This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Floer cohomology of Dehn twists
along real Lagrangian spheres

Patricia Dietzsch Department of Mathematics
ETH Zürich
Rämistrasse 101, 8092 Zürich, Switzerland
patricia.dietzsch@math.ethz.ch
Abstract.

We study the Floer cohomology of the Dehn twist along a real Lagrangian sphere in a symplectic manifold endowed with an anti-symplectic involution. We prove that there exists a distinguished element in the Floer group that is a fixed point of the automorphism induced by the involution. Our methods of proof are based on Mak-Wu’s cobordism and Floer-theoretic considerations.

1. Introduction and Main Results

Let (M,ω)(M,\omega) be a closed symplectic manifold and SMS\subset M a Lagrangian sphere with a parametrization ι:SnS\iota\colon S^{n}\xrightarrow{\approx}S. Associated to (S,ι)(S,\iota) there exists a distinguished symplectic isotopy class represented by the Dehn twist. The Dehn twist τS\tau_{S} is a symplectomorphism compactly supported in a neighbourhood of SS. Seidel proved that the square of the Dehn twist, in some cases, is not symplectically, but only smoothly isotopic to the identity [Sei97a], [Sei38]. To prove this result Seidel established a Floer homology exact sequence

(HF(S,N)HF(Q,S))kHFk(Q,N)HFk(Q,τs(N))\displaystyle\dots\to(\mathrm{HF}^{*}(S,N)\otimes\mathrm{HF}^{*}(Q,S))^{k}\to\mathrm{HF}^{k}(Q,N)\to\mathrm{HF}^{k}(Q,\tau_{s}(N))\to\dots (1)

for admissible Lagrangian submanifolds QQ and NN in MM [Sei03],[Sei08]. There is a distinguished element AHF(τS1)A\in\mathrm{HF}^{*}(\tau^{-1}_{S}) that characterizes the map HFk(Q,N)HFk(Q,τS(N))\mathrm{HF}^{k}(Q,N)\to HF^{k}(Q,\tau_{S}(N)) that occurs in the sequence.

Due to the relevance of the above exact sequence it is thus natural to investigate properties of the element AA. The goal of this paper is to study the element AA in the situation, where there exists an anti-symplectic involution that preserves SS.

We work in the following setting. (M,ω)(M,\omega) is a closed symplectically aspherical symplectic manifold. Unless otherwise explicitely stated, all involved Lagrangian submanifolds are assumed to be closed, oriented and relatively symplectically aspherical. Floer cohomology groups are 2\mathbb{Z}_{2}-graded with coefficients in the universal Novikov field over 2\mathbb{Z}_{2}. More details about these assumptions are given in section 3.1.

Let c:MMc\colon M\to M be an anti-symplectic involution satisfying c(S)=Sc(S)=S. Consider the smooth involution ιc:=ι1cι:SnSn\iota^{*}c:=\iota^{-1}c\iota\colon S^{n}\to S^{n}. We assume that ιc\iota^{*}c is either smoothly isotopic to the identity or to the reflection r(x1,x2,,xn+1)=(x1,x2,,xn+1).r(x_{1},x_{2},\dots,x_{n+1})=(-x_{1},x_{2},\dots,x_{n+1}). This assumption is satisfied in the important geometric setting where (M,c)(M,c) is a real fiber of a real Lefschetz fibration with one critical point and SS is the corresponding vanishing sphere.

Under this assumption, our main result is

Theorem A.

cc induces an automorphism c:HF(τS1)HF(τS1)c_{*}\colon\mathrm{HF}^{*}(\tau_{S}^{-1})\to\mathrm{HF}^{*}(\tau_{S}^{-1}) and c(A)=Ac_{*}(A)=A.

Remark 1.1.

c:HF(τS1)HF(τS1)c_{*}\colon\mathrm{HF}^{*}(\tau_{S}^{-1})\to\mathrm{HF}^{*}(\tau_{S}^{-1}) is an involution of a vector space over a field with characteristic 22. Any such map has a fixed point because (cid)2=0(c_{*}-\mathrm{id})^{2}=0, hence ker(cid)0\mathrm{ker}(c_{*}-\mathrm{id})\neq 0. The relevance of the second part of Theorem A is therefore not merely the existence of a fixed point. It should rather be understood as a special property of the element AA.

1.1. Examples.

The assumption on the isotopy class of ιc\iota^{*}c is automatically satisfied for n=1,2,3n=1,2,3. As already mentioned, the assumption is equivalent to MM being a real fiber of a real Lefschetz fibration. This is the content of the following

Proposition A.

Let MM be a symplectic manifold, SMS\subset M a Lagrangian sphere with parametrization ι\iota and c:MMc\colon M\to M an anti-symplectic involution. Then the following statements are equivalent:

  1. (i)

    c(S)=Sc(S)=S and ιcid\iota^{*}c\simeq\mathrm{id} or ιcr\iota^{*}c\simeq r.

  2. (ii)

    There exists a real Lefschetz fibration (see Sections 2.2 and 2.3) π:E𝔻2\pi\colon E\to\mathbb{D}^{2} with real structure cE:EEc_{E}\colon E\to E, real fiber M=π1(1)M=\pi^{-1}(1) and vanishing sphere (S,ι)(S,\iota) such that cEc_{E} restricts to a real structure on MM that is Hamiltonian isotopic to cc.

Seidel computed Floer cohomology of products of disjoint Dehn twists on surfaces of genus 2\geq 2 in [Sei96]. As a special case, his result yields a \mathbb{Z}-graded isomorphism

HF(τS1)H(M\S;Λ).\displaystyle\mathrm{HF}^{*}(\tau_{S}^{-1})\cong\mathrm{H}^{*}(M\backslash S;\Lambda). (2)

Later, Gautschi [Gau03] generalised Seidel’s result to diffeomorphisms of finite type, still on surfaces. Recently Pedrotti [Ped22] proved a 2\mathbb{Z}_{2}-graded version of (2) for rational, W+W^{+}-monotone symplectic manifolds of dimension at least 44. The W+W^{+}-condition is explained in Seidel [Sei97b]. It is immediate that symplectically aspherical manifolds are W+W^{+}-monotone.

It turns out that the automorphism cc_{*} on HF(τS1)HF(\tau_{S}^{-1}) corresponds to the (topologically induced) map cc^{*} on singular cohomology H(M\S;Λ)\mathrm{H}^{*}(M\backslash S;\Lambda). Namely, under the assumption that MM is W+W^{+}-monotone and that c(S)=Sc(S)=S the following diagram commutes:

HF(τS1)cHF(M,S)cHF(τS1)HF(M,S).\displaystyle\begin{split}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 3.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 27.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{HF}^{*}(\tau^{-1}_{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 80.48358pt\raise 6.15pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\cong}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 96.34386pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 48.97748pt\raise-20.32pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00694pt\hbox{$\scriptstyle{c_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 48.97748pt\raise-31.99998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 96.34386pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{HF}^{*}(M,S)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 123.23969pt\raise-20.32pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.67209pt\hbox{$\scriptstyle{c^{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 123.23969pt\raise-32.64001pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-3.0pt\raise-40.64001pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 27.69376pt\raise-40.64001pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{HF}^{*}(\tau_{S}^{-1})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 80.48358pt\raise-34.49002pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\cong}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 94.95496pt\raise-40.64001pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 94.95496pt\raise-40.64001pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{HF}^{*}(M,S).}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{split} (3)

Together with Theorem A this allows us to deduce topological restrictions on the element AHF(τS1)A\in\mathrm{HF}^{*}(\tau^{-1}_{S}) and sometimes enables us to compute AA. More concrete examples are explained in section 2.5.

1.2. Outline of Proof of Theorem A

We outline the proof of Theorem A.

We view the Dehn twist as a monodromy in the Lefschetz fibration π:E𝔻2\pi\colon E\to\mathbb{D}^{2} from Proposition A. Carrying a result by Salepci [Sal10] over to the symplectic setting, one gets

Proposition B.

τ\tau is Hamiltonian isotopic to cc~c\circ\tilde{c} for some anti-symplectic involution c~:MM\tilde{c}\colon M\to M. In particular, cτScc\tau_{S}c is Hamiltonian isotopic to τS1\tau_{S}^{-1}.

Floer-theoretic considerations yield a homomorphism

c:HF(τS1)HF(c~τSc~).c_{*}\colon\mathrm{HF}^{*}(\tau_{S}^{-1})\to\mathrm{HF}^{*}(\tilde{c}\tau_{S}\tilde{c}).

Proposition B implies that c~τSc~τS1\tilde{c}\tau_{S}\tilde{c}\simeq\tau_{S}^{-1} and therefore HF(c~τSc~)HF(τS1)\mathrm{HF}^{*}(\tilde{c}\tau_{S}\tilde{c})\cong\mathrm{HF}^{*}(\tau_{S}^{-1}). It follows that cc induces an automorphism of HF(τS1)\mathrm{HF}^{*}(\tau_{S}^{-1}), which proves the first part of Theorem A.

To show that c(A)=Ac_{*}(A)=A, we adopt the framework of Biran-Cornea [BC13], [BC14], [BC17] and Mak-Wu [MW18] about Lagrangian cobordisms.

Let MM^{-} be the symplectic manifold (M,ω)(M,-\omega). We denote by ΓϕM×M\Gamma_{\phi}\subset M\times M^{-} the graph of ϕ\phi for a symplectomorphism ϕ\phi on MM. This is a Lagrangian submanifold of M×MM\times M^{-}. For ϕ=id\phi=\mathrm{id} it is the diagonal and we write Δ:=Γid\Delta:=\Gamma_{\mathrm{id}}. In [MW18] the authors construct a Lagrangian cobordism VMWM×M×V_{MW}\subset M\times M^{-}\times\mathbb{C} that has three ends: S×S,ΔS\times S,\Delta and ΓτS1\Gamma_{\tau_{S}^{-1}}. We recall the construction of VMWV_{MW} in section 5. By general results on Lagrangian cobordisms due to Biran-Cornea this cobordism induces an exact triangle in Duk(M×M)D\mathcal{F}uk(M\times M^{-}):

S×SS\times SΔ\DeltaΓτS1\Gamma_{\tau_{S}^{-1}}

The associated long exact sequence is

HFk(K,S×S)HFk(K,Δ)HFk(K,ΓτS1)HFk+1(K,S×S),\displaystyle\dots\to\mathrm{HF}^{k}(K,S\times S)\to\mathrm{HF}^{k}(K,\Delta)\to\mathrm{HF}^{k}(K,\Gamma_{\tau_{S}^{-1}})\to\mathrm{HF}^{k+1}(K,S\times S)\to\dots, (4)

where KK is an admissible Lagrangian submanifold in M×MM\times M^{-}. For the special case K=Q×NK=Q\times N, this sequence reduces to Seidel’s long exact sequence (1). The middle map in sequence (4) can be understood as μ2(A,)\mu^{2}(A,-) for the element

AHF0(Δ,ΓτS1)HF0(τS1).A\in\mathrm{HF}^{0}(\Delta,\Gamma_{\tau_{S}^{-1}})\cong\mathrm{HF}^{0}(\tau_{S}^{-1}).

Consider the symplectomorphism

Φ:M×M×\displaystyle\Phi\colon M\times M^{-}\times\mathbb{C} M×M×\displaystyle\longrightarrow M\times M^{-}\times\mathbb{C}
(x,y,z)\displaystyle(x,y,z) (c(y),c(x),z).\displaystyle\longmapsto(c(y),c(x),z).

Φ\Phi preserves the ends of the cobordisms VMWV_{MW}. In particular, Φ\Phi induces an automorphism

Φ:HF(Δ,ΓτS1)HF(Δ,ΓτS1).\Phi_{*}\colon\mathrm{HF}^{*}(\Delta,\Gamma_{\tau^{-1}_{S}})\to\mathrm{HF}^{*}(\Delta,\Gamma_{\tau^{-1}_{S}}).

This automorphism corresponds to the action of cc on HF(τS1)\mathrm{HF}(\tau^{-1}_{S}), namely the following diagram commutes

(9)

We explain these isomorphisms and the commutativity of the diagram in section 3. A major step in the proof is the following

Theorem B.

Φ(VMW)\Phi(V_{MW}) is Hamiltonian isotopic to VMWV_{MW}.

We show how this implies Theorem A. Denote by A¯HF(Δ,ΓτS1)\bar{A}\in\mathrm{HF}^{*}(\Delta,\Gamma_{\tau^{-1}_{S}}) the element corresponding to AHF(τS1)A\in\mathrm{HF}^{*}(\tau^{-1}_{S}) under the natural isomorphism HF(τS1)HF(Δ,ΓτS1)\mathrm{HF}(\tau^{-1}_{S})\cong\mathrm{HF}(\Delta,\Gamma_{\tau^{-1}_{S}}). As a consequence of Theorem B, the cobordisms VMWV_{MW} and Φ(VMW)\Phi(V_{MW}) induce isomorphic triangles. In particular, the following diagram commutes:

for all KK. It follows that Φ(A¯)=A¯\Phi_{*}(\bar{A})=\bar{A} and hence c(A)=Ac_{*}(A)=A by commutativity of diagram (9).

Remark 1.2.
  1. (1)

    It can be seen from the proof that all is needed are well-defined Floer cohomology groups, and applicability of Biran-Cornea’s [BC13],[BC14] and Mak-Wu’s [MW18] framework. One could therefore easily weaken the asphericity assumption to monotonicity conditions.

  2. (2)

    The assumption that MM is closed is important for our arguments: The version of Floer cohomology we use only works for compactly supported symplectomorphisms. In general however, the monodromy in a Lefschetz fibration with non-compact fibers, if it exists, is not compactly supported. We expect that the results generalize to a non-compact framework, when working with an appropriate version of Floer theory.

  3. (3)

    In general we have a symplectic isotopy

    cτ(S,ι)cτ(S,cι)1.c\circ\tau_{(S,\iota)}\circ c\simeq\tau_{(S,c\circ\iota)}^{-1}.

    However, it is unknown how the Dehn twist depends on the parametrization of the sphere. It is only known that if ιc\iota^{*}c is isotopic to an isometry, then the Dehn twist associated to cιc\circ\iota is symplectically isotopic to the Dehn twist associated to ι\iota [Sei97a, Remark 3.1]. This explains why we make the assumption on the mapping class of ιc\iota^{*}c.

  4. (4)

    The second map in the long exact sequence (1) is

    μ2(aN,):HFk(Q,N)HFk(Q,τS(N))\mu^{2}(a_{N},-)\colon\mathrm{HF}^{k}(Q,N)\to\mathrm{HF}^{k}(Q,\tau_{S}(N))

    for some element aNHF0(N,τS(N))a_{N}\in\mathrm{HF}^{0}(N,\tau_{S}(N)). aNa_{N} and AHF(τS1)A\in\mathrm{HF}^{*}(\tau_{S}^{-1}) are related as follows. There is an operation

    :HF(τS1)HF(N,N)HF(N,τS(N)).*\colon\mathrm{HF}^{*}(\tau_{S}^{-1})\otimes\mathrm{HF}^{*}(N,N)\to\mathrm{HF}^{*}(N,\tau_{S}(N)).

    If eNHF(N,N)e_{N}\in HF^{*}(N,N) denotes the unit, we have AeN=aNA*e_{N}=a_{N}. The fixed point property c(A)=Ac_{*}(A)=A then implies

    γ(aN)=ac(N),\displaystyle\gamma(a_{N})=a_{c(N)}, (10)

    where γ\gamma is the isomorphism

    HF(N,τS(N))HF(c~(N),c(N))HF(c(N),τS(c(N)).\displaystyle\mathrm{HF}^{*}(N,\tau_{S}(N))\cong\mathrm{HF}^{*}(\tilde{c}(N),c(N))\cong\mathrm{HF}^{*}(c(N),\tau_{S}(c(N)).

    The construction of aNa_{N} is explained in [Sei08, Sections 17a-17c]. aNa_{N} comes from counting the number of holomorphic sections of a Lefschetz fibration with moving boundary condition coming from moving NN via parallel transport. The invariance property (10) can be proven directly in Seidel’s framework, by observing that the holomorphic sections for boundary conditions coming from NN and c(N)c(N) are in bijection.

1.3. Organisation of the Paper.

The rest of this paper is organised as follows. In section 2 we explain the construction of real Lefschetz fibrations and the decomposition of the monodromy into two anti-symplectic involuions as stated in Propositions A and B. In section 3 we fix the setting and collect the properties of Floer cohomology we need. In section 4 we briefly recall Biran-Cornea’s Lagrangian cobordism framework and how cobordisms induce cone decompositions. Section 5 recalls the construction of the Mak-Wu cobordism. In section 6 we prove Theorem B about the symmetry of the cobordism. Section 7 contains some more background material on Floer cohomology for the convenience of the reader. The appendix contains some algebraic background on Fukaya categories.

2. Dehn twist and real Lefschetz fibrations.

In this section we show Propositions A and B. This is based on work by Salepci [Sal10] on real Lefschetz fibrations in the smooth setting. Since we keep the discussion here relatively brief, we refer the interested reader to the following references for a more detailed treatment of (real) Lefschetz fibrations: [Sei08, BC17, Sal12, Kea14].

2.1. Dehn twist.

Let SMS\subset M be a Lagrangian sphere together with an embedding φ:SnM\varphi\colon S^{n}\to M of the nn-dimensional sphere SnS^{n} with image SS. We refer to (S,φ)(S,\varphi) as a parametrized Lagrangian sphere. 111Seidel uses the word “framed sphere” for this situation in [Sei08]. The Dehn twist τS\tau_{S} along SS is a symplectomorphism compactly supported in a neighbourhood of SS. It is defined up to symplectic isotopy. The precise map will depend on a Dehn twist profile function and on a Weinstein neighbourhood of SS. As explained in [Sei97a, Proposition 2.3] the symplectic isotopy class of τS\tau_{S} is independent of φ\varphi in dimension 44. In general however, it might depend on the parametrization [Sei08, Remark 3.1]. We briefly recall the definition, following closely the exposition in [MW18].

Definition 2.1.

Let ϵ>0\epsilon>0. A Dehn twist profile function is a smooth function

νϵDehn:0\nu_{\epsilon}^{Dehn}\colon\mathbb{R}_{\geq 0}\longrightarrow\mathbb{R}

satisfying

{νϵDehn(r)=πrfor 0r<<ϵ,0<νϵDehn(r)<π and strictly decreasingfor 0<r<ϵ,νϵDehn(r)=0for rϵ.\displaystyle\begin{cases}\nu_{\epsilon}^{Dehn}(r)=\pi-r\qquad\qquad\qquad\qquad\qquad&\text{for }0\leq r<<\epsilon,\\ 0<\nu_{\epsilon}^{Dehn}(r)<\pi\text{ and strictly decreasing}\qquad&\text{for }0<r<\epsilon,\\ \nu_{\epsilon}^{Dehn}(r)=0\qquad\qquad\qquad\qquad\qquad\qquad&\text{for }r\geq\epsilon.\end{cases}

Consider the canonical Riemannian metric on SnS^{n}. We have a canonical isomorphism TSnTSnT_{*}S^{n}\cong T^{*}S^{n} and we denote by ξ\norm{\xi} the norm of the tangent vector identified with ξTS\xi\in T^{*}S. We denote by

TrSn={ξTSnξ<r}T_{r}^{*}S^{n}=\left\{\xi\in T^{*}S^{n}\;\mid\;\norm{\xi}<r\right\}

the open subset of TSnT^{*}S^{n} consisting of cotangent vectors of norm strictly less than rr.

Let VMV\subset M be a Weinstein neighbourhood of SS together with a symplectic embedding

φ:VTSn\varphi\colon V\longrightarrow T^{*}S^{n}

that identifies SVS\subset V with the zero-section 0SnSn0_{S^{n}}\cong S^{n} via ι\iota and φ(V)=TϵSn\varphi(V)=T_{\epsilon}^{*}S^{n} for some ϵ>0\epsilon>0.

Consider the continuous function σ:TSn,σ(ξ)=ξ\sigma\colon T^{*}S^{n}\longrightarrow\mathbb{R},\,\sigma(\xi)=\norm{\xi}. This function is not smooth on the zero-section 0Sn0_{S^{n}}, but has a well-defined Hamiltonian flow on the complement:

ψtσ:(TSn)\0Sn(TSn)\0Sn.\psi^{\sigma}_{t}\colon\left(T^{*}S^{n}\right)\backslash 0_{S^{n}}\longrightarrow\left(T^{*}S^{n}\right)\backslash 0_{S^{n}}.
Definition 2.2.

The model Dehn twist on TSnT^{*}S^{n} is the diffeomorphism defined by

τSn:TSn\displaystyle\tau_{S^{n}}\colon T^{*}S^{n} TSn,\displaystyle\longrightarrow T^{*}S^{n},
ξ\displaystyle\xi {ψνϵDehn(σ(ξ))σ(ξ) for ξ0Sn,x for ξ=xSn.\displaystyle\longmapsto\begin{cases}\psi_{\nu_{\epsilon}^{Dehn}(\sigma(\xi))}^{\sigma}(\xi)&\text{ for }\xi\notin 0_{S^{n}},\\ -x\qquad\qquad&\text{ for }\xi=x\in S^{n}.\end{cases}

The Dehn twist in MM along SS is then given by copying the model Dehn twist into VV via φ\varphi:

τS={φ1τSnφon Vidon M\V.\displaystyle\tau_{S}=\begin{cases}\varphi^{-1}\circ\tau_{S^{n}}\circ\varphi\qquad&\text{on $V$}\\ \mathrm{id}\qquad&\text{on $M\backslash V$}.\end{cases}

2.2. The Dehn twist as a monodromy.

We adopt here the definition used in [BC17]. We denote by 𝔻2\mathbb{D}^{2} the closed unit disc viewed as a subset of \mathbb{C}. A Lefschetz fibration with base 𝔻2\mathbb{D}^{2} consists of

  1. (1)

    a closed symplectic manifold (E,ΩE)(E,\Omega_{E}) endowed with an almost complex structure JEJ_{E},

  2. (2)

    a proper (JE,i)(J_{E},i)-holomorphic map π:E𝔻2\pi\colon E\to\mathbb{D}^{2}

such that

  1. (1)

    π\pi has only finitely many critical points with distinct critical values,

  2. (2)

    all the critical points of π\pi are ordinary double points, that is for every critical point pEp\in E, there exists JEJ_{E}-holomorphic coordinates around pp such that in these coordinates π(z1,,zn)=z12++zn2\pi(z_{1},\dots,z_{n})=z_{1}^{2}+\dots+z_{n}^{2} holds.

For p𝔻2p\in\mathbb{D}^{2} we denote by Ep:=π1({p})E_{p}:=\pi^{-1}(\{p\}) the fiber above pp. All regular fibers of π\pi are symplectic manifolds with symplectic form induced from ΩE\Omega_{E}.

Given a symplectic manifold (M,ω)(M,\omega) and a parametrized Lagrangian sphere SS, one can construct a Lefschetz fibration with smooth fiber MM and vanishing sphere SS such that the Dehn twist is symplectically isotopic to the monodromy around a critical point. We refer the reader to [Sei03, Section 1] and [Sei08, Section (16e)] for a detailed explanation. We only include a very brief outline of the construction here. Consider the following local model for ϵ>0\epsilon>0: Let Q:n+1,Q(z1,,zn+1)=z12++zn+12Q\colon\mathbb{C}^{n+1}\to\mathbb{C},Q(z_{1},\dots,z_{n+1})=z_{1}^{2}+\dots+z_{n+1}^{2} and define the total space of the fibration to be

Eϵ0:={zn+1||Q(z)|1,|z|4|Q(z)|24<ϵ}.E^{0}_{\epsilon}:=\left\{z\in\mathbb{C}^{n+1}\,\big{|}\,\lvert Q(z)\rvert\leq 1,\frac{|z|^{4}-|Q(z)|^{2}}{4}<\epsilon\right\}.

The fibration then is πϵ0:Eϵ0𝔻2,π(z)=Q(z).\pi_{\epsilon}^{0}\colon E^{0}_{\epsilon}\to\mathbb{D}^{2},\pi(z)=Q(z). The symplectic form on Eϵ0E^{0}_{\epsilon} is of the form Ω0+dγ\Omega_{0}+\mathrm{d}\gamma, where Ω0\Omega_{0} is the standard symplectic form on n+1\mathbb{C}^{n+1} and γ\gamma a certain 11-form whose precise form is not relevant to us. Its effect is, that the fibration πϵ0\pi^{0}_{\epsilon} is trivial near the boundary. The smooth fibers are symplectomorphic to TϵSnT^{*}_{\epsilon}S^{n}. Consider the family of Lagrangian spheres

Σr=rSn={(rz1,,rzn+1)|zSnn+1}(Eϵ0)r\Sigma_{r}=\sqrt{r}S^{n}=\{(\sqrt{r}z_{1},\dots,\sqrt{r}z_{n+1})\,\big{|}\,z\in S^{n}\subset\mathbb{R}^{n+1}\}\subset\left(E_{\epsilon}^{0}\right)_{r}

for r>0r>0. They are called vanishing cycles. The union Σ=(r>0Σr){0}\Sigma=\left(\cup_{r>0}\Sigma_{r}\right)\cup\{0\} is a Lagrangian disc in Eϵ0E^{0}_{\epsilon}, called a Lefschetz thimble. There is an isomorphism

Φ:Eϵ0\Σ𝔻2×(TϵSn\Sn).\Phi\colon E^{0}_{\epsilon}\backslash\Sigma\to\mathbb{D}^{2}\times(T_{\epsilon}^{*}S^{n}\backslash S^{n}).

The monodromy τ:(πϵ0)1(1)(πϵ0)1(1)\tau\colon(\pi_{\epsilon}^{0})^{-1}({1})\to(\pi_{\epsilon}^{0})^{-1}({1}) along 𝔻2\partial\mathbb{D}^{2} is the Dehn twist along the vanishing cycle Σ1\Sigma_{1} [Sei03, Lemma 1.10]. To get the claimed Lefschetz fibration π0:E0𝔻2\pi^{0}\colon E^{0}\to\mathbb{D}^{2}, one glues Eϵ0E^{0}_{\epsilon} together with the trivial fibration 𝔻2×(M\V)\mathbb{D}^{2}\times(M\backslash V) via φ\varphi.

Locally, each Lefschetz fibration looks like a model Lefschetz fibration E0E^{0}. In particular, there is a notion of vanishing spheres in any Lefschetz fibration. The monodromy τ:EpEp\tau\colon E_{p}\to E_{p} along a path around the singularity is the Dehn twist along a vanishing cycle in EpE_{p}. Usually, the monodromy in not supported near SS. However, τ\tau is symplectically isotopic to the Dehn twist as defined in section 2.1.

2.3. Real Lefschetz fibrations.

A Lefschetz fibration π:E𝔻2\pi\colon E\to\mathbb{D}^{2} is called real, if the total space EE is endowed with an anti-symplectic involution cE:EEc_{E}\colon E\to E that covers complex conjugation c:𝔻2𝔻2c_{\mathbb{C}}\colon\mathbb{D}^{2}\to\mathbb{D}^{2}, meaning the diagram

EcEπEπ𝔻2c𝔻2\displaystyle\begin{split}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 3.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 29.08336pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{E\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 49.44229pt\raise 5.00974pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00417pt\hbox{$\scriptstyle{c_{E}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 71.20839pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 36.06252pt\raise-18.74333pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\pi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 36.06252pt\raise-28.84663pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 71.20839pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 78.18755pt\raise-18.74333pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\pi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 78.18755pt\raise-28.84663pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-3.0pt\raise-37.48666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 27.0pt\raise-37.48666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbb{D}^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 49.69229pt\raise-32.47972pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00694pt\hbox{$\scriptstyle{c_{\mathbb{C}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 69.12503pt\raise-37.48666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 69.12503pt\raise-37.48666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbb{D}^{2}}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{split} (11)

commutes. Consider the fiber M=E1M=E_{1} over 11. cEc_{E} induces an anti-symplectic involution on cc on MM. The following Lemma shows that the assumption of Theorem A is satisfied.

Lemma 2.3.

c(S)=Sc(S)=S and ι1cιid\iota^{-1}c\iota\simeq\mathrm{id} or ι1cιr\iota^{-1}c\iota\simeq r, where ι\iota is the canonical framing of the vanishing sphere SS.

Proof.

c(S)=Sc(S)=S follows from cE(0)=0c_{E}(0)=0 and the fact that cEc_{E} commutes with parallel transport. For the second part, note that it is enough to consider the model Q:n+1Q\colon\mathbb{C}^{n+1}\rightarrow\mathbb{C}. In that case, S=Snn+1S=S^{n}\subset\mathbb{C}^{n+1} is a standard sphere. Note that cEc_{E} restricted to the thimble Σ=Bn+1(0)\Sigma=B^{n+1}(0) is a smooth extension of the sphere c|Snc|_{S^{n}} to the ball. Moreover, since parallel transport commutes with cEc_{E}, it is a linear extension, in the sense that

cE(x)=c(xx)x.c_{E}(x)=c\left(\frac{x}{\norm{x}}\right)\norm{x}.

It follows that cE|n+1c_{E}|_{\mathbb{R}^{n+1}} is an orthogonal linear transformation and hence c|Snc|_{S^{n}} is an isometry. In particular, c|Snc|_{S^{n}} is smoothly isotopic to id\mathrm{id} or rr. ∎

Proposition A states that the condition on ιc\iota^{*}c is equivalent to MM being the fiber of a real Lefschetz fibration. One direction is proven in Lemma 2.3 above. We now prove the other direction.

Proof of Proposition A..

Suppose the tuple (M,S,ι,c)(M,S,\iota,c) satisfy the conclusion of Lemma 2.3. We want to construct a real Lefschetz fibration whose fiber is MM, whose vanishing sphere is (S,ι)(S,\iota) and whose real structure restricts to a real structure Hamiltonian isotopic to cc.

First we endow the Lefschetz fibration πϵ0:Eϵ0𝔻2\pi^{0}_{\epsilon}\colon E^{0}_{\epsilon}\to\mathbb{D}^{2} from the previous section with a real structure. We consider two options:

c1(z1,,zn+1)=(z1¯,,zn+1¯)c_{1}(z_{1},\dots,z_{n+1})=(\overline{z_{1}},\dots,\overline{z_{n+1}})

and

c2(z1,z2,,zn+1)=(z1¯,z2¯,,zn+1¯).c_{2}(z_{1},z_{2},\dots,z_{n+1})=(-\overline{z_{1}},\overline{z_{2}},\dots,\overline{z_{n+1}}).

These are real structures on Eϵ0E^{0}_{\epsilon}.

By Proposition 6.2 there exists a Hamiltonian isotopy ψt\psi_{t} on MM supported in VV such that in the model TδSnT^{*}_{\delta}S^{n} (δ<ϵ\delta<\epsilon small enough) one has

ψ1c(q,p)=(q,p)\psi_{1}c(q,p)=(q,-p)

if φcid\varphi^{*}c\simeq\mathrm{id} and

ψ1c(q,p)=(r(q),r(p))\psi_{1}c(q,p)=(r(q),-r(p))

if φcr\varphi^{*}c\simeq r. These two maps exactly correspond to c1c_{1} and c2c_{2} on the fiber (πϵ0)1(1)(\pi^{0}_{\epsilon})^{-1}(1).

We now glue the fibration π:E0𝔻2\pi\colon E^{0}\to\mathbb{D}^{2} from two parts: the trivial fibration

𝔻2×(M\φ1(TδSn))\mathbb{D}^{2}\times(M\backslash\varphi^{-1}(T_{\delta}^{*}S^{n}))

and the local model fibration Eδ0E_{\delta}^{0}. On the first part, we define c(z,x):=(z¯,ψ1c(x))c(z,x):=(\overline{z},\psi_{1}c(x)). On Eδ0E_{\delta}^{0} we define c(z):=c1(z)c(z):=c_{1}(z) or c(z)=c2(z)c(z)=c_{2}(z). These definitions are compatible on the glued region and hence descend to a real structure cE0c_{E^{0}} on E0E^{0} satisfying cE|E1=ψ1cc_{E}|_{E_{1}}=\psi_{1}c. ∎

2.4. Splitting of the monodromy into anti-symplectic involutions.

Let

π:E𝔻2\pi\colon E\to\mathbb{D}^{2}

be a real Lefschetz fibration with real structure cE:EEc_{E}\colon E\to E as above. We assume that pEp\in E is the unique critical point of π\pi and π(p)=0\pi(p)=0. Let M:=E1:=π1({1})M:=E_{1}:=\pi^{-1}(\{1\}) and denote by τ:MM\tau\colon M\to M the monodromy along the boundary loop γ(t)=e2πit,t[0,1].\gamma(t)=e^{2\pi it},t\in[0,1]. The following result is due to Salepci [Sal10] in the smooth category. Here we adapt it to the symplectic framework.

Lemma 2.4.

τ\tau splits into a product of two anti-symplectic involutions on MM. More concretely, τ=c+c\tau=c_{+}\circ c_{-} for two anti-symplectic involutions c±:MMc_{\pm}\colon M\longrightarrow M, where c+=(cE)|E1c_{+}=(c_{E})|_{E_{1}}. Equivalently, we have cτc=τ1c\tau c=\tau^{-1}.

Proof.

ΩE\Omega_{E} defines a symplectic connection on the smooth part of EE. Let us denote by

Pγ(s);t:Eγ(s)Eγ(s+t)P_{\gamma(s);t}\colon E_{\gamma(s)}\to E_{\gamma(s+t)}

the parallel transport for time tt along γ\gamma. Let vE1v\in E_{-1}. Consider the parallel lift w(t)Eeπiπitw(t)\in E_{e^{\pi i-\pi it}} of x:=cE(v)x:=c_{E}(v) along the upper half η+\eta^{+} of γ\gamma. Note that

cE(P1;12)1cE(v)=cE(w(1)).c_{E}\circ(P_{1;\frac{1}{2}})^{-1}\circ c_{E}(v)=c_{E}(w(1)).

It is straight-forward to check that v(t):=cE(w(t))v(t):=c_{E}(w(t)) is actually a parallel lift of vv along the lower half η\eta^{-} of γ\gamma. This uses (dcE)(Hw(t))=HcE(w(t))(dc_{E})(H_{w(t)})=H_{c_{E}(w(t))}. Hence,

cE(P1;12)1cE=P1,12c_{E}\circ(P_{1;\frac{1}{2}})^{-1}\circ c_{E}=P_{-1,\frac{1}{2}}

and the lemma follows:

τ=P1;12P1;12=cE(P1;12)1cEP1;12=c+c,\tau=P_{-1;\frac{1}{2}}\circ P_{1;\frac{1}{2}}=c_{E}\circ(P_{1;\frac{1}{2}})^{-1}\circ c_{E}\circ P_{1;\frac{1}{2}}=c_{+}\circ c_{-},

where c+=(cE)|Mc_{+}=(c_{E})|_{M} and c=(P1;12)1cEP1;12c_{-}=(P_{1;\frac{1}{2}})^{-1}\circ c_{E}\circ P_{1;\frac{1}{2}}. ∎

This proves Proposition B. Alternatively, Proposition B can also be shown directly from the definition of a model Dehn twist without going through real Lefschetz fibrations.

2.5. Examples in 22 dimensions.

Example 2.5 (Genus 22 surface).

Let us consider the genus 22 surface Σ2\Sigma_{2}. Take SS to be a separating curve, going once around between the two holes, as in Figure 1. Consider the Dehn twist τS\tau_{S} around SS.

α1\alpha_{1}SSα2\alpha_{2}β1\beta_{1}β2\beta_{2}
Figure 1. Genus 22 surface with Lagrangian sphere SS.

As in [Sei96] we can work over 2\mathbb{Z}_{2} instead of the Novikov field, and the Floer cohomology groups are \mathbb{Z}-graded.

τS\tau_{S} splits into the product of two anti-symplectic involutions: Take cc to be the anti-symplectic involution which is a reflection along SS. It is straight forward to check that c~:=cτS\tilde{c}:=c\circ\tau_{S} is an anti-symplectic involution. In particular, we can write τS=cc~\tau_{S}=c\circ\tilde{c}.

Let us compute c:HF(τS1)HF(τS1)c_{*}\colon HF^{*}(\tau^{-1}_{S})\to HF^{*}(\tau^{-1}_{S}). By the isomorphism (2) Floer cohomology of τS1\tau^{-1}_{S} is

HF(τS1)\displaystyle HF^{*}(\tau^{-1}_{S}) H(Σ\S;2)\displaystyle\cong H^{*}(\Sigma\backslash S;\mathbb{Z}_{2})
H(Σ\S;2)\displaystyle\cong H^{*}(\Sigma\backslash S;\mathbb{Z}_{2})
H(S1S1;2)H(S1S1;2)\displaystyle\cong H^{*}(S^{1}\vee S^{1};\mathbb{Z}_{2})\oplus H^{*}(S^{1}\vee S^{1};\mathbb{Z}_{2})
2[pt1]2α12β12[pt2]2α22β2.\displaystyle\cong\mathbb{Z}_{2}[pt_{1}]\oplus\mathbb{Z}_{2}\alpha_{1}\oplus\mathbb{Z}_{2}\beta_{1}\oplus\mathbb{Z}_{2}[pt_{2}]\oplus\mathbb{Z}_{2}\alpha_{2}\oplus\mathbb{Z}_{2}\beta_{2}.

In degree 0, the matrix representing cc^{*} on H0(Σ\S;2)H^{0}(\Sigma\backslash S;\mathbb{Z}_{2}) with respect to the basis [pt1],[pt2][pt_{1}],[pt_{2}] is

(0110).\displaystyle\begin{pmatrix}0&1\\ 1&0\end{pmatrix}.

It follows from Theorem A that A=[pt1]+[pt2]A=[pt_{1}]+[pt_{2}].

Example 2.6 (higher genus surfaces).

Similarly, we can consider any surface Σ\Sigma of genus g2g\geq 2, SS a separating circle in it that is the fixed point set of a reflection. Then HF0(τS1)22HF^{0}(\tau_{S}^{-1})\cong\mathbb{Z}_{2}\oplus\mathbb{Z}_{2}, where each of the two summands corresponds to one of the connected components of Σ\S\Sigma\backslash S. Theorem A implies A=(1,1)A=(1,1).

Example 2.7 (Torus).

Let SS be any non-contractible embedded circle in the torus T2T^{2}. Using the long exact sequence (4) applied to K=ΔK=\Delta one computes

HF0(τS1)Heven(T2;Λ)/H0(S;Λ)H2(T2;Λ)Λ.HF^{0}(\tau_{S}^{-1})\cong H^{even}(T^{2};\Lambda)/H^{0}(S;\Lambda)\cong H^{2}(T^{2};\Lambda)\cong\Lambda.

For any anti-symplectic involution c:T2T2c\colon T^{2}\to T^{2} satisfying c(S)=Sc(S)=S, it follows that c=idc_{*}=\mathrm{id}.

3. Floer cohomology

In this section we collect the main properties of Floer cohomology we need in the sequel.

3.1. Setting.

We assume that MM is symplectically aspherical, that is for every smooth map u:S2Mu\colon S^{2}\to M, its symplectic area vanishes:

S2uω=0.\int_{S^{2}}u^{*}\omega=0.

Moreover, we assume that all involved Lagrangian submanifolds are relatively symplectically aspherical, that is for every smooth map u:D2Mu\colon D^{2}\to M satisfying u(D2)Lu(\partial D^{2})\subset L, we have

D2uω=0.\int_{D^{2}}u^{*}\omega=0.

In particular, SMS\subset M is relatively symplectically aspherical. This is automatic if MM is symplectically aspherical, unless SS has dimension 11. In the latter case, the condition is equivalent to SS being a non-contractible circle. In this situation, Floer cohomology HF(f)\mathrm{HF}^{*}(f) for a symplectomorphism fSymp(M)f\in\mathrm{Symp}(M), and Lagrangian Floer cohomology HF(L,K)\mathrm{HF}^{*}(L,K) for Lagrangians L,KL,K as above can be defined over the universal Novikov field

Λ={akqωk||ak2,ωk,limkωk=}.\Lambda=\left\{\sum a_{k}q^{\omega_{k}}\bigg{|}|a_{k}\in\mathbb{Z}_{2},\omega_{k}\in\mathbb{R},\lim\limits_{k\to\infty}\omega_{k}=\infty\right\}.

HF(f)\mathrm{HF}^{*}(f) and HF(L,K)\mathrm{HF}^{*}(L,K) are 2\mathbb{Z}_{2}-graded, whenever LL and KK are oriented. We include a section about the definition of these groups for convenience of the reader in section 7. For a more detailed exposition, we refer the reader to [DS94, Sei97a, Lee05] for HF(f)\mathrm{HF}^{*}(f) and to [Flo88, Oh93, Oh95] for HF(L,K)\mathrm{HF}^{*}(L,K) .

3.2. Conjugation invariance.

Let ff be a symplectomorphism on XX and φ\varphi be an antisymplectic diffeomorphism on XX. We will make substancial use of the following fact, which is an anti-symplectic version of the well-known conjugation invariance of Floer cohomology (see e.g. [Sei38, section 3]). We include a proof in section 7.1.

Proposition 3.1.

There is a canonical graded isomorphism

(φf1):HF(f1)HF(φfφ1).(\varphi f^{-1})_{*}\colon\mathrm{HF}^{*}(f^{-1})\to\mathrm{HF}^{*}(\varphi f\varphi^{-1}).

If τS=cc~\tau_{S}=c\circ\tilde{c} we can apply this result to φ=c~\varphi=\tilde{c} and f=τSf=\tau_{S}. We get an automorphism

c:HF(τS1)HF(c~τSc~)HF(τS1).\displaystyle c_{*}\colon\mathrm{HF}^{*}(\tau_{S}^{-1})\longrightarrow\mathrm{HF}^{*}(\tilde{c}\tau_{S}\tilde{c})\cong\mathrm{HF}^{*}(\tau_{S}^{-1}).

This is induced by the chain-level map sending a generator xx to c~τS1(x)=c(x)\tilde{c}\tau_{S}^{-1}(x)=c(x), concatenated with a continuation map.

3.3. Lagrangian Floer cohomology.

Note that for any symplectomorphism ff on a symplectically aspherical symplectic manifold MM, the graph Γf\Gamma_{f} is a relatively aspherical Lagrangian manifold in M×MM\times M^{-}. Also, products of relatively aspherical Lagrangians in MM are relatively aspherical Lagrangians in M×MM\times M^{-}.

We endow the graph Γf\Gamma_{f} with the following orientation: Given a positive basis v1,,v2nv_{1},\dots,v_{2n} of TxMT_{x}M, then the basis (v1,Dfx(v1)),,(v2n,Dfx(v2n))(v_{1},Df_{x}(v_{1})),\dots,(v_{2n},Df_{x}(v_{2n})) of TxΔTxMTxMT_{x}\Delta\subset T_{x}M\oplus T_{x}M is defined to be positive if (1)n(n1)2=1(-1)^{\frac{n(n-1)}{2}}=1 and negative otherwise, see [WW10]. Moreover, given an oriented Lagrangian NN, note that f(N)f(N) has a canonical orientation.

Let QQ and NN be oriented Lagrangians in MM. There are the following canonical graded isomorphisms between Floer cohomology groups for Lagrangians in M×MM\times M^{-} and Lagrangians in MM:

  1. (1)

    HF(Q×N,Γf1)HF(Q,f(N))\mathrm{HF}^{*}(Q\times N,\Gamma_{f^{-1}})\cong\mathrm{HF}^{*}(Q,f(N))

  2. (2)

    HF(Q×N,Q×N)HF(Q,Q)HF(N,N)\mathrm{HF}^{*}(Q\times N,Q^{\prime}\times N^{\prime})\cong\mathrm{HF}^{*}(Q,Q^{\prime})\otimes\mathrm{HF}^{*}(N^{\prime},N)

3.4. Floer cohomology as a special case of Lagrangian Floer cohomology.

Floer cohomology of a symplectomorphism ff can be viewed as Lagrangian Floer cohomology of the pair (Δ,Γf)(\Delta,\Gamma_{f}). This isomorphism is well-known, see for instance [WW10], [MW18] and [LZ18, section 2.7]. Namely we have

Proposition 3.2.

There is a canonical graded isomorphism Ψf:HF(f)HF(Δ,Γf)\Psi_{f}\colon\mathrm{HF}(f)\to\mathrm{HF}(\Delta,\Gamma_{f}).

For the convenience of the reader we include a sketch of the proof in section 7.

Let φ:MM\varphi\colon M\to M be an anti-symplectic involution. Consider the symplectomorphism

Φφ:M×MM×M\displaystyle\Phi^{\varphi}\colon M\times M^{-}\longrightarrow M\times M^{-}
(x,y)(φ(y),φ(x)).\displaystyle(x,y)\longmapsto(\varphi(y),\varphi(x)).

The map (φf1)(\varphi f^{-1})_{*} on HF(τS1)\mathrm{HF}^{*}(\tau_{S}^{-1}) corresponds to Φφ\Phi^{\varphi}_{*} under the isomorphism of Proposition 3.2, i.e. the following diagram commutes:

As a special case, we recover the commutative diagram (9) by setting f=τSf=\tau_{S} and φ=c~\varphi=\tilde{c}.

4. Lagrangian cobordisms

4.1. Definition of a Lagrangian cobordism.

In this section we recall the definition of Lagrangian cobordisms as studied by Biran and Cornea in the series of papers [BC13, BC14, BC17]. Let (M,ω)(M,\omega) be a symplectic manifold. Consider the product symplectic manifold (M×2,ωωstd)(M\times\mathbb{R}^{2},\omega\oplus\omega_{\mathrm{std}}). Here, ωstd)=dxdy\omega_{\mathrm{std}})=\mathrm{d}x\wedge\mathrm{d}y denotes the standard symplectic form on 2\mathbb{R}^{2}. We denote by π:M×22\pi\colon M\times\mathbb{R}^{2}\to\mathbb{R}^{2} the projection to the plane. For subsets VM×2V\subset M\times\mathbb{R}^{2} and Z2Z\subset\mathbb{R}^{2}, we write V|Z:=Vπ1(Z)V|_{Z}:=V\cap\pi^{-1}(Z) for the restriction of VV over ZZ. A Lagrangian submanifold VM×2V\subset M\times\mathbb{R}^{2} is called a Lagrangian cobordism if there exists R>0R>0 such that

  1. (i)
    V|(,R]×=j=1kLj×(,R]×{j}V|_{(-\infty,-R]\times\mathbb{R}}=\bigcup_{j=1}^{k_{-}}L_{j}\times(-\infty,-R]\times\{j\}

    for some closed Lagrangian submanifolds L1,,LkML_{1},\dots,L_{k_{-}}\subset M,

  2. (ii)
    V|[R,)×=j=1k+Lj×[R,)×{j}V|_{[R,\infty)\times\mathbb{R}}=\bigcup_{j=1}^{k_{+}}L_{j}^{\prime}\times[R,\infty)\times\{j\}

    for some closed Lagrangian submanifolds L1,,Lk+ML_{1}^{\prime},\dots,L_{k_{+}}^{\prime}\subset M,

  3. (iii)

    V|[R,R]×2×MV|_{[-R,R]\times\mathbb{R}}\subset\mathbb{R}^{2}\times M is compact.

VV is called a Lagrangian cobordism from the Lagrangian family (Lj)j=1,,k+(L_{j}^{\prime})_{j=1,\dots,k_{+}} to the Lagrangian family (Li)i=1,,k\left(L_{i}\right)_{i=1,\dots,k_{-}}, denoted by

(Lj)j=1,,k+(Li)i=1,,k.(L_{j}^{\prime})_{j=1,\dots,k_{+}}\rightsquigarrow\left(L_{i}\right)_{i=1,\dots,k_{-}}.

4.2. Lagrangian cobordisms induce cone decompositions.

We recall here how a cobordism gives rise to cone decompositions of its ends in 𝒟uk(M)\mathcal{DF}uk(M). Since we work with cohomology, rather than homology, we write here a cohomological reformulation of Theorem A from [BC14].

Theorem 4.1 (Theorem A in [BC14]).

Let VV be an oriented cobordism from LL to the family (L1[l1],L2[l2],Ll)(L_{1}[l-1],L_{2}[l-2]\dots,L_{l}). Assume that all Lagrangians involved (including VV) are uniformly monotone. Then there exists a graded quasi-isomorphism

LCone(Cone(Cone(L1L2)L3)Ll)L\cong\mathrm{Cone}\left(\dots\mathrm{Cone}(\mathrm{Cone}(L_{1}\to L_{2})\to L_{3})\to\dots\to L_{l}\right)

in the derived Fukaya category 𝒟uk(M).\mathcal{DF}uk(M).

Here, we denote by L[k],kL[k],k\in\mathbb{Z} the Lagrangian LL with the same orientation for even kk, and with oppostite orientation for odd kk. (The theorem also holds in the context of \mathbb{Z}-gradings, see also [MW18].)

A special case occurs when there are only three Lagrangians involved, namely VV has one right end, LL, and two left ends, L1[1]L_{1}[1] and L2L_{2}. Then we get

LCone(L1𝜑L2).L\cong Cone(L_{1}\xrightarrow{\varphi}L_{2}).

As we explain further in the appendix, the morphism φ\varphi is determined by a unique element αVHF0(L1,L2)\alpha_{V}\in HF^{0}(L_{1},L_{2}). In particular, for any Lagrangian KK we get a quasi-isomorphism of chain complexes

CF(K,L)Cone(CF(K,L1)μ2(αV,)CF(K,L2)).\mathrm{CF}^{*}(K,L)\cong Cone\left(\mathrm{CF}^{*}(K,L_{1})\xrightarrow{\mu^{2}(\alpha_{V},-)}\mathrm{CF}^{*}(K,L_{2})\right).

Note that αV\alpha_{V} is independent of KK.

The associate long exact sequence in cohomology is

HFk1(K,L)HFk(K,L1)μ2(αV,)HFk(K,L2)HFk(K,L)\dots\to\mathrm{HF}^{k-1}(K,L)\to\mathrm{HF}^{k}(K,L_{1})\xrightarrow{\mu^{2}(\alpha_{V},-)}\mathrm{HF}^{k}(K,L_{2})\to\mathrm{HF}^{k}(K,L)\to\dots

5. Mak-Wu cobordism

We consider a symplectic manifold (M,ω)(M,\omega) and a parametrized Lagrangian sphere SMS\subset M. Mak-Wu [MW18] constructed a Lagrangian cobordism VMWV_{MW} with three ends: S×S,ΔS\times S,\Delta and ΓτS1\Gamma_{\tau_{S}^{-1}}. In this section, we will recall the construction of this cobordism, which closely follows [MW18].

5.1. The graph of the Dehn twist.

Following the principle that surgeries provide cobordisms with three ends [BC13, Section 6], the Mak-Wu cobordism also arises as the trace of a surgery. The first step therefore is to understand ΓτS1\Gamma_{\tau_{S}^{-1}} as the result of a surgery between S×SM×MS\times S\subset M\times M^{-} and the diagonal ΔM×M\Delta\subset M\times M^{-} along the clean intersection ΔS:=(S×S)Δ\Delta_{S}:=(S\times S)\cap\Delta. The surgery construction takes place locally in a Weinstein neighbourhood of S×SS\times S. We choose a very specific neighbourhood, so that we can later compare it to ΓτS1\Gamma_{\tau_{S}^{-1}}. Namely, consider the symplectic embedding

φ~:V×V\displaystyle\widetilde{\varphi}\colon V\times V TϵSnTϵSnT(Sn×Sn)\displaystyle\longrightarrow T_{\epsilon}^{*}S^{n}\oplus T_{\epsilon}^{*}S^{n}\subset T^{*}(S^{n}\times S^{n})
(x,y)\displaystyle(x,y) (φ(x),φ(y))\displaystyle\longmapsto(\varphi(x),-\varphi(y))

that identifies S×SS\times S with the zero-section in T(Sn×Sn)T^{*}(S^{n}\times S^{n}). Note that

φ~1(NΔS)=Δ(V×V),\widetilde{\varphi}^{-1}(N_{\Delta_{S}}^{*})=\Delta\cap(V\times V),

where

NΔS:={αT(Sn×Sn)|vΔS:α(v)=0}.N_{\Delta_{S}}^{*}:=\left\{\alpha\in T^{*}(S^{n}\times S^{n})\,|\,\forall v\in\Delta_{S}\colon\alpha(v)=0\right\}.

We will define a surgery model in T(Sn×Sn)T^{*}(S^{n}\times S^{n}) for surgery of the zero-section and NΔSN_{\Delta_{S}}^{*} along their intersection ΔS\Delta_{S}. Then we will glue the surgery model into V×VV\times V via φ~\tilde{\varphi}. To define the surgery model, we need some auxiliary functions:

Definition 5.1.

A λ\lambda-admissible function νλ:0[0,λ]\nu_{\lambda}\colon\mathbb{R}_{\geq 0}\longrightarrow[0,\lambda] is a smooth function satisfying

{νλ(0)=λ,νλ1has vanishing derivatives of all orders at λ,0<νλ(r)<λ and strictly decreasingfor 0<r<ϵ,νλ(r)=0for rϵ.\displaystyle\begin{cases}\nu_{\lambda}(0)=\lambda,\\ \nu_{\lambda}^{-1}\text{has vanishing derivatives of all orders at }\lambda,\\ 0<\nu_{\lambda}(r)<\lambda\text{ and strictly decreasing}&\text{for }0<r<\epsilon,\\ \nu_{\lambda}(r)=0&\text{for }r\geq\epsilon.\end{cases}

Let π2:T(Sn×Sn)TSnTSnTSn\pi_{2}\colon T^{*}(S^{n}\times S^{n})\cong T^{*}S^{n}\oplus T^{*}S^{n}\to T^{*}S^{n} be the projection to the second summand. Consider σπ:T(Sn×Sn)\sigma_{\pi}\colon T^{*}(S^{n}\times S^{n})\to\mathbb{R} defined by σπ(ξ)=π2(ξ)\sigma_{\pi}(\xi)=\norm{\pi_{2}(\xi)}. This has a well-defined Hamiltonian flow on T(Sn×Sn)\ΔST^{*}(S^{n}\times S^{n})\backslash\Delta_{S}. Let λ<π\lambda<\pi. Consider a λ\lambda-admissible function ν=νλ\nu=\nu_{\lambda}, and define the following flow handle:

Hν={ψν(σπ(ξ))σπ(ξ)T(Sn×Sn)|ξNΔS\ΔS,σπ(ξ)ϵ}.\displaystyle H_{\nu}=\left\{\psi_{\nu(\sigma_{\pi}(\xi))}^{\sigma_{\pi}}(\xi)\in T^{*}(S^{n}\times S^{n})\,\big{|}\,\xi\in N_{\Delta_{S}}^{*}\backslash\Delta_{S},\sigma_{\pi}(\xi)\leq\epsilon\right\}.

HνH_{\nu} can be glued to a part of S×SS\times S and NΔSN^{*}_{\Delta_{S}}, resulting in a smooth Lagrangian in T(Sn×Sn)T^{*}(S^{n}\times S^{n}) that coincides with NΔSN_{\Delta_{S}}^{*} outside of TϵSTϵSnT_{\epsilon}^{*}S\oplus T_{\epsilon}^{*}S^{n}. We denote the resulting Lagrangian by

(Sn×Sn)#ΔSνNΔS.(S^{n}\times S^{n})\#_{\Delta_{S}}^{\nu}N_{\Delta S}^{*}.

We finally glue this model surgery into V×VV\times V:

(S×S)#ΔSνΔ:=(φ~)1((Sn×Sn)#ΔSνNΔS)(Δ\(V×V)).(S\times S)\#_{\Delta_{S}}^{\nu}\Delta:=(\tilde{\varphi})^{-1}\left((S^{n}\times S^{n})\#_{\Delta_{S}}^{\nu}N_{\Delta_{S}}^{*}\right)\cup\left(\Delta\backslash(V\times V^{-})\right).

Mak-Wu [MW18, Lemma 3.4] show that all such surgeries are Hamiltonian isotopic for different choices of ν\nu. Moreover, the same construction works for ν=νϵDehn\nu=\nu_{\epsilon}^{\text{Dehn}} (even though this is not admissible) and the result is again Hamiltonian isotopic to any of the other surgeries. It’s straight-forward to see that

(S×S)#ΔSνϵDehnΔ=ΓτS1(S\times S)\#_{\Delta_{S}}^{\nu_{\epsilon}^{\text{Dehn}}}\Delta=\Gamma_{\tau_{S}^{-1}}

and so any of the above surgeries is Hamiltonian isotopic to ΓτS1\Gamma_{\tau_{S}^{-1}}. In particular, since ΓτS1\Gamma_{\tau_{S}^{-1}} is relatively symplectically aspherical, so is the surgery (S×S)#ΔSνΔ(S\times S)\#_{\Delta_{S}}^{\nu}\Delta.

Remark 5.2.

This version of surgery is a special case of E2E_{2}-flow surgery, introduced in [MW18, section 2.3] in more general situations.

5.2. The cobordism.

(S×S)#ΔSνΔ(S\times S)\#_{\Delta_{S}}^{\nu}\Delta is related to S×SS\times S and Δ\Delta via a cobordism. This follows from a construction called ”trace of a surgery”, which is a surgery construction in one dimension higher. This was first introduced in [BC13] for the case of a transverse surgery in a point. As shown in [MW18], exactly the same construction works for the E2E_{2}-surgery along clean intersections. We recall the construction in our special case.

Consider the symplectomorphism

φ~×id:V×V×T\displaystyle\tilde{\varphi}\times\mathrm{id}\colon V\times V\times T^{*}\mathbb{R} TϵSnTϵSnTT(Sn×Sn×)\displaystyle\longrightarrow T_{\epsilon}^{*}S^{n}\oplus T_{\epsilon}^{*}S^{n}\oplus T^{*}\mathbb{R}\subset T^{*}(S^{n}\times S^{n}\times\mathbb{R})

and define the handle in the model T(Sn×Sn×)T^{*}(S^{n}\times S^{n}\times\mathbb{R}) as follows:

H^ν={ψν(σπ^(ξ))σπ^(ξ)T(Sn×Sn×)|ξNΔS×{0}\(ΔS×{0}),σπ^(ξ)ϵ},\hat{H}_{\nu}=\left\{\psi_{\nu(\sigma_{\hat{\pi}}(\xi))}^{\sigma_{\hat{\pi}}}(\xi)\in T^{*}(S^{n}\times S^{n}\times\mathbb{R})\,\big{|}\,\xi\in N_{\Delta_{S}\times\{0\}}^{*}\backslash(\Delta_{S}\times\{0\}),\sigma_{\hat{\pi}}(\xi)\leq\epsilon\right\},

where σπ^:T(Sn×Sn×)\sigma_{\hat{\pi}}\colon T^{*}(S^{n}\times S^{n}\times\mathbb{R})\to\mathbb{R} is given by σπ^(ξ1,ξ2,p)=((ξ2,p)\sigma_{\hat{\pi}}(\xi_{1},\xi_{2},p)=\norm{((\xi_{2},p)}. Here, ν=νλ\nu=\nu_{\lambda} is a λ\lambda-admissible function, as defined in Definition 5.1. One computes

ψtσπ^(ξ1,ξ2,p)=(ξ1,ψtξξ2+p2σ(ξ2),ψt|p|ξ2+p2σ(p))\displaystyle\psi_{t}^{\sigma{\hat{\pi}}}(\xi_{1},\xi_{2},p)=\left(\xi_{1},\psi^{\sigma}_{\frac{t\norm{\xi}}{\sqrt{\norm{\xi}^{2}+p^{2}}}}(\xi_{2}),\psi^{\sigma^{\mathbb{R}}}_{\frac{t\lvert p\rvert}{\sqrt{\norm{\xi}^{2}+p^{2}}}}(p)\right)

So more concretely, H^ν\hat{H}_{\nu} can be described as follows:

H^ν={(ξ,ψν(ξ2+p2)ξξ2+p2σ(ξ),ψν(ξ2+p2)pξ2+p2σ(p))|ξTϵS,p,ξ2+p2<ϵ}.\displaystyle\hat{H}_{\nu}=\left\{\left(\xi,\psi^{\sigma}_{\nu\left(\sqrt{\norm{\xi}^{2}+p^{2}}\right)\frac{\norm{\xi}}{\sqrt{\norm{\xi}^{2}+p^{2}}}}(\xi),\psi^{\sigma^{\mathbb{R}}}_{\nu\left(\sqrt{\norm{\xi}^{2}+p^{2}}\right)\frac{\norm{p}}{\sqrt{\norm{\xi}^{2}+p^{2}}}}(p)\right)\,\Big{|}\,\begin{array}[]{l}\xi\in T_{\epsilon}^{*}S,p\in\mathbb{R},\\ \sqrt{\norm{\xi}^{2}+p^{2}}<\epsilon\end{array}\right\}.

Here, σ:TS\sigma\colon T^{*}S\longrightarrow\mathbb{R} is the Hamiltonian function σ(ξ)=ξ\sigma(\xi)=\norm{\xi} we used earlier to define τS\tau_{S} and σ:T\sigma^{\mathbb{R}}\colon T^{*}\mathbb{R}\longrightarrow\mathbb{R} is given by σ(p)=|p|\sigma^{\mathbb{R}}(p)=|p|.

The model handle H^ν\hat{H}_{\nu} glues to a part of (Sn×Sn×)\H(S^{n}\times S^{n}\times\mathbb{R})\backslash\partial H, which yields the model surgery trace

(Sn×Sn×)#ΔS×{0}NΔS×{0}.(S^{n}\times S^{n}\times\mathbb{R})\#_{\Delta_{S}\times\{0\}}N_{\Delta_{S}\times\{0\}}^{*}.

Gluing this into M×M×TM\times M^{-}\times T^{*}\mathbb{R} via φ~×id\tilde{\varphi}\times\mathrm{id} we get

V:=(S×S×)#ΔS×{0}(Δ×i):=(φ~×id)1((Sn×Sn×)#ΔS×{0}NΔS×{0}).V:=(S\times S\times\mathbb{R})\#_{\Delta_{S}\times\{0\}}\left(\Delta\times i\mathbb{R}\right):=(\tilde{\varphi}\times\mathrm{id})^{-1}\left((S^{n}\times S^{n}\times\mathbb{R})\#_{\Delta_{S}\times\{0\}}N_{\Delta S\times\{0\}}^{*}\right).

VM×M×TV\subset M\times M^{-}\times T^{*}\mathbb{R} is a Lagrangian submanifold. Under the identification TT^{*}\mathbb{R}\cong\mathbb{C} via (q,p)qip(q,p)\leftrightarrow q-ip, VV satisfies

Vπ1(ϵ)=S×S×{ϵ},\displaystyle V\cap\pi_{\mathbb{C}}^{-1}(\epsilon)=S\times S\times\{\epsilon\},
Vπ1(iϵ)=Δ×{iϵ},\displaystyle V\cap\pi_{\mathbb{C}}^{-1}(i\epsilon)=\Delta\times\{i\epsilon\},
Vπ1(0)=(S×S)#ΔSνΔ.\displaystyle V\cap\pi_{\mathbb{C}}^{-1}(0)=(S\times S)\#_{\Delta_{S}}^{\nu}\Delta.

By taking half of VV, extending it by a ray of (S×S)#ΔSνΔ(S\times S)\#_{\Delta_{S}}^{\nu}\Delta at 0 and smoothing it, and bending the ends, as explained in [BC13, Section 6.1], we get a cobordism

V~:(S×S)#ΔSνΔ(S×S,Δ).\tilde{V}\colon(S\times S)\#_{\Delta_{S}}^{\nu}\Delta\rightsquigarrow(S\times S,\Delta).

As discussed in section 5.1, (S×S)#ΔSνΔ(S\times S)\#_{\Delta_{S}}^{\nu}\Delta is Hamiltonian isotopic to ΓτS1\Gamma_{\tau_{S}^{-1}}. Gluing a corresponing suspension to V~\tilde{V} finally gives us the claimed cobordism

VMW:ΓτS1(S×S,Δ).V_{MW}\colon\Gamma_{\tau_{S}^{-1}}\rightsquigarrow(S\times S,\Delta).

5.3. Floer theory.

Mak-Wu [MW18] explain how to put gradings on S×SS\times S, Δ\Delta, ΓτS1\Gamma_{\tau_{S}^{-1}} and on VMWV_{MW} such that VMWV_{MW} becomes a graded cobordism from ΓτS1\Gamma_{\tau_{S}^{-1}} to (S×S[1],Δ)(S\times S[1],\Delta). Here, we only use /2\mathbb{Z}/2-gradings, but it follows from their proof, that VMWV_{MW} is an oriented cobordism.

In the situation of symplectically aspherical manifolds, VMWV_{MW} is a relatively symplectically aspherical Lagrangian in M×M×M\times M^{-}\times\mathbb{C} with relatively symplectically aspherical ends. More precisely, assuming ω|π2(M)0\omega|_{\pi_{2}(M)}\equiv 0 and ω|π2(M,S)0\omega|_{\pi_{2}(M,S)}\equiv 0 implies that (ωω)|π2(M×M,S×S)0(\omega\oplus-\omega)|_{\pi_{2}(M\times M^{-},S\times S)}\equiv 0, (ωω)|π2(M×M,Δ)0(\omega\oplus-\omega)|_{\pi_{2}(M\times M^{-},\Delta)}\equiv 0, (ωω)|π2(M×M,ΓτS1)0(\omega\oplus-\omega)|_{\pi_{2}(M\times M^{-},\Gamma_{\tau_{S}^{-1}})}\equiv 0 and (ωωω)|π2(M×M×,VMV)0(\omega\oplus-\omega\oplus\omega_{\mathbb{C}})|_{\pi_{2}(M\times M^{-}\times\mathbb{C},V_{MV})}\equiv 0. The latter follows from an argument very similar to the proof of the corresponding result on exactness and monotonicity in [MW18, Lemma 6.2, 6.3].

Floer theory for VMWV_{MW} and the ends is therefore well-defined. The cone-decomposition result 4.2 from Biran-Cornea [BC13], [BC14] therefore yields a long exact sequence of graded Lagrangian Floer cohomology groups [MW18, Theorem 6.4]:

HFk(K,\displaystyle\dots\to\mathrm{HF}^{k}(K, S×S)μ2(B,)HFk(K,Δ)\displaystyle S\times S)\xrightarrow{\mu^{2}(B,-)}\mathrm{HF}^{k}(K,\Delta)
μ2(A,)HFk(K,Γτ1)μ2(C,)HFk+1(K,S×S)\displaystyle\xrightarrow{\mu^{2}(A,-)}\mathrm{HF}^{k}(K,\Gamma_{\tau^{-1}})\xrightarrow{\mu^{2}(C,-)}\mathrm{HF}^{k+1}(K,S\times S)\to\dots

for any admissible Lagrangian submanifold K(M×M,ωω)K\subset\left(M\times M,\omega\oplus-\omega\right). This is precisely the sequence (4). As indicated, the maps are given by μ2\mu^{2} operations with elements AHF0(Δ,Γτ1)A\in\mathrm{HF}^{0}(\Delta,\Gamma_{\tau^{-1}}), BHF0(S×S,Δ)B\in\mathrm{HF}^{0}(S\times S,\Delta) and CHF1(ΓτS1,S×S)C\in\mathrm{HF}^{1}(\Gamma_{\tau_{S}^{-1}},S\times S). A,BA,B and CC are independent of KK.

Proposition 5.3.

If 2c1(M)=02c_{1}(M)=0 in H2(M;)\mathrm{H}^{2}(M;\mathbb{Z}) and 2c1(M,S)=02c_{1}(M,S)=0 in H2(M,S)\mathrm{H}^{2}(M,S) then A0A\neq 0. 222The condition 2c1(M,S)=02c_{1}(M,S)=0 is automatic for n2n\geq 2. For n=1n=1 it’s equivalent to SS being a non-contractible circle.

Proof.

Under the condition on the Chern class, everything becomes \mathbb{Z}-graded, see [Sei00]. For K=ΔK=\Delta, the sequence becomes

HFk(S,S)HFk(id)ΨHFk(Δ,Γτ1)HFk+1(S,S).\displaystyle\dots\to\mathrm{HF}^{k}(S,S)\to\mathrm{HF}^{k}(\mathrm{id})\xrightarrow{\Psi}\mathrm{HF}^{k}(\Delta,\Gamma_{\tau^{-1}})\to\mathrm{HF}^{k+1}(S,S)\to\dots.

Assume by contradiction that A=0A=0. Then Ψ=0\Psi=0 and hence we get \mathbb{Z}-graded isomorphisms

H(S;Λ)QH(S)HF(S,S)HF(id)QH(M)H(M;Λ).\displaystyle\mathrm{H}^{*}(S;\Lambda)\cong QH^{*}(S)\cong\mathrm{HF}^{*}(S,S)\cong\mathrm{HF}^{*}(\mathrm{id})\cong\mathrm{QH}^{*}(M)\cong\mathrm{H}^{*}(M;\Lambda).

This is a impossible. We conclude that A0A\neq 0. ∎

6. Symmetry of the Mak-Wu cobordism

We assume that ιcid\iota^{*}c\simeq\mathrm{id} or ιcr\iota^{*}c\simeq r. In this section, we prove Theorem B, i.e. that Φ(VMW)\Phi(V_{MW}) is Hamiltonian isotopic to VMWV_{MW}, where Φ(x,y,z)=(c(y),c(x),z).\Phi(x,y,z)=(c(y),c(x),z).

6.1. Linear approximation of anti-symplectic involution.

Any map

c0:SnSnc_{0}\colon S^{n}\to S^{n}

induces an anti-symplectic involution

c0:TSnTSnc_{0}^{*}\colon T^{*}S^{n}\to T^{*}S^{n}

via c0(q,p)=(c0(q),p(Dc0)c0(q))c_{0}^{*}(q,p)=(c_{0}(q),-p\circ(Dc_{0})_{c_{0}(q)}). We assume that c0=idc_{0}=\mathrm{id} or c0=rc_{0}=r (or more generally that c0c_{0} is any isometry). Note that we secretly identify TSnT^{*}S^{n} and TSnT_{*}S^{n} via the canonical isomorphism α:TSnTSn\alpha\colon T_{*}S^{n}\to T^{*}S^{n} coming from the standard Riemannian metric. The following diagram commutes:

TS\textstyle{T^{*}S\ignorespaces\ignorespaces\ignorespaces\ignorespaces}c0\scriptstyle{c_{0}^{*}}TS\textstyle{T^{*}S}TS\textstyle{TS\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Dc0\scriptstyle{-Dc_{0}}α\scriptstyle{\alpha}\scriptstyle{\cong}TS\textstyle{TS\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}\scriptstyle{\cong}

The following Lemma collects some properties of c0c_{0}^{*}.

Lemma 6.1.

Assume that c0=idc_{0}=\mathrm{id} or c0=rc_{0}=r (or more generally that c0c_{0} is any isometry). Then c0:TSTSc_{0}^{*}\colon T^{*}S\to T^{*}S satisfies

  • c0(ξ)=ϕsσ(c0(ϕsσ(ξ)))c_{0}^{*}(\xi)=-\phi_{s}^{\sigma}(-c_{0}^{*}(-\phi_{s}^{\sigma}(-\xi)))

  • c0(ϕsσ(ξ))=ξ.\norm{c_{0}^{*}(-\phi_{s}^{\sigma}(-\xi))}=\norm{\xi}.

Proof.

Let ξTxSTxS\xi\in T_{x}^{*}S\cong T_{x}S. Let γ\gamma be the unique geodesic in SS with γ(0)=x\gamma(0)=x and γ(0)=ξ\gamma^{\prime}(0)=-\xi. Then ϕsσ(ξ)=γ(s)\phi_{s}^{\sigma}(-\xi)=\gamma^{\prime}(s). Note that c0(γ(s))=dc(γ(s))=(cγ)(s)c_{0}^{*}(\gamma^{\prime}(s))=-dc(\gamma^{\prime}(s))=-(c\circ\gamma)^{\prime}(s). Moreover, (cγ)(0)=dc(ξ)=c0(ξ)(c\circ\gamma)^{\prime}(0)=dc(-\xi)=-c_{0}^{*}(-\xi), hence

ϕsσ(c0ϕsσ(ξ))\displaystyle\phi_{s}^{\sigma}(c_{0}^{*}\phi_{s}^{\sigma}(-\xi)) =ϕsσ(ϕsσ(c0(ξ)))\displaystyle=\phi_{s}^{\sigma}(-\phi_{s}^{\sigma}(-c_{0}^{*}(-\xi)))
=c0(ξ).\displaystyle=c_{0}^{*}(-\xi).

c0c_{0}^{*} commutes with the minus sign because it is linear. So the first claim follows. For the second, note that both ϕsσ\phi_{s}^{\sigma} and c0c_{0}^{*} both preserve the length induced by gg. The latter follows from c0c_{0} being an isometry. ∎

The next proposition shows that any anti-symplectic involution cc on TSnT^{*}S^{n} as before locally looks like c0c_{0}^{*} for c0=idc_{0}=\mathrm{id} or c0=rc_{0}=r.

Proposition 6.2.

Let c:TSnTSnc\colon T^{*}S^{n}\rightarrow T^{*}S^{n} be an anti-symplectic involution restricting to σ:SnSn\sigma\colon S^{n}\longrightarrow S^{n} where either σid\sigma\simeq\mathrm{id} or σr\sigma\simeq r. Then for every η2>0\eta_{2}>0 there exists η2>η1>0\eta_{2}>\eta_{1}>0 and a Hamiltonian isotopy

ψtH:TSnTSn\psi_{t}^{H}\colon T^{*}S^{n}\longrightarrow T^{*}S^{n}

with suppHTη2Sn\operatorname{supp}H\subset T^{*}_{\eta_{2}}S^{n} such that

cψ1H=c0 on Tη1Sn,c\psi^{H}_{1}=c_{0}^{*}\;\text{ on }\;T^{*}_{\eta_{1}}S^{n},

where c0=idc_{0}=\mathrm{id} or c0=rc_{0}=r.

Proof.

Consider the symplectomorphism ψ:=cσ\psi:=c\circ\sigma^{*}. Write in local coordinates ψ(q,p)=(u(q,p),v(q,p))\psi(q,p)=(u(q,p),v(q,p)) with u(q,p)Snu(q,p)\in S^{n} and v(q,p)Tu(q,p)Snv(q,p)\in T_{u(q,p)}S^{n}. Since c=Tσc=T^{*}\sigma on SnS^{n} we have u(q,0)=qu(q,0)=q. Consider the following isotopy of symplectomorphisms ψt:TSnTSn\psi_{t}\colon T^{*}S^{n}\to T^{*}S^{n} between ψ0=id\psi_{0}=\mathrm{id} and ψ1(q,p)=ψ\psi_{1}(q,p)=\psi:

ψt(q,p)={(u(q,tp),v(q,tp)t)t0(u(q,0),(pv(q,0))p)t=0\displaystyle\psi_{t}(q,p)=\begin{cases}(u(q,tp),\frac{v(q,tp)}{t})\qquad\qquad\;t\neq 0\\ (u(q,0),(\partial_{p}v(q,0))p)\qquad t=0\end{cases}

ψ0(q,p)=(q,p)\psi_{0}(q,p)=(q,p) because as it can be seen from writing Dψ(q,0)D\psi_{(q,0)} in local coordinates:

Dψ(q,0)=(idqv(q,0)pu(q,0)pv(q,0))\displaystyle D\psi_{(q,0)}=\begin{pmatrix}&\mathrm{id}&\partial_{q}v(q,0)\\ &\partial_{p}u(q,0)&\partial_{p}v(q,0)\end{pmatrix}

and using that Dψ(q,0)D\psi_{(q,0)} is a symplectic matrix, we get

pv(q,0)=id.\partial_{p}v(q,0)=\mathrm{id}.

ψt\psi_{t} is a Hamiltonian isotopy: For n2n\geq 2 this is automatic. For n=1n=1 it follows from ψt(Sn)=Sn\psi_{t}(S^{n})=S^{n}. Concatenate ψt\psi_{t} with a Hamiltonian isotopy σc0\sigma^{*}\simeq c_{0}^{*}. Finally cut off the Hamiltonian so that the resulting Hamiltonian HH has support in Tη2SnT^{*}_{\eta_{2}}S^{n}. Clearly, ψ1H=cc0\psi_{1}^{H}=c\circ c_{0}^{*} on Tη1SnT^{*}_{\eta_{1}}S^{n} for η1\eta_{1} small enough. In particular, cψ1H=c0c\psi_{1}^{H}=c_{0}^{*} on Tη1SnT^{*}_{\eta_{1}}S^{n}. ∎

6.2. The symmetry of the surgery part.

Let VMV\subset M be a Weinstein neighbourhood of SS and φ:VTδSn\varphi\colon V\to T_{\delta}^{*}S^{n} a symplectomorphism for some δ>0\delta>0. Let 0<ϵ<δ0<\epsilon<\delta small enough, such that c(U)Uc(U)\subset U for U:=φ1(TϵSn)U:=\varphi^{-1}(T_{\epsilon}^{*}S^{n}). Consider Φ\Phi as a map

U×U×V×V×.U\times U\times\mathbb{C}\to V\times V\times\mathbb{C}.

This induces via φ~×id\widetilde{\varphi}\times\mathrm{id} the map

Φ:TϵSn×TϵSn×\displaystyle\Phi\colon T_{\epsilon}^{*}S^{n}\times T_{\epsilon}^{*}S^{n}\times\mathbb{C} TδSn×TδSn×\displaystyle\to T_{\delta}^{*}S^{n}\times T_{\delta}^{*}S^{n}\times\mathbb{C}
(ξ1,ξ2,z)\displaystyle(\xi_{1},\xi_{2},z) (c(ξ2),c(ξ1),z).\displaystyle\mapsto(c(-\xi_{2}),c(\xi_{1}),z).

Let ψt:TSnTSn\psi_{t}\colon T^{*}S^{n}\to T^{*}S^{n} be the Hamiltonian isotopy from Proposition 6.2. Consider the Hamiltonian isotopy

Ψt:TδSn×TδSn×T\displaystyle\Psi_{t}\colon T_{\delta}^{*}S^{n}\times T_{\delta}^{*}S^{n}\times T^{*}\mathbb{R} TδSn×TδSn×T\displaystyle\to T_{\delta}^{*}S^{n}\times T_{\delta}^{*}S^{n}\times T^{*}\mathbb{R}
(ξ1,ξ2,p)\displaystyle(\xi_{1},\xi_{2},p) (ψt(ξ1),ψt(ξ2),p).\displaystyle\mapsto(\psi_{t}(\xi_{1}),-\psi_{t}(-\xi_{2}),p).

We consider surgery in TϵSnT_{\epsilon}^{*}S^{n}, so that the handle H^ν\hat{H}_{\nu} is contained in TϵSnT_{\epsilon}^{*}S^{n}. We claim that

  • Ψ1(H^ν)=Φ(H^ν)\Psi_{1}(\hat{H}_{\nu})=\Phi(\hat{H}_{\nu}),

  • Ψt|S×S×=id\Psi_{t}|_{S\times S\times\mathbb{R}}=\mathrm{id},

  • Ψt(NΔS×{p})=NΔS×{p}\Psi_{t}(N_{\Delta_{S}}^{*}\times\{p\})=N_{\Delta_{S}}^{*}\times\{p\} for any pip\in i\mathbb{R},

  • πΨt=π\pi_{\mathbb{C}}\circ\Psi_{t}=\pi_{\mathbb{C}}.

We check these properties:

  • Let ξTS\xi\in T^{*}S and (q,p)T(q,p)\in T^{*}\mathbb{R} such that

    ξ2+p2<ϵ.\sqrt{\norm{\xi}^{2}+p^{2}}<\epsilon.

    We introduce the following abbreviations:

    s(ξ,|p|)=ν(ξ2+p2)ξξ2+p2s(\norm{\xi},\lvert p\rvert)=\nu\left(\sqrt{\norm{\xi}^{2}+p^{2}}\right)\frac{\norm{\xi}}{\sqrt{\norm{\xi}^{2}+p^{2}}}

    and

    r(ξ,|p|)=ν(ξ2+p2)|p|ξ2+p2.r(\norm{\xi},\lvert p\rvert)=\nu\left(\sqrt{\norm{\xi}^{2}+p^{2}}\right)\frac{\lvert p\rvert}{\sqrt{\norm{\xi}^{2}+p^{2}}}.

    Elements of H^ν\hat{H}_{\nu} are of the form

    α:=(ξ,ψs(ξ,|p|)σ(ξ),(r(ξ,|p|)+q,p)).\alpha:=(\xi,\psi_{s(\norm{\xi},\lvert p\rvert)}^{\sigma}(-\xi),(r(\norm{\xi},\lvert p\rvert)+q,p)).

    Therefore, elements of Ψ1(H^ν)\Psi_{1}(\hat{H}_{\nu}) are of the form

    Ψ1(α)=(cc0(ξ),cc0(ψs(ξ)σ(ξ)),(r(ξ,|p|)+q,p)).\Psi_{1}(\alpha)=(cc_{0}^{*}(\xi),-cc_{0}^{*}(-\psi_{s(\norm{\xi})}^{\sigma}(-\xi)),(r(\norm{\xi},\lvert p\rvert)+q,p)).

    Put

    ζ:=c0(ϕsσ(ξ)).\zeta:=c_{0}^{*}(-\phi_{s}^{\sigma}(-\xi)).

    Then ζ=ξ\norm{\zeta}=\norm{\xi} by part 22 of Lemma 6.1. By part 11 of Lemma 6.1 we have the equality

    c0(ξ)=ψsσ(c0(ψsσ(ξ)))=ψsσ(ζ).c_{0}^{*}(\xi)=-\psi_{s}^{\sigma}(-c_{0}^{*}(-\psi_{s}^{\sigma}(-\xi)))=-\psi_{s}^{\sigma}(-\zeta).

    Thus

    Ψ1(α)=(c(ψs(ζ)σ(ζ)),c(ζ),(r(ζ,|p|)+q,p))\Psi_{1}(\alpha)=(c(-\psi_{s(\norm{\zeta})}^{\sigma}(-\zeta)),-c(\zeta),(r(\norm{\zeta},\lvert p\rvert)+q,p))

    which are precisely the elements of Φ(H^ν)\Phi(\hat{H}_{\nu}).

  • Ψt(S×S×)=S×S×{\Psi_{t}}(S\times S\times\mathbb{R})=S\times S\times\mathbb{R}: For (x,y)S×S(x,y)\in S\times S

    Ψt(x,y,p)\displaystyle\Psi_{t}(x,y,p) =(ψt(x),ψt(y),p)S×S×\displaystyle=(\psi_{t}(x),-\psi_{t}(-y),p)\in S\times S\times\mathbb{R}

    because ψt(S)=S\psi_{t}(S)=S.

  • Ψt(ξ,ξ,p)=(ψt(ξ),ψt(ξ),p)\Psi_{t}(\xi,-\xi,p)=(\psi_{t}(\xi),-\psi_{t}(\xi),p) and thus Ψt(NΔS×{p})=NΔS×{p}\Psi_{t}(N_{\Delta_{S}}^{*}\times\{p\})=N_{\Delta_{S}}^{*}\times\{p\}.

  • πΨt=π\pi_{\mathbb{C}}\circ\Psi_{t}=\pi_{\mathbb{C}} is clear.

Thus the surgery model (S×S×)#ΔSNΔS×{0}(S\times S\times\mathbb{R})\#_{\Delta_{S}}N^{*}_{\Delta_{S}\times\{0\}} is Hamiltonian isotopic to the image of itself under Φ\Phi. The smoothing and the extension to a cobordism with ends S×SS\times S, Δ\Delta and (S×S)#ΔSΔ(S\times S)\#_{\Delta_{S}}\Delta can be done while keeping the Hamiltonian isotopy type. Hence the surgery part of the cobordism is Hamiltonian isotopic to the image of itself under Φ\Phi.

6.3. The symmetry of the suspension part.

This is very similar to the preceeding surgery part. Again, it is enough to show the statement for the surgery model. Let (S×S)#ΔSνtΔ(S\times S)\#_{\Delta_{S}}^{\nu_{t}}\Delta, t[0,1]t\in[0,1] be a Hamiltonian isotopy, where all νt\nu_{t} are admissible, except for ν1\nu_{1} which coincides with νϵDehn\nu_{\epsilon}^{\mathrm{Dehn}}. The Hamiltonian Kt:T(S×S)T(S×S)K_{t}\colon T^{*}(S\times S)\to T^{*}(S\times S) generating the isotopy can be chosen to be of the form Kt(ξ1,ξ2)=Kt(ξ1,ξ2)K_{t}(\xi_{1},\xi_{2})=K_{t}(\norm{\xi_{1}},\norm{\xi_{2}}), see [MW18, Lemma 3.6]. Moreover, KtK_{t} can be chosen to be zero near 0 and near 11. The suspension cobordism is the cylindrical extension of the Lagrangian

𝒮:={(ψtK(x),tiKt(ψtK(x)))M×M×|xHν0,t[0,1]}.\mathcal{S}:=\left\{(\psi_{t}^{K}(x),t-iK_{t}(\psi_{t}^{K}(x)))\in M\times M^{-}\times\mathbb{C}\,\big{|}\,x\in H^{\nu_{0}},t\in[0,1]\right\}.

Consider the Hamiltonian isotopy Ψt\Psi_{t} from before. We claim that

  • Ψ1(𝒮)=Φ(𝒮)\Psi_{1}(\mathcal{S})=\Phi(\mathcal{S})

  • Ψt(((S×S)#ΔSν0Δ)×{p})=((S×S)#ΔSν0Δ)×{p}\Psi_{t}\left({\left((S\times S)\#_{\Delta_{S}}^{\nu_{0}}\Delta\right)\times\{p\}}\right)={\left((S\times S)\#_{\Delta_{S}}^{\nu_{0}}\Delta\right)\times\{p\}} for p<0p\in\mathbb{R}_{<0}

  • Ψt(((S×S)#ΔSν0Δ)×{p})=((S×S)#ΔSν1Δ)×{p}\Psi_{t}\left({\left((S\times S)\#_{\Delta_{S}}^{\nu_{0}}\Delta\right)\times\{p\}}\right)={\left((S\times S)\#_{\Delta_{S}}^{\nu_{1}}\Delta\right)\times\{p\}} for p>1p\in\mathbb{R}_{>1}

  • πΨt=π\pi_{\mathbb{C}}\circ\Psi_{t}=\pi_{\mathbb{C}}

Let us check these properties.

  • Elements of “the handle part” of 𝒮\mathcal{S} can be written as

    α=(ξ,ψν(ξ)σ(ξ),tiKt(ξ))\alpha=(\xi,\psi^{\sigma}_{\nu(||\xi||)}(-\xi),t-iK_{t}(\norm{\xi}))

    for some ξTϵS\xi\in T_{\epsilon}^{*}S. Hence elements of the corresponding part of Ψ1(𝒮)\Psi_{1}(\mathcal{S}) are of the form

    Ψ1(α)=(cc0(ξ),cc0(ψν(ξ)σ(ξ)),tiKt(ξ).\Psi_{1}(\alpha)=(cc_{0}^{*}(\xi),-cc_{0}^{*}(-\psi^{\sigma}_{\nu(\norm{\xi})}(-\xi)),t-iK_{t}(\norm{\xi}).

    Elements of the corresponding part of Φ(𝒮)\Phi(\mathcal{S}) are of the form

    (c(ψν(ξ)σ(ζ)),c(ζ),tiK(η)(c(-\psi^{\sigma}_{\nu(\norm{\xi})}(-\zeta)),-c(\zeta),t-iK(\norm{\eta})

    for ζTϵS\zeta\in T_{\epsilon}^{*}S. As before, using Lemma 6.1, the elements are in 1:11:1-correspondence via ζ=c0(ϕν(ξ)(ξ))\zeta=c_{0}^{*}(-\phi_{\nu(\norm{\xi})}(-\xi)).

  • It is very similar, but simpler to see that Ψt\Psi_{t} preserves Hν0×{t}H^{\nu_{0}}\times\{t\} for t<0t\in\mathbb{R}_{<0}, and also Hν1×{t}H^{\nu_{1}}\times\{t\} for t>1t\in\mathbb{R}_{>1}.

  • The last item is obvious.

Therefore, the suspension part 𝒮\mathcal{S} of the cobordism is Hamiltonian isotopic to Φ(𝒮)\Phi(\mathcal{S}).

The symmetry of the surgery part shown in section 6.2 and the symmetry of the suspension part shown above together prove Theorem B.

7. Background on Floer cohomology

7.1. Floer cohomology for symplectomorphisms.

For convenience of the reader we briefly collect the basic ideas and notation for Floer cohomology of a symplectomorphism following [DS94]. For more detailed expositions, we refer the reader to [DS94] for the monotone case, and to [Sei97b] and [Lee05] for W+W^{+}-symplectic manifolds.

Let (M,ω)(M,\omega) be a closed symplectically aspherical symplectic manifold. Let fSymp(M)f\in\mathrm{Symp}(M) be a symplectomorphism. We first need to choose a Hamiltonian perturbation, namely a family of Hamiltonian functions {Hs:X}s\{H_{s}\colon X\longrightarrow\mathbb{R}\}_{s\in\mathbb{R}}. It should be ff-periodic, in the sense that

Hs=Hs+1f.H_{s}=H_{s+1}\circ f.

Roughly speaking, Floer cohomology of ff is Morse cohomology on the twisted loop space

Ωf:={xC(,X)x(s+1)=f(x(s))}\Omega_{f}:=\left\{x\in C^{\infty}(\mathbb{R},X)\;\mid\;x(s+1)=f(x(s))\right\}

with the closed 11-form

λH(x)(ξ)=01ω(x˙(s)XsH(x(s)),ξ(s))𝑑s.\lambda_{H}(x)(\xi)=\int_{0}^{1}\omega\left(\dot{x}(s)-X^{H}_{s}(x(s)),\xi(s)\right)\,ds.

Here, XsHX^{H}_{s} denotes the Hamiltonian vector field of HsH_{s}. We write Pf(H)P_{f}(H) for the set of xΩfx\in\Omega_{f} satisfying x˙(s)=XsH(x(s))\dot{x}(s)=X_{s}^{H}(x(s)). For a generic choice of HH, Pf(H)P_{f}(H) is a finite set. The vector space underlying the Floer complex is the Λ\Lambda-vector space generated by Pf(H)P_{f}(H):

CF(f;H)=xPf(H)Λx.\displaystyle\mathrm{CF}^{*}(f;H)=\bigoplus_{x\in P_{f}(H)}\Lambda x.

CF(f)\mathrm{CF}^{*}(f) is /2\mathbb{Z}/2-graded as follows. A generator xPf(H)x\in P_{f}(H) corresponds to a fixed point x(0)x(0) of fH:=(ψ1H)1f{f}_{H}:=(\psi_{1}^{H})^{-1}f. The degree deg(x)/2\mathrm{deg}(x)\in\mathbb{Z}/2 of xx is related to the index of x(0)x(0) by

(1)deg(x)=sign(det(id(DfH)x(0))).(-1)^{\mathrm{deg}(x)}=\mathrm{sign}\left(\det(\mathrm{id}-(Df_{H})_{x(0)})\right).

To define the differential, we need to choose a family of almost complex structures 𝒥={Js}s\mathcal{J}=\{J_{s}\}_{s\in\mathbb{R}} on MM, compatible with ω\omega and ff-periodic, meaning Js=f(Js+1)J_{s}={f}^{*}(J_{s+1}). One considers finite-energy solutions

u:×X,(s,t)u(s,t)u\colon\mathbb{R}\times\mathbb{R}\longrightarrow X,(s,t)\longmapsto u(s,t)

of Floer’s equation

ut+Js(u)(usXsH(u))=0,\frac{\partial u}{\partial t}+J_{s}(u)\left(\frac{\partial u}{\partial s}-X^{H}_{s}(u)\right)=0,

which are ff-periodic in ss, u(s+1,t)=f(u(s,t))u(s+1,t)=f(u(s,t)), and satisfy the asymptotic conditions

limtu(s,t)=x(s) and limtu(s,t)=y(s)\lim_{t\to-\infty}u(s,t)=x(s)\text{ and }\lim_{t\to\infty}u(s,t)=y(s)

for some Hamiltonian chords x,yΩfx,y\in\Omega_{f}. Consider the moduli space (x,y;𝒥,H)\mathcal{M}(x,y;\mathcal{J},H) of all such solutions uu. For regular (𝒥,H)(\mathcal{J},H), the moduli space is a smooth manifold. \mathbb{R} acts on the one-dimensional component 1(x,y;𝒥,H)\mathcal{M}^{1}(x,y;\mathcal{J},H) by translation, and the quotient set ^1(x,y;𝒥,H)=1(x,y;𝒥,H)/\widehat{\mathcal{M}}^{1}(x,y;\mathcal{J},H)=\mathcal{M}^{1}(x,y;\mathcal{J},H)/\mathbb{R} is discrete.

The Floer differential :CF(f;𝒥,H)CF(f;𝒥,H)\partial\colon\mathrm{CF}^{*}(f;\mathcal{J},H)\longrightarrow\mathrm{CF}^{*}(f;\mathcal{J},H) is defined by

(x)=yPφ(H)u^1(x,y;𝒥,H)y.\displaystyle\partial(x)=\sum\limits_{y\in P_{\varphi}(H)}\sum\limits_{u\in\widehat{\mathcal{M}}^{1}(x,y;\mathcal{J},H)}y.

The homology of the chain complex CF(f)CF^{*}(f) is called the Floer cohomology of ff with Floer data (𝒥,H)(\mathcal{J},H) and denoted by HF(f;𝒥,H)HF^{*}(f;\mathcal{J},H).

There are graded continuation maps for different choices of Floer datum: Suppose (H,𝒥)(H,\mathcal{J}) and (H,𝒥)(H^{\prime},\mathcal{J}^{\prime}) are regular Floer data as above. Choose a family (Hs,t,Js,t)(H_{s,t},J_{s,t}) that satisfies the periodicity assumptions

Js=f(Js+1) and Js=f(Js+1)J_{s}=f^{*}(J_{s+1})\text{ and }J_{s}^{\prime}=f^{*}(J_{s+1}^{\prime})

and interpolate between (Hs,Js)(H_{s},J_{s}) and (Hs,Js)(H_{s}^{\prime},J_{s}^{\prime}), i.e.

Hs,t=Hs,Js,t=Jt\displaystyle H_{s,t}=H_{s}^{\prime},J_{s,t}=J_{t}^{\prime}\qquad for t near ,\displaystyle\text{for $t$ near $-\infty$},
Hs,t=Hs,Js,t=Jt\displaystyle H_{s,t}=H_{s},J_{s,t}=J_{t}\qquad for t near .\displaystyle\text{for $t$ near $\infty$}.

We denote by (x,y;Js,t,Hs,t)\mathcal{M}(x,y;J_{s,t},H_{s,t}) the moduli space of solutions to the 11-parametric Floer equation

ut+Js,t(u)(usXs,tH(u))=0\frac{\partial u}{\partial t}+J_{s,t}(u)\left(\frac{\partial u}{\partial s}-X^{H}_{s,t}(u)\right)=0

that are ff-periodic in ss and tend to xx and yy as t±t\to\pm\infty. For generic choice of (Hs,t,Js,t)(H_{s,t},J_{s,t}) the moduli space is a manifold and its zero-dimensional component 0(x,y;Js,t,Hs,t)\mathcal{M}^{0}(x,y;J_{s,t},H_{s,t}) is discrete. The chain-level continuation map is the chain map

CHs,t,Js,t:CF(f;𝒥,H)\displaystyle C_{H_{s,t},J_{s,t}}\colon\mathrm{CF}^{*}(f;\mathcal{J},H) CF(f,𝒥,H)\displaystyle\longrightarrow\mathrm{CF}^{*}(f,\mathcal{J}^{\prime},H)
x\displaystyle x yPφ(H)u0(x,y;Js,t,Hs,t)y.\displaystyle\longmapsto\sum\limits_{y\in P_{\varphi}(H)}\sum\limits_{u\in\mathcal{M}^{0}(x,y;J_{s,t},H_{s,t})}y.

The map induced in cohomology is independent of the choice of homotopy (Hs,t,Js,t)(H_{s,t},J_{s,t}). This allows us to identify the cohomology groups HF(f,𝒥,H)\mathrm{HF}^{*}(f,\mathcal{J},H) and HF(f,𝒥,H)\mathrm{HF}^{*}(f,\mathcal{J}^{\prime},H^{\prime}) and simply write HF(f)\mathrm{HF}^{*}(f) for the cohomology group of ff.

7.2. Lagrangian Floer cohomology.

We recall here Lagrangian Floer cohomology for relatively aspherical Lagrangians. Given two closed Lagrangians L0,L1ML_{0},L_{1}\subset M, choose HH so that ψ1H(L0)L1\psi_{1}^{H}(L_{0})\cap L_{1} is a transverse intersection at finitely many points. Then the underlying Λ\Lambda-vectorspace of CF(L0,L1;H,J)CF(L_{0},L_{1};H,J) is generated by those points. The differential is defined by counting JJ-holomorphic strips, using a ww-compatible almost complex structure JJ on MM. Floer’s equation reads:

{ut+Js(u)(usXsH(u))=0u(0,t)L0,u(1,t)L1limtu(s,t)=ψsH(z) for some zL0limtu(s,t)=ψsH(w) for some wL0.\begin{cases}\frac{\partial u}{\partial t}+J_{s}(u)\left(\frac{\partial u}{\partial s}-X_{s}^{H}(u)\right)=0\\ u(0,t)\in L_{0},\qquad u(1,t)\in L_{1}\\ \lim_{t\to-\infty}u(s,t)=\psi_{s}^{H}(z)\text{ for some }z\in L_{0}\\ \lim_{t\to\infty}u(s,t)=\psi_{s}^{H}(w)\text{ for some }w\in L_{0}\\ \end{cases}\,.

If L0L_{0} and L1L_{1} are oriented, we define the degree of xx as follows:

(1)deg(x)=(1)n(n+1)2ν(x;L0,L1),(-1)^{\mathrm{deg}(x)}=(-1)^{\frac{n(n+1)}{2}}\nu(x;L_{0},L_{1}),

where ν(x;L0,L1){±1}\nu(x;L_{0},L_{1})\in\{\pm 1\} denotes the intersection index of L0L_{0} and L1L_{1} at xx. This number is defined to be +1+1 if v1,,v2nv_{1},\dots,v_{2n} is a positive basis for TxMT_{x}M whenever v1,,vnv_{1},\dots,v_{n} is a positive basis for TxL0T_{x}L_{0} and vn+1,,v2nv_{n+1},\dots,v_{2n} is a positive basis for TxL1T_{x}L_{1}. See [Sei00, Section 2d] for the grading, and [RS22] for the intersection index.

7.3. Proof of Proposition 3.2.

Choose Floer datum HsH_{s} and JsJ_{s} as in Section 7.1. The generators of CF(ϕ;Hs,Js)\mathrm{CF}(\phi;H_{s},J_{s}) are points xMx\in M such that ϕ(x)=ϕ1H(x)\phi(x)=\phi_{1}^{H}(x). For the Lagrangian Floer complex, we choose the following Floer data:

Ks(x,y)=12H1s2(x)12Hs+12(y).\displaystyle K_{s}(x,y)=-\frac{1}{2}H_{\frac{1-s}{2}}(x)-\frac{1}{2}H_{\frac{s+1}{2}}(y).

and

J~s:=J~s(1)J~s(2):=J1s2(Js+12).\displaystyle\tilde{J}_{s}:=\tilde{J}_{s}^{(1)}\oplus\tilde{J}_{s}^{(2)}:=J_{\frac{1-s}{2}}\oplus(-J_{\frac{s+1}{2}}).

Generators of CF(Δ,Γϕ;Ks,J~s)\mathrm{CF}(\Delta,\Gamma_{\phi};K_{s},\tilde{J}_{s}) are of the form (x,ϕ(x))ψ1K(Γid)(x,\phi(x))\in\psi_{1}^{K}(\Gamma_{\mathrm{id}}). We show that the map

CF(ϕ;Hs,Js)\displaystyle\mathrm{CF}(\phi;H_{s},J_{s}) CF(Δ,Γϕ;Ks,J~s)\displaystyle\longrightarrow\mathrm{CF}(\Delta,\Gamma_{\phi};K_{s},\tilde{J}_{s})
x\displaystyle x (x,ϕ(x))\displaystyle\longmapsto(x,\phi(x))

is a chain isomorphism. This follows from checking that generators get mapped to generators, and solutions to

{vt+J~s(v)(vsXsK(v))=0v(0,t)Δ and v(1,t)Γϕlimtv(s,t)=ψsK(z) for some zΔlimtv(s,t)=ψsK(w) for some wΔ\begin{cases}\frac{\partial v}{\partial t}+\tilde{J}_{s}(v)\left(\frac{\partial v}{\partial s}-X_{s}^{K}(v)\right)=0\\ v(0,t)\in\Delta\text{ and }v(1,t)\in\Gamma_{\phi}\\ \lim_{t\to-\infty}v(s,t)=\psi_{s}^{K}(z)\text{ for some }z\in\Delta\\ \lim_{t\to\infty}v(s,t)=\psi_{s}^{K}(w)\text{ for some }w\in\Delta\\ \end{cases}

are in one to one correspondence to solutions of

{ut+Js(u)(usXsH(u))=0u(1,t)=ϕ(u(0,t)limtu(s,t)=ψsK(x)limtu(s,t)=ψsK(y).\begin{cases}\frac{\partial u}{\partial t}+J_{s}(u)\left(\frac{\partial u}{\partial s}-X_{s}^{H}(u)\right)=0\\ u(1,t)=\phi(u(0,t)\\ \lim_{t\to-\infty}u(s,t)=\psi_{s}^{K}(x)\\ \lim_{t\to\infty}u(s,t)=\psi_{s}^{K}(y).\\ \end{cases}

The correspondence is given by

v(s,t)=(v1(s,t),v2(s,t))u(s,t)={v1(12s),2t)s[0,12]v2(2s1,2t)s[12,1].\displaystyle v(s,t)=(v_{1}(s,t),v_{2}(s,t))\longleftrightarrow u(s,t)=\begin{cases}v_{1}(1-2s),-2t)\qquad s\in[0,\frac{1}{2}]\\ v_{2}(2s-1,-2t)\qquad s\in[\frac{1}{2},1].\end{cases}

For the grading: Let (x,x)ΔΓϕ(x,x)\in\Delta\cap\Gamma_{\phi}. Let M\mathcal{B}^{M} be a basis of TxMT_{x}M and consider the bases Δ\mathcal{B}^{\Delta} and Γϕ\mathcal{B}^{\Gamma_{\phi}} of T(x,x)ΔT_{(x,x)}\Delta and T(x,x)ΓϕT_{(x,x)}\Gamma_{\phi} associated to M\mathcal{B}^{M}. Note that Δ\mathcal{B}^{\Delta} and Γϕ\mathcal{B}^{\Gamma_{\phi}} are either both positive or both negative. Hence ν(x,x)=1\nu(x,x)=1 if and only if the basis =(Δ,Γϕ)\mathcal{B}=\left(\mathcal{B}^{\Delta},\mathcal{B}^{\Gamma_{\phi}}\right) is a positive of T(x,x)M×MT_{(x,x)}M\times M^{-} One computes

=(IdIdIdDϕ)0,\mathcal{B}=\begin{pmatrix}\mathrm{Id}&\mathrm{Id}\\ \mathrm{Id}&D\phi\end{pmatrix}\mathcal{B}_{0},

where 0=((M,0),(0,M))\mathcal{B}_{0}=\left((\mathcal{B}^{M},0),(0,\mathcal{B}^{M})\right). 0\mathcal{B}_{0} is positively oriented if and only if nn is even. The determinant of the matrix is det(DϕId)=det(IdDϕ)\det(D\phi-\mathrm{Id})=\det(\mathrm{Id}-D\phi). Hence

ν(x,x)=(1)nsigndet(IdDϕ)\nu(x,x)=(-1)^{n}\mathrm{sign}\det(\mathrm{Id}-D\phi)

and

(1)deg(x,x)\displaystyle(-1)^{\mathrm{deg}(x,x)} =(1)n(1)2n(2n+1)2ν(x,x)\displaystyle=(-1)^{n}(-1)^{\frac{2n(2n+1)}{2}}\nu(x,x)
=(1)n(1)2n(2n+1)2(1)nsigndet(IdDϕ)\displaystyle=(-1)^{n}(-1)^{\frac{2n(2n+1)}{2}}(-1)^{n}\mathrm{sign}\det(\mathrm{Id}-D\phi)
=(1)n(1)2n(2n+1)2(1)n(1)deg(x)\displaystyle=(-1)^{n}(-1)^{\frac{2n(2n+1)}{2}}(-1)^{n}(-1)^{\mathrm{deg}(x)}
=(1)deg(x).\displaystyle=(-1)^{\mathrm{deg}(x)}.

This shows that the isomorphism above indeed preserves the grading.

Appendix A. Algebraic background.

We briefly explain the algebraic background relevant for the definition of the the main character of this paper: the element AHF(τ1)A\in\mathrm{HF}(\tau^{-1}). We follow the conventions for AA_{\infty}-machinery from [Sei08].

Suppose 𝒜\mathcal{A} is a homologically unital AA_{\infty}-category. The Yoneda embedding is a functor

𝒴:𝒜mod𝒜\mathcal{Y}\colon\mathcal{A}\rightarrow mod_{\mathcal{A}}

taking an object LL to the 𝒜\mathcal{A}-module 𝒴(L)\mathcal{Y}(L) defined by

𝒴(L)(K):=Mor𝒜(K,L).\mathcal{Y}(L)(K):=Mor_{\mathcal{A}}(K,L).

and

μ𝒴(L)d(b,ad1,,a1):=μd(b,ad1,,a1)\mu^{d}_{\mathcal{Y}(L)}(b,a_{d-1},\dots,a_{1}):=\mu^{d}(b,a_{d-1},\dots,a_{1})

for aiMor𝒜(Ki1,Ki)a_{i}\in Mor_{\mathcal{A}}(K_{i-1},K_{i}), i{1,,d1}i\in\{1,\dots,d-1\} and b𝒴(L)(Kd1)=Mor𝒜(Kd1,L)b\in\mathcal{Y}(L)(K_{d-1})=Mor_{\mathcal{A}}(K_{d-1},L).

By [Sei08, Section 2g] the Yoneda embedding induces a unital, full and faithfull embedding

H(𝒴):H(𝒜)H(mod𝒜).\mathrm{H}(\mathcal{Y})\colon\mathrm{H}(\mathcal{A})\to\mathrm{H}(mod_{\mathcal{A}}).

The derived cateogory 𝒟𝒜\mathcal{DA} of 𝒜\mathcal{A} can be constructed as follows: Take a triangulated completion of the image of 𝒴\mathcal{Y} in mod𝒜mod_{\mathcal{A}} and take its homology category.

The following is an immediate consequence of the properties of the Yoneda embedding.

Corollary 7.1.

Each fMorD𝒜(𝒴(L1),𝒴(L2))f\in Mor_{D\mathcal{A}}(\mathcal{Y}(L_{1}),\mathcal{Y}(L_{2})) can be represented by 𝒴(α)\mathcal{Y}(\alpha) for some αMor𝒜(L1,L2)\alpha\in Mor_{\mathcal{A}}(L_{1},L_{2}). Moreover, [α]MorH(𝒜)(L1,L2)[\alpha]\in Mor_{H(\mathcal{A})}(L_{1},L_{2}) is uniquely defined.

Proof.

First, note that

MorD𝒜(𝒴(L1),𝒴(L2))H(Mormod𝒜(𝒴(L1),𝒴(L2))).Mor_{D\mathcal{A}}(\mathcal{Y}(L_{1}),\mathcal{Y}(L_{2}))\cong\mathrm{H}(Mor_{mod_{\mathcal{A}}}(\mathcal{Y}(L_{1}),\mathcal{Y}(L_{2}))).

For any object KK, 𝒴(α)\mathcal{Y}(\alpha) determines the map

𝒴(L1)(K)Mor(K,L1)μ2(α,)Mor(K,L2)𝒴(L2)\mathcal{Y}(L_{1})(K)\cong Mor(K,L_{1})\xrightarrow{\mu^{2}(\alpha,-)}Mor(K,L_{2})\cong\mathcal{Y}(L_{2})

The existence and uniqueness of α\alpha follow immediately from H(𝒴)\mathrm{H}(\mathcal{Y}) being full and faithful. ∎

These notions are applied in this paper to the AA_{\infty}-category uk(M)\mathcal{F}uk(M).

Acknowledgements

This work is part of my doctoral studies at ETH under the supervision of Paul Biran. I would like to express my deep gratitude to Paul Biran for his guidance, many patient explanations and for sharing his insights with me. I’m grateful to Jonny Evans for our conversation about examples. I would also like to thank Alessio Pellegrini for reading this work and helping to improve the paper. The author was partially supported by the Swiss National Science Foundation (grant number 200021 204107).

References

  • [BC13] P. Biran and O. Cornea, Lagrangian cobordism. I, J. Amer. Math. Soc. 26 no. 2 (2013), 295–340.
  • [BC14] P. Biran and O. Cornea, Lagrangian cobordism and Fukaya categories, Geom. Funct. Anal. 24 no. 6 (2014), 1731–1830.
  • [BC17] P. Biran and O. Cornea, Cone-decompositions of Lagrangian cobordisms in Lefschetz fibrations, Selecta Math. (N.S.) 23 no. 4 (2017), 2635–2704.
  • [DS94] S. Dostoglou and D. A. Salamon, Self-dual instantons and holomorphic curves, Ann. of Math. (2) 139 no. 3 (1994), 581–640.
  • [Flo88] A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 no. 3 (1988), 513–547.
  • [Gau03] R. Gautschi, Floer homology of algebraically finite mapping classes, J. Symplectic Geom. 1 no. 4 (2003), 715–765.
  • [Kea14] A. M. Keating, Dehn twists and free subgroups of symplectic mapping class groups, J. Topol. 7 no. 2 (2014), 436–474.
  • [LZ18] R. Leclercq and F. Zapolsky, Spectral invariants for monotone Lagrangians, J. Topol. Anal. 10 no. 3 (2018), 627–700.
  • [Lee05] Y.-J. Lee, Reidemeister torsion in Floer-Novikov theory and counting pseudo-holomorphic tori. I, J. Symplectic Geom. 3 no. 2 (2005), 221–311.
  • [MW18] C. Y. Mak and W. Wu, Dehn twist exact sequences through Lagrangian cobordism, Compos. Math. 154 no. 12 (2018), 2485–2533.
  • [Oh93] Y.-G. Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I, Comm. Pure Appl. Math. 46 no. 7 (1993), 949–993.
  • [Oh95] Y.-G. Oh, Addendum to: “Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I.” [Comm. Pure Appl. Math. 46 (1993), no. 7, 949–993], Comm. Pure Appl. Math. 48 no. 11 (1995), 1299–1302.
  • [Ped22] R. Pedrotti, Fixed point floer cohomology of disjoint dehn twists on a w+-monotone manifold with rational symplectic form, arXiv preprint arXiv:2203.05979 (2022).
  • [RS22] J. W. Robbin and D. A. Salamon, Introduction to differential geometry, Springer Spektrum, Wiesbaden (2022).
  • [Sal10] N. Salepci, Real elements in the mapping class group of T2T^{2}, Topology Appl. 157 no. 16 (2010), 2580–2590.
  • [Sal12] N. Salepci, Invariants of totally real Lefschetz fibrations, Pacific J. Math. 256 no. 2 (2012), 407–434.
  • [Sei97a] P. Seidel, Floer homology and the symplectic isotopy problem, PhD thesis, University of Oxford (1997).
  • [Sei97b] P. Seidel, π1\pi_{1} of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 no. 6 (1997), 1046–1095.
  • [Sei38] P. Seidel, Lectures on four-dimensional Dehn twists, in Symplectic 4-manifolds and algebraic surfaces, Lecture Notes in Math., 1938, pp. 231–267.
  • [Sei96] P. Seidel, The symplectic Floer homology of a Dehn twist, Math. Res. Lett. 3 no. 6 (1996), 829–834.
  • [Sei00] P. Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 no. 1 (2000), 103–149.
  • [Sei03] P. Seidel, A long exact sequence for symplectic Floer cohomology, Topology 42 no. 5 (2003), 1003–1063.
  • [Sei08] P. Seidel, Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS) (2008).
  • [WW10] K. Wehrheim and C. T. Woodward, Quilted Floer cohomology, Geom. Topol. 14 no. 2 (2010), 833–902.