mW2+M2)+2q4,\displaystyle-q^{2}\left(m_{j}^{2}+4m^{2}-m_{W}^{2}+M^{2}\right)+\left(m^{2}-M^{2}\right)\left(m_{j}^{2}+2m^{2}-m_{W}^{2}+M^{2}\right)+2q^{4}, (44)
ξa3\displaystyle\xi_{a_{3}} =\displaystyle= q2(2mj2+3m22mW2+3M23q2),\displaystyle q^{2}\left(2m_{j}^{2}+3m^{2}-2m_{W}^{2}+3M^{2}-3q^{2}\right), (45)
ξa4\displaystyle\xi_{a_{4}} =\displaystyle= 0,\displaystyle 0, (46)
ξa5\displaystyle\xi_{a_{5}} =\displaystyle= 2q2(m2(2mj22mW2+M22q2)+(mj2mW2+M2q2)+2m4).\displaystyle-2q^{2}\left(m^{2}\left(2m_{j}^{2}-2m_{W}^{2}+M^{2}-2q^{2}\right)+\left(m_{j}^{2}-m_{W}^{2}+M^{2}-q^{2}\right){}^{2}+m^{4}\right). (47)
ξb0\displaystyle\xi_{b_{0}} =\displaystyle= ξb4=0,\displaystyle\xi_{b_{4}}=0, (48)
ξb1\displaystyle\xi_{b_{1}} =\displaystyle= mM(m2M2+q2),\displaystyle-mM\left(m^{2}-M^{2}+q^{2}\right), (49)
ξb2\displaystyle\xi_{b_{2}} =\displaystyle= mM(m2M2q2),\displaystyle mM\left(m^{2}-M^{2}-q^{2}\right), (50)
ξb3\displaystyle\xi_{b_{3}} =\displaystyle= 2mMq2,\displaystyle 2mMq^{2}, (51)
ξb5\displaystyle\xi_{b_{5}} =\displaystyle= mMq2(2mj2+m22mW2+M2q2).\displaystyle-mMq^{2}\left(2m_{j}^{2}+m^{2}-2m_{W}^{2}+M^{2}-q^{2}\right). (52)
ξc0\displaystyle\xi_{c_{0}} =\displaystyle= M2(m6+m4(3M2+q2)+m2(3M4+2M2q2+q4)+(M2q2)3),\displaystyle M^{2}\big{(}-m^{6}+m^{4}\big{(}3M^{2}+q^{2}\big{)}+m^{2}\big{(}-3M^{4}+2M^{2}q^{2}+q^{4}\big{)}+\big{(}M^{2}-q^{2}\big{)}^{3}\big{)}, (53)
ξc1\displaystyle\xi_{c_{1}} =\displaystyle= M2(m4(mj2mW2+4M2+6q2)+m2(2M2(mj2mW24q2)+q2(10mj2+10mW2+3q2)+5M4)\displaystyle M^{2}\big{(}-m^{4}\big{(}m_{j}^{2}-m_{W}^{2}+4M^{2}+6q^{2}\big{)}+m^{2}\big{(}2M^{2}\big{(}m_{j}^{2}-m_{W}^{2}-4q^{2}\big{)}+q^{2}\big{(}-10m_{j}^{2}+10m_{W}^{2}+3q^{2}\big{)}+5M^{4}\big{)} (54)
(M2q2)2(mj2mW2+2M22q2)+m6),\displaystyle-\big{(}M^{2}-q^{2}\big{)}^{2}\big{(}m_{j}^{2}-m_{W}^{2}+2M^{2}-2q^{2}\big{)}+m^{6}\big{)},
ξc2\displaystyle\xi_{c_{2}} =\displaystyle= q4(m2(3mj23mW2+7M2)+2M2(3mj23mW2+2M2))(m22M2)(m2M2)2(mj2mW2+M2)\displaystyle-q^{4}\big{(}m^{2}\big{(}3m_{j}^{2}-3m_{W}^{2}+7M^{2}\big{)}+2M^{2}\big{(}3m_{j}^{2}-3m_{W}^{2}+2M^{2}\big{)}\big{)}-\big{(}m^{2}-2M^{2}\big{)}\big{(}m^{2}-M^{2}\big{)}^{2}\big{(}m_{j}^{2}-m_{W}^{2}+M^{2}\big{)} (55)
+q2(m4(3mj23mW2+5M2)+2m2M2(mj2mW2+2M2)\displaystyle+q^{2}\big{(}m^{4}\big{(}3m_{j}^{2}-3m_{W}^{2}+5M^{2}\big{)}+2m^{2}M^{2}\big{(}m_{j}^{2}-m_{W}^{2}+2M^{2}\big{)}
M4(3mj2+3mW2+M2))+q6(mj2mW2+3M2),\displaystyle-M^{4}\big{(}-3m_{j}^{2}+3m_{W}^{2}+M^{2}\big{)}\big{)}+q^{6}\big{(}m_{j}^{2}-m_{W}^{2}+3M^{2}\big{)},
ξc3\displaystyle\xi_{c_{3}} =\displaystyle= M2q2(m2(6mj26mW2+4M2+4q2)(M2q2)(6mj26mW2+5M25q2)+m4),\displaystyle M^{2}q^{2}\big{(}m^{2}\big{(}6m_{j}^{2}-6m_{W}^{2}+4M^{2}+4q^{2}\big{)}-\big{(}M^{2}-q^{2}\big{)}\big{(}6m_{j}^{2}-6m_{W}^{2}+5M^{2}-5q^{2}\big{)}+m^{4}\big{)}, (56)
ξc4\displaystyle\xi_{c_{4}} =\displaystyle= (mj2mW2)((mM)2q2)(m2M2q2)((m+M)2q2),\displaystyle\big{(}m_{j}^{2}-m_{W}^{2}\big{)}\big{(}(m-M)^{2}-q^{2}\big{)}\big{(}m^{2}-M^{2}-q^{2}\big{)}\big{(}(m+M)^{2}-q^{2}\big{)}, (57)
ξc5\displaystyle\xi_{c_{5}} =\displaystyle= 2M2(m6mj2+m4(M2(2q23mj2)+q2(mj22mW2+q2))+m2(M4(3mj2q2)+q2(q2(mj22mW2)\displaystyle-2M^{2}\big{(}m^{6}m_{j}^{2}+m^{4}\big{(}M^{2}\big{(}2q^{2}-3m_{j}^{2}\big{)}+q^{2}\big{(}m_{j}^{2}-2m_{W}^{2}+q^{2}\big{)}\big{)}+m^{2}\big{(}M^{4}\big{(}3m_{j}^{2}-q^{2}\big{)}+q^{2}\big{(}q^{2}\big{(}m_{j}^{2}-2m_{W}^{2}\big{)} (58)
+3(mj2mW2)22q4)+M2q2(3q22mW2))(M2q2)(M4(mj2+q2)\displaystyle+3\big{(}m_{j}^{2}-m_{W}^{2}\big{)}{}^{2}-2q^{4}\big{)}+M^{2}q^{2}\big{(}3q^{2}-2m_{W}^{2}\big{)}\big{)}-\big{(}M^{2}-q^{2}\big{)}\big{(}M^{4}\big{(}m_{j}^{2}+q^{2}\big{)}
+2M2q2(mj22mW2q2)+q2(3q2mj2+3(mj2mW2)+24q2mW2+q4))).\displaystyle+2M^{2}q^{2}\big{(}m_{j}^{2}-2m_{W}^{2}-q^{2}\big{)}+q^{2}\big{(}-3q^{2}m_{j}^{2}+3\big{(}m_{j}^{2}-m_{W}^{2}\big{)}{}^{2}+4q^{2}m_{W}^{2}+q^{4}\big{)}\big{)}\big{)}.
ξd0\displaystyle\xi_{d_{0}} =\displaystyle= m2(m63m4(M2+q2)+m2(3M4+2M2q2+3q4)(M2q2)2(M2+q2)),\displaystyle m^{2}\big{(}m^{6}-3m^{4}\big{(}M^{2}+q^{2}\big{)}+m^{2}\big{(}3M^{4}+2M^{2}q^{2}+3q^{4}\big{)}-\big{(}M^{2}-q^{2}\big{)}^{2}\big{(}M^{2}+q^{2}\big{)}\big{)}, (59)
ξd1\displaystyle\xi_{d_{1}} =\displaystyle= m6(2mj2+2mW2+5M2+q2)+m4(M2(5mj2+5mW2+4q2)+q2(3mj23mW24q2)+4M4)\displaystyle-m^{6}\big{(}-2m_{j}^{2}+2m_{W}^{2}+5M^{2}+q^{2}\big{)}+m^{4}\big{(}M^{2}\big{(}-5m_{j}^{2}+5m_{W}^{2}+4q^{2}\big{)}+q^{2}\big{(}3m_{j}^{2}-3m_{W}^{2}-4q^{2}\big{)}+4M^{4}\big{)} (60)
m2(M2q2)(4M2(mj2mW2+q2)+3q2(2mj2+2mW2+q2)+M4)\displaystyle-m^{2}\big{(}M^{2}-q^{2}\big{)}\big{(}-4M^{2}\big{(}m_{j}^{2}-m_{W}^{2}+q^{2}\big{)}+3q^{2}\big{(}-2m_{j}^{2}+2m_{W}^{2}+q^{2}\big{)}+M^{4}\big{)}
(M2q2)3(mj2mW2)+2m8,\displaystyle-\big{(}M^{2}-q^{2}\big{)}^{3}\big{(}m_{j}^{2}-m_{W}^{2}\big{)}+2m^{8},
ξd2\displaystyle\xi_{d_{2}} =\displaystyle= m2(q4(mj26m2+mW2+3M2)(m2M2)2(mj2+2m2mW2M2)\displaystyle m^{2}\big{(}q^{4}\big{(}-m_{j}^{2}-6m^{2}+m_{W}^{2}+3M^{2}\big{)}-\big{(}m^{2}-M^{2}\big{)}^{2}\big{(}m_{j}^{2}+2m^{2}-m_{W}^{2}-M^{2}\big{)} (61)
+2q2(m2(mj2mW24M2)+M2(5mj2+5mW23M2)+3m4)+2q6),\displaystyle+2q^{2}\big{(}m^{2}\big{(}m_{j}^{2}-m_{W}^{2}-4M^{2}\big{)}+M^{2}\big{(}-5m_{j}^{2}+5m_{W}^{2}-3M^{2}\big{)}+3m^{4}\big{)}+2q^{6}\big{)},
ξd3\displaystyle\xi_{d_{3}} =\displaystyle= m2q2(2q2(3mj2+5m23mW2+2M2)(m2M2)(6mj2+5m26mW2+M2)5q4),\displaystyle m^{2}q^{2}\big{(}2q^{2}\big{(}3m_{j}^{2}+5m^{2}-3m_{W}^{2}+2M^{2}\big{)}-\big{(}m^{2}-M^{2}\big{)}\big{(}6m_{j}^{2}+5m^{2}-6m_{W}^{2}+M^{2}\big{)}-5q^{4}\big{)}, (62)
ξd4\displaystyle\xi_{d_{4}} =\displaystyle= (mj2mW2)(((mM)2q2))((m+M)2q2)(m2M2+q2),\displaystyle\big{(}m_{j}^{2}-m_{W}^{2}\big{)}\big{(}-\big{(}(m-M)^{2}-q^{2}\big{)}\big{)}\big{(}(m+M)^{2}-q^{2}\big{)}\big{(}m^{2}-M^{2}+q^{2}\big{)}, (63)
ξd5\displaystyle\xi_{d_{5}} =\displaystyle= 2m2(m6(mj2+q2)+m4(M2(q23mj2)+q2(mj24mW23q2))+m2(M4(3mj22q2)\displaystyle 2m^{2}\big{(}m^{6}\big{(}m_{j}^{2}+q^{2}\big{)}+m^{4}\big{(}M^{2}\big{(}q^{2}-3m_{j}^{2}\big{)}+q^{2}\big{(}m_{j}^{2}-4m_{W}^{2}-3q^{2}\big{)}\big{)}+m^{2}\big{(}M^{4}\big{(}3m_{j}^{2}-2q^{2}\big{)} (64)
+q2(5q2mj2+3(mj2mW2)+28q2mW2+3q4)+M2q2(2mW23q2))M6mj2M4q2(mj22mW2+q2)\displaystyle+q^{2}\big{(}-5q^{2}m_{j}^{2}+3\big{(}m_{j}^{2}-m_{W}^{2}\big{)}{}^{2}+8q^{2}m_{W}^{2}+3q^{4}\big{)}+M^{2}q^{2}\big{(}2m_{W}^{2}-3q^{2}\big{)}\big{)}-M^{6}m_{j}^{2}-M^{4}q^{2}\big{(}m_{j}^{2}-2m_{W}^{2}+q^{2}\big{)}
+M2q2(q2(mj22mW2)3(mj2mW2)+22q4)\displaystyle+M^{2}q^{2}\big{(}-q^{2}\big{(}m_{j}^{2}-2m_{W}^{2}\big{)}-3\big{(}m_{j}^{2}-m_{W}^{2}\big{)}{}^{2}+2q^{4}\big{)}
+q4(3mj2(2mW2+q2)3mj4(mW2+q2)(3mW2+q2))).\displaystyle+q^{4}\big{(}3m_{j}^{2}\big{(}2m_{W}^{2}+q^{2}\big{)}-3m_{j}^{4}-\big{(}m_{W}^{2}+q^{2}\big{)}\big{(}3m_{W}^{2}+q^{2}\big{)}\big{)}\big{)}.
ξe0\displaystyle\xi_{e_{0}} =\displaystyle= M2(3m6m4(5M2+7q2)+m2(M46M2q2+5q4)+(M2q2)3),\displaystyle-M^{2}\big{(}3m^{6}-m^{4}\big{(}5M^{2}+7q^{2}\big{)}+m^{2}\big{(}M^{4}-6M^{2}q^{2}+5q^{4}\big{)}+\big{(}M^{2}-q^{2}\big{)}^{3}\big{)}, (65)
ξe1\displaystyle\xi_{e_{1}} =\displaystyle= M2(m4(11mj2+11mW2+2q2)+m2(2M2(5mj25mW24q2)+q2(2mj2+2mW2+5q2)+3M4)\displaystyle M^{2}\big{(}m^{4}\big{(}-11m_{j}^{2}+11m_{W}^{2}+2q^{2}\big{)}+m^{2}\big{(}2M^{2}\big{(}5m_{j}^{2}-5m_{W}^{2}-4q^{2}\big{)}+q^{2}\big{(}-2m_{j}^{2}+2m_{W}^{2}+5q^{2}\big{)}+3M^{4}\big{)} (66)
+(M2q2)2(mj2mW2+2M22q2)5m6)\displaystyle+\big{(}M^{2}-q^{2}\big{)}^{2}\big{(}m_{j}^{2}-m_{W}^{2}+2M^{2}-2q^{2}\big{)}-5m^{6}\big{)}
ξe2\displaystyle\xi_{e_{2}} =\displaystyle= m6(mj2+mW2+3M2)+m4(M2(6mj26mW27q2)+3q2(mj2mW2)+2M4)\displaystyle m^{6}\big{(}-m_{j}^{2}+m_{W}^{2}+3M^{2}\big{)}+m^{4}\big{(}M^{2}\big{(}6m_{j}^{2}-6m_{W}^{2}-7q^{2}\big{)}+3q^{2}\big{(}m_{j}^{2}-m_{W}^{2}\big{)}+2M^{4}\big{)} (67)
+m2(M4(3mj23mW2+4q2)+M2q2(2mj2+2mW2+5q2)+3q4(mW2mj2)M6)\displaystyle+m^{2}\big{(}M^{4}\big{(}3m_{j}^{2}-3m_{W}^{2}+4q^{2}\big{)}+M^{2}q^{2}\big{(}-2m_{j}^{2}+2m_{W}^{2}+5q^{2}\big{)}+3q^{4}\big{(}m_{W}^{2}-m_{j}^{2}\big{)}-M^{6}\big{)}
(M2q2)(M4(8mj28mW23q2)M2q2(3mj23mW2+q2)+q4(mj2mW2)+4M6),\displaystyle-\big{(}M^{2}-q^{2}\big{)}\big{(}M^{4}\big{(}8m_{j}^{2}-8m_{W}^{2}-3q^{2}\big{)}-M^{2}q^{2}\big{(}3m_{j}^{2}-3m_{W}^{2}+q^{2}\big{)}+q^{4}\big{(}m_{j}^{2}-m_{W}^{2}\big{)}+4M^{6}\big{)},
ξe3\displaystyle\xi_{e_{3}} =\displaystyle= M2(2q4(mj2+5m2mW2+2M2)+q2(5m2M2)(2mj2+m22mW2+M2)\displaystyle M^{2}\big{(}-2q^{4}\big{(}m_{j}^{2}+5m^{2}-m_{W}^{2}+2M^{2}\big{)}+q^{2}\big{(}5m^{2}-M^{2}\big{)}\big{(}2m_{j}^{2}+m^{2}-2m_{W}^{2}+M^{2}\big{)} (68)
+2(m2M2)2(2mj2+m22mW2+M2)+3q6),\displaystyle+2\big{(}m^{2}-M^{2}\big{)}^{2}\big{(}2m_{j}^{2}+m^{2}-2m_{W}^{2}+M^{2}\big{)}+3q^{6}\big{)},
ξe4\displaystyle\xi_{e_{4}} =\displaystyle= (mj2mW2)((mM)2q2)(m2+3M2q2)((m+M)2q2),\displaystyle\big{(}m_{j}^{2}-m_{W}^{2}\big{)}\big{(}(m-M)^{2}-q^{2}\big{)}\big{(}m^{2}+3M^{2}-q^{2}\big{)}\big{(}(m+M)^{2}-q^{2}\big{)}, (69)
ξe5\displaystyle\xi_{e_{5}} =\displaystyle= 2M2(m6mj2+m4(M2(2q23mj2)+q2(mj22mW2+q2))+m2(M4(3mj2q2)+q2(q2(mj22mW2)\displaystyle-2M^{2}\big{(}m^{6}m_{j}^{2}+m^{4}\big{(}M^{2}\big{(}2q^{2}-3m_{j}^{2}\big{)}+q^{2}\big{(}m_{j}^{2}-2m_{W}^{2}+q^{2}\big{)}\big{)}+m^{2}\big{(}M^{4}\big{(}3m_{j}^{2}-q^{2}\big{)}+q^{2}\big{(}q^{2}\big{(}m_{j}^{2}-2m_{W}^{2}\big{)} (70)
+3(mj2mW2)22q4)+M2q2(3q22mW2))(M2q2)(M4(mj2+q2)+2M2q2(mj22mW2q2)\displaystyle+3\big{(}m_{j}^{2}-m_{W}^{2}\big{)}{}^{2}-2q^{4}\big{)}+M^{2}q^{2}\big{(}3q^{2}-2m_{W}^{2}\big{)}\big{)}-\big{(}M^{2}-q^{2}\big{)}\big{(}M^{4}\big{(}m_{j}^{2}+q^{2}\big{)}+2M^{2}q^{2}\big{(}m_{j}^{2}-2m_{W}^{2}-q^{2}\big{)}
+q2(3q2mj2+3(mj2mW2)+24q2mW2+q4))).\displaystyle+q^{2}\big{(}-3q^{2}m_{j}^{2}+3\big{(}m_{j}^{2}-m_{W}^{2}\big{)}{}^{2}+4q^{2}m_{W}^{2}+q^{4}\big{)}\big{)}\big{)}.
ξf0\displaystyle\xi_{f_{0}} =\displaystyle= m2(m6m4(M23q2)+m2(5M4+6M2q23q4)(M2q2)2(3M2q2)),\displaystyle-m^{2}\big{(}-m^{6}-m^{4}\big{(}M^{2}-3q^{2}\big{)}+m^{2}\big{(}5M^{4}+6M^{2}q^{2}-3q^{4}\big{)}-\big{(}M^{2}-q^{2}\big{)}^{2}\big{(}3M^{2}-q^{2}\big{)}\big{)}, (71)
ξf1\displaystyle\xi_{f_{1}} =\displaystyle= m6(8mj28mW2+M27q2)+m4(M2(3mj2+3mW24q2)+q2(11mj2+11mW2+2q2)2M4)\displaystyle m^{6}\big{(}8m_{j}^{2}-8m_{W}^{2}+M^{2}-7q^{2}\big{)}+m^{4}\big{(}M^{2}\big{(}-3m_{j}^{2}+3m_{W}^{2}-4q^{2}\big{)}+q^{2}\big{(}-11m_{j}^{2}+11m_{W}^{2}+2q^{2}\big{)}-2M^{4}\big{)}
\displaystyle- m2(M2q2)(M2(6mj26mW24q2)+q2(4mj24mW2+q2)+3M4)+(M2q2)3(mj2mW2)+4m8,\displaystyle m^{2}\big{(}M^{2}-q^{2}\big{)}\big{(}M^{2}\big{(}6m_{j}^{2}-6m_{W}^{2}-4q^{2}\big{)}+q^{2}\big{(}4m_{j}^{2}-4m_{W}^{2}+q^{2}\big{)}+3M^{4}\big{)}+\big{(}M^{2}-q^{2}\big{)}^{3}\big{(}m_{j}^{2}-m_{W}^{2}\big{)}+4m^{8},
ξf2\displaystyle\xi_{f_{2}} =\displaystyle= m2(m4(mj2+mW23M2+6q2)+2m2(M2(5mj2+5mW2+4q2)+q2(mj2mW23q2))\displaystyle m^{2}\big{(}m^{4}\big{(}-m_{j}^{2}+m_{W}^{2}-3M^{2}+6q^{2}\big{)}+2m^{2}\big{(}M^{2}\big{(}-5m_{j}^{2}+5m_{W}^{2}+4q^{2}\big{)}+q^{2}\big{(}m_{j}^{2}-m_{W}^{2}-3q^{2}\big{)}\big{)} (73)
+M4(11mj211mW22q2)+M2q2(2mj22mW25q2)+q4(mj2+mW2+2q2)2m6+5M6),\displaystyle+M^{4}\big{(}11m_{j}^{2}-11m_{W}^{2}-2q^{2}\big{)}+M^{2}q^{2}\big{(}2m_{j}^{2}-2m_{W}^{2}-5q^{2}\big{)}+q^{4}\big{(}-m_{j}^{2}+m_{W}^{2}+2q^{2}\big{)}-2m^{6}+5M^{6}\big{)},
ξf3\displaystyle\xi_{f_{3}} =\displaystyle= m2(2q4(mj2+2m2mW2+5M2)+q2(m25M2)(2mj2+m22mW2+M2)\displaystyle m^{2}\big{(}2q^{4}\big{(}m_{j}^{2}+2m^{2}-m_{W}^{2}+5M^{2}\big{)}+q^{2}\big{(}m^{2}-5M^{2}\big{)}\big{(}2m_{j}^{2}+m^{2}-2m_{W}^{2}+M^{2}\big{)} (74)
2(m2M2)2(2mj2+m22mW2+M2)3q6),\displaystyle-2\big{(}m^{2}-M^{2}\big{)}^{2}\big{(}2m_{j}^{2}+m^{2}-2m_{W}^{2}+M^{2}\big{)}-3q^{6}\big{)},
ξf4\displaystyle\xi_{f_{4}} =\displaystyle= (mj2mW2)(((mM)2q2))(3m2+M2q2)((m+M)2q2),\displaystyle\big{(}m_{j}^{2}-m_{W}^{2}\big{)}\big{(}-\big{(}(m-M)^{2}-q^{2}\big{)}\big{)}\big{(}3m^{2}+M^{2}-q^{2}\big{)}\big{(}(m+M)^{2}-q^{2}\big{)}, (75)
ξf5\displaystyle\xi_{f_{5}} =\displaystyle= 2m2(q6(mj2+3m22mW2+4M2)+(mM)2(m+M)2(m2(3mj22mW2+2M2)+M2(5mj22mW2)\displaystyle 2m^{2}\big{(}q^{6}\big{(}m_{j}^{2}+3m^{2}-2m_{W}^{2}+4M^{2}\big{)}+(m-M)^{2}(m+M)^{2}\big{(}m^{2}\big{(}3m_{j}^{2}-2m_{W}^{2}+2M^{2}\big{)}+M^{2}\big{(}5m_{j}^{2}-2m_{W}^{2}\big{)} (76)
+2(mj2mW2))2q4(2mW2(mj2+m2+4M2)m2mj2+3M2mj2+mj4+3m4+5m2M2+mW4+5M4)\displaystyle+2\big{(}m_{j}^{2}-m_{W}^{2}\big{)}{}^{2}\big{)}-q^{4}\big{(}-2m_{W}^{2}\big{(}m_{j}^{2}+m^{2}+4M^{2}\big{)}-m^{2}m_{j}^{2}+3M^{2}m_{j}^{2}+m_{j}^{4}+3m^{4}+5m^{2}M^{2}+m_{W}^{4}+5M^{4}\big{)}
+q2(m4(5mj22mW2+M2)+m2((mj2mW2)26M2mW2+2M4)+M2(M2(3mj2+4mW2)\displaystyle+q^{2}\big{(}-m^{4}\big{(}5m_{j}^{2}-2m_{W}^{2}+M^{2}\big{)}+m^{2}\big{(}-\big{(}m_{j}^{2}-m_{W}^{2}\big{)}{}^{2}-6M^{2}m_{W}^{2}+2M^{4}\big{)}+M^{2}\big{(}-M^{2}\big{(}3m_{j}^{2}+4m_{W}^{2}\big{)}
+5(mj2mW2)+22M4)+m6)q8).\displaystyle+5\big{(}m_{j}^{2}-m_{W}^{2}\big{)}{}^{2}+2M^{4}\big{)}+m^{6}\big{)}-q^{8}\big{)}.

As far as the χk\chi_{k} factors entering the HPVaH_{PV_{a}} functions in eq. (40), they are given as follows

χk1\displaystyle\chi_{k_{1}} =\displaystyle= m2(s12(mi2+2mj23m23mW2+2s12+s13)+2M2(mj2m2mW2))\displaystyle m^{2}\big{(}s_{12}\big{(}m_{i}^{2}+2m_{j}^{2}-3m_{\ell^{\prime}}^{2}-3m_{W}^{2}+2s_{12}+s_{13}\big{)}+2M^{2}\big{(}m_{j}^{2}-m_{\ell^{\prime}}^{2}-m_{W}^{2}\big{)}\big{)} (77)
+\displaystyle+ M2s12(mi2+2mj23m23mW2+2s12+s13)s12(mi2(2m2+s12+2s13)+s12mj2+2m2(mW2s12)\displaystyle M^{2}s_{12}\big{(}m_{i}^{2}+2m_{j}^{2}-3m_{\ell^{\prime}}^{2}-3m_{W}^{2}+2s_{12}+s_{13}\big{)}-s_{12}\big{(}m_{i}^{2}\big{(}-2m_{\ell^{\prime}}^{2}+s_{12}+2s_{13}\big{)}+s_{12}m_{j}^{2}+2m_{\ell^{\prime}}^{2}\big{(}m_{W}^{2}-s_{12}\big{)}
\displaystyle- (s12+s13)(2mW2s12))+m4(mj2+m2+mW2s12)+M4(mj2+m2+mW2s12),\displaystyle\big{(}s_{12}+s_{13}\big{)}\big{(}2m_{W}^{2}-s_{12}\big{)}\big{)}+m^{4}\big{(}-m_{j}^{2}+m_{\ell^{\prime}}^{2}+m_{W}^{2}-s_{12}\big{)}+M^{4}\big{(}-m_{j}^{2}+m_{\ell^{\prime}}^{2}+m_{W}^{2}-s_{12}\big{)},
χk2\displaystyle\chi_{k_{2}} =\displaystyle= s12(4mi2m2+s12mi2m2(mj23m2mW2+s12)M2(mj23m2mW2+s12)2mj2m2\displaystyle-s_{12}\big{(}-4m_{i}^{2}m_{\ell^{\prime}}^{2}+s_{12}m_{i}^{2}-m^{2}\big{(}m_{j}^{2}-3m_{\ell^{\prime}}^{2}-m_{W}^{2}+s_{12}\big{)}-M^{2}\big{(}m_{j}^{2}-3m_{\ell^{\prime}}^{2}-m_{W}^{2}+s_{12}\big{)}-2m_{j}^{2}m_{\ell^{\prime}}^{2} (78)
+\displaystyle+ s12mj2+2s13mj24s12m22s13m2+6m2mW2+2m42s12mW22s13mW2+s122+s12s13),\displaystyle s_{12}m_{j}^{2}+2s_{13}m_{j}^{2}-4s_{12}m_{\ell^{\prime}}^{2}-2s_{13}m_{\ell^{\prime}}^{2}+6m_{\ell^{\prime}}^{2}m_{W}^{2}+2m_{\ell^{\prime}}^{4}-2s_{12}m_{W}^{2}-2s_{13}m_{W}^{2}+s_{12}^{2}+s_{12}s_{13}\big{)},
χk3\displaystyle\chi_{k_{3}} =\displaystyle= m2(mi2(s122m2)+M2(mj2+m2mW2s12)+s13(mj2m2mW2+2s12)\displaystyle-m^{2}\big{(}m_{i}^{2}\big{(}s_{12}-2m_{\ell^{\prime}}^{2}\big{)}+M^{2}\big{(}m_{j}^{2}+m_{\ell^{\prime}}^{2}-m_{W}^{2}-s_{12}\big{)}+s_{13}\big{(}m_{j}^{2}-m_{\ell^{\prime}}^{2}-m_{W}^{2}+2s_{12}\big{)} (79)
\displaystyle- mj2m2+2s12mj24s12m2+3m2mW2+m43s12mW2+2s122)M2(2mi2m2+mj2(m2+s12s13)\displaystyle m_{j}^{2}m_{\ell^{\prime}}^{2}+2s_{12}m_{j}^{2}-4s_{12}m_{\ell^{\prime}}^{2}+3m_{\ell^{\prime}}^{2}m_{W}^{2}+m_{\ell^{\prime}}^{4}-3s_{12}m_{W}^{2}+2s_{12}^{2}\big{)}-M^{2}\big{(}2m_{i}^{2}m_{\ell^{\prime}}^{2}+m_{j}^{2}\big{(}m_{\ell^{\prime}}^{2}+s_{12}-s_{13}\big{)}
+\displaystyle+ s13(m2+mW2+s12)3m2mW2m4s12mW2+s122)+s12(mi2(3m2+s12+s13)\displaystyle s_{13}\big{(}m_{\ell^{\prime}}^{2}+m_{W}^{2}+s_{12}\big{)}-3m_{\ell^{\prime}}^{2}m_{W}^{2}-m_{\ell^{\prime}}^{4}-s_{12}m_{W}^{2}+s_{12}^{2}\big{)}+s_{12}\big{(}m_{i}^{2}\big{(}-3m_{\ell^{\prime}}^{2}+s_{12}+s_{13}\big{)}
+\displaystyle+ mj2(m2+s12+s13)+(2m2s12s13)(m2+2mW2s12s13))\displaystyle m_{j}^{2}\big{(}-m_{\ell^{\prime}}^{2}+s_{12}+s_{13}\big{)}+\big{(}2m_{\ell^{\prime}}^{2}-s_{12}-s_{13}\big{)}\big{(}m_{\ell^{\prime}}^{2}+2m_{W}^{2}-s_{12}-s_{13}\big{)}\big{)}
+\displaystyle+ m4(mj2m2mW2+s12)+2M4m2,\displaystyle m^{4}\big{(}m_{j}^{2}-m_{\ell^{\prime}}^{2}-m_{W}^{2}+s_{12}\big{)}+2M^{4}m_{\ell^{\prime}}^{2},
χk4\displaystyle\chi_{k_{4}} =\displaystyle= m2(2mi2m2+M2(mj2+m2mW2s12)+s13(mj2+m2+mW2+s12)+mj2m2\displaystyle-m^{2}\big{(}2m_{i}^{2}m_{\ell^{\prime}}^{2}+M^{2}\big{(}m_{j}^{2}+m_{\ell^{\prime}}^{2}-m_{W}^{2}-s_{12}\big{)}+s_{13}\big{(}-m_{j}^{2}+m_{\ell^{\prime}}^{2}+m_{W}^{2}+s_{12}\big{)}+m_{j}^{2}m_{\ell^{\prime}}^{2} (80)
+\displaystyle+ s12mj23m2mW2m4s12mW2+s122)+M2(mi2(2m2s12)+mj2(m22s12s13)\displaystyle s_{12}m_{j}^{2}-3m_{\ell^{\prime}}^{2}m_{W}^{2}-m_{\ell^{\prime}}^{4}-s_{12}m_{W}^{2}+s_{12}^{2}\big{)}+M^{2}\big{(}m_{i}^{2}\big{(}2m_{\ell^{\prime}}^{2}-s_{12}\big{)}+m_{j}^{2}\big{(}m_{\ell^{\prime}}^{2}-2s_{12}-s_{13}\big{)}
+\displaystyle+ s13(m2+mW22s12)+4s12m23m2mW2m4+3s12mW22s122)+s12(mi2(3m2+s12+s13)\displaystyle s_{13}\big{(}m_{\ell^{\prime}}^{2}+m_{W}^{2}-2s_{12}\big{)}+4s_{12}m_{\ell^{\prime}}^{2}-3m_{\ell^{\prime}}^{2}m_{W}^{2}-m_{\ell^{\prime}}^{4}+3s_{12}m_{W}^{2}-2s_{12}^{2}\big{)}+s_{12}\big{(}m_{i}^{2}\big{(}-3m_{\ell^{\prime}}^{2}+s_{12}+s_{13}\big{)}
+\displaystyle+ mj2(m2+s12+s13)+(2m2s12s13)(m2+2mW2s12s13))\displaystyle m_{j}^{2}\big{(}-m_{\ell^{\prime}}^{2}+s_{12}+s_{13}\big{)}+\big{(}2m_{\ell^{\prime}}^{2}-s_{12}-s_{13}\big{)}\big{(}m_{\ell^{\prime}}^{2}+2m_{W}^{2}-s_{12}-s_{13}\big{)}\big{)}
+\displaystyle+ M4(mj2m2mW2+s12)+2m4m2,\displaystyle M^{4}\big{(}m_{j}^{2}-m_{\ell^{\prime}}^{2}-m_{W}^{2}+s_{12}\big{)}+2m^{4}m_{\ell^{\prime}}^{2},
χk5\displaystyle\chi_{k_{5}} =\displaystyle= 2m2(s12(mi2(mj23m2mW2+s12)+mj2(3m23mW2+2s12+s13)+mj43s12m2s13m2\displaystyle 2m^{2}\big{(}s_{12}\big{(}m_{i}^{2}\big{(}m_{j}^{2}-3m_{\ell^{\prime}}^{2}-m_{W}^{2}+s_{12}\big{)}+m_{j}^{2}\big{(}-3m_{\ell^{\prime}}^{2}-3m_{W}^{2}+2s_{12}+s_{13}\big{)}+m_{j}^{4}-3s_{12}m_{\ell^{\prime}}^{2}-s_{13}m_{\ell^{\prime}}^{2} (81)
+\displaystyle+ 4m2mW2+2m43s12mW23s13mW2+2mW4+s122+s12s13)+M2(2mj2(m2+mW2)+mj4\displaystyle 4m_{\ell^{\prime}}^{2}m_{W}^{2}+2m_{\ell^{\prime}}^{4}-3s_{12}m_{W}^{2}-3s_{13}m_{W}^{2}+2m_{W}^{4}+s_{12}^{2}+s_{12}s_{13}\big{)}+M^{2}\big{(}-2m_{j}^{2}\big{(}m_{\ell^{\prime}}^{2}+m_{W}^{2}\big{)}+m_{j}^{4}
+\displaystyle+ 2s12(m2+mW2)+(m2mW2)2s122))+2M2s12(mi2(mj23m2mW2+s12)\displaystyle 2s_{12}\big{(}m_{\ell^{\prime}}^{2}+m_{W}^{2}\big{)}+\big{(}m_{\ell^{\prime}}^{2}-m_{W}^{2}\big{)}{}^{2}-s_{12}^{2}\big{)}\big{)}+2M^{2}s_{12}\big{(}m_{i}^{2}\big{(}m_{j}^{2}-3m_{\ell^{\prime}}^{2}-m_{W}^{2}+s_{12}\big{)}
+\displaystyle+ mj2(3m23mW2+2s12+s13)+mj43s12m2s13m2+4m2mW2+2m43s12mW23s13mW2\displaystyle m_{j}^{2}\big{(}-3m_{\ell^{\prime}}^{2}-3m_{W}^{2}+2s_{12}+s_{13}\big{)}+m_{j}^{4}-3s_{12}m_{\ell^{\prime}}^{2}-s_{13}m_{\ell^{\prime}}^{2}+4m_{\ell^{\prime}}^{2}m_{W}^{2}+2m_{\ell^{\prime}}^{4}-3s_{12}m_{W}^{2}-3s_{13}m_{W}^{2}
+\displaystyle+ 2mW4+s122+s12s13)s12(2mi2(mj2(2m2+s12+2s13)+m2(6mW24s122s13)+2m4\displaystyle 2m_{W}^{4}+s_{12}^{2}+s_{12}s_{13}\big{)}-s_{12}\big{(}2m_{i}^{2}\big{(}m_{j}^{2}\big{(}-2m_{\ell^{\prime}}^{2}+s_{12}+2s_{13}\big{)}+m_{\ell^{\prime}}^{2}\big{(}6m_{W}^{2}-4s_{12}-2s_{13}\big{)}+2m_{\ell^{\prime}}^{4}
\displaystyle- (s12+s13)(2mW2s12))+mi4(s124m2)+2mj2(2m2(mW2s12)(s12+s13)(2mW2s12))+s12mj4\displaystyle\big{(}s_{12}+s_{13}\big{)}\big{(}2m_{W}^{2}-s_{12}\big{)}\big{)}+m_{i}^{4}\big{(}s_{12}-4m_{\ell^{\prime}}^{2}\big{)}+2m_{j}^{2}\big{(}2m_{\ell^{\prime}}^{2}\big{(}m_{W}^{2}-s_{12}\big{)}-\big{(}s_{12}+s_{13}\big{)}\big{(}2m_{W}^{2}-s_{12}\big{)}\big{)}+s_{12}m_{j}^{4}
\displaystyle- (2m2s12s13)(m2(4mW22s12)4(s12+s13)mW2+4mW4+s12(s12+s13)))\displaystyle\big{(}2m_{\ell^{\prime}}^{2}-s_{12}-s_{13}\big{)}\big{(}m_{\ell^{\prime}}^{2}\big{(}4m_{W}^{2}-2s_{12}\big{)}-4\big{(}s_{12}+s_{13}\big{)}m_{W}^{2}+4m_{W}^{4}+s_{12}\big{(}s_{12}+s_{13}\big{)}\big{)}\big{)}
+\displaystyle+ m4((mj2(mmW)+2s12))(mj2(m+mW)+2s12)\displaystyle m^{4}\big{(}-\big{(}m_{j}^{2}-\big{(}m_{\ell^{\prime}}-m_{W}\big{)}{}^{2}+s_{12}\big{)}\big{)}\big{(}m_{j}^{2}-\big{(}m_{\ell^{\prime}}+m_{W}\big{)}{}^{2}+s_{12}\big{)}
\displaystyle- M4(mj2(mmW)+2s12)(mj2(m+mW)+2s12)\displaystyle M^{4}\big{(}m_{j}^{2}-\big{(}m_{\ell^{\prime}}-m_{W}\big{)}{}^{2}+s_{12}\big{)}\big{(}m_{j}^{2}-\big{(}m_{\ell^{\prime}}+m_{W}\big{)}{}^{2}+s_{12}\big{)}

Appendix B Some useful integrals

As we mentioned in the text, analytical expressions for the double integrals in eqs. (11), (12) and (13) are not easy to obtain. However, the first integrals over the yy-Feynman parameter can be derived from the following expressions

01xdyDj=2Λ(T+T),\int_{0}^{1-x}\frac{dy}{D_{j}}=-\frac{2}{\Lambda}\left(T_{+}-T_{-}\right), (82)
01xydyDj=(T+T)q2Λ(x(M2m2)+q2(x1))+(θmθM)2q2,\int_{0}^{1-x}\frac{ydy}{D_{j}}=\frac{\left(T_{+}-T_{-}\right)}{q^{2}\Lambda}\left(x(M^{2}-m^{2})+q^{2}(x-1)\right)+\frac{\left(\theta_{m}-\theta_{M}\right)}{2q^{2}}, (83)
01xy2dyDj\displaystyle\int_{0}^{1-x}\frac{y^{2}dy}{D_{j}} =\displaystyle= (TT+)Λq4(2q2(x1)mj2+x2(m2M2)22q2x(m2(x1)+mW2)+q4(x1)2)\displaystyle\frac{\left(T_{-}-T_{+}\right)}{\Lambda q^{4}}\left(2q^{2}(x-1)m_{j}^{2}+x^{2}\left(m^{2}-M^{2}\right)^{2}-2q^{2}x\left(m^{2}(x-1)+m_{W}^{2}\right)+q^{4}(x-1)^{2}\right) (84)
(θmθM)2q4(x(M2m2)+q2(x1))+1xq2,\displaystyle-\frac{\left(\theta_{m}-\theta_{M}\right)}{2q^{4}}\left(x\left(M^{2}-m^{2}\right)+q^{2}(x-1)\right)+\frac{1-x}{q^{2}},
01xln(Dj)𝑑y\displaystyle\int_{0}^{1-x}\ln(D_{j})dy =\displaystyle= Λ(TT+)q2+(θmθM)(x(M2m2)+q2(x1))2q2\displaystyle\frac{\Lambda\left(T_{-}-T_{+}\right)}{q^{2}}+\frac{\left(\theta_{m}-\theta_{M}\right)\left(x\left(M^{2}-m^{2}\right)+q^{2}(x-1)\right)}{2q^{2}} (85)
(x1)(log(x(m2(x1)+mW2)(x1)mj2)2),\displaystyle-(x-1)\left(\log\left(x\left(m^{2}(x-1)+m_{W}^{2}\right)-(x-1)m_{j}^{2}\right)-2\right),

where we have defined the functions that follow

Λ=4q2(x1)mj2+2q2x(m2(x1)+2mW2+M2(x1))x2(m2M2)2+q4((x1)2),\Lambda=\sqrt{-4q^{2}(x-1)m_{j}^{2}+2q^{2}x\left(m^{2}(x-1)+2m_{W}^{2}+M^{2}(x-1)\right)-x^{2}\left(m^{2}-M^{2}\right)^{2}+q^{4}\left(-(x-1)^{2}\right)}, (86)
T+=tan1(x(M2m2)+q2(x1)Λ),T=tan1(x(M2m2)q2(x1)Λ),T_{+}=\tan^{-1}\left(\frac{x\left(M^{2}-m^{2}\right)+q^{2}(x-1)}{\Lambda}\right),\quad T_{-}=\tan^{-1}\left(\frac{x\left(M^{2}-m^{2}\right)-q^{2}(x-1)}{\Lambda}\right), (87)
θM=log((x1)mj2x(mW2+M2(x1))),θm=log((x1)mj2x(mW2+m2(x1))).\theta_{M}=\log\left((x-1)m_{j}^{2}-x\left(m_{W}^{2}+M^{2}(x-1)\right)\right),\quad\theta_{m}=\log\left((x-1)m_{j}^{2}-x\left(m_{W}^{2}+m^{2}(x-1)\right)\right). (88)

Appendix C Kinematics for the L(P,M)(p,m)(p1,m)+(p2,m)L^{-}(P,M)\to\ell^{-}(p,m)\ell^{\prime-}(p_{1},m_{\ell^{\prime}})\ell^{\prime+}(p_{2},m_{\ell^{\prime}}) decays

Because of the necessity of antisymmetrizing the amplitude when =\ell=\ell^{\prime}, the total contribution for the sum of the penguin and box diagrams in this case is given by

=\displaystyle\mathcal{M}_{\ell=\ell^{\prime}} =\displaystyle= iGF2mW2(βFa4+8mW2βHa)u¯(p)γλ(1γ5)u(P)×u¯(p1)γλ(1γ5)v(p2)(pp1)\displaystyle iG_{F}^{2}m_{W}^{2}\left(-\frac{\beta_{F_{a}}}{4}+8m_{W}^{2}\beta_{H_{a}}\right)\,\bar{u}(p)\gamma_{\lambda}(1-\gamma_{5})u(P)\times\bar{u}(p_{1})\gamma^{\lambda}(1-\gamma_{5})v(p_{2})-(p\leftrightarrow p_{1}) (89)
+\displaystyle+ iGF2mW2sW2βFau¯(p)γλ(1γ5)u(P)×u¯(p1)γλv(p2)(pp1),\displaystyle iG_{F}^{2}m_{W}^{2}s_{W}^{2}\beta_{F_{a}}\,\bar{u}(p)\gamma_{\lambda}(1-\gamma_{5})u(P)\times\bar{u}(p_{1})\gamma^{\lambda}v(p_{2})-(p\leftrightarrow p_{1}),

On the other hand, when \ell\neq\ell^{\prime}, there is only one penguin diagram since the neutral ZZ boson does not change flavor. Besides, we have to add the box diagram interchanging (p)(p1)\ell^{-}(p)\leftrightarrow\ell^{\prime-}(p_{1}). Therefore, we have

\displaystyle\mathcal{M}_{\ell\neq\ell^{\prime}} =\displaystyle= iGF2mW2(βFa4+8mW2βHa)u¯(p)γλ(1γ5)u(P)×u¯(p1)γλ(1γ5)v(p2)\displaystyle iG_{F}^{2}m_{W}^{2}\left(-\frac{\beta_{F_{a}}}{4}+8m_{W}^{2}\beta_{H_{a}}\right)\,\bar{u}(p)\gamma_{\lambda}(1-\gamma_{5})u(P)\times\bar{u}(p_{1})\gamma^{\lambda}(1-\gamma_{5})v(p_{2}) (90)
+\displaystyle+ iGF2mW2sW2βFau¯(p)γλ(1γ5)u(P)×u¯(p1)γλv(p2)\displaystyle iG_{F}^{2}m_{W}^{2}s_{W}^{2}\beta_{F_{a}}\,\bar{u}(p)\gamma_{\lambda}(1-\gamma_{5})u(P)\times\bar{u}(p_{1})\gamma^{\lambda}v(p_{2})
+\displaystyle+ 8iGF2mW4β^Hau¯(p1)γλ(1γ5)u(P)×u¯(p)γλ(1γ5)v(p2)\displaystyle 8iG_{F}^{2}m_{W}^{4}\hat{\beta}_{H_{a}}\bar{u}(p_{1})\gamma_{\lambda}(1-\gamma_{5})u(P)\times\bar{u}(p)\gamma^{\lambda}(1-\gamma_{5})v(p_{2})

where βHa\beta_{H_{a}} has been defined in the main text and

β^Ha=j,iULjUiUjUiHa(mi2,mj2).\hat{\beta}_{H_{a}}=\sum_{j,i}U_{Lj}U^{*}_{\ell i}U_{\ell^{\prime}j}U^{*}_{\ell^{\prime}i}H_{a}(m_{i}^{2},m_{j}^{2}). (91)

In the Petcov’s approximation, taking only the dominant term and since the contribution of the penguin and box diagrams have opposite sign, the dominant terms are given by the second terms in eqs. (89) and (90), respectively. Therefore, |2||\mathcal{M}^{2}| is given by

|2|\displaystyle|\mathcal{M}^{2}| =\displaystyle= GF4sW44π4(jULjUljmj2log(mW2mj2))2Ts,\displaystyle\frac{G_{F}^{4}s_{W}^{4}}{4\pi^{4}}\left(\sum_{j}U_{Lj}U^{*}_{lj}m_{j}^{2}\log\left(\frac{m_{W}^{2}}{m_{j}^{2}}\right)\right)^{2}T_{s}, (92)

where

Ts=16(4s13m2+2m4s12(m2+M22s13)+2(m2s13)(M2s13)+s122)T_{s}=-16\left(-4s_{13}m_{\ell^{\prime}}^{2}+2m_{\ell^{\prime}}^{4}-s_{12}\left(m^{2}+M^{2}-2s_{13}\right)+2\left(m^{2}-s_{13}\right)\left(M^{2}-s_{13}\right)+s_{12}^{2}\right) (93)

for \ell\neq\ell^{\prime}, and

Ts\displaystyle T_{s} =\displaystyle= 16(s13(5m2+M2)+s132+2(9m42s13(4m2+M2)\displaystyle-16\big{(}-s_{13}\big{(}5m^{2}+M^{2}\big{)}+s_{13}^{2}+2\big{(}9m^{4}-2s_{13}\big{(}4m^{2}+M^{2}\big{)} (94)
+\displaystyle+ s12(3m2M2+s13)+5m2M2+s122+2s132))\displaystyle s_{12}\big{(}-3m^{2}-M^{2}+s_{13}\big{)}+5m^{2}M^{2}+s_{12}^{2}+2s_{13}^{2}\big{)}\big{)}

when =\ell=\ell^{\prime} (m=mm=m_{\ell^{\prime}}).

The unpolarized differential decay width for the L(P)(p)(p1)+(p2)L^{-}(P)\to\ell^{-}(p)\ell^{\prime-}(p_{1})\ell^{\prime+}(p_{2}) decays is given by

Γ=1/N4(4π)3M3||2𝑑s12𝑑s13,\Gamma=\frac{1/N}{4(4\pi)^{3}M^{3}}\int|\mathcal{M}|^{2}ds_{12}ds_{13}, (95)

where NN is the number of identical particles in the final state and s12=(p1+p2)2=q2s_{12}=(p_{1}+p_{2})^{2}=q^{2} and s13=(p1+p)2s_{13}=(p_{1}+p)^{2}. The corresponding integration limits are given by

s13±=(s12)(M2s12m2)2s12+m2+m2±λ(M2,s12,m2)λ(s12,m2,m2)2s12.s_{13}^{\pm}=\frac{(s_{12})(M^{2}-s_{12}-m^{2})}{2s_{12}}+m_{\ell^{\prime}}^{2}+m^{2}\pm\frac{\sqrt{\lambda(M^{2},s_{12},m^{2})\lambda(s_{12},m_{\ell^{\prime}}^{2},m_{\ell^{\prime}}^{2})}}{2s_{12}}. (96)

and

4m2s12(Mm)2.4m_{\ell^{\prime}}^{2}\leq s_{12}\leq(M-m)^{2}\,. (97)

Appendix D Fits for ZτμZ\tau\mu, ZτeZ\tau e and ZμeZ\mu e effective vertices

The numerical values for the QkQ_{k} and RkR_{k} factors involved in of our fits for the ZτμZ\tau\mu, ZτeZ\tau e and ZμeZ\mu e effective vertices are given as follows

ZτμZ\tau\mu (q2=4mμ2)(q^{2}=4m_{\mu}^{2}) QRkQ_{R_{k}} RRkR_{R_{k}} QIkQ_{I_{k}} RIkR_{I_{k}}
aa 4.637064.63706 11.545111.5451 7.14896×106-7.14896\times 10^{-6} 3.40983.4098
bb 1.38093×1051.38093\times 10^{-5} 3.31777×104-3.31777\times 10^{-4} 9.85094×10119.85094\times 10^{-11} 6.76208×105-6.76208\times 10^{-5}
cc 1.49047×105-1.49047\times 10^{-5} 3.62348×1033.62348\times 10^{-3} 7.884×1010-7.884\times 10^{-10} 5.4035×1045.4035\times 10^{-4}
dd 9.20638×106-9.20638\times 10^{-6} 1.2469×1041.2469\times 10^{-4} 4.9267×1011-4.9267\times 10^{-11} 3.38191×1053.38191\times 10^{-5}
ee 2.04592×1032.04592\times 10^{-3} 191.959191.959 4.69628×1044.69628\times 10^{-4} 126.096-126.096
ff 1.26365×105-1.26365\times 10^{-5} 11.8554-11.8554 2.95163×105-2.95163\times 10^{-5} 8.055278.05527
Table 4: Values for the QRkQ_{R_{k}} (QIkQ_{I_{k}}) and RRkR_{R_{k}} (RIkR_{I_{k}}) coefficients of the ZτμZ\tau\mu vertex for q2=4mμ2q^{2}=4m_{\mu}^{2}.
ZτμZ\tau\mu (q2=4me2)(q^{2}=4m_{e}^{2}) QRkQ_{R_{k}} RRkR_{R_{k}} QIkQ_{I_{k}} RIkR_{I_{k}}
aa 4.637094.63709 22.293622.2936 1.6966×1010-1.6966\times 10^{-10} 3.405163.40516
bb 1.3809×1051.3809\times 10^{-5} 6.24913×104-6.24913\times 10^{-4} 2.31697×10152.31697\times 10^{-15} 6.71321×105-6.71321\times 10^{-5}
cc 1.49044×104-1.49044\times 10^{-4} 3.92512×102-3.92512\times 10^{-2} 1.89825×1014-1.89825\times 10^{-14} 6.2734×1046.2734\times 10^{-4}
dd 9.20617×106-9.20617\times 10^{-6} 0.191951-0.191951 1.0909×1015-1.0909\times 10^{-15} 2.6232×1052.6232\times 10^{-5}
ee 3.63186×1033.63186\times 10^{-3} 8.17424×1068.17424\times 10^{6} 4.74754×1044.74754\times 10^{-4} 5.3963×106-5.3963\times 10^{6}
ff 2.2432×104-2.2432\times 10^{-4} 504881-504881 2.93231×105-2.93231\times 10^{-5} 333301333301
Table 5: Same as Table 4 but considering q2=4me2q^{2}=4m_{e}^{2}.
ZτeZ\tau e (q2=4mμ2)(q^{2}=4m_{\mu}^{2}) QRkQ_{R_{k}} RRkR_{R_{k}} QIkQ_{I_{k}} RIkR_{I_{k}}
aa 4.637064.63706 11.545111.5451 7.14896×106-7.14896\times 10^{-6} 3.40983.4098
bb 6.72054×1086.72054\times 10^{-8} 1.61465×106-1.61465\times 10^{-6} 4.79412×10134.79412\times 10^{-13} 3.29087×107-3.29087\times 10^{-7}
cc 1.49047×104-1.49047\times 10^{-4} 3.61659×1033.61659\times 10^{-3} 7.88464×1010-7.88464\times 10^{-10} 5.4042×1045.4042\times 10^{-4}
dd 3.86832×108-3.86832\times 10^{-8} 5.66645×103-5.66645\times 10^{-3} 2.39753×1013-2.39753\times 10^{-13} 1.64583×1071.64583\times 10^{-7}
ee 2.04592×1032.04592\times 10^{-3} 191.962191.962 4.69628×1044.69628\times 10^{-4} 126.095-126.095
ff 6.09267×107-6.09267\times 10^{-7} 5.92939×102-5.92939\times 10^{-2} 1.43646×107-1.43646\times 10^{-7} 3.920023×1023.920023\times 10^{-2}
Table 6: Values for the QRkQ_{R_{k}} (QIkQ_{I_{k}}) and RRkR_{R_{k}} (RIkR_{I_{k}}) coefficients of the ZτeZ\tau e vertex for q2=4mμ2q^{2}=4m_{\mu}^{2}.
ZτeZ\tau e (q2=4me2)(q^{2}=4m_{e}^{2}) QRkQ_{R_{k}} RRkR_{R_{k}} QIkQ_{I_{k}} RIkR_{I_{k}}
aa 4.637094.63709 22.226222.2262 1.6966×1010-1.6966\times 10^{-10} 3.405163.40516
bb 6.72036×1086.72036\times 10^{-8} 3.05754×104-3.05754\times 10^{-4} 1.12759×10171.12759\times 10^{-17} 3.26709×107-3.26709\times 10^{-7}
cc 1.49043×104-1.49043\times 10^{-4} .107576-.107576 1.89741×1014-1.89741\times 10^{-14} 6.26186×1046.26186\times 10^{-4}
dd 4.95278×108-4.95278\times 10^{-8} 19.09719.097 5.68205×1018-5.68205\times 10^{-18} 1.64383×1071.64383\times 10^{-7}
ee 3.63189×1033.63189\times 10^{-3} 8.17296×1068.17296\times 10^{6} 4.74754×1044.74754\times 10^{-4} 5.3963×106-5.3963\times 10^{6}
ff 1.08821×106-1.08821\times 10^{-6} 2468.32-2468.32 1.42705×107-1.42705\times 10^{-7} 1622.061622.06
Table 7: Same as Table 6 but considering q2=4me2q^{2}=4m_{e}^{2}.
ZμeZ\mu e (q2=4me2)(q^{2}=4m_{e}^{2}) QRkQ_{R_{k}} RRkR_{R_{k}} QIkQ_{I_{k}} RIkR_{I_{k}}
aa 4.637014.63701 31.657831.6578 1.55723×1010-1.55723\times 10^{-10} 1.150081.15008
bb 4.15019×1094.15019\times 10^{-9} 1.01036×107-1.01036\times 10^{-7} 7.02341×10197.02341\times 10^{-19} 2.03165×108-2.03165\times 10^{-8}
cc 5.6794×107-5.6794\times 10^{-7} 2.40973-2.40973 1.60743×1013-1.60743\times 10^{-13} 2.42044×1032.42044\times 10^{-3}
dd 9.81338×108-9.81338\times 10^{-8} 2359.072359.07 1.54223×1016-1.54223\times 10^{-16} 2.54211×106-2.54211\times 10^{-6}
ee 1.37244×1051.37244\times 10^{-5} 32441.232441.2 1.78855×1061.78855\times 10^{-6} 20427.4-20427.4
ff 8.46878×108-8.46878\times 10^{-8} 2024.81-2024.81 8.70909×109-8.70909\times 10^{-9} 99.622699.6226
Table 8: Values for the QRkQ_{R_{k}} (QIkQ_{I_{k}}) and RRkR_{R_{k}} (RIkR_{I_{k}}) coefficients of the ZμeZ\mu e vertex for q2=4mμ2q^{2}=4m_{\mu}^{2}.

Appendix E Expansion of the PaVe functions around mj2=0m_{j}^{2}=0

The scalar PaVe functions involve in eq. (18) calculation are defined as follows

B0(p2,mj2,mW2)=(iπ2)1dnk(k2mj2)[(k+p)2mW2],B_{0}(p^{2},m_{j}^{2},m_{W}^{2})=(i\pi^{2})^{-1}\int\frac{d^{n}k}{\left(k^{2}-m_{j}^{2}\right)\left[\left(k+p\right)^{2}-m_{W}^{2}\right]}, (98)
B0(q2,mj2,mj2)=(iπ2)1dnk(k2mj2)[(k+q)2mj2],B_{0}(q^{2},m_{j}^{2},m_{j}^{2})=(i\pi^{2})^{-1}\int\frac{d^{n}k}{\left(k^{2}-m_{j}^{2}\right)\left[\left(k+q\right)^{2}-m_{j}^{2}\right]}, (99)
B0(0,mj2,mW2)=(iπ2)1dnk(k2mj2)(k2mW2),B_{0}(0,m_{j}^{2},m_{W}^{2})=(i\pi^{2})^{-1}\int\frac{d^{n}k}{\left(k^{2}-m_{j}^{2}\right)\left(k^{2}-m_{W}^{2}\right)}, (100)
C0(p2,P2,q2,mj2,mW2,mj2)=(iπ2)1dnk(k2mW2)[(k+p)2mj2][(k+P)2mj2],C_{0}(p^{2},P^{2},q^{2},m_{j}^{2},m_{W}^{2},m_{j}^{2})=(i\pi^{2})^{-1}\int\frac{d^{n}k}{\left(k^{2}-m_{W}^{2}\right)\left[\left(k+p\right)^{2}-m_{j}^{2}\right]\left[\left(k+P\right)^{2}-m_{j}^{2}\right]}, (101)

where p2=m2p^{2}=m^{2}, P2=M2P^{2}=M^{2} and q2=(Pp)2=m2+M22Ppq^{2}=(P-p)^{2}=m^{2}+M^{2}-2P\cdot p.

If we do an expansion around mj2=0m_{j}^{2}=0, for the equations (98, 99, 100, 101) following the same strategy that Cheng and Li for the μeγ\mu\to e\gamma decay LibroCheng , we have that

B0(p2,mj2,mW2)\displaystyle B_{0}(p^{2},m_{j}^{2},m_{W}^{2}) \displaystyle\approx B0(p2,0,mW2)+mj2C0(0,p2,p2,0,0,mW2)+ϑ(mj4),\displaystyle B_{0}(p^{2},0,m_{W}^{2})+m_{j}^{2}C_{0}(0,p^{2},p^{2},0,0,m_{W}^{2})+\vartheta(m_{j}^{4}), (102)
B0(q2,mj2,mj2)\displaystyle B_{0}(q^{2},m_{j}^{2},m_{j}^{2}) \displaystyle\approx B0(q2,0,0)+2mj2C0(0,q2,q2,0,0,0)+ϑ(mj4),\displaystyle B_{0}(q^{2},0,0)+2m_{j}^{2}C_{0}(0,q^{2},q^{2},0,0,0)+\vartheta(m_{j}^{4}), (103)
B0(0,mj2,mW2)\displaystyle B_{0}(0,m_{j}^{2},m_{W}^{2}) \displaystyle\approx B0(0,0,mW2)+mj2A0(mW2)mW4+ϑ(mj4),\displaystyle B_{0}(0,0,m_{W}^{2})+m_{j}^{2}\frac{A_{0}(m_{W}^{2})}{m_{W}^{4}}+\vartheta(m_{j}^{4}), (104)
C0(p2,P2,q2,mj2,mW2,mj2)\displaystyle C_{0}(p^{2},P^{2},q^{2},m_{j}^{2},m_{W}^{2},m_{j}^{2}) \displaystyle\approx C0(p2,P2,q2,0,mW2,0)+mj2[D0(p2,0,q2,P2,p2,q2,mW2,0,0,0)\displaystyle C_{0}(p^{2},P^{2},q^{2},0,m_{W}^{2},0)+m_{j}^{2}\left[D_{0}(p^{2},0,q^{2},P^{2},p^{2},q^{2},m_{W}^{2},0,0,0)\right. (105)
+\displaystyle+ D0(p2,q2,0,P2,P2,q2,mW2,0,0,0)]+ϑ(mj4)\displaystyle\left.D_{0}(p^{2},q^{2},0,P^{2},P^{2},q^{2},m_{W}^{2},0,0,0)\right]+\vartheta(m_{j}^{4})

Now, with the help of the Package-X program, we can obtain analytical expressions for the next functions

B0(p2,0,mW2)=Δ+(p2mW2)p2log(mW2mW2p2)+log(μ2mW2)+2,B_{0}(p^{2},0,m_{W}^{2})=\Delta+\frac{\left(p^{2}-m_{W}^{2}\right)}{p^{2}}\log\left(\frac{m_{W}^{2}}{m_{W}^{2}-p^{2}}\right)+\log\left(\frac{\mu^{2}}{m_{W}^{2}}\right)+2, (106)
B0(q2,0,0)=Δ+log(μ2q2)+2,B_{0}(q^{2},0,0)=\Delta+\log\left(-\frac{\mu^{2}}{q^{2}}\right)+2, (107)
B0(0,0,mW2)=Δ+log(μ2mW2)+1,B_{0}(0,0,m_{W}^{2})=\Delta+\log\left(\frac{\mu^{2}}{m_{W}^{2}}\right)+1, (108)
C0(0,q2,q2,0,0,0)=ΔI+log(μ2q2)q2,C_{0}(0,q^{2},q^{2},0,0,0)=-\frac{\Delta_{I}+\log\left(-\frac{\mu^{2}}{q^{2}}\right)}{q^{2}}, (109)

with ΔIΔ\Delta_{I}\sim\Delta but associated with an infrared divergence.

C0(0,p2,p2,0,0,mW2)=ΔI+log(μ2mW2)mW2p2+(mW2+p2)p2(mW2p2)log(mW2mW2p2),C_{0}(0,p^{2},p^{2},0,0,m_{W}^{2})=\frac{\Delta_{I}+\log\left(\frac{\mu^{2}}{m_{W}^{2}}\right)}{m_{W}^{2}-p^{2}}+\frac{\left(m_{W}^{2}+p^{2}\right)}{p^{2}\left(m_{W}^{2}-p^{2}\right)}\log\left(\frac{m_{W}^{2}}{m_{W}^{2}-p^{2}}\right), (110)
D0(p2,0,q2,P2,p2,q2,mW2,0,0,0)\displaystyle D_{0}(p^{2},0,q^{2},P^{2},p^{2},q^{2},m_{W}^{2},0,0,0) =\displaystyle= 1q2[ΔI+log(μ2mW2)mW2p2+(mW2P2)log(mW2q2)mW2(p2+P2q2)+mW4+p2P2\displaystyle\frac{1}{q^{2}}\left[\frac{\Delta_{I}+\log\left(\frac{\mu^{2}}{m_{W}^{2}}\right)}{m_{W}^{2}-p^{2}}+\frac{\left(m_{W}^{2}-P^{2}\right)\log\left(-\frac{m_{W}^{2}}{q^{2}}\right)}{-m_{W}^{2}\left(p^{2}+P^{2}-q^{2}\right)+m_{W}^{4}+p^{2}P^{2}}\right.
\displaystyle- (mW2P2)log(mW2mW2P2)mW2(p2+P2q2)+mW4+p2P2\displaystyle\left.\frac{\left(m_{W}^{2}-P^{2}\right)\log\left(\frac{m_{W}^{2}}{m_{W}^{2}-P^{2}}\right)}{-m_{W}^{2}\left(p^{2}+P^{2}-q^{2}\right)+m_{W}^{4}+p^{2}P^{2}}\right.
+\displaystyle+ log(mW2mW2p2)(mW2(p2+P22q2)+mW4+p2P2)(mW2p2)(mW2(p2+P2q2)+mW4+p2P2)],\displaystyle\left.\frac{\log\left(\frac{m_{W}^{2}}{m_{W}^{2}-p^{2}}\right)\left(-m_{W}^{2}\left(p^{2}+P^{2}-2q^{2}\right)+m_{W}^{4}+p^{2}P^{2}\right)}{\left(m_{W}^{2}-p^{2}\right)\left(-m_{W}^{2}\left(p^{2}+P^{2}-q^{2}\right)+m_{W}^{4}+p^{2}P^{2}\right)}\right],
D0(p2,q2,0,P2,P2,q2,mW2,0,0,0)\displaystyle D_{0}(p^{2},q^{2},0,P^{2},P^{2},q^{2},m_{W}^{2},0,0,0) =\displaystyle= 1q2[ΔI+log(μ2mW2)mW2P2+(mW2p2)log(mW2q2)mW2(p2+P2q2)+mW4+p2P2\displaystyle\frac{1}{q^{2}}\left[\frac{\Delta_{I}+\log\left(\frac{\mu^{2}}{m_{W}^{2}}\right)}{m_{W}^{2}-P^{2}}+\frac{\left(m_{W}^{2}-p^{2}\right)\log\left(-\frac{m_{W}^{2}}{q^{2}}\right)}{-m_{W}^{2}\left(p^{2}+P^{2}-q^{2}\right)+m_{W}^{4}+p^{2}P^{2}}\right.
\displaystyle- (mW2p2)log(mW2mW2p2)mW2(p2+P2q2)+mW4+p2P2\displaystyle\left.\frac{\left(m_{W}^{2}-p^{2}\right)\log\left(\frac{m_{W}^{2}}{m_{W}^{2}-p^{2}}\right)}{-m_{W}^{2}\left(p^{2}+P^{2}-q^{2}\right)+m_{W}^{4}+p^{2}P^{2}}\right.
+\displaystyle+ log(mW2mW2P2)(mW2(p2+P22q2)+mW4+p2P2)(mW2P2)(mW2(p2+P2q2)+mW4+p2P2)].\displaystyle\left.\frac{\log\left(\frac{m_{W}^{2}}{m_{W}^{2}-P^{2}}\right)\left(-m_{W}^{2}\left(p^{2}+P^{2}-2q^{2}\right)+m_{W}^{4}+p^{2}P^{2}\right)}{\left(m_{W}^{2}-P^{2}\right)\left(-m_{W}^{2}\left(p^{2}+P^{2}-q^{2}\right)+m_{W}^{4}+p^{2}P^{2}\right)}\right].

Replacing eqs. (102, 103, 104, 105) and subsequently eqs. (108, 106, 107, 110, 109, E and E) into (18) we obtain eq. (20), with the fQf_{Q} and fRf_{R} factors given as follows

fQa1\displaystyle f_{Q_{a_{1}}} =\displaystyle= q2(m2mM+mW2M2+q2)(m2+mM+mW2M2+q2),\displaystyle-q^{2}\left(-m^{2}-mM+m_{W}^{2}-M^{2}+q^{2}\right)\left(-m^{2}+mM+m_{W}^{2}-M^{2}+q^{2}\right), (113)
fQa2\displaystyle f_{Q_{a_{2}}} =\displaystyle= 12m2(((m2mW2)(m4mW2(m2M2+q2)+m2(M2+q2)2(M2q2)2)),\displaystyle\frac{1}{2m^{2}}\left((-\left(m^{2}-m_{W}^{2}\right)\left(m^{4}-m_{W}^{2}\left(m^{2}-M^{2}+q^{2}\right)+m^{2}\left(M^{2}+q^{2}\right)-2\left(M^{2}-q^{2}\right)^{2}\right)\right), (114)
fQa3\displaystyle f_{Q_{a_{3}}} =\displaystyle= 12M2((M2mW2)(2m4+mW2(m2M2q2)+m2(M2+4q2)+M4+M2q22q4)),\displaystyle\frac{1}{2M^{2}}\left(-\left(M^{2}-m_{W}^{2}\right)\left(-2m^{4}+m_{W}^{2}\left(m^{2}-M^{2}-q^{2}\right)+m^{2}\left(M^{2}+4q^{2}\right)+M^{4}+M^{2}q^{2}-2q^{4}\right)\right),
fQa4\displaystyle f_{Q_{a_{4}}} =\displaystyle= 12(q2(3(m2+M2q2)2mW2)),\displaystyle\frac{1}{2}\left(q^{2}\left(3\left(m^{2}+M^{2}-q^{2}\right)-2m_{W}^{2}\right)\right), (116)
fQa5\displaystyle f_{Q_{a_{5}}} =\displaystyle= 12(λ(m2,M2,q2)log(μ2mW2)+iπq2(3(m2+M2q2)2mW2)).\displaystyle\frac{1}{2}\left(\lambda(m^{2},M^{2},q^{2})\log\left(\frac{\mu^{2}}{m_{W}^{2}}\right)+i\pi q^{2}\left(3\left(m^{2}+M^{2}-q^{2}\right)-2m_{W}^{2}\right)\right). (117)
fRa1\displaystyle f_{R_{a_{1}}} =\displaystyle= 2q2(m2+mW2M2+q2),\displaystyle 2q^{2}\left(-m^{2}+m_{W}^{2}-M^{2}+q^{2}\right), (118)
fRa2\displaystyle f_{R_{a_{2}}} =\displaystyle= 1m2α(m8+2m6(mW2+q2)+m4(2mW4+M4q4)\displaystyle\frac{1}{m^{2}\alpha}\left(-m^{8}+2m^{6}\left(m_{W}^{2}+q^{2}\right)+m^{4}\left(-2m_{W}^{4}+M^{4}-q^{4}\right)\right. (119)
+\displaystyle+ m2mW2(2q2mW2+mW4M4+4M2q23q4)mW2(M2q2)(mW2M2+q2))2,\displaystyle\left.m^{2}m_{W}^{2}\left(-2q^{2}m_{W}^{2}+m_{W}^{4}-M^{4}+4M^{2}q^{2}-3q^{4}\right)-m_{W}^{2}\left(M^{2}-q^{2}\right)\left(m_{W}^{2}-M^{2}+q^{2}\right){}^{2}\right),
fRa3\displaystyle f_{R_{a_{3}}} =\displaystyle= 1M2α(M4((M2q2)2m4)+mW6(m2+M2+q2)+2mW4(m42m2q2M4M2q2+q4)\displaystyle\frac{1}{M^{2}\alpha}\left(-M^{4}\left(\left(M^{2}-q^{2}\right)^{2}-m^{4}\right)+m_{W}^{6}\left(-m^{2}+M^{2}+q^{2}\right)+2m_{W}^{4}\left(m^{4}-2m^{2}q^{2}-M^{4}-M^{2}q^{2}+q^{4}\right)\right. (120)
+\displaystyle+ mW2(m6m4(M23q2)+m2(4M2q23q4)+2M63M2q4+q6)),\displaystyle\left.m_{W}^{2}\left(-m^{6}-m^{4}\left(M^{2}-3q^{2}\right)+m^{2}\left(4M^{2}q^{2}-3q^{4}\right)+2M^{6}-3M^{2}q^{4}+q^{6}\right)\right),
fRa4\displaystyle f_{R_{a_{4}}} =\displaystyle= 1α(m6m4(mW2+M2+2q2)+m2(2M2mW2+q2(q2mW2)M4)M4(mW2+2q2)\displaystyle\frac{1}{\alpha}\left(m^{6}-m^{4}\left(m_{W}^{2}+M^{2}+2q^{2}\right)+m^{2}\left(2M^{2}m_{W}^{2}+q^{2}\left(q^{2}-m_{W}^{2}\right)-M^{4}\right)-M^{4}\left(m_{W}^{2}+2q^{2}\right)\right. (121)
+\displaystyle+ M2q2(q2mW2)+2q2mW2(mW2+q2)+M6),\displaystyle\left.M^{2}q^{2}\left(q^{2}-m_{W}^{2}\right)+2q^{2}m_{W}^{2}\left(m_{W}^{2}+q^{2}\right)+M^{6}\right),
fRa5\displaystyle f_{R_{a_{5}}} =\displaystyle= 1α(iπ(m6m4(M2+2q2)+m2(q4M4)mW2(m4+m2(q22M2)+M4+M2q22q4)\displaystyle\frac{1}{\alpha}\big{(}i\pi\big{(}m^{6}-m^{4}\big{(}M^{2}+2q^{2}\big{)}+m^{2}\big{(}q^{4}-M^{4}\big{)}-m_{W}^{2}\big{(}m^{4}+m^{2}\big{(}q^{2}-2M^{2}\big{)}+M^{4}+M^{2}q^{2}-2q^{4}\big{)} (122)
+\displaystyle+ 2q2mW4+(M3Mq2)2)),\displaystyle 2q^{2}m_{W}^{4}+\big{(}M^{3}-Mq^{2}\big{)}^{2}\big{)}\big{)},

and α=m2(M2mW2)+mW2(mW2M2+q2)\alpha=m^{2}\left(M^{2}-m_{W}^{2}\right)+m_{W}^{2}\left(m_{W}^{2}-M^{2}+q^{2}\right).

Something remarkable at this point is:

The factor QaQ_{a} has an ultraviolet divergence Δ\Delta, as it can be seen in eq. (21), but this divergence is independent of the neutrino mass. Then this divergence will vanish when we sum over the three families (GIM-mechanism), as it was mentioned previously.

Although there are infrared divergences ΔI\Delta_{I} on the eqs. (109, 110, E, E), the factor RaR_{a} is free of them. Further, there is no dependence on the renormalization scale, and these results are in agreement with our numerical fits. Taking into account the imaginary part of the C0(m2,M2,q2,0,mW2,0)C_{0}(m^{2},M^{2},q^{2},0,m_{W}^{2},0) function, it is possible to derive analytically that the imaginary parts appearing in the last column of Table 9 are exactly π\pi.

Vertex RaR_{a} (Numerical Fits) RaR_{a} (eq. 22)
ZτμZ\tau\mu (qmin2=4mμ2q^{2}_{min}=4m_{\mu}^{2} for τμμμ+\tau^{-}\to\mu^{-}\mu^{-}\mu^{+}) 11.5451+i3.4098 11.3949+i3.14159
ZτμZ\tau\mu (qmin2=4me2q^{2}_{min}=4m_{e}^{2} for τμee+\tau^{-}\to\mu^{-}e^{-}e^{+}) 22.2936+i3.40516 22.0456+i3.14159
ZτeZ\tau e (qmin2=4mμ2q^{2}_{min}=4m_{\mu}^{2} for τeμμ+\tau^{-}\to e^{-}\mu^{-}\mu^{+}) 11.5451+i3.4098 11.3976+i3.14159
ZτeZ\tau e (qmin2=4me2q^{2}_{min}=4m_{e}^{2} for τeee+\tau^{-}\to e^{-}e^{-}e^{+}) 22.2262+i3.40516 22.0483+i3.14159
ZμeZ\mu e (qmin2=4me2q^{2}_{min}=4m_{e}^{2} for μeee+\mu^{-}\to e^{-}e^{-}e^{+}) 31.6578+i1.15008 22.7478+i3.14159
Table 9: Comparison for the RaR_{a} factor using numerical fits vs eq. (22).

References

  • (1) S. L. Glashow, Nucl. Phys.  22 (1961) 579; S. Weinberg, Phys. Rev. Lett.  19 (1967) 1264; A. Salam, Conf. Proc. C 680519 (1968) 367.
  • (2) Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett.  81, 1562 (1998); Q. R. Ahmad et al. [SNO Collaboration], Phys. Rev. Lett.  87, 071301 (2001); 89, 011301 (2002).
  • (3) N. Cabibbo, Phys. Rev. Lett.  10 (1963) 531; M. Kobayashi and T. Maskawa, Prog. Theor. Phys.  49 (1973) 652.
  • (4) B. Pontecorvo, Sov. Phys. JETP 10 (1960) 1236 [Zh. Eksp. Teor. Fiz.  37 (1959) 1751]; Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys.  28, 870 (1962).
  • (5) S. L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D 2, 1285 (1970).
  • (6) T. P. Cheng and L. F. Li, “Gauge Theory Of Elementary Particle Physics,” Oxford, Uk: Clarendon (1984) 536 P. (Oxford Science Publications)
  • (7) L. Calibbi and G. Signorelli, Riv. Nuovo Cim.  41, 1 (2018)
  • (8) S. T. Petcov, Sov. J. Nucl. Phys.  25, 340 (1977) [Yad. Fiz.  25, 641 (1977)] Erratum: [Sov. J. Nucl. Phys.  25, 698 (1977)] Erratum: [Yad. Fiz.  25, 1336 (1977)].
  • (9) B. W. Lee and R. E. Shrock, Phys. Rev. D 16, 1444 (1977).
  • (10) X. Y. Pham, Eur. Phys. J. C 8, 513 (1999).
  • (11) C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40, 100001 (2016).
  • (12) Sw. Banerjee et al [HFLAV-Tau group], available at http://www.slac.stanford.edu/xorg/hflav/tau/spring-2017/tau-report-web.pdf
  • (13) I. Esteban, M. C. González-Garcia, M. Maltoni, I. Martínez-Soler and T. Schwetz, JHEP 1701, 087 (2017); F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri and A. Palazzo, Phys. Rev. D 95, 096014 (2017); P. F. de Salas, D. V. Forero, C. A. Ternes, M. Tortola and J. W. F. Valle, Phys. Lett. B 782, 633 (2018)
  • (14) E. Kou et al., arXiv:1808.10567 [hep-ex].
  • (15) T. Kinoshita, J. Math. Phys.  3 (1962) 650; T. D. Lee and M. Nauenberg, Phys. Rev.  133 (1964) B1549.
  • (16) G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160 (1979) 151.
  • (17) G. ’t Hooft and M. J. G. Veltman, Nucl. Phys. B 153, 365 (1979).
  • (18) R. Mertig, M. Bohm and A. Denner, Comput. Phys. Commun.  64 (1991) 345.
  • (19) G. J. van Oldenborgh and J. A. M. Vermaseren, Z. Phys. C 46 (1990) 425.
  • (20) T. Hahn and M. Pérez-Victoria, Comput. Phys. Commun.  118 (1999) 153.
  • (21) Wolfram Research, Inc., Mathematica, Version 11.3, Champaign, IL (2018).
  • (22) J. I. Illana and T. Riemann, Phys. Rev. D 63, 053004 (2001).
  • (23) E. Arganda, A. M. Curiel, M. J. Herrero and D. Temes, Phys. Rev. D 71, 035011 (2005).
  • (24) H. H. Patel, Comput. Phys. Commun.  197, 276 (2015).