This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Forcing ``NSω1``\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense” From Large Cardinals

Andreas Lietz111Institut für Mathematische Logik und Grundlagenforschung, Universität Münster, Einsteinstrasse 62, 48149 Münster, FRG.   222Current address: Institut für Diskrete Mathematik und Geometrie, TU Wien, Wiedner Hauptstrasse 8-10/104, 1040 Wien, AT
This paper is part of the authors PhD thesis.
(October 2023)
Abstract

We answer a question of Woodin by showing that assuming an inaccessible cardinal κ\kappa which is a limit of <κ{<}\kappa-supercompact cardinals exists, there is a stationary set preserving forcing \mathbb{P} so that V``NSω1 is ω1-dense"V^{\mathbb{P}}\models``\mathrm{NS}_{\omega_{1}}\text{ is }\omega_{1}\text{-dense}". We also introduce a new forcing axiom QM\mathrm{QM}, show it is consistent assuming a supercompact limit of supercompact cardinals and prove that it implies max-()\mathbb{Q}_{\mathrm{max}}\text{-}(\ast). Consequently, QM\mathrm{QM} implies “NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense”.

1 Introduction

1.1 History of “NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense”

In 1930, Stanislaw Ulam published an influential paper [Ula30] dealing with a question of Stefan Banach generalizing the measure problem of Lebesgue. He proved the following theorem:

Theorem 1 (Ulam).

Suppose κ\kappa is an uncountable cardinal and there is a σ\sigma-additive real-valued measure on κ\kappa which

  1. (i)(i)

    measures all subsets of κ\kappa and

  2. (ii)(ii)

    vanishes on points.

Then there is a weakly inaccessible cardinal κ\leq\kappa.

Ulam noticed that he could strengthen his conclusion if he replaces real-valued by 0-1-valued. In more modern terminology, his second result reads:

Theorem 2 (Ulam).

Suppose κ\kappa is an uncountable cardinal and there is a nonprincipal σ\sigma-complete ultrafilter on κ\kappa. Then there is a (strongly) inaccessible cardinal κ\leq\kappa.

These theorems gave birth to what are now known as real-valued measurable cardinals and measurable cardinals respectively. In the interest of having all subsets of some cardinal κ\kappa be measured in some sense, instead of increasing the size of κ\kappa, it is also possible to increase the number of allowed filters that measure. Henceforth Ulam considered the following question:

Question 3.

Suppose κ\kappa is an uncountable cardinal below the least inaccessible. What is the smallest possible size of a family \mathcal{F} of σ\sigma-closed nonprincipal filters on κ\kappa so that every subset of κ\kappa is measured by some filter in \mathcal{F}?

Let us call the cardinal in question the Ulam number of κ\kappa, Ulam(κ)\mathrm{Ulam}(\kappa). Ulam’s second theorem above can be rephrased as “Ulam(κ)>1\mathrm{Ulam}(\kappa)>1”. Indeed, Ulam proved in unpublished work that Ulam(κ)ω\mathrm{Ulam}(\kappa)\geq\omega. At some point, Ulam proposed this question to Paul Erdős, who, together with Leonidas Alaoglu, improved Ulam’s result to “Ulam(κ)ω1\mathrm{Ulam}(\kappa)\geq\omega_{1}[Erd50]. The problem, this time in the special case κ=ω1\kappa=\omega_{1}, was apparently revitalized by appearing in the 1971 collection of unsolved problems in set theory popularized by Erdős and Hajnal [EH71]: Shortly after, Karel Prikry [Pri72] produced a model in which Ulam(ω1)=2ω1=ω2\mathrm{Ulam}(\omega_{1})=2^{\omega_{1}}=\omega_{2}, and did the same again with a different method in [Pri76].
A critical step towards a model in which Ulam(ω1)=ω1\mathrm{Ulam}(\omega_{1})=\omega_{1} was taken by Alan D. Taylor: Building on earlier work of Baumgartner-Hajnal-Maté [BHM75], Taylor provided [Tay79] an impressive amount of statements equivalent to a natural strengthening of ``Ulam(ω1)=ω1"``\mathrm{Ulam}(\omega_{1})=\omega_{1}", here is a shortened list.

Theorem 4 (Taylor).

The following are equivalent:

  1. (i)(i)

    There is a family of normal filters witnessing Ulam(ω1)=ω1\mathrm{Ulam}(\omega_{1})=\omega_{1}.

  2. (ii)(ii)

    There is a σ\sigma-closed uniform ω1\omega_{1}-dense ideal on ω1\omega_{1}.

  3. (iii)(iii)

    There is a normal uniform ω1\omega_{1}-dense ideal on ω1\omega_{1}.

The formulation (iii)(iii) is much better suited for set-theoretical arguments. We also mention that Taylor proved that all the above statements fail under MAω1\mathrm{MA}_{\omega_{1}}.
Thus what remains of Ulam’s original question was reduced to: Is the existence of a normal uniform ω1\omega_{1}-dense ideal on ω1\omega_{1} consistent with ZFC\mathrm{ZFC}? This was answered positively by W. Hugh Woodin in three different ways. The first was by forcing over a model of AD\mathrm{AD}_{\mathbb{R}}+``Θ is regular"``\Theta\text{ is regular}", already in the fall of 1978. (unpublished). At that time, this theory was not yet known to be consistent relative to large cardinals. Naturally, somewhat later he did so from large cardinals:

Theorem 5 (Woodin, unpublished333A proof can be found in Foreman’s handbook article [For10].).

Assume there is an almost-huge cardinal κ\kappa. Then there is a forcing extension in which there is a normal uniform ω1\omega_{1}-dense ideal on ω1=κ\omega_{1}=\kappa.

This finally resolved the question relative to large cardinals. But can the canonical normal uniform ideal, namely NSω1\mathrm{NS}_{\omega_{1}}, have this property? It is known that NSω1\mathrm{NS}_{\omega_{1}} behaves a little different in this context.

Theorem 6 (Shelah, [She86]).

If NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense then 2ω=2ω12^{\omega}=2^{\omega_{1}}. In particular CH\mathrm{CH} fails.

This is not true for other normal uniform ideals on ω1\omega_{1}, for example CH\mathrm{CH} holds in the model Woodin constructs from an almost huge cardinal. One can also ask about the exact consistency strength of the existence of such a normal uniform ω1\omega_{1}-dense ideal on ω1\omega_{1}. Both these questions were answered in subsequent work by Woodin, building on his max\mathbb{P}_{\mathrm{max}}-technique.

Theorem 7 (Woodin, [Woo10, Corollary 6.150]).

The following theories are equiconsistent:

  1. (i)(i)

    ZFC+``There are infinitely many Woodin cardinals."\mathrm{ZFC}+``\text{There are infinitely many Woodin cardinals.}"

  2. (ii)(ii)

    ZFC+``NSω1 is ω1-dense."\mathrm{ZFC}+``\mathrm{NS}_{\omega_{1}}\text{ is }\omega_{1}\text{-dense.}"

  3. (iii)(iii)

    ZFC+``There is a normal uniform ω1-dense ideal on ω1."\mathrm{ZFC}+``\text{There is a normal uniform }\omega_{1}\text{-dense ideal on }\omega_{1}."

The direction (iii)(i)(iii)\Rightarrow(i) makes use of Woodin’s core model induction technique, the argument is unpublished. We refer the interested reader to [RS14] where part of this is proven. Woodin’s method for (i)(ii)(i)\Rightarrow(ii) is by forcing over L()L(\mathbb{R}), assuming AD\mathrm{AD} there, with the max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} max\mathbb{Q}_{\mathrm{max}}. This approach has one downside: It is a forcing construction over a canonical determinacy model. L()L(\mathbb{R}) can be replaced by larger determinacy models, but max\mathbb{Q}_{\mathrm{max}} relies on a good understanding of the model in question. In practice, this is akin to an anti large cardinal assumption and leaves open questions along the lines of: Is “NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense” consistent together with all natural large cardinals, e.g. supercompact cardinals? Is it consistent with powerful combinatorial principles, for example SRP\mathrm{SRP}?
Woodin’s original motivation for these results was in fact the question of generic large cardinal properties of ω1\omega_{1}: For example ω1\omega_{1} is not measurable by Ulam’s theorem, but there can be a generic extension of VV with an elementary embedding j:VMj\mathrel{\mathop{\mathchar 58\relax}}V\rightarrow M with transitive MM and critical point ω1V\omega_{1}^{V}. This leads to precipitous ideals on ω1\omega_{1}.

Definition 8.

A uniform ideal II on ω1\omega_{1} is precipitous if, whenever GG is generic for (𝒫(ω1)/I)+(\mathcal{P}(\omega_{1})/I)^{+} then Ult(V,UG)\mathrm{Ult}(V,U_{G}) is wellfounded444UGU_{G} denotes the VV-ultrafilter induced by GG..

The existence of an ω1\omega_{1}-dense ideal is a much stronger assumption than the existence of a precipitous ideal. There is a natural well-studied intermediate principle.

Definition 9.

A uniform ideal II on ω1\omega_{1} is saturated if (𝒫(ω1)/I)+(\mathcal{P}(\omega_{1})/I)^{+} is ω2\omega_{2}-c.c..

Here is a short history of similar result for these principles:

  1. (i)(i)

    Mitchell forces a precipitous ideal on ω1\omega_{1} from a measurable in the mid 70s, see [JMMP80].

  2. (ii)(ii)

    Magidor forces “NSω1\mathrm{NS}_{\omega_{1}} is precipitous” from a measurable, published in [JMMP80].

  3. (iii)(iii)

    Kunen [Kun78] forces a saturated ideal on ω1\omega_{1} from a huge cardinal, which he invented for this purpose.

  4. (iv)(iv)

    Steel-Van Wesep [SVW82] force “NSω1\mathrm{NS}_{\omega_{1}} is saturated” over a model of555Woodin [Woo83] subsequently reduced the assumption to just AD\mathrm{AD} . AD+AC\mathrm{AD}+\mathrm{AC}_{\mathbb{R}}.

  5. (v)(v)

    Foreman-Magidor-Shelah [FMS88] force “NSω1\mathrm{NS}_{\omega_{1}} is saturated” from a supercompact with semiproper forcing. Later reduced to one Woodin cardinal by Shelah666The main ideas for the argument are in [She98, XVI], a write-up by Schindler can be found in [Sch11]..

Woodin’s results continue this line of research for ω1\omega_{1}-dense ideals. But the analog of the step from (iv)(iv) to (v)(v) for ω1\omega_{1}-dense ideals was missing. Accordingly, Woodin posed the following question:

Question 10 (Woodin, [Woo99, Chapter 11 Question 18 b)]).

Assuming the existence of some large cardinal: Must there exist some semiproper partial order \mathbb{P} such that

V``NSω1 is ω1-dense"?V^{\mathbb{P}}\models``\mathrm{NS}_{\omega_{1}}\text{ is }\omega_{1}\text{-dense}"\ \text{?}

We will answer this positively in this thesis.

Theorem 11.

Assume there is an inaccessible cardinal κ\kappa which is the limit of cardinals which are <κ{<}\kappa-supercompact. Then there is a stationary set preserving forcing \mathbb{P} so that

V``NSω1 is ω1-dense".V^{\mathbb{P}}\models``\mathrm{NS}_{\omega_{1}}\text{ is }\omega_{1}\text{-dense}".

If there is an additional supercompact cardinal below κ\kappa, we can find such \mathbb{P} that is semiproper.

On a different note, there has been significant interest recently into the possible 𝚫1\boldsymbol{\Delta}_{1}-definability of NSω1\mathrm{NS}_{\omega_{1}} (with parameters), in particular in the presence of forcing axioms. Note that NSω1\mathrm{NS}_{\omega_{1}} is trivially Σ1(ω1)\Sigma_{1}(\omega_{1})-definable, but it is independent of ZFC\mathrm{ZFC} whether NSω1\mathrm{NS}_{\omega_{1}} is 𝚷1\boldsymbol{\Pi}_{1}-definable. Hoffelner-Larson-Schindler-Wu [HLSW22] show:

  1. (i)(i)

    If BMM\mathrm{BMM} holds and there is a Woodin cardinal then NSω1\mathrm{NS}_{\omega_{1}} is not 𝚫1\boldsymbol{\Delta}_{1}-definable.

  2. (ii)(ii)

    If ()(\ast) holds then NSω1\mathrm{NS}_{\omega_{1}} is not 𝚫1\boldsymbol{\Delta}_{1}-definable.

  3. (iii)(iii)

    Thus by Asperó-Schindler [AS21], if MM++\mathrm{MM}^{++} holds, NSω1\mathrm{NS}_{\omega_{1}} is not 𝚫1\boldsymbol{\Delta}_{1}-definable.

  4. (iv)(iv)

    It is consistent relative to large cardinals that BPFA\mathrm{BPFA} holds and NSω1\mathrm{NS}_{\omega_{1}} is 𝚫1\boldsymbol{\Delta}_{1}-definable.

There is also a forthcoming paper by Ralf Schindler and Xiuyuan Sun [SS22] showing that in (iii)(iii), MM++\mathrm{MM}^{++} can be relaxed to MM\mathrm{MM}.
If NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense then NSω1\mathrm{NS}_{\omega_{1}} is automatically 𝚫1\boldsymbol{\Delta}_{1}-definable: If 𝒮\mathcal{S} is a set of ω1\omega_{1}-many stationary sets witnessing the density, then Tω1T\subseteq\omega_{1} is stationary iff

Cω1 a club, S𝒮CST.\exists C\subseteq\omega_{1}\text{ a club, }\exists S\in\mathcal{S}\ C\cap S\subseteq T.

This was first observed by Friedman-Wu-Zdomskyy [FWZ15]. In this context, two interesting points arise from our results here: First, we isolate for the first time a forcing axiom which impliesNSω1\mathrm{NS}_{\omega_{1}} is 𝚫1\boldsymbol{\Delta}_{1}-definable”. Second, it is well known that many of the structural consequences of MM\mathrm{MM} follow already from SRP\mathrm{SRP}, for example “NSω1\mathrm{NS}_{\omega_{1}} is saturated”, 2ω=ω22^{\omega}=\omega_{2}, SCH\mathrm{SCH}, etc. In contrast, in the result of Schindler-Sun, MM\mathrm{MM} cannot be replaced by SRP\mathrm{SRP}: If appropriate large cardinals are consistent, then so is SRP\mathrm{SRP} together with “NSω1\mathrm{NS}_{\omega_{1}} is 𝚫1\boldsymbol{\Delta}_{1}-definable”.

Acknowledgements

I want to thank my supervisor Ralf Schindler for his continued support that led to the results presented here. Most importantly, for relentlessly asking me to force “NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense” from large cardinals from the beginning of my PhD on. It should be obvious to the reader that this work would not have been possible without Ralf’s great supervision.
Moreover, I am grateful to David Asperó for a number of very helpful remarks and suggestions.
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044 390685587, Mathematics Münster: Dynamics - Geometry - Structure.

2 Notation

First, we fix some notation. We will extensively deal with countable elementary substructures XHθX\prec H_{\theta} for large regular θ\theta. We will make frequent use of the following notation:

Definition 2.1.

Suppose XX is any extensional set.

  1. (i)(i)

    MXM_{X} denotes the transitive isomorph of XX.

  2. (ii)(ii)

    πX:MXX\pi_{X}\colon M_{X}\rightarrow X denotes the inverse collapse.

  3. (iii)(iii)

    δXω1X\delta^{X}\coloneqq\omega_{1}\cap X.

In almost all cases, we will apply this definition to a countable elementary substructure XHθX\prec H_{\theta} for some uncountable cardinal θ\theta. In some cases, the XX we care about lives in a generic extension of VV, even though it is a substructure of HθVH_{\theta}^{V}. In that case, δX\delta^{X} will always mean Xω1VX\cap\omega_{1}^{V}.

We will also sometimes make use of the following convention in order to “unclutter” arguments.

Convention 2.2.

If XHθX\prec H_{\theta} is an elementary substructure and some object aa has been defined before and aXa\in X then we denote πX1(a)\pi_{X}^{-1}(a) by a¯\bar{a}.

We will make use of this notation only if it is unambiguous.

Definition 2.3.

If X,YX,Y are sets then XYX\sqsubseteq Y holds just in case

  1. (i)(i)

    XYX\subseteq Y and

  2. (ii)(ii)

    δX=δY\delta^{X}=\delta^{Y}.

We use the following notions of clubs and stationarity on [Hθ]ω[H_{\theta}]^{\omega}:

Definition 2.4.

Suppose AA is an uncountable set.

  1. (i)(i)

    [A]ω[A]^{\omega} is the set of countable subsets of AA.

  2. (ii)(ii)

    𝒞[A]ω\mathcal{C}\subseteq[A]^{\omega} is a club in [A]ω[A]^{\omega} if

    1. a)a)

      for any X[A]ωX\in[A]^{\omega} there is a Y𝒞Y\in\mathcal{C} with XYX\subseteq Y and

    2. b)b)

      if Ynn<ω\langle Y_{n}\mid n<\omega\rangle is a \subseteq-increasing sequence of sets in 𝒞\mathcal{C} then n<ωYn𝒞\bigcup_{n<\omega}Y_{n}\in\mathcal{C}.

  3. (iii)(iii)

    𝒮[A]ω\mathcal{S}\subseteq[A]^{\omega} is stationary in [A]ω[A]^{\omega} if 𝒮𝒞\mathcal{S}\cap\mathcal{C}\neq\emptyset for any club 𝒞\mathcal{C} in [A]ω[A]^{\omega}.

Next, we explain our notation for forcing iterations.

Definition 2.5.

Suppose =α,˙βαγ,β<γ\mathbb{P}=\langle\mathbb{P}_{\alpha},\dot{\mathbb{Q}}_{\beta}\mid\alpha\leq\gamma,\beta<\gamma\rangle is an iteration and βγ\beta\leq\gamma. We consider elements of \mathbb{P} as functions of domain (or length) γ\gamma.

  1. (i)(i)

    If pβp\in\mathbb{P}_{\beta} then lh(p)=β\mathrm{lh}(p)=\beta.

  2. (ii)(ii)

    If GG is \mathbb{P}-generic then GβG_{\beta} denotes the restriction of GG to β\mathbb{P}_{\beta}, i.e.

    Gβ={pβpG}.G_{\beta}=\{p\upharpoonright\beta\mid p\in G\}.

    Moreover, G˙β\dot{G}_{\beta} is the canonical \mathbb{P}-name for GβG_{\beta}.

  3. (iii)(iii)

    If GβG_{\beta} is β\mathbb{P}_{\beta}-generic then β,γ\mathbb{P}_{\beta,\gamma} denotes (by slight abuse of notation) the remainder of the iteration, that is

    β,γ={pγpβGβ}.\mathbb{P}_{\beta,\gamma}=\{p\in\mathbb{P}_{\gamma}\mid p\upharpoonright\beta\in G_{\beta}\}.

    ˙β,γ\dot{\mathbb{P}}_{\beta,\gamma} denotes a name for β,γ\mathbb{P}_{\beta,\gamma} in VV.

  4. (iv)(iv)

    If GG is \mathbb{P}-generic and α<β\alpha<\beta then Gα,βG_{\alpha,\beta} denotes the projection of GG onto α,β\mathbb{P}_{\alpha,\beta}.

There will be a number of instances were we need a structure to satisfy a sufficiently large fragment of ZFC\mathrm{ZFC}. For completeness, we make this precise.

Definition 2.6.

Sufficiently much of ZFC\mathrm{ZFC} is the fragment ZFC+``ω1 exists"\mathrm{ZFC}^{-}+``\omega_{1}\text{ exists}". Here, ZFC\mathrm{ZFC}^{-} is ZFC\mathrm{ZFC} without the powerset axiom and with the collection scheme instead of the replacement scheme.

3 (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) and +(ω1<ω)\diamondsuit^{+}(\omega_{1}^{{<}\omega})

We introduce the central combinatorial principle which is due to Woodin. The relevancy is motivated by the following observation: If NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense, then there is a dense embedding

η:Col(ω,ω1)(P(ω1)/NSω1)+.\eta\colon\mathrm{Col}(\omega,\omega_{1})\rightarrow\mathcal{(}P(\omega_{1})/\mathrm{NS}_{\omega_{1}})^{+}.

We aim to force a forcing axiom that implies this. As usual, the forcing achieving this is an iteration \mathbb{P} of some large cardinal length κ\kappa which preserves ω1\omega_{1} and iterates forcings of size <κ{<}\kappa with countable support-style supports. \mathbb{P} will thus be κ\kappa-c.c. and this means that some “representation”

η0:Col(ω,ω1)NSω1+\eta_{0}\colon\mathrm{Col}(\omega,\omega_{1})\rightarrow\mathrm{NS}_{\omega_{1}}^{+}

of η\eta exists already in an intermediate extension. By “representation” we mean that in VV^{\mathbb{P}},

[η0(p)]NSω1=η(p)[\eta_{0}(p)]_{\mathrm{NS}_{\omega_{1}}}=\eta(p)

for all pCol(ω,ω1)p\in\mathrm{Col}(\omega,\omega_{1})777For Sω1S\subseteq\omega_{1} and II an ideal on ω1\omega_{1}, [S]I[S]_{I} denotes the equivalence class of SS induced by the equivalence relation TTTTIT\sim T^{\prime}\Leftrightarrow T\triangle T^{\prime}\in I.. With this in mind, one should isolate the relevant Π1\Pi_{1}-properties which η0\eta_{0} possesses in VV^{\mathbb{P}}. Consequently, η0\eta_{0} satisfies these properties in the intermediate extension. It is hopefully easier to first force an object with this Π1\Pi_{1}-fragment and we should subsequently only force with partial orders that preserve this property. This is exactly what we will do. The relevant combinatorial properties are (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) and +(ω1<ω)\diamondsuit^{+}(\omega_{1}^{{<}\omega}) and were already isolated by Woodin in his study of max\mathbb{Q}_{\mathrm{max}} [Woo10, Section 6.2]. We remark that the definition we use here is slightly stronger than Woodin’s original principle in a technical way that turns out to be convenient for our purposes. Most results in this Section are essentially due to Woodin and proven in [Woo10, Section 6.2].

Definition 3.1.
  1. (i)(i)

    We say that ff guesses Col(ω,ω1)\mathrm{Col}(\omega,\omega_{1})-filters if ff is a function

    f:ω1Hω1f\colon\omega_{1}\rightarrow H_{\omega_{1}}

    and for all α<ω1\alpha<\omega_{1}, f(α)f(\alpha) is a Col(ω,ω1)α\mathrm{Col}(\omega,\omega_{1})\cap\alpha-filter888We consider the empty set to be a filter..

  2. (ii)(ii)

    Suppose θω2\theta\geq\omega_{2} is regular and XHθX\prec H_{\theta} is an elementary substructure. We say XX is f-slimf\text{{-slim}}999We use the adjective “slim” for the following reason: An f-slimf\text{-slim} XHθX\prec H_{\theta} cannot be too fat compared to its height below ω1\omega_{1}, i.e. δX\delta^{X}. If XYHθX\sqsubseteq Y\prec H_{\theta} and YY is f-slimf\text{-slim} then XX is f-slimf\text{-slim} as well, but the converse can fail. if

    1. (X.i)(X.i)

      XX is countable,

    2. (X.ii)(X.ii)

      f,Col(ω,ω1)Xf,\mathrm{Col}(\omega,\omega_{1})\in X and

    3. (X.iii)(X.iii)

      f(δX)f(\delta^{X}) is Col(ω,ω1)δX\mathrm{Col}(\omega,\omega_{1})\cap\delta^{X}-generic over MXM_{X}.

Definition 3.2.

(ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) states that there is a function ff so that

  1. (i)(i)

    ff guesses Col(ω,ω1)\mathrm{Col}(\omega,\omega_{1})-filters and

  2. (ii)(ii)

    for any bCol(ω,ω1)b\in\mathrm{Col}(\omega,\omega_{1}) and regular θω2\theta\geq\omega_{2}

    {XHθX is f-slim\displaystyle\{X\prec H_{\theta}\mid X\text{ is }f\text{-slim}\wedge bf(δX)}\displaystyle b\in f(\delta^{X})\}

    is stationary in [Hθ]ω[H_{\theta}]^{\omega}.

+(ω1<ω)\diamondsuit^{+}(\omega_{1}^{{<}\omega}) is the strengthening of (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) where (ii)(ii) is replaced by:

  1. (ii)+(ii)^{+}

    For any regular θω2\theta\geq\omega_{2}

    {XHθX is f-slim}\{X\prec H_{\theta}\mid X\text{ is }f\text{-slim}\}

    contains a club of [Hθ]ω[H_{\theta}]^{\omega}. Moreover, for any bCol(ω,ω1)b\in\mathrm{Col}(\omega,\omega_{1})

    {α<ω1bf(α)}\{\alpha<\omega_{1}\mid b\in f(\alpha)\}

    is stationary.

We say that ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}), +(ω1<ω)\diamondsuit^{+}(\omega_{1}^{{<}\omega}) respectively.

We introduce some convenient shorthand notation.

Definition 3.3.

If ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) and bCol(ω,ω1)b\in\mathrm{Col}(\omega,\omega_{1}) then

Sbf{α<ω1bf(α)}.S^{f}_{b}\coloneqq\{\alpha<\omega_{1}\mid b\in f(\alpha)\}.

If ff is clear from context we will sometimes omit the superscript ff.

Note that if ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}), then SbfS^{f}_{b} is stationary for all bCol(ω,ω1)b\in\mathrm{Col}(\omega,\omega_{1}). This is made explicit for +(ω1<ω)\diamondsuit^{+}(\omega_{1}^{{<}\omega}). This is exactly the technical strengthening over Woodin’s original definition of (ω1<ω),+(ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}),\diamondsuit^{+}(\omega_{1}^{{<}\omega}).

Definition 3.4.

If ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) and \mathbb{P} is a forcing, we say that \mathbb{P} preserves ff if whenever GG is \mathbb{P}-generic then ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) in V[G]V[G].

We remark that if ff witnesses +(ω1<ω)\diamondsuit^{+}(\omega_{1}^{{<}\omega}) then “\mathbb{P} preserves ff” still only means that ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) in VV^{\mathbb{P}}.

Next, we define a variant of stationary sets related to a witness of (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}). Suppose θω2\theta\geq\omega_{2} is regular. Then Sω1S\subseteq\omega_{1} is stationary iff for any club 𝒞[Hθ]ω\mathcal{C}\subseteq[H_{\theta}]^{\omega}, there is some X𝒞X\in\mathcal{C} with δXS\delta^{X}\in S. ff-stationarity results from restricting to ff-slim XHθX\prec H_{\theta} only.

Definition 3.5.

Suppose ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}).

  1. (i)(i)

    A subset Sω1S\subseteq\omega_{1} is ff-stationary iff whenever θω2\theta\geq\omega_{2} is regular and 𝒞[Hθ]ω\mathcal{C}\subseteq[H_{\theta}]^{\omega} is club then there is some f-slimf\text{-slim} X𝒞X\in\mathcal{C} with δXS\delta^{X}\in S.

  2. (ii)(ii)

    A forcing \mathbb{P} preserves ff-stationary sets iff any ff-stationary set is still ff-stationary in VV^{\mathbb{P}}.

Note that all ff-stationary sets are stationary, but the converse might fail. ff-stationary sets are the correct replacement of stationary set in our context.

We mention a few basic facts about (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) and +(ω1<ω)\diamondsuit^{+}(\omega_{1}^{{<}\omega}) which are all essentially due to Woodin [Woo10], although he did not use the notion of ff-stationary sets explicitly.

Proposition 3.6.

Suppose ff guesses Col(ω,ω1)\mathrm{Col}(\omega,\omega_{1})-filters. The following are equivalent for any set Sω1S\subseteq\omega_{1}:

  1. (i)(i)

    SS is ff-stationary.

  2. (ii)(ii)

    Whenever Dαα<ω1\langle D_{\alpha}\mid\alpha<\omega_{1}\rangle is a sequence of dense subsets of Col(ω,ω1)\mathrm{Col}(\omega,\omega_{1}), the set

    {αSβ<αf(α)Dβ}\{\alpha\in S\mid\forall\beta<\alpha\ f(\alpha)\cap D_{\beta}\neq\emptyset\}

    is stationary.

Proposition 3.7.

Suppose ff guesses Col(ω,ω1)\mathrm{Col}(\omega,\omega_{1})-filters. The following are equivalent:

  1. (i)(i)

    ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}).

  2. (ii)(ii)

    SbfS^{f}_{b} is ff-stationary for all bCol(ω,ω1)b\in\mathrm{Col}(\omega,\omega_{1}).

  3. (iii)(iii)

    For any bCol(ω,ω1)b\in\mathrm{Col}(\omega,\omega_{1}) and sequence Dαα<ω1\langle D_{\alpha}\mid\alpha<\omega_{1}\rangle of dense subsets of Col(ω,ω1)\mathrm{Col}(\omega,\omega_{1}),

    {αSbfβ<αf(α)Dβ}\{\alpha\in S^{f}_{b}\mid\forall\beta<\alpha\ f(\alpha)\cap D_{\beta}\neq\emptyset\}

    is stationary.

Proof.

The equivalence of (i)(i) and (ii)(ii) follows from the definitions. (ii)(ii) and (iii)(iii) are equivalent by the equivalent formulation of ff-stationarity provided by Proposition 3.6. ∎

We mention a handy corollary.

Corollary 3.8.

Suppose ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}). Any forcing preserving ff-stationary sets preserves ff.

Proposition 3.9.

Suppose ff guesses Col(ω,ω1)\mathrm{Col}(\omega,\omega_{1})-filters. The following are equivalent:

  1. (i)(i)

    ff witnesses +(ω1<ω)\diamondsuit^{+}(\omega_{1}^{{<}\omega}).

  2. (ii)(ii)

    For any bCol(ω,ω1)b\in\mathrm{Col}(\omega,\omega_{1}), SbfS^{f}_{b} is stationary and all stationary sets are ff-stationary.

  3. (iii)(iii)

    If DD is dense in Col(ω,ω1)\mathrm{Col}(\omega,\omega_{1}) then

    {α<ω1f(α)D}\{\alpha<\omega_{1}\mid\ f(\alpha)\cap D\neq\emptyset\}

    contains a club and for all bCol(ω,ω1)b\in\mathrm{Col}(\omega,\omega_{1}), SbfS^{f}_{b} is stationary.

  4. (iv)(iv)

    All countable XHθX\prec H_{\theta} with fXf\in X and θω2\theta\geq\omega_{2} regular are f-slimf\text{-slim} and moreover for all bCol(ω,ω1)b\in\mathrm{Col}(\omega,\omega_{1}), SbfS^{f}_{b} is stationary.

We will now give a natural equivalent formulation of +(ω1<ω)\diamondsuit^{+}(\omega_{1}^{{<}\omega}). Witnesses of +(ω1<ω)\diamondsuit^{+}(\omega_{1}^{{<}\omega}) are simply codes for regular embeddings101010Regular embeddings, also known as complete embeddings, are embeddings between partial orders which preserve maximal antichains. of Col(ω,ω1)\mathrm{Col}(\omega,\omega_{1}) into NSω1+\mathrm{NS}_{\omega_{1}}^{+}.

Lemma 3.10.

The following are equivalent:

  1. (i)(i)

    +(ω1<ω)\diamondsuit^{+}(\omega_{1}^{{<}\omega}).

  2. (ii)(ii)

    There is a regular embedding η:Col(ω,ω1)(𝒫(ω1)/NSω1)+\eta\colon\mathrm{Col}(\omega,\omega_{1})\rightarrow(\mathcal{P}(\omega_{1})/\mathrm{NS}_{\omega_{1}})^{+}.

The argument above suggests the following definition.

Definition 3.11.

Suppose ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}). We define

ηf:Col(ω,ω1)(𝒫(ω1)/NSω1)+\eta_{f}\colon\mathrm{Col}(\omega,\omega_{1})\rightarrow(\mathcal{P}(\omega_{1})/\mathrm{NS}_{\omega_{1}})^{+}

by b[Sbf]NSω1b\mapsto[S^{f}_{b}]_{\mathrm{NS}_{\omega_{1}}} and call ηf\eta_{f} the embedding associated to ff.

Definition 3.12.

Suppose ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}). NSf\mathrm{NS}_{f} is the ideal of ff-nonstationary sets, that is

NSf={Nω1N is not f-stationary}.\mathrm{NS}_{f}=\{N\subseteq\omega_{1}\mid N\text{ is not }f\text{-stationary}\}.
Lemma 3.13.

Suppose ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}). NSf\mathrm{NS}_{f} is a normal uniform ideal.

To each witness ff of (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}), one can associate a version of semiproperness.

Definition 3.14.
  1. (i)(i)

    Let θ\theta be a sufficiently large regular cardinal and XHθX\prec H_{\theta} f-slimf\text{-slim} with X\mathbb{P}\in X. A condition qq\in\mathbb{P} is (X,Col(ω,ω1),f)(X,\mathrm{Col}(\omega,\omega_{1}),f)-semigeneric if qq is (X,Col(ω,ω1)(X,\mathrm{Col}(\omega,\omega_{1})-semigeneric and

    q``Xˇ[G˙] is f-slim"q\Vdash``\check{X}[\dot{G}]\text{ is }f\text{-slim}"
  2. (ii)(ii)

    \mathbb{P} is ff-semiproper if for any sufficiently large regular θ\theta and any f-slimf\text{-slim} XHθX\prec H_{\theta} with X\mathbb{P}\in X as well as all pXp\in\mathbb{P}\cap X there is qpq\leq p that is (X,,f)(X,\mathbb{P},f)-semigeneric.

An ff-semiproper forcing \mathbb{P} need not preserve stationary sets, however it will preserve ff-stationary sets as ff-stationary sets and hence ff will still witness (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) in VV^{\mathbb{P}}.

However, just as for semiproperness, ff-semiproper forcings can be iterated.

Theorem 3.15 (Lietz, [Lie23]).

Suppose ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}). Any nice iteration of ff-semiproper forcings is ff-semiproper.

We refer to [Miy02] for the definition of nice iterations. For all intents and purposes, nice iterations can be replaced by RCS iterations here.

4 A Forcing Axiom That Implies “NSω1\mathrm{NS}_{\omega_{1}} Is ω1\omega_{1}-Dense”

We formulate a forcing axiom that implies max-()\mathbb{Q}_{\mathrm{max}}\text{-}(\ast). We go on and show that it can be forced from a supercompact limit of supercompact cardinals.

4.1 Q\mathrm{Q}-Maximum

Definition 4.1.

Q\mathrm{Q}-Maximum, denoted QM\mathrm{QM}, holds if there is a witness ff of (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) and FA(Γ)\mathrm{FA}(\Gamma) holds where

Γ={ preserves f}={pCol(ω,ω1)Spf(NSf+)V}.\Gamma=\{\mathbb{P}\mid\mathbb{P}\text{ preserves }f\}=\{\mathbb{P}\mid\forall p\in\mathrm{Col}(\omega,\omega_{1})\ S^{f}_{p}\in(\mathrm{NS}_{f}^{+})^{V^{\mathbb{P}}}\}.

We remark that the consistency of QM\mathrm{QM} is a subtle matter, for example any “++++”-version of QM\mathrm{QM} would be inconsistent. It is however relevant to our purposes.

Lemma 4.2.

If ff witnesses QM\mathrm{QM} then ηf\eta_{f} is a dense embedding. In particular, NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense.

Proof.

Suppose Sω1S\subseteq\omega_{1} is so that

SpfSmodNSω1S^{f}_{p}\nsubseteq S\mod\mathrm{NS}_{\omega_{1}}

for all pCol(ω,ω1)p\in\mathrm{Col}(\omega,\omega_{1}). Let \mathbb{P} be the canonical forcing that shoots a club through Tω1ST\coloneqq\omega_{1}-S. That is pp\in\mathbb{P} iff pTp\subseteq T is closed and bounded and pqp\leq q iff qq is an initial segment of pp.

Claim 4.3.

\mathbb{P} preserves ff.

Proof.

Let bCol(ω,ω1)b\in\mathrm{Col}(\omega,\omega_{1}), we have to show that SbfS^{f}_{b} is ff-stationary in VV^{\mathbb{P}}. Let pp\in\mathbb{P}, C˙\dot{C} a \mathbb{P}-name for a club and D˙ii<ω1\langle\dot{D}_{i}\mid i<\omega_{1}\rangle a sequence of \mathbb{P}-names for dense subsets of Col(ω,ω1)\mathrm{Col}(\omega,\omega_{1}). We will find qpq\leq p with

qξC˙Sbˇfˇi<ξfˇ(ξ)D˙i.q\Vdash\exists\xi\in\dot{C}\cap S^{\check{f}}_{\check{b}}\ \forall i<\xi\ \check{f}(\xi)\cap\dot{D}_{i}\neq\emptyset. (qq)

Let θ\theta be large and regular. Note that MM(f)\mathrm{MM}(f) holds and hence ff witnesses +(ω1<ω)\diamondsuit^{+}(\omega_{1}^{{<}\omega}). As TSbfT\cap S^{f}_{b} is stationary, TSbfT\cap S^{f}_{b} is ff-stationary and we can find some XHθX\prec H_{\theta} with

  1. (X.i)(X.i)

    XX is f-slimf\text{-slim},

  2. (X.ii)(X.ii)

    ,p,C˙,D˙ii<ω1X\mathbb{P},p,\dot{C},\langle\dot{D}_{i}\mid i<\omega_{1}\rangle\in X and

  3. (X.iii)(X.iii)

    δXTSbf\delta^{X}\in T\cap S^{f}_{b}.

Now find a decreasing sequence pnn<ω\langle p_{n}\mid n<\omega\rangle with

  1. (p.i)(\vec{p}.i)

    p0=pp_{0}=p,

  2. (p.ii)(\vec{p}.ii)

    n<ωpnX\forall n<\omega\ p_{n}\in\mathbb{P}\cap X and

  3. (p.iii)(\vec{p}.iii)

    for all DMX[f(δX)]D\in M_{X}[f(\delta^{X})] dense in πX1()\pi_{X}^{{}_{1}}(\mathbb{P}), there is n<ωn<\omega with pnπX[D]p_{n}\in\pi_{X}[D].

Set q=n<ωpn{δX}q=\bigcup_{n<\omega}p_{n}\cup\{\delta^{X}\} and note that qq\in\mathbb{P} as δXT\delta^{X}\in T. It is clear that qq is (X,,f)(X,\mathbb{P},f)-semigeneric so that if GG is \mathbb{P}-generic with qGq\in G then

i<δX=δX[G]f(δX)D˙iG\forall i<\delta^{X}=\delta^{X[G]}\ f(\delta^{X})\cap\dot{D}_{i}^{G}\neq\emptyset

as well as δXC˙GSbf\delta^{X}\in\dot{C}^{G}\cap S^{f}_{b}. Thus qq indeed satisfies (qq). ∎

Thus FA({})\mathrm{FA}(\{\mathbb{P}\}) holds. This implies that if GG is \mathbb{P}-generic then

(Hω2;)VΣ1(Hω2;)V[G](H_{\omega_{2}};\in)^{V}\prec_{\Sigma_{1}}(H_{\omega_{2}};\in)^{V[G]}

and as TT contains a club in V[G]V[G], this must already be true in VV. This means SS is nonstationary which is what we had to show. ∎

We will prove eventually that QM\mathrm{QM} can be forced from large cardinals.

Theorem 4.4.

Suppose there is a supercompact limit of supercompact cardinals. Then QM\mathrm{QM} holds in a forcing extension by stationary set preserving forcing.

4.2 Q\mathrm{Q}-iterations

Our strategy to force QM\mathrm{QM}, or “NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense” for that matter has to make use of an iteration theorem that allows us to iterate essentially arbitrary ff-preserving forcings for a witness ff of (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) so that ff is preserved. We have proven in [Lie23] a more general version of the following theorem.

Theorem 4.5 (Lietz, [Lie23]).

Suppose ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) and =α,˙βαγ,β<γ\mathbb{P}=\langle\mathbb{P}_{\alpha},\dot{\mathbb{Q}}_{\beta}\mid\alpha\leq\gamma,\beta<\gamma\rangle is a nice iteration of ff-preserving forcings. Suppose that

  1. (.i)(\mathbb{P}.i)

    α+2SRP\Vdash_{\mathbb{P}_{\alpha+2}}\mathrm{SRP} for all α+2γ\alpha+2\leq\gamma and

  2. (.ii)(\mathbb{P}.ii)

    α``˙α preserves f-stationary sets from β<αV[G˙β]\Vdash_{\mathbb{P}_{\alpha}}``\dot{\mathbb{Q}}_{\alpha}\text{ preserves }f\text{-stationary sets from }\bigcup_{\beta<\alpha}V[\dot{G}_{\beta}].

Then \mathbb{P} preserves ff.

The immediate problem is that (.ii)(\mathbb{P}.ii) puts an undesired additional requirement on the forcings we want to iterate. Luckily, there is a small trick to still get away with this: Note that an ff-preserving forcing must preserve the ff-stationarity of the set SbfS^{f}_{b} for bCol(ω,ω1)b\in\mathrm{Col}(\omega,\omega_{1}). Suppose that at all successor steps, we arrange that any ff-stationary set from the previous extension contains some SbfS^{f}_{b} modulo a non-stationary set. Now at a limit step, suddenly every ff-preserving forcing will satisfy requirement (.ii)(\mathbb{P}.ii). As (.i)(\mathbb{P}.i) does not ask anything of us at limit steps either, we are free to use any ff-preserving forcing we desire at limit steps.

Definition 4.6.

Suppose ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}). We say that a forcing \mathbb{P} freezes NSω1\mathrm{NS}_{\omega_{1}} along ff if for any \mathbb{P}-generic GG we have

  1. (i)(i)

    ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) in V[G]V[G] and

  2. (ii)(ii)

    for any S𝒫(ω1)VS\in\mathcal{P}(\omega_{1})\cap V, we either have SNSω1V[G]S\in\mathrm{NS}_{\omega_{1}}^{V[G]} or there is pCol(ω,ω1)p\in\mathrm{Col}(\omega,\omega_{1}) with SpfSmodNSω1V[G]S^{f}_{p}\subseteq S\mod\mathrm{NS}_{\omega_{1}}^{V[G]}.

We hope to have motivated the following definition.

Definition 4.7.

Suppose ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}). A QQ-iteration (w.r.t. ff) is a nice iteration =α,˙βαγ,β<γ\mathbb{P}=\langle\mathbb{P}_{\alpha},\dot{\mathbb{Q}}_{\beta}\mid\alpha\leq\gamma,\beta<\gamma\rangle which satisfies

  1. (i)(i)

    α``˙α preserves f"\Vdash_{\mathbb{P}_{\alpha}}``\dot{\mathbb{Q}}_{\alpha}\text{ preserves }f",

  2. (ii)(ii)

    α+1()\Vdash_{\mathbb{P}_{\alpha+1}}(\ddagger) and

  3. (iii)(iii)

    if α+1<γ\alpha+1<\gamma then α+1``˙α+1 freezes NSω1 along f"\Vdash_{\mathbb{P}_{\alpha+1}}``\dot{\mathbb{Q}}_{\alpha+1}\text{ freezes }\mathrm{NS}_{\omega_{1}}\text{ along }f"

for all α<γ\alpha<\gamma.

As an immediate consequence of Theorem 4.5, we get the following “iteration theorem”.

Theorem 4.8.

Suppose ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}). All QQ-iterations (w.r.t. ff) preserve ff.

Provided we find enough forcings which allow us to continue a QQ-iteration up to a supercompact cardinal, we are able to force QM\mathrm{QM}. To be precise, we will prove the following two lemmas.

Lemma 4.9.

Suppose ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}), there is a Woodin cardinal and VV is closed under XM1(X)X\mapsto M_{1}^{\sharp}(X). Then there is a ff-preserving forcing which freezes NSω1\mathrm{NS}_{\omega_{1}} along ff.

Lemma 4.10.

Suppose ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) and there is a supercompact cardinal. Then there is an ff-preserving forcing \mathbb{P} with VSRPV^{\mathbb{P}}\models\mathrm{SRP}.

We can show this right away.

Proof.

The same construction which forces SRP\mathrm{SRP} via semiproper forcing from a supercompact cardinal can be used. A small change in the proof gives that any forcing for an instance of SRP\mathrm{SRP} is not only semiproper, but also ff-semiproper. Now use Theorem 3.15 instead of Shelah’s iteration theorem for semiproper forcings and do a nice iteration instead of a RCS iteration. ∎

We will eventually prove Lemma 4.9 in the next section. The basic idea is to use a version of the Asperó-Schindler ()(\ast)-forcing with max\mathbb{P}_{\mathrm{max}} replaced by max\mathbb{Q}_{\mathrm{max}}. However, we will run into a number of problems we need to solve first.

5 Blueprints for Instances of “MM++()\mathrm{MM}^{++}\Rightarrow(\ast)

We modify the ()(\ast)-forcing method of Asperó-Schindler in a way that allows us to prove a variety of instances of MM++()\mathrm{MM}^{++}\Rightarrow(\ast), though our main interest lies in Lemma 4.9.

Definition 5.1.

Let L()\mathbb{P}\in L(\mathbb{R}) be a forcing. -()\mathbb{P}\text{-}(\ast) asserts that AD\mathrm{AD} holds in L()L(\mathbb{R}) and there is a filter gg\subseteq\mathbb{P} with

  1. (i)(i)

    gg is \mathbb{P}-generic over L()L(\mathbb{R}) and

  2. (ii)(ii)

    𝒫(ω1)L()[g]\mathcal{P}(\omega_{1})\subseteq L(\mathbb{R})[g].

()(\ast) is max-()\mathbb{P}_{\mathrm{max}}\text{-}(\ast). max\mathbb{P}_{\mathrm{max}} is the most prominent of a number of similar forcing notions defined and analyzed by Woodin in [Woo10]. A central notion to all of them is that of a generically iterable structure.

Definition 5.2.

Suppose the following holds:

  1. (M.i)(M.i)

    (M;,I)(M;\in,I) is a countable transitive model of (sufficiently much of) ZFC\mathrm{ZFC} where II is allowed as a class parameter in the schemes.

  2. (M.ii)(M.ii)

    (M;,I)I(M;\in,I)\models\text{``}I is a normal uniform ideal on ω1\omega_{1}”.

  3. (M.iii)(M.iii)

    a0,,anMa_{0},\dots,a_{n}\in M.

In this case, we call (M,I,a0,,an)(M,I,a_{0},\dots,a_{n}) a potentially iterable structure. A generic iteration of (M,I,a0,,an)(M,I,a_{0},\dots,a_{n}) is a sequence

(Mα,Iα,a0,α,,an,α),μα,βαβγ\langle(M_{\alpha},I_{\alpha},a_{0,\alpha},\dots,a_{n,\alpha}),\mu_{\alpha,\beta}\mid\alpha\leq\beta\leq\gamma\rangle

with

  • (M0,I0)=(M,I)(M_{0},I_{0})=(M,I),

  • ai,α=μ0,α(ai)a_{i,\alpha}=\mu_{0,\alpha}(a_{i}) for ini\leq n,

  • μα,α+1:(Mα;,Iα)(Mα+1;,Iα+1)\mu_{\alpha,\alpha+1}\colon(M_{\alpha};\in,I_{\alpha})\rightarrow(M_{\alpha+1};\in,I_{\alpha+1}) is a generic ultrapower of MαM_{\alpha} w.r.t IαI_{\alpha} and

  • if αLim\alpha\in\mathrm{Lim} then

    (Mα;,Iα),μβ,αβ<α=lim(Mβ;,Iβ),Mβ,ξβξ<α\langle(M_{\alpha};\in,I_{\alpha}),\mu_{\beta,\alpha}\mid\beta<\alpha\rangle=\varinjlim\langle(M_{\beta};\in,I_{\beta}),M_{\beta,\xi}\mid\beta\leq\xi<\alpha\rangle

for all αγ\alpha\leq\gamma. (M,I,a0,,an)(M,I,a_{0},\dots,a_{n}) is a generically iterable structure if all (countable) generic iterations of (M,I,a0,,an)(M,I,a_{0},\dots,a_{n}) produce wellfounded models. Note that this only depends on (M,I)(M,I) and that we do not require IMI\in M.

Remark 5.3.

A generic iteration (Mα,Iα,a0,α,,an,α),μα,βαβγ\langle(M_{\alpha},I_{\alpha},a_{0,\alpha},\dots,a_{n,\alpha}),\mu_{\alpha,\beta}\mid\alpha\leq\beta\leq\gamma\rangle can be read off from the final map μ0,γ:M0Mγ\mu_{0,\gamma}\colon M_{0}\rightarrow M_{\gamma}, so we will frequently identify one with the other. We also reserve the right to call generic iterations simply iterations.

Definition 5.4.

max\mathbb{P}_{\mathrm{max}}-conditions are generically iterable structures (M,I,a)(M,I,a) with a𝒫(ω1)Ma\in\mathcal{P}(\omega_{1})^{M} and Mω1L[a]=ω1M\models\omega_{1}^{L[a]}=\omega_{1}. max\mathbb{P}_{\mathrm{max}} is ordered by q=(N,J,b)<maxpq=(N,J,b)<_{\mathbb{P}_{\mathrm{max}}}p iff there is a generic iteration

μ:pp=(M,I,a)\mu\colon p\rightarrow p^{\ast}=(M^{\ast},I^{\ast},a^{\ast})

of length ω1q+1\omega_{1}^{q}+1 in qq so that

  1. (<max.i)(<_{\mathbb{P}_{\mathrm{max}}}.i)

    I=JMI^{\ast}=J\cap M^{\ast} and

  2. (<max.ii)(<_{\mathbb{P}_{\mathrm{max}}}.ii)

    a=ba^{\ast}=b.

There are a number of ways this definition can be varied, leading to different partial orders. We will work with such variants in a general context.

5.1 max-variations\mathbb{P}_{\mathrm{max}}\text{-variations} and the 𝕍max\mathbb{V}_{\mathrm{max}}-multiverse view

Definition 5.5.

A max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} is a nonempty projective preorder (𝕍max,𝕍max)(\mathbb{V}_{\mathrm{max}},\leq_{\mathbb{V}_{\mathrm{max}}}) with the following properties:

  1. (𝕍max.i)(\mathbb{V}_{\mathrm{max}}.i)

    Conditions in 𝕍max\mathbb{V}_{\mathrm{max}} are generically iterable structures (M,I,a0,,an)(M,I,a_{0},\dots,a_{n}) for some fixed n=n𝕍maxn=n^{\mathbb{V}_{\mathrm{max}}}111111Of course, not all structures of this form are necessarily conditions..

  2. (𝕍max.ii)(\mathbb{V}_{\mathrm{max}}.ii)

    There is a first order formula φ𝕍max\varphi^{\mathbb{V}_{\mathrm{max}}} in the language121212When dealing with max-variation\mathbb{P}_{\mathrm{max}}\text{-variation}s, we stick to the convention that capitalized symbols are unary predicates symbols which are lower case are constants. {,I˙,a˙0,,a˙n}\{\in,\dot{I},\dot{a}_{0},\dots,\dot{a}_{n}\} so that q=(N,J,b0,bn)<𝕍max(M,I,a0,an)q=(N,J,b_{0},\dots b_{n})<_{\mathbb{V}_{\mathrm{max}}}(M,I,a_{0},\dots a_{n}) iff there is a generic iteration

    j:pp=(M,I,a0,,an)j\colon p\rightarrow p^{\ast}=(M^{\ast},I^{\ast},a_{0}^{\ast},\dots,a_{n}^{\ast})

    in NN of length ω1N+1\omega_{1}^{N}+1 with

    (N;,J,b0,,bn)φ𝕍max(p).(N;\in,J,b_{0},\dots,b_{n})\models\varphi^{\mathbb{V}_{\mathrm{max}}}(p^{\ast}).
  3. (𝕍max.iii)(\mathbb{V}_{\mathrm{max}}.iii)

    If μ:pp\mu\colon p\rightarrow p^{\ast} witnesses q<𝕍maxpq<_{\mathbb{V}_{\mathrm{max}}}p and σ:qq\sigma\colon q\rightarrow q^{\ast} witnesses r<𝕍maxqr<_{\mathbb{V}_{\mathrm{max}}}q then σ(μ):pσ(p)\sigma(\mu)\colon p\rightarrow\sigma(p^{\ast}) witnesses r<𝕍maxpr<_{\mathbb{V}_{\mathrm{max}}}p.

  4. (𝕍max.iv)(\mathbb{V}_{\mathrm{max}}.iv)

    Suppose (M,I)(M,I) is generically iterable, j:(M,I)(M,I)j\colon(M,I)\rightarrow(M^{\ast},I^{\ast}) is a generic iteration of (M,I)(M,I) of countable length and a0,anMa_{0},\dots a_{n}\in M. Then

    (M,I,a0,,an)𝕍max(M,I,j(a0),,j(an))𝕍max.(M,I,a_{0},\dots,a_{n})\in\mathbb{V}_{\mathrm{max}}\Leftrightarrow(M^{\ast},I^{\ast},j(a_{0}),\dots,j(a_{n}))\in\mathbb{V}_{\mathrm{max}}.
  5. (𝕍max.v)(\mathbb{V}_{\mathrm{max}}.v)

    𝕍max\mathbb{V}_{\mathrm{max}} has no minimal conditions.

We always consider max-variations\mathbb{P}_{\mathrm{max}}\text{-variations} as a class defined by a projective formula, rather then the set itself. So if we mention 𝕍max\mathbb{V}_{\mathrm{max}} in, e.g. a forcing extension of VV, then we mean the evaluation of the projective formula in that model131313In practice this extension will be projectively absolute so it does not matter which projective formula we choose. Also all the variations we consider will have a Π21\Pi^{1}_{2}-definition..

Remark 5.6.

Typically, φ𝕍max\varphi^{\mathbb{V}_{\mathrm{max}}} dictates e.g. one or more of the following:

  • a0=b0,,an=bna_{0}^{\ast}=b_{0},\dots,a_{n}^{\ast}=b_{n}.

  • I=JMI^{\ast}=J\cap M^{\ast}.

  • Some first order property is absolute between MM^{\ast} and NN.

We want to relate forcing axioms to star axioms of the form 𝕍max-()\mathbb{V}_{\mathrm{max}}\text{-}(\ast) for max-variation\mathbb{P}_{\mathrm{max}}\text{-variation}s 𝕍max\mathbb{V}_{\mathrm{max}}. To explain this relationship heuristically we present the 𝕍max\mathbb{V}_{\mathrm{max}}-Multiverse View:
Suppose 𝕍max\mathbb{V}_{\mathrm{max}} is a max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} (with n𝕍max=0n^{\mathbb{V}_{\mathrm{max}}}=0 for convenience) and

  • V=(Vκ)𝒱V=(V_{\kappa})^{\mathcal{V}} for some large cardinal κ\kappa in some larger model 𝒱\mathcal{V} and

  • there are a proper class of Woodin cardinals both in VV and 𝒱\mathcal{V}.

We will take the point of view of 𝒱Col(ω,κ)\mathcal{V}^{\mathrm{Col}(\omega,\kappa)}. Note that our assumptions imply generic projective absoluteness (and more) in 𝒱\mathcal{V}, in particular 𝕍max\mathbb{V}_{\mathrm{max}} is a max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} also in 𝒱Col(ω,κ)\mathcal{V}^{\mathrm{Col}(\omega,\kappa)} and 𝕍maxW=𝕍maxW\mathbb{V}_{\mathrm{max}}^{W}=\mathbb{V}_{\mathrm{max}}\cap W for any generic extension of VV. Pick some A=(A0,,An𝕍max)Hω2V\vec{A}=(A_{0},\dots,A_{n^{\mathbb{V}_{\mathrm{max}}}})\in H_{\omega_{2}}^{V}. Let (V)\mathcal{M}(V) denote the closure of VV under generic extensions and grounds containing A\vec{A}. Points W(V)W\in\mathcal{M}(V) may be considered as 𝕍max\mathbb{V}_{\mathrm{max}}-conditions if

(W,NSω1W,A0,,An𝕍max)𝕍max.(W,\mathrm{NS}_{\omega_{1}}^{W},A_{0},\dots,A_{n^{\mathbb{V}_{\mathrm{max}}}})\in\mathbb{V}_{\mathrm{max}}.

In this case we identify WW with this condition. In practice, this can only reasonably hold if ω1W=ω1V\omega_{1}^{W}=\omega_{1}^{V} so we make this an explicit condition. The 𝕍max\mathbb{V}_{\mathrm{max}}-multiverse of VV (w.r.t. A\vec{A}) is

𝕍max(V)={W(V)W𝕍maxω1W=ω1V}.\mathcal{M}_{\mathbb{V}_{\mathrm{max}}}(V)=\{W\in\mathcal{M}(V)\mid W\in\mathbb{V}_{\mathrm{max}}\wedge\omega_{1}^{W}=\omega_{1}^{V}\}.

If we A\vec{A} picked with sufficient care then 𝕍max(V)\mathcal{M}_{\mathbb{V}_{\mathrm{max}}}(V) should be nonempty. If W[G]W[G] is a generic extension of WW, both in 𝕍max(V)\mathcal{M}_{\mathbb{V}_{\mathrm{max}}}(V), then it is a good extension if

W[G]𝕍maxW.W[G]\leq_{\mathbb{V}_{\mathrm{max}}}W.

Here, p𝕍maxqp\leq_{\mathbb{V}_{\mathrm{max}}}q means p𝕍maxqˇG˙p\Vdash_{\mathbb{V}_{\mathrm{max}}}\check{q}\in\dot{G}. The existence of a proper class of Woodin cardinals in VV should guarantee that 𝕍max(V)\mathcal{M}_{\mathbb{V}_{\mathrm{max}}}(V) reversely ordered by good extensions is “as rich as” 𝕍max\mathbb{V}_{\mathrm{max}}.
In this sense, iterated forcing along good extensions corresponds to building descending sequences in 𝕍max\mathbb{V}_{\mathrm{max}}. In practice, max-variation\mathbb{P}_{\mathrm{max}}\text{-variation}s are σ\sigma-closed. From this point of view, σ\sigma-closure of 𝕍max\mathbb{V}_{\mathrm{max}} becomes roughly equivalent to a forcing iteration theorem: If

W[Gα]α<γ\langle W[G_{\alpha}]\mid\alpha<\gamma\rangle

is a chain of good extensions W[Gα]W[Gβ]W[G_{\alpha}]\subseteq W[G_{\beta}] of points

W[Gα],W[Gβ]𝕍max(V),αβ<γVW[G_{\alpha}],W[G_{\beta}]\in\mathcal{M}_{\mathbb{V}_{\mathrm{max}}}(V),\ \alpha\leq\beta<\gamma\in V

then this constitutes a countable decreasing chain141414Note that the size of γ\gamma in VV does not matter here. in 𝕍max\mathbb{V}_{\mathrm{max}} in 𝒱Col(ω,κ)\mathcal{V}^{\mathrm{Col}(\omega,\kappa)}. σ\sigma-closure of 𝕍max\mathbb{V}_{\mathrm{max}} suggests that there should be a further point

W[Gγ]𝕍max(V)W[G_{\gamma}]\in\mathcal{M}_{\mathbb{V}_{\mathrm{max}}}(V)

below all W[Gα]W[G_{\alpha}], α<γ\alpha<\gamma. Thus the “forcing iteration along W[Gα]α<γ\langle W[G_{\alpha}]\mid\alpha<\gamma\rangle preserves ω1\omega_{1} and enough structure to be able to be extended to a 𝕍max\mathbb{V}_{\mathrm{max}}-condition below all W[Gα]W[G_{\alpha}] without collapsing ω1\omega_{1}.
We should be able to find points satisfying 𝕍max-()\mathbb{V}_{\mathrm{max}}\text{-}(\ast) by constructing “closure points” W𝕍max(V)W\in\mathcal{M}_{\mathbb{V}_{\mathrm{max}}}(V) of sufficiently generic 𝕍max\leq_{\mathbb{V}_{\mathrm{max}}}-decreasing sequences

Wαα<γ\langle W_{\alpha}\mid\alpha<\gamma\rangle

in 𝕍max(V)\mathcal{M}_{\mathbb{V}_{\mathrm{max}}}(V). To make that precise, we want:

If DL()W is dense open in 𝕍maxW then WαD for some α<γ.\text{If }D\in L(\mathbb{R})^{W}\text{ is dense open in }\mathbb{V}_{\mathrm{max}}^{W}\text{ then }W_{\alpha}\in D^{\ast}\text{ for some }\alpha<\gamma. (🟊\bigstar)

Here, DD^{\ast} is the reinterpretation of the universally Baire DD in 𝒱Col(ω,κ)\mathcal{V}^{\mathrm{Col}(\omega,\kappa)}. The degree of closure of W𝕍max(V)W\in\mathcal{M}_{\mathbb{V}_{\mathrm{max}}}(V) under this procedure is measured by

gW={p𝕍maxW<𝕍maxp}g^{W}=\{p\in\mathbb{V}_{\mathrm{max}}\mid W<_{\mathbb{V}_{\mathrm{max}}}p\}

which should be a filter if WW is “sufficiently closed”. gWg^{W} can be defined in WW via

gW={p𝕍maxμ:pp of length ω1+1 with φ𝕍max(p)}Wg^{W}=\{p\in\mathbb{V}_{\mathrm{max}}\mid\exists\mu\colon p\rightarrow p^{\ast}\text{ of length }\omega_{1}+1\text{ with }\varphi^{\mathbb{V}_{\mathrm{max}}}(p^{\ast})\}^{W}

if 𝕍max\mathbb{V}_{\mathrm{max}} has unique iterations.

Definition 5.7.

𝕍max\mathbb{V}_{\mathrm{max}} has unique iterations if whenever q<𝕍maxpq<_{\mathbb{V}_{\mathrm{max}}}p then there is a unique generic iteration of pp witnessing this.

Under reasonable assumptions, (🟊\bigstar5.1) implies that gWg^{W} is generic over L()WL(\mathbb{R})^{W}. Finally, an additional property151515Often, simply (¬CH)W(\neg\mathrm{CH})^{W} is enough. Woodin [Woo] (see also [Sch]) has shown that if ADL()\mathrm{AD}^{L(\mathbb{R})} holds, there is a filter gmaxg\subseteq\mathbb{P}_{\mathrm{max}} generic over L()L(\mathbb{R}) and CH\mathrm{CH} fails then gg witnesses ()(\ast). like W``NSω1 is saturated"W\models``\mathrm{NS}_{\omega_{1}}\text{ is saturated}" should imply 𝒫(ω1)WL()W[gW]\mathcal{P}(\omega_{1})^{W}\subseteq L(\mathbb{R})^{W}[g^{W}].
Taking a step back, forcing a forcing axiom related to good extensions via iterated forcing looks like it should produce such sequences Wαα<γ\langle W_{\alpha}\mid\alpha<\gamma\rangle with (🟊\bigstar5.1) and NSω1\mathrm{NS}_{\omega_{1}} saturated in WW, so 𝕍max-()\mathbb{V}_{\mathrm{max}}\text{-}(\ast) should follow from such a forcing axiom.
On the other hand, WW looks like an endpoint of an iteration liberally incorporating forcings leading to good extensions: For α<γ\alpha<\gamma, if DL()WαD\in L(\mathbb{R})^{W_{\alpha}} is dense open in 𝕍maxWα\mathbb{V}_{\mathrm{max}}^{W_{\alpha}} then DD^{\ast} is dense open in the full 𝕍max\mathbb{V}_{\mathrm{max}}. DD^{\ast} can also be considered as a dense subset of 𝕍max(V)\mathcal{M}_{\mathbb{V}_{\mathrm{max}}}(V). As D𝕍maxWL()WD^{\ast}\cap\mathbb{V}_{\mathrm{max}}^{W}\in L(\mathbb{R})^{W}, by (🟊\bigstar5.1), there will be some later αβ<γ\alpha\leq\beta<\gamma with WβDW_{\beta}\in D^{\ast}. Thus one might expect a forcing axiom to hold at WW. This suggest that 𝕍max\mathbb{V}_{\mathrm{max}} should in fact be equivalent to a forcing axiom related to good extensions. The consistency of this forcing axiom should follow from the iteration theorem suggested by the σ\sigma-closure of 𝕍max\mathbb{V}_{\mathrm{max}}.
If we look at the case 𝕍max=max\mathbb{V}_{\mathrm{max}}=\mathbb{P}_{\mathrm{max}} and let AA be some subset of ω1\omega_{1} so that ω1L[A]=ω1V\omega_{1}^{L[A]}=\omega_{1}^{V} then stationary set preserving extensions are exactly the generic extensions intermediate to a good extension. The max\mathbb{P}_{\mathrm{max}}-Multiverse View is roughly correct in the sense that:

  • (Woodin) max\mathbb{P}_{\mathrm{max}} is σ\sigma-closed assuming ADL()\mathrm{AD}^{L(\mathbb{R})}.

  • (Shelah) Semiproper forcings can be iterated and the class of stationary set preserving forcings and semiproper forcings coincide under MM\mathrm{MM}.

  • (Asperó-Schindler) If there is a proper class of Woodin cardinals then

    ()(𝒫()L())-BMM++.(\ast)\Leftrightarrow(\mathcal{P}(\mathbb{R})\cap L(\mathbb{R}))\text{-}\mathrm{BMM}^{++}.

The rest of this section distills this heuristic into rigorous mathematics that relates more max-variation\mathbb{P}_{\mathrm{max}}\text{-variation}s to forcing axioms. We will assume (two-step) generic absoluteness in this section, though this is not fully necessary. Note that in this case, if 𝕍max\mathbb{V}_{\mathrm{max}} is a max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} then we have

V``𝕍max is a max-variation"V^{\mathbb{P}}\models``\mathbb{V}_{\mathrm{max}}\text{ is a }\mathbb{P}_{\mathrm{max}}\text{-variation}"

in any generic extension VV^{\mathbb{P}}, where 𝕍max\mathbb{V}_{\mathrm{max}} is to be understood as defined by a projective formula. Usually, max-variation\mathbb{P}_{\mathrm{max}}\text{-variation}s are Π21\Pi^{1}_{2}.
We will from now on work with some fixed max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} 𝕍max\mathbb{V}_{\mathrm{max}} and assume nmax𝕍=0n^{\mathbb{V}}_{\mathrm{max}}=0 to ease notation.

Definition 5.8.

We say that a structure \mathcal{H} is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition if

VCol(ω,)ˇ𝕍max.V^{\mathrm{Col}(\omega,\mathcal{H})}\models\widecheck{\mathcal{H}}\in\mathbb{V}_{\mathrm{max}}.

For AHω2A\in H_{\omega_{2}}, A\mathcal{H}_{A} denotes the structure:

A(Hω2,NSω1,A)\mathcal{H}_{A}\coloneqq(H_{\omega_{2}},\mathrm{NS}_{\omega_{1}},A)

Suppose that for some fixed AHω2A\in H_{\omega_{2}} we have that A\mathcal{H}\coloneqq\mathcal{H}_{A} is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition. We may define

gA={p𝕍maxVCol(ω,2ω1)<𝕍maxp}.g_{A}=\{p\in\mathbb{V}_{\mathrm{max}}\mid V^{\mathrm{Col}(\omega,2^{\omega_{1}})}\models\mathcal{H}<_{\mathbb{V}_{\mathrm{max}}}p\}.

Our goal is to show that gAg_{A} witnesses 𝕍max-()\mathbb{V}_{\mathrm{max}}\text{-}(\ast) under favorable circumstances. At the very least, it should be a filter.

Proposition 5.9.

Suppose gAg_{A} meets all projective dense D𝕍maxD\subseteq\mathbb{V}_{\mathrm{max}}. Then gAg_{A} is a filter.

Proof.

It is easy to see that if q<𝕍maxpq<_{\mathbb{V}_{\mathrm{max}}}p and qgAq\in g_{A} then pgAp\in g_{A}. So assume p,qgAp,q\in g_{A} and we have to find some rgAr\in g_{A} with r𝕍maxp,qr\leq_{\mathbb{V}_{\mathrm{max}}}p,q. Consider

D={r𝕍maxr𝕍maxp,qrprq}D=\{r\in\mathbb{V}_{\mathrm{max}}\mid r\leq_{\mathbb{V}_{\mathrm{max}}}p,q\vee r\perp p\vee r\perp q\}

and note that DD is a projective dense subset of 𝕍max\mathbb{V}_{\mathrm{max}}, so by assumption we can find some rDgAr\in D\cap g_{A}. Now in VCol(ω,2ω1)V^{\mathrm{Col}(\omega,2^{\omega_{1}})} we have r,p,q𝕍maxr,p,q\leq_{\mathbb{V}_{\mathrm{max}}}\mathcal{H} and thus rr is compatible with both pp and qq. By generic absoluteness, this is true in VV as well so that r𝕍maxp,qr\leq_{\mathbb{V}_{\mathrm{max}}}p,q as rDr\in D. ∎

Even assuming that gAg_{A} is a fully generic over L()L(\mathbb{R}), we still have to arrange 𝒫(ω1)L()[gA]\mathcal{P}(\omega_{1})\subseteq L(\mathbb{R})[g_{A}].

Definition 5.10.

Suppose that

  1. (i)(i)

    g𝕍maxg\subseteq\mathbb{V}_{\mathrm{max}} is a filter,

  2. (ii)(ii)

    pgp\in g and

  3. (iii)(iii)

    pα,μα,βαβγ\langle p_{\alpha},\mu_{\alpha,\beta}\mid\alpha\leq\beta\leq\gamma\rangle is a generic iteration of p0=pp_{0}=p.

Then we say that pα,μα,βαβγ\langle p_{\alpha},\mu_{\alpha,\beta}\mid\alpha\leq\beta\leq\gamma\rangle is guided by gg if pαgp_{\alpha}\in g for all countable αγ\alpha\leq\gamma.

Lemma 5.11.

Suppose 𝕍max\mathbb{V}_{\mathrm{max}} has unique iterations and g𝕍maxg\subseteq\mathbb{V}_{\mathrm{max}} is a filter meeting all projective dense D𝕍maxD\subseteq\mathbb{V}_{\mathrm{max}}. For any pgp\in g and any γω1\gamma\leq\omega_{1}, there is a unique iteration

pα,μα,βαβγ\langle p_{\alpha},\mu_{\alpha,\beta}\mid\alpha\leq\beta\leq\gamma\rangle

of p0=pp_{0}=p of length γ+1\gamma+1 guided by gg.

Proof.

First, we prove existence for all γ<ω1\gamma<\omega_{1}.

Claim 5.12.

There is qgq\in g with ω1q>γ\omega_{1}^{q}>\gamma.

Proof.

Let D={q𝕍maxω1q>γ}D=\{q\in\mathbb{V}_{\mathrm{max}}\mid\omega_{1}^{q}>\gamma\}. Clearly, DD is projective and we will show that DD is dense. Let q𝕍maxq\in\mathbb{V}_{\mathrm{max}} and using (𝕍max.v)(\mathbb{V}_{\mathrm{max}}.v), find r<𝕍maxqr<_{\mathbb{V}_{\mathrm{max}}}q as witnessed by

σ:qq.\sigma\colon q\rightarrow q^{\ast}.

Now let

ν:rr\nu\colon r\rightarrow r^{\ast}

be any generic iteration of rr of length γ+2\gamma+2, consequently ω1r>γ\omega_{1}^{r^{\ast}}>\gamma. We have r𝕍maxr^{\ast}\in\mathbb{V}_{\mathrm{max}} by (𝕍max.iv)(\mathbb{V}_{\mathrm{max}}.iv). Note that the iteration νσ\nu\circ\sigma witnesses r<𝕍maxqr^{\ast}<_{\mathbb{V}_{\mathrm{max}}}q. Again applying (𝕍max.v)(\mathbb{V}_{\mathrm{max}}.v), there is s<𝕍maxrs<_{\mathbb{V}_{\mathrm{max}}}r^{\ast} and thus s<𝕍maxqs<_{\mathbb{V}_{\mathrm{max}}}q and sDs\in D.
Thus gDg\cap D\neq\emptyset. ∎

As gg is a filter, we can find q<𝕍maxpq<_{\mathbb{V}_{\mathrm{max}}}p with ω1q>γ\omega_{1}^{q}>\gamma. Thus if μ:pp\mu\colon p\rightarrow p^{\ast} witnesses this then μ\mu is an iteration

pα,β,μα,βαβω1q\langle p_{\alpha,\beta},\mu_{\alpha,\beta}\mid\alpha\leq\beta\leq\omega_{1}^{q}\rangle

of length ω1q+1>γ+1\omega_{1}^{q}+1>\gamma+1 by (𝕍max.ii)(\mathbb{V}_{\mathrm{max}}.ii).

Claim 5.13.

pα,β,μα,βαβγ\langle p_{\alpha,\beta},\mu_{\alpha,\beta}\mid\alpha\leq\beta\leq\gamma\rangle is guided by gg.

Proof.

Let αγ\alpha\leq\gamma. Then μα,ω1q\mu_{\alpha,\omega_{1}^{q}} is an iteration of length ω1q+1\omega_{1}^{q}+1 in qq and qφ𝕍max(pω1q)q\models\varphi^{\mathbb{V}_{\mathrm{max}}}(p_{\omega_{1}^{q}}), thus q<𝕍maxpαq<_{\mathbb{V}_{\mathrm{max}}}p_{\alpha} and pαgp_{\alpha}\in g. ∎

Next we prove uniqueness. By proceeding by induction on γω1\gamma\leq\omega_{1}, it is in fact enough to verify the case γ=1\gamma=1. Suppose that μi:ppi\mu_{i}\colon p\rightarrow p^{\ast}_{i} is a generic ultrapower of pp with pigp^{\ast}_{i}\in g for i<2i<2. As gg is a filter and by (𝕍max.v)(\mathbb{V}_{\mathrm{max}}.v), there is qgq\in g with q<𝕍maxpiq<_{\mathbb{V}_{\mathrm{max}}}p^{\ast}_{i} as witnessed by some

μi:pipi\mu^{\ast}_{i}\colon p^{\ast}_{i}\rightarrow p^{\ast\ast}_{i}

for i<2i<2 as well as q<𝕍maxpq<_{\mathbb{V}_{\mathrm{max}}}p as witnessed by

μ:pp.\mu\colon p\rightarrow p^{\ast\ast}.

Let i<2i<2. We have that p,pip,p^{\ast}_{i} are countable in qq. As

``pi is a generic ultrapower of p"``p^{\ast}_{i}\text{ is a generic ultrapower of }p"

is a true Σ11(p,pi)\Sigma^{1}_{1}(p,p^{\ast}_{i})-statement, it is true in qq as well. Thus there is a generic ultrapower

μi:ppi\mu^{\prime}_{i}\colon p\rightarrow p^{\ast}_{i}

in qq. Both μ,μiμi\mu,\mu^{\ast}_{i}\circ\mu^{\prime}_{i} witness q<𝕍maxpq<_{\mathbb{V}_{\mathrm{max}}}p and as 𝕍max\mathbb{V}_{\mathrm{max}} has unique iterations, μ=μiμi\mu=\mu^{\ast}_{i}\circ\mu^{\prime}_{i}. It follows that p0=p1p^{\ast}_{0}=p^{\ast}_{1}.

Claim 5.14.

μ0=μ1\mu_{0}^{\ast}=\mu_{1}^{\ast}.

Proof.

Assume this fails, then

``There are distinct generic ultrapower maps pp0"``\text{There are distinct generic ultrapower maps }p\rightarrow p_{0}^{\ast}"

is another true Σ11(p,p0)\Sigma^{1}_{1}(p,p_{0}^{\ast})-statement which accordingly must hold in qq. Thus there is a generic ultrapower map μ0′′:pp0\mu_{0}^{\prime\prime}\colon p\rightarrow p^{\ast}_{0} in qq different from μ0\mu_{0}^{\prime}. But then both μ0μ0\mu_{0}^{\ast}\circ\mu_{0}^{\prime} and μ0μ0′′\mu_{0}^{\ast}\circ\mu_{0}^{\prime\prime} witness q<𝕍maxpq<_{\mathbb{V}_{\mathrm{max}}}p, which contradicts that 𝕍max\mathbb{V}_{\mathrm{max}} has unique iterations. ∎

Finally, existence of a generic iteration of pp of length ω1+1\omega_{1}+1 guided by gg follows from existence and uniqueness of generic iterations of pp guided by gg of any countable length. ∎

This suggests the following definition:

Definition 5.15.

Suppose 𝕍max\mathbb{V}_{\mathrm{max}} is a max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} with unique iterations and g𝕍maxg\subseteq\mathbb{V}_{\mathrm{max}} is a filter. For pgp\in g, the gg-iteration of pp is the unique generic iteration of pp of length ω1+1\omega_{1}+1 that is guided by gg (if it exists).

Corollary 5.16.

Suppose that

  1. (i)(i)

    AD\mathrm{AD} holds in L()L(\mathbb{R}),

  2. (ii)(ii)

    𝕍max\mathbb{V}_{\mathrm{max}} has unique iterations,

  3. (iii)(iii)

    A\mathcal{H}_{A} is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition,

  4. (iv)(iv)

    gADg_{A}\cap D\neq\emptyset for all dense D𝕍maxD\subseteq\mathbb{V}_{\mathrm{max}}, DL()D\in L(\mathbb{R}) and

  5. (v)(v)

    𝒫(ω1)={𝒫(ω1)ppgAμ:pp is guided by gA}\mathcal{P}(\omega_{1})=\bigcup\{\mathcal{P}(\omega_{1})\cap p^{\ast}\mid p\in g_{A}\wedge\mu\colon p\rightarrow p^{\ast}\text{ is guided by }g_{A}\}.

Then 𝕍max-()\mathbb{V}_{\mathrm{max}}\text{-}(\ast) holds and gAg_{A} witnesses this.

Proof.

gAg_{A} is a filter by Proposition 5.9 and thus L()L(\mathbb{R})-generic by assumption. To see that 𝒫(ω1)L()[gA]\mathcal{P}(\omega_{1})\subseteq L(\mathbb{R})[g_{A}], notice that for any pgAp\in g_{A}, L()L(\mathbb{R}) knows of all countable generic iterations of pp. Hence, L()[gA]L(\mathbb{R})[g_{A}] can piece together the gAg_{A}-iteration of pp from the countable iterations of pp that are guided by gAg_{A}. 𝒫(ω1)L()[gA]\mathcal{P}(\omega_{1})\subseteq L(\mathbb{R})[g_{A}] now follows immediately from (v)(v). ∎

The biggest obstacle by far is to get into a situation where gADg_{A}\cap D\neq\emptyset for all dense D𝕍maxD\subseteq\mathbb{V}_{\mathrm{max}}, DL()D\in L(\mathbb{R}). The main idea is:

Lemma 5.17.

Suppose that all of the following hold:

  1. (i)(i)

    D𝕍maxD\subseteq\mathbb{V}_{\mathrm{max}} is dense.

  2. (ii)(ii)

    A\mathcal{H}_{A} is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition.

  3. (iii)(iii)

    \mathbb{P} is a forcing and DD is |||\mathbb{P}|-universally Baire.

  4. (iv)(iv)

    In VV^{\mathbb{P}} there is qDq\in D^{\ast} and an iteration σ:qq\sigma\colon q\rightarrow q^{\ast} with

    (Hω2;,NSω1,A)Vφ𝕍max(q).(H_{\omega_{2}};\in,\mathrm{NS}_{\omega_{1}},A)^{V^{\mathbb{P}}}\models\varphi^{\mathbb{V}_{\mathrm{max}}}(q^{\ast}).
  5. (v)(v)

    Γ\Gamma is a set of formulas in the language {,I˙,a˙,D˙}\{\in,\dot{I},\dot{a},\dot{D}\} so that

    1. (Γ.i)(\Gamma.i)

      φ𝕍maxΓ\varphi^{\mathbb{V}_{\mathrm{max}}}\in\Gamma,

    2. (Γ.ii)(\Gamma.ii)

      Σ0Γ\Sigma_{0}\subseteq\Gamma, where Σ0\Sigma_{0} is computed in the language {,D˙}\{\in,\dot{D}\} and

    3. (Γ.iii)(\Gamma.iii)

      Γ\Gamma is closed under \exists and \wedge.

  6. (vi)(vi)

    (Hω2;,NSω1,A,D)VΓ(Hω2;,NSω1,A,D)V(H_{\omega_{2}};\in,\mathrm{NS}_{\omega_{1}},A,D)^{V}\prec_{\Gamma}(H_{\omega_{2}};\in,\mathrm{NS}_{\omega_{1}},A,D^{\ast})^{V^{\mathbb{P}}}.

Then gADg_{A}\cap D\neq\emptyset.
If additionally

  1. (vii)(vii)

    Hω2VqH_{\omega_{2}}^{V}\subseteq q^{\ast}

then 𝒫(ω1)={𝒫(ω1)ppgAμ:pp is guided by gA}\mathcal{P}(\omega_{1})=\bigcup\{\mathcal{P}(\omega_{1})\cap p^{\ast}\mid p\in g_{A}\wedge\mu\colon p\rightarrow p^{\ast}\text{ is guided by }g_{A}\}.

Proof.

Observe that (Hω2;)Σ1(Hω2;)V(H_{\omega_{2}};\in)\prec_{\Sigma_{1}}(H_{\omega_{2}};\in)^{V^{\mathbb{P}}} implies that \mathbb{P} preserves ω1\omega_{1}. The statement

qD˙σ:qq an iteration of length ω1+1 and φ𝕍max(q)\exists q\in\dot{D}\ \exists\sigma\colon q\rightarrow q^{\ast}\text{ an iteration of length }\omega_{1}+1\text{ and }\varphi^{\mathbb{V}_{\mathrm{max}}}(q^{\ast})

is in Γ\Gamma and thus is true in

(Hω2;,NSω1,A,D)V(H_{\omega_{2}};\in,\mathrm{NS}_{\omega_{1}},A,D)^{V}

as witnessed by some pDp\in D and iteration μ:pp\mu\colon p\rightarrow p^{\ast}. It follows that μ\mu witnesses A<𝕍maxq\mathcal{H}_{A}<_{\mathbb{V}_{\mathrm{max}}}q in VCol(ω,2ω1)V^{\mathrm{Col}(\omega,2^{\omega_{1}})} so that pDgAp\in D\cap g_{A}.
Now assume (vii)(vii), it is our duty to show

𝒫(ω1)={𝒫(ω1)ppgAμ:pp is guided by gA}.\mathcal{P}(\omega_{1})=\bigcup\{\mathcal{P}(\omega_{1})\cap p^{\ast}\mid p\in g_{A}\wedge\mu\colon p\rightarrow p^{\ast}\text{ is guided by }g_{A}\}.

Let Xω1X\subseteq\omega_{1}. As above,

q𝕍maxσ:qq an iteration of length ω1+1 and φ𝕍max(q)Xq\exists q\in\mathbb{V}_{\mathrm{max}}\ \exists\sigma\colon q\rightarrow q^{\ast}\text{ an iteration of length }\omega_{1}+1\text{ and }\varphi^{\mathbb{V}_{\mathrm{max}}}(q^{\ast})\wedge X\in q^{\ast}

reflects down to VV. The iteration witnessing this in VV is guided by gAg_{A} by the same argument that showed pgAp\in g_{A} above. ∎

Condition (vi)(vi) is a typical consequence of a (bounded) forcing axiom. It is left to construct forcings \mathbb{P} with property (iv)(iv) to which hopefully a broad range of forcing axioms may apply.

5.2 Asperó-Schindler ()(\ast)-forcing

We describe the results of Asperó-Schindler[AS21]. Their results carry over to any max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} 𝕍max\mathbb{V}_{\mathrm{max}} though they were originally proven in the case of 𝕍max=max\mathbb{V}_{\mathrm{max}}=\mathbb{P}_{\mathrm{max}}. Suppose that

  1. (i)(i)

    NSω1\mathrm{NS}_{\omega_{1}} is saturated,

  2. (ii)(ii)

    AHω2A\in H_{\omega_{2}} is so that =(Hω2,NSω1,A)\mathcal{H}=(H_{\omega_{2}},\mathrm{NS}_{\omega_{1}},A) is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition and

  3. (iii)(iii)

    D𝕍maxD\subseteq\mathbb{V}_{\mathrm{max}} is a 2ω12^{\omega_{1}}-universally Baire dense subset of 𝕍max\mathbb{V}_{\mathrm{max}} whose reinterpretation is still dense in extensions by forcings of size 2ω1\leq 2^{\omega_{1}}, as witnessed by trees T,ST,S with D=p[T]D=p[T].

Asperó-Schindler construct a partial order =(𝕍max,A,D)\mathbb{P}=\mathbb{P}(\mathbb{V}_{\mathrm{max}},A,D) so that in VV^{\mathbb{P}} the following picture

p[T]p[T]q0=(N,I,b)q_{0}=(N,I,b)qω1=(N,I,b)q_{\omega_{1}}=(N^{*},I^{*},b)p0p_{0}pω1Np_{\omega_{1}^{N}}pω1p_{\omega_{1}}((Hω2)V,NSω1V,A)=((H_{\omega_{2}})^{V},\mathrm{NS}_{\omega_{1}}^{V},A)=\mathcal{H}𝕍max\mathbb{V}_{\mathrm{max}}\inσ0,ω1\sigma_{0,\omega_{1}}\in\inμ0,ω1N\mu_{0,\omega_{1}^{N}}μω1N,ω1\mu_{\omega_{1}^{N},\omega_{1}}==\in

exists so that

  1. (.i)(\mathbb{P}.i)

    μ0,ω1,σ0,ω1\mu_{0,\omega_{1}},\sigma_{0,\omega_{1}} are generic iterations of p0p_{0}, q0q_{0} respectively,

  2. (.ii)(\mathbb{P}.ii)

    μ0,ω1N\mu_{0,\omega_{1}^{N}} witnesses q0<𝕍maxp0q_{0}<_{\mathbb{V}_{\mathrm{max}}}p_{0},

  3. (.iii)(\mathbb{P}.iii)

    μ0,ω1=σ0,ω1(μ0,ω1N)\mu_{0,\omega_{1}}=\sigma_{0,\omega_{1}}(\mu_{0,\omega_{1}^{N}}) and

  4. (.iv)(\mathbb{P}.iv)

    the generic iteration σ0,ω1:q0qω1\sigma_{0,\omega_{1}}\colon q_{0}\rightarrow q_{\omega_{1}} is correct, i.e. I=NSω1VNI^{\ast}=\mathrm{NS}_{\omega_{1}}^{V^{\mathbb{P}}}\cap N^{\ast}.

If φ𝕍max((M,J,a))\varphi^{\mathbb{V}_{\mathrm{max}}}((M,J,a)) implies J=I˙MJ=\dot{I}\cap M then NSω1pω1N=Ipω1N\mathrm{NS}_{\omega_{1}}^{p_{\omega_{1}^{N}}}=I\cap p_{\omega_{1}^{N}}. This gets transported upwards along σ0,ω1\sigma_{0,\omega_{1}} and shows NSω1V=IHω2V\mathrm{NS}_{\omega_{1}}^{V}=I^{\ast}\cap H_{\omega_{2}}^{V}. Together with (.iv)(\mathbb{P}.iv), this yields NSω1V=NSω1VV\mathrm{NS}_{\omega_{1}}^{V}=\mathrm{NS}_{\omega_{1}}^{V^{\mathbb{P}}}\cap V, i.e. \mathbb{P} preserves stationary sets. If MM++\mathrm{MM}^{++} holds in VV then

(Hω2;,NSω1,A,D)VΣ1(Hω2;,NSω1,A,D)V(H_{\omega_{2}};\in,\mathrm{NS}_{\omega_{1}},A,D)^{V}\prec_{\Sigma_{1}}(H_{\omega_{2}};\in,\mathrm{NS}_{\omega_{1}},A,D^{\ast})^{V^{\mathbb{P}}}

and it follows from Lemma 5.17 that gADg_{A}\cap D\neq\emptyset (note that φmax((M,I,a))``=I=I˙Ma=a˙"\varphi^{\mathbb{P}_{\mathrm{max}}}((M,I,a))``=I=\dot{I}\cap M\wedge a=\dot{a}"). This is how Asperó-Schindler prove MM++()\mathrm{MM}^{++}\Rightarrow(\ast).
An important observation is the following: To invoke a forcing axiom in the case of \mathbb{P} or variants thereof, typically \mathbb{P} needs to preserve certain structure, like stationary sets in the example above. This preservation is proven in two steps:

  1. (i)(i)

    Preservation between qω1q_{\omega_{1}} and VV^{\mathbb{P}}. This is governed by the iteration σ0,ω1\sigma_{0,\omega_{1}} having certain properties in VV^{\mathbb{P}}, e.g. correctness.

  2. (ii)(ii)

    Preservation between pω1p_{\omega_{1}} and qω1q_{\omega_{1}}. This is governed by the nature of 𝕍max\mathbb{V}_{\mathrm{max}}, specifically the formula φ𝕍max\varphi^{\mathbb{V}_{\mathrm{max}}}.

We will modify the construction of \mathbb{P} and get a forcing \mathbb{P}^{\diamondsuit} which strengthens (.iv)(\mathbb{P}.iv) so that \mathbb{P}^{\diamondsuit} can have a variety of preservation properties depending on the max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} 𝕍max\mathbb{V}_{\mathrm{max}} in question, for example

  • preserving stationary sets as well as all Suslin trees or

  • preserving a witness ff of (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) (QMmax-()\rightsquigarrow\mathrm{QM}\Rightarrow\mathbb{Q}_{\mathrm{max}}\text{-}(\ast)).

5.3 \diamondsuit-iterations

We introduce the concept that is roughly the equivalent of \diamondsuit-forcing in the world of generic iterations.

Definition 5.18.

Suppose (N,I)(N,I) is generically iterable. A generic iteration

(Ni,Ii),σi,jijω1\langle(N_{i},I_{i}),\sigma_{i,j}\mid i\leq j\leq\omega_{1}\rangle

of (N,I)=(N0,I0)(N,I)=(N_{0},I_{0}) is a \diamondsuit-iteration if for any

  1. (i)(i)

    sequence Dii<ω1\langle D_{i}\mid i<\omega_{1}\rangle of dense subsets of ((𝒫(ω1)/Iω1)+)Nω1((\mathcal{P}(\omega_{1})/I_{\omega_{1}})^{+})^{N_{\omega_{1}}} and

  2. (ii)(ii)

    S𝒫(ω1)Nω1Iω1S\in\mathcal{P}(\omega_{1})^{N_{\omega_{1}}}-I_{\omega_{1}}

the set

{ξSi<ξgξσξ,ω11[Di]}\{\xi\in S\mid\forall i<\xi\ g_{\xi}\cap\sigma_{\xi,\omega_{1}}^{-1}[D_{i}]\neq\emptyset\}

is stationary. Here, gξg_{\xi} is the generic ultrafilter applied to NξN_{\xi} for ξ<ω1\xi<\omega_{1}.

If (N,I)(N,I) is generically iterable and \diamondsuit holds then there is a \diamondsuit-iteration of (N,I)(N,I). But this is not generally the case. Paul Larson noted that if (M,I)(M,I) is generically iterable and

Mα,μα,βαβω1\langle M_{\alpha},\mu_{\alpha,\beta}\mid\alpha\leq\beta\leq\omega_{1}\rangle

is a generic generic iteration of (M,I)=(M0,I0)(M,I)=(M_{0},I_{0}) of length ω1\omega_{1} then this is a \diamondsuit-iteration. By this we mean that this iteration has been constructed generically by forcing with countable approximations ordered by endextension.

Lemma 5.19.

Suppose

(Ni,Ii),σi,j,giijω1\langle(N_{i},I_{i}),\sigma_{i,j},g_{i}\mid i\leq j\leq\omega_{1}\rangle

is a \diamondsuit-iteration. If

Nω1``f witnesses Iω1+(𝔹)"N_{\omega_{1}}\models``f\text{ witnesses }\diamondsuit_{I_{\omega_{1}}}^{+}(\mathbb{B})"

then Iω1=NSfNω1I_{\omega_{1}}=\mathrm{NS}_{f}\cap N_{\omega_{1}}. In particular, ff witnesses (𝔹)\diamondsuit(\mathbb{B}).

Proof.

Let S𝒫(ω1)Nω1Iω1S\in\mathcal{P}(\omega_{1})^{N_{\omega_{1}}}-I_{\omega_{1}}, we have to show that SS is ff-stationary. Let Dii<ω1\langle D_{i}^{\prime}\mid i<\omega_{1}\rangle be a sequence of dense subsets of 𝔹\mathbb{B}. As ff witnesses Iω1+(𝔹)\diamondsuit_{I_{\omega_{1}}}^{+}(\mathbb{B}) in Nω1N_{\omega_{1}}, we have

Nω1``ηf:𝔹(𝒫(ω1)/Iω1)+ is a complete embedding"N_{\omega_{1}}\models``\eta_{f}\colon\mathbb{B}\rightarrow(\mathcal{P}(\omega_{1})/I_{\omega_{1}})^{+}\text{ is a complete embedding}"

and notice that ηf\eta_{f} is a complete embedding in VV as well. Thus Di=ηf[Di]D_{i}=\eta_{f}[D_{i}^{\prime}] is dense for i<ω1i<\omega_{1}. As σ0,ω1:N0Nω1\sigma_{0,\omega_{1}}\colon N_{0}\rightarrow N_{\omega_{1}} is a \diamondsuit-iteration,

T{ξSi<ξgξσξ,ω11[Di]}T\coloneqq\{\xi\in S\mid\forall i<\xi\ g_{\xi}\cap\sigma_{\xi,\omega_{1}}^{-1}[D_{i}]\neq\emptyset\}

is stationary. Thus if Cω1C\subseteq\omega_{1} is club, we can find ξCT\xi\in C\cap T with ω1Nξ=ξ\omega_{1}^{N_{\xi}}=\xi and fran(σξ,ω1)f\in\mathrm{ran}(\sigma_{\xi,\omega_{1}}). It follows that

f(ξ)=ησξ,ω11(f)1[gξ]f(\xi)=\eta_{\sigma_{\xi,\omega_{1}}^{-1}(f)}^{-1}[g_{\xi}]

so that f(ξ)Dif(\xi)\cap D_{i}^{\prime}\neq\emptyset for all i<ξi<\xi. ∎

5.4 -()\diamondsuit\text{-}(\ast)-forcing

Theorem 5.20.

Suppose that

  1. (i)(i)

    generic projective absoluteness holds for generic extensions by forcings of size 2ω12^{\omega_{1}},

  2. (ii)(ii)

    𝕍max\mathbb{V}_{\mathrm{max}} is a max-variation\mathbb{P}_{\mathrm{max}}\text{-variation},

  3. (iii)(iii)

    NSω1\mathrm{NS}_{\omega_{1}} is saturated and 𝒫(ω1)\mathcal{P}(\omega_{1})^{\sharp} exists,

  4. (iv)(iv)

    (Hω2,NSω1,A0,,An𝕍max)(H_{\omega_{2}},\mathrm{NS}_{\omega_{1}},A_{0},\dots,A_{n^{\mathbb{V}_{\mathrm{max}}}}) is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition and

  5. (v)(v)

    D𝕍maxD\subseteq\mathbb{V}_{\mathrm{max}} is 2ω12^{\omega_{1}}-universally Baire and dense in 𝕍max\mathbb{V}_{\mathrm{max}} in any generic extension by a forcing of size 2ω12^{\omega_{1}}, as witnessed by trees T,ST,S with p[T]=Dp[T]=D.

Then there is a forcing \mathbb{P}^{\diamondsuit} so that in VV^{\mathbb{P}^{\diamondsuit}} the following picture

p[T]p[T]q0q_{0}qω1q_{\omega_{1}}p0p_{0}pω1Np_{\omega_{1}^{N}}pω1p_{\omega_{1}}((Hω2)V,NSω1V,A0,,An𝕍max)=((H_{\omega_{2}})^{V},\mathrm{NS}_{\omega_{1}}^{V},A_{0},\dots,A_{n^{\mathbb{V}_{\mathrm{max}}}})=\mathcal{H}𝕍max\mathbb{V}_{\mathrm{max}}\inσ0,ω1\sigma_{0,\omega_{1}}\in\inμ0,ω1N\mu_{0,\omega_{1}^{N}}μω1N,ω1\mu_{\omega_{1}^{N},\omega_{1}}==\in

exists so that

  1. (.i)(\mathbb{P}^{\diamondsuit}.i)

    μ0,ω1,σ0,ω1\mu_{0,\omega_{1}},\sigma_{0,\omega_{1}} are generic iterations of p0p_{0}, q0q_{0} respectively,

  2. (.ii)(\mathbb{P}^{\diamondsuit}.ii)

    μ0,ω1N\mu_{0,\omega_{1}^{N}} witnesses q0<𝕍maxp0q_{0}<_{\mathbb{V}_{\mathrm{max}}}p_{0},

  3. (.iii)(\mathbb{P}^{\diamondsuit}.iii)

    μ0,ω1=σ0,ω1(μ0,ω1N)\mu_{0,\omega_{1}}=\sigma_{0,\omega_{1}}(\mu_{0,\omega_{1}^{N}}) and

  4. (.iv)(\mathbb{P}^{\diamondsuit}.iv)

    the generic iteration σ0,ω1:q0qω1\sigma_{0,\omega_{1}}\colon q_{0}\rightarrow q_{\omega_{1}} is a \diamondsuit-iteration.

For the remainder of this section, ω1\omega_{1} will always denote ω1V\omega_{1}^{V}.
So suppose (i)(i)-(v)(v) holds. We will assume n𝕍max=0n^{\mathbb{V}_{\mathrm{max}}}=0 for notational purposes. For the most part, we will follow the construction of \mathbb{P} in [AS21] but will put additional constraints on the certificates. The idea that guides us here is:

In order for σ0,ω1:qq\sigma_{0,\omega_{1}}\colon q\rightarrow q^{\ast} to be a \diamondsuit-iteration, the forcing \mathbb{P}^{\diamondsuit} will have to anticipate dense subsets of the forcing (I+)Nω1(I^{+})^{N_{\omega_{1}}} so that they have been “hit before”. This should be captured by the map KCK\rightarrow C. Formulating this correctly produces a strengthened version of the “genericity condition” put onto semantic certificates.

A reader who can compile the above paragraph without syntax error can probably safely skip most the definition of \mathbb{P} and go straight to 4.

We try to keep our notation here consistent with the notation in the paper [AS21]. For this reason, we will identify a condition p=(M,I,a)𝕍maxp=(M,I,a)\in\mathbb{V}_{\mathrm{max}} with its first coordinate MM. Additionally, by even more abuse of notation:

Convention 5.21.

If (N,J,b)(N,J,b) is (almost) a condition in 𝕍max\mathbb{V}_{\mathrm{max}}, then

  • INI^{N} denotes JJ,

  • (I+)N(I^{+})^{N} denotes 𝒫(ω1)MJ\mathcal{P}(\omega_{1})^{M}-J and

  • aNa^{N} denotes bb.

We will additionally assume both 2ω1=ω22^{\omega_{1}}=\omega_{2} and ω3\diamondsuit_{\omega_{3}} to hold. Otherwise, first force with Add(ω2,1)Add(((2ω1)+)V,1)\mathrm{Add}(\omega_{2},1)\ast\mathrm{Add}(((2^{\omega_{1}})^{+})^{V},1) and note that (i)(i) and (v)(v) still hold for forcing with Col(ω,ω2)\mathrm{Col}(\omega,\omega_{2}), which is all we need. Moreover, observe that this preserves “NSω1\mathrm{NS}_{\omega_{1}} is saturated”.
We will denote ω3\omega_{3} by κ\kappa and pick a κ\diamondsuit_{\kappa}-sequence A¯λλ<κ\langle\bar{A}_{\lambda}\mid\lambda<\kappa\rangle.

We may find T0TT_{0}\subseteq T of size ω2\omega_{2} so that

VCol(ω,ω2)qp[T0]q<𝕍max.V^{\mathrm{Col}(\omega,\omega_{2})}\models\exists q\in p[T_{0}]\ q<_{\mathbb{V}_{\mathrm{max}}}\mathcal{H}.

Here we use that \mathcal{H} is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition as well as (𝕍max.v)(\mathbb{V}_{\mathrm{max}}.v). Note that p[T0]p[T]p[T_{0}]\subseteq p[T] in any outer model. Without loss of generality, we may assume that T0T_{0} is a tree on ω×ω2\omega\times\omega_{2}.
Fix a bijection

c:κHκ.c\colon\kappa\rightarrow H_{\kappa}.

For λ<κ\lambda<\kappa let

Qλc[λ] and Aλc[A¯λ].Q_{\lambda}\coloneqq c[\lambda]\text{ and }A_{\lambda}\coloneqq c\left[\bar{A}_{\lambda}\right].

There is then a club CκC\subseteq\kappa with

  1. (i)(i)

    T0,pQλT_{0},p\in Q_{\lambda} and ω2+1Qλ\omega_{2}+1\subseteq Q_{\lambda},

  2. (ii)(ii)

    QλOrd=λQ_{\lambda}\cap\mathrm{Ord}=\lambda and

  3. (iii)(iii)

    (Qλ;)(Hκ;)(Q_{\lambda};\in)\prec(H_{\kappa};\in)

for all λC\lambda\in C. We now have

For all P,BHκ the set\displaystyle\text{For all }P,B\subseteq H_{\kappa}\text{ the set }
()\displaystyle(\diamondsuit)\hskip 10.0pt {λC(Qλ;,PQλ,Aλ)(Hκ;,P,B)}\displaystyle\hskip 10.0pt\{\lambda\in C\mid(Q_{\lambda};\in,P\cap Q_{\lambda},A_{\lambda})\prec(H_{\kappa};\in,P,B)\}
is stationary.

We will also define QκQ_{\kappa} as HκH_{\kappa}. The forcing \mathbb{P} will add some

(N0,I0,a0)D(N_{0},I_{0},a_{0})\in D^{\ast}

together with a generic iteration

Ni,σi,jijω1\langle N_{i},\sigma_{i,j}\mid i\leq j\leq\omega_{1}\rangle

by Henkin-style finite approximations. By abuse of notation, we let Ni=(Ni;Ii,ai)N_{i}=(N_{i};I_{i},a_{i}). For readability we will also write

Nω1=(Nω1,I,a).N_{\omega_{1}}=(N_{\omega_{1}},I^{\ast},a^{\ast}).

\mathbb{P}^{\diamondsuit} will be the last element of an increasing sequence λλC{κ}\langle\mathbb{P}^{\diamondsuit}_{\lambda}\mid\lambda\in C\cup\{\kappa\}\rangle of forcings which we define inductively. We will have:

  1. (i)(i)

    λQλ\mathbb{P}^{\diamondsuit}_{\lambda}\subseteq Q_{\lambda},

  2. (ii)(ii)

    conditions in λ\mathbb{P}^{\diamondsuit}_{\lambda} will be finite sets of formulae in a first order language λ\mathcal{L}_{\lambda} and

  3. (iii)(iii)

    the order on λ\mathbb{P}^{\diamondsuit}_{\lambda} is reverse inclusion.

Suppose now that λC{κ}\lambda\in C\cup\{\kappa\} and ν\mathbb{P}^{\diamondsuit}_{\nu} is defined for all νCλ\nu\in C\cap\lambda.

We will make use of the same convention as Asperó-Schindler.

Convention 5.22.

xωx\subseteq\omega is a real code for N0=(N,I0,a0)N_{0}=(N,I_{0},a_{0}) if there is a surjection f:ωNf\colon\omega\rightarrow N so that xx is the monotone enumeration of Gödel numbers of all expressions of the form

N˙φ(n˙1,,n˙l,I˙,a˙)\ulcorner\dot{N}\models\varphi(\dot{n}_{1},\dots,\dot{n}_{l},\dot{I},\dot{a})\urcorner

where φ\varphi is a first order formula of the language associated to (N0,I0,a0)(N_{0},I_{0},a_{0})(see below) and

Nφ(f(n1),,f(nl),I0,a0)N\models\varphi(f(n_{1}),\dots,f(n_{l}),I_{0},a_{0})

holds.

We will have conditions in λ\mathbb{P}^{\diamondsuit}_{\lambda} be certified in a concrete sense by objects \mathfrak{C} which exist in generic extensions of VV that satisfies projective absoluteness w.r.t. VV. They are of the form

=Mi,μi,j,Ni,σi,jijω1,(kn,αn)n<ω,λξ,XξξK\mathfrak{C}=\langle\langle M_{i},\mu_{i,j},N_{i},\sigma_{i,j}\mid i\leq j\leq\omega_{1}\rangle,\langle(k_{n},\alpha_{n})\mid n<\omega\rangle,\langle\lambda_{\xi},X_{\xi}\mid\xi\in K\rangle\rangle

where

  1. (.1)(\mathfrak{C}.1)

    M0M_{0}, N0𝕍maxN_{0}\in\mathbb{V}_{\mathrm{max}},

  2. (.2)(\mathfrak{C}.2)

    x=knn<ωx=\langle k_{n}\mid n<\omega\rangle is a real code for N0=(N0;,I,a0)N_{0}=(N_{0};\in,I,a_{0}) and (kn,αn)n<ω\langle(k_{n},\alpha_{n})\mid n<\omega\rangle is a branch through T0T_{0},

  3. (.3)(\mathfrak{C}.3)

    Mi,μi,jijω1N0N0\langle M_{i},\mu_{i,j}\mid i\leq j\leq\omega_{1}^{N_{0}}\rangle\in N_{0} is a generic iteration of M0M_{0} witnessing N0<𝕍maxM0N_{0}<_{\mathbb{V}_{\mathrm{max}}}M_{0},

  4. (.4)(\mathfrak{C}.4)

    Ni,σi,jijω1\langle N_{i},\sigma_{i,j}\mid i\leq j\leq\omega_{1}\rangle is a generic iteration of N0N_{0},

  5. (.5)(\mathfrak{C}.5)

    Mi,μi,jijω1=σ0,ω1(Mi,μi,jijω1N0)\langle M_{i},\mu_{i,j}\mid i\leq j\leq\omega_{1}\rangle=\sigma_{0,\omega_{1}}(\langle M_{i},\mu_{i,j}\mid i\leq j\leq\omega_{1}^{N_{0}}\rangle) and

    Mω1=((Hω2)V;,(NSω1)V,A),M_{\omega_{1}}=((H_{\omega_{2}})^{V};\in,(\mathrm{NS}_{\omega_{1}})^{V},A),
  6. (.6)(\mathfrak{C}.6)

    Kω1K\subseteq\omega_{1} and for all ξK\xi\in K

    1. (.6.a)(\mathfrak{C}.6.a)

      λξλC\lambda_{\xi}\in\lambda\cap C, and if γ<ξ\gamma<\xi is in KK then λγ<λξ\lambda_{\gamma}<\lambda_{\xi} and Xγ{λγ}XξX_{\gamma}\cup\{\lambda_{\gamma}\}\subseteq X_{\xi},

    2. (.6.b)(\mathfrak{C}.6.b)

      Xξ(Qλξ;,λξ,Aλξ)X_{\xi}\prec(Q_{\lambda_{\xi}};\in,\mathbb{P}^{\diamondsuit}_{\lambda_{\xi}},A_{\lambda_{\xi}}) and δXξ=ξ\delta^{X_{\xi}}=\xi.

If \mathfrak{C} has these properties, we call \mathfrak{C} a potential certificate.

Next up, we will define a certain first order language \mathcal{L}. \mathcal{L} will have the following distinguished constants

  • xx for any xHκx\in H_{\kappa},

  • n˙\dot{n} for any n<ωn<\omega,

  • M˙i\dot{M}_{i} for i<ω1i<\omega_{1},

  • μ˙i,j\dot{\mu}_{i,j} for ijω1i\leq j\leq\omega_{1},

  • M˙\dot{\vec{M}},

  • N˙i\dot{N}_{i} for i<ω1i<\omega_{1},

  • σ˙i,j\dot{\sigma}_{i,j} for ij<ω1i\leq j<\omega_{1},

  • I˙\dot{I}, a˙\dot{a} and

  • X˙ξ\dot{X}_{\xi} for ξ<ω1\xi<\omega_{1}.

The constants n˙\dot{n} will eventually produce “Henkin-style” term models for the NiN_{i}. Formulas in the language \mathcal{L} are of the form

N˙iφ(γ1¯,,γk¯,n˙1,,n˙l,I˙,a˙,M˙j1,,M˙jm,μ˙q1,r1,,μ˙qs,rs,M˙)\ulcorner\dot{N}_{i}\models\varphi(\underline{\gamma_{1}},\dots,\underline{\gamma_{k}},\dot{n}_{1},\dots,\dot{n}_{l},\dot{I},\dot{a},\dot{M}_{j_{1}},\dots,\dot{M}_{j_{m}},\dot{\mu}_{q_{1},r_{1}},\dots,\dot{\mu}_{q_{s},r_{s}},\dot{\vec{M}})\urcorner

where

  • i<ω1i<\omega_{1},

  • γ1,γk<ω1\gamma_{1},\dots\gamma_{k}<\omega_{1},

  • n1,,nl<ωn_{1},\dots,n_{l}<\omega,

  • j1,,jm<ω1j_{1},\dots,j_{m}<\omega_{1},

  • qtrt<ω1q_{t}\leq r_{t}<\omega_{1} for t{1,,s}t\in\{1,\dots,s\}

and φ\varphi is a first order \in-formula. Moreover we allow as formulas

  • μ˙i,ω1(n˙)=x¯\ulcorner\dot{\mu}_{i,\omega_{1}}(\dot{n})=\underline{x}\urcorner for i<ω1,n<ωi<\omega_{1},n<\omega and xHω2x\in H_{\omega_{2}},

  • μ˙ω1,ω1(x¯)=x¯\ulcorner\dot{\mu}_{\omega_{1},\omega_{1}}(\underline{x})=\underline{x}\urcorner for xHω2x\in H_{\omega_{2}},

  • σ˙i,j(n˙)=m˙\ulcorner\dot{\sigma}_{i,j}(\dot{n})=\dot{m}\urcorner for ij<ω1i\leq j<\omega_{1} and n,m<ωn,m<\omega,

  • (k¯,α¯)T¯\ulcorner(\vec{\underline{k}},\vec{\underline{\alpha}})\in\underline{T}\urcorner for kω<ω\vec{k}\in\omega^{{<}\omega} and αω2<ω\vec{\alpha}\in\omega_{2}^{{<}\omega},

  • ξ¯ν¯\ulcorner\underline{\xi}\mapsto\underline{\nu}\urcorner for ξ<ω1\xi<\omega_{1} and ν<κ\nu<\kappa and

  • x¯X˙ξ\ulcorner\underline{x}\in\dot{X}_{\xi}\urcorner for ξ<ω1\xi<\omega_{1} and xHκx\in H_{\kappa}.

λ\mathcal{L}^{\lambda} is the set of \mathcal{L}-formulae φ\varphi so that if x¯\underline{x} appears in φ\varphi for some xHκx\in H_{\kappa} then xQλx\in Q_{\lambda}. We assume formulae in λ\mathcal{L}^{\lambda} to be coded in a reasonably way (ultimately uniform in λ\lambda) so that λ=Qλ\mathcal{L}^{\lambda}=\mathcal{L}\cap Q_{\lambda}. We will not make this precise.

A potential certificate

=Mi,μi,j,Ni,σi,jijω1,(kn,αn)n<ω,λξ,XξξK\mathfrak{C}=\langle\langle M_{i},\mu_{i,j},N_{i},\sigma_{i,j}\mid i\leq j\leq\omega_{1}\rangle,\langle(k_{n},\alpha_{n})\mid n<\omega\rangle,\langle\lambda_{\xi},X_{\xi}\mid\xi\in K\rangle\rangle

is (λ\lambda-)precertified by Σλ\Sigma\subseteq\mathcal{L}^{\lambda} if there are surjections ei:ωNie_{i}\colon\omega\rightarrow N_{i} for i<ω1i<\omega_{1} so that

  1. (Σ\Sigma.1)

    N˙iφ(γ1¯,,γk¯,n˙1,,n˙l,I˙,a˙,M˙j1,,M˙jm,μ˙q1,r1,,μ˙qs,rs,M˙)Σ\ulcorner\dot{N}_{i}\models\varphi(\underline{\gamma_{1}},\dots,\underline{\gamma_{k}},\dot{n}_{1},\dots,\dot{n}_{l},\dot{I},\dot{a},\dot{M}_{j_{1}},\dots,\dot{M}_{j_{m}},\dot{\mu}_{q_{1},r_{1}},\dots,\dot{\mu}_{q_{s},r_{s}},\dot{\vec{M}})\urcorner\in\Sigma iff

    1. (a)

      i<ω1i<\omega_{1},

    2. (b)

      γ1,,γkω1Ni\gamma_{1},\dots,\gamma_{k}\leq\omega_{1}^{N_{i}},

    3. (c)

      n1,,nl<ωn_{1},\dots,n_{l}<\omega,

    4. (d)

      j1,,jmω1Nij_{1},\dots,j_{m}\leq\omega_{1}^{N_{i}},

    5. (e)

      qtrtω1Niq_{t}\leq r_{t}\leq\omega_{1}^{N_{i}} for t{1,,s}t\in\{1,\dots,s\}

    and

    Niφ(\displaystyle N_{i}\models\varphi( γ1,,γk,ei(n1),,ei(nl),INi,aNi,\displaystyle\gamma_{1},\dots,\gamma_{k},e_{i}(n_{1}),\dots,e_{i}(n_{l}),I^{N_{i}},a^{N_{i}},
    Mj1,,Mjm,μq1,r1,,μqs,rs,M)\displaystyle M_{j_{1}},\dots,M_{j_{m}},\mu_{q_{1},r_{1}},\dots,\mu_{q_{s},r_{s}},\vec{M})

    where M=Mj,μj,jjjω1Ni\vec{M}=\langle M_{j},\mu_{j,j^{\prime}}\mid j\leq j^{\prime}\leq\omega_{1}^{N_{i}}\rangle,

  2. (Σ\Sigma.2)

    μ˙i,ω1(n˙)=x¯Σ\ulcorner\dot{\mu}_{i,\omega_{1}}(\dot{n})=\underline{x}\urcorner\in\Sigma iff i<ω1i<\omega_{1}, n<ωn<\omega and μi,ω1(ei(n))=x\mu_{i,\omega_{1}}(e_{i}(n))=x,

  3. (Σ\Sigma.3)

    μ˙ω1,ω1(x¯)=x¯Σ\ulcorner\dot{\mu}_{\omega_{1},\omega_{1}}(\underline{x})=\underline{x}\urcorner\in\Sigma for all xHω2x\in H_{\omega_{2}},

  4. (Σ\Sigma.4)

    σ˙i,j(n˙)=m˙Σ\ulcorner\dot{\sigma}_{i,j}(\dot{n})=\dot{m}\urcorner\in\Sigma iff ij<ω1i\leq j<\omega_{1} and σi,j(ei(n))=ej(m)\sigma_{i,j}(e_{i}(n))=e_{j}(m),

  5. (Σ\Sigma.5)

    (l¯,β¯)T¯Σ\ulcorner(\vec{\underline{l}},\vec{\underline{\beta}})\in\underline{T}\urcorner\in\Sigma iff for some n<ωn<\omega, lh(l)=n=lh(β)\mathrm{lh}(\vec{l})=n=\mathrm{lh}(\vec{\beta}) and for all m<nm<n lm=kml_{m}=k_{m}, βm=αm\beta_{m}=\alpha_{m},

  6. (Σ\Sigma.6)

    ξ¯ν¯Σ\ulcorner\underline{\xi}\mapsto\underline{\nu}\urcorner\in\Sigma iff ξK\xi\in K and ν=λξ\nu=\lambda_{\xi} and

  7. (Σ\Sigma.7)

    x¯X˙ξΣ\ulcorner\underline{x}\in\dot{X}_{\xi}\urcorner\in\Sigma iff ξK\xi\in K and xXξx\in X_{\xi}.

Note that \mathfrak{C} can be “read off” from Σ\Sigma in a unique way via a Henkin-style construction. For i<ω1i<\omega_{1} and n,m<ωn,m<\omega, let

nimNin˙=m˙Σn\sim_{i}m\Leftrightarrow\ulcorner N_{i}\models\dot{n}=\dot{m}\urcorner\in\Sigma

and denote the equivalence class of nn modulo i\sim_{i} by [n]iΣ[n]_{i}^{\Sigma}. We will usually drop the superscript Σ\Sigma if it is clear from context. Also let

n~imNin˙m˙Σ.n\tilde{\in}_{i}m\Leftrightarrow\ulcorner N_{i}\models\dot{n}\in\dot{m}\urcorner\in\Sigma.

Then (Ni,)(ω,~i)/i(N_{i},\in)\cong(\omega,\tilde{\in}_{i})/\sim_{i}. We call the latter model the term model producing NiN_{i}. See Lemma 3.7 in [AS21] for more details. For xNix\in N_{i} we say xx is represented by nn if xx gets mapped to [n]i[n]_{i} by the unique isomorphism of NiN_{i} to the term model. The term model for Nω1N_{\omega_{1}} is then the direct limit along the term models producing the NiN_{i}, i<ω1i<\omega_{1} and elements can then be represented by pairs (i,n)(i,n), i<ω1,n<ωi<\omega_{1},n<\omega in the natural way.

To define certificates, we make use of the following concept:

Definition 5.23.

For λ¯Cλ\bar{\lambda}\in C\cap\lambda,

Zλ¯×ω1×ωZ\subseteq\mathbb{P}^{\diamondsuit}_{\bar{\lambda}}\times\omega_{1}\times\omega

is a λ¯\bar{\lambda}-code for a dense subset of (I+)N˙ω1(I^{+})^{\dot{N}_{\omega_{1}}} given that

  1. (i)(i)

    if (p,i,n)Z(p,i,n)\in Z then

    N˙i``n˙I˙i+"p,\ulcorner\dot{N}_{i}\models``\dot{n}\in\dot{I}_{i}^{+}"\urcorner\in p,
  2. (ii)(ii)

    for any (q,j,m)λ¯×ω1×ω(q,j,m)\in\mathbb{P}_{\bar{\lambda}}\times\omega_{1}\times\omega with

    N˙j``m˙I˙j+"q\ulcorner\dot{N}_{j}\models``\dot{m}\in\dot{I}_{j}^{+}"\urcorner\in q

    there is (p,i,n)Z(p,i,n)\in Z with

    1. (a)(a)

      pqp\leq q, jij\leq i and

    2. (b)(b)

      N˙i``n˙k˙modI˙i",σ˙j,i(m˙)=k˙p\ulcorner\dot{N}_{i}\models``\dot{n}\subseteq\dot{k}\mod\dot{I}_{i}"\urcorner,\ulcorner\dot{\sigma}_{j,i}(\dot{m})=\dot{k}\urcorner\in p for some k<ωk<\omega,

  3. (iii)(iii)

    and if (p,i,n)Z(p,i,n)\in Z as well as qpq\leq p then (q,i,n)Z(q,i,n)\in Z.

Suppose that

=Mi,μi,j,Ni,σi,jijω1,(kn,αn)n<ω,λξ,XξξK\mathfrak{C}=\langle\langle M_{i},\mu_{i,j},N_{i},\sigma_{i,j}\mid i\leq j\leq\omega_{1}\rangle,\langle(k_{n},\alpha_{n})\mid n<\omega\rangle,\langle\lambda_{\xi},X_{\xi}\mid\xi\in K\rangle\rangle

is (λ)(\lambda-)precertified by Σλ\Sigma\subseteq\mathcal{L}^{\lambda} as witnessed by (ei)i<ω1(e_{i})_{i<\omega_{1}}. For Z0ZZ_{0}\subseteq Z we define the evaluation of Z0Z_{0} by Σ\Sigma as

Z0Σ{SNω1p[Σ]<ωi<ω1n<ω((p,i,n)Z0S=σi,ω1(ei(n)))}.Z_{0}^{\Sigma}\coloneqq\{S\in N_{\omega_{1}}\mid\exists p\in[\Sigma]^{{<}\omega}\exists i<\omega_{1}\exists n<\omega\ ((p,i,n)\in Z_{0}\wedge S=\sigma_{i,\omega_{1}}(e_{i}(n)))\}.

A potential certificate \mathfrak{C} is (λ\lambda-)certified by a collection Σλ\Sigma\subseteq\mathcal{L}^{\lambda} if \mathfrak{C} is (λ(\lambda-)precertified by Σ\Sigma and additionally

  1. 4.

    whenever ξK\xi\in K and ZZ is a λξ\lambda_{\xi}-code for a dense subset of (I+)N˙ω1(I^{+})^{\dot{N}_{\omega_{1}}} definable over

    (Qλξ;,λξ,Aλξ)(Q_{\lambda_{\xi}};\in,\mathbb{P}^{\diamondsuit}_{\lambda_{\xi}},A_{\lambda_{\xi}})

    from parameters in XξX_{\xi}, then there is S(ZXξ)ΣS\in(Z\cap X_{\xi})^{\Sigma} with ξS\xi\in S.

Definition 5.24.

In the case that 4 is satisfied, we call \mathfrak{C} a semantic certificate, and Σ\Sigma a syntactic certificate, relative to

𝕍max,A,Hω2,T0,AννCλ and ννCλ.\mathbb{V}_{\mathrm{max}},A,H_{\omega_{2}},T_{0},\langle A_{\nu}\mid\nu\in C\cap\lambda\rangle\text{ and }\langle\mathbb{P}^{\diamondsuit}_{\nu}\mid\nu\in C\cap\lambda\rangle.
Remark 5.25.

The genericity condition in [AS21] that is replaced here with 4 (adapted to our context) is:

  1. (Σ.8)AS(\Sigma.8)^{\mathrm{AS}}

    If ξK\xi\in K and EλξE\subseteq\mathbb{P}^{\diamondsuit}_{\lambda_{\xi}} is dense and definable over

    (Qλξ;,λξ,Aλξ)(Q_{\lambda_{\xi}};\in,\mathbb{P}^{\diamondsuit}_{\lambda_{\xi}},A_{\lambda_{\xi}})

    from parameters in XξX_{\xi} then

    [Σ]<ωEXξ.[\Sigma]^{<\omega}\cap E\cap X_{\xi}\neq\emptyset.

Condition 4 is stronger than (Σ.8)AS(\Sigma.8)^{\mathrm{AS}}: From any such EE,

Z={(p,i,n)λ¯×ω1×ωqEpqN˙i``n˙I˙i+"p}Z=\{(p,i,n)\in\mathbb{P}^{\diamondsuit}_{\bar{\lambda}}\times\omega_{1}\times\omega\mid\exists q\in E\ p\leq q\wedge\ulcorner\dot{N}_{i}\models``\dot{n}\in\dot{I}_{i}^{+}"\urcorner\in p\}

is a λξ\lambda_{\xi}-code for a dense subset of (I+)N˙ω1(I^{+})^{\dot{N}_{\omega_{1}}} definable over the same structure from the same parameters. If (ZXξ)Σ(Z\cap X_{\xi})^{\Sigma}\neq\emptyset, it follows that

[Σ]<ωEXξ.[\Sigma]^{<\omega}\cap E\cap X_{\xi}\neq\emptyset.

Suppose Σ\Sigma is a certificate that certifies

=Mi,μi,j,Ni,σi,jijω1,(kn,αn)n<ω,λξ,XξξK,\mathfrak{C}=\langle\langle M_{i},\mu_{i,j},N_{i},\sigma_{i,j}\mid i\leq j\leq\omega_{1}\rangle,\langle(k_{n},\alpha_{n})\mid n<\omega\rangle,\langle\lambda_{\xi},X_{\xi}\mid\xi\in K\rangle\rangle,

ξK\xi\in K and ZZ is a λξ\lambda_{\xi}-code for a dense subset of (I+)N˙ω1(I^{+})^{\dot{N}_{\omega_{1}}} definable over

(Qλξ;,λξ,Aλξ).(Q_{\lambda_{\xi}};\in,\mathbb{P}^{\diamondsuit}_{\lambda_{\xi}},A_{\lambda_{\xi}}).

ZZ is supposed to represent a dense subset of (I+)Nω1(I^{+})^{N_{\omega_{1}}} (w.r.t. inclusion modINω1\mod I^{N_{\omega_{1}}}) in VλV^{\mathbb{P}^{\diamondsuit}_{\lambda}}. Σ\Sigma may not be “generic over VV”, so it may not be the case that ZΣZ^{\Sigma} is dense in (I+)Nω1(I^{+})^{N_{\omega_{1}}}. Nonetheless, already (Σ.8)AS(\Sigma.8)^{\mathrm{AS}} implies that

D=σξ,ω11[(ZXξ)Σ](I+)NξD=\sigma_{\xi,\omega_{1}}^{-1}[(Z\cap X_{\xi})^{\Sigma}]\subseteq(I^{+})^{N_{\xi}}

is dense. DD may not be in NξN_{\xi}, so it is not guaranteed that DD is hit by the ultrapower σξ,ξ+1:NξNξ+1\sigma_{\xi,\xi+1}\colon N_{\xi}\rightarrow N_{\xi+1} just from genericity over NξN_{\xi} alone, however 4 makes sure that this happens (observe that ω1Nξ=ξ\omega_{1}^{N_{\xi}}=\xi). So in essence, the idea of 4 is that any dense subset of (I+)Nω1(I^{+})^{N_{\omega_{1}}} that exists in the final VκV^{\mathbb{P}^{\diamondsuit}_{\kappa}} has been “hit” before at some point along the iteration of N0N_{0} to Nω1N_{\omega_{1}}.

Remark 5.26.

Note that for any syntactic certificate, there is a unique semantic certificate it corresponds to. Given a semantic certificate, its corresponding syntactic certificate is unique modulo the choice of the maps (ei)i<ω(e_{i})_{i<\omega}.

A finite set pp of λ\mathcal{L}^{\lambda}-formulas is certified by Σ\Sigma iff Σ\Sigma is a syntactic certificate and pΣp\subseteq\Sigma. If \mathfrak{C} is a semantic certificate then we also say pp is certified by \mathfrak{C} in case there is a syntactic certificate λ\lambda certifying both \mathfrak{C} and pp.

Definition 5.27.

Conditions pλp\in\mathbb{P}^{\diamondsuit}_{\lambda} are finite sets of λ\mathcal{L}^{\lambda} formulae so that

VCol(ω,ω2)``ΣλΣ certifies p".V^{\mathrm{Col}(\omega,\omega_{2})}\models``\exists\Sigma\subseteq\mathcal{L}^{\lambda}\ \Sigma\text{ certifies }p".

This completes the construction of λ\mathbb{P}^{\diamondsuit}_{\lambda}.

Proposition 5.28.

Let p[λ]<ωp\in[\mathcal{L}^{\lambda}]^{<\omega}. If pp is certified in some outer model, then pp is certified in VCol(ω,ω2)V^{\mathrm{Col}(\omega,\omega_{2})}.

Proof.

Let gg be Col(ω,ω2)\mathrm{Col}(\omega,\omega_{2})-generic. If there is some outer model in which pp is certified, then by Shoenfield absoluteness we can find in V[g]V[g] a set of λ\mathcal{L}^{\lambda}-formulas Σ\Sigma with p[Σ]<ωp\in[\Sigma]^{<\omega} such that if

=Mi,μi,j,Ni,σi,jijω1,(kn,αn)n<ω,λξ,XξξK\mathfrak{C}=\langle\langle M_{i},\mu_{i,j},N_{i},\sigma_{i,j}\mid i\leq j\leq\omega_{1}\rangle,\langle(k_{n},\alpha_{n})\mid n<\omega\rangle,\langle\lambda_{\xi},X_{\xi}\mid\xi\in K\rangle\rangle

is the corresponding semantic interpretation then

  1. (i)(i)

    Σ\Sigma satisfies (Σ\Sigma.1)-4,

  2. (ii)(ii)
  3. (iii)(iii)

    \mathfrak{C} satisfies (.3)(\mathfrak{C}.3) in the sense that μ0,ω1N0N0\mu_{0,\omega_{1}^{N_{0}}}\in N_{0} and N0φ𝕍max(Mω1N0)N_{0}\models\varphi^{\mathbb{V}_{\mathrm{max}}}(M_{\omega_{1}^{N_{0}}}),

as this can be expressed by a 𝚺21\mathbf{\Sigma}^{1}_{2}-formula. It remains to show that (.1)(\mathfrak{C}.1) holds true as well, i.e. M0,N0𝕍maxM_{0},N_{0}\in\mathbb{V}_{\mathrm{max}}. For N0N_{0} this follows as N0p[T0]N_{0}\in p[T_{0}] and by assumption (v)(v), p[T0]𝕍maxp[T_{0}]\subseteq\mathbb{V}_{\mathrm{max}} in V[g]V[g]. To see that M0𝕍maxM_{0}\in\mathbb{V}_{\mathrm{max}}, note that 𝕍max\mathcal{H}\in\mathbb{V}_{\mathrm{max}} as \mathcal{H} is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition in VV. By (𝕍max.iv)(\mathbb{V}_{\mathrm{max}}.iv), it is enough to see that M0M_{0} is generically iterable. This follows from (the proof of) Theorem 3.16 in [Woo10], here we use 𝒫(ω1)\mathcal{P}(\omega_{1})^{\sharp} exists in VV. ∎

We let =κ\mathbb{P}^{\diamondsuit}=\mathbb{P}^{\diamondsuit}_{\kappa}. As in Asperó-Schindler, we conclude that there is a club DCD\subseteq C so that for all λD\lambda\in D

λ=Qλ\mathbb{P}^{\diamondsuit}_{\lambda}=\mathbb{P}^{\diamondsuit}\cap Q_{\lambda}

and hence we get

for all BHκ the set\displaystyle\text{for all }B\subseteq H_{\kappa}\text{ the set }
(())\displaystyle(\diamondsuit(\mathbb{P}^{\diamondsuit}))\hskip 10.0pt {λC(Qλ;,λ,Aλ)(Hκ;,,B)}\displaystyle\hskip 10.0pt\{\lambda\in C\mid(Q_{\lambda};\in,\mathbb{P}^{\diamondsuit}_{\lambda},A_{\lambda})\prec(H_{\kappa};\in,\mathbb{P},B)\}
is stationary.
Lemma 5.29.

min(C)\emptyset\in\mathbb{P}^{\diamondsuit}_{\min(C)}.

The argument is essentially the same as the proof of Lemma 3.6 in [AS21] modulo some details that arise from replacing max\mathbb{P}_{\mathrm{max}} by a general max-variation\mathbb{P}_{\mathrm{max}}\text{-variation}.

Proof.

Let gg be generic for Col(ω,ω2)\mathrm{Col}(\omega,\omega_{2}). Note that 𝕍max\mathcal{H}\in\mathbb{V}_{\mathrm{max}} as \mathcal{H} is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition in VV. By choice of T0T_{0}, we can find N0=(N0,I0,a0)DN_{0}=(N_{0},I_{0},a_{0})\in D^{\ast} with N0<𝕍maxN_{0}<_{\mathbb{V}_{\mathrm{max}}}\mathcal{H}. Let (kn,αn)n<ω\langle(k_{n},\alpha_{n})\mid n<\omega\rangle witness N0p[T]N_{0}\in p[T]. Let us denote M0=M_{0}=\mathcal{H} and let

μ0,ω1N0:M0Mω1N0\mu_{0,\omega_{1}^{N_{0}}}\colon M_{0}\rightarrow M_{\omega_{1}^{N_{0}}}

witness N0<𝕍maxM0N_{0}<_{\mathbb{V}_{\mathrm{max}}}M_{0}. Now let

σ0,κ:N0Nκ\sigma_{0,\kappa}\colon N_{0}\rightarrow N_{\kappa}

be a generic iteration of N0N_{0} of length κ+1=ω1V[g]+1\kappa+1=\omega_{1}^{V[g]}+1 as well as

μ0,κσ0,κ(μ0,ω1N0):M0Mκ\mu_{0,\kappa}\coloneqq\sigma_{0,\kappa}(\mu_{0,\omega_{1}^{N_{0}}})\colon M_{0}\rightarrow M_{\kappa}

the stretch of μ0,ω1N0\mu_{0,\omega_{1}^{N_{0}}} by σ0,κ\sigma_{0,\kappa}. Note that this is a generic iteration of M0M_{0} of length κ+1\kappa+1.

Claim 5.30.

The generic iteration

Mα,μα,βαβκ\langle M_{\alpha},\mu_{\alpha,\beta}\mid\alpha\leq\beta\leq\kappa\rangle

can be extended to a generic iteration of M0+(V,NSω1V)M_{0}^{+}\coloneqq(V,\mathrm{NS}_{\omega_{1}}^{V}) of length κ+1\kappa+1. That is, there is a generic iteration

Mα+,μα,β+αβκ\langle M_{\alpha}^{+},\mu^{+}_{\alpha,\beta}\mid\alpha\leq\beta\leq\kappa\rangle

of M0+M_{0}^{+} so that for all αβκ\alpha\leq\beta\leq\kappa

  1. (+.i)(+.i)

    Mα=(Hω2)Mα+M_{\alpha}=\left(H_{\omega_{2}}\right)^{M_{\alpha}^{+}} and

  2. (+.ii)(+.ii)

    μα,β=μα,β+Mα\mu_{\alpha,\beta}=\mu_{\alpha,\beta}^{+}\upharpoonright M_{\alpha}.

Proof.

The iteration Mα+,μα,β+αβκ\langle M_{\alpha}^{+},\mu^{+}_{\alpha,\beta}\mid\alpha\leq\beta\leq\kappa\rangle arises by applying the same generic ultrafilter gαg_{\alpha} which generates μα,α+1:MαMα+1\mu_{\alpha,\alpha+1}\colon M_{\alpha}\rightarrow M_{\alpha+1} to Mα+M_{\alpha}^{+}. By induction on α\alpha, as Mα=(Hω2)Mα+M_{\alpha}=\left(H_{\omega_{2}}\right)^{M_{\alpha}^{+}}, gαg_{\alpha} measures all subsets of ω1Mα+\omega_{1}^{M_{\alpha}^{+}} in Mα+M_{\alpha}^{+}. It is a generic ultrafilter as

Mα+``NSω1 is saturated"M_{\alpha}^{+}\models``\mathrm{NS}_{\omega_{1}}\text{ is saturated}"

by elementarity of μ0,α+\mu_{0,\alpha}^{+}, and hence all maximal antichains in (NSω1+)Mα+(\mathrm{NS}_{\omega_{1}}^{+})^{M_{\alpha}^{+}} are already in MαM_{\alpha}, hence are met by gαg_{\alpha}. Now let

μα,α+1+:Mα+Mα+1+Ult(Mα+,gα)\mu_{\alpha,\alpha+1}^{+}\colon M_{\alpha}^{+}\rightarrow M_{\alpha+1}^{+}\coloneqq\mathrm{Ult}(M_{\alpha}^{+},g_{\alpha})

be the ultrapower. Any x(Hω2)Mα+1+x\in(H_{\omega_{2}})^{M_{\alpha+1}^{+}} is represented by some function f:ω1Mα+(Hω2)Mα+f\colon\omega_{1}^{M_{\alpha}^{+}}\rightarrow\left(H_{\omega_{2}}\right)^{M_{\alpha}^{+}} which is an element of (Hω2)Mα+=Mα\left(H_{\omega_{2}}\right)^{M_{\alpha}^{+}}=M_{\alpha}. It follows that μα,α+1=μα,α+1+Mα\mu_{\alpha,\alpha+1}=\mu_{\alpha,\alpha+1}^{+}\upharpoonright M_{\alpha}. It is easy to see that the properties (+.i)(+.i),(+.ii)(+.ii) are stable under taking direct limits. ∎

The point is that

Mi,μi,j,Ni,σi,jijω1,(kn,αn)n<ω,\langle\langle M_{i},\mu_{i,j},N_{i},\sigma_{i,j}\mid i\leq j\leq\omega_{1}\rangle,\langle(k_{n},\alpha_{n})\mid n<\omega\rangle,\emptyset\rangle

is a semantic certificate for \emptyset in M+Mκ+M^{+}\coloneqq M_{\kappa}^{+} with respect to

μ+(𝕍max),μ+(A),(Hω2)M+,μ+(T0),μ+(AννCλ),μ+(ννCλ)\mu^{+}(\mathbb{V}_{\mathrm{max}}),\mu^{+}(A),\left(H_{\omega_{2}}\right)^{M^{+}},\mu^{+}(T_{0}),\mu^{+}(\langle A_{\nu}\mid\nu\in C\cap\lambda\rangle),\mu^{+}(\langle\mathbb{P}^{\diamondsuit}_{\nu}\mid\nu\in C\cap\lambda\rangle)

for λ=min(C)\lambda=\min(C) and μ+=μ0,κ+\mu^{+}=\mu_{0,\kappa}^{+}. By Proposition 5.28,

M+μ+(min(C))M^{+}\models\emptyset\in\mu^{+}(\mathbb{P}^{\diamondsuit}_{\min(C)})

so that min(C)\emptyset\in\mathbb{P}^{\diamondsuit}_{\min(C)} in VV by elementarity of μ+\mu^{+}. ∎

Lemma 5.31.

Suppose λC{κ}\lambda\in C\cup\{\kappa\} and gλg\subseteq\mathbb{P}^{\diamondsuit}_{\lambda} is a filter with

  1. (i)(i)

    gEg\cap E\neq\emptyset whenever EλE\subseteq\mathbb{P}^{\diamondsuit}_{\lambda} is dense and definable over

    (Qλ;,λ,Aλ),(Q_{\lambda};\in,\mathbb{P}^{\diamondsuit}_{\lambda},A_{\lambda}),
  2. (ii)(ii)

    gg is an element of a generic extension of VV by a forcing of size 2ω2\leq 2^{\omega_{2}}.

Then g\bigcup g is a semantic certificate.

Proof.

Read off the canonical candidate

=Mi,μi,j,Ni,σi,jijω1,(kn,αn)n<ω,λξ,XξξK\mathfrak{C}=\langle\langle M_{i},\mu_{i,j},N_{i},\sigma_{i,j}\mid i\leq j\leq\omega_{1}\rangle,\langle(k_{n},\alpha_{n})\mid n<\omega\rangle,\langle\lambda_{\xi},X_{\xi}\mid\xi\in K\rangle\rangle

from gg. The proof of Lemma 3.7 in [AS21] shows that g\bigcup g λ\lambda-precertifies \mathfrak{C}. Note that the argument from Proposition 5.28 gives that M0,N0𝕍maxM_{0},N_{0}\in\mathbb{V}_{\mathrm{max}} and (.3)(\mathfrak{C}.3) follows from (Σ\Sigma.1) and (𝕍max.ii)(\mathbb{V}_{\mathrm{max}}.ii). It remains to check 4. So suppose ξK\xi\in K and ZZ is a λξ\lambda_{\xi}-code for a dense subset of (I+)N˙ω1(I^{+})^{\dot{N}_{\omega_{1}}} definable over

𝒬λ(Qλξ;,λξ,Aλξ)\mathcal{Q}_{\lambda}\coloneqq(Q_{\lambda_{\xi}};\in,\mathbb{P}^{\diamondsuit}_{\lambda_{\xi}},A_{\lambda_{\xi}})

from a parameter xXξx\in X_{\xi}. Then there is pgp\in g with

ξ¯λξ¯,x¯X˙ξp.\ulcorner\underline{\xi}\mapsto\underline{\lambda_{\xi}}\urcorner,\ulcorner\underline{x}\in\dot{X}_{\xi}\urcorner\in p.

Let Σ\Sigma^{\prime} be a syntactic certificate certifying pp (in some extension of VV by Col(ω,ω2)\mathrm{Col}(\omega,\omega_{2})) and

=Mi,μi,j,Ni,σi,jijω1,(kn,αn)n<ω,λρ,XρρK\mathfrak{C}^{\prime}=\langle\langle M_{i}^{\prime},\mu_{i,j}^{\prime},N_{i}^{\prime},\sigma_{i,j}^{\prime}\mid i\leq j\leq\omega_{1}\rangle,\langle(k_{n}^{\prime},\alpha_{n}^{\prime})\mid n<\omega\rangle,\langle\lambda_{\rho}^{\prime},X_{\rho}^{\prime}\mid\rho\in K^{\prime}\rangle\rangle

the corresponding semantic certificate. We have ξK\xi\in K and λξ=λξ\lambda_{\xi}^{\prime}=\lambda_{\xi} as well as xXξx\in X_{\xi}^{\prime}. Thus ZZ is definable over 𝒬λ\mathcal{Q}_{\lambda} from parameters in XξX_{\xi}^{\prime}. As Σ\Sigma^{\prime} satisfies 4, there is S(ZXξ)ΣS\in(Z\cap X^{\prime}_{\xi})^{\Sigma^{\prime}} with ξS\xi\in S. We may now find (q,i,n)ZXξ(q,i,n)\in Z\cap X_{\xi}^{\prime} so that

S=σi,ω1([n]iΣ).S=\sigma_{i,\omega_{1}}([n]_{i}^{\Sigma^{\prime}}).

Note that i<ξi<\xi as δXξ=ξ\delta^{X_{\xi}^{\prime}}=\xi. Let σi,ξ+1([n]iΣ]=[m]ξ+1Σ\sigma_{i,\xi+1}([n]_{i}^{\Sigma^{\prime}}]=[m]_{\xi+1}^{\Sigma^{\prime}}. It follows that

N˙ξ+1``ξ¯m˙",σ˙i,ξ+1(n˙)=m˙Σ.\ulcorner\dot{N}_{\xi+1}\models``\underline{\xi}\in\dot{m}"\urcorner,\ulcorner\dot{\sigma}_{i,\xi+1}(\dot{n})=\dot{m}\urcorner\in\Sigma^{\prime}.

This is a density argument that shows: There are srgs\geq r\in g, j<ξj<\xi, l<ωl<\omega so that

  1. (i)(i)

    (s,j,l)Z(s,j,l)\in Z,

  2. (ii)(ii)

    s¯X˙ξr\ulcorner\underline{s}\in\dot{X}_{\xi}\urcorner\in r and

  3. (iii)(iii)

    N˙ξ+1``ξ¯k˙",σ˙j,ξ+1(l˙)=k˙r\ulcorner\dot{N}_{\xi+1}\models``\underline{\xi}\in\dot{k}"\urcorner,\ulcorner\dot{\sigma}_{j,\xi+1}(\dot{l})=\dot{k}\urcorner\in r for some k<ωk<\omega.

It follows that for S=σj,ω1([l]jg)S=\sigma_{j,\omega_{1}}([l]_{j}^{\bigcup g}), we have S(ZXξ)gS\in(Z\cap X_{\xi})^{\bigcup g} and ξS\xi\in S. ∎

Lemma 5.32.

Suppose gg is generic for \mathbb{P}^{\diamondsuit} and

=Mi,μi,j,Ni,σi,jijω1,(kn,αn)n<ω,λξ,XξξK\mathfrak{C}=\langle\langle M_{i},\mu_{i,j},N_{i},\sigma_{i,j}\mid i\leq j\leq\omega_{1}\rangle,\langle(k_{n},\alpha_{n})\mid n<\omega\rangle,\langle\lambda_{\xi},X_{\xi}\mid\xi\in K\rangle\rangle

is the resulting semantic certificate. Then in V[g]V[g],

Ni,σi,jijω1\langle N_{i},\sigma_{i,j}\mid i\leq j\leq\omega_{1}\rangle

is a \diamondsuit-iteration.

Proof.

Let S˙,C˙\dot{S},\dot{C} be \mathbb{P}^{\diamondsuit}-names with

p``C˙ω1 is club and S˙(I˙+)N˙ω1"p\Vdash``\dot{C}\subseteq\omega_{1}\text{ is club and }\dot{S}\in(\dot{I}^{+})^{\dot{N}_{\omega_{1}}}"

for some pp\in\mathbb{P}^{\diamondsuit}. Further suppose D˙αα<ω1\langle\dot{D}_{\alpha}\mid\alpha<\omega_{1}\rangle is a sequence of \mathbb{P}^{\diamondsuit}-names for dense subsets of (I+)N˙ω1(I^{+})^{\dot{N}_{\omega_{1}}}. We may suppose that

pS˙=σ˙i0,ω1([nˇ]iˇ0G˙)\displaystyle p\Vdash\dot{S}=\dot{\sigma}_{i_{0},\omega_{1}}([\check{n}]_{\check{i}_{0}}^{\bigcup\dot{G}})

for some i0<ω1i_{0}<\omega_{1} and n<ωn<\omega where σ˙i0,ω1\dot{\sigma}_{i_{0},\omega_{1}} is a name for σi0,ω1\sigma_{i_{0},\omega_{1}} which arises in the semantic certificate corresponding to the generic filter. It is our duty to find ξ<ω1\xi<\omega_{1} and qpq\leq p with

qξˇS˙C˙α<ξˇg˙ξσ˙ξ,ω11[D˙α]q\Vdash\check{\xi}\in\dot{S}\cap\dot{C}\wedge\forall\alpha<\check{\xi}\ \dot{g}_{\xi}\cap\dot{\sigma}_{\xi,\omega_{1}}^{-1}[\dot{D}_{\alpha}]\neq\emptyset (\spadesuit)

where g˙ξ\dot{g}_{\xi} is a name for the generic ultrafilter applied to N˙ξ\dot{N}_{\xi} along the iteration to N˙ω1\dot{N}_{\omega_{1}}. We will replace the D˙α\dot{D}_{\alpha} with codes for them: For α<ω1\alpha<\omega_{1}, let ZαZ_{\alpha} be defined by (q,j,m)Zα(q,j,m)\in Z_{\alpha} iff

  1. (Z.i)(Z.i)

    (q,j,m)×ω1×ω(q,j,m)\in\mathbb{P}^{\diamondsuit}\times\omega_{1}\times\omega,

  2. (Z.ii)(Z.ii)

    N˙j``m˙I˙j"q\ulcorner\dot{N}_{j}\models``\dot{m}\in\dot{I}_{j}"\urcorner\in q and

  3. (Z.iii)(Z.iii)

    qσ˙j,ω1([m]jG˙)D˙αq\Vdash\dot{\sigma}_{j,\omega_{1}}\left([m]_{j}^{\bigcup\dot{G}}\right)\in\dot{D}_{\alpha}.

Further, for α<ω1\alpha<\omega_{1}, we let

Eα={qpβαβqβˇC˙}E_{\alpha}=\{q\leq p\mid\exists\beta\ \alpha\leq\beta\wedge q\Vdash\check{\beta}\in\dot{C}\}

and

E={(q,α)×ω1qαˇC˙}.E=\{(q,\alpha)\in\mathbb{P}^{\diamondsuit}\times\omega_{1}\mid q\Vdash\check{\alpha}\in\dot{C}\}.

Finally we define

τ=(α<ω1Zα)(α<ω1Eα)E.\tau=\left(\bigoplus_{\alpha<\omega_{1}}Z_{\alpha}\right)\oplus\left(\bigoplus_{\alpha<\omega_{1}}E_{\alpha}\right)\oplus E.

We may now find λC\lambda\in C so that pλp\in\mathbb{P}^{\diamondsuit}_{\lambda} and

(Qλ;,λ,Aλ)(Hκ;,,τ).(Q_{\lambda};\in,\mathbb{P}^{\diamondsuit}_{\lambda},A_{\lambda})\prec(H_{\kappa};\in,\mathbb{P}^{\diamondsuit},\tau).

Here, \oplus denotes some canonical way of coding at most ω1\omega_{1}-many subsets of HκH_{\kappa} into a subset of HκH_{\kappa}. Let hh be Col(ω,ω2)\mathrm{Col}(\omega,\omega_{2})-generic over VV.

Claim 5.33.

In V[h]V[h], there are filters g,Gg,G that satisfy the following properties (i)(i)-(iii)(iii):

  1. (i)(i)

    gg meets every dense subset of λ\mathbb{P}^{\diamondsuit}_{\lambda} that is definable (with parameters) in

    (Qλ;,λ,Aλ).(Q_{\lambda};\in,\mathbb{P}^{\diamondsuit}_{\lambda},A_{\lambda}).

Let

=Mi,μi,j,Ni,σi,jijω1,(kn,αn)n<ω,λξ,XξξK\mathfrak{C}=\langle\langle M_{i},\mu_{i,j},N_{i},\sigma_{i,j}\mid i\leq j\leq\omega_{1}\rangle,\langle(k_{n},\alpha_{n})\mid n<\omega\rangle,\langle\lambda_{\xi},X_{\xi}\mid\xi\in K\rangle\rangle

denote the semantic certificate corresponding to gg.

  1. (ii)(ii)

    GG is (I+)Nω1(I^{+})^{N_{\omega_{1}}}-generic over Nω1N_{\omega_{1}} with S˙g=[n]i0gG\dot{S}^{g}=[n]_{i_{0}}^{\bigcup g}\in G.

  2. (iii)(iii)

    GG meets ZgZ^{\bigcup g} whenever ZZ is a λ\lambda-code for a dense subset of (I˙+)N˙ω1(\dot{I}^{+})^{\dot{N}_{\omega_{1}}} definable (with parameters) over

    (Qλ;,λ,Aλ).(Q_{\lambda};\in,\mathbb{P}^{\diamondsuit}_{\lambda},A_{\lambda}).
Proof.

Let gλg^{\prime}\subseteq\mathbb{P}^{\diamondsuit}_{\lambda} be generic over VV and let

=Mi,μi,j,Ni,σi,jijω1,(kn,αn)n<ω,λρ,XρρK\mathfrak{C}^{\prime}=\langle\langle M_{i}^{\prime},\mu_{i,j}^{\prime},N_{i}^{\prime},\sigma_{i,j}^{\prime}\mid i\leq j\leq\omega_{1}\rangle,\langle(k_{n}^{\prime},\alpha_{n}^{\prime})\mid n<\omega\rangle,\langle\lambda_{\rho}^{\prime},X_{\rho}^{\prime}\mid\rho\in K^{\prime}\rangle\rangle

be the semantic certificate corresponding to g\bigcup g^{\prime}. Let further GG^{\prime} be (I+)Nω1(I^{+})^{N_{\omega_{1}}^{\prime}}-generic over V[g]V[g^{\prime}] (so in particular over Nω1N_{\omega_{1}}^{\prime}) with S˙g=[n]i0gG\dot{S}^{g^{\prime}}=[n]_{i_{0}}^{\bigcup g^{\prime}}\in G^{\prime}. It is clear that g,Gg^{\prime},G^{\prime} satisfy (i)(i)-(iii)(iii) above. The existence of such filters is Σ11\Sigma^{1}_{1} in a real code for (Qλ;,λ,Aλ)(Q_{\lambda};\in,\mathbb{P}^{\diamondsuit}_{\lambda},A_{\lambda}) so that there are g,GV[h]g,G\in V[h] with (i)(i)-(iii)(iii) by Shoenfield-absoluteness. ∎

We now work in V[h]V[h]. Let G,gG,g be the filters given by the claim above and let

=Mi,μi,j,Ni,σi,jijω1,(kn,αn)n<ω,λξ,XξξK\mathfrak{C}=\langle\langle M_{i},\mu_{i,j},N_{i},\sigma_{i,j}\mid i\leq j\leq\omega_{1}\rangle,\langle(k_{n},\alpha_{n})\mid n<\omega\rangle,\langle\lambda_{\xi},X_{\xi}\mid\xi\in K\rangle\rangle

be the semantic certificate that comes from gg. Let

σω1,ω1+1:Nω1Nω1+1=Ult(Nω1,G)\sigma_{\omega_{1},\omega_{1}+1}\colon N_{\omega_{1}}\rightarrow N_{\omega_{1}+1}=\mathrm{Ult}(N_{\omega_{1}},G)

be the generic ultrapower. We can further extend the generic iteration

Ni,σi,jijω1+1\langle N_{i},\sigma_{i,j}\mid i\leq j\leq\omega_{1}+1\rangle

to one of length κ+1\kappa+1, say

Ni,σi,jijκ.\langle N_{i},\sigma_{i,j}\mid i\leq j\leq\kappa\rangle.

Further, set

M=Mi,μi,jijκσω1,κ(Mi,μi,jijω1).\vec{M}=\langle M_{i},\mu_{i,j}\mid i\leq j\leq\kappa\rangle\coloneqq\sigma_{\omega_{1},\kappa}(\langle M_{i},\mu_{i,j}\mid i\leq j\leq\omega_{1}\rangle).

As \mathfrak{C} is certified, Mω1=M_{\omega_{1}}=\mathcal{H} and as in Claim 5.30, we can extend the tail of M\vec{M} that is an iteration of Mω1M_{\omega_{1}} to a generic iteration of Mω1+(V,NSω1V,A)M_{\omega_{1}}^{+}\coloneqq(V,\mathrm{NS}_{\omega_{1}}^{V},A), say

Mi+,μi,j+ω1ijκ\langle M_{i}^{+},\mu_{i,j}^{+}\mid\omega_{1}\leq i\leq j\leq\kappa\rangle

and have all Mi+M_{i}^{+}, i[ω1,κ]i\in[\omega_{1},\kappa], wellfounded. Let us write

μ+μω1,κ+:VMω1+=:M+.\mu^{+}\coloneqq\mu_{\omega_{1},\kappa}^{+}\colon V\rightarrow M_{\omega_{1}}^{+}=\mathrel{\mathop{\mathchar 58\relax}}M^{+}.

Work in M+M^{+}. We will now use

Mi,μi,j,Ni,σi,jijκ\langle M_{i},\mu_{i,j},N_{i},\sigma_{i,j}\mid i\leq j\leq\kappa\rangle

as part of a certificate. Set

qμ+(p){ω1¯μ+(λ),σ˙i0,ω1+1(n˙)=m˙,N˙ω1+1``ω1¯m˙"}q\coloneqq\mu^{+}(p)\cup\{\ulcorner\underline{\omega_{1}}\mapsto\mu^{+}(\lambda)\urcorner,\ulcorner\dot{\sigma}_{i_{0},\omega_{1}+1}(\dot{n})=\dot{m}\urcorner,\ulcorner\dot{N}_{\omega_{1}+1}\models``\underline{\omega_{1}}\in\dot{m}"\urcorner\}

where m˙\dot{m} represents σω1,ω1+1(S)\sigma_{\omega_{1},\omega_{1}+1}(S) in the term model for Nω1+1N_{\omega_{1}+1}.

Claim 5.34.

qμ+()q\in\mu^{+}(\mathbb{P}^{\diamondsuit}).

Proof.

Set

=Mi,μi,j,Ni,σi,jijκ,(kn,μ+(αn))n<ω,λξ,XξξK\mathfrak{C}^{\ast}=\langle\langle M_{i},\mu_{i,j},N_{i},\sigma_{i,j}\mid i\leq j\leq\kappa\rangle,\langle(k_{n},\mu^{+}(\alpha_{n}))\mid n<\omega\rangle,\langle\lambda_{\xi}^{\ast},X_{\xi}^{\ast}\mid\xi\in K^{\ast}\rangle\rangle

where

  • K=K{ω1}K^{\ast}=K\cup\{\omega_{1}\},

  • for ξK\xi\in K, λξ=μ+(λξ)\lambda_{\xi}^{\ast}=\mu^{+}(\lambda_{\xi}) and Xξ=μ+[Xξ]X_{\xi}^{\ast}=\mu^{+}[X_{\xi}] and

  • λω1=μ+(λ)\lambda_{\omega_{1}}=\mu^{+}(\lambda), Xω1=μ+[Qλ]X_{\omega_{1}}^{\ast}=\mu^{+}[Q_{\lambda}].

We show that \mathfrak{C}^{\ast} is a semantic certificate for qq in M+M^{+}. Note that we have to show that \mathfrak{C}^{\ast} is a certificate relative to

μ+(𝕍max),μ+(A),μ+(Hω2)=(Hω2)M+,μ+(T0),μ+(AννC),μ+(ννC).\mu^{+}(\mathbb{V}_{\mathrm{max}}),\mu^{+}(A),\mu^{+}(H_{\omega_{2}})=(H_{\omega_{2}})^{M^{+}},\mu^{+}(T_{0}),\mu^{+}(\langle A_{\nu}\mid\nu\in C\rangle),\mu^{+}(\langle\mathbb{P}_{\nu}\mid\nu\in C\rangle).

Observe that we can find a corresponding set of formulae Σ+\Sigma^{+} that corresponds to \mathfrak{C}^{\ast} with μ+[g]Σ+\mu^{+}[\bigcup g]\subseteq\Sigma^{+} which we aim to prove to be a syntactic certificate.
We have Mκ=(Hω2)M+M_{\kappa}=\left(H_{\omega_{2}}\right)^{M^{+}}. Notice also that

(kn,μ+(αn))n<ω[μ+(T0)]\langle(k_{n},\mu^{+}(\alpha_{n}))\mid n<\omega\rangle\in[\mu^{+}(T_{0})]

and that (kn)n<ω(k_{n})_{n<\omega} is still a real code for N0N_{0}. Next, we prove 4. First assume ξK\xi\in K. Then

Xξ=μ+[Xξ](μ+(Qλξ);,μ+(λξ),μ+(Aλξ))X_{\xi}^{\ast}=\mu^{+}[X_{\xi}]\prec(\mu^{+}(Q_{\lambda_{\xi}});\in,\mu^{+}(\mathbb{P}^{\diamondsuit}_{\lambda_{\xi}}),\mu^{+}(A_{\lambda_{\xi}}))

and δXξ=δXξ=ξ\delta^{X_{\xi}^{\ast}}=\delta^{X_{\xi}}=\xi as crit(μ)=ω1>ξ\mathrm{crit}(\mu)=\omega_{1}>\xi. As μ+[Xξ]=Xξ\mu^{+}[X_{\xi}]=X_{\xi}^{\ast}, 4 holds for ξ\xi in \mathfrak{C}^{\ast}, since it holds for ξ\xi in \mathfrak{C}.
Finally, let us consider the case ξ=ω1\xi=\omega_{1}. We have

Xω1=μ+[Qλ](μ+(Qλ);,μ+(λ),μ+(Aλ))X_{\omega_{1}}^{\ast}=\mu^{+}[Q_{\lambda}]\prec(\mu^{+}(Q_{\lambda});\in,\mu^{+}(\mathbb{P}^{\diamondsuit}_{\lambda}),\mu^{+}(A_{\lambda}))

and δXω1=ω1\delta^{X_{\omega_{1}}^{\ast}}=\omega_{1} as μ+\mu^{+} has critical point ω1\omega_{1}. Clearly Xω1X_{\omega_{1}}^{\ast} collapses to QλQ_{\lambda}. So if xXω1x\in X_{\omega_{1}}^{\ast} and

M+``\displaystyle M^{+}\models`` Z^ is a μ+(λ)-code for a dense subset of (I˙+)Nκ definable over\displaystyle\hat{Z}\text{ is a }\mu^{+}(\lambda)\text{-code for a dense subset of }(\dot{I}^{+})^{N_{\kappa}}\text{ definable over}
(μ+(Qλ);,μ+(λ),μ+(Aλ))\displaystyle\hskip 60.0pt(\mu^{+}(Q_{\lambda});\in,\mu^{+}(\mathbb{P}^{\diamondsuit}_{\lambda}),\mu^{+}(A_{\lambda}))
with parameter x"\displaystyle\text{with parameter }x"

for some xXω1x\in X_{\omega_{1}}^{\ast}, then by elementarity, the same definition defines a λ\lambda-code ZZ for a dense subset of (I˙+)N˙ω1(\dot{I}^{+})^{\dot{N}_{\omega_{1}}} over

(Qλ;,λ,Aλ)(Q_{\lambda};\in,\mathbb{P}^{\diamondsuit}_{\lambda},A_{\lambda})

with parameter (μ+)1(x)(\mu^{+})^{-1}(x) and we have μ+(Z)=Z^\mu^{+}(Z)=\hat{Z}. Our properties of g,Gg,G imply that there is RGZgR\in G\cap Z^{\bigcup g}. It is not difficult to see

(Z^Xω1)Σ+=σω1,κ[Zg](\hat{Z}\cap X_{\omega_{1}}^{\ast})^{\Sigma^{+}}=\sigma_{\omega_{1},\kappa}[Z^{\bigcup g}]

and hence ω1σω1,κ(R)(Z^Xω1)Σ+\omega_{1}\in\sigma_{\omega_{1},\kappa}(R)\in(\hat{Z}\cap X_{\omega_{1}}^{\ast})^{\Sigma^{+}}. This shows 4 at ω1\omega_{1}.
We conclude that indeed, \mathfrak{C}^{\ast} is a semantic certificate for qq which exists in some outer model of M+M^{+}. This gives qμ+()q\in\mu^{+}(\mathbb{P}^{\diamondsuit}) by Proposition 5.28. ∎

Thus we have

M+\displaystyle M^{+}\models ``ξ<μ+(ω1)\displaystyle``\exists\xi<\mu^{+}(\omega_{1})
(μ+(p){ξ¯μ+(λ)¯,σ˙i0,ξ+1(n˙)=m˙,N˙ξ+1``ξ¯m˙"}μ+())".\displaystyle\left(\mu^{+}(p)\cup\{\ulcorner\underline{\xi}\mapsto\underline{\mu^{+}(\lambda)}\urcorner,\ulcorner\dot{\sigma}_{i_{0},\xi+1}(\dot{n})=\dot{m}\urcorner,\ulcorner\dot{N}_{\xi+1}\models``\underline{\xi}\in\dot{m}"\urcorner\}\in\mu^{+}(\mathbb{P}^{\diamondsuit})\right)".

By elementarity of μ+\mu^{+}, we conclude

V``ξ<ω1(p{ξ¯λ¯,σ˙i0,ξ+1(n˙)=m˙,N˙ξ+1``ξ¯m˙"})".V\models``\exists\xi<\omega_{1}\ \left(p\cup\{\ulcorner\underline{\xi}\mapsto\underline{\lambda}\urcorner,\ulcorner\dot{\sigma}_{i_{0},\xi+1}(\dot{n})=\dot{m}\urcorner,\ulcorner\dot{N}_{\xi+1}\models``\underline{\xi}\in\dot{m}"\urcorner\}\in\mathbb{P}^{\diamondsuit}\right)".

Let ξ\xi witness this and set

q=p{ξ¯λ¯,σ˙i0,ξ+1(n˙)=m˙,N˙ξ+1``ξ¯m˙"}.q=p\cup\{\ulcorner\underline{\xi}\mapsto\underline{\lambda}\urcorner,\ulcorner\dot{\sigma}_{i_{0},\xi+1}(\dot{n})=\dot{m}\urcorner,\ulcorner\dot{N}_{\xi+1}\models``\underline{\xi}\in\dot{m}"\urcorner\}.

We will show that q,ξq,\xi witness (\spadesuit5.4). From this point on, we work in VV again and forget about h,g,h,g,\mathfrak{C}, etc.

Claim 5.35.

qξˇC˙S˙q\Vdash\check{\xi}\in\dot{C}\cap\dot{S}.

Proof.

As in Claim 3.17 in [AS21], exploit the components of τ\tau made up from EE as well as EαE_{\alpha}, α<ω1\alpha<\omega_{1}. ∎

Claim 5.36.

qα<ξˇg˙ξσ˙ξ,ω11[D˙α]q\Vdash\forall\alpha<\check{\xi}\ \dot{g}_{\xi}\cap\dot{\sigma}_{\xi,\omega_{1}}^{-1}[\dot{D}_{\alpha}]\neq\emptyset.

Proof.

Let gg be \mathbb{P}^{\diamondsuit}-generic with qgq\in g and let

=Mi,μi,j,Ni,σi,jijω1,(kn,αn)n<ω,λξ,XξξK\mathfrak{C}=\langle\langle M_{i},\mu_{i,j},N_{i},\sigma_{i,j}\mid i\leq j\leq\omega_{1}\rangle,\langle(k_{n},\alpha_{n})\mid n<\omega\rangle,\langle\lambda_{\xi},X_{\xi}\mid\xi\in K\rangle\rangle

be the resulting semantic certificate. We have ξK\xi\in K and λξ=λ\lambda_{\xi}=\lambda as qgq\in g. Fix some α<ξ\alpha<\xi. Clearly,

Z¯α=ZαQλ\bar{Z}_{\alpha}=Z_{\alpha}\cap Q_{\lambda}

is a λ\lambda-code for a dense subset of (I˙+)N˙ω1(\dot{I}^{+})^{\dot{N}_{\omega_{1}}} which is definable over

(Qλ;,λ,Aλ)(Q_{\lambda};\in,\mathbb{P}^{\diamondsuit}_{\lambda},A_{\lambda})

from a parameter in XξX_{\xi}, namely α\alpha. Recall that δXξ=ξ\delta^{X_{\xi}}=\xi. Using 4, we find that there is

R(Z¯αXξ)gR\in(\bar{Z}_{\alpha}\cap X_{\xi})^{\bigcup g}

with ξR\xi\in R. Note that there are rgr\in g, j<ξ=δXξj<\xi=\delta^{X_{\xi}} as well as k<ωk<\omega with

  1. (i)(i)

    (r,j,k)Z¯αZα(r,j,k)\in\bar{Z}_{\alpha}\subseteq Z_{\alpha} and

  2. (ii)(ii)

    R=σj,ω1([k]jg)R=\sigma_{j,\omega_{1}}([k]_{j}^{\bigcup g}).

By definition of ZαZ_{\alpha}, and as rgr\in g, RDαR\in D_{\alpha} and since ξR\xi\in R, RgξR\in g_{\xi}, where gξg_{\xi} is the generic ultrafilter generating σξ,ξ+1:NξNξ+1\sigma_{\xi,\xi+1}\colon N_{\xi}\rightarrow N_{\xi+1}. ∎

(\spadesuit5.4) follows from Claim 5.35 together with Claim 5.36. ∎

This completes the proof of Theorem 5.20. We denote the forcing \mathbb{P}^{\diamondsuit} constructed above in the instance of a max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} 𝕍max\mathbb{V}_{\mathrm{max}}, the set AHω2A\in H_{\omega_{2}} and appropriate dense D𝕍maxD\subseteq\mathbb{V}_{\mathrm{max}} by (𝕍max,A,D)\mathbb{P}^{\diamondsuit}(\mathbb{V}_{\mathrm{max}},A,D) (and forget that \mathbb{P}^{\diamondsuit} also depends on the choice of T,T0,T,T_{0}, etc.).

5.5 The first blueprint

We will formulate a general theorem that will allow us to prove a variety of instances of MM++()\mathrm{MM}^{++}\Rightarrow(\ast). In order to formulate the relevant forcing axioms, we use that in practice φ𝕍max\varphi^{\mathbb{V}_{\mathrm{max}}} has a specific form.

Definition 5.37.

A max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} 𝕍max\mathbb{V}_{\mathrm{max}} is typical if φ𝕍max\varphi^{\mathbb{V}_{\mathrm{max}}} can be chosen to be the form

φ𝕍max(x)=``\displaystyle\varphi^{\mathbb{V}_{\mathrm{max}}}(x)=`` M,I,a0,,anx=(M,I,a0,,an)\displaystyle\exists M,I,a_{0},\dots,a_{n}\ x=(M,I,a_{0},\dots,a_{n})
yMψΨ[ψ(y)(M;,I,a0,,an)ψ(y)]"\displaystyle\wedge\forall y\in M\bigwedge_{\psi\in\Psi}\left[\psi(y)\leftrightarrow(M;\in,I,a_{0},\dots,a_{n})\models\psi(y)\right]"

for n=n𝕍maxn=n^{\mathbb{V}_{\mathrm{max}}} and a finite set Ψ\Psi of formulae ψ(y)\psi(y) in the language {,I˙,a˙0,,a˙n}\{\in,\dot{I},\dot{a}_{0},\dots,\dot{a}_{n}\}. Moreover, Ψ\Psi contains the formulae ψ(x)=``xI˙"\psi(x)=``x\in\dot{I}" and ψi(x)=``x=a˙i"\psi_{i}(x)=``x=\dot{a}_{i}" for all in𝕍maxi\leq n^{\mathbb{V}_{\mathrm{max}}}. We say that Ψ\Psi witnesses the typicality of 𝕍max\mathbb{V}_{\mathrm{max}}.
This means that q<𝕍maxpq<_{\mathbb{V}_{\mathrm{max}}}p iff there is a generic iteration μ:pp\mu\colon p\rightarrow p^{\ast} of pp in qq of length ω1q+1\omega_{1}^{q}+1 so that the formulae in Ψ\Psi are absolute between q,pq,p^{\ast}.

Remark 5.38.

For example, max\mathbb{P}_{\mathrm{max}} is (or can be construed as) a typical max-variation\mathbb{P}_{\mathrm{max}}\text{-variation}. We have that typicality of max\mathbb{P}_{\mathrm{max}} is witnessed by {ψ0max,ψ1max}\{\psi_{0}^{\mathbb{P}_{\mathrm{max}}},\psi_{1}^{\mathbb{P}_{\mathrm{max}}}\} where

  • ψ0max(y)=``yI˙"\psi_{0}^{\mathbb{P}_{\mathrm{max}}}(y)=``y\in\dot{I}" and

  • ψ1max(y)=``y=a˙0"\psi_{1}^{\mathbb{P}_{\mathrm{max}}}(y)=``y=\dot{a}_{0}".

All max-variations\mathbb{P}_{\mathrm{max}}\text{-variations} we will encounter, except for max\mathbb{Q}_{\mathrm{max}}^{-}, are typical max-variations\mathbb{P}_{\mathrm{max}}\text{-variations}.

Next, we formulate the relevant bounded and unbounded forcing axioms as general as possible.

Definition 5.39.

Suppose ψ(x)\psi(x) is a formula in the language {,I˙,a˙0,,a˙n}\{\in,\dot{I},\dot{a}_{0},\dots,\dot{a}_{n}\} and A=(A0,,An)Hω2\vec{A}=(A_{0},\dots,A_{n})\in H_{\omega_{2}}.

  1. (i)(i)

    We define RAψR^{\psi}_{\vec{A}} via

    RAψ{xHω2(Hω2;,NSω1,A0,,An)ψ(x)}.R^{\psi}_{\vec{A}}\coloneqq\{x\in H_{\omega_{2}}\mid(H_{\omega_{2}};\in,\mathrm{NS}_{\omega_{1}},A_{0},\dots,A_{n})\models\psi(x)\}.
  2. (ii)(ii)

    For xHω2x\in H_{\omega_{2}}, we say that Cω1C\subseteq\omega_{1} is a code for xx if: Let l:ω1ω1×ω1l\colon\omega_{1}\rightarrow\omega_{1}\times\omega_{1} denote Gödels pairing function and E=l[C]E=l[C]. Then (ω1×ω1,E)(\omega_{1}\times\omega_{1},E) is wellfounded and (tc({x}),)(\mathrm{tc}(\{x\}),\in) is the transitive isomorph161616tc\mathrm{tc} denotes transitive closure..

  3. (iii)(iii)

    Cω1C\subseteq\omega_{1} is a code for an element of RAψR^{\psi}_{\vec{A}} if CC is a code for some xRAψx\in R^{\psi}_{\vec{A}}.

Definition 5.40.

Suppose that

  • Γ\Gamma is a class of forcings,

  • A=(A0,,An)Hω2\vec{A}=(A_{0},\dots,A_{n})\in H_{\omega_{2}} and

  • Ψ\Psi is a set of formulae ψ(x)\psi(x) in the language {I˙,a˙0,,a˙n}\{\dot{I},\dot{a}_{0},\dots,\dot{a}_{n}\}.

  1. (i)(i)

    D-BFAAΨ(Γ)D\text{-}\mathrm{BFA}^{\Psi}_{\vec{A}}(\Gamma) states that DD\subseteq\mathbb{R} is \infty-universally Baire and whenever Γ\mathbb{P}\in\Gamma and gg is \mathbb{P}-generic then

    (Hω2;,D,RAψψΨ)VΣ1(Hω2;,D,RAψψΨ)V[g].\left(H_{\omega_{2}};\in,D,R_{\vec{A}}^{\psi}\mid\psi\in\Psi\right)^{V}\prec_{\Sigma_{1}}\left(H_{\omega_{2}};\in,D^{\ast},R_{\vec{A}}^{\psi}\mid\psi\in\Psi\right)^{V[g]}.

    For Δ𝒫()\Delta\subseteq\mathcal{P}(\mathbb{R}), Δ-BFAAΨ(Γ)\Delta\text{-}\mathrm{BFA}^{\Psi}_{\vec{A}}(\Gamma) means D-BFAAΨ(Γ)D\text{-}\mathrm{BFA}^{\Psi}_{\vec{A}}(\Gamma) for all DΔD\in\Delta.

  2. (ii)(ii)

    FAAΨ(Γ)\mathrm{FA}^{\Psi}_{\vec{A}}(\Gamma) states that whenever Γ\mathbb{P}\in\Gamma and

    1. (FA.i)(\mathrm{FA}.i)

      𝒟\mathcal{D} is a set of at most ω1\omega_{1}-many dense subsets of \mathbb{P},

    2. (FA.ii)(\mathrm{FA}.ii)

      𝒩ψ\mathcal{N}_{\psi} is a set of at most ω1\omega_{1}-many \mathbb{P}-names for codes of elements of (RAψ)V(R^{\psi}_{\vec{A}})^{V^{\mathbb{P}}} for ψΨ\psi\in\Psi

    then there is a filter gg\subseteq\mathbb{P} so that

    1. (g.i)(g.i)

      gDg\cap D\neq\emptyset for all D𝒟D\in\mathcal{D} and

    2. (g.ii)(g.ii)

      S˙g={α<ω1pgpαˇS˙}\dot{S}^{g}=\{\alpha<\omega_{1}\mid\exists p\in g\ p\Vdash\check{\alpha}\in\dot{S}\} is a code for an element of RAψR^{\psi}_{\vec{A}} for all S˙𝒩ψ\dot{S}\in\mathcal{N}_{\psi}, ψΨ\psi\in\Psi.

We note that the methods of Bagaria in [Bag00] readily yield the following.

Lemma 5.41.

Suppose that

  1. (i)(i)

    Γ\Gamma is a class of forcings,

  2. (ii)(ii)

    A=(A0,,An)Hω2\vec{A}=(A_{0},\dots,A_{n})\in H_{\omega_{2}} and

  3. (iii)(iii)

    Ψ\Psi is a set of formulae ψ(x)\psi(x) in the language {I˙,a˙0,,a˙n}\{\dot{I},\dot{a}_{0},\dots,\dot{a}_{n}\}.

If FAAΨ(Γ)\mathrm{FA}^{\Psi}_{\vec{A}}(\Gamma) holds then so does uB-BFAAΨ(Γ)\mathrm{uB}\text{-}\mathrm{BFA}^{\Psi}_{\vec{A}}(\Gamma).

Definition 5.42.

Let Ψ\Psi be a set of formulae in the language {I˙,a˙0,,a˙n}\{\dot{I},\dot{a}_{0},\dots,\dot{a}_{n}\} for some nn. For A=(A0,,An)\vec{A}=(A_{0},\dots,A_{n}), we say that a forcing \mathbb{P} is (Ψ,A)(\Psi,\vec{A})-preserving iff

RAψ=(RAψ)VVR^{\psi}_{\vec{A}}=\left(R^{\psi}_{\vec{A}}\right)^{V^{\mathbb{P}}}\cap V

for all ψΨ\psi\in\Psi. ΓAΨ\Gamma^{\Psi}_{\vec{A}} denotes the class of (Ψ,A)(\Psi,\vec{A})-preserving forcings.

Definition 5.43.

A max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} 𝕍max\mathbb{V}_{\mathrm{max}} accepts \diamondsuit-iterations if

``\displaystyle`` If p𝕍max and pp=(M,I,a0,,an𝕍max)\displaystyle\text{If }p\in\mathbb{V}_{\mathrm{max}}\text{ and }p\rightarrow p^{\ast}=(M,I,a_{0},\dots,a_{n^{\mathbb{V}_{\mathrm{max}}}})
is a -iteration then (a0,,an𝕍max)φ𝕍max(p)"\displaystyle\text{ is a }\diamondsuit\text{-iteration }\text{then }\mathcal{H}_{(a_{0},\dots,a_{n^{\mathbb{V}_{\mathrm{max}}}})}\models\varphi^{\mathbb{V}_{\mathrm{max}}}(p^{\ast})"

is provable in ZFC+``ω1 exists"\mathrm{ZFC}^{-}+``\omega_{1}\text{ exists}" (that is, from sufficiently much of ZFC\mathrm{ZFC}).

First Blueprint Theorem 5.44.

Suppose that

  1. (i)(i)

    𝕍max\mathbb{V}_{\mathrm{max}} is a typical max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} with typicality witnessed by Ψ\Psi,

  2. (ii)(ii)

    𝕍max\mathbb{V}_{\mathrm{max}} has unique iterations and accepts \diamondsuit-iterations,

  3. (iii)(iii)

    AHω2\vec{A}\in H_{\omega_{2}} and A\mathcal{H}_{\vec{A}} is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition,

  4. (iv)(iv)

    SRP\mathrm{SRP} holds and

  5. (v)(v)

    FAAΨ(ΓAΨ)\mathrm{FA}^{\Psi}_{\vec{A}}(\Gamma^{\Psi}_{\vec{A}}) holds.

Then 𝕍max-()\mathbb{V}_{\mathrm{max}}\text{-}(\ast) holds as witnessed by gAg_{\vec{A}}.

Proof.

Let us assume n𝕍max=0n^{\mathbb{V}_{\mathrm{max}}}=0, so A=A\vec{A}=A. SRP\mathrm{SRP} entails “NSω1\mathrm{NS}_{\omega_{1}} is saturated” as well as κω2¬κ\forall\kappa\geq\omega_{2}\neg\Box_{\kappa}. Results of Steel [Ste05] show that the latter implies that VV is closed under XMω(X)X\mapsto M_{\omega}^{\sharp}(X). As a consequence

  • ADL()\mathrm{AD}^{L(\mathbb{R})},

  • all sets of reals in L()L(\mathbb{R}) are \infty-universally Baire and

  • (L()V;,D)(L()V[G];,D)(L(\mathbb{R})^{V};\in,D)\equiv(L(\mathbb{R})^{V[G]};\in,D^{\ast}) for all sets DD\subseteq\mathbb{R} in L()L(\mathbb{R}) and any generic extension V[G]V[G] of VV.

Thus generic projective absoluteness holds in VV and if DL()D\in L(\mathbb{R}) is a dense subset of 𝕍max\mathbb{V}_{\mathrm{max}}, then DD^{\ast} is a dense subset of 𝕍max\mathbb{V}_{\mathrm{max}} in any generic extension. Thus (𝕍max,A,D)\mathbb{P}^{\diamondsuit}(\mathbb{V}_{\mathrm{max}},A,D) exists for any such DD.

Claim 5.45.

For any dense D𝕍maxD\subseteq\mathbb{V}_{\mathrm{max}}, DL()D\in L(\mathbb{R}), (𝕍max,A,D)\mathbb{P}^{\diamondsuit}(\mathbb{V}_{\mathrm{max}},A,D) is (Ψ,A)(\Psi,A)-preserving.

Proof.

Let gg be (𝕍max,A,D)\mathbb{P}^{\diamondsuit}(\mathbb{V}_{\mathrm{max}},A,D)-generic. By Theorem 5.20, in V[g]V[g] we have

DD^{\ast}q0q_{0}qω1=(N,I,b)q_{\omega_{1}}=(N^{*},I^{*},b^{\ast})p0p_{0}pω1Np_{\omega_{1}^{N}}pω1p_{\omega_{1}}((Hω2)V,NSω1V,A)=A((H_{\omega_{2}})^{V},\mathrm{NS}_{\omega_{1}}^{V},A)=\mathcal{H}_{A}𝕍max\mathbb{V}_{\mathrm{max}}\inσ0,ω1\sigma_{0,\omega_{1}}\in\inμ0,ω1N\mu_{0,\omega_{1}^{N}}μω1N,ω1\mu_{\omega_{1}^{N},\omega_{1}}==\in

where

  1. (.i)(\mathbb{P}^{\diamondsuit}.i)

    μ0,ω1,σ0,ω1\mu_{0,\omega_{1}},\sigma_{0,\omega_{1}} are generic iterations of p0p_{0}, q0q_{0} respectively,

  2. (.ii)(\mathbb{P}^{\diamondsuit}.ii)

    μ0,ω1N\mu_{0,\omega_{1}^{N}} witnesses q0<𝕍maxp0q_{0}<_{\mathbb{V}_{\mathrm{max}}}p_{0},

  3. (.iii)(\mathbb{P}^{\diamondsuit}.iii)

    μ0,ω1=σ0,ω1(μ0,ω1N)\mu_{0,\omega_{1}}=\sigma_{0,\omega_{1}}(\mu_{0,\omega_{1}^{N}}) and

  4. (.iv)(\mathbb{P}^{\diamondsuit}.iv)

    the generic iteration σ0,ω1:q0qω1\sigma_{0,\omega_{1}}\colon q_{0}\rightarrow q_{\omega_{1}} is a \diamondsuit-iteration.

Note that

(N;,I,b)φ𝕍max(A).(N^{\ast};\in,I^{\ast},b^{\ast})\models\varphi^{\mathbb{V}_{\mathrm{max}}}(\mathcal{H}_{A}).

As 𝕍max\mathbb{V}_{\mathrm{max}} is typical, we must have b=Ab^{\ast}=A. As 𝕍max\mathbb{V}_{\mathrm{max}} accepts \diamondsuit-iterations,

(Hω2;,NSω1,A)V[g]φ𝕍max(qω1)(H_{\omega_{2}};\in,\mathrm{NS}_{\omega_{1}},A)^{V[g]}\models\varphi^{\mathbb{V}_{\mathrm{max}}}(q_{\omega_{1}})

and finally it follows from typicality that

(Hω2;,NSω1,A)V[g]φ𝕍max(A).(H_{\omega_{2}};\in,\mathrm{NS}_{\omega_{1}},A)^{V[g]}\models\varphi^{\mathbb{V}_{\mathrm{max}}}(\mathcal{H}_{A}).

As Ψ\Psi witnesses the typicality of 𝕍max\mathbb{V}_{\mathrm{max}}, it follows that (𝕍max,A,D)\mathbb{P}^{\diamondsuit}(\mathbb{V}_{\mathrm{max}},A,D) is (Ψ,A)(\Psi,A)-preserving. ∎

It follows from Theorem 5.20, Lemma 5.41 and Lemma 5.17 that

  • gADg_{\vec{A}}\cap D\neq\emptyset for all dense D𝕍maxD\subseteq\mathbb{V}_{\mathrm{max}}, DL()D\in L(\mathbb{R}) and

  • 𝒫(ω1)={𝒫(ω1)ppgAμ:pp is guided by gA}\mathcal{P}(\omega_{1})=\bigcup\{\mathcal{P}(\omega_{1})\cap p^{\ast}\mid p\in g_{\vec{A}}\wedge\mu\colon p\rightarrow p^{\ast}\text{ is guided by }g_{\vec{A}}\}.

By Corollary 5.16, gAg_{\vec{A}} witnesses 𝕍max-()\mathbb{V}_{\mathrm{max}}\text{-}(\ast). ∎

Remark 5.46.

If additionally there are a proper class of Woodin cardinals, then gAg_{\vec{A}} meets all \infty-universally Baire dense subsets of 𝕍max\mathbb{V}_{\mathrm{max}}.

5.6 The second blueprint

From the right perspective, 𝕍max-()\mathbb{V}_{\mathrm{max}}\text{-}(\ast) is a forcing axiom. As noted before, Asperó-Schindler show that if there is a proper class of Woodin cardinals, then ()(\ast) is equivalent to (𝒫()L())(\mathcal{P}(\mathbb{R})\cap L(\mathbb{R}))-BMM++\mathrm{BMM}^{++}. Some additional assumption like large cardinals is necessary as BMM\mathrm{BMM} implies closure of VV under sharps while ()(\ast) holds in the max\mathbb{P}_{\mathrm{max}}-extension of L()L(\mathbb{R}). We try to generalize this result roughly to all natural max-variations\mathbb{P}_{\mathrm{max}}\text{-variations} for which the \mathbb{P}^{\diamondsuit}-method can prove them from some forcing axiom. We will have to restrict to better behaved max-variations\mathbb{P}_{\mathrm{max}}\text{-variations}.

Definition 5.47.

Let 𝕍max\mathbb{V}_{\mathrm{max}} be a max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} with unique iterations and gg be 𝕍max\mathbb{V}_{\mathrm{max}}-generic over L()L(\mathbb{R}).

  1. (i)(i)

    We say that gg produces (A0,,An𝕍max)(A_{0},\dots,A_{n^{\mathbb{V}_{\mathrm{max}}}}) if there is pgp\in g so that if

    μ:pp=(M,I,a0,,an𝕍max)\mu\colon p\rightarrow p^{\ast}=(M,I,a_{0},\dots,a_{n^{\mathbb{V}_{\mathrm{max}}}})

    is the gg-iteration of pp then ai=Aia_{i}=A_{i} for all in𝕍maxi\leq n^{\mathbb{V}_{\mathrm{max}}}.

  2. (ii)(ii)

    If 𝕍max\mathbb{V}_{\mathrm{max}} is typical, we set

    g(Hω2,NSω1,A0,,An𝕍max)L()[g]\mathcal{H}_{g}\coloneqq(H_{\omega_{2}},\mathrm{NS}_{\omega_{1}},A_{0},\dots,A_{n^{\mathbb{V}_{\mathrm{max}}}})^{L(\mathbb{R})[g]}

    where (A0,,An𝕍max)(A_{0},\dots,A_{n^{\mathbb{V}_{\mathrm{max}}}}) is the unique sequence produced by gg.

Definition 5.48.

A max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} 𝕍max\mathbb{V}_{\mathrm{max}} with unique iterations is self-assembling if: Whenever gg is 𝕍max\mathbb{V}_{\mathrm{max}}-generic over L()L(\mathbb{R}) then

  1. (i)(i)

    g\mathcal{H}_{g} is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition and

  2. (ii)(ii)

    (Hω2)L()[g]={ppg,μ:pp guided by g}(H_{\omega_{2}})^{L(\mathbb{R})[g]}=\bigcup\{p^{\ast}\mid p\in g,\mu\colon p\rightarrow p^{\ast}\text{ guided by }g\}.

All max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} we will work with are self-assembling (assuming AD\mathrm{AD} in L()L(\mathbb{R})). For example, max\mathbb{P}_{\mathrm{max}} is self-assembling. The relevance of this property for us is partly explained by the following result.

Lemma 5.49.

Suppose 𝕍max\mathbb{V}_{\mathrm{max}} is a self-assembling max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} with unique iterations and typicality of 𝕍max\mathbb{V}_{\mathrm{max}} is witnessed by a set Ψ\Psi of (Σ1Π1)(\Sigma_{1}\cup\Pi_{1})-formulae. If 𝕍max-()\mathbb{V}_{\mathrm{max}}\text{-}(\ast) holds as witnessed by gg then

  1. (i)(i)

    A\mathcal{H}_{\vec{A}} is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition and

  2. (ii)(ii)

    g=gAg=g_{\vec{A}}

where gg produces A\vec{A}.

Proof.

As 𝕍max\mathbb{V}_{\mathrm{max}} is self-assembling, g\mathcal{H}_{g} is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition. Moreover, 𝒫(ω1)L()[g]\mathcal{P}(\omega_{1})\subseteq L(\mathbb{R})[g] as gg witnesses 𝕍max-()\mathbb{V}_{\mathrm{max}}\text{-}(\ast). It follows that g=A\mathcal{H}_{g}=\mathcal{H}_{\vec{A}} and thus (i)(i) holds.
Let us now prove (ii)(ii), note that it suffices to show ggAg\subseteq g_{\vec{A}}.

Claim 5.50.

If qgq\in g and

σ:qq=(M,I,a0,,an𝕍max)\sigma\colon q\rightarrow q^{\ast}=(M^{\ast},I^{\ast},a_{0}^{\ast},\dots,a_{n^{\mathbb{V}_{\mathrm{max}}}}^{\ast})

is the gg-iteration of qq then I=NSω1MI^{\ast}=\mathrm{NS}_{\omega_{1}}\cap M^{\ast} and ai=Aia_{i}^{\ast}=A_{i} for in𝕍maxi\leq n^{\mathbb{V}_{\mathrm{max}}}.

Proof.

ai=Aia_{i}^{\ast}=A_{i} for in𝕍maxi\leq n^{\mathbb{V}_{\mathrm{max}}} follows easily from typicality, we show I=NSω1MI^{\ast}=\mathrm{NS}_{\omega_{1}}\cap M^{\ast}. It is clear that INSω1I^{\ast}\subseteq\mathrm{NS}_{\omega_{1}} since if SIS\in I^{\ast}, then a tail of the iteration points of the iteration σ:qq\sigma\colon q\rightarrow q^{\ast} is missing from SS. On the other hand, suppose S𝒫(ω1)MIS\in\mathcal{P}(\omega_{1})^{M^{\ast}}-I^{\ast}. We may assume S=μ(S¯)S=\mu(\bar{S}) for some S¯q\bar{S}\in q. If Cω1C\subseteq\omega_{1} is club then as 𝕍max\mathbb{V}_{\mathrm{max}} is self-assembling, there is rgr\in g, such that if ν:rr\nu\colon r\rightarrow r^{\ast} is the gg-iteration of rr, then Cran(ν)C\in\mathrm{ran}(\nu), say C=ν(C¯)C=\nu(\bar{C}). Note that we may assume r<𝕍maxqr<_{\mathbb{V}_{\mathrm{max}}}q, say this is witnessed by

σ¯:qq¯=(M¯,I¯,a¯).\bar{\sigma}\colon q\rightarrow\bar{q}=(\bar{M},\bar{I},\bar{a}).

Write r=(N,J,b)r=(N,J,b). As 𝕍max\mathbb{V}_{\mathrm{max}} is typical, I¯=JM¯\bar{I}=J\cap\bar{M} and hence σ¯(S¯)C¯\bar{\sigma}(\bar{S})\cap\bar{C}\neq\emptyset which gives

νσ¯(S¯)C.\nu\circ\bar{\sigma}(\bar{S})\cap C\neq\emptyset.

Clearly, ν(σ¯)\nu(\bar{\sigma}) is an iteration of qq of length ω1+1\omega_{1}+1 guided by gg. Thus, by Lemma 5.11, ν(σ¯)=σ\nu(\bar{\sigma})=\sigma. SCS\cap C\neq\emptyset follows. ∎

Let pgp\in g and let μ:pp\mu\colon p\rightarrow p^{\ast} be the gg-iteration of pp.

Claim 5.51.

Aφ𝕍max(p)\mathcal{H}_{\vec{A}}\models\varphi^{\mathbb{V}_{\mathrm{max}}}(p^{\ast}).

Proof.

Let ψΨ\psi\in\Psi and assume ψ\psi is Σ1\Sigma_{1}, so write ψ(x)=yθ(x,y)\psi(x)=\exists y\ \theta(x,y) where θ\theta is Σ0\Sigma_{0}. So suppose for some xpx\in p and yHω2y\in H_{\omega_{2}} we have

Ayθ(x,y).\mathcal{H}_{\vec{A}}\models\exists y\ \theta(x,y).

As 𝕍max\mathbb{V}_{\mathrm{max}} is self-assembling, we can find qgq\in g with

  1. (q.i)(q.i)

    q<𝕍maxpq<_{\mathbb{V}_{\mathrm{max}}}p as witnessed by μ¯:pp¯\bar{\mu}\colon p\rightarrow\bar{p} and

  2. (q.ii)(q.ii)

    Aθ(x,σ(y))\mathcal{H}_{\vec{A}}\models\theta(x,\sigma(y)) for some yqy\in q

where σ:qq\sigma\colon q\rightarrow q^{\ast} is the gg-iteration of qq. By Claim 5.50,

qΣ0Aq^{\ast}\prec_{\Sigma_{0}}\mathcal{H}_{\vec{A}}

and as σ(μ¯)=μ\sigma(\bar{\mu})=\mu by Lemma 5.11 as well as elementarity of σ\sigma we find

qθ(μ¯(x),y).q\models\theta(\bar{\mu}(x),y).

Finally, q(φ𝕍max(p¯))q\models(\varphi^{\mathbb{V}_{\mathrm{max}}}(\bar{p})) so that

p¯zθ(μ¯(x),z)\bar{p}\models\exists z\ \theta(\bar{\mu}(x),z)

and hence pzθ(x,z)p\models\exists z\ \theta(x,z) by elemntarity of μ¯\bar{\mu}.
The “dual argument” works if ψ\psi is Π1\Pi_{1} instead. ∎

Now if GG is Col(ω,2ω1)\mathrm{Col}(\omega,2^{\omega_{1}})-generic then the above shows that μ:pp\mu\colon p\rightarrow p^{\ast} witnesses A<𝕍maxp\mathcal{H}_{\vec{A}}<_{\mathbb{V}_{\mathrm{max}}}p in V[G]V[G]. Thus pgAp\in g_{\vec{A}}. ∎

Theorem 5.44 gives a hint how the forcing axiom equivalent to 𝕍max-()\mathbb{V}_{\mathrm{max}}\text{-}(\ast) should look like. However, ΓAΨ\Gamma^{\Psi}_{\vec{A}} is not the right class of forcings, for example one can construe two max-variations\mathbb{P}_{\mathrm{max}}\text{-variations} which are the same as forcings, but for which the resulting classes ΓAΨ\Gamma^{\Psi}_{\vec{A}} are fundamentally different for reasonable A\vec{A}. Instead, we should look at the class of forcings which roughly lie on the way to the good extensions highlighted in the 𝕍max\mathbb{V}_{\mathrm{max}}-Multiverse View.

Definition 5.52.

Suppose that

  1. (i)(i)

    𝕍max\mathbb{V}_{\mathrm{max}} is a typical max-variation\mathbb{P}_{\mathrm{max}}\text{-variation},

  2. (ii)(ii)

    typicality of 𝕍max\mathbb{V}_{\mathrm{max}} is witnessed by Ψ\Psi and

  3. (iii)(iii)

    A=(A0,,An𝕍max)Hω2\vec{A}=(A_{0},\dots,A_{n^{\mathbb{V}_{\mathrm{max}}}})\in H_{\omega_{2}}.

The class ΓA𝕍max(Ψ)\Gamma^{\mathbb{V}_{\mathrm{max}}}_{\vec{A}}(\Psi) consists of all (Ψ,A)(\Psi,\vec{A})-preserving forcings \mathbb{P} so that if gg is \mathbb{P}-generic, then there is a forcing V[g]\mathbb{Q}\in V[g] with

V[g]`` is (Ψ,A)-preserving"V[g]\models``\mathbb{Q}\text{ is }(\Psi,\vec{A})\text{-preserving}"

and if further hh is \mathbb{Q}-generic over V[g]V[g], then in V[g][h]V[g][h] both

  1. (h.i)(h.i)

    A\mathcal{H}_{\vec{A}} is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition and

  2. (h.ii)(h.ii)

    NSω1\mathrm{NS}_{\omega_{1}} is saturated.

It just so happens that, maybe by accident, for the max-variations\mathbb{P}_{\mathrm{max}}\text{-variations} we will look at explicitly, if there is a proper class of Woodin cardinals then one can choose Ψ\Psi so that ΓAΨ=ΓA𝕍max(Ψ)\Gamma^{\Psi}_{\vec{A}}=\Gamma^{\mathbb{V}_{\mathrm{max}}}_{\vec{A}}(\Psi) in case that ΓA𝕍max\Gamma^{\mathbb{V}_{\mathrm{max}}}_{\vec{A}}\neq\emptyset.

Definition 5.53.

Suppose that (M,I)(M,I) is a potentially iterable structure and YY\subseteq\mathbb{R}. We say that (M,I)(M,I) is (generically) YY-iterable if for XYMX\coloneqq Y\cap M we have

  1. (i)(i)

    (M;,I,X)(M;\in,I,X) is a model of (sufficiently much of) ZFC\mathrm{ZFC} where YY is allowed as a class parameter in the schemes and

  2. (ii)(ii)

    whenever (Mα,Iα,Xα),μα,βαβγ\langle(M_{\alpha},I_{\alpha},X_{\alpha}),\mu_{\alpha,\beta}\mid\alpha\leq\beta\leq\gamma\rangle is a generic iteration of (M0,I0,X0)=(M,I,X)(M_{0},I_{0},X_{0})=(M,I,X), i.e.

    1. (μ.i)(\mu.i)

      (Mα+1;,Iα+1,Xα+1)(M_{\alpha+1};\in,I_{\alpha+1},X_{\alpha+1}) is an ultrapower of (Mα;,Iα,Xα)(M_{\alpha};\in,I_{\alpha},X_{\alpha}) by a MαM_{\alpha}-generic ultrafilter w.r.t. IαI_{\alpha} for α<γ\alpha<\gamma,

    2. (μ.ii)(\mu.ii)

      if αγ\alpha\leq\gamma is a limit then

      (Mα,Iα,Xα),μξ,αξ<α=lim((Mβ,Iβ,Xβ),μβ,ξβξ<α)\langle(M_{\alpha},I_{\alpha},X_{\alpha}),\mu_{\xi,\alpha}\mid\xi<\alpha\rangle=\varinjlim(\langle(M_{\beta},I_{\beta},X_{\beta}),\mu_{\beta,\xi}\mid\beta\leq\xi<\alpha\rangle)

    then Xγ=YMγX_{\gamma}=Y\cap M_{\gamma}.

Proposition 5.54 (Folklore).

Suppose that NSω1\mathrm{NS}_{\omega_{1}} is saturated and XX\subseteq\mathbb{R} is \infty-universally Baire. Then in any forcing extension V[G]V[G] in which Hω2VH_{\omega_{2}}^{V} is countable, (Hω2,NSω1,X)V(H_{\omega_{2}},\mathrm{NS}_{\omega_{1}},X)^{V} is XX^{\ast}-iterable.

Proof.

Let \mathbb{P} be some forcing which collapses 2ω12^{\omega_{1}} to ω\omega. Let T,SVT,S\in V witness that XX is |||\mathbb{P}|-universally Baire with p[T]=X,p[S]=Xp[T]=X,p[S]=\mathbb{R}-X. Let GG be \mathbb{P}-generic over VV. Let

(Mα,Iα,Xα),μα,βαβγ\langle(M_{\alpha},I_{\alpha},X_{\alpha}),\mu_{\alpha,\beta}\mid\alpha\leq\beta\leq\gamma\rangle

be any generic iteration of (M0,I0,X0)=(Hκ,NSω1,X)V(M_{0},I_{0},X_{0})=(H_{\kappa},\mathrm{NS}_{\omega_{1}},X)^{V}. Then as in Claim 5.30, this iteration can be lifted to a generic iteration

(Mα+,Iα,Xα),μα,β+αβγ\langle(M_{\alpha}^{+},I_{\alpha},X_{\alpha}),\mu_{\alpha,\beta}^{+}\mid\alpha\leq\beta\leq\gamma\rangle

of (M0+,I0,X0)=(V,NSω1V,X)(M_{0}^{+},I_{0},X_{0})=(V,\mathrm{NS}_{\omega_{1}}^{V},X). In particular, MγM_{\gamma} is wellfounded as Mγ+M^{+}_{\gamma} is wellfounded. Let μ+=μ0,γ+\mu^{+}=\mu^{+}_{0,\gamma}, M+=Mγ+M^{+}=M^{+}_{\gamma}.

Claim 5.55.

In V[G]V[G], p[μ+(T)]=Xp[\mu^{+}(T)]=X^{\ast}.

Proof.

Work in V[G]V[G]. We have X=p[T]X^{\ast}=p[T] and this implies Xp[μ+(T)]X^{\ast}\subseteq p[\mu^{+}(T)], likewise Xp[μ+(S)]\mathbb{R}-X^{\ast}\subseteq p[\mu^{+}(S)]. In M+M^{+}, μ+(T),μ+(S)\mu^{+}(T),\mu^{+}(S) project to complements and an absoluteness of wellfoundedness argument shows that this must be true in V[G]V[G] as well, so that we indeed have X=p[μ+(T)]X^{\ast}=p[\mu^{+}(T)]. ∎

We conclude

Xγ=μ+(X)=μ+(p[T])=p[μ+(T)]M+=XM+=XMγX_{\gamma}=\mu^{+}(X)=\mu^{+}(p[T])=p[\mu^{+}(T)]\cap M^{+}=X^{\ast}\cap M^{+}=X^{\ast}\cap M_{\gamma}

which is what we had to show. ∎

Lemma 5.56.

Suppose that

  1. (i)(i)

    𝕍max\mathbb{V}_{\mathrm{max}} is a typical self-assembling max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} with unique iterations,

  2. (ii)(ii)

    typicality of 𝕍max\mathbb{V}_{\mathrm{max}} is witnessed by a set of (Σ1Π1)(\Sigma_{1}\cup\Pi_{1})-formulae Ψ\Psi,

  3. (iii)(iii)

    there is a proper class of Woodin cardinals,

  4. (iv)(iv)

    𝕍max-()\mathbb{V}_{\mathrm{max}}\text{-}(\ast) holds as witnessed by gg and

  5. (v)(v)

    gg produces A\vec{A}.

Then (𝒫()L())-BFAAΨ(ΓA𝕍max(Ψ))(\mathcal{P}(\mathbb{R})\cap L(\mathbb{R}))\text{-}\mathrm{BFA}^{\Psi}_{\vec{A}}(\Gamma^{\mathbb{V}_{\mathrm{max}}}_{\vec{A}}(\Psi)) holds true.

Proof.

We will assume n𝕍max=0n^{\mathbb{V}_{\mathrm{max}}}=0. Let gg witness 𝕍max-()\mathbb{V}_{\mathrm{max}}\text{-}(\ast). Let pgp\in g and μ:pp=(M,I,A)\mu\colon p\rightarrow p^{\ast}=(M,I,A) the generic iteration of pp guided by gg. We will show that

(𝒫()L())-BFAAΨ(ΓA𝕍max(Ψ))(\mathcal{P}(\mathbb{R})\cap L(\mathbb{R}))\text{-}\mathrm{BFA}^{\Psi}_{A}(\Gamma^{\mathbb{V}_{\mathrm{max}}}_{A}(\Psi))

holds. By Lemma 5.49, g=A\mathcal{H}_{g}=\mathcal{H}_{A} is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition. Now let ΓA𝕍max(Ψ)\mathbb{P}\in\Gamma^{\mathbb{V}_{\mathrm{max}}}_{A}(\Psi) and X𝒫()L()X\in\mathcal{P}(\mathbb{R})\cap L(\mathbb{R}). Let GG be \mathbb{P}-generic. We have to show that

(Hω2;,X,RAψψΨ)VΣ1(Hω2;,X,RAψψΨ)V[G].(H_{\omega_{2}};\in,X,R^{\psi}_{A}\mid\psi\in\Psi)^{V}\prec_{\Sigma_{1}}(H_{\omega_{2}};\in,X^{\ast},R^{\psi}_{A}\mid\psi\in\Psi)^{V[G]}.

So let vHω2Vv\in H_{\omega_{2}}^{V}, and θ\theta a Σ0\Sigma_{0}-formula such that

(Hω2;,X,RAψψΨ)V[G]uθ(u,v).(H_{\omega_{2}};\in,X^{\ast},R^{\psi}_{A}\mid\psi\in\Psi)^{V[G]}\models\exists u\ \theta(u,v).

As 𝕍max\mathbb{V}_{\mathrm{max}} is self-assembling, we may assume without loss of generality that v=μ(v¯)v=\mu(\bar{v}) for some v¯p\bar{v}\in p. Let V[G][H]V[G][H] be a further generic extension by (Ψ,A)(\Psi,A)-preserving forcing so that in V[G][H]V[G][H]

  1. (H.i)(H.i)

    AV[G][H]\mathcal{H}_{A}^{V[G][H]} is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition and

  2. (H.ii)(H.ii)

    NSω1\mathrm{NS}_{\omega_{1}} is saturated.

Note that

(Hω2;,X,RAψψΨ)V[G]Σ0(Hω2;,X,RAψψΨ)V[G][H](H_{\omega_{2}};\in,X^{\ast},R^{\psi}_{A}\mid\psi\in\Psi)^{V[G]}\prec_{\Sigma_{0}}(H_{\omega_{2}};\in,X^{\ast\ast},R^{\psi}_{A}\mid\psi\in\Psi)^{V[G][H]}

as the extension is (Ψ,A)(\Psi,A)-preserving. Here, XX^{\ast\ast} denotes the reevaluation of XX^{\ast} in V[G][H]V[G][H]. Accordingly,

(Hω2;,X,RAψψΨ)V[G][H]uθ(u,v).(H_{\omega_{2}};\in,X^{\ast\ast},R^{\psi}_{A}\mid\psi\in\Psi)^{V[G][H]}\models\exists u\ \theta(u,v).

Let gg be Col(ω,2ω1)V[G][H]\mathrm{Col}(\omega,2^{\omega_{1}})^{V[G][H]}-generic over V[G][H]V[G][H] and XX^{\ast\ast\ast} the reevaluation of XX^{\ast\ast} in V[G][H][g]V[G][H][g]. Then in V[G][H][g]V[G][H][g],

(Hω2,NSω1,X)V[G][H](H_{\omega_{2}},\mathrm{NS}_{\omega_{1}},X^{\ast\ast})^{V[G][H]}

is XX^{\ast\ast\ast}-iterable by Proposition 5.54.

Claim 5.57.

AV[G][H]<𝕍maxq\mathcal{H}_{A}^{V[G][H]}<_{\mathbb{V}_{\mathrm{max}}}q for all qgq\in g.

Proof.

Let qgq\in g and σ:qq\sigma\colon q\rightarrow q^{\ast} the gg-iteration of qq. It follows from the proof of Lemma 5.49 that

(Hω2;,NSω1,A)Vφ𝕍max(q)(H_{\omega_{2}};\in,\mathrm{NS}_{\omega_{1}},A)^{V}\models\varphi^{\mathbb{V}_{\mathrm{max}}}(q^{\ast})

and since the extension VV[G][H]V\subseteq V[G][H] is (Ψ,A)(\Psi,A)-preserving,

(Hω2;,NSω1,A)V[G][H]φ𝕍max(q)(H_{\omega_{2}};\in,\mathrm{NS}_{\omega_{1}},A)^{V[G][H]}\models\varphi^{\mathbb{V}_{\mathrm{max}}}(q^{\ast})

follows. ∎

Let qgq\in g, q<𝕍maxpq<_{\mathbb{V}_{\mathrm{max}}}p as witnessed by μ¯:pp¯\bar{\mu}\colon p\rightarrow\bar{p}. AV[G][H]\mathcal{H}^{V[G][H]}_{A} witnesses in V[G][H][g]V[G][H][g] that there is r=(M,I,a)<𝕍maxqr=(M,I,a)<_{\mathbb{V}_{\mathrm{max}}}q, as witnessed by σ:qq\sigma\colon q\rightarrow q^{\ast}, so that

  1. (r.i)(r.i)

    (M,I,Y)(M,I,Y) is XX^{\ast\ast\ast}-iterable,

  2. (r.ii)(r.ii)

    (M;,I)``V=Hω2I=NSω1"(M;\in,I)\models``V=H_{\omega_{2}}\wedge I=\mathrm{NS}_{\omega_{1}}" and

  3. (r.iii)(r.iii)

    (M;,Y,RAψψΨ)Muθ(u,σ(μ¯(v¯))(M;\in,Y,R^{\psi}_{A}\mid\psi\in\Psi)^{M}\models\exists u\ \theta(u,\sigma(\bar{\mu}(\bar{v}))

where Y=XMY=X^{\ast\ast\ast}\cap M. As there is a proper class of Woodin cardinals,

(L()V;,X)(L()V[G][H][g];,X)(L(\mathbb{R})^{V};\in,X)\equiv(L(\mathbb{R})^{V[G][H][g]};\in,X^{\ast\ast\ast})

and hence a density argument shows that there is q=(N,J,b)gq=(N,J,b)\in g, q<𝕍maxpq<_{\mathbb{V}_{\mathrm{max}}}p, as witnessed by μ:pp\mu^{\prime}\colon p\rightarrow p^{\prime}, such that

  1. (q.i)(q.i)

    (N,J,XN)(N,J,X\cap N) is XX-iterable,

  2. (q.ii)(q.ii)

    (N;,J)``V=Hω2J=NSω1"(N;\in,J)\models``V=H_{\omega_{2}}\wedge J=\mathrm{NS}_{\omega_{1}}" and

  3. (q.iii)(q.iii)

    for some uNu\in N, (N;,XN,RAψψΨ)Nθ(u,μ(v))(N;\in,X\cap N,R^{\psi}_{A}\mid\psi\in\Psi)^{N}\models\theta(u,\mu^{\prime}(v)).

Let σ:qq=(N,J,a)\sigma\colon q\rightarrow q^{\ast}=(N^{\ast},J^{\ast},a^{\ast}) be the gg-iteration of qq. By (the proof of) Lemma 5.49 (ii)(ii)

(Hω2,NSω1,A)Vφ𝕍max(q)(H_{\omega_{2}},\mathrm{NS}_{\omega_{1}},A)^{V}\models\varphi^{\mathbb{V}_{\mathrm{max}}}(q^{\ast})

and hence

(N;,XN,RAψψΨ)NΣ0(Hω2;,X,RAψψΨ)V.(N^{\ast};\in,X\cap N^{\ast},R^{\psi}_{A}\mid\psi\in\Psi)^{N^{\ast}}\prec_{\Sigma_{0}}(H_{\omega_{2}};\in,X,R^{\psi}_{A}\mid\psi\in\Psi)^{V}.

Moreover,

σ:(N,J,XN)(N,J,XN)\sigma\colon(N,J,X\cap N)\rightarrow(N^{\ast},J^{\ast},X\cap N^{\ast})

is fully elementary by (q.i)(q.i) so that

(N;,XN,RAψψΨ)Nθ(σ(u),σ(μ(v))).(N^{\ast};\in,X\cap N^{\ast},R^{\psi}_{A}\mid\psi\in\Psi)^{N^{\ast}}\models\theta(\sigma(u),\sigma(\mu^{\prime}(v))).

By Lemma 5.11, σμ=μ\sigma\circ\mu^{\prime}=\mu, so we can conclude

(Hω2;,X,RAψψΨ)Vθ(σ(u),v)(H_{\omega_{2}};\in,X,R^{\psi}_{A}\mid\psi\in\Psi)^{V}\models\theta(\sigma(u),v)

which is what we had to show. ∎

In fact, we get an equivalence in case we can apply the \mathbb{P}^{\diamondsuit}-method.

Second Blueprint Theorem 5.58.

Suppose that

  1. (i)(i)

    There are a proper class of Woodin cardinals,

  2. (ii)(ii)

    𝕍max\mathbb{V}_{\mathrm{max}} is a self-assembling typical max-variation\mathbb{P}_{\mathrm{max}}\text{-variation},

  3. (iii)(iii)

    𝕍max\mathbb{V}_{\mathrm{max}} has unique iterations and accepts \diamondsuit-iterations,

  4. (iv)(iv)

    typicality of 𝕍max\mathbb{V}_{\mathrm{max}} is witnessed by a set Ψ\Psi of (Σ1Π1)(\Sigma_{1}\cup\Pi_{1})-formulae,

  5. (v)(v)

    A=(A0,,An𝕍max)Hω2\vec{A}=(A_{0},\dots,A_{n^{\mathbb{V}_{\mathrm{max}}}})\in H_{\omega_{2}} and

  6. (vi)(vi)

    ΓAΨ=ΓA𝕍max(Ψ)\Gamma^{\Psi}_{\vec{A}}=\Gamma^{\mathbb{V}_{\mathrm{max}}}_{\vec{A}}(\Psi).

The following are equivalent:

  1. (.i)(\bigast.i)

    There is a filter g𝕍maxg\subseteq\mathbb{V}_{\mathrm{max}} which witnesses 𝕍max-()\mathbb{V}_{\mathrm{max}}\text{-}(\ast) and produces A\vec{A}.

  2. (.ii)(\bigast.ii)

    (𝒫()L())-BFAAΨ(ΓA𝕍max(Ψ))(\mathcal{P}(\mathbb{R})\cap L(\mathbb{R}))\text{-}\mathrm{BFA}^{\Psi}_{\vec{A}}(\Gamma^{\mathbb{V}_{\mathrm{max}}}_{\vec{A}}(\Psi)).

Proof.

(.i)(\bigast.i)\Rightarrow(.ii)(\bigast.ii)” follows from Theorem 5.56. “(.ii)(\bigast.ii)\Rightarrow(.i)(\bigast.i)” can be proven similar to the First Blueprint Theorem 5.44. We use the existence of a proper class of Woodin cardinals instead of SRP\mathrm{SRP} to justify ADL()\mathrm{AD}^{L(\mathbb{R})}, that all sets of reals in L()L(\mathbb{R}) are \infty-universally Baire and generic L()L(\mathbb{R})-absoluteness. It is not immediate that A\mathcal{H}_{\vec{A}} is almost a 𝕍max\mathbb{V}_{\mathrm{max}}-condition, nor did we assume that NSω1\mathrm{NS}_{\omega_{1}} is saturated, however as ΓA𝕍max(Ψ)=ΓAΨ\Gamma^{\mathbb{V}_{\mathrm{max}}}_{\vec{A}}(\Psi)=\Gamma^{\Psi}_{\vec{A}}, we can pass to a (Ψ,A)(\Psi,\vec{A})-preserving forcing extension in which both of this is true. It follows that

g={p𝕍max\displaystyle g=\{p\in\mathbb{V}_{\mathrm{max}}\mid μ:pp a generic iteration of\displaystyle\exists\mu\colon p\rightarrow p^{\ast}\text{ a generic iteration of }
length ω1+1 with Aφ𝕍max(p)}\displaystyle\text{length }\omega_{1}+1\text{ with }\mathcal{H}_{\vec{A}}\models\varphi^{\mathbb{V}_{\mathrm{max}}}(p^{\ast})\}

witnesses 𝕍max-()\mathbb{V}_{\mathrm{max}}\text{-}(\ast) and produces A\vec{A}. ∎

5.7 The max\mathbb{Q}_{\mathrm{max}}-variation max\mathbb{Q}_{\mathrm{max}}^{-}

We will have to do some work in order to find a forcing which freezes NSω1\mathrm{NS}_{\omega_{1}} along a witness ff of (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}). The main idea is to find the correct max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} to throw into the \diamondsuit-()(\ast)-forcing. Let us first introduce Woodin’s max\mathbb{Q}_{\mathrm{max}}.

Definition 5.59.

A condition pmaxp\in\mathbb{Q}_{\mathrm{max}} is a generically iterable structure p=(N,I,f)p=(N,I,f) with

  1. (max.i)(\mathbb{Q}_{\mathrm{max}}.i)

    N``f guesses Col(ω,ω1)-filters"N\models``f\text{ guesses }\mathrm{Col}(\omega,\omega_{1})\text{-filters}" and

  2. (max.ii)(\mathbb{Q}_{\mathrm{max}}.ii)

    N``ηf:Col(ω,ω1)(𝒫(ω1)/I)+ is a dense embedding"N\models``\eta_{f}\mathrel{\mathop{\mathchar 58\relax}}\mathrm{Col}(\omega,\omega_{1})\rightarrow(\mathcal{P}(\omega_{1})/I)^{+}\text{ is a dense embedding}", where ηf\eta_{f} is the embedding associated to ff.

The order on max\mathbb{Q}_{\mathrm{max}} is given by

q=(M,J,h)<maxpq=(M,J,h)<_{\mathbb{Q}_{\mathrm{max}}}p

iff there is an iteration

j:pp=(N,I,f)j\colon p\rightarrow p^{\ast}=(N^{\ast},I^{\ast},f^{\ast})

in qq with f=hf^{\ast}=h.

We mention that it follows from Lemma 3.10 that if (N,I,f)(N,I,f) is a max\mathbb{Q}_{\mathrm{max}}-condition then N``f witnesses +(ω1<ω)N\models``f\text{ witnesses }\diamondsuit^{+}(\omega_{1}^{{<}\omega})”.
Forcing that f\mathcal{H}_{f} is almost a max\mathbb{Q}_{\mathrm{max}}-condition for some ff essentially amounts to forcing “NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense”. We replace max\mathbb{Q}_{\mathrm{max}} by an equivalent forcing for which this is easier to achieve.

Definition 5.60.

A condition pmaxp\in\mathbb{Q}_{\mathrm{max}}^{-} is a generically iterable structure of the form p=(N,I,f)p=(N,I,f) so that

(N;,I)``f witnesses I+(ω1<ω)".(N;\in,I)\models``f\text{ witnesses }\diamondsuit_{I}^{+}(\omega_{1}^{{<}\omega})".

The order on max\mathbb{Q}_{\mathrm{max}}^{-} is given by q(M,J,h)<max(N,I,f)=:pq\coloneqq(M,J,h)<_{\mathbb{Q}_{\mathrm{max}}^{-}}(N,I,f)=\mathrel{\mathop{\mathchar 58\relax}}p iff there is an iteration

j:pp=(N,I,f)j\colon p\rightarrow p^{\ast}=(N^{\ast},I^{\ast},f^{\ast})

in qq so that

  1. (<max.i)(<_{\mathbb{Q}_{\mathrm{max}}^{-}}.i)

    f=hf^{\ast}=h and

  2. (<max.ii)(<_{\mathbb{Q}_{\mathrm{max}}^{-}}.ii)

    if SJ+pS\in J^{+}\cap p^{\ast} then there is bCol(ω,ω1q)b\in\mathrm{Col}(\omega,\omega_{1}^{q}) with SbhSmodJS^{h}_{b}\subseteq S\mod J.

We note that max\mathbb{Q}_{\mathrm{max}}^{-} is essentially unchanged if condition (<max.ii)(<_{\mathbb{Q}_{\mathrm{max}}^{-}}.ii) is dropped, but demanding it is convenient for us.

Proposition 5.61 (Woodin, [Woo10, Definition 6.20]).

Suppose 𝒫(ω1)\mathcal{P}(\omega_{1}) is closed under AAA\mapsto A^{\sharp} and II is a normal uniform ideal. Suppose ff guesses Col(ω,ω1)\mathrm{Col}(\omega,\omega_{1})-filters. The following are equivalent:

  1. (i)(i)

    ff witnesses I+(ω1<ω)\diamondsuit_{I}^{+}(\omega_{1}^{{<}\omega}).

  2. (ii)(ii)

    For any Aω1A\subseteq\omega_{1},

    {α<ω1f(α) is not generic over L[Aα]}I\{\alpha<\omega_{1}\mid f(\alpha)\text{ is not generic over }L[A\cap\alpha]\}\in I

    and for all b𝔹b\in\mathbb{B}, SbfI+S^{f}_{b}\in I^{+}.

The following is the key result about max\mathbb{Q}_{\mathrm{max}}^{-}.

Lemma 5.62.

Suppose JJ is a normal uniform ideal, hh witnesses J+(ω1<ω)\diamondsuit^{+}_{J}(\omega_{1}^{{<}\omega}), and 𝒫(ω1)\mathcal{P}(\omega_{1}) is closed under AAA\mapsto A^{\sharp}. For any p=(N,I,f)maxp=(N,I,f)\in\mathbb{Q}_{\mathrm{max}}^{-} there is an iteration

j:pp=(N,I,f)j\colon p\rightarrow p^{\ast}=(N^{\ast},I^{\ast},f^{\ast})

so that

  1. (i)(i)

    f=hmodJf^{\ast}=h\mod J (so in particular ff^{\ast} witnesses J+(ω1<ω)\diamondsuit^{+}_{J}(\omega_{1}^{{<}\omega})) and

  2. (ii)(ii)

    if SJ+NS\in J^{+}\cap N^{\ast} then there is bCol(ω,ω1)b\in\mathrm{Col}(\omega,\omega_{1}) with SbfSmodJS^{f^{\ast}}_{b}\subseteq S\mod J.

Proof.

Let xx be a real coding pp and let DD be the club of xx-indiscernibles below ω1\omega_{1}. By induction along ω1\omega_{1} we will define a filter gCol(ω,<ω1)g\subseteq\mathrm{Col}(\omega,{<}\omega_{1}). Let

ααii<ω1\vec{\alpha}\coloneqq\langle\alpha_{i}\mid i<\omega_{1}\rangle

be the increasing enumeration of DD. Assume that gαig\upharpoonright\alpha_{i} is already defined. First we define g(αi)g(\alpha_{i}):
Case 1: h(αi)h(\alpha_{i}) is generic over L[x,gαi]L[x,g\upharpoonright\alpha_{i}]. Then let g(αi)=h(αi)g(\alpha_{i})=h(\alpha_{i}).
Case 2: Case 1 fails. Then let g(αi)g(\alpha_{i}) be some generic for Col(ω,αi)\mathrm{Col}(\omega,\alpha_{i}) over L[x,gαi]L[x,g\upharpoonright\alpha_{i}].
Next, we choose g(αi,αi+1)g\upharpoonright(\alpha_{i},\alpha_{i+1}) to be any generic for Col(ω,(αi,αi+1))\mathrm{Col}(\omega,(\alpha_{i},\alpha_{i+1})) over L[x,gαi+1]L[x,g\upharpoonright\alpha_{i}+1].

Claim 5.63.

gg is generic over L[x]L[x].

Proof.

α\vec{\alpha} enumerates a club of L[x]L[x]-regular ordinals. Thus for any i<ω1i<\omega_{1}, Col(ω,<αi)\mathrm{Col}(\omega,{<}\alpha_{i}) has the αi\alpha_{i}-c.c. in L[x]L[x]. It follows by induction that gαig\upharpoonright\alpha_{i} is Col(ω,<αi)\mathrm{Col}(\omega,{<}\alpha_{i})-generic over L[x]L[x] and finally that gg is Col(ω,<ω1)\mathrm{Col}(\omega,{<}\omega_{1})-generic over L[x]L[x]. ∎

By induction on α<ω1\alpha<\omega_{1}, we now define a generic iteration

pi,σi,j,Uiijα\langle p_{i},\sigma_{i,j},U_{i}\mid i\leq j\leq\alpha\rangle

of p0=pp_{0}=p. Here, UiU_{i} denotes the generic filter that produces the ultrapower σi,i+1\sigma_{i,i+1}.
Let ηα\eta_{\alpha} denote the map

(ησ0,α(f))pα:Col(ω,ω1pα)((𝒫(ω1)/σ0,α(I))+)pα.(\eta_{\sigma_{0,\alpha}(f)})^{p_{\alpha}}\colon\mathrm{Col}(\omega,\omega_{1}^{p_{\alpha}})\rightarrow((\mathcal{P}(\omega_{1})/\sigma_{0,\alpha}(I))^{+})^{p_{\alpha}}.

Simply pick UαU_{\alpha} least, according to the canonical global wellorder in

L[x,gω1pα+1]L[x,g\upharpoonright\omega_{1}^{p_{\alpha}}+1]

so that

  1. (U.i)(U.i)

    UαU_{\alpha} is ((𝒫(ω1)/σ0,α(I))+))pα((\mathcal{P}(\omega_{1})/\sigma_{0,\alpha}(I))^{+}))^{p_{\alpha}}-generic over pαp_{\alpha} and

  2. (U.ii)(U.ii)

    ηα[g(ω1pα)]Uα\eta_{\alpha}[g(\omega_{1}^{p_{\alpha}})]\subseteq U_{\alpha}.

This is possible as g(ω1pα)g(\omega_{1}^{p_{\alpha}}) is Col(ω,ω1pα)\mathrm{Col}(\omega,\omega_{1}^{p_{\alpha}})-generic over pαp_{\alpha}, as

pα``ηpα is a regular embedding"p_{\alpha}\models``\eta^{p_{\alpha}}\text{ is a regular embedding}"

and as pαp_{\alpha} is countable in L[x,gω1pα+1]L[x,g\upharpoonright\omega_{1}^{p_{\alpha}}+1]. UαU_{\alpha} induces the generic ultrapower σα,α+1:pαUlt(pα,Uα)=:pα+1\sigma_{\alpha,\alpha+1}\colon p_{\alpha}\rightarrow\mathrm{Ult}(p_{\alpha},U_{\alpha})=\mathrel{\mathop{\mathchar 58\relax}}p_{\alpha+1}.

Finally we get a generic iteration map

σσ0,ω1:pppω1=(N,I,f).\sigma\coloneqq\sigma_{0,\omega_{1}}\colon p\rightarrow p^{\ast}\coloneqq p_{\omega_{1}}=(N^{\ast},I^{\ast},f^{\ast}).
Claim 5.64.

f=hmodJf^{\ast}=h\mod J.

Proof.

ff^{\ast} and gg agree on the club of iteration points, i.e. we have f(ω1pα)=g(ω1pα)f^{\ast}(\omega_{1}^{p_{\alpha}})=g(\omega_{1}^{p_{\alpha}}) for any α<ω1\alpha<\omega_{1}. Here we use that UαU_{\alpha} extends πpα[g(α)]\pi^{p_{\alpha}}[g(\alpha)].
Moreover,

{α<ω1h(α) is not generic over L[x,gα]}J\{\alpha<\omega_{1}\mid h(\alpha)\text{ is not generic over }L[x,g\upharpoonright\alpha]\}\in J

by Proposition 5.61 as hh witnesses J+(ω1<ω)\diamondsuit^{+}_{J}(\omega_{1}^{{<}\omega}). By construction of gg, it follows that {α<ω1h(α)g(α)}J\{\alpha<\omega_{1}\mid h(\alpha)\neq g(\alpha)\}\in J. As JJ is a normal uniform ideal, we can conclude

{α<ω1f(α)h(α)}J.\{\alpha<\omega_{1}\mid f^{\ast}(\alpha)\neq h(\alpha)\}\in J.

It follows that ff^{\ast} witnesses J+(ω1<ω)\diamondsuit^{+}_{J}(\omega_{1}^{{<}\omega}). Now let SJ+NS\in J^{+}\cap N^{\ast}. We have to show the following.

Claim 5.65.

SbfSmodJS^{f^{\ast}}_{b}\subseteq S\mod J for some bCol(ω,ω1)b\in\mathrm{Col}(\omega,\omega_{1}).

Proof.

We will prove that the intersection of DD with SbfSS^{f^{\ast}}_{b}-S is bounded below ω1\omega_{1} for some bb. Find αD\alpha\in D so that

  1. (α.i)(\alpha.i)

    there is S¯pα\bar{S}\in p_{\alpha} with σα,ω1(S¯)=S\sigma_{\alpha,\omega_{1}}(\bar{S})=S and

  2. (α.ii)(\alpha.ii)

    αS\alpha\in S.

By (α.ii)(\alpha.ii), there must be some bg(α)b\in g(\alpha) with

bCol(ω,α)L[x,gα]S¯U˙αb\Vdash^{L[x,g\upharpoonright\alpha]}_{\mathrm{Col}(\omega,\alpha)}\bar{S}\in\dot{U}_{\alpha}

where U˙α\dot{U}_{\alpha} is a name for the least filter UU that is generic over pαp_{\alpha} and contains ηα[g˙]\eta_{\alpha}[\dot{g}], where g˙\dot{g} is now the canonical name for the generic. Now suppose α<βSbfD\alpha<\beta\in S^{f^{\ast}}_{b}\cap D. There is then an elementary embedding

j:L[x]L[x]j\colon L[x]\rightarrow L[x]

with

  1. (j.i)(j.i)

    j(α)=βj(\alpha)=\beta and

  2. (j.ii)(j.ii)

    crit(j)=α\mathrm{crit}(j)=\alpha.

We have that jj lifts to an elementary embedding

j+:L[x,gα]L[x,gβ]j^{+}\colon L[x,g\upharpoonright\alpha]\rightarrow L[x,g\upharpoonright\beta]

so that

b=j(b)Col(ω,β)L[x,gβ]j+(S¯)j+(U˙α).b=j(b)\Vdash^{L[x,g\upharpoonright\beta]}_{\mathrm{Col}(\omega,\beta)}j^{+}\left(\bar{S}\right)\in j^{+}\left(\dot{U}_{\alpha}\right).

Clearly, j+(U˙α)g(β)=Uβj^{+}\left(\dot{U}_{\alpha}\right)^{g(\beta)}=U_{\beta} and thus

βσβ,ω1(j+(S¯))\beta\in\sigma_{\beta,\omega_{1}}\left(j^{+}\left(\bar{S}\right)\right)

as bf(β)=g(β)b\in f^{\ast}(\beta)=g(\beta). Note that all points in DD are iteration points and recall that ff^{\ast} and gg agree on iteration points.

Subclaim 5.66.

j+(S¯)=σα,β(S¯)j^{+}\left(\bar{S}\right)=\sigma_{\alpha,\beta}\left(\bar{S}\right).

Proof.

The reason is that, since α\alpha is a limit ordinal, pαp_{\alpha} is the direct limit along pi,σi,kik<α\langle p_{i},\sigma_{i,k}\mid i\leq k<\alpha\rangle and thus there is some γ<α\gamma<\alpha and S¯¯pγ\bar{\bar{S}}\in p_{\gamma} with σγα(S¯¯)=S¯\sigma_{\gamma\alpha}\left(\bar{\bar{S}}\right)=\bar{S}. Hence

j+(S¯)\displaystyle j^{+}\left(\bar{S}\right) =j+(σγ,α(S¯¯))=j+(σγ,α)(j+(S¯¯))\displaystyle=j^{+}\left(\sigma_{\gamma,\alpha}\left(\bar{\bar{S}}\right)\right)=j^{+}(\sigma_{\gamma,\alpha})\left(j^{+}\left(\bar{\bar{S}}\right)\right)
=σγ,β(S¯¯)=σα,β(σγ,α(S¯¯))=σα,β(S¯).\displaystyle=\sigma_{\gamma,\beta}\left(\bar{\bar{S}}\right)=\sigma_{\alpha,\beta}\left(\sigma_{\gamma,\alpha}\left(\bar{\bar{S}}\right)\right)=\sigma_{\alpha,\beta}\left(\bar{S}\right).

Here, we use j+(σγ,α)=σγ,βj^{+}(\sigma_{\gamma,\alpha})=\sigma_{\gamma,\beta} in the third equation. This holds as our lift j+j^{+} satisfies j+(gα)=gβj^{+}(g\upharpoonright\alpha)=g\upharpoonright\beta and so it is easy to see that j+(Uii<α)=Uii<βj^{+}(\langle U_{i}\mid i<\alpha\rangle)=\langle U_{i}\mid i<\beta\rangle so that

j+(pi,σi,kik<α)=pi,σi,kik<β.j^{+}(\langle p_{i},\sigma_{i,k}\mid i\leq k<\alpha\rangle)=\langle p_{i},\sigma_{i,k}\mid i\leq k<\beta\rangle.

All in all, βσβ,ω1(σα,β(S¯))=S\beta\in\sigma_{\beta,\omega_{1}}\left(\sigma_{\alpha,\beta}\left(\bar{S}\right)\right)=S. Thus

(SbfS)Dα\left(S_{b}^{f^{\ast}}-S\right)\cap D\subseteq\alpha

so that SbfSmodJS_{b}^{f^{\ast}}\subseteq S\mod J.

Proposition 5.67 (Folklore?).

Suppose there is a precipitous ideal on ω1\omega_{1}. Then 𝒫(ω1)\mathcal{P}(\omega_{1}) is closed under AAA\mapsto A^{\sharp}.

Proof.

It is easy to see that \mathbb{R} is closed under xxx\mapsto x^{\sharp}. Let II be a precipitous ideal and let j:VM=Ult(V,g)j\colon V\rightarrow M=\mathrm{Ult}(V,g) be the generic ultrapower of VV in the extension V[g]V[g], gg generic for I+I^{+}. Then A=j(A)ω1VMA=j(A)\cap\omega_{1}^{V}\in M and is coded by a real in MM. By elementarity, M\mathbb{R}\cap M is closed under xxx\mapsto x^{\sharp}. Thus AA^{\sharp} exists in MV[g]M\subseteq V[g]. As forcing cannot add a sharp, AVA^{\sharp}\in V. ∎

Lemma 5.68.

Assume AD\mathrm{AD} in L()L(\mathbb{R}). The inclusion maxmax\mathbb{Q}_{\mathrm{max}}\hookrightarrow\mathbb{Q}_{\mathrm{max}}^{-} is a dense embedding.

Proof.

It is easy to see that if p,qmaxp,q\in\mathbb{Q}_{\mathrm{max}} then

q<maxpq<maxp.q<_{\mathbb{Q}_{\mathrm{max}}}p\Leftrightarrow q<_{\mathbb{Q}_{\mathrm{max}}^{-}}p.

Now let pmaxp\in\mathbb{Q}_{\mathrm{max}}^{-} and find xx a real coding pp. Our assumptions imply by Woodin’s analysis of max\mathbb{Q}_{\mathrm{max}} under ADL()\mathrm{AD}^{L(\mathbb{R})} that there is q=(M,J,h)maxq=(M,J,h)\in\mathbb{Q}_{\mathrm{max}} with xMx^{\sharp}\in M. By Proposition 5.67,

M``𝒫(ω1) is closed under AA".M\models``\mathcal{P}(\omega_{1})\text{ is closed under }A\mapsto A^{\sharp}".

Thus we may apply Lemma 5.61 inside MM and find an iteration

j:pp=(N,I,f)j\colon p\rightarrow p^{\ast}=(N^{\ast},I^{\ast},f^{\ast})

so that

q(M,J,f)maxq^{\prime}\coloneqq(M,J,f^{\ast})\in\mathbb{Q}_{\mathrm{max}}

and jj witnesses q<maxpq^{\prime}<_{\mathbb{Q}_{\mathrm{max}}^{-}}p. ∎

It is not obvious how to even prove construct a single max\mathbb{Q}_{\mathrm{max}}-condition assuming only ADL()\mathrm{AD}^{L(\mathbb{R})}. Woodin worked with a variant max\mathbb{Q}_{\mathrm{max}}^{\ast} of max\mathbb{Q}_{\mathrm{max}} instead to analyze the max\mathbb{Q}_{\mathrm{max}}-extension of L()L(\mathbb{R}). We remark that this can be done with max\mathbb{Q}_{\mathrm{max}}^{-} as well. The arguments are, modulo Lemma 5.62, quite similar to the arguments in the max\mathbb{Q}_{\mathrm{max}}^{\ast} analysis.

6 Consistency of QM\mathrm{QM} and forcing “NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense”

We are now in position to force QM\mathrm{QM} and force “NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense”.

We can now finally find a forcing which freezes NSω1\mathrm{NS}_{\omega_{1}} along ff assuming large cardinals and that ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}).

We will also reap what we have sown by replacing max\mathbb{Q}_{\mathrm{max}} with max\mathbb{Q}_{\mathrm{max}}^{-}.

Proof of Lemma 4.9.

Use the Woodin cardinal to make NSω1\mathrm{NS}_{\omega_{1}} saturated while turning ff into a witness of +(ω1<ω)\diamondsuit^{+}(\omega_{1}^{{<}\omega}) by ff-semiproper forcing in a generic extension V[g]V[g] using the iteration theorem 3.15. Shelah’s construction to make NSω1\mathrm{NS}_{\omega_{1}} saturated works just as well in this context. Observe that

(Hω2,NSω1,f)V[g](H_{\omega_{2}},\mathrm{NS}_{\omega_{1}},f)^{V[g]}

is a almost a max\mathbb{Q}_{\mathrm{max}}^{-}-condition in V[g]V[g]. Work in V[g]V[g]. Next we want to apply Theorem 5.20 with 𝕍max=max\mathbb{V}_{\mathrm{max}}=\mathbb{Q}_{\mathrm{max}}^{-} for the dense set D=maxD=\mathbb{Q}_{\mathrm{max}}^{-}. Note that the universe is closed under XXX\mapsto X^{\sharp} and as DD is Π21\Pi^{1}_{2}, DD is \infty-universally Baire. We cannot guarantee full generic absoluteness for small forcings, however we actually only need that for any forcing \mathbb{P} of size 2ω2\leq 2^{\omega_{2}} we have that

  1. (i)(i)

    (max)V[g]V[g]=(max)V[g](\mathbb{Q}_{\mathrm{max}}^{-})^{V[g]^{\mathbb{P}}}\cap V[g]=(\mathbb{Q}_{\mathrm{max}}^{-})^{V[g]} and

  2. (ii)(ii)

    (max)V[g](\mathbb{Q}_{\mathrm{max}}^{-})^{V[g]^{\mathbb{P}}} is a max-variation\mathbb{P}_{\mathrm{max}}\text{-variation} in V[g]V[g]^{\mathbb{P}}

(i)(i) is again guaranteed by the closure under XXX\mapsto X^{\sharp}. The only nontrivial thing one has to verify for (ii)(ii) is that max\mathbb{Q}_{\mathrm{max}}^{-} has no minimal conditions in V[g]V[g]^{\mathbb{P}}. This follows from the closure of \mathbb{R} under xM1(x)x\mapsto M_{1}^{\sharp}(x).
Thus =(max,f,max)\mathbb{P}^{\diamondsuit}=\mathbb{P}^{\diamondsuit}(\mathbb{Q}_{\mathrm{max}}^{-},f,\mathbb{Q}_{\mathrm{max}}^{-}) exists and in a further extension V[g][h]V[g][h] by \mathbb{P}^{\diamondsuit} we have:

max\mathbb{Q}_{\mathrm{max}}^{-}q0q_{0}qω1=(Nω1,Iω1,f)q_{\omega_{1}}=(N_{\omega_{1}},I_{\omega_{1}},f)p0p_{0}pω1q0p_{\omega_{1}^{q_{0}}}pω1p_{\omega_{1}}((Hω2)V[g],NSω1V[g],f)((H_{\omega_{2}})^{V[g]},\mathrm{NS}_{\omega_{1}}^{V[g]},f)max\mathbb{Q}_{\mathrm{max}}^{-}\inσ0,ω1\sigma_{0,\omega_{1}}\in\inμ0,ω1q0\mu_{0,\omega_{1}^{q_{0}}}μω1q0,ω1\mu_{\omega_{1}^{q_{0}},\omega_{1}}==\in

So that

  1. (.i)(\mathbb{P}^{\diamondsuit}.i)

    μ0,ω1,σ0,ω1\mu_{0,\omega_{1}},\sigma_{0,\omega_{1}} are generic iterations of p0p_{0}, q0q_{0} respectively,

  2. (.ii)(\mathbb{P}^{\diamondsuit}.ii)

    μ0,ω1q0\mu_{0,\omega_{1}^{q_{0}}} witnesses q0<maxp0q_{0}<_{\mathbb{Q}_{\mathrm{max}}^{-}}p_{0},

  3. (.iii)(\mathbb{P}^{\diamondsuit}.iii)

    μ0,ω1=σ0,ω1(μ0,ω1q0)\mu_{0,\omega_{1}}=\sigma_{0,\omega_{1}}(\mu_{0,\omega_{1}^{q_{0}}}) and

  4. (.iv)(\mathbb{P}^{\diamondsuit}.iv)

    the generic iteration σ0,ω1:q0qω1\sigma_{0,\omega_{1}}\colon q_{0}\rightarrow q_{\omega_{1}} is a \diamondsuit-iteration.

Claim 6.1.

ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) in V[g][h]V[g][h].

Proof.

By Lemma 5.19 and (.iv)(\mathbb{P}^{\diamondsuit}.iv), Iω1=NSfV[g][h]Nω1I_{\omega_{1}}=\mathrm{NS}_{f}^{V[g][h]}\cap N_{\omega_{1}}, in particular ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) in V[g][h]V[g][h]. ∎

It remains to show that the extension VV[g][h]V\subseteq V[g][h] has “frozen NSω1V\mathrm{NS}_{\omega_{1}}^{V} along ff”. Let S𝒫(ω1)VS\in\mathcal{P}(\omega_{1})^{V}. It follows from (.ii)(\mathbb{P}^{\diamondsuit}.ii), (.iii)(\mathbb{P}^{\diamondsuit}.iii) and the definition of <max<_{\mathbb{Q}_{\mathrm{max}}^{-}} (especially (<max.ii)(<_{\mathbb{Q}_{\mathrm{max}}^{-}}.ii)) that one of the following holds:

  • Either SIω1S\in I_{\omega_{1}},

  • or for some pCol(ω,ω1)p\in\mathrm{Col}(\omega,\omega_{1}) we have SpfSmodIω1S^{f}_{p}\subseteq S\mod I_{\omega_{1}}.

As any \diamondsuit-iteration is correct, Iω1=NSω1V[g][h]Nω1I_{\omega_{1}}=\mathrm{NS}_{\omega_{1}}^{V[g][h]}\cap N_{\omega_{1}}. It follows that

  • either SNSω1V[g][h]S\in\mathrm{NS}_{\omega_{1}}^{V[g][h]},

  • or for some pCol(ω,ω1)p\in\mathrm{Col}(\omega,\omega_{1}) we have SpfSmodNSω1V[g][h]S^{f}_{p}\subseteq S\mod\mathrm{NS}_{\omega_{1}}^{V[g][h]},

which is what we had to show. ∎

Remark 6.2.

Instead of closure of VV under XM1X\mapsto M_{1}^{\sharp} we could just as well have assumed that there is a second Woodin cardinal with a measurable above.

Theorem 6.3.

Suppose ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) and there is a supercompact limit of supercompact cardinals. Then there is a ff-preserving forcing extension in which ff witnesses QM\mathrm{QM}.

Proof.

Let κ\kappa be a supercompact limit of supercompact cardinals and

L:VκVκL\colon V_{\kappa}\rightarrow V_{\kappa}

an associated Laver function. We describe a QQ-iteration w.r.t. ff

=α,˙βακ,β<κ\mathbb{P}=\langle\mathbb{P}_{\alpha},\dot{\mathbb{Q}}_{\beta}\mid\alpha\leq\kappa,\beta<\kappa\rangle

that forces QM\mathrm{QM}. For any α<κ\alpha<\kappa, ˙α\dot{\mathbb{Q}}_{\alpha} is a two step-iteration of the form

˙α=˙α0¨α1\dot{\mathbb{Q}}_{\alpha}=\dot{\mathbb{Q}}_{\alpha}^{0}\ast\ddot{\mathbb{Q}}^{1}_{\alpha}

with |˙α|<κ|\dot{\mathbb{Q}}_{\alpha}|<\kappa. If α\alpha is a successor (or 0) then

  1. (i)(i)

    ˙α0\dot{\mathbb{Q}}_{\alpha}^{0} is forced to be a ff-preserving forcing that freezes NSω1\mathrm{NS}_{\omega_{1}} along ff and

  2. (ii)(ii)

    ¨α1\ddot{\mathbb{Q}}^{1}_{\alpha} is a name for a ff-preserving partial order forcing SRP\mathrm{SRP}.

Note that ˙α0\dot{\mathbb{Q}}_{\alpha}^{0} exists by Lemma 4.9 and ¨α1\ddot{\mathbb{Q}}^{1}_{\alpha} exists by Corollary LABEL:getSRPcor.

If α\alpha is a limit ordinal, then

  1. (i)(i)

    ˙α0\dot{\mathbb{Q}}_{\alpha}^{0} is L(α)L(\alpha) if that is a α\mathbb{P}_{\alpha}-name for a ff-preserving forcing and the trivial forcing else,

  2. (ii)(ii)

    ¨α1\ddot{\mathbb{Q}}^{1}_{\alpha} is as in the successor case.

It is clear that this constitutes a QQ-iteration and hence \mathbb{P} preserves ff and in particular ω1\omega_{1} is not collapsed. \mathbb{P} is κ\kappa-c.c.. As we use ff-preserving forcings guessed by LL at limit steps, QM\mathrm{QM} holds in the extension as witnessed by ff by the usual argument. ∎

If one is only interested in forcing “NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense”, a slightly weaker large cardinal assumption is sufficient.

Theorem 6.4.

Suppose ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) and κ\kappa is an inaccessible limit of <κ{<}\kappa-supercompact cardinals. Then there is a ff-preserving forcing extension in which NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense.

Proof.

Indeed any nice iteration

=α,˙βακ,β<κ\mathbb{P}=\langle\mathbb{P}_{\alpha},\dot{\mathbb{Q}}_{\beta}\mid\alpha\leq\kappa,\beta<\kappa\rangle

so that for all γ<κ\gamma<\kappa

Vκ``γ is a Q-iteration w.r.t. f"V_{\kappa}\models``\mathbb{P}_{\gamma}\text{ is a }Q\text{-iteration w.r.t. }f"

preserves ff and forces “NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense”. To see this, first of all note that \mathbb{P} is κ\kappa-c.c. by Fact LABEL:niceccfact. Now any γ\mathbb{P}_{\gamma} for γ<κ\gamma<\kappa preserves ff by Theorem 4.8 applied in VκV_{\kappa} and it follows immediately that \mathbb{P} preserves ff. Suppose now that GG is \mathbb{P}-generic and

V[G]SNSω1+.V[G]\models S\in\mathrm{NS}_{\omega_{1}}^{+}.

There must be some nonlimit γ<κ\gamma<\kappa with SV[Gγ]S\in V[G_{\gamma}]. As ˙γGγ\dot{\mathbb{Q}}_{\gamma}^{G_{\gamma}} freezes NSω1\mathrm{NS}_{\omega_{1}} along ff in V[Gγ]V[G_{\gamma}], there must be some bCol(ω,ω1)b\in\mathrm{Col}(\omega,\omega_{1}) with SbfSmodNSω1S^{f}_{b}\subseteq S\mod\mathrm{NS}_{\omega_{1}} in V[Gγ+1]V[G_{\gamma+1}], hence in V[G]V[G]. ∎

Neither of these results answers the original question, as Woodin asks specifically for a semiproper forcing, but QQ-iterations are not stationary set preserving if NSω1\mathrm{NS}_{\omega_{1}} is not ω1\omega_{1}-dense to begin with. However, we have one more trick up our sleeves: For once we will pick ff more carefully.

Lemma 6.5.

Suppose S=Sαα<ω1\vec{S}=\langle S_{\alpha}\mid\alpha<\omega_{1}\rangle is a sequence of pairwise disjoint stationary sets in ω1\omega_{1} and (Sα)\diamondsuit(S_{\alpha}) holds for all α<ω1\alpha<\omega_{1}. Then there is ff witnessing (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) so that for all α<ω1\alpha<\omega_{1}, there is pCol(ω,ω1)p\in\mathrm{Col}(\omega,\omega_{1}) with SpfSαS^{f}_{p}\subseteq S_{\alpha}.

Proof.

From (Sα)\diamondsuit(S_{\alpha}), we get a witness fαf_{\alpha} of (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) so that fα(β)f_{\alpha}(\beta) is the trivial filter if βS\beta\notin S. Let bαα<ω1\langle b_{\alpha}\mid\alpha<\omega_{1}\rangle be an enumeration of some maximal antichain in Col(ω,ω1)\mathrm{Col}(\omega,\omega_{1}) of size 1\aleph_{1}. Now define f:ω1Hω1f\colon\omega_{1}\rightarrow H_{\omega_{1}} as follows: For βSα\beta\in S_{\alpha} we let

f(β)={pCol(ω,β)ppqfα(β)pbαq}.f(\beta)=\{p\in\mathrm{Col}(\omega,\beta)\mid\exists p^{\prime}\leq p\exists q\in f_{\alpha}(\beta)\ p^{\prime}\leq{b_{\alpha}}^{\frown}q\}.

Note that there is at most one α\alpha with βSα\beta\in S_{\alpha}. If β\beta is not in any SαS_{\alpha}, let f(β)f(\beta) be the trivial filter. It is now clear that SbαfSαS^{f}_{b_{\alpha}}\subseteq S_{\alpha}, but we still need to verify that ff indeed witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}). So let pCol(ω,ω1)p\in\mathrm{Col}(\omega,\omega_{1}) and

D=Dαα<ω1\vec{D}=\langle D_{\alpha}\mid\alpha<\omega_{1}\rangle

be a sequence of dense subsets of Col(ω,ω1)\mathrm{Col}(\omega,\omega_{1}). We have that show that

{β<ω1pf(β)γ<βf(β)Dγ}\{\beta<\omega_{1}\mid p\in f(\beta)\wedge\forall\gamma<\beta\ f(\beta)\cap D_{\gamma}\neq\emptyset\}

is stationary. So let CC be a club in ω1\omega_{1}. Find α\alpha so that bαb_{\alpha} is compatible with pp and note that we may assume further that pbαp\leq b_{\alpha}. Hence we can write pp as p=bαqp={b_{\alpha}}^{\frown}q. For γ<ω1\gamma<\omega_{1}, let

Dγ={rCol(ω,ω1)bαrDγ}D^{\prime}_{\gamma}=\{r\in\mathrm{Col}(\omega,\omega_{1})\mid{b_{\alpha}}^{\frown}r\in D_{\gamma}\}

and note that DγD^{\prime}_{\gamma} is dense. As fαf_{\alpha} witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}), we may find βC\beta\in C large enough so that

  1. (β.i)(\beta.i)

    pCol(ω,β)p\in\mathrm{Col}(\omega,\beta),

  2. (β.ii)(\beta.ii)

    qfα(β)q\in f_{\alpha}(\beta) and

  3. (β.iii)(\beta.iii)

    γ<βfα(β)Dγ\forall\gamma<\beta\ f_{\alpha}(\beta)\cap D^{\prime}_{\gamma}\neq\emptyset.

It follows that pf(β)p\in f(\beta) and that

γ<βf(β)Dγ.\forall\gamma<\beta\ f(\beta)\cap D_{\gamma}\neq\emptyset.

Corollary 6.6.

Assume there is a supercompact limit of supercompact cardinals. Then there is a semiproper forcing \mathbb{P} with VQMV^{\mathbb{P}}\models\mathrm{QM}.

Proof.

By otherwise taking advantage of the least supercompact, we may assume all stationary-set preserving forcings are semiproper. Next, we force with

0=Col(ω1,2ω1).\mathbb{P}_{0}=\mathrm{Col}(\omega_{1},2^{\omega_{1}}).

Let GG be 0\mathbb{P}_{0}-generic over VV. There is then a partition Tαα<ω1\langle T_{\alpha}\mid\alpha<\omega_{1}\rangle of ω1\omega_{1} into stationary sets so that whenever SVS\in V is stationary in ω1\omega_{1}, then TαST_{\alpha}\cap S is stationary for all α<ω1\alpha<\omega_{1}. Also, there is an enumeration

Sαα<ω1\langle S_{\alpha}\mid\alpha<\omega_{1}\rangle

of all stationary sets in VV. Now in V[G]V[G],

SαTαα<ω1\langle S_{\alpha}\cap T_{\alpha}\mid\alpha<\omega_{1}\rangle

is a sequence of pairwise disjoint stationary sets. Moreover, T\diamondsuit_{T} holds for any stationary Tω1T\subseteq\omega_{1}. By Lemma 6.5, there is a witness ff of (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) so that for any α<ω1\alpha<\omega_{1} there is pCol(ω,ω1)p\in\mathrm{Col}(\omega,\omega_{1}) with Spf(SαTα)S^{f}_{p}\subseteq(S_{\alpha}\cap T_{\alpha}). Thus for any stationary SVS\in V, SS contains some SpfS^{f}_{p}. Note that any further ff-preserving forcing preserves the stationarity of any SpfS^{f}_{p} and hence does not kill any stationary SVS\in V. By Theorem 6.3, there is an ff-preserving 1\mathbb{P}_{1} that forces QM\mathrm{QM}. It follows that back in VV, the two-step forcing 0˙1\mathbb{P}_{0}\ast\dot{\mathbb{P}}_{1} preserves stationary sets, hence is semiproper, and forces QM\mathrm{QM}. ∎

Similarly, can prove the following from Theorem 6.4.

Corollary 6.7.

Assume there is an inaccessible κ\kappa that is a limit of <κ{<}\kappa-supercompact cardinals. Then there is a stationary set preserving forcing \mathbb{P} with

V``NSω1 is ω1-dense".V^{\mathbb{P}}\models``\mathrm{NS}_{\omega_{1}}\text{ is }\omega_{1}\text{-dense}".

Assuming one more (sufficiently past κ\kappa-) supercompact cardinal below κ\kappa, one can replace stationary set preserving forcing by semiproper forcing.

So the answer to Woodin’s question is yes assuming sufficiently large cardinals.

6.1 QM\mathrm{QM} implies max-()\mathbb{Q}_{\mathrm{max}}\text{-}(\ast)

We apply the Blueprint Theorems to show that the relation between QM\mathrm{QM} and max-()\mathbb{Q}_{\mathrm{max}}\text{-}(\ast) is analogous to the one of MM++\mathrm{MM}^{++} and ()(\ast).
Typicality of max\mathbb{Q}_{\mathrm{max}} is witnessed by Ψmax\Psi^{\mathbb{Q}_{\mathrm{max}}} consisting of the formulae

  • ψ0max(x)=``xI˙"\psi^{\mathbb{Q}_{\mathrm{max}}}_{0}(x)=``x\in\dot{I}",

  • ψ1max(x)=``x=f˙"\psi^{\mathbb{Q}_{\mathrm{max}}}_{1}(x)=``x=\dot{f}" and

  • ψ2max(x)=``x=f˙x witnesses (ω1<ω)"\psi^{\mathbb{Q}_{\mathrm{max}}}_{2}(x)=``x=\dot{f}\wedge x\text{ witnesses }\diamondsuit(\omega_{1}^{{<}\omega})".

Note that ψ2max(x)\psi^{\mathbb{Q}_{\mathrm{max}}}_{2}(x) is (in context equivalent to) a Π1\Pi_{1}-formula.

Theorem 6.8.

QM\mathrm{QM} implies max-()\mathbb{Q}_{\mathrm{max}}\text{-}(\ast).

Proof.

Suppose ff witnesses QM\mathrm{QM}. We already mentioned that forcing an instance of SRP\mathrm{SRP} is ff-preserving and so SRP\mathrm{SRP} holds. f\mathcal{H}_{f} is almost a max\mathbb{Q}_{\mathrm{max}}-condition by Lemma 4.2. max\mathbb{Q}_{\mathrm{max}} accepts \diamondsuit-iterations by Lemma 5.19. max-()\mathbb{Q}_{\mathrm{max}}\text{-}(\ast) now follows from the First Blueprint Theorem 5.44. ∎

Definition 6.9.

For Δ𝒫()\Delta\subseteq\mathcal{P}(\mathbb{R}), Δ\Delta-BQM\mathrm{BQM} states that there is ff witnessing (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) so that

Δ-BFA({ preserves f})\Delta\text{-}\mathrm{BFA}(\{\mathbb{P}\mid\mathbb{P}\text{ preserves }f\})

holds.

We mention that already BQM=\mathrm{BQM}=\emptyset-BQM\mathrm{BQM} is enough to prove “NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense”.

Finally, we remark that one can show that fragments of QM\mathrm{QM} hold in max\mathbb{Q}_{\mathrm{max}}-extensions of canonical models of determinacy. For example QM(𝔠)\mathrm{QM}(\mathfrak{c}), i.e. QM\mathrm{QM} for forcings of size at most continuum, holds in the max\mathbb{Q}_{\mathrm{max}}-extension of models of AD+``Θ is regular"+V=L(𝒫())\mathrm{AD}_{\mathbb{R}}+``\Theta\text{ is regular}"+V=L(\mathcal{P}(\mathbb{R})) and BQM\mathrm{BQM} holds in the max\mathbb{Q}_{\mathrm{max}}-extension of suitable \mathbb{R}-mice.
Finally we want to mention that Woodin has formulated a forcing axiom FA((ω1<ω))[𝔠]\mathrm{FA}(\diamondsuit(\omega_{1}^{{<}\omega}))[\mathfrak{c}] somewhat similar to QM(𝔠)\mathrm{QM}(\mathfrak{c}) and has proven that it holds in the max\mathbb{Q}_{\mathrm{max}}-extension of a model of AD+``Θ is regular"+V=L(𝒫())\mathrm{AD}_{\mathbb{R}}+``\Theta\text{ is regular}"+V=L(\mathcal{P}(\mathbb{R})), see Theorem 9.54 in [Woo10]171717We remark once again that Woodin has defined (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) slightly different than we have here. The global version FA((ω1<ω))\mathrm{FA}(\diamondsuit(\omega_{1}^{{<}\omega})) of Woodin’s axiom does not imply “NSω1\mathrm{NS}_{\omega_{1}} is ω1\omega_{1}-dense”. The reason is that if ff witnesses (ω1<ω)\diamondsuit(\omega_{1}^{{<}\omega}) and MM++(f)\mathrm{MM}^{++}(f) holds then FA((ω1<ω))\mathrm{FA}(\diamondsuit(\omega_{1}^{{<}\omega})) is true, however NSω1\mathrm{NS}_{\omega_{1}} is not ω1\omega_{1}-dense.

References

  • [AS21] David Asperó and Ralf Schindler. Martin’s Maximum++ implies Woodin’s axiom ()(*). Ann. of Math. (2), 193(3):793–835, 2021.
  • [Bag00] Joan Bagaria. Bounded forcing axioms as principles of generic absoluteness. Arch. Math. Logic, 39(6):393–401, 2000.
  • [BHM75] J. E. Baumgartner, A. Ha̧jņal, and A. Mate. Weak saturation properties of ideals. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, Colloq. Math. Soc. János Bolyai, Vol. 10, pages 137–158. North-Holland, Amsterdam, 1975.
  • [EH71] P. Erdős and A. Hajnal. Unsolved problems in set theory. In Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), pages 17–48. Amer. Math. Soc., Providence, R.I., 1971.
  • [Erd50] P. Erdős. Some Remarks on Set Theory. Proceedings of the American Mathematical Society, 1(2):127–141, 1950.
  • [FMS88] M. Foreman, M. Magidor, and S. Shelah. Martin’s maximum, saturated ideals, and nonregular ultrafilters. I. Ann. of Math. (2), 127(1):1–47, 1988.
  • [For10] Matthew Foreman. Ideals and generic elementary embeddings. In Handbook of set theory. Vols. 1, 2, 3, pages 885–1147. Springer, Dordrecht, 2010.
  • [FWZ15] Sy-David Friedman, Liuzhen Wu, and Lyubomyr Zdomskyy. Δ1\Delta_{1}-definability of the non-stationary ideal at successor cardinals. Fund. Math., 229(3):231–254, 2015.
  • [HLSW22] Stefan Hoffelner, Paul Larson, Ralf Schindler, and Liuzhen Wu. Forcing Aioms and Definability of the Nonstationary Ideal on ω1\omega_{1}. 2022. submitted.
  • [JMMP80] T. Jech, M. Magidor, W. Mitchell, and K. Prikry. Precipitous ideals. J. Symbolic Logic, 45(1):1–8, 1980.
  • [Kun78] Kenneth Kunen. Saturated ideals. J. Symbolic Logic, 43(1):65–76, 1978.
  • [Lie23] Andreas Lietz. An iteration theorem for ω1\omega_{1}-preserving forcings. 2023. To appear.
  • [Miy02] Tadatoshi Miyamoto. On iterating semiproper preorders. J. Symbolic Logic, 67(4):1431–1468, 2002.
  • [Pri72] Karel Prikry. On a problem of Erdős, Hajnal and Rado. Discrete Math., 2:51–59, 1972.
  • [Pri76] Karel Prikry. Kurepa’s hypothesis and a problem of Ulam on families of measures. Monatsh. Math., 81(1):41–57, 1976.
  • [RS14] John Steel Ralf Schindler. The core model induction, September 2014. Available online at https://ivv5hpp.uni-muenster.de/u/rds/core_model_induction.pdf.
  • [Sch] Ralf Schindler. ¬CH\neg\mathrm{CH} and ()(\ast). Available online at http://ivv5hpp.uni-muenster.de/u/rds/-CH_star.pdf.
  • [Sch11] Ralf Schindler. On NSω1\operatorname{NS}_{\omega_{1}} being saturated, September 2011. Available online at https://ivv5hpp.uni-muenster.de/u/rds/sat_ideal_even_better_version.pdf.
  • [She86] Saharon Shelah. Around classification theory of models, volume 1182 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986.
  • [She98] Saharon Shelah. Proper and improper forcing. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, second edition, 1998.
  • [SS22] Ralf Schindler and Xiuyuan Sun. MM\mathrm{MM} and the definability of NSω1\mathrm{NS}_{\omega_{1}}. 2022. submitted.
  • [Ste05] John R. Steel. PFA implies ADL(){\rm AD}^{L(\mathbb{R})}. J. Symbolic Logic, 70(4):1255–1296, 2005.
  • [SVW82] John R. Steel and Robert Van Wesep. Two consequences of determinacy consistent with choice. Trans. Amer. Math. Soc., 272(1):67–85, 1982.
  • [Tay79] Alan D. Taylor. Regularity properties of ideals and ultrafilters. Ann. Math. Logic, 16(1):33–55, 1979.
  • [Ula30] Stanisław Ulam. Zur Masstheorie in der allgemeinen Mengenlehre. Fundamenta Mathematicae, 16(1):140–150, 1930.
  • [Woo] W. Hugh Woodin. The equivalence of Axiom ()+(\ast)^{+} and Axiom ()++(\ast)^{++}.
  • [Woo83] W. Hugh Woodin. Some consistency results in ZFC{\rm ZFC} using AD{\rm AD}. In Cabal seminar 79–81, volume 1019 of Lecture Notes in Math., pages 172–198. Springer, Berlin, 1983.
  • [Woo99] W. Hugh Woodin. The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, volume 1 of De Gruyter Series in Logic and its Applications. Walter de Gruyter & Co., Berlin, 1999.
  • [Woo10] W. Hugh Woodin. The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, volume 1 of De Gruyter Series in Logic and its Applications. Walter de Gruyter GmbH & Co. KG, Berlin, revised edition, 2010.