This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Formulae in noncommutative Hodge theory

Nick Sheridan Nick Sheridan, School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, UK
Abstract

Abstract: We prove that the cyclic homology of a saturated AA_{\infty} category admits the structure of a ‘polarized variation of Hodge structures’, building heavily on the work of many authors: the main point of the paper is to present complete proofs, and also explicit formulae for all of the relevant structures. This forms part of a project of Ganatra, Perutz and the author, to prove that homological mirror symmetry implies enumerative mirror symmetry.

1 Introduction

1.1 Calabi–Yau mirror symmetry

Mirror symmetry predicts the existence of certain ‘mirror’ pairs of Calabi–Yau Kähler manifolds, XX and YY, so that the Gromov–Witten invariants of XX can be extracted from certain Hodge-theoretic invariants of YY.111We only consider genus-zero Gromov–Witten invariants in this paper. The first thrilling application of mirror symmetry was the prediction of the number of rational curves, in all degrees, on the quintic threefold XX, in terms of the Hodge theory of a mirror manifold YY [CdlOGP91]. This prediction for the quintic, together with many more examples of mirror symmetry, was later mathematically verified [Giv96, LLY97].

The most conceptually satisfying way of formulating the mirror relationship between numerical invariants of XX and YY is as an isomorphism of variations of Hodge structures (𝖵𝖧𝖲\mathsf{VHS}) [Mor93]. A 𝖵𝖧𝖲\mathsf{VHS} over a complex manifold \mathcal{M} consists of a holomorphic vector bundle VV\to\mathcal{M}, equipped with a filtration FVF^{\geq*}V by holomorphic subbundles, and a flat connection \nabla satisfying the condition vFiVFi1V\nabla_{v}F^{\geq i}V\subset F^{\geq i-1}V known as Griffiths transverality.222This is more precisely referred to as a complex variation of Hodge structures. We introduce the Kähler moduli space Ka¨h(X)\mathcal{M}_{K\ddot{a}h}(X), which parametrizes deformations of the Kähler form on XX, and the complex moduli space cpx(Y)\mathcal{M}_{cpx}(Y), which parametrizes deformations of the complex structure on YY. The Gromov–Witten theory of XX gets packaged into the AA-model 𝖵𝖧𝖲\mathsf{VHS}, which lives over the Kähler moduli space: VA(X)Ka¨h(X)V^{A}(X)\to\mathcal{M}_{K\ddot{a}h}(X). The Hodge theory on deformations of YY gets packaged into the BB-model 𝖵𝖧𝖲\mathsf{VHS}, which lives over the complex moduli space: VB(Y)cpx(Y)V^{B}(Y)\to\mathcal{M}_{cpx}(Y). Hodge-theoretic mirror symmetry then predicts an isomorphism VA(X)VB(Y)V^{A}(X)\cong V^{B}(Y), covering an isomorphism Ka¨h(X)cpx(Y)\mathcal{M}_{K\ddot{a}h}(X)\cong\mathcal{M}_{cpx}(Y) called the mirror map. Enumerative mirror symmetry, i.e., the explicit formulae relating the numerical invariants, can be deduced from this isomorphism of 𝖵𝖧𝖲\mathsf{VHS} (see, e.g., [CK99]).

Kontsevich proposed a generalization of Hodge-theoretic mirror symmetry called homological mirror symmetry [Kon95]. It predicts a quasi-equivalence of AA_{\infty} categories \EuF(X)\EuD(Y)\EuF(X)\simeq\EuD(Y), where \EuF(X)\EuF(X) is the split-closed derived Fukaya category of XX, and \EuD(Y)\EuD(Y) is a 𝖽𝗀\mathsf{dg} enhancement of the bounded derived category of coherent sheaves on YY. More precisely, one should think of these as families of categories, parametrized by the Kähler and complex moduli spaces respectively; and the quasi-equivalence matches the Fukaya category living over a point in Kähler moduli space with the derived category living over the corresponding point in complex moduli space, where the correspondence between moduli spaces is given by the same mirror map as before.

Kontsevich also predicted that homological should imply Hodge-theoretic mirror symmetry. This was subsequently made more precise [Bar02, KKP08, Cos09]. The expectation is that the cyclic homology of a family of saturated AA_{\infty} categories carries the structure of a 𝖵𝖧𝖲\mathsf{VHS}; the cyclic homology of the Fukaya category is isomorphic to VA(X)V^{A}(X); and the cyclic homology of the bounded derived category of coherent sheaves is isomorphic to VB(Y)V^{B}(Y). Therefore, the equivalence of categories implies the isomorphism of 𝖵𝖧𝖲\mathsf{VHS}.

This paper forms part of a project of the author, joint with Ganatra and Perutz, to carry out this program. Theorem 1.4 implies roughly that the cyclic homology of a family of saturated \Z\Z-graded AA_{\infty} categories carries the structure of a 𝖵𝖧𝖲\mathsf{VHS}, and this structure is functorial under AA_{\infty} functors; we also give explicit formulae for all of the relevant structures. Ganatra [Gana] has defined a map from the cyclic homology of the Fukaya category to the AA-model 𝖵𝖧𝖲\mathsf{VHS}; this map is shown to respect the 𝖵𝖧𝖲\mathsf{VHS} structure in [GPSa], using the formulae in the present paper; and the map is shown to be an isomorphism in [GPSb]. The corresponding comparison theorem for the BB-model is known to experts, although not everything is written in the literature; modulo this BB-model comparison theorem, the proof is complete.

We refer to [GPSb] for precise statements of the results. One corollary of them is a new proof of the mirror symmetry predictions for Gromov–Witten invariants of the quintic, as a consequence of the proof of homological mirror symmetry for the quintic [She15]. The BB-model comparison theorem has been established in this specific case by Tu [Tu].

1.2 Fano mirror symmetry

Although mirror symmetry was originally formulated for mirror pairs of Calabi–Yau Kähler manifolds (X,Y)(X,Y), it admits a generalization in which XX is allowed to be Fano. In this case the mirror is no longer a manifold, but rather a ‘Landau–Ginzburg model’ (Y,W)(Y,W), which means a variety YY equipped with a function W:Y\CW:Y\to\C. The Gromov–Witten invariants of XX are related to the singularity theory of WW [Giv95].

Once again, the relation between the numerical invariants can be expressed in terms of an isomorphism VA(X)VB(Y,W)V^{A}(X)\cong V^{B}(Y,W); however, the structures getting identified are now variations of semi-infinite Hodge structures (𝖵𝖲𝖧𝖲\mathsf{VSHS}). This notion was introduced by Barannikov [Bar01], but the study of the BB-model 𝖵𝖲𝖧𝖲\mathsf{VSHS} associated to (Y,W)(Y,W) goes back to Saito [Sai83].

In Section 2 we define the notion of a graded 𝖵𝖲𝖧𝖲\mathsf{VSHS}. The following notions are equivalent:

\Z/2\Z/2-graded 𝖵𝖲𝖧𝖲\mathsf{VSHS} 𝖵𝖲𝖧𝖲 in Barannikov’s sense;\displaystyle\longleftrightarrow\quad\text{$\mathsf{VSHS}${} in Barannikov's sense;}
\Z\Z-graded 𝖵𝖲𝖧𝖲\mathsf{VSHS} 𝖵𝖧𝖲 in the sense of the previous section.\displaystyle\longleftrightarrow\quad\text{$\mathsf{VHS}${} in the sense of the previous section.}

We refer to [GPSb, Lemma 2.7] for a precise statement and proof of the latter equivalence, which is a version of the ‘Rees correspondence’ between filtered bundles over \mathcal{M} and equivariant bundles over ×𝔸1\mathcal{M}\times\mathbb{A}^{1} [Sim97]. Thus, Hodge-theoretic mirror symmetry can always be formulated as an isomorphism of graded 𝖵𝖲𝖧𝖲\mathsf{VSHS}; in the Fano case the grading group is \Z/2\Z/2, and in the Calabi–Yau case it is \Z\Z. For the rest of the paper, ‘𝖵𝖲𝖧𝖲\mathsf{VSHS}’ will always mean ‘graded 𝖵𝖲𝖧𝖲\mathsf{VSHS}’, with the grading group implicit.

Homological mirror symmetry admits a generalization to the Fano case: roughly, it predicts a quasi-equivalence of \Z/2\Z/2-graded AA_{\infty} categories \EuD\EuF(X)MF(Y,W)\EuD\EuF(X)\simeq MF(Y,W), where the latter is the category of matrix factorizations of WW [Orl04]. One expects that it should imply Hodge-theoretic mirror symmetry, by a similar argument to the Calabi–Yau case, but with 𝖵𝖧𝖲\mathsf{VHS} replaced by 𝖵𝖲𝖧𝖲\mathsf{VSHS}.

Our Theorem 1.4 implies roughly that the cyclic homology of a family of saturated YY-graded AA_{\infty} categories, which satisfies the degeneration property, carries the structure of a YY-graded 𝖵𝖲𝖧𝖲\mathsf{VSHS}. The case Y=\Z/2Y=\Z/2 is the one relevant to Fano mirror symmetry, and the case Y=\ZY=\Z is the one relevant to Calabi–Yau mirror symmetry. In the latter case the degeneration property holds automatically, by Kaledin’s proof [Kal17] of Kontsevich–Soibelman’s degeneration conjecture [KS08, Conjecture 9.1.2]. In particular, our result implies that the cyclic homology of a family of saturated \Z\Z-graded AA_{\infty} categories carries the structure of a \Z\Z-graded 𝖵𝖲𝖧𝖲\mathsf{VSHS}, which we recall is equivalent to a 𝖵𝖧𝖲\mathsf{VHS} (we stated this version of the result in the previous section). We remark that the grading group does not enter into the proof of Theorem 1.4: the cases of relevance to Fano and Calabi–Yau mirror symmetry are handled uniformly.

{rmk}

It should be possible to prove some version of the statement that homological implies Hodge-theoretic mirror symmetry in the Fano case, following the argument in the Calabi–Yau case (and in particular, using the \Z/2\Z/2-graded case of our Theorem 1.4). See [AT] for some recent progress.

1.3 Standing notation

Let 𝕜\BbK\Bbbk\subset\BbK be fields. We will write :=\spec\BbK\mathcal{M}:=\spec\BbK, and T:=\deriv𝕜\BbKT\mathcal{M}:=\deriv_{\Bbbk}\BbK.

We fix a grading group throughout: more precisely, we fix a ‘grading datum’ in the sense of [She15], which is an abelian group YY together with homomorphisms \ZY\Z/2\Z\to Y\to\Z/2 whose composition is non-zero. All of our structures are YY-graded; when we talk about an element of degree k\Zk\in\Z, we really mean its degree is the image of kk under the map \ZY\Z\to Y; and when we write a Koszul-type sign (1)|a|(-1)^{|a|}, it means that the image of the YY-degree of aa, under the map Y\Z/2Y\to\Z/2, is |a|\Z/2|a|\in\Z/2.

{rmk}

The two most relevant grading data are \Z:={\Z\id\Z\Z/2}\Z:=\{\Z\xrightarrow{\id}\Z\to\Z/2\} and \Z/2:={\Z\Z/2\id\Z/2}\Z/2:=\{\Z\to\Z/2\xrightarrow{\id}\Z/2\}; working with the former is equivalent to working with ordinary \Z\Z-gradings, while working with the latter is equivalent to working with ordinary \Z/2\Z/2-gradings.

We define \BbK[[u]]\BbK[\![u]\!] to be the graded ring of formal power series in a formal variable uu of degree 22, and \BbK((u))\BbK(\!(u)\!) the graded ring of formal Laurent series. For any f\BbK[[u]]f\in\BbK[\![u]\!] or \BbK((u))\BbK(\!(u)\!), we denote

f(u):=f(u).f^{\star}(u):=f(-u).
{rmk}

To be precise, \BbK[[u]]\BbK[\![u]\!] (respectively, \BbK((u))\BbK(\!(u)\!)) is the degreewise completion of \BbK[u]\BbK[u] (respectively, \BbK[u,u1]\BbK[u,u^{-1}]) with respect to the uu-adic filtration. If the morphism \ZY\Z\to Y is not injective then this includes infinite sums of powers of uu, but if the morphism is injective then the completion has no effect because all powers of uu have different degrees. Thus \BbK((u))\BbK(\!(u)\!) contains ‘semi-infinite’ sums of powers of uu in the \Z/2\Z/2-graded case; hence Barannikov’s terminology.

Finally, if σ\Z/2\sigma\in\Z/2, we denote σ:=σ1\sigma^{\prime}:=\sigma-1.

1.4 Main result

We define various flavours of 𝖵𝖲𝖧𝖲\mathsf{VSHS} in Section 2. To give an idea of what they mean, let us explain roughly what they correspond to under the Rees correspondence, in the \Z\Z-graded case:

  • An unpolarized pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} over \mathcal{M} corresponds to an 𝒪\mathcal{O}_{\mathcal{M}}-module equipped with a filtration FF^{\geq*} and flat connection \nabla satisfying Griffiths transversality.

  • An unpolarized 𝖵𝖲𝖧𝖲\mathsf{VSHS} is an unpolarized pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} such that the 𝒪\mathcal{O}_{\mathcal{M}}-module is a finite-rank vector bundle.

  • A polarization for an unpolarized pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} is a covariantly constant pairing (,)(\cdot,\cdot) such that (Fj,Fk)=0(F^{\geq j},F^{\geq k})=0 for j+k<0j+k<0, and (a,b)=(1)n(b,a)(a,b)=(-1)^{n}(b,a) for some n\Z/2n\in\Z/2 called the weight; a polarized pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} is a pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} equipped with a polarization.

  • A polarized 𝖵𝖲𝖧𝖲\mathsf{VSHS} is a polarized pre-𝖵𝖲𝖧𝖲\mathsf{VSHS}, such that the 𝒪\mathcal{O}_{\mathcal{M}}-module is a finite-rank vector bundle, and the pairing is non-degenerate.

{rmk}

Note that a polarized/unpolarized 𝖵𝖲𝖧𝖲\mathsf{VSHS} is the same thing as a polarized/unpolarized pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} satisfying additional properties, rather than equipped with additional data.

Our main results concern the Hochschild invariants of AA_{\infty} categories:

{main}

Let \EuC\EuC be a \BbK\BbK-linear graded AA_{\infty} category. Then:

  1. 1.

    Its negative cyclic homology 𝖧𝖢(\EuC)\operatorname{\mathsf{HC}}_{\bullet}^{-}(\EuC), endowed with the Getzler–Gauss–Manin connection \nabla [Get93], carries the structure of an unpolarized pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} over \mathcal{M}.

  2. 2.

    If \EuC\EuC is proper and admits an nn-dimensional weak proper Calabi–Yau structure (see Section 5.7 for the definition), then (𝖧𝖢(\EuC),)(\operatorname{\mathsf{HC}}_{\bullet}^{-}(\EuC),\nabla) admits a natural polarization ,res\langle\cdot,\cdot\rangle_{res} of weight nn, given by Shklyarov’s higher residue pairing [Shk16].

  3. 3.

    These structures are Morita invariant.

  4. 4.

    If \EuC\EuC is saturated and its noncommutative Hodge-to-de Rham spectral sequence degenerates, then the polarized pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} (𝖧𝖢(\EuC),,,res)(\operatorname{\mathsf{HC}}_{\bullet}^{-}(\EuC),\nabla,\langle\cdot,\cdot\rangle_{res}) is in fact a polarized 𝖵𝖲𝖧𝖲\mathsf{VSHS}.

{rmk}

A conjecture of Kontsevich and Soibelmann [KS08, Conjecture 9.1.2] says that the noncommutative Hodge-to-de Rham spectral sequence degenerates for any saturated \EuC\EuC. The conjecture has been proved by Kaledin in the case that \EuC\EuC is \Z\Z-graded [Kal17] (see also [Mat]); so far as the author is aware it remains open if \EuC\EuC is, for example, \Z/2\Z/2-graded.

{rmk}

Katzarkov–Kontsevich–Pantev conjecture that the 𝖵𝖲𝖧𝖲\mathsf{VSHS} of Theorem 1.4 can be endowed with a natural \Q\Q-structure (see [KKP08, Section 2.2.6], and also [Bla16]).

Let us comment on the originality of Theorem 1.4. We believe our contribution ranges from ‘writing down explicit formulae for known structures with uniform sign conventions, as a handy reference’ at the low end, to ‘checking that these structures have certain natural (but slightly tricky-to-prove) compatibilities’ at the high end. To be precise:

  • Our proof of the Morita invariance of the Getzler–Gauss–Manin connection is new.

  • Shklyarov’s construction of the higher residue pairing for 𝖽𝗀\mathsf{dg} categories [Shk16] immediately gives the construction for AA_{\infty} categories, because any AA_{\infty} category is quasi-equivalent to a 𝖽𝗀\mathsf{dg} category via the Yoneda embedding. On the other hand, for an AA_{\infty} category whose morphism spaces are finite-dimensional on the chain level, work of Costello [Cos07] and Konstevich–Soibelman [KS08] implies that there should be an explicit formula for the pairing. We write down the formula and prove that it is equivalent to Shklyarov’s definition (see Proposition 64). Our proof is motivated by Shklyarov’s [Shk16, Proposition 2.6].

  • Using the explicit formula for the higher residue pairing, we establish that it is covariantly constant with respect to the Getzler–Gauss–Manin connection: we believe that this result is also new (a related result was proven by Shklyarov in [Shk16], but that was for a different version of Getzler’s connection, namely the one in the uu-direction rather than in the direction of the base).

Now we give a guide, to help the reader find the proofs of the different parts of Theorem 1.4. Part (1) is proved in Section 3. Part (2) is proved in two parts: covariant constancy of the higher residue pairing, with respect to the Getzler–Gauss–Manin connection, is proved in Corollary 67; and symmetry of the higher residue pairing (which is the only part that requires the weak proper Calabi–Yau structure) is proved in Lemma 70. The tools to prove part (3) are developed in Section 4; Morita invariance of negative cyclic homology and the Getzler–Gauss–Manin connection are proved in Corollary 33, and Morita invariance of the higher residue pairing is proved in Proposition 62. Part (4) is proved in Theorem 72.

The paper involves a lot of long formulae composing multilinear operations in complicated ways, with non-trivial sign factors. We explain a graphical notation for these composition rules in Appendix C, which allows one to check various identities, with signs, in an efficient way; and we draw the graphical notation for some of the trickiest signs that appear in the paper. We omit the proofs of some identities that become trivial using the graphical notation, however we have tried very hard to write down explicitly the correct signs for every operation we define.

Acknowledgments.

I would like to thank Sheel Ganatra and Tim Perutz, my collaborators on the larger project of which this paper is a part (see [GPSb, PSa, PSb, GPSa]). The material in this paper was originally intended to form a background section to one of the papers in that series, but it turned out to be so long, and in such a different direction, that it made sense to split it off. Conversations with Ganatra and Perutz, and their suggestions, were extremely helpful in completing the paper. I am also very grateful to Paul Seidel for helpful conversations about the Mukai pairing. I thank Lino Amorim and Junwu Tu for pointing out some sign errors in a previous version. I thank the anonymous referee for helpful suggestions. While working on this project I was partially supported by the National Science Foundation through Grant number DMS-1310604, and under agreement number DMS-1128155. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation. I was also partially supported by a Royal Society University Research Fellowship. I am also grateful to the IAS and the Instituto Superior Técnico for hospitality while working on this project.

2 Variations of semi-infinite Hodge structures: definitions

Variations of semi-infinite Hodge structures (𝖵𝖲𝖧𝖲\mathsf{VSHS}) were introduced in [Bar01]. Here we recall the basic definitions, following [CIT09, Section 2.2] and [Gro11, Chapter 2]. We break with certain conventions in the literature, for which we apologize. We point out the places where our conventions differ as we go along.

Recall our standing notation: we fix a grading datum \ZY\Z/2\Z\to Y\to\Z/2, and fields 𝕜\BbK\Bbbk\subset\BbK, and define :=\spec\BbK\mathcal{M}:=\spec\BbK, T:=\deriv𝕜\BbKT\mathcal{M}:=\deriv_{\Bbbk}\BbK.

2.1 Pre-𝖵𝖲𝖧𝖲\mathsf{VSHS}

Definition 1.

An unpolarized pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} over \mathcal{M} consists of a graded \BbK[[u]]\BbK[\![u]\!]-module \EuE\EuE, equipped with a flat connection333More precisely, there is a map u:T\EuE\EuEu\nabla:T\mathcal{M}\otimes\EuE\to\EuE, such that uXsu\nabla_{X}s is \BbK\BbK-linear in XX, additive in ss, satisfying (Leibniz rule) uX(fs)\displaystyle u\nabla_{X}(f\cdot s) =uX(f)s+fuXsfor f\BbK[[u]], and\displaystyle=uX(f)\cdot s+f\cdot u\nabla_{X}s\quad\text{for $f\in\BbK[\![u]\!]$, and} (flatness) [uX,uY]\displaystyle[u\nabla_{X},u\nabla_{Y}] =u2[X,Y]for all X,YT.\displaystyle=u^{2}\nabla_{[X,Y]}\quad\text{for all $X,Y\in T\mathcal{M}$.} :T\BbK\EuEu1\EuE\nabla:T\mathcal{M}\otimes_{\BbK}\EuE\to u^{-1}\EuE of degree 0.

Definition 2.

A polarization for a pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} is a pairing

(,):\EuE×\EuE\BbK[[u]](\cdot,\cdot):\EuE\times\EuE\to\BbK[\![u]\!]

of degree 0, additive in both inputs, and satisfying

(sesquilinearity) (fs1,gs2)\displaystyle(f\cdot s_{1},g\cdot s_{2}) =fg(s1,s2) for f,g\BbK[[u]],\displaystyle=f\cdot g^{\star}\cdot(s_{1},s_{2})\quad\text{ for $f,g\in\BbK[\![u]\!]$,}
(covariant constance) uX(s1,s2)\displaystyle uX(s_{1},s_{2}) =(uXs1,s2)(s1,uXs2),and\displaystyle=(u\nabla_{X}s_{1},s_{2})-(s_{1},u\nabla_{X}s_{2}),\quad\text{and}
(symmetry) (s1,s2)\displaystyle(s_{1},s_{2}) =(1)n+|s1||s2|(s2,s1),\displaystyle=(-1)^{n+|s_{1}|\cdot|s_{2}|}(s_{2},s_{1})^{\star},

where n\Z/2n\in\Z/2 is called the weight.

{rmk}

It is not usually assumed that a polarization must have degree 0: we prefer to shift whatever pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} we are considering so that this is the case. In this paper, polarizations will arise from Shklyarov’s higher residue pairing on cyclic homology, which has degree 0 with respect to the standard grading.

Definition 3.

A morphism of pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} is a degree-0 morphism of \BbK[[u]]\BbK[\![u]\!]-modules F:\EuE1\EuE2F:\EuE_{1}\to\EuE_{2} which respects the connections, and, if the pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} are polarized, satisfies (F(α),F(β))2=(α,β)1(F(\alpha),F(\beta))_{2}=(\alpha,\beta)_{1}.

2.2 𝖵𝖲𝖧𝖲\mathsf{VSHS}

Definition 4.

An unpolarized 𝖵𝖲𝖧𝖲\mathsf{VSHS} is an unpolarized pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} such that \EuE\EuE is a free \BbK[[u]]\BbK[\![u]\!]-module of finite rank.

Definition 5.

A polarization for a 𝖵𝖲𝖧𝖲\mathsf{VSHS} is a polarization for the underlying pre-𝖵𝖲𝖧𝖲\mathsf{VSHS}, which is furthermore non-degenerate: i.e., the pairing of \BbK\BbK-vector spaces

\EuE/u\EuE\BbK\EuE/u\EuE\BbK\EuE/u\EuE\otimes_{\BbK}\EuE/u\EuE\to\BbK

induced by (,)(\cdot,\cdot) is non-degenerate.

A morphism of 𝖵𝖲𝖧𝖲\mathsf{VSHS} (polarized or unpolarized) is the same thing as a morphism of the underlying pre-𝖵𝖲𝖧𝖲\mathsf{VSHS}.

{rmk}

What we call a ‘\Z/2\Z/2-graded polarized 𝖵𝖲𝖧𝖲\mathsf{VSHS}’ is usually simply called a 𝖵𝖲𝖧𝖲\mathsf{VSHS}, in particular, the polarization is part of the structure. However, the notion of an unpolarized 𝖵𝖲𝖧𝖲\mathsf{VSHS} has applications in mirror symmetry so it seems useful to make the distinction.

{rmk}

An unpolarized \Z\Z-graded 𝖵𝖲𝖧𝖲\mathsf{VSHS} is equivalent to a vector bundle over the 𝕜\Bbbk-scheme \mathcal{M}, equipped with a filtration and flat connection satisfying Griffiths transversality [GPSb, Lemma 2.7]; in the application to mirror symmetry we take 𝕜=\C\Bbbk=\C. The most relevant choice of \BbK\BbK for the application to mirror symmetry is \BbK=\C\laurentq\BbK=\C\laurent{q}. One can think of =\spec\BbK\mathcal{M}=\spec\BbK as a ‘formal punctured disc’. Geometrically, one thinks of this formal punctured disc as mapping into the Kähler/complex moduli space, with the limit q0q\to 0 corresponding to a ‘large volume’/‘large complex structure’ limit point of the moduli space. We consider the pullback of the relevant structures (𝖵𝖲𝖧𝖲\mathsf{VSHS}, categories) to \mathcal{M}. We shall define a ‘family of AA_{\infty} categories parametrized by \mathcal{M}’ to be a \BbK\BbK-linear AA_{\infty} category. Thus Theorem 1.4 constructs a 𝖵𝖲𝖧𝖲\mathsf{VSHS} over \mathcal{M} from a family of AA_{\infty} categories parametrized by \mathcal{M}.

2.3 Euler gradings

We have assumed that our 𝖵𝖲𝖧𝖲\mathsf{VSHS} are graded, in the sense that \EuE\EuE is a direct sum of its graded pieces. A different notion of ‘graded 𝖵𝖲𝖧𝖲\mathsf{VSHS}’ is used in the literature [Bar01, CIT09], which we will instead refer to as an ‘Euler-graded 𝖵𝖲𝖧𝖲\mathsf{VSHS}’. We depart from the standard terminology in this way to avoid confusion regarding the usual terminology for AA_{\infty} categories. Namely, if \EuC\EuC is a graded AA_{\infty} category (in the usual sense), which is saturated and whose noncommutative Hodge-to-de Rham spectral sequence degenerates, then Theorem 1.4 constructs a graded 𝖵𝖲𝖧𝖲\mathsf{VSHS} in our sense; it does not construct an Euler-graded 𝖵𝖲𝖧𝖲\mathsf{VSHS}.

Definition 6.

An Euler grading on a pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} is a 𝕜\Bbbk-linear endomorphism 𝖦𝗋:\EuE\EuE\mathsf{Gr}:\EuE\to\EuE, such that there is a vector field ETE\in T\mathcal{M} (called the Euler vector field) satisfying

𝖦𝗋(fs)\displaystyle\mathsf{Gr}(f\cdot s) =(2uu+2E)fs+f𝖦𝗋(s)for all f\BbK[[u]],\displaystyle=(2u\partial_{u}+2E)f\cdot s+f\cdot\mathsf{Gr}(s)\quad\text{for all $f\in\BbK[\![u]\!]$,}
[𝖦𝗋,X]\displaystyle[\mathsf{Gr},\nabla_{X}] =[2E,X],and\displaystyle=\nabla_{[2E,X]},\quad\text{and}
(2uu+2E)(s1,s2)\displaystyle(2u\partial_{u}+2E)(s_{1},s_{2}) =(𝖦𝗋(s1),s2)+(s1,𝖦𝗋(s2)).\displaystyle=(\mathsf{Gr}(s_{1}),s_{2})+(s_{1},\mathsf{Gr}(s_{2})).

A morphism of Euler-graded pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} is required to satisfy 𝖦𝗋2F=F𝖦𝗋1\mathsf{Gr}_{2}\circ F=F\circ\mathsf{Gr}_{1}.

Example 2.1.

An \R\R-graded pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} admits an Euler grading, by setting 𝖦𝗋(s):=|s|s\mathsf{Gr}(s):=|s|\cdot s. The Euler vector field ETE\in T\mathcal{M} is the graded derivation E:\BbK\BbKE:\BbK\to\BbK defined by the same formula as 𝖦𝗋\mathsf{Gr}, multiplied by 12\frac{1}{2}.

{rmk}

For any Euler-graded pre-𝖵𝖲𝖧𝖲\mathsf{VSHS}, we can extend the connection \nabla to a flat connection that is also defined in the uu-direction, by setting uu:=12𝖦𝗋E\nabla_{u\frac{\partial}{\partial u}}:=\frac{1}{2}\mathsf{Gr}-\nabla_{E}.

{rmk}

One can also extract an Euler graded 𝖵𝖲𝖧𝖲\mathsf{VSHS} from an AA_{\infty} category \EuC\EuC, if one assumes that the category itself comes with an ‘Euler grading’. Namely, one assumes that there is an Euler vector field EE on the coefficient field \BbK\BbK, and that \EuC\EuC is a \Z/2\Z/2-graded \BbK\BbK-linear AA_{\infty} category. Then an Euler grading on \EuC\EuC is a map 𝖦𝗋\mathsf{Gr} on the morphism spaces of the category, compatible with the Euler vector field as in Definition 6, and such that the AA_{\infty} structure maps μs\mu^{s} satisfy

𝖦𝗋μs=μs𝖦𝗋+(2s)μs.\mathsf{Gr}\circ\mu^{s}=\mu^{s}\circ\mathsf{Gr}+(2-s)\cdot\mu^{s}.

Our proof of Theorem 1.4 applies to the \Z/2\Z/2-graded AA_{\infty} category \EuC\EuC, to produce \Z/2\Z/2-graded Hochschild invariants: and one easily checks that, if \EuC\EuC comes with an Euler grading, then all of the Hochschild invariants admit Euler gradings, compatible with all structures. This is relevant when one studies mirror symmetry for Fano varieties, but not in the Calabi–Yau case. We will not comment further on it in this paper.

3 Hochschild invariants of AA_{\infty} categories

3.1 𝖽𝗀\mathsf{dg} categories

Definition 7.

A \BbK\BbK-linear 𝖽𝗀\mathsf{dg} category \EuC\EuC consists of: a set of objects Ob(\EuC)Ob(\EuC); for each pair of objects, a graded \BbK\BbK-vector space hom(X,Y)hom^{\bullet}(X,Y), equipped with a differential dd of degree +1+1; composition maps

hom(X1,X2)hom(X0,X1)\displaystyle hom^{\bullet}(X_{1},X_{2})\otimes hom^{\bullet}(X_{0},X_{1}) hom(X0,X2)\displaystyle\to hom^{\bullet}(X_{0},X_{2})

of degree 0, which we denote by fgfgf\otimes g\mapsto f\cdot g, satisfying

(1) (fg)h\displaystyle(f\cdot g)\cdot h =f(gh),\displaystyle=f\cdot(g\cdot h),
(2) d(fg)\displaystyle d(f\cdot g) =dfg+(1)|f|fdg,\displaystyle=df\cdot g+(-1)^{|f|}f\cdot dg,

and there exists a unit eXhom0(X,X)e_{X}\in hom^{0}(X,X) for all XX, satisfying deX=0de_{X}=0 and

(3) feX=f=eYffor all fhom(X,Y)f\cdot e_{X}=f=e_{Y}\cdot f\quad\text{for all $f\in hom^{\bullet}(X,Y)$. }
Example 3.1.

Let RR be a graded \BbK\BbK-algebra. There is a 𝖽𝗀\mathsf{dg} category \modulesR\modules R whose objects are cochain complexes {MpdMMp+1}\{\ldots\to M_{p}\overset{d_{M}}{\to}M_{p+1}\to\ldots\} of RR-modules; it is defined by

hom\modulesRp(M,N)\displaystyle hom^{p}_{\modules R}(M_{\bullet},N_{\bullet}) :=j\HomR(Mj,Nj+p),\displaystyle:=\bigoplus_{j}\Hom_{R}(M_{j},N_{j+p}),
df\displaystyle df :=dNf+(1)|f|fdM,\displaystyle:=d_{N}\circ f+(-1)^{|f|^{\prime}}f\circ d_{M},
fg\displaystyle f\cdot g :=fg.\displaystyle:=f\circ g.
Definition 8.

Let \EuC\EuC be a 𝖽𝗀\mathsf{dg} category; we define the opposite 𝖽𝗀\mathsf{dg} category \EuCop\EuC^{op} with the same set of objects, by setting

hom\EuCop(X,Y):=hom\EuC(Y,X);dop(x):=d(x);fopg:=(1)|f||g|gf.hom^{\bullet}_{\EuC^{op}}(X,Y):=hom^{\bullet}_{\EuC}(Y,X);\quad d_{op}(x):=d(x);\quad f\cdot_{op}g:=(-1)^{|f|\cdot|g|}g\cdot f.

3.2 AA_{\infty} categories

We follow the sign conventions of [Get93] and [Sei08a]. A pre-AA_{\infty} category \EuC\EuC consists of a set of objects, and a graded \BbK\BbK-vector space hom\EuC(X,Y)hom^{\bullet}_{\EuC}(X,Y) for each pair of objects XX, YY.

We define the convenient notation

\EuC(X0,,Xs):=hom(X0,X1)[1]hom(Xs1,Xs)[1].\EuC(X_{0},\ldots,X_{s}):=hom^{\bullet}(X_{0},X_{1})[1]\otimes\ldots\otimes hom^{\bullet}(X_{s-1},X_{s})[1].

For a generator a1asa_{1}\otimes\ldots\otimes a_{s} of \EuC(X0,,Xs)\EuC(X_{0},\ldots,X_{s}), we define

ϵj:=|a1|++|aj|\Z/2.\epsilon_{j}:=|a_{1}|^{\prime}+\ldots+|a_{j}|^{\prime}\in\Z/2.

We define the Hochschild cochains of length ss:

CC(\EuC)s:=X0,,Xs\Hom(\EuC(X0,,Xs),\EuC(X0,Xs))[1].CC^{\bullet}(\EuC)^{s}:=\prod_{X_{0},\ldots,X_{s}}\Hom^{\bullet}(\EuC(X_{0},\ldots,X_{s}),\EuC(X_{0},X_{s}))[-1].

We then define the Hochschild cochain complex

CC(\EuC):=s0CC(\EuC)sCC^{\bullet}(\EuC):=\prod_{s\geq 0}CC^{\bullet}(\EuC)^{s}

(more precisely, the completion of the direct sum in the category of graded vector spaces, with respect to the filtration by length ss). It admits the Gerstenhaber product:

φψ(a1,,as):=j,k(1)|ψ|ϵjφ(a1,,ψ(aj+1,),ak+1,).\varphi\circ\psi(a_{1},\ldots,a_{s}):=\sum_{j,k}(-1)^{|\psi|^{\prime}\cdot\epsilon_{j}}\varphi^{*}(a_{1},\ldots,\psi^{*}(a_{j+1},\ldots),a_{k+1},\ldots).

An AA_{\infty} structure on \EuC\EuC is an element μCC2(\EuC)\mu^{*}\in CC^{2}(\EuC) satisfying μμ=0\mu^{*}\circ\mu^{*}=0 and μ0=0\mu^{0}=0.

The cohomology category is a graded \BbK\BbK-linear category H(\EuC)H^{\bullet}(\EuC) with the same objects,

Hom(X,Y)\displaystyle\mathrm{Hom}^{\bullet}(X,Y) :=H(hom(X,Y),μ1),\displaystyle:=H^{\bullet}(hom^{\bullet}(X,Y),\mu^{1}),
[a1][a2]\displaystyle[a_{1}]\cdot[a_{2}] =(1)|a2|μ2(a2,a1).\displaystyle=(-1)^{|a_{2}|}\mu^{2}(a_{2},a_{1}).

We will assume that our AA_{\infty} categories are cohomologically unital, i.e., Hom(X,Y)\mathrm{Hom}^{\bullet}(X,Y) admits units.

We recall that an AA_{\infty} functor F:\EuC\EuDF:\EuC\to\EuD consists of a map on the level of objects, together with maps

Fs:\EuC(X0,,Xs)\EuD(FX0,FXs)F^{s}:\EuC(X_{0},\ldots,X_{s})\to\EuD(FX_{0},FX_{s})

satisfying

(4) μ(F(a1,),F(aj1+1,),,F(ajk+1,,as))=(1)ϵjF(a1,,μ(aj+1,),,as).\sum\mu^{*}(F^{*}(a_{1},\ldots),F^{*}(a_{j_{1}+1},\ldots),\ldots,F^{*}(a_{j_{k}+1},\ldots,a_{s}))=\\ \sum(-1)^{\epsilon_{j}}F^{*}(a_{1},\ldots,\mu^{*}(a_{j+1},\ldots),\ldots,a_{s}).
Definition 9.

If \EuC\EuC is a 𝖽𝗀\mathsf{dg} category, we define an AA_{\infty} category A(\EuC)A_{\infty}(\EuC) with the same set of objects:

homA(\EuC)(X,Y)\displaystyle hom^{\bullet}_{A_{\infty}(\EuC)}(X,Y) :=hom\EuC(Y,X);\displaystyle:=hom^{\bullet}_{\EuC}(Y,X);
μ1(f):=df;μ2(f,g)\displaystyle\mu^{1}(f):=df;\qquad\mu^{2}(f,g) :=(1)|f|fg;μ3:=0.\displaystyle:=(-1)^{|f|}f\cdot g;\qquad\mu^{\geq 3}:=0.

If F:\EuC\EuDF:\EuC\to\EuD is a 𝖽𝗀\mathsf{dg} functor, we define an AA_{\infty} functor A(F):A(\EuC)A(\EuD)A_{\infty}(F):A_{\infty}(\EuC)\to A_{\infty}(\EuD) by setting A(F)1:=FA_{\infty}(F)^{1}:=F and A(F)2:=0A_{\infty}(F)^{\geq 2}:=0.

Definition 10.

If \EuC\EuC is an AA_{\infty} category, we define the opposite AA_{\infty} category \EuCop\EuC^{op}. It has the same objects as \EuC\EuC, and morphism spaces hom\EuCop(X,Y):=hom\EuC(Y,X)hom^{\bullet}_{\EuC^{op}}(X,Y):=hom^{\bullet}_{\EuC}(Y,X). We have an isomorphism CC(\EuC)CC(\EuCop)CC^{\bullet}(\EuC)\to CC^{\bullet}(\EuC^{op}) sending ηηop\eta\mapsto\eta_{op}, defined by

ηops(a1,,as)\displaystyle\eta^{s}_{op}(a_{1},\ldots,a_{s}) :=(1)ηs(as,,a1),where\displaystyle:=(-1)^{\dagger}\eta^{s}(a_{s},\ldots,a_{1}),\quad\text{where}
\displaystyle\dagger :=1i<js|ai||aj|.\displaystyle:=\sum_{1\leq i<j\leq s}|a_{i}|^{\prime}\cdot|a_{j}|^{\prime}.

This isomorphism preserves the Gerstenhaber product, in the sense that αopβop=(αβ)op\alpha_{op}\circ\beta_{op}=(\alpha\circ\beta)_{op}. Thus we can define the AA_{\infty} structure maps on \EuCop\EuC^{op} to be equal to μop\mu^{*}_{op}.

{rmk}

If ehom\EuC0(X,X)e\in hom^{0}_{\EuC}(X,X) is a cohomological unit in \EuC\EuC, then ehom\EuCop0(X,X)=hom\EuC0(X,X)-e\in hom^{0}_{\EuC^{op}}(X,X)=hom^{0}_{\EuC}(X,X) is a cohomological unit in \EuCop\EuC^{op}.

{rmk}

This is a different definition of the opposite AA_{\infty} category from that given in [Sei08b, Section 1a] (i.e., the two definitions give non-equivalent AA_{\infty} categories in general). It was verified in [She, Appendix B] that there is an isomorphism \EuF(X,ω)op\EuF(X,ω)\EuF(X,\omega)^{op}\cong\EuF(X,-\omega) for the exact Fukaya category \EuF\EuF. We take this as evidence that this definition of the opposite category is most relevant for Fukaya categories. We thank Seidel for drawing our attention to this difference.

{rmk}

Definitions 9, 8 and 10 are compatible, but in a slightly non-trivial way: given a 𝖽𝗀\mathsf{dg} category \EuC\EuC, there is a strict isomorphism of AA_{\infty} categories A(\EuCop)(A(\EuC))opA_{\infty}(\EuC^{op})\cong\left(A_{\infty}(\EuC)\right)^{op} which sends xxx\mapsto-x for all morphisms xx.

3.3 Hochschild cohomology

We define the Gerstenhaber bracket on CC(\EuC)CC^{\bullet}(\EuC):

[φ,ψ]:=φψ(1)|φ||ψ|ψφ.[\varphi,\psi]:=\varphi\circ\psi-(-1)^{|\varphi|^{\prime}\cdot|\psi|^{\prime}}\psi\circ\varphi.

It is a graded Lie bracket. We define the Hochschild differential M1:CC(\EuC)CC(\EuC)[1]M^{1}:CC^{\bullet}(\EuC)\to CC^{\bullet}(\EuC)[1] by M1:=[μ,]M^{1}:=[\mu^{*},-]. Because [μ,μ]=0[\mu^{*},\mu^{*}]=0, M1M^{1} is a differential, i.e., (M1)2=0(M^{1})^{2}=0. Its cohomology is called the Hochschild cohomology, \HH(\EuC)\HH^{\bullet}(\EuC).

For p2p\geq 2, we define MpCC2(CC(\EuC),CC(\EuC))pM^{p}\in CC^{2}(CC^{\bullet}(\EuC),CC^{\bullet}(\EuC))^{p} by

(5) Mp(φ1,,φp)(a1,,as)\displaystyle M^{p}(\varphi_{1},\ldots,\varphi_{p})(a_{1},\ldots,a_{s}) :=(1)μ(a1,,φ1(aj1+1,),,φp(ajp+1,),,as),\displaystyle:=\sum(-1)^{\dagger}\mu^{*}(a_{1},\ldots,\varphi_{1}^{*}(a_{j_{1}+1},\ldots),\ldots,\varphi_{p}^{*}(a_{j_{p}+1},\ldots),\ldots,a_{s}),
where \displaystyle\text{ where }\quad\dagger =i=1p|φi|ϵji.\displaystyle=\sum_{i=1}^{p}|\varphi_{i}|^{\prime}\cdot\epsilon_{j_{i}}.

By [Get93, Proposition 1.7], the operations MCC2(CC(\EuC))M^{*}\in CC^{2}(CC^{\bullet}(\EuC)) define an AA_{\infty} structure on CC(\EuC)CC^{\bullet}(\EuC). In particular, the Yoneda product on \HH(\EuC)\HH^{\bullet}(\EuC), defined on the cochain level by

(6) φψ:=(1)|ψ|M2(ψ,φ),\varphi\cup\psi:=(-1)^{|\psi|}M^{2}(\psi,\varphi),

makes \HH(\EuC)\HH^{\bullet}(\EuC) into a graded associative algebra. Together with the Gerstenhaber bracket, this makes Hochschild cohomology into a Gerstenhaber algebra.

{rmk}

We have an isomorphism of AA_{\infty} algebras CC(\EuC)CC(\EuCop)opCC^{\bullet}(\EuC)\to CC^{\bullet}(\EuC^{op})^{op}, sending ηηop\eta\mapsto\eta_{op}.

We now define the Kodaira–Spencer map, which is closely related to the Kaledin class [Kal07, Lun10]. We make a choice of \BbK\BbK-basis for each morphism space hom\EuC(X,Y)hom^{\bullet}_{\EuC}(X,Y). We write each AA_{\infty} structure map μ\mu^{*} in this basis, as a matrix with entries in \BbK\BbK. We obtain a Hochschild cochain v(μ)CC2(\EuC)v(\mu^{*})\in CC^{2}(\EuC) by acting with the derivation vv on the entries of the matrix for μ\mu^{*}. This Hochschild cochain is closed (as one sees by applying vv to the AA_{\infty} equations for \EuC\EuC), so we may define

𝖪𝖲:\deriv𝕜\BbK\displaystyle\mathsf{KS}:\deriv_{\Bbbk}\BbK \HH2(\EuC),\displaystyle\to\HH^{2}(\EuC),
𝖪𝖲(v)\displaystyle\mathsf{KS}(v) :=[v(μ)].\displaystyle:=[v(\mu^{*})].

We will prove in Corollary 30 that the Kodaira–Spencer map is independent of the choice of \BbK\BbK-bases for the morphisms spaces.

3.4 Hochschild homology

We define the Hochschild chain complex

CC(\EuC):=X0,,Xs\EuC(X0,,Xs,X0)[1].CC_{\bullet}(\EuC):=\bigoplus_{X_{0},\ldots,X_{s}}\EuC(X_{0},\ldots,X_{s},X_{0})[-1].

We denote generators by a0[a1||as]:=a0asa_{0}[a_{1}|\ldots|a_{s}]:=a_{0}\otimes\ldots\otimes a_{s}. For such a generator, we define the sign

εj:=|a0|+|a1|++|aj|\varepsilon_{j}:=|a_{0}|^{\prime}+|a_{1}|^{\prime}+\ldots+|a_{j}|^{\prime}

(the only difference between ϵj\epsilon_{j} and εj\varepsilon_{j} is that the former starts at 11, the latter starts at 0).

We define an operation tt on CC(\EuC)CC_{\bullet}(\EuC) by

t(a0[a1||as]):=(1)|as|εs1as[a0||as1].t(a_{0}[a_{1}|\ldots|a_{s}]):=(-1)^{|a_{s}|^{\prime}\cdot\varepsilon_{s-1}}a_{s}[a_{0}|\ldots|a_{s-1}].
Notation 11.

If P:CC(\EuC)MP:CC_{\bullet}(\EuC)\to M is some map, we define

P(a0[a1||aj+1||ak||as])\displaystyle P(a_{0}[a_{1}|\ldots|\overbrace{a_{j+1}|\ldots|a_{k}}|\ldots|a_{s}]) :=i=j+1kPti\displaystyle:=\sum_{i=j+1}^{k}P\circ t^{i}
=i=j+1k(1)P(asi+1[|as|a0||asi]), where\displaystyle=\sum_{i=j+1}^{k}(-1)^{\dagger}P(a_{s-i+1}[\ldots|a_{s}|a_{0}|\ldots|a_{s-i}]),\quad\text{ where}
\displaystyle\dagger :=(εsεsi)εsi.\displaystyle:=(\varepsilon_{s}-\varepsilon_{s-i})\cdot\varepsilon_{s-i}.

In words, we add up all ways of cyclically permuting the inputs of PP, in such a way that a0a_{0} lands underneath the brace. We have included Examples 3.2 and 3.4 to help familiarize the reader with the notation.

We define the Hochschild differential b:CC(\EuC)CC(\EuC)[1]b:CC_{\bullet}(\EuC)\to CC_{\bullet}(\EuC)[1] by

(7) b(a0[a1||as]):=jμ(a0,,aj)[aj+1||as]+j,k(1)εja0[|μ(aj+1,,ak)||as].b(a_{0}[a_{1}|\ldots|a_{s}]):=\sum_{j}\mu^{*}(\overbrace{a_{0},\ldots,a_{j}})[a_{j+1}|\ldots|a_{s}]+\sum_{j,k}(-1)^{\varepsilon_{j}}a_{0}[\ldots|\mu^{*}(a_{j+1},\ldots,a_{k})|\ldots|a_{s}].

It is a differential, and its cohomology is called the Hochschild homology, \HH(\EuC)\HH_{\bullet}(\EuC).

{rmk}

The convention for Hochschild homology of a 𝖽𝗀\mathsf{dg} category \EuC\EuC (see, e.g., [Shk12, Equation (2.1)]) coincides with ours, i.e., there is a natural identification of cochain complexes

(C(\EuC),b)=(CC(A(\EuC)),b).(C_{\bullet}(\EuC),b)=(CC_{\bullet}(A_{\infty}(\EuC)),b).
Definition 12.

There is an isomorphism of cochain complexes

CC(\EuC)\displaystyle CC_{\bullet}(\EuC) CC(\EuCop)\displaystyle\to CC_{\bullet}(\EuC^{op})
α\displaystyle\alpha α,sending\displaystyle\mapsto\alpha^{\vee},\quad\text{sending}
a0[a1||as]\displaystyle a_{0}[a_{1}|\ldots|a_{s}] (1)a0[as||a1], where\displaystyle\mapsto(-1)^{\dagger}a_{0}[a_{s}|\ldots|a_{1}],\quad\text{ where}
\displaystyle\dagger :=1i<js|ai||aj|.\displaystyle:=\sum_{1\leq i<j\leq s}|a_{i}|^{\prime}\cdot|a_{j}|^{\prime}.
{rmk}

Definition 12 is compatible with the corresponding map for 𝖽𝗀\mathsf{dg} categories, in the sense that for any 𝖽𝗀\mathsf{dg} category \EuC\EuC, the following diagram commutes up to an overall sign 1-1:

C(\EuC)\textstyle{C_{\bullet}(\EuC)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}CC(A(\EuC))\textstyle{CC_{\bullet}(A_{\infty}(\EuC))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}C(\EuCop)\textstyle{C_{\bullet}(\EuC^{op})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}CC(A(\EuCop)).\textstyle{CC_{\bullet}(A_{\infty}(\EuC^{op})).}

Here, the horizontal maps are the tautological identifications (see Remark 3.4), the left vertical arrow is the map defined, e.g., in [Shk12, Proposition 4.5], and the right vertical arrow is the map defined in Definition 12, composed with the isomorphism CC(A(\EuC)op)CC(A(\EuCop))CC_{\bullet}(A_{\infty}(\EuC)^{op})\cong CC_{\bullet}(A_{\infty}(\EuC^{op})) induced by the isomorphism of Remark 3.2.

For p1p\geq 1, we define the operations444 Getzler denotes bp|1b^{p|1} by b{,,}b\{-,\ldots,-\}.

bp|1:CC(\EuC)pCC(\EuC)CC(\EuC)[1p]b^{p|1}:CC^{\bullet}(\EuC)^{\otimes p}\otimes CC_{\bullet}(\EuC)\to CC_{\bullet}(\EuC)[1-p]
(8) bp|1(φ1,,φp|a0,,as):=(1)μ(a0,,φ1(aj1+1,),,φp(ajp+1,),,ak)[|as], whereb^{p|1}(\varphi_{1},\ldots,\varphi_{p}|a_{0},\ldots,a_{s}):=\\ \sum(-1)^{\dagger}\mu^{*}(a_{0},\ldots,\varphi_{1}^{*}(a_{j_{1}+1},\ldots),\ldots,\varphi_{p}^{*}(a_{j_{p}+1},\ldots),\overbrace{\ldots,a_{k}})[\ldots|a_{s}],\quad\text{ where}
=i=1p|φi|εji.\dagger=\sum_{i=1}^{p}|\varphi_{i}|^{\prime}\cdot\varepsilon_{j_{i}}.
Example 3.2.

We write out an example:

(9) b1|1(φ|a0,a1)=μ3(φ0,a0,a1)+(1)|a0||a1|μ3(φ0,a1,a0)+(1)(|φ|+|a0|)|a1|μ3(a1,φ0,a0)+(1)|a0||a1|μ2(φ1(a1),a0)+μ2(φ0,a0)[a1].b^{1|1}(\varphi|a_{0},a_{1})=\mu^{3}(\varphi^{0},a_{0},a_{1})+(-1)^{|a_{0}|^{\prime}\cdot|a_{1}|^{\prime}}\mu^{3}(\varphi^{0},a_{1},a_{0})\\ +(-1)^{(|\varphi|^{\prime}+|a_{0}|^{\prime})\cdot|a_{1}|^{\prime}}\mu^{3}(a_{1},\varphi^{0},a_{0})+(-1)^{|a_{0}|^{\prime}\cdot|a_{1}|^{\prime}}\mu^{2}(\varphi^{1}(a_{1}),a_{0})+\mu^{2}(\varphi^{0},a_{0})[a_{1}].

By [Get93, Theorem 1.9], the operations bp|1b^{p|1} (with b0|1:=bb^{0|1}:=b) equip CC(\EuC)CC_{\bullet}(\EuC) with the structure of an AA_{\infty} left-module over the AA_{\infty} algebra CC(\EuC)CC^{\bullet}(\EuC). In particular, \HH(\EuC)\HH_{\bullet}(\EuC) is a graded left \HH(\EuC)\HH^{\bullet}(\EuC)-module, with the module structure given on the level of cohomology by φα:=(1)|φ|b1|1(φ|α)\varphi\cap\alpha:=(-1)^{|\varphi|}b^{1|1}(\varphi|\alpha).

Lemma 13.

If F:\EuC\EuDF:\EuC\to\EuD is an AA_{\infty} functor, there is a chain map

F:CC(\EuC)\displaystyle F_{*}:CC_{\bullet}(\EuC) CC(\EuD)\displaystyle\to CC_{\bullet}(\EuD)
F(a0[|as])\displaystyle F_{*}(a_{0}[\ldots|a_{s}]) :=F(a0,)[F()||F(,as)].\displaystyle:=\sum F^{*}(\overbrace{a_{0},\ldots})[F^{*}(\ldots)|\ldots|F^{*}(\ldots,a_{s})].

3.5 Cyclic homology

If \EuC\EuC is an AA_{\infty} category, we define a new AA_{\infty} category \EuC+\EuC^{+}, by

hom\EuC+(X,Y):={hom\EuC(X,Y) if XYhom\EuC(X,X)\BbKe+ if X=Y.hom^{\bullet}_{\EuC^{+}}(X,Y):=\left\{\begin{array}[]{rl}hom^{\bullet}_{\EuC}(X,Y)&\mbox{ if $X\neq Y$}\\ hom^{\bullet}_{\EuC}(X,X)\oplus\BbK\cdot e^{+}&\mbox{ if $X=Y$.}\end{array}\right.

We define μs(,e+,)=0\mu^{s}(\ldots,e^{+},\ldots)=0 for all s2s\neq 2, and μ2(e+,a)=a=(1)|a|μ2(a,e+)\mu^{2}(e^{+},a)=a=(-1)^{|a|}\mu^{2}(a,e^{+}), leaving all other structure maps μ\mu^{*} unchanged. Then \EuC+\EuC^{+} is a strictly unital AA_{\infty} category, with strict units e+e^{+}.

{rmk}

There is a strict isomorphism (\EuCop)+(\EuC+)op(\EuC^{op})^{+}\cong(\EuC^{+})^{op}, which sends aaa\mapsto a for all ahom\EuCa\in\hom^{\bullet}_{\EuC}, but sends e+e+e^{+}\mapsto-e^{+}.

If F:\EuC\EuDF:\EuC\to\EuD is an AA_{\infty} functor, then we can extend FF to an AA_{\infty} functor F+:\EuC+\EuD+F^{+}:\EuC^{+}\to\EuD^{+} by setting F1(e+)=e+F^{1}(e^{+})=e^{+} and Fs(,e+,)=0F^{s}(\ldots,e^{+},\ldots)=0 for all s2s\geq 2. We define the subcomplex DCC(\EuC+)D_{\bullet}\subset CC_{\bullet}(\EuC^{+}) of degenerate elements, generated by a0[|as]a_{0}[\ldots|a_{s}] such that ai=e+a_{i}=e^{+} for some i>0i>0, together with the length-zero chains e+e^{+}. We define the non-unital Hochschild chain complex, CCnu(\EuC):=CC(\EuC+)/DCC_{\bullet}^{nu}(\EuC):=CC_{\bullet}(\EuC^{+})/D_{\bullet}. When \EuC\EuC is cohomologically unital, the composition of the natural maps

CC(\EuC)CC(\EuC+)CCnu(\EuC)CC_{\bullet}(\EuC)\hookrightarrow CC_{\bullet}(\EuC^{+})\to CC_{\bullet}^{nu}(\EuC)

is a quasi-isomorphism (compare [Lod92, Section 1.4]).

Now define Connes’ differential B:CCnu(\EuC)CCnu(\EuC)B:CC_{\bullet}^{nu}(\EuC)\to CC_{\bullet}^{nu}(\EuC) by

(10) B(a0[|as]):=e+[a0||as].B(a_{0}[\ldots|a_{s}]):=e^{+}[\overbrace{a_{0}|\ldots|a_{s}}].

It has degree 1-1, and satisfies B2=0B^{2}=0 and bB+Bb=0bB+Bb=0. Therefore, for any graded \BbK[u]\BbK[u]-module WW, where uu has degree +2+2, we obtain a graded cochain complex (CCnu(\EuC)W,b+uB)(CC_{\bullet}^{nu}(\EuC)\otimes W,b+uB).

{rmk}

The tautological identification of Hochschild complexes for a 𝖽𝗀\mathsf{dg} category, and for its AA_{\infty} version (Remark 3.4) equates the 𝖽𝗀\mathsf{dg} version of Connes’ differential (with conventions as in [Shk16, Section 2.2]) with the AA_{\infty} version (10).

Definition 14.

We recall the automorphism of \BbK[u]\BbK[u] which sends fff\mapsto f^{\star}, where f(u):=f(u)f^{\star}(u):=f(-u). If W1W_{1} and W2W_{2} are \BbK[u]\BbK[u]-modules, we call a map g:W1W2g:W_{1}\to W_{2} sesquilinear if

g(fw)=fg(w).g(f\cdot w)=f^{\star}\cdot g(w).
{rmk}

Given a sesquilinear automorphism of WW, also denoted www\mapsto w^{\star}, we obtain an isomorphism of cochain complexes

(CCnu(\EuC)W,b+uB)(CCnu(\EuC)W,buB)(CC_{\bullet}^{nu}(\EuC)\otimes W,b+uB)\cong(CC_{\bullet}^{nu}(\EuC)\otimes W,b-uB)

by sending αwαw\alpha\otimes w\mapsto\alpha\otimes w^{\star}. Thus, although Getzler uses the convention that the cyclic differential is buBb-uB in [Get93], every formula he writes can be translated into our conventions by setting uuu\mapsto-u.

{rmk}

The isomorphism of Definition 12 extends to an isomorphism CCnu(\EuC)CCnu(\EuCop)CC_{\bullet}^{nu}(\EuC)\cong CC_{\bullet}^{nu}(\EuC^{op}) which intertwines BB with B-B. This is a consequence of Remark 3.5: insertion of e+e^{+} in CCnu(\EuC)CC_{\bullet}^{nu}(\EuC) corresponds to insertion of e+-e^{+} in CC(\EuCop)CC_{\bullet}(\EuC^{op}).

{rmk}

As a consequence of the previous two remarks, for any \BbK[u]\BbK[u]-module WW equipped with a sesquilinear automorphism, we obtain a sesquilinear isomorphism of cochain complexes

(11) (CCnu(\EuC)W,b+uB)\displaystyle(CC_{\bullet}^{nu}(\EuC)\otimes W,b+uB) \displaystyle\to (CCnu(\EuCop)W,b+uB)\displaystyle(CC_{\bullet}^{nu}(\EuC^{op})\otimes W,b+uB)
αw\displaystyle\alpha\otimes w \displaystyle\mapsto αw.\displaystyle\alpha^{\vee}\otimes w^{\star}.

If a graded \BbK[u]\BbK[u]-module WW admits, furthermore, an exhaustive decreasing filtration FpWFp+1W\ldots\supset F^{\geq p}W\supset F^{\geq p+1}W\supset\ldots, such that multiplication by uu increases the filtration: uFpFp+1u\cdot F^{\geq p}\subset F^{\geq p+1}, then the cochain complex (CCnu(\EuC)W,b+uB)(CC_{\bullet}^{nu}(\EuC)\otimes W,b+uB) admits an exhaustive decreasing filtration CCnu(\EuC)FpWCC_{\bullet}^{nu}(\EuC)\otimes F^{\geq p}W; so we can take the completion of this filtration in the category of graded cochain complexes, to obtain a new filtered cochain complex (CCnu(\EuC)^W,b+uB)(CC_{\bullet}^{nu}(\EuC)\widehat{\otimes}W,b+uB). The cohomology of this cochain complex will also acquire a filtration, which we call the Hodge filtration and denote by FpF^{\geq p}. The corresponding spectral sequence has E1E_{1} page

(12) E1pqr\HHp+qr(\EuC)𝖦𝗋pWr.E_{1}^{pq}\cong\bigoplus_{r}\HH_{p+q-r}(\EuC)\otimes\mathsf{Gr}^{p}W_{r}.
Lemma 15.

If G:CCnu(\EuC)CCnu(\EuD)G:CC_{\bullet}^{nu}(\EuC)\to CC_{\bullet}^{nu}(\EuD) is a map such that Gb=bGG\circ b=b\circ G and GB=BGG\circ B=B\circ G, then we obtain a map of filtered cochain complexes:

G^W:CCnu(\EuC)^WCCnu(\EuD)^W.G\widehat{\otimes}W:CC_{\bullet}^{nu}(\EuC)\widehat{\otimes}W\to CC_{\bullet}^{nu}(\EuD)\widehat{\otimes}W.

If GG is a quasi-isomorphism, then G^WG\widehat{\otimes}W is a quasi-isomorphism.

Proof 3.3.

The existence of G^WG\widehat{\otimes}W is clear. Because G^WG\widehat{\otimes}W respects filtrations, it induces a map between the corresponding spectral sequences (13); because GG is a quasi-isomorphism, the map is an isomorphism on the E1E_{1} page. Therefore, because the filtrations are exhaustive and complete, G^WG\widehat{\otimes}W is a quasi-isomorphism by the Eilenberg–Moore comparison theorem [Wei94, Theorem 5.5.11].

Definition 16.

The following examples are of particular interest:

  • W:=\BbK[u]W^{-}:=\BbK[u], with filtration FpW:=up\BbK[u]F^{\geq p}W^{-}:=u^{p}\BbK[u]. We denote

    CC(\EuC):=CCnu(\EuC)^W,CC^{-}_{\bullet}(\EuC):=CC_{\bullet}^{nu}(\EuC)\widehat{\otimes}W^{-},

    and its cohomology by 𝖧𝖢(\EuC)\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC). This is called the negative cyclic homology.

  • W:=\BbK[u,u1]W^{\infty}:=\BbK[u,u^{-1}], with the same filtration. We denote

    CC(\EuC):=CCnu(\EuC)^W,CC^{\infty}_{\bullet}(\EuC):=CC_{\bullet}^{nu}(\EuC)\widehat{\otimes}W^{\infty},

    and its cohomology by 𝖧𝖯(\EuC)\operatorname{\mathsf{HP}}_{\bullet}(\EuC). This is called the periodic cyclic homology.

  • W+:=\BbK[u,u1]/\BbK[u]W^{+}:=\BbK[u,u^{-1}]/\BbK[u], with the same filtration. We denote

    CC+(\EuC):=CCnu(\EuC)^W+,CC^{+}_{\bullet}(\EuC):=CC_{\bullet}^{nu}(\EuC)\widehat{\otimes}W^{+},

    and its cohomology by 𝖧𝖢+(\EuC)\operatorname{\mathsf{HC}}^{+}_{\bullet}(\EuC). This is called the positive cyclic homology.

{rmk}

For these examples, the spectral sequence (12) has E1E_{1} page

(13) E1pq{\HHqp(\EuC)up if upW0 otherwise.E_{1}^{pq}\cong\left\{\begin{array}[]{rl}\HH_{q-p}(\EuC)\cdot u^{p}&\mbox{ if $u^{p}\in W$}\\ 0&\mbox{ otherwise.}\end{array}\right.
{rmk}

As a consequence of Remark 3.5, there is a sesquilinear isomorphism

𝖧𝖢(\EuC)\displaystyle\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC) 𝖧𝖢(\EuCop)\displaystyle\to\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC^{op})
α\displaystyle\alpha α,\displaystyle\mapsto\alpha^{\vee},

defined by (αw):=αw(\alpha\otimes w)^{\vee}:=\alpha^{\vee}\otimes w^{\star}, and similarly for 𝖧𝖯\operatorname{\mathsf{HP}}_{\bullet} and 𝖧𝖢+\operatorname{\mathsf{HC}}^{+}_{\bullet}.

Lemma 17.

If F:\EuC\EuDF:\EuC\to\EuD is an AA_{\infty} functor, then the map F+:CCnu(\EuC)CCnu(\EuD)F^{+}_{*}:CC_{\bullet}^{nu}(\EuC)\to CC_{\bullet}^{nu}(\EuD) satisfies

F+b=bF+andF+B=BF+.F_{*}^{+}\circ b=b\circ F_{*}^{+}\quad\text{and}\quad F_{*}^{+}\circ B=B\circ F_{*}^{+}.

In particular, it induces a map F:𝖧𝖢(\EuC)𝖧𝖢(\EuD)F_{*}:\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC)\to\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuD), and similarly for 𝖧𝖯\operatorname{\mathsf{HP}}_{\bullet} and 𝖧𝖢+\operatorname{\mathsf{HC}}_{\bullet}^{+}.

As a consequence of Lemma 15, we have:

Corollary 18.

If an AA_{\infty} functor F:\EuC\EuDF:\EuC\to\EuD induces an isomorphism F:\HH(\EuC)\HH(\EuD)F_{*}:\HH_{\bullet}(\EuC)\to\HH_{\bullet}(\EuD), then it also induces an isomorphism F:𝖧𝖢(\EuC)𝖧𝖢(\EuD)F_{*}:\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC)\to\operatorname{\mathsf{HC}}_{\bullet}^{-}(\EuD), and similarly for 𝖧𝖯\operatorname{\mathsf{HP}}_{\bullet} and 𝖧𝖢+\operatorname{\mathsf{HC}}_{\bullet}^{+}.

3.6 The Getzler–Gauss–Manin connection

Getzler [Get93] defines operations555Getzler denotes Bp|1B^{p|1} by B{,,}B\{-,\ldots,-\}.

Bp|1:CC(\EuC)pCCnu(\EuC)CCnu(\EuC)B^{p|1}:CC^{\bullet}(\EuC)^{\otimes p}\otimes CC_{\bullet}^{nu}(\EuC)\to CC_{\bullet}^{nu}(\EuC)
Bp|1(φ1,,φp|a0,,as)\displaystyle B^{p|1}(\varphi_{1},\ldots,\varphi_{p}|a_{0},\ldots,a_{s}) :=(1)e+[a0||φ1(aj1+1,)||φp(ajp+1,)||as], where\displaystyle:=\sum(-1)^{\dagger}e^{+}[a_{0}|\ldots|\varphi_{1}^{*}(a_{j_{1}+1},\ldots)|\ldots|\varphi_{p}^{*}(a_{j_{p}+1},\ldots)|\overbrace{\ldots|a_{s}}],\quad\text{ where}
\displaystyle\dagger :=i=1p|φi|εji.\displaystyle:=\sum_{i=1}^{p}|\varphi_{i}|^{\prime}\cdot\varepsilon_{j_{i}}.
Example 3.4.

Note that B0|1=BB^{0|1}=B. We also write out another example:

(14) B1|1(φ|a0,a1)=e+[φ0|a0|a1]+(1)|a0||a1|e+[φ0|a1|a0]+(1)(|a0|+|φ|)|a1|e+[a1|φ0|a0]+(1)|a0||a1|e+[φ1(a1)|a0].B^{1|1}(\varphi|a_{0},a_{1})=e^{+}[\varphi^{0}|a_{0}|a_{1}]+(-1)^{|a_{0}|^{\prime}\cdot|a_{1}|^{\prime}}e^{+}[\varphi^{0}|a_{1}|a_{0}]\\ +(-1)^{(|a_{0}|^{\prime}+|\varphi|^{\prime})\cdot|a_{1}|^{\prime}}e^{+}[a_{1}|\varphi^{0}|a_{0}]+(-1)^{|a_{0}|^{\prime}\cdot|a_{1}|^{\prime}}e^{+}[\varphi^{1}(a_{1})|a_{0}].
Definition 19.

The Getzler–Gauss–Manin connection [Get93, Proposition 3.1] is defined by

:\deriv𝕜\BbK\BbKCC(\EuC)\displaystyle\nabla:\deriv_{\Bbbk}\BbK\otimes_{\BbK}CC_{\bullet}^{-}(\EuC) \displaystyle\to u1CC(\EuC),\displaystyle u^{-1}CC_{\bullet}^{-}(\EuC),
v(α)\displaystyle\nabla_{v}(\alpha) :=\displaystyle:= v(α)u1b1|1(v(μ)|α)B1|1(v(μ)|α).\displaystyle v(\alpha)-u^{-1}b^{1|1}(v(\mu^{*})|\alpha)-B^{1|1}(v(\mu^{*})|\alpha).

Observe that the second term on the right-hand side has acquired a minus sign in our conventions, in accordance with Remark 3.5.

{rmk}

In writing the expressions ‘v(α)v(\alpha)’ and ‘v(μ)v(\mu^{*})’, it is implicit that we have chosen a \BbK\BbK-basis for each morphism space hom\EuC(X,Y)hom^{\bullet}_{\EuC}(X,Y). So really we should write ‘\nabla^{\mathcal{B}}’, where \mathcal{B} denotes the choice of these bases; however we will prove (Corollary 21) that \nabla^{\mathcal{B}} is independent of the choice of \mathcal{B} on the level of cohomology, so \mathcal{B} can be removed from the notation.

{rmk}

Observe that v\nabla^{\mathcal{B}}_{v} induces a linear map 𝖦𝗋FpCC(\EuC)𝖦𝗋Fp1CC(\EuC)\mathsf{Gr}_{F}^{p}CC_{\bullet}^{-}(\EuC)\to\mathsf{Gr}_{F}^{p-1}CC_{\bullet}^{-}(\EuC). This map is given by u1b1|1(𝖪𝖲(v)|)-u^{-1}b^{1|1}(\mathsf{KS}(v)|-) on the level of cohomology, in analogy with the associated graded of the Gauss–Manin connection with respect to the Hodge filtration (see, e.g., [Voi07, Theorem 10.4]).

Getzler shows that [v,b+uB]=0[\nabla_{v}^{\mathcal{B}},b+uB]=0, so v\nabla_{v}^{\mathcal{B}} gives a well-defined map on the level of cohomology. It is clear from the formula that it is a connection. Getzler also shows that \nabla^{\mathcal{B}} is flat: more precisely, he writes down an explicit contracting homotopy for u2([X,Y][X,Y])u^{2}\left([\nabla_{X},\nabla_{Y}]-\nabla_{[X,Y]}\right) (see [Get93, Theorem 3.3]), so the connection is flat in the sense of Definition 1.

Theorem 20.

Suppose that \EuC\EuC and \EuD\EuD are AA_{\infty} categories, equipped with a choice of \BbK\BbK-bases \EuC\mathcal{B}_{\EuC} for the morphism spaces of \EuC\EuC, and \EuD\mathcal{B}_{\EuD} for the morphism spaces of \EuD\EuD. If F:\EuC\EuDF:\EuC\to\EuD is an AA_{\infty} functor, then the induced map F:𝖧𝖢(\EuC)𝖧𝖢(\EuD)F_{*}:\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC)\to\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuD) respects the Getzler–Gauss–Manin connection, in the sense that

F[v\EuC]=[v\EuD]FF_{*}\circ\left[\nabla^{\mathcal{B}_{\EuC}}_{v}\right]=\left[\nabla^{\mathcal{B}_{\EuD}}_{v}\right]\circ F_{*}

on the level of cohomology.

Proof 3.5.

See Appendix B.

Corollary 21.

The Getzler–Gauss–Manin connection \nabla^{\mathcal{B}} is independent of the choice of bases \mathcal{B}, on the level of cohomology.

Proof 3.6.

Follows from Theorem 20, taking FF to be the identity functor.

Henceforth, we simply write ‘\nabla’ instead of ‘\nabla^{\mathcal{B}}’. It follows that, for any graded \BbK\BbK-linear AA_{\infty} category \EuC\EuC, (𝖧𝖢(\EuC),)(\operatorname{\mathsf{HC}}_{\bullet}^{-}(\EuC),\nabla) is a well-defined unpolarized pre-𝖵𝖲𝖧𝖲\mathsf{VSHS}. This completes the proof of Theorem 1.4 (1).

4 Morita invariance

4.1 Morita equivalence

We recall some material about AA_{\infty} bimodules from [Sei08a, Section 2]. If \EuC\EuC and \EuD\EuD are AA_{\infty} categories, we denote by [\EuC,\EuD][\EuC,\EuD] the 𝖽𝗀\mathsf{dg} category of graded, \BbK\BbK-linear, cohomologically unital AA_{\infty} (\EuC,\EuD)(\EuC,\EuD) bimodules. Recall: morphisms are ‘pre-homomorphisms’ of bimodules; the differential is given by [Sei08a, Equation (2.8)]; composition is given by [Sei08a, Equation (2.9)].

Recall that if \EuB\EuB, \EuC\EuC and \EuD\EuD are AA_{\infty} categories, and \EuM\EuM is an AA_{\infty} (\EuC,\EuD)(\EuC,\EuD) bimodule, then there is an induced 𝖽𝗀\mathsf{dg} functor

(15) ?\EuC\EuM:[\EuB,\EuC][\EuB,\EuD].?\otimes_{\EuC}\EuM:[\EuB,\EuC]\to[\EuB,\EuD].

If \EuD=\EuC\EuD=\EuC and \EuM=\EuCΔ\EuM=\EuC_{\Delta} is the diagonal bimodule, then the functor ?\EuC\EuCΔ?\otimes_{\EuC}\EuC_{\Delta} is quasi-isomorphic to the identity functor.

Definition 22.

\EuC\EuC and \EuD\EuD are Morita equivalent if there exists a (\EuC,\EuD)(\EuC,\EuD) bimodule \EuM\EuM, and a (\EuD,\EuC)(\EuD,\EuC) bimodule \EuN\EuN, and quasi-isomorphisms of AA_{\infty} bimodules

\EuM\EuD\EuN\EuCΔand\EuN\EuC\EuM\EuDΔ.\EuM\otimes_{\EuD}\EuN\cong\EuC_{\Delta}\qquad\text{and}\qquad\EuN\otimes_{\EuC}\EuM\cong\EuD_{\Delta}.

In this situation, the functor (15) is a quasi-equivalence.

We now recall that, given AA_{\infty} functors Fi:\EuCi\EuDiF_{i}:\EuC_{i}\to\EuD_{i} for i=0,1i=0,1, and a (\EuD0,\EuD1)(\EuD_{0},\EuD_{1}) bimodule \EuM\EuM, we can define the pullback (\EuC0,\EuC1)(\EuC_{0},\EuC_{1}) bimodule (F0F1)\EuM(F_{0}\otimes F_{1})^{*}\EuM (see [Ganb, Section 2.8]). We prove the following result in Appendix A:

Lemma 23 (= Lemma 74).

If F:\EuC\EuDF:\EuC\to\EuD is a cohomologically full and faithful AA_{\infty} functor, and \EuD\EuD is split-generated by the image of FF, then \EuM:=(FId)\EuDΔ\EuM:=(F\otimes\mathrm{Id})^{*}\EuD_{\Delta} and \EuN:=(IdF)\EuDΔ\EuN:=(\mathrm{Id}\otimes F)^{*}\EuD_{\Delta} define a Morita equivalence between \EuC\EuC and \EuD\EuD.

Now, let \twsplit\EuC\twsplit\EuC denote the triangulated split-closure of \EuC\EuC (denoted ‘(Tw(\EuC))\prod(Tw(\EuC))’ in [Sei08b, Section 4c]). The following result is well-known:

Theorem 24.

\EuC\EuC and \EuD\EuD are Morita equivalent if and only if \twsplit\EuC\twsplit\EuC and \twsplit\EuD\twsplit\EuD are quasi-equivalent.

Proof 4.1.

Suppose \twsplit\EuC\twsplit\EuD\twsplit\EuC\simeq\twsplit\EuD. Consider the AA_{\infty} functors

\EuC\twsplit\EuC\twsplit\EuD\EuD.\EuC\hookrightarrow\twsplit\EuC\to\twsplit\EuD\hookleftarrow\EuD.

Each is cohomologically full and faithful with split-generating image, hence each defines a Morita equivalence by Lemma 23. This proves the ‘if’; Theorem 75 proves the ‘only if’.

4.2 Hochschild cohomology

Generalizing [Ganb, Equation (2.200)] slightly, we have the following:

Lemma 25.

There are AA_{\infty} homomorphisms666We recall that [\EuC,\EuD][\EuC,\EuD] is a 𝖽𝗀\mathsf{dg} category, and A([\EuC,\EuD])A_{\infty}([\EuC,\EuD]) is the corresponding AA_{\infty} category, in accordance with Definition 9.

(16) CC(\EuC)L\EuMhomA([\EuC,\EuD])(\EuM,\EuM)R\EuMCC(\EuD)op,CC^{\bullet}(\EuC)\xrightarrow{L_{\EuM}}hom^{\bullet}_{A_{\infty}([\EuC,\EuD])}(\EuM,\EuM)\xleftarrow{R_{\EuM}}CC^{\bullet}(\EuD)^{op},

with L\EuML_{\EuM} given by the formula

(17) L\EuMp(φ1,,φp)(a1,,as,m,b1,,bt):=(1)μ\EuM(a1,,φ1(aj1+1,),,φp(ajp+1,),,a1,m,b1,,bt), whereL^{p}_{\EuM}(\varphi_{1},\ldots,\varphi_{p})(a_{1},\ldots,a_{s},m,b_{1},\ldots,b_{t}):=\\ \sum(-1)^{\dagger}\mu^{*}_{\EuM}(a_{1},\ldots,\varphi_{1}^{*}(a_{j_{1}+1},\ldots),\ldots,\varphi_{p}^{*}(a_{j_{p}+1},\ldots),\ldots,a_{1},m,b_{1},\ldots,b_{t}),\quad\text{ where}
=i=1p|φi|ϵji,\dagger=\sum_{i=1}^{p}|\varphi_{i}|^{\prime}\cdot\epsilon_{j_{i}},

and R\EuMR_{\EuM} given by the formula

(18) R\EuMp(φ1,,φp)(a1,,as,m,b1,,bt):=(1)μ\EuM(a1,,as,m,b1,,φp(yjp+1,),,φ1(yj1+1,),,yt), whereR^{p}_{\EuM}(\varphi_{1},\ldots,\varphi_{p})(a_{1},\ldots,a_{s},m,b_{1},\ldots,b_{t}):=\\ \sum(-1)^{\dagger}\mu^{*}_{\EuM}(a_{1},\ldots,a_{s},m,b_{1},\ldots,\varphi_{p}^{*}(y_{j_{p}+1},\ldots),\ldots,\varphi_{1}^{*}(y_{j_{1}+1},\ldots),\ldots,y_{t}),\quad\text{ where}
=i<j|φi||φj|+i=1p|φi|(|a1|++|as|+|m|+|b1|++|bji|).\dagger=\sum_{i<j}|\varphi_{i}|^{\prime}\cdot|\varphi_{j}|^{\prime}+\sum_{i=1}^{p}|\varphi_{i}|^{\prime}\cdot\left(|a_{1}|^{\prime}+\ldots+|a_{s}|^{\prime}+|m|+|b_{1}|^{\prime}+\ldots+|b_{j_{i}}|^{\prime}\right).
Proof 4.2.

The AA_{\infty} homomorphism equations are a consequence of the AA_{\infty} bimodule equations for \EuM\EuM.

Lemma 26.

If \EuM\EuM defines a Morita equivalence between \EuC\EuC and \EuD\EuD, then L\EuML_{\EuM} and R\EuMR_{\EuM} are quasi-isomorphisms. In particular, \EuM\EuM induces an algebra isomorphism \HH(\EuC)\HH(\EuD)op\HH^{\bullet}(\EuC)\cong\HH^{\bullet}(\EuD)^{op}.

Proof 4.3.

It suffices to prove that the chain maps L\EuM1L^{1}_{\EuM} and R\EuM1R^{1}_{\EuM} are quasi-isomorphisms. We start by observing that the following diagram of chain maps commutes up to homotopy:

(19) CC(\EuC)\textstyle{CC^{\bullet}(\EuC)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}L\EuM1\scriptstyle{L^{1}_{\EuM}}R\EuCΔ1\scriptstyle{R^{1}_{\EuC_{\Delta}}}hom[\EuC,\EuD](\EuM,\EuM)\textstyle{hom^{\bullet}_{[\EuC,\EuD]}(\EuM,\EuM)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\EuCΔ?\scriptstyle{\EuC_{\Delta}\otimes?}hom[\EuC,\EuC](\EuCΔ,\EuCΔ)\textstyle{hom^{\bullet}_{[\EuC,\EuC]}(\EuC_{\Delta},\EuC_{\Delta})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}?\EuC\EuM\scriptstyle{?\otimes_{\EuC}\EuM}hom[\EuC,\EuD](\EuCΔ\EuC\EuM,\EuCΔ\EuC\EuM).\textstyle{hom^{\bullet}_{[\EuC,\EuD]}(\EuC_{\Delta}\otimes_{\EuC}\EuM,\EuC_{\Delta}\otimes_{\EuC}\EuM).}

Indeed, the homotopy H:CC(\EuC)hom[\EuC,\EuD](\EuCΔ\EuC\EuM,\EuCΔ\EuC\EuM)H:CC^{\bullet}(\EuC)\to hom^{\bullet}_{[\EuC,\EuD]}(\EuC_{\Delta}\otimes_{\EuC}\EuM,\EuC_{\Delta}\otimes_{\EuC}\EuM) is given by

H(φ)0|1|0(a0,a1,,as,m)\displaystyle H(\varphi^{*})^{0|1|0}(a_{0},a_{1},\ldots,a_{s},m) :=(1)(a0,a1,,φ(aj+1,),,as,m), where\displaystyle:=\sum(-1)^{\dagger}(a_{0},a_{1},\ldots,\varphi^{*}(a_{j+1},\ldots),\ldots,a_{s},m),\quad\text{ where}
\displaystyle\dagger :=|φ|εj,\displaystyle:=|\varphi|^{\prime}\cdot\varepsilon_{j},
H(φ)j|1|k\displaystyle H(\varphi^{*})^{j|1|k} =0for j>0 or k>0.\displaystyle=0\quad\text{for $j>0$ or $k>0$.}

We now observe that R\EuCΔ1R^{1}_{\EuC_{\Delta}} is a quasi-isomorphism by [Ganb, Proposition 2.5]. \EuCΔ?\EuC_{\Delta}\otimes? is a quasi-isomorphism because it is quasi-isomorphic to the identity functor. ?\EuC\EuM?\otimes_{\EuC}\EuM is a quasi-isomorphism because \EuM\EuM defines a Morita equivalence. Therefore, the chain map L\EuM1L^{1}_{\EuM} is a quasi-isomorphism, by commutativity of the diagram. The proof that R\EuM1R^{1}_{\EuM} is a quasi-isomorphism is analogous.

Lemma 27.

The isomorphism \HH(\EuC)\HH(\EuC)op\HH^{\bullet}(\EuC)\cong\HH^{\bullet}(\EuC)^{op}, induced by the diagonal bimodule, is the identity. In particular, \HH(\EuC)\HH^{\bullet}(\EuC) is graded commutative (cf. [Ger63]).

Proof 4.4.

It suffices to check that the chain maps

L\EuCΔ1,R\EuCΔ1:CC(\EuC)homA([\EuC,\EuC])(\EuCΔ,\EuCΔ)L^{1}_{\EuC_{\Delta}},-R^{1}_{\EuC_{\Delta}}:CC^{\bullet}(\EuC)\to hom^{\bullet}_{A_{\infty}([\EuC,\EuC])}(\EuC_{\Delta},\EuC_{\Delta})

are chain-homotopic (Remark 3.2 explains the minus sign). Indeed, the homotopy is given by

H(φ)s|1|t(a1,,as,m,b1,,bt):=φ(a1,,as,m,b1,,bt).H(\varphi)^{s|1|t}(a_{1},\ldots,a_{s},m,b_{1},\ldots,b_{t}):=\varphi(a_{1},\ldots,a_{s},m,b_{1},\ldots,b_{t}).
Corollary 28.

A Morita equivalence between \EuC\EuC and \EuD\EuD induces an isomorphism of graded \BbK\BbK-algebras

(20) \HH(\EuC)\HH(\EuD).\HH^{\bullet}(\EuC)\cong\HH^{\bullet}(\EuD).
Proposition 29.

The isomorphism (20) respects Kodaira–Spencer maps.

Proof 4.5.

Let \EuM\EuM be a (\EuC,\EuD)(\EuC,\EuD) bimodule which defines a Morita equivalence between \EuC\EuC and \EuD\EuD, and let us choose a basis for the morphisms spaces of \EuC\EuC, \EuD\EuD and \EuM\EuM. Given a derivation v\deriv𝕜\BbKv\in\deriv_{\Bbbk}\BbK, we have

0=(v(μ\EuM))+L\EuM1(v(μ\EuC))R\EuM1(v(μ\EuD)),0=\partial(v(\mu^{*}_{\EuM}))+L^{1}_{\EuM}(v(\mu^{*}_{\EuC}))-R^{1}_{\EuM}(v(\mu^{*}_{\EuD})),

as follows by applying vv to the AA_{\infty} bimodule equations for \EuM\EuM. Therefore L\EuM1(v(μ\EuC))=R\EuM1(v(μ\EuD))L^{1}_{\EuM}(v(\mu^{*}_{\EuC}))=R^{1}_{\EuM}(v(\mu^{*}_{\EuD})) on the level of cohomology, and the result follows.

Taking \EuC=\EuD\EuC=\EuD and \EuM=\EuCΔ\EuM=\EuC_{\Delta}, we obtain:

Corollary 30.

The class 𝖪𝖲(v):=[v(μ)]\HH2(\EuC)\mathsf{KS}(v):=[v(\mu^{*})]\in\HH^{2}(\EuC) does not depend on the choice of \BbK\BbK-bases for the morphism spaces of \EuC\EuC.

4.3 Hochschild homology

We recall the notion of cyclic tensor product of bimodules, from [Sei08a, Section 5]. If \EuC1,,\EuCl=\EuC0\EuC_{1},\ldots,\EuC_{l}=\EuC_{0} are AA_{\infty} categories, and \EuMi\EuM_{i} a (\EuCi1,\EuCi)(\EuC_{i-1},\EuC_{i}) bimodule for i=1,li=1\ldots,l, we can form the cyclic tensor product \EuM1\EuC1\EuM2\EuC2\EuCl1\EuMl\EuClcyc\EuM_{1}\otimes_{\EuC_{1}}\EuM_{2}\otimes_{\EuC_{2}}\ldots\otimes_{\EuC_{l-1}}\EuM_{l}\otimes_{\EuC_{l}}cyc. It is a chain complex with underlying vector space

Xi,jOb(\EuCi)\EuM1(X0,j0,X1,1)\EuC1(X1,1,,X1,j1)\EuM2(X1,j1,X2,1)\EuMl(Xl1,jl,X0,1)\EuC0(X0,1,,X0,j0),\bigoplus_{X_{i,j}\in Ob(\EuC_{i})}\EuM_{1}(X_{0,j_{0}},X_{1,1})\otimes\EuC_{1}(X_{1,1},\ldots,X_{1,j_{1}})\otimes\EuM_{2}(X_{1,j_{1}},X_{2,1})\otimes\ldots\otimes\EuM_{l}(X_{l-1,j_{l}},X_{0,1})\otimes\EuC_{0}(X_{0,1},\ldots,X_{0,j_{0}}),

and differential as in [Sei08a, Equation (5.1)]. As a particular case, we have the identification CC(\EuC)=\EuCΔ\EuCcycCC_{\bullet}(\EuC)=\EuC_{\Delta}\otimes_{\EuC}cyc.

Lemma 31.

A Morita equivalence between \EuC\EuC and \EuD\EuD induces an isomorphism of graded vector spaces

(21) \HH(\EuC)\HH(\EuD).\HH_{\bullet}(\EuC)\cong\HH_{\bullet}(\EuD).
Proof 4.6.

Let \EuM\EuM be a (\EuC,\EuD)(\EuC,\EuD) bimodule and \EuN\EuN a (\EuD,\EuC)(\EuD,\EuC) bimodule which define a Morita equivalence between \EuC\EuC and \EuD\EuD. Then we have a chain of quasi-isomorphisms

CC(\EuC)=\EuCΔ\EuCcyc.\EuM\EuD\EuN\EuCcyc.\EuN\EuC\EuM\EuDcyc.\EuDΔ\EuDcyc.=CC(\EuD).CC_{\bullet}(\EuC)=\EuC_{\Delta}\otimes_{\EuC}cyc.\simeq\EuM\otimes_{\EuD}\EuN\otimes_{\EuC}cyc.\simeq\EuN\otimes_{\EuC}\EuM\otimes_{\EuD}cyc.\simeq\EuD_{\Delta}\otimes_{\EuD}cyc.=CC_{\bullet}(\EuD).
{rmk}

The isomorphism (21) respects the module structure over Hochschild cohomology.

Lemma 32.

Let F:\EuC\EuDF:\EuC\to\EuD is an AA_{\infty} functor, so that the (\EuC,\EuD)(\EuC,\EuD) bimodule \EuM:=(FId)\EuDΔ\EuM:=(F\otimes\mathrm{Id})^{*}\EuD_{\Delta} and the (\EuD,\EuC)(\EuD,\EuC) bimodule \EuN:=(IdF)\EuDΔ\EuN:=(\mathrm{Id}\otimes F)^{*}\EuD_{\Delta} define a Morita equivalence between \EuC\EuC and \EuD\EuD (compare Lemma 23). Then the induced isomorphism (21) coincides with the map FF_{*} defined in Lemma 13.

Proof 4.7.

The key point is to check that the maps \EuM\EuD\EuN\EuCcyc.\EuDΔ\EuDcyc.\EuM\otimes_{\EuD}\EuN\otimes_{\EuC}cyc.\to\EuD_{\Delta}\otimes_{\EuD}cyc. given by

(22) m[b1||bt]n[a1||as]μ(bj+1,,bt,n,F(a1,),,F(,as),m,b1,)[bk+1||bj]m[b_{1}|\ldots|b_{t}]n[a_{1}|\ldots|a_{s}]\mapsto\\ \sum\mu^{*}(b_{j+1},\ldots,b_{t},n,F^{*}(a_{1},\ldots),\ldots,F^{*}(\ldots,a_{s}),m,b_{1},\ldots)[b_{k+1}|\ldots|b_{j}]

and

(23) m[b1||bt]n[a1||as]μ(,F(,as),m,b1,,bt,n,F(a1,),)[F(ak+1,)||F(,aj)]m[b_{1}|\ldots|b_{t}]n[a_{1}|\ldots|a_{s}]\mapsto\\ \sum\mu^{*}(\ldots,F^{*}(\ldots,a_{s}),m,b_{1},\ldots,b_{t},n,F^{*}(a_{1},\ldots),\ldots)[F^{*}(a_{k+1},\ldots)|\ldots|F^{*}(\ldots,a_{j})]

are chain homotopic. The chain homotopy is given by

H(m[b1||bt]n[a1||as]):=m[b1||bt|n|F(a1,)||F(,as)].H(m[b_{1}|\ldots|b_{t}]n[a_{1}|\ldots|a_{s}]):=m[b_{1}|\ldots|b_{t}|n|F^{*}(a_{1},\ldots)|\ldots|F^{*}(\ldots,a_{s})].
Corollary 33.

𝖧𝖢(\EuC),𝖧𝖯(\EuC)\operatorname{\mathsf{HC}}_{\bullet}^{-}(\EuC),\operatorname{\mathsf{HP}}_{\bullet}(\EuC) and 𝖧𝖢+(\EuC)\operatorname{\mathsf{HC}}_{\bullet}^{+}(\EuC) are Morita invariants. So is the Getzler–Gauss–Manin connection.

Proof 4.8.

Suppose \EuC\EuC and \EuD\EuD are Morita equivalent. It follows by Theorem 24 that we have AA_{\infty} functors

\EuC\twsplit\EuC\twsplit\EuD\EuD.\EuC\hookrightarrow\twsplit\EuC\to\twsplit\EuD\hookleftarrow\EuD.

Each of these induces a map on Hochschild and cyclic homology, by Lemmas 13 and 17. Furthermore, the maps on Hochschild homology coincide with the corresponding maps (21), by Lemma 32; so they are isomorphisms, by Lemma 31. Therefore, the induced maps on cyclic homology are isomorphisms, by Corollary 18: furthermore, they respect the Getzler–Gauss–Manin connections, by Theorem 20.

5 Pairings on Hochschild and cyclic homology

5.1 The Mukai pairing for 𝖽𝗀\mathsf{dg} categories

Let \EuC\EuC be a \BbK\BbK-linear 𝖽𝗀\mathsf{dg} category. We recall a construction due to Shklyarov [Shk12].

There is a natural notion of tensor product of \BbK\BbK-linear 𝖽𝗀\mathsf{dg} categories, and there is a Künneth quasi-isomorphism of Hochschild chain complexes [Shk12, Theorem 2.8]

(24) C(\EuC)C(\EuD)C(\EuC\EuD).C_{\bullet}(\EuC)\otimes C_{\bullet}(\EuD)\to C_{\bullet}(\EuC\otimes\EuD).

If \EuC\EuC and \EuD\EuD are 𝖽𝗀\mathsf{dg} categories, then a 𝖽𝗀\mathsf{dg} (\EuC,\EuD)(\EuC,\EuD) bimodule \EuQ\EuQ consists of the following data: for each pair (X,Y)Ob(\EuC)×Ob(\EuD)(X,Y)\in Ob(\EuC)\times Ob(\EuD), a graded \BbK\BbK-vector space \EuQ(X,Y)\EuQ^{\bullet}(X,Y) equipped with a differential dd of degree +1+1; left-module maps

hom\EuC(X1,X2)\EuQ(X0,X1)\displaystyle hom^{\bullet}_{\EuC}(X_{1},X_{2})\otimes\EuQ^{\bullet}(X_{0},X_{1}) \displaystyle\to \EuQ(X0,X2)\displaystyle\EuQ^{\bullet}(X_{0},X_{2})
fq\displaystyle f\otimes q \displaystyle\mapsto fq;\displaystyle f\cdot q;

and right-module maps

\EuQ(X1,X2)hom\EuD(X0,X1)\displaystyle\EuQ^{\bullet}(X_{1},X_{2})\otimes hom^{\bullet}_{\EuD}(X_{0},X_{1}) \displaystyle\to \EuQ(X0,X2)\displaystyle\EuQ^{\bullet}(X_{0},X_{2})
qg\displaystyle q\otimes g \displaystyle\mapsto qg\displaystyle q\cdot g

satisfying the obvious analogues of associativity (1), the Leibniz rule (2) and unitality (3).

A 𝖽𝗀\mathsf{dg} (\EuC,\EuD)(\EuC,\EuD) bimodule \EuP\EuP is equivalent to a 𝖽𝗀\mathsf{dg} functor \EuP:\EuC\EuDop\modules\BbK\EuP:\EuC\otimes\EuD^{op}\to\modules\BbK. On the level of objects, the functor sends (X,Y)\EuP(X,Y)(X,Y)\mapsto\EuP^{\bullet}(X,Y). To define the functor on the level of morphisms, we first define, for any chom\EuC(X1,X2)c\in hom^{\bullet}_{\EuC}(X_{1},X_{2}),

L(c):\EuP(X0,X1)\displaystyle L(c):\EuP(X_{0},X_{1}) \displaystyle\to \EuP(X0,X2),\displaystyle\EuP(X_{0},X_{2}),
p\displaystyle p \displaystyle\mapsto cp.\displaystyle c\cdot p.

Similarly, for any dhom\EuD(X0,X1)d\in hom^{\bullet}_{\EuD}(X_{0},X_{1}), we define

R(d):\EuP(X1,X2)\displaystyle R(d):\EuP(X_{1},X_{2}) \displaystyle\to \EuP(X0,X2),\displaystyle\EuP(X_{0},X_{2}),
p\displaystyle p \displaystyle\mapsto (1)|p||d|pd.\displaystyle(-1)^{|p|\cdot|d|}p\cdot d.

We then define the functor on the level of morphisms: \EuP(cd):=L(c)R(d)\EuP(c\otimes d):=L(c)\circ R(d).

By functoriality of Hochschild homology, a 𝖽𝗀\mathsf{dg} (\EuC,\EuD)(\EuC,\EuD) bimodule \EuP\EuP induces a chain map

C(\EuC\EuDop)C(\modules\BbK).C_{\bullet}(\EuC\otimes\EuD^{op})\to C_{\bullet}(\modules\BbK).

Pre-composing this with the Künneth quasi-isomorphism (24) gives another chain map, which induces a map on cohomology

(25) \EuP:\HH(\EuC)\HH(\EuDop)\HH(\modules\BbK).\wedge_{\EuP}:\HH_{\bullet}(\EuC)\otimes\HH_{\bullet}(\EuD^{op})\to\HH_{\bullet}(\modules\BbK).

Now we consider the full 𝖽𝗀\mathsf{dg} sub-category \perfdg\BbK\modules\BbK\perfdg\BbK\subset\modules\BbK, whose objects are the cochain complexes with finite-dimensional cohomology. There is an obvious 𝖽𝗀\mathsf{dg} functor \BbK\perfdg\BbK\BbK\hookrightarrow\perfdg\BbK given by including the full subcategory with the single object \BbK[0]\BbK[0]. This induces an isomorphism

(26) \BbK\HH(\BbK)\HH(\perfdg\BbK),\BbK\cong\HH_{\bullet}(\BbK)\overset{\cong}{\longrightarrow}\HH_{\bullet}(\perfdg\BbK),

whose inverse is called the ‘Feigin–Losev–Shoikhet trace’ in [Shk12]:

(27) :\HH(\perfdg\BbK)\BbK.\int:\HH_{\bullet}(\perfdg\BbK)\overset{\cong}{\longrightarrow}\BbK.
Definition 34.

We call a 𝖽𝗀\mathsf{dg} (\EuC,\EuD)(\EuC,\EuD) bimodule \EuP\EuP proper if \EuP(X,Y)\perfdg\BbK\EuP(X,Y)\in\perfdg\BbK for all (X,Y)Ob(\EuC)×Ob(\EuD)(X,Y)\in Ob(\EuC)\times Ob(\EuD). A proper bimodule induces a pairing

C(\EuC)C(\EuDop)\displaystyle C_{\bullet}(\EuC)\otimes C_{\bullet}(\EuD^{op}) \displaystyle\to \BbK\displaystyle\BbK
αβ\displaystyle\alpha\otimes\beta \displaystyle\mapsto \EuP(α,β).\displaystyle\int\wedge_{\EuP}(\alpha,\beta).

If \EuC\EuC is a proper 𝖽𝗀\mathsf{dg} category, we call the pairing

,Muk:\HH(\EuC)\HH(\EuC)\displaystyle\langle,\rangle_{Muk}:\HH_{\bullet}(\EuC)\otimes\HH_{\bullet}(\EuC) \displaystyle\to \BbK,\displaystyle\BbK,
α,βMuk\displaystyle\langle\alpha,\beta\rangle_{Muk} :=\displaystyle:= \EuCΔ(α,β)\displaystyle\int\wedge_{\EuC_{\Delta}}(\alpha,\beta^{\vee})

the Mukai pairing. Shklyarov shows that the Mukai pairing is Morita invariant.

Lemma 35.

Let 𝖿𝗂𝗇\BbK\perfdg\BbK\operatorname{\mathsf{fin}}\BbK\subset\perfdg\BbK denote the full subcategory whose objects are the finite-dimensional cochain complexes. There is a chain map

𝖲𝗍𝗋:C(𝖿𝗂𝗇\BbK)\displaystyle\mathsf{Str}:C_{\bullet}(\operatorname{\mathsf{fin}}\BbK) \BbK,sending\displaystyle\to\BbK,\quad\text{sending}
a0\displaystyle a_{0} 𝗌𝗍𝗋(a0),\displaystyle\mapsto\mathsf{str}(a_{0}),
a0[a1||an]\displaystyle a_{0}[a_{1}|\ldots|a_{n}] 0 for n1,\displaystyle\mapsto 0\mbox{ for $n\geq 1$},

where ‘𝗌𝗍𝗋\mathsf{str}’ on the first line denotes the supertrace.777 If VV is a graded \BbK\BbK-vector space, and FEnd\BbK(V)F\in\mathrm{End}_{\BbK}(V) an endomorphism, we define 𝗌𝗍𝗋(F)\mathsf{str}(F) as follows: write FF as a sum of components Fpq\Hom\BbK(Vp,Vq)F_{pq}\in\Hom_{\BbK}(V_{p},V_{q}), then 𝗌𝗍𝗋(F):=p(1)p𝗍𝗋(Fpp)\mathsf{str}(F):=\sum_{p}(-1)^{p}\mathsf{tr}(F_{pp}). It induces a map 𝖲𝗍𝗋:\HH(𝖿𝗂𝗇\BbK)\BbK\mathsf{Str}:\HH_{\bullet}(\operatorname{\mathsf{fin}}\BbK)\to\BbK; this coincides with the composition

\HH(𝖿𝗂𝗇\BbK)\HH(\perfdg\BbK)\BbK.\HH_{\bullet}(\operatorname{\mathsf{fin}}\BbK)\to\HH_{\bullet}(\perfdg\BbK)\overset{\int}{\to}\BbK.
Proof 5.1.

One easily verifies that 𝖲𝗍𝗋\mathsf{Str} is a chain map. The inclusion 𝖿𝗂𝗇\BbK\perfdg\BbK\operatorname{\mathsf{fin}}\BbK\hookrightarrow\perfdg\BbK is a quasi-equivalence, so induces an isomorphism of Hochschild homologies. It is obvious that 𝖲𝗍𝗋\mathsf{Str} is left-inverse to the map induced by the inclusion (26), and the result follows.

Shklyarov derives the following formula for \EuP\wedge_{\EuP}: if α=a0[a1||as]C(\EuC)\alpha=a_{0}[a_{1}|\ldots|a_{s}]\in C_{\bullet}(\EuC) and β=b0[b1||bt]C(\EuDop)\beta=b_{0}[b_{1}|\ldots|b_{t}]\in C_{\bullet}(\EuD^{op}), then

(28) \EuP(α,β)=(1)|b0|(|a1|++|as|)L(a0)R(b0)𝗌𝗁st[L(a1)||L(as)|R(b1)||R(bt)].\wedge_{\EuP}(\alpha,\beta)=(-1)^{|b_{0}|\cdot(|a_{1}|^{\prime}+\ldots+|a_{s}|^{\prime})}L(a_{0})R(b_{0})\mathsf{sh}_{st}[L(a_{1})|\ldots|L(a_{s})|R(b_{1})|\ldots|R(b_{t})].

Here, 𝗌𝗁st\mathsf{sh}_{st} denotes the sum of all (s,t)(s,t)-shuffles of the elements in the square brackets, with the associated Koszul signs (where interchanging L(ai)L(a_{i}) with R(bj)R(b_{j}) introduces a sign |ai||bj||a_{i}|^{\prime}\cdot|b_{j}|^{\prime}). To clarify: the symbols ‘L(ai)L(a_{i})’ and ‘R(bj)R(b_{j})’ in (28) are regarded as morphisms in the 𝖽𝗀\mathsf{dg} category \modules\BbK\modules\BbK.

5.2 AA_{\infty} multifunctors

The notion of tensor product of AA_{\infty} categories is rather involved [Amo16]. Nevertheless there is a relatively straightforward notion of AA_{\infty} nn-functor \EuC1××\EuCn\EuD\EuC_{1}\times\ldots\times\EuC_{n}\dashrightarrow\EuD, which forms a substitute for the notion of an AA_{\infty} functor \EuC1\EuCn\EuD\EuC_{1}\otimes\ldots\otimes\EuC_{n}\dashrightarrow\EuD, and suffices for many purposes. We give the definition, following [Lyu15].

Definition 36.

Let \EuC1,,\EuCn\EuC_{1},\ldots,\EuC_{n} and \EuD\EuD be AA_{\infty} categories. An AA_{\infty} nn-functor F:\EuC1××\EuCn\EuDF:\EuC_{1}\times\ldots\times\EuC_{n}\dashrightarrow\EuD consists of a map F:Ob(\EuC1)××Ob(\EuCn)Ob(\EuD)F:Ob(\EuC_{1})\times\ldots\times Ob(\EuC_{n})\to Ob(\EuD), together with \BbK\BbK-linear maps

Fs1;;sn:\EuC1(X11,,Xs11)\EuCn(X1n,,Xsnn)\EuD(F(X11,,X1n),F(Xs11,,Xsnn))F^{s_{1};\ldots;s_{n}}:\EuC_{1}(X^{1}_{1},\ldots,X^{1}_{s_{1}})\otimes\ldots\otimes\EuC_{n}(X^{n}_{1},\ldots,X^{n}_{s_{n}})\to\EuD(F(X^{1}_{1},\ldots,X^{n}_{1}),F(X^{1}_{s_{1}},\ldots,X^{n}_{s_{n}}))

of degree 0, such that F0;0;;0=0F^{0;0;\ldots;0}=0, and satisfying the AA_{\infty} nn-functor relations (a visual representation of which is given in Figure 1):

(29) i,j,k(1)Fs1;;si+1k;;sn(c11,,cs11;;c1i,,μ\EuCik(cji,),cj+k+1i,,csii;c1n,,csnn)=k,ip,q(1)μ\EuDk(F(c11,,ci1,11;;c1n,,cin,1n),,F(ci1,k+11,,cin,k+1n)).\sum_{i,j,k}(-1)^{\dagger}F^{s_{1};\ldots;s_{i}+1-k;\ldots;s_{n}}(c^{1}_{1},\ldots,c^{1}_{s_{1}};\ldots;c^{i}_{1},\ldots,\mu^{k}_{\EuC_{i}}(c^{i}_{j},\ldots),c^{i}_{j+k+1},\ldots,c^{i}_{s_{i}};c^{n}_{1},\ldots,c^{n}_{s_{n}})\\ =\sum_{k,i_{p,q}}(-1)^{\maltese}\mu^{k}_{\EuD}(F(c^{1}_{1},\ldots,c^{1}_{i_{1,1}};\ldots;c^{n}_{1},\ldots,c^{n}_{i_{n,1}}),\ldots,F(c^{1}_{i_{1,k}+1},\ldots,c^{n}_{i_{n,k}+1})).

The sign \dagger is the Koszul sign obtained by commuting μ\EuCik\mu^{k}_{\EuC_{i}} (equipped with degree 11) to the front of the expression (where each cqpc^{p}_{q} is equipped with its reduced degree |cqp||c^{p}_{q}|^{\prime}). We henceforth adopt the convention, in expressions involving AA_{\infty} multifunctors, that (1)(-1)^{\maltese} is the Koszul sign associated to re-ordering the inputs cqpc^{p}_{q} in the expression so that they appear in the order (c11,,cs11;;c1n,,csnn)(c^{1}_{1},\ldots,c^{1}_{s_{1}};\ldots;c^{n}_{1},\ldots,c^{n}_{s_{n}}) (still equipping the cqpc^{p}_{q} with their reduced degrees).

If \EuCi\EuC_{i} is strictly unital (with units denoted ee), we say that FF is strictly unital in the iith entry if

Fs1;;sn(;a1i,,e,,asii;)={e if sj=0 for all ji, and si=1;0 otherwise.F^{s_{1};\ldots;s_{n}}(\ldots;a^{i}_{1},\ldots,e,\ldots,a^{i}_{s_{i}};\ldots)=\left\{\begin{array}[]{rl}e&\mbox{ if $s_{j}=0$ for all $j\neq i$, and $s_{i}=1$;}\\ 0&\mbox{ otherwise.}\end{array}\right.
Lemma 37.

An AA_{\infty} nn-functor F:\EuC1××\EuCn\EuDF:\EuC_{1}\times\ldots\times\EuC_{n}\dashrightarrow\EuD induces a functor

H(\EuC1)H(\EuCn)H(\EuD)H^{\bullet}(\EuC_{1})\otimes\ldots\otimes H^{\bullet}(\EuC_{n})\to H^{\bullet}(\EuD)

(the tensor product on the left is defined by considering each H(\EuCi)H^{\bullet}(\EuC_{i}) as a 𝖽𝗀\mathsf{dg} category with trivial differential – in particular the composition involves the Koszul sign rule). The action on objects is obvious, and on morphisms it sends

[a1][an][F1;0;;0(a1)][F0;;0;1(an)].[a_{1}]\otimes\ldots\otimes[a_{n}]\mapsto[F^{1;0;\ldots;0}(a_{1})]\cdot\ldots\cdot[F^{0;\ldots;0;1}(a_{n})].

If FF is strictly unital in all entries, then this functor is unital.

Proof 5.2.

The components F0;;0;s;0;;0F^{0;\ldots;0;s;0;\ldots;0} of FF define AA_{\infty} functors \EuCi\EuD\EuC_{i}\dashrightarrow\EuD for each ii, which induce functors H(\EuCi)H(\EuD)H^{\bullet}(\EuC_{i})\to H^{\bullet}(\EuD) by taking cohomology. It now suffices to check that elements in (distinct) images of these functors supercommute, which is a consequence of the following AA_{\infty} nn-functor relation, written in the case n=2n=2 to avoid notational clutter:

(30) F1;1(μ1(a);b)+(1)|a|F1;1(a;μ1(b))=μ2(F1;0(a;),F0;1(;b))+(1)|a||b|μ2(F0;1(;b),F1;0(a;))+μ1(F1;1(a;b)).F^{1;1}(\mu^{1}(a);b)+(-1)^{|a|^{\prime}}F^{1;1}(a;\mu^{1}(b))=\\ \mu^{2}(F^{1;0}(a;),F^{0;1}(;b))+(-1)^{|a|^{\prime}\cdot|b|^{\prime}}\mu^{2}(F^{0;1}(;b),F^{1;0}(a;))+\mu^{1}(F^{1;1}(a;b)).

The unitality part of the claim is straightforward.

Example 5.3.

Let \EuC1,,\EuCn\EuC_{1},\ldots,\EuC_{n} be 𝖽𝗀\mathsf{dg} categories, and \EuC1\EuCn\EuC_{1}\otimes\ldots\otimes\EuC_{n} their tensor product 𝖽𝗀\mathsf{dg} category. Then there is an AA_{\infty} nn-functor

F:A(\EuC1)××A(\EuCn)\displaystyle F:A_{\infty}(\EuC_{1})\times\ldots\times A_{\infty}(\EuC_{n}) A(\EuC1\EuCn),with\displaystyle\dashrightarrow A_{\infty}(\EuC_{1}\otimes\ldots\otimes\EuC_{n}),\quad\text{with}
F0;;1;;0(;;ci;;)\displaystyle F^{0;\ldots;1;\ldots;0}(;\ldots;c_{i};\ldots;) :=e1ei1ciei+1en,\displaystyle:=e_{1}\otimes\ldots\otimes e_{i-1}\otimes c_{i}\otimes e_{i+1}\otimes\ldots\otimes e_{n},

and all other F;;F^{*;\ldots;*} vanishing.

Definition 38.

Suppose that we have AA_{\infty} multifunctors Fi:\EuC1i××\EuCtii\EuDiF_{i}:\EuC^{i}_{1}\times\ldots\times\EuC^{i}_{t_{i}}\dashrightarrow\EuD_{i} for i=1,,mi=1,\ldots,m, and G:\EuD1××\EuDm\EuEG:\EuD_{1}\times\ldots\times\EuD_{m}\dashrightarrow\EuE. We define the composition

H:=G(F1,,Fm):\EuC11××\EuCtmm\EuE.H:=G\circ(F_{1},\ldots,F_{m}):\EuC^{1}_{1}\times\ldots\times\EuC^{m}_{t_{m}}\dashrightarrow\EuE.

It acts on objects in the obvious way, and on morphisms by analogy with composition of AA_{\infty} functors:

(31) Hs1,1,,s1,t1,,sm,1,,sm,tm(c11,1,,cs1,11,1;;c1m,tm,,csm,tmm,tm):=(1)G(F1(c11,1,;;c11,t1,),,F1(;,cs1,t11,t1);;Fm(),,Fm(;,csm,tmm,tm))H^{s_{1,1},\ldots,s_{1,t_{1}},\ldots,s_{m,1},\ldots,s_{m,t_{m}}}(c^{1,1}_{1},\ldots,c^{1,1}_{s_{1,1}};\ldots;c^{m,t_{m}}_{1},\ldots,c^{m,t_{m}}_{s_{m,t_{m}}}):=\\ \sum(-1)^{\maltese}G\left(F_{1}^{*}(c^{1,1}_{1},\ldots;\ldots;c^{1,t_{1}}_{1},\ldots),\ldots,F_{1}^{*}(\ldots;\ldots,c^{1,t_{1}}_{s_{1,t_{1}}});\ldots;F_{m}^{*}(\ldots),\ldots,F_{m}^{*}(\ldots;\ldots,c^{m,t_{m}}_{s_{m,t_{m}}})\right)

The check that the maps HH^{*} satisfy the AA_{\infty} multifunctor equations is straightforward. It is also easy to check that composition is ‘associative’ in the obvious sense.

Lemma 39.

Let \EuC\EuC and \EuD\EuD be \BbK\BbK-linear AA_{\infty} categories, and [\EuC,\EuD][\EuC,\EuD] the 𝖽𝗀\mathsf{dg} category of AA_{\infty} (\EuC,\EuD)(\EuC,\EuD) bimodules. There is an AA_{\infty} tri-functor

F:A([\EuC,\EuD])×\EuC×\EuDopA(\modules\BbK),F:A_{\infty}([\EuC,\EuD])\times\EuC\times\EuD^{op}\dashrightarrow A_{\infty}(\modules\BbK),

defined on the level of objects by

F(\EuP,X,Y):=(\EuP(X,Y),μ\EuP0|1|0),F(\EuP,X,Y):=\left(\EuP(X,Y),\mu_{\EuP}^{0|1|0}\right),

and on the level of morphisms as follows:

  • For (c1,,cs;d1,,dt)\EuC(X1,,Xs)\EuDop(Y1,,Yt)(c_{1},\ldots,c_{s};d_{1},\ldots,d_{t})\in\EuC(X_{1},\ldots,X_{s})\otimes\EuD^{op}(Y_{1},\ldots,Y_{t}), we define

    F0;s;t(;c1,,cs;d1,,dt)\Hom\modules\BbK(\EuP(Xs,Yt),\EuP(X1,Y1))F^{0;s;t}(;c_{1},\ldots,c_{s};d_{1},\ldots,d_{t})\in\Hom_{\modules\BbK}(\EuP(X_{s},Y_{t}),\EuP(X_{1},Y_{1}))

    to be the morphism which sends

    p\displaystyle p (1)μ\EuP(c1,,cs;p;dt,,d1), for any \EuP, where\displaystyle\mapsto(-1)^{\dagger}\mu_{\EuP}(c_{1},\ldots,c_{s};p;d_{t},\ldots,d_{1}),\quad\text{ for any $\EuP$, where}
    \displaystyle\dagger :=j<k|dj||dk|+|p|j=1t|dj|.\displaystyle:=\sum_{j<k}|d_{j}|^{\prime}\cdot|d_{k}|^{\prime}+|p|\cdot\sum_{j=1}^{t}|d_{j}|^{\prime}.
  • For (ρ;c1,,cs;d1,,dt)A([\EuC,\EuD])(\EuP1,\EuP2)\EuC(X1,,Xs)\EuDop(Y1,,Yt)(\rho;c_{1},\ldots,c_{s};d_{1},\ldots,d_{t})\in A_{\infty}([\EuC,\EuD])(\EuP_{1},\EuP_{2})\otimes\EuC(X_{1},\ldots,X_{s})\otimes\EuD^{op}(Y_{1},\ldots,Y_{t}), we define

    F1;s;t(ρ;c1,,cs;d1,,dt)\Hom\modules\BbK(\EuP2(Xs,Yt),\EuP1(X1,Y1))F^{1;s;t}(\rho;c_{1},\ldots,c_{s};d_{1},\ldots,d_{t})\in\Hom_{\modules\BbK}(\EuP_{2}(X_{s},Y_{t}),\EuP_{1}(X_{1},Y_{1}))

    to be the morphism which sends

    p\displaystyle p (1)ρ(c1,,cs,p,dt,,d1),where\displaystyle\mapsto(-1)^{\dagger}\rho(c_{1},\ldots,c_{s},p,d_{t},\ldots,d_{1}),\quad\text{where}
    \displaystyle\dagger :=|ρ|+j<k|dj||dk|+|p|j=1t|dj|.\displaystyle:=|\rho|+\sum_{j<k}|d_{j}|^{\prime}\cdot|d_{k}|^{\prime}+|p|\cdot\sum_{j=1}^{t}|d_{j}|^{\prime}.

FF is strictly unital in its first entry.

Lemma 40.

Let G:\EuC1\EuD1G:\EuC_{1}\to\EuD_{1} and H:\EuC2\EuD2H:\EuC_{2}\to\EuD_{2} be AA_{\infty} functors. Then there is a 𝖽𝗀\mathsf{dg} functor

(GH):[\EuC2,\EuD2][\EuC1,\EuD1].(G\otimes H)^{*}:[\EuC_{2},\EuD_{2}]\to[\EuC_{1},\EuD_{1}].

It is given on the level of objects by defining (GH)\EuP(G\otimes H)^{*}\EuP to be the (\EuC1,\EuD1)(\EuC_{1},\EuD_{1}) bimodule with

(GH)\EuP(X,Y):=\EuP(GX,HY),(G\otimes H)^{*}\EuP(X,Y):=\EuP(GX,HY),
(32) μ(GH)\EuPs|1|t(c1,,cs,p,dt,,d1):=μ\EuP|1|(G(c1,),,G(,cs),p,H(dt,),,H(,d1)).\mu^{s|1|t}_{(G\otimes H)^{*}\EuP}(c_{1},\ldots,c_{s},p,d_{t},\ldots,d_{1}):=\\ \sum\mu_{\EuP}^{*|1|*}(G(c_{1},\ldots),\ldots,G(\ldots,c_{s}),p,H(d_{t},\ldots),\ldots,H(\ldots,d_{1})).

It is given on the level of morphisms by mapping the bimodule pre-homomorphism ρ\rho to the bimodule pre-homomorphism (GH)ρ(G\otimes H)^{*}\rho, given by the same formula (32), but with ‘μ\EuP\mu_{\EuP}’ replaced by ‘ρ\rho’.

Lemma 41.

Let G:\EuC1\EuD1G:\EuC_{1}\to\EuD_{1} and H:\EuC2\EuD2H:\EuC_{2}\to\EuD_{2} be AA_{\infty} functors, and denote by

Fi:A([\EuCi,\EuDi])×\EuCi×\EuDiA(\modules\BbK)F_{i}:A_{\infty}([\EuC_{i},\EuD_{i}])\times\EuC_{i}\times\EuD_{i}\dashrightarrow A_{\infty}(\modules\BbK)

the AA_{\infty} tri-functor introduced in Lemma 39, for i=1,2i=1,2. Then we have an equality

F2(𝖨𝖽,G,Hop)=F1(A((GH)),𝖨𝖽,𝖨𝖽)F_{2}\circ(\mathsf{Id},G,H^{op})=F_{1}\circ(A_{\infty}((G\otimes H)^{*}),\mathsf{Id},\mathsf{Id})

of AA_{\infty} tri-functors A([\EuC2,\EuD2])×\EuC1×\EuD1opA(\modules\BbK)A_{\infty}([\EuC_{2},\EuD_{2}])\times\EuC_{1}\times\EuD_{1}^{op}\dashrightarrow A_{\infty}(\modules\BbK).

Lemma 42.

Suppose that \EuC1,,\EuCn\EuC_{1},\ldots,\EuC_{n} are AA_{\infty} categories, \EuD=A(\EuD)\EuD=A_{\infty}(\EuD^{\prime}) is the AA_{\infty} category corresponding to a 𝖽𝗀\mathsf{dg} category \EuD\EuD^{\prime}, and F:\EuC1××\EuCn\EuDF:\EuC_{1}\times\ldots\times\EuC_{n}\dashrightarrow\EuD is an AA_{\infty} nn-functor. Then there is an induced chain map

F:CC(\EuC1)CC(\EuCn)CC(\EuD),F_{*}:CC_{\bullet}(\EuC_{1})\otimes\ldots\otimes CC_{\bullet}(\EuC_{n})\to CC_{\bullet}(\EuD),
(33) F(c01[c11||cs11],,c0n[c1n||csnn]):=(1)+μ\EuD2((μ\EuD2(F()1,F()2),),F()n)[F(),,F()].F_{*}(c_{0}^{1}[c_{1}^{1}|\ldots|c_{s_{1}}^{1}],\ldots,c_{0}^{n}[c_{1}^{n}|\ldots|c_{s_{n}}^{n}]):=\\ \sum(-1)^{\maltese+\dagger}\mu^{2}_{\EuD}\left(\ldots\left(\mu^{2}_{\EuD}\left(F^{*}\overbrace{(\ldots)}^{1},F^{*}\overbrace{(\ldots)}^{2}\right),\ldots\right),F^{*}\overbrace{(\ldots)}^{n}\right)\left[F^{*}(\ldots),\ldots,F^{*}(\ldots)\right].

To clarify the notation: the first term is obtained by taking nn terms, and combining them with n1n-1 applications of μ\EuD2\mu^{2}_{\EuD} into a single term. The overbraces signify that we sum over all cyclic permutations of the inputs cjic^{i}_{j} such that c0ic^{i}_{0} lands underneath the overbrace labelled ii. As usual, \maltese is the Koszul sign associated to re-ordering the inputs cqpc^{p}_{q}: this includes the Koszul signs associated with the cyclic re-ordering associated with the overbrace notation, exactly as in Section 3.4. The other contribution to the overall sign is

:=n(n1)2+1jn,1ksj(nj)|ckj|.\dagger:=\frac{n(n-1)}{2}+\sum_{1\leq j\leq n,1\leq k\leq s_{j}}(n-j)|c^{j}_{k}|^{\prime}.
Lemma 43.

The maps induced by Lemma 42 are compatible with composition of AA_{\infty} multifunctors, i.e., in the setting of Definition 38, we have H=G((F1)(Fn))H_{*}=G_{*}\circ((F_{1})_{*}\otimes\ldots\otimes(F_{n})_{*}).

Lemma 44.

In the situation of Example 5.3, the diagram

CC(A(\EuC1))CC(A(\EuCn))\textstyle{CC_{\bullet}(A_{\infty}(\EuC_{1}))\otimes\ldots\otimes CC_{\bullet}(A_{\infty}(\EuC_{n}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}=\scriptstyle{=}F\scriptstyle{F_{*}}C(\EuC1)C(\EuCn)\textstyle{C_{\bullet}(\EuC_{1})\otimes\ldots\otimes C_{\bullet}(\EuC_{n})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝗌𝗁\scriptstyle{\mathsf{sh}}CC(A(\EuC1\EuCn))\textstyle{CC_{\bullet}(A_{\infty}(\EuC_{1}\otimes\ldots\otimes\EuC_{n}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}=\scriptstyle{=}C(\EuC1\EuCn)\textstyle{C_{\bullet}(\EuC_{1}\otimes\ldots\otimes\EuC_{n})}

commutes. Here, FF_{*} is the map induced by the AA_{\infty} nn-functor FF introduced in Example 5.3, in accordance with Lemma 42. The other vertical map ‘𝗌𝗁\mathsf{sh}’ is the natural generalization of the Künneth quasi-isomorphism (24).

5.3 The Mukai pairing for AA_{\infty} bimodules

Definition 45.

If XX is an object of a cohomologically unital AA_{\infty} category \EuC\EuC, then the cohomological unit eXhom(X,X)e_{X}\in hom^{\bullet}(X,X) defines a Hochschild cycle; we call the corresponding class in Hochschild homology the Chern character of XX, and denote it 𝖢𝗁(X)\HH0(\EuC)\mathsf{Ch}(X)\in\HH_{0}(\EuC).

Lemma 46.

If XX and YY are quasi-isomorphic objects of \EuC\EuC, then 𝖢𝗁(X)=𝖢𝗁(Y)\mathsf{Ch}(X)=\mathsf{Ch}(Y).

Proof 5.4.

Let [f]\Hom0(X,Y)[f]\in\Hom^{0}(X,Y) and [g]\Hom0(Y,X)[g]\in\Hom^{0}(Y,X) be inverse isomorphisms. Then

μ2(f,g)=eX+μ1(hX),μ2(g,f)=eY+μ1(hY),\mu^{2}(f,g)=e_{X}+\mu^{1}(h_{X}),\,\,\,\mu^{2}(g,f)=e_{Y}+\mu^{1}(h_{Y}),

so

b(f[g]hX+hY)=eXeY,b(f[g]-h_{X}+h_{Y})=e_{X}-e_{Y},

so the classes [eX][e_{X}] and [eY][e_{Y}] are cohomologous.

Definition 47.

Let \EuC\EuC and \EuD\EuD be AA_{\infty} categories, and denote by

F:\HH(A([\EuC,\EuD]))\HH(\EuC)\HH(\EuDop)\HH(\modules\BbK)F_{*}:\HH_{\bullet}(A_{\infty}([\EuC,\EuD]))\otimes\HH_{\bullet}(\EuC)\otimes\HH_{\bullet}(\EuD^{op})\to\HH_{\bullet}(\modules\BbK)

the map induced by the AA_{\infty} tri-functor FF introduced in Lemma 39, in accordance with Lemma 42. We define the pairing

\EuP:\HH(\EuC)\HH(\EuDop)\displaystyle\wedge_{\EuP}:\HH_{\bullet}(\EuC)\otimes\HH_{\bullet}(\EuD^{op}) \HH(\modules\BbK)\displaystyle\to\HH_{\bullet}(\modules\BbK)
\EuP(α,β)\displaystyle\wedge_{\EuP}(\alpha,\beta) :=F(𝖢𝗁(\EuP),α,β).\displaystyle:=F_{*}(\mathsf{Ch}(\EuP),\alpha,\beta).

Definition 47 is compatible with the corresponding notion in the 𝖽𝗀\mathsf{dg} world (25). To see how, we must first say how to turn a 𝖽𝗀\mathsf{dg} bimodule into an AA_{\infty} bimodule:

Definition 48.

Let \EuC\EuC and \EuD\EuD be \BbK\BbK-linear 𝖽𝗀\mathsf{dg} categories, and \EuP\EuP a 𝖽𝗀\mathsf{dg} (\EuC,\EuD)(\EuC,\EuD) bimodule. We define an (A(\EuC),A(\EuD))(A_{\infty}(\EuC),A_{\infty}(\EuD)) bimodule A(\EuP)A_{\infty}(\EuP) with A(\EuP)(X,Y):=\EuP(Y,X)A_{\infty}(\EuP)(X,Y):=\EuP(Y,X),

μ0|1|0:=d\EuP;μ1|1|0(c,p):=cp;μ0|1|1(p,d):=(1)|p|pd;μs|1|t:=0 for all s+t2.\mu^{0|1|0}:=d_{\EuP};\qquad\mu^{1|1|0}(c,p):=c\cdot p;\qquad\mu^{0|1|1}(p,d):=(-1)^{|p|^{\prime}}p\cdot d;\qquad\mu^{s|1|t}:=0\mbox{ for all $s+t\geq 2$.}
{rmk}

If \EuP\EuP is the diagonal (\EuC,\EuC)(\EuC,\EuC) bimodule, then A(\EuP)A_{\infty}(\EuP) is tautologically isomorphic to the diagonal (A(\EuC),A(\EuC))(A_{\infty}(\EuC),A_{\infty}(\EuC)) bimodule (as defined in [Sei08a, Equation (2.20)]).

Lemma 49.

If \EuC\EuC and \EuD\EuD are 𝖽𝗀\mathsf{dg} categories, and \EuP\EuP is a 𝖽𝗀\mathsf{dg} (\EuC,\EuD)(\EuC,\EuD) bimodule, then the diagram

\HH(\EuC)\HH(\EuDop)\textstyle{\HH_{\bullet}(\EuC)\otimes\HH_{\bullet}(\EuD^{op})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\EuP\scriptstyle{\wedge_{\EuP}}\HH(A(\EuC))\HH(A(\EuD)op)\textstyle{\HH_{\bullet}(A_{\infty}(\EuC))\otimes\HH_{\bullet}(A_{\infty}(\EuD)^{op})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}A(\EuP)\scriptstyle{\wedge_{A_{\infty}(\EuP)}}\HH(\modules\BbK)\textstyle{\HH_{\bullet}(\modules\BbK)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\HH(A(\modules\BbK))\textstyle{\HH_{\bullet}(A_{\infty}(\modules\BbK))}

commutes. Here, the top arrow is the tautological isomorphism \HH(\EuC)\HH(A(\EuC))\HH_{\bullet}(\EuC)\cong\HH_{\bullet}(A_{\infty}(\EuC)), tensored with the isomorphism \HH(\EuDop)\HH(A(\EuD)op)\HH_{\bullet}(\EuD^{op})\cong\HH_{\bullet}(A_{\infty}(\EuD)^{op}) induced by the isomorphism of Remark 3.2.

Proof 5.5.

The diagram commutes on the level of cochain complexes: this follows by comparing Shklyarov’s formula (28) with our own definition.

Definition 50.

Let \EuC\EuC be a proper AA_{\infty} category. We define the Mukai pairing

,Muk:\HH(\EuC)\HH(\EuC)\displaystyle\langle,\rangle_{Muk}:\HH_{\bullet}(\EuC)\otimes\HH_{\bullet}(\EuC) \BbK\displaystyle\to\BbK
(34) α,βMuk\displaystyle\langle\alpha,\beta\rangle_{Muk} :=\EuCΔ(α,β)\displaystyle:=-\int\wedge_{\EuC_{\Delta}}(\alpha,\beta^{\vee})

where \EuCΔ\EuC_{\Delta} is the diagonal bimodule, \wedge is as in Definition 47, \int denotes the Feigin–Losev–Shoikhet trace (which we can apply because \EuCΔ\EuC_{\Delta} is proper), and β\beta^{\vee} is the image of β\beta under the isomorphism of Definition 12.

Proposition 51.

Let \EuC\EuC and \EuD\EuD be proper AA_{\infty} categories which are Morita equivalent. Then the isomorphism \HH(\EuC)\HH(\EuD)\HH_{\bullet}(\EuC)\cong\HH_{\bullet}(\EuD) of Lemma 31 respects Mukai pairings.

Proof 5.6.

By Theorem 24, it suffices to consider the case that the Morita equivalence is induced by a functor F:\EuC\EuDF:\EuC\dashrightarrow\EuD which is cohomologically full and faithful and whose image split-generates. We will argue that

\EuDΔ(Fα,Fβ)=(FF)\EuDΔ(α,β)=\EuCΔ.\wedge_{\EuD_{\Delta}}(F_{*}\alpha,F_{*}\beta)=\wedge_{(F\otimes F)^{*}\EuD_{\Delta}}(\alpha,\beta)=\wedge_{\EuC_{\Delta}}.

The first equality follows by combining Lemma 41 with Lemma 43. To prove the second we observe that, because FF is cohomologically full and faithful, (FF)\EuDΔ(F\otimes F)^{*}\EuD_{\Delta} is quasi-isomorphic to \EuCΔ\EuC_{\Delta} in [\EuC,\EuC][\EuC,\EuC] (cf. the proof of Lemma 74). Hence, by Lemma 46, their Chern characters coincide, so the second equality is obvious from Definition 47. Composing with the Feigin–Losev–Shoikhet trace completes the proof.

Proposition 52.

If \EuC\EuC is a proper 𝖽𝗀\mathsf{dg} category, then our definition of the Mukai pairing on \HH(A(\EuC))\HH(\EuC)\HH_{\bullet}(A_{\infty}(\EuC))\cong\HH_{\bullet}(\EuC) (i.e., Definition 50) coincides with that given by Shklyarov (i.e., Definition 34).

Proof 5.7.

Follows immediately from Lemma 49, together with Remarks 5.3 and 3.4 (the discrepancy between the 𝖽𝗀\mathsf{dg} and AA_{\infty} versions of the isomorphism \vee is the reason for the minus sign in (34)).

Proposition 53.

If \EuC\EuC is an AA_{\infty} category with finite-dimensional homhom-spaces (i.e., finite-dimensional on the cochain level, not just on the cohomology level), then the Mukai pairing is induced by the following chain-level map: if α=a0[a1||as]\alpha=a_{0}[a_{1}|\ldots|a_{s}] and β=b0[b1||bt]\beta=b_{0}[b_{1}|\ldots|b_{t}], then

(35) α,βMuk\displaystyle\langle\alpha,\beta\rangle_{Muk} =j,k𝗍𝗋(c(1)μ(a0,,aj,μ(aj+1,,as,c,b0,,bk),bk+1,,bt)),\displaystyle=\sum_{j,k}\mathsf{tr}\left(c\mapsto(-1)^{\dagger}\mu^{*}(\overbrace{a_{0},\ldots,a_{j}},\mu^{*}(a_{j+1},\ldots,a_{s},c,\overbrace{b_{0},\ldots,b_{k}}),b_{k+1},\ldots,b_{t})\right),
where\displaystyle\text{ where}\quad\dagger =1+i=0j|ai|+|c||β|.\displaystyle=1+\sum_{i=0}^{j}|a_{i}|^{\prime}+|c|\cdot|\beta|.

To clarify (35): if the expression is not composable in \EuC\EuC, we set the summand to be 0. ‘cc’ represents an element in the corresponding homhom-space of \EuC\EuC.

Proof 5.8.

By our assumption that \EuC\EuC has finite-dimensional homhom-spaces, \EuCΔ\wedge_{\EuC_{\Delta}} lands in CC(𝖿𝗂𝗇\BbK)CC_{\bullet}(\operatorname{\mathsf{fin}}\BbK). Therefore, we have

\EuCΔ(α,β)=𝖲𝗍𝗋(\EuCΔ(α,β)),\int\wedge_{\EuC_{\Delta}}(\alpha,\beta^{\vee})=\mathsf{Str}\left(\wedge_{\EuC_{\Delta}}(\alpha,\beta^{\vee})\right),

by Lemma 35. This yields (35).

Example 5.9.

If \EuC\EuC is an AA_{\infty} category with finite-dimensional homhom-spaces, then (35) implies immediately that for any X,YOb(\EuC)X,Y\in Ob(\EuC), we have

𝖢𝗁(X),𝖢𝗁(Y)Muk=χ(\Hom(X,Y))\langle\mathsf{Ch}(X),\mathsf{Ch}(Y)\rangle_{Muk}=\chi(\Hom^{\bullet}(X,Y))

(by applying the formula to α=eX\alpha=e_{X} and β=eY\beta=e_{Y}, and observing that μ2(eX,μ2(a,eY))=(1)|a|a\mu^{2}(e_{X},\mu^{2}(a,e_{Y}))=(-1)^{|a|}a). Hence, the same holds for any proper AA_{\infty} category, by the homological perturbation lemma and Morita invariance. This is [Shk12, Theorem 1.3].

We recall that an AA_{\infty} category \EuC\EuC is called smooth (or homologically smooth) if the diagonal bimodule \EuCΔ\EuC_{\Delta} is perfect, i.e., split-generated by tensor products of Yoneda modules (see [KS08]). An AA_{\infty} category which is proper and smooth is called saturated.

Proposition 54.

If \EuC\EuC is saturated, then the Mukai pairing is non-degenerate.

Proof 5.10.

The result was proved for 𝖽𝗀\mathsf{dg} categories in [Shk12, Theorem 1.4]. Any AA_{\infty} category is quasi-equivalent to a 𝖽𝗀\mathsf{dg} category via the Yoneda embedding, so the result follows by Proposition 51.

5.4 Higher residue pairing on 𝖽𝗀\mathsf{dg} categories

We recall the definition of the higher residue pairing given in [Shk16]. If \EuC\EuC and \EuD\EuD are 𝖽𝗀\mathsf{dg} categories, then there is a Künneth map of cochain complexes, extending (24):

(36) C(\EuC)C(\EuD)C(\EuC\EuD),C^{-}_{\bullet}(\EuC)\otimes C^{-}_{\bullet}(\EuD)\to C^{-}_{\bullet}(\EuC\otimes\EuD),

and similarly for the other versions of cyclic homology (see [Shk16, Proposition 2.5]). This map induces an isomorphism on periodic cyclic homology, but need not induce an isomorphism on negative cyclic homology.

As before, a 𝖽𝗀\mathsf{dg} (\EuC,\EuD)(\EuC,\EuD) bimodule \EuP\EuP induces a 𝖽𝗀\mathsf{dg} functor \EuC\EuDop\modules\BbK\EuC\otimes\EuD^{op}\to\modules\BbK; composing this with the Künneth map (36) yields a map

(37) ~\EuP:C(\EuC)C(\EuDop)C(\modules\BbK).\tilde{\wedge}_{\EuP}:C_{\bullet}^{-}(\EuC)\otimes C_{\bullet}^{-}(\EuD^{op})\to C_{\bullet}^{-}(\modules\BbK).

Because the inclusion \BbK\perfdg\BbK\BbK\hookrightarrow\perfdg\BbK induces a quasi-isomorphism of Hochschild chain complexes, it also induces a quasi-isomorphism of cyclic homology complexes, by Corollary 18. We therefore obtain a quasi-isomorphism C(\BbK)C(\perfdg\BbK)C_{\bullet}^{-}(\BbK)\to C_{\bullet}^{-}(\perfdg\BbK). We know that 𝖧𝖢(\BbK)\BbK[[u]]\operatorname{\mathsf{HC}}^{-}_{\bullet}(\BbK)\cong\BbK[\![u]\!] (c.f. [Lod92, (2.1.12)]), so we obtain an isomorphism on the level of cohomology:

(38) :𝖧𝖢(\perfdg\BbK)\BbK[[u]],\operatorname{\overset{\,\,\,\,\sim}{\int}}:\operatorname{\mathsf{HC}}^{-}_{\bullet}(\perfdg\BbK)\to\BbK[\![u]\!],

the ‘cyclic Feigin–Losev–Shoikhet trace’ (and similarly for periodic cyclic homology, where the map is to \BbK((u))\BbK(\!(u)\!), and positive cyclic homology, where the map is to \BbK[u,u1]/\BbK[u]\BbK[u,u^{-1}]/\BbK[u]).

The \BbK[[u]]\BbK[\![u]\!]-linear extension of the map 𝖲𝗍𝗋\mathsf{Str} defined in Lemma 35 defines a chain map

𝖲𝗍𝗋~:CC(𝖿𝗂𝗇\BbK)\BbK[[u]].\widetilde{\mathsf{Str}}:CC^{-}_{\bullet}(\operatorname{\mathsf{fin}}\BbK)\to\BbK[\![u]\!].

The same argument as given in the proof of Lemma 35 shows that the induced map on the level of cohomology coincides with the map

𝖧𝖢(𝖿𝗂𝗇\BbK)𝖧𝖢(\perfdg\BbK)\BbK[[u]].\operatorname{\mathsf{HC}}^{-}_{\bullet}(\operatorname{\mathsf{fin}}\BbK)\to\operatorname{\mathsf{HC}}^{-}_{\bullet}(\perfdg\BbK)\overset{\overset{\,\,\sim}{\int}}{\to}\BbK[\![u]\!].
Definition 55.

If \EuC\EuC is a proper 𝖽𝗀\mathsf{dg} category, we define the higher residue pairing, which is the pairing

,res:𝖧𝖢(\EuC)×𝖧𝖢(\EuC)\displaystyle\langle,\rangle_{res}:\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC)\times\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC) \BbK[[u]]\displaystyle\to\BbK[\![u]\!]
α,βres\displaystyle\langle\alpha,\beta\rangle_{res} :=~\EuCΔ(α,β).\displaystyle:=\operatorname{\overset{\,\,\,\,\sim}{\int}}\tilde{\wedge}_{\EuC_{\Delta}}(\alpha,\beta^{\vee}).

The pairing is sesquilinear. We obtain similar pairings on 𝖧𝖯\operatorname{\mathsf{HP}}_{\bullet} and 𝖧𝖢+\operatorname{\mathsf{HC}}^{+}_{\bullet}.

{rmk}

Because the Künneth quasi-isomorphism for negative cyclic homology (36) extends that for Hochschild homology (24), and because the cyclic Feigin–Losev–Shoikhet trace (38) extends the non-cyclic version (27), the higher residue pairing extends the Mukai pairing, in the sense that

Gα,βres=Gα,GβMuk,G\langle\alpha,\beta\rangle_{res}=\langle G\alpha,G\beta\rangle_{Muk},

where on the left-hand side, G:\BbK[[u]]\BbKG:\BbK[\![u]\!]\to\BbK is the map setting u=0u=0, and on the right-hand side, G:𝖧𝖢\HHG:\operatorname{\mathsf{HC}}^{-}_{\bullet}\to\HH_{\bullet} is the map induced on Hochschild complexes.

5.5 Higher residue pairing for AA_{\infty} bimodules

Definition 56.

Let F:\EuC1×\EuC2×\EuC3\EuDF:\EuC_{1}\times\EuC_{2}\times\EuC_{3}\dashrightarrow\EuD be an AA_{\infty} tri-functor, where μ\EuD3=0\mu^{\geq 3}_{\EuD}=0. We define a \BbK[[u]]\BbK[\![u]\!]-linear map

F:CC(\EuC1)CC(\EuC2)CC(\EuC3)CC(\EuD)F^{\prime}_{*}:CC_{\bullet}^{-}(\EuC_{1})\otimes CC_{\bullet}^{-}(\EuC_{2})\otimes CC_{\bullet}^{-}(\EuC_{3})\to CC_{\bullet}^{-}(\EuD)

as a sum of three maps: F:=F1+F2+F3F^{\prime}_{*}:=F1+F2+F3. For α=a0[a1||as]\alpha=a_{0}[a_{1}|\ldots|a_{s}], β=b0[b1||bt]\beta=b_{0}[b_{1}|\ldots|b_{t}], γ=c0[c1||cu]\gamma=c_{0}[c_{1}|\ldots|c_{u}], we define

(39) F1(α,β,γ):=(1)++|β|e+[F(a0,;b0,;c0,)||μ\EuD2(F(1),F(2))|F()||F(3)||F()],F1(\alpha,\beta,\gamma):=\\ \sum(-1)^{\maltese+\dagger+|\beta|^{\prime}}e^{+}[F^{*}(a_{0},\ldots;b_{0},\ldots;c_{0},\ldots)|\ldots|\mu^{2}_{\EuD}(F^{*}(\overbrace{\vphantom{l}\ldots}^{1}),F^{*}(\overbrace{\vphantom{l}\ldots}^{2}))|F^{*}(\ldots)|\ldots|F^{*}(\overbrace{\vphantom{l}\ldots}^{3})|\ldots|F^{*}(\ldots)],

where \maltese is Koszul sign associated to re-ordering the inputs ai,bj,cka_{i},b_{j},c_{k} as before (ignoring e+e^{+}), and \dagger is the Koszul sign associated to commuting μ\EuD2\mu^{2}_{\EuD} (equipped with sign 11) to the front of the expression, where all FF^{*} have degree 0, all ai,bj,cka_{i},b_{j},c_{k} have their reduced degrees, and e+e^{+} has degree 0.

We define

(40) F2(α,β,γ):=(1)+|β|F(a0,;b0,;c0,3)[F()||F(1)||F(2)||F()].F2(\alpha,\beta,\gamma):=\\ \sum(-1)^{\maltese+|\beta|}F^{*}(\overbrace{\vphantom{l}a_{0},\ldots;b_{0},\ldots;c_{0},\ldots}^{3})[F^{*}(\ldots)|\ldots|F(\overbrace{\vphantom{l}\ldots}^{1})|\ldots|F(\overbrace{\vphantom{l}\ldots}^{2})|\ldots|F^{*}(\ldots)].

We define

(41) F3(α,β,γ):=(1)+|β|F(a0,;b0,;c0,1,3)[F()||F(2)||F()].F3(\alpha,\beta,\gamma):=\sum(-1)^{\maltese+|\beta|}F^{*}(\overbrace{\vphantom{l}a_{0},\ldots;b_{0},\ldots;c_{0},\ldots}^{1,3})[F^{*}(\ldots)|\ldots|F(\overbrace{\vphantom{l}\ldots}^{2})|\ldots|F^{*}(\ldots)].
Lemma 57.

Let F:\EuC1×\EuC2×\EuC3\EuDF:\EuC_{1}\times\EuC_{2}\times\EuC_{3}\dashrightarrow\EuD be an AA_{\infty} tri-functor, where μ\EuD3=0\mu^{\geq 3}_{\EuD}=0. Then there is a \BbK[[u]]\BbK[\![u]\!]-linear chain map

F~:CC(\EuC1)CC(\EuC2)CC(\EuC3)CC(\EuD)\widetilde{F}_{*}:CC_{\bullet}^{-}(\EuC_{1})\otimes CC_{\bullet}^{-}(\EuC_{2})\otimes CC_{\bullet}^{-}(\EuC_{3})\to CC_{\bullet}^{-}(\EuD)

(the tensor products are over \BbK[[u]]\BbK[\![u]\!]), defined by

F~:=F+uF,\widetilde{F}_{*}:=F_{*}+uF^{\prime}_{*},

where FF_{*} is as in Lemma 42 (in the case n=3n=3), and FF^{\prime}_{*} is as in Definition 56. The analogous results also hold for the periodic and positive versions of cyclic homology.

Proof 5.11.

In order to prove that

F~(b+uB)=(b+uB)F~,\widetilde{F}_{*}\circ(b+uB)=(b+uB)\circ\widetilde{F}_{*},

it suffices to prove that: Fb=bFF_{*}\circ b=b\circ F_{*} (we proved this in Lemma 42); Fb+FB=bF+BFF^{\prime}_{*}\circ b+F_{*}\circ B=b\circ F^{\prime}_{*}+B\circ F_{*}; and FB=BFF^{\prime}_{*}\circ B=B\circ F^{\prime}_{*}. Each of these is a trivial check using the graphical notation of Appendix C; we omit the details.

Definition 58.

As in Definition 45, any object XX of an AA_{\infty} category \EuC\EuC has an associated ‘cyclic Chern character’ 𝖢𝗁~(X)𝖧𝖢0(\EuC)\widetilde{\mathsf{Ch}}(X)\in\operatorname{\mathsf{HC}}_{0}^{-}(\EuC) (similarly for periodic and positive versions). Quasi-isomorphic objects have the same cyclic Chern character. If \EuC\EuC is strictly unital, the Chern character has a particularly simple cochain-level representative. Namely, in the presence of strict units, we can define the Connes differential (and all other operations we have considered so far) using the strict units ee in place of e+e^{+}. This gives the unital cyclic complex ((CC/D)^W,b+uB)((CC_{\bullet}/D_{\bullet})\widehat{\otimes}W,b+uB). In the unital cyclic complex, 𝖢𝗁~(X)\widetilde{\mathsf{Ch}}(X) is represented on the cochain level by the length-0 cycle eXe_{X}.

{rmk}

We do not give a proof of the assertions made in Definition 58, but they are standard: in fact, one can show that 𝖢𝗁~(X)\widetilde{\mathsf{Ch}}(X) depends only on the class of [X]K0(\EuC)[X]\in K_{0}(\EuC) (cf. [Sei, Lemma 8.4]).

Definition 59.

Let \EuP\EuP be an AA_{\infty} (\EuC,\EuD)(\EuC,\EuD) bimodule. We define a \BbK[[u]]\BbK[\![u]\!]-linear pairing

~\EuP:𝖧𝖢(\EuC)\BbK[[u]]𝖧𝖢(\EuDop)\displaystyle\widetilde{\wedge}_{\EuP}:\operatorname{\mathsf{HC}}_{\bullet}^{-}(\EuC)\otimes_{\BbK[\![u]\!]}\operatorname{\mathsf{HC}}_{\bullet}^{-}(\EuD^{op}) 𝖧𝖢(A(\modules\BbK)),\displaystyle\to\operatorname{\mathsf{HC}}^{-}_{\bullet}(A_{\infty}(\modules\BbK)),
~\EuP(α,β)\displaystyle\widetilde{\wedge}_{\EuP}(\alpha,\beta) :=F~(𝖢𝗁~(\EuP),α,β),\displaystyle:=\widetilde{F}_{*}\left(\widetilde{\mathsf{Ch}}(\EuP),\alpha,\beta\right),

where F:A([\EuC,\EuD])×\EuC×\EuDopA(\modules\BbK)F:A_{\infty}([\EuC,\EuD])\times\EuC\times\EuD^{op}\dashrightarrow A_{\infty}(\modules\BbK) is the AA_{\infty} tri-functor of Lemma 39, and F~\widetilde{F}_{*} is the induced map, in accordance with Lemma 57.

Lemma 60.

Definition 59 is compatible with the corresponding definition in the 𝖽𝗀\mathsf{dg} world, i.e., the following diagram commutes:

𝖧𝖢(\EuC)𝖧𝖢(\EuDop)\textstyle{\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC)\otimes\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuD^{op})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}~\EuP\scriptstyle{\widetilde{\wedge}_{\EuP}}𝖧𝖢(A(\EuC))𝖧𝖢(A(\EuD)op)\textstyle{\operatorname{\mathsf{HC}}^{-}_{\bullet}(A_{\infty}(\EuC))\otimes\operatorname{\mathsf{HC}}^{-}_{\bullet}(A_{\infty}(\EuD)^{op})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}~A(\EuP)\scriptstyle{\widetilde{\wedge}_{A_{\infty}(\EuP)}}𝖧𝖢(\modules\BbK)\textstyle{\operatorname{\mathsf{HC}}^{-}_{\bullet}(\modules\BbK)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖧𝖢(A(\modules\BbK)).\textstyle{\operatorname{\mathsf{HC}}^{-}_{\bullet}(A_{\infty}(\modules\BbK)).}

Here, the horizontal arrows are the tautological identifications (or the isomorphism induced by the the isomorphism of Remark 3.2, in the case of \EuDop\EuD^{op}). The left vertical map is the map (37), and the right vertical map is the map introduced in Definition 59.

Proof 5.12.

The diagram commutes on the level of cochain complexes.

Definition 61.

Let \EuC\EuC be a proper AA_{\infty} category. We define the higher residue pairing

,res:𝖧𝖢(\EuC)×𝖧𝖢(\EuC)\displaystyle\langle,\rangle_{res}:\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC)\times\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC) \BbK[[u]]\displaystyle\to\BbK[\![u]\!]
(42) α,βres\displaystyle\langle\alpha,\beta\rangle_{res} :=~\EuCΔ(α,β)\displaystyle:=-\operatorname{\overset{\,\,\,\,\sim}{\int}}\widetilde{\wedge}_{\EuC_{\Delta}}(\alpha,\beta^{\vee})

where \EuCΔ\EuC_{\Delta} is the diagonal bimodule, ~\widetilde{\wedge} is as in Definition 59, \operatorname{\overset{\,\,\,\,\sim}{\int}} denotes the cyclic Feigin–Losev–Shoikhet trace (which we can apply because \EuCΔ\EuC_{\Delta} is proper), and β\beta^{\vee} is the image of β\beta under the isomorphism of Remark 3.5. The higher residue pairing is \BbK[[u]]\BbK[\![u]\!]-sesquilinear.

Proposition 62 (Morita invariance of higher residue pairing).

Let \EuC\EuC and \EuD\EuD be proper AA_{\infty} categories, which are Morita equivalent. Then the isomorphism 𝖧𝖢(\EuC)𝖧𝖢(\EuD)\operatorname{\mathsf{HC}}_{\bullet}^{-}(\EuC)\cong\operatorname{\mathsf{HC}}_{\bullet}^{-}(\EuD) of Corollary 33 respects higher residue pairings.

Proof 5.13.

The proof follows that of Proposition 51 closely.

Proposition 63.

If \EuC\EuC is a 𝖽𝗀\mathsf{dg} category, then our definition of the higher residue pairing on 𝖧𝖢(A(\EuC))𝖧𝖢(\EuC)\operatorname{\mathsf{HC}}^{-}_{\bullet}(A_{\infty}(\EuC))\cong\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC) (i.e., Definition 61) coincides with that given by Shklyarov (i.e., Definition 55).

Proof 5.14.

Follows immediately from Lemma 60, together with Remarks 5.3 and 3.4.

Proposition 64.

If \EuC\EuC is an AA_{\infty} category with finite-dimensional homhom-spaces (i.e., finite-dimensional on the cochain level, not just on the cohomology level), then the higher residue pairing is induced by a chain-level map, given by extending the formula (35) \BbK[[u]]\BbK[\![u]\!]-sesquilinearly.

Proof 5.15.

Observe that [\EuC,\EuC][\EuC,\EuC] is strictly unital, so we have the explicit representing cycle e\EuCΔe_{\EuC_{\Delta}} for 𝖢𝗁~(\EuCΔ)\widetilde{\mathsf{Ch}}(\EuC_{\Delta}), as explained in Definition 58. We now observe that F~=F+uF\widetilde{F}_{*}=F_{*}+uF^{\prime}_{*}, so on the chain level we have

α,βres=𝖲𝗍𝗋(F(e\EuCΔ,α,β))+u𝖲𝗍𝗋(F(e\EuCΔ,α,β)).\langle\alpha,\beta\rangle_{res}=\mathsf{Str}\left(F_{*}(e_{\EuC_{\Delta}},\alpha,\beta^{\vee})\right)+u\mathsf{Str}\left(F^{\prime}_{*}(e_{\EuC_{\Delta}},\alpha,\beta^{\vee})\right).

Now observe that FF_{*}^{\prime} never outputs a term of length 11 (see Definition 56), so 𝖲𝗍𝗋F=0\mathsf{Str}\circ F^{\prime}_{*}=0 on the chain level. The proof now follows from that of Proposition 53.

5.6 The higher residue pairing is covariantly constant

Definition 65.

Let \EuC\EuC be a \BbK\BbK-linear AA_{\infty} category with finite-dimensional homhom-spaces, together with a choice of basis for each homhom-space (which we recall is necessary to make sense of expressions like ‘v(μ)v(\mu^{*})’). For each derivation v\deriv𝕜\BbKv\in\deriv_{\Bbbk}\BbK, we define a \BbK[[u]]\BbK[\![u]\!]-sesquilinear map

H:CC(\EuC)×CC(\EuC)\BbK[[u]]H:CC^{-}_{\bullet}(\EuC)\times CC^{-}_{\bullet}(\EuC)\to\BbK[\![u]\!]

as a sum of three terms: H:=H1+H2+H3H:=H1+H2+H3. For α=a0[a1||as]\alpha=a_{0}[a_{1}|\ldots|a_{s}] and β=b0[b1||bt]\beta=b_{0}[b_{1}|\ldots|b_{t}], we define

(43) H1(α,β):=j,k,,m𝗍𝗋(c(1)μ(a0,,v(μ)(aj+1,),ak+1,,a,μ(a+1,,as,c,b0,,bm),bm+1,,bt)),H1(\alpha,\beta):=\\ \sum_{j,k,\ell,m}\mathsf{tr}\left(c\mapsto(-1)^{\dagger}\mu^{*}(a_{0},\ldots,v(\mu^{*})(a_{j+1},\ldots),\overbrace{a_{k+1},\ldots,a_{\ell}},\mu^{*}(a_{\ell+1},\ldots,a_{s},c,\overbrace{b_{0},\ldots,b_{m}}),b_{m+1},\ldots,b_{t})\right),
where:=i=j+1|ai|+|c||β|;\text{where}\quad\dagger:=\sum_{i=j+1}^{\ell}|a_{i}|^{\prime}+|c|\cdot|\beta|;
(44) H2(α,β)=j,k,,m𝗍𝗋(c(1)μ(a0,,aj,μ(aj+1,,as,c,b0,,v(μ)(bk+1,),b+1,),bm+1,,bt)),H2(\alpha,\beta)=\\ \sum_{j,k,\ell,m}\mathsf{tr}\left(c\mapsto(-1)^{\dagger}\mu^{*}(\overbrace{a_{0},\ldots,a_{j}},\mu^{*}(a_{j+1},\ldots,a_{s},c,b_{0},\ldots,v(\mu^{*})(b_{k+1},\ldots),\overbrace{b_{\ell+1},\ldots}),b_{m+1},\ldots,b_{t})\right),
where:=1+i=j+1s|ai|+i=0k|bi|+|c||β|;and\text{where}\quad\dagger:=1+\sum_{i=j+1}^{s}|a_{i}|^{\prime}+\sum_{i=0}^{k}|b_{i}|^{\prime}+|c|\cdot|\beta|^{\prime};\quad\text{and}
(45) H3(α,β):=j,k𝗍𝗋(c(1)v(μ)(a0,,μ(aj+1,,μ(ak+1,,as,c,b0,),b+1,),bm+1,,bt)),H3(\alpha,\beta):=\\ \sum_{j,k}\mathsf{tr}\left(c\mapsto(-1)^{\dagger}v(\mu^{*})(a_{0},\ldots,\mu^{*}(\overbrace{a_{j+1},\ldots},\mu^{*}(a_{k+1},\ldots,a_{s},c,\overbrace{b_{0},\ldots}),b_{\ell+1},\ldots),b_{m+1},\ldots,b_{t})\right),
where:=i=j+1k|ai|+|c||β|.\text{where}\quad\dagger:=\sum_{i=j+1}^{k}|a_{i}|^{\prime}+|c|\cdot|\beta|.
Lemma 66.

We have

uvα,βresα,uvβres=uvα,βres+H(b+uB)\langle u\cdot\nabla_{v}\alpha,\beta\rangle_{res}-\langle\alpha,u\cdot\nabla_{v}\beta\rangle_{res}=u\cdot v\langle\alpha,\beta\rangle_{res}+H\circ(b+uB)

as \BbK[[u]]\BbK[\![u]\!]-sesquilinear maps from CC(\EuC)×CC(\EuC)\BbK[[u]]CC_{\bullet}^{-}(\EuC)\times CC_{\bullet}^{-}(\EuC)\to\BbK[\![u]\!].

Corollary 67.

Let \EuC\EuC be a proper \BbK\BbK-linear AA_{\infty} category. Then the higher residue pairing is covariantly constant with respect to the Getzler–Gauss–Manin connection: i.e., for any v\deriv𝕜\BbKv\in\deriv_{\Bbbk}\BbK, we have

uvα,βresα,uvβres=uvα,βres\langle u\cdot\nabla_{v}\alpha,\beta\rangle_{res}-\langle\alpha,u\cdot\nabla_{v}\beta\rangle_{res}=u\cdot v\langle\alpha,\beta\rangle_{res}

as \BbK[[u]]\BbK[\![u]\!]-sesquilinear maps from 𝖧𝖢(\EuC)×𝖧𝖢(\EuC)\BbK[[u]]\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC)\times\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC)\to\BbK[\![u]\!].

Proof 5.16.

By the homological perturbation lemma, any AA_{\infty} category \EuC\EuC is quasi-isomorphic to a minimal AA_{\infty} category \EuC\EuC^{\prime} (i.e., one with μ1=0\mu^{1}=0). We have 𝖧𝖢(\EuC)𝖧𝖢(\EuC)\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC)\cong\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC^{\prime}), and the isomorphism respects connections (Theorem 20) and higher residue pairings (Proposition 62), so it suffices to prove the result for \EuC\EuC^{\prime}. Because \EuC\EuC is proper, \EuC\EuC^{\prime} will have finite-dimensional homhom-spaces, so its higher residue pairing is covariantly constant by Lemma 66.

5.7 Symmetry

Let \EuP\EuP be a (\EuC,\EuD)(\EuC,\EuD) bimodule. We recall the definition of the shift, \EuP[1]\EuP[1], which is a (\EuC,\EuD)(\EuC,\EuD) bimodule with \EuP[1](X,Y)=\EuP(X,Y)[1]\EuP[1](X,Y)=\EuP(X,Y)[1] (see [Sei08a, Equation (2.10)]).

Lemma 68.

Let \EuP\EuP be a proper (\EuC,\EuD)(\EuC,\EuD) bimodule. Then

\EuP[1](α,β)=\EuP(α,β).\int\wedge_{\EuP[1]}(\alpha,\beta)=-\int\wedge_{\EuP}(\alpha,\beta).
Proof 5.17.

We may assume that \EuC\EuC and \EuD\EuD are 𝖽𝗀\mathsf{dg} categories, and \EuP\EuP a proper 𝖽𝗀\mathsf{dg} bimodule. We recall that \EuP\EuP corresponds to a 𝖽𝗀\mathsf{dg} functor \EuP:\EuC\EuDop\perfdg\BbK\EuP:\EuC\otimes\EuD^{op}\to\perfdg\BbK, and that Shklyarov [Shk12] defines \EuP\wedge_{\EuP} to be the map induced by this functor on Hochschild homology, composed with the Künneth isomorphism. It is clear that \EuP[1]\EuP[1] corresponds to the composition of 𝖽𝗀\mathsf{dg} functors S\EuPS\circ\EuP, where S:\perfdg\BbK\perfdg\BbKS:\perfdg\BbK\to\perfdg\BbK is the shift functor. It now suffices to check that S(α)=α\int S_{*}(\alpha)=-\int\alpha, where S:\HH(\perfdg\BbK)\HH(\perfdg\BbK)S_{*}:\HH_{\bullet}(\perfdg\BbK)\to\HH_{\bullet}(\perfdg\BbK) is the map induced by the functor SS. Because the inclusion 𝖿𝗂𝗇\BbK\perfdg\BbK\operatorname{\mathsf{fin}}\BbK\hookrightarrow\perfdg\BbK is a quasi-equivalence, it suffices by Lemma 35 to prove that 𝖲𝗍𝗋(S(α))=𝖲𝗍𝗋(α)\mathsf{Str}(S_{*}(\alpha))=-\mathsf{Str}(\alpha) on \HH(𝖿𝗂𝗇\BbK)\HH_{\bullet}(\operatorname{\mathsf{fin}}\BbK). This is clear from the definition of the supertrace.

We also recall the linear dual bimodule, \EuP\EuP^{\vee}, which is a (\EuD,\EuC)(\EuD,\EuC) bimodule with \EuP(Y,X)=hom(\EuP(X,Y),\BbK)\EuP^{\vee}(Y,X)=\hom(\EuP(X,Y),\BbK) (see, e.g., [Sei17, Equation (2.11)]).

Lemma 69.

Let \EuP\EuP be a proper (\EuC,\EuD)(\EuC,\EuD) bimodule. Then

\EuP(α,β)=(1)|α||β|\EuP(β,α).\int\wedge_{\EuP^{\vee}}(\alpha,\beta)=(-1)^{|\alpha|\cdot|\beta|}\int\wedge_{\EuP}(\beta^{\vee},\alpha^{\vee}).
Proof 5.18.

Once again, we may assume that \EuC\EuC, \EuD\EuD and \EuP\EuP are 𝖽𝗀\mathsf{dg}, and regard \EuP\EuP as a 𝖽𝗀\mathsf{dg} functor. The proof combines four pieces. First, let \EuP\EuP^{\vee} denote the following composition of 𝖽𝗀\mathsf{dg} functors:

\EuD\EuCop(\EuC\EuDop)op\EuPop(\perfdg\BbK)op𝖽𝗎𝖺𝗅\perfdg\BbK,\EuD\otimes\EuC^{op}\overset{\sim}{\longrightarrow}\left(\EuC\otimes\EuD^{op}\right)^{op}\overset{\EuP^{op}}{\longrightarrow}(\perfdg\BbK)^{op}\overset{\mathsf{dual}}{\longrightarrow}\perfdg\BbK,

where the first functor sends cd(1)|c||d|dcc\otimes d\mapsto(-1)^{|c|\cdot|d|}d\otimes c and ‘𝖽𝗎𝖺𝗅\mathsf{dual}’ denotes the 𝖽𝗀\mathsf{dg} functor that dualizes cochain complexes. One easily verifies that this is compatible with the AA_{\infty} definition, in the sense that A(\EuP)A(\EuP)A_{\infty}(\EuP)^{\vee}\cong A_{\infty}(\EuP^{\vee}).

Second, for any 𝖽𝗀\mathsf{dg} functor FF, one easily checks that (Fop)(α)=F(α)(F^{op})_{*}(\alpha^{\vee})=F_{*}(\alpha)^{\vee} (we apply this to F=\EuPF=\EuP).

Third, one checks that the following diagram commutes:

CC(\EuC)CC(\EuDop)\textstyle{CC_{\bullet}(\EuC)\otimes CC_{\bullet}(\EuD^{op})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}CC(\EuC\EuDop)\textstyle{CC_{\bullet}(\EuC\otimes\EuD^{op})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}CC(\EuD)CC(\EuCop)\textstyle{CC_{\bullet}(\EuD)\otimes CC_{\bullet}(\EuC^{op})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}CC(\EuD\EuCop),\textstyle{CC_{\bullet}(\EuD\otimes\EuC^{op}),}

where the horizontal arrows are the Künneth maps [Shk12, Section 2.4], the left vertical arrow combines the isomorphism CC(\EuC)CC(\EuCop)CC_{\bullet}(\EuC)\cong CC_{\bullet}(\EuC^{op}) of [Shk12, Equation (4.8)] (and similarly for \EuD\EuD) with the Koszul isomorphism CC(\EuC)CC(\EuDop)CC(\EuDop)CC(\EuC)CC_{\bullet}(\EuC)\otimes CC_{\bullet}(\EuD^{op})\cong CC_{\bullet}(\EuD^{op})\otimes CC_{\bullet}(\EuC), and the right vertical arrow is induced by the isomorphism CC(\EuC\EuDop)CC((\EuC\EuDop)op)CC_{\bullet}(\EuC\otimes\EuD^{op})\cong CC_{\bullet}((\EuC\otimes\EuD^{op})^{op}) composed with the map induced by the isomorphism of 𝖽𝗀\mathsf{dg} categories, (\EuC\EuDop)op\EuCop\EuD\EuD\EuCop(\EuC\otimes\EuD^{op})^{op}\cong\EuC^{op}\otimes\EuD\cong\EuD\otimes\EuC^{op}.

Fourth, one checks that 𝖽𝗎𝖺𝗅(α)=α\int\mathsf{dual}_{*}(\alpha^{\vee})=\int\alpha. As in the proof of Lemma 68, it suffices to prove that 𝖲𝗍𝗋(𝖽𝗎𝖺𝗅(α))=𝖲𝗍𝗋(α)\mathsf{Str}(\mathsf{dual}_{*}(\alpha^{\vee}))=\mathsf{Str}(\alpha); and this reduces to the obvious fact that the trace of the dual of a matrix coincides with the trace of the original matrix. Combining the four pieces gives the result.

We recall that an nn-dimensional weak proper Calabi–Yau structure on an AA_{\infty} category \EuC\EuC is a quasi-isomorphism \EuCΔ\EuCΔ[n]\EuC_{\Delta}\cong\EuC_{\Delta}^{\vee}[n] (see [Sei08b, Section 12j], as well as [Tra08] and [She16, Section A.5], where it is called an ‘\infty-inner product’).

Lemma 70.

If \EuC\EuC admits an nn-dimensional weak proper Calabi–Yau structure, then the Mukai pairing on \HH(\EuC)\HH_{\bullet}(\EuC) satisfies:

α,βMuk=(1)n+|α||β|β,αMuk.\langle\alpha,\beta\rangle_{Muk}=(-1)^{n+|\alpha|\cdot|\beta|}\langle\beta,\alpha\rangle_{Muk}.

Similarly for the higher residue pairing.

Proof 5.19.

The result for the the Mukai pairing follows directly from Lemmas 68 and 69, and the fact that the pairing \EuP\wedge_{\EuP} only depends on the quasi-isomorphism class of the bimodule \EuP\EuP. The proof for the higher residue pairing is analogous.

Lemma 70 completes the proof of Theorem 1.4 (2).

5.8 Hodge-to-de Rham degeneration

Definition 71.

Suppose that \EuC\EuC is saturated. We say that \EuC\EuC satisfies the degeneration hypothesis if the spectral sequence (13) induced by the Hodge filtration on CC(\EuC)CC_{\bullet}^{-}(\EuC) degenerates at the E1E_{1} page.

{rmk}

A conjecture of Kontsevich and Soibelman [KS08, Conjecture 9.1.2] asserts that all saturated AA_{\infty} categories \EuC\EuC satisfy the degeneration hypothesis. It has been proved by Kaledin [Kal17] (see also [Mat]), in the case that \EuC\EuC is \Z\Z-graded.

Theorem 72 (= Theorem 1.4 (4)).

If \EuC\EuC is saturated, and satisfies the degeneration hypothesis, then the polarized pre-𝖵𝖲𝖧𝖲\mathsf{VSHS} (𝖧𝖢(\EuC),,,res)(\operatorname{\mathsf{HC}}_{\bullet}^{-}(\EuC),\nabla,\langle\cdot,\cdot\rangle_{res}) of Theorem 1.4 (2) is a polarized 𝖵𝖲𝖧𝖲\mathsf{VSHS}.

Proof 5.20.

Any AA_{\infty} category is quasi-equivalent to a 𝖽𝗀\mathsf{dg} category, via the Yoneda embedding; so let us assume without loss of generality that \EuC\EuC is 𝖽𝗀\mathsf{dg}. Then \HH(\EuC)\HH_{\bullet}(\EuC) is finite-dimensional and the Mukai pairing is non-degenerate, by [Shk12, Theorem 1.4]; it follows that the polarization given by the higher residue pairing is non-degenerate.

As an immediate consequence, the spectral sequence (13) induced by the Hodge filtration on any of CC+,,(\EuC)CC_{\bullet}^{+,-,\infty}(\EuC) is automatically bounded (by the degree bound on \HH\HH_{\bullet}) and regular (by finite-dimensionality); because the Hodge filtration is complete and exhaustive, the complete convergence theorem [Wei94, Theorem 5.5.10] implies that the spectral sequence converges to its cohomology. Hence, 𝖧𝖢(\EuC)\operatorname{\mathsf{HC}}_{\bullet}^{-}(\EuC) has finite rank.

Finally, if \EuC\EuC satisfies the degeneration hypothesis, then it is clear that 𝖧𝖢(\EuC)\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC) is a free \BbK[[u]]\BbK[\![u]\!]-module. Thus we have verified all of the conditions of Definitions 4 and 5, so (𝖧𝖢(\EuC),,,res)(\operatorname{\mathsf{HC}}_{\bullet}^{-}(\EuC),\nabla,\langle\cdot,\cdot\rangle_{res}) is a polarized 𝖵𝖲𝖧𝖲\mathsf{VSHS}.

Appendix A Morita equivalence

In this Appendix we provide proofs of some well-known results relating to Morita equivalence of AA_{\infty} categories.

Lemma 73.

Let ρ:\EuP\EuQ\rho:\EuP\to\EuQ be a homomorphism of (\EuC,\EuD)(\EuC,\EuD) bimodules. Let \EuXOb(\EuC)\EuX\subset Ob(\EuC) and \EuYOb(\EuD)\EuY\subset Ob(\EuD) be subsets which split-generate \EuC\EuC and \EuD\EuD respectively. If the map

(46) ρ0|1|0:\EuP(X,Y)\EuQ(X,Y)\rho^{0|1|0}:\EuP(X,Y)\to\EuQ(X,Y)

is a quasi-isomorphism for all (X,Y)\EuX×\EuY(X,Y)\in\EuX\times\EuY, then ρ\rho is a quasi-isomorphism.

Proof A.1.

Denote by \EuSOb(\EuC)\EuS\subset Ob(\EuC) the set of objects XX such that (46) is a quasi-isomorphism for all Y\EuYY\in\EuY. This set contains \EuX\EuX by hypothesis, and it is straightforward to show that it is closed under forming cones and direct summands; therefore it is all of Ob(\EuC)Ob(\EuC) because \EuX\EuX split-generates. Now repeat the argument for the set \EuTOb(\EuD)\EuT\subset Ob(\EuD) of objects YY such that (46) is a quasi-isomorphism for all XOb(\EuC)X\in Ob(\EuC).

Lemma 74 (=Lemma 23).

If F:\EuC\EuDF:\EuC\to\EuD is a cohomologically full and faithful AA_{\infty} functor, and \EuD\EuD is split-generated by the image of FF, then \EuM:=(FId)\EuDΔ\EuM:=(F\otimes\mathrm{Id})^{*}\EuD_{\Delta} and \EuN:=(IdF)\EuDΔ\EuN:=(\mathrm{Id}\otimes F)^{*}\EuD_{\Delta} define a Morita equivalence between \EuC\EuC and \EuD\EuD.

Proof A.2.

Tensor products of bimodules respect pullbacks in the following sense: If Fi:\EuCi\EuDiF_{i}:\EuC_{i}\to\EuD_{i} are AA_{\infty} functors for i=1,2,3i=1,2,3, then there is a morphism of bimodules

(47) (F1F2)\EuM\EuC2(F2F3)\EuN(F1F3)(\EuM\EuD2\EuN).(F_{1}\otimes F_{2})^{*}\EuM\otimes_{\EuC_{2}}(F_{2}\otimes F_{3})^{*}\EuN\to(F_{1}\otimes F_{3})^{*}\left(\EuM\otimes_{\EuD_{2}}\EuN\right).

It is given by the formula

m[a1||as]nm[F2(a1,)||F2(,as)]nm[a_{1}|\ldots|a_{s}]n\mapsto\sum m[F_{2}(a_{1},\ldots)|\ldots|F_{2}(\ldots,a_{s})]n

(no higher maps). If F2F_{2} is the identity functor, it is clear from the formula that (47) is the identity. It follows immediately that \EuM\EuD\EuN(FF)\EuDΔ\EuM\otimes_{\EuD}\EuN\cong(F\otimes F)^{*}\EuD_{\Delta}. Now there is a natural morphism \EuCΔ(FF)\EuDΔ\EuC_{\Delta}\to(F\otimes F)^{*}\EuD_{\Delta}, given by contracting all terms with FF. This morphism is clearly a quasi-isomorphism when FF is cohomologically full and faithful. Therefore, \EuCΔ\EuM\EuD\EuN\EuC_{\Delta}\cong\EuM\otimes_{\EuD}\EuN as required.

It remains to prove that \EuN\EuC\EuM\EuDΔ\EuN\otimes_{\EuC}\EuM\cong\EuD_{\Delta}. From (47), we obtain a morphism of bimodules

(48) \EuN\EuC\EuM(IdId)(\EuDΔ\EuD\EuDΔ)\EuDΔ.\EuN\otimes_{\EuC}\EuM\to(\mathrm{Id}\otimes\mathrm{Id})^{*}(\EuD_{\Delta}\otimes_{\EuD}\EuD_{\Delta})\overset{\cong}{\to}\EuD_{\Delta}.

So it remains to prove that this morphism is a quasi-isomorphism of (\EuD,\EuD)(\EuD,\EuD) bimodules. The linear term of (48) is the map

(49) hom\EuD(F(X0),U)hom\EuC(X1,X0)hom\EuC(Xs,Xs1)hom\EuD(V,F(Xs))hom\EuD(V,U)\bigoplus hom^{\bullet}_{\EuD}(F(X_{0}),U)\otimes hom^{\bullet}_{\EuC}(X_{1},X_{0})\otimes\ldots\otimes hom^{\bullet}_{\EuC}(X_{s},X_{s-1})\otimes hom^{\bullet}_{\EuD}(V,F(X_{s}))\to hom^{\bullet}_{\EuD}(V,U)

given by the formula

(50) m[a1||as]nμ(m,F(c1,),,F(,as),n).m[a_{1}|\ldots|a_{s}]n\mapsto\sum\mu^{*}(m,F^{\bullet}(c_{1},\ldots),\ldots,F^{\bullet}(\ldots,a_{s}),n).

We now prove that (49) is a quasi-isomorphism in the special case that U=F(U~)U=F(\tilde{U}) and V=F(V~)V=F(\tilde{V}). To do this, we observe that the following diagram commutes up to homotopy:

(51) hom\EuC(X0,U~)\EuC(X0,,Xs)hom\EuC(V~,Xs)\textstyle{\bigoplus hom^{\bullet}_{\EuC}(X_{0},\tilde{U})\otimes\EuC(X_{0},\ldots,X_{s})\otimes hom^{\bullet}_{\EuC}(\tilde{V},X_{s})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}FIdF\scriptstyle{F^{\bullet}\otimes\mathrm{Id}\otimes F^{\bullet}}μ\EuC\scriptstyle{\mu^{*}_{\EuC}}hom\EuC(U~,V~)\textstyle{hom^{\bullet}_{\EuC}(\tilde{U},\tilde{V})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F1\scriptstyle{F^{1}}hom\EuD(F(Y0),F(U~))\EuC(Y0,,Yt)hom\EuD(F(V~),F(Yt))\textstyle{\bigoplus hom^{\bullet}_{\EuD}(F(Y_{0}),F(\tilde{U}))\otimes\EuC(Y_{0},\ldots,Y_{t})\otimes hom^{\bullet}_{\EuD}(F(\tilde{V}),F(Y_{t}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}hom\EuD(F(U~),F(V~)).\textstyle{hom^{\bullet}_{\EuD}(F(\tilde{U}),F(\tilde{V})).}

The left vertical map sends

m[a1||as]nF(m,a1,)[ai+1||aj]F(aj+1,,as,n).m[a_{1}|\ldots|a_{s}]n\mapsto\sum F^{\bullet}(m,a_{1},\ldots)[a_{i+1}|\ldots|a_{j}]F^{\bullet}(a_{j+1},\ldots,a_{s},n).

(compare [Ganb, Equation (2.240)]). The bottom horizontal map is precisely the map (49). The diagram commutes up to the homotopy given by

m[a1||as]nF(m,c1,,cs,n),m[a_{1}|\ldots|a_{s}]n\mapsto F^{\bullet}(m,c_{1},\ldots,c_{s},n),

using the AA_{\infty} functor equations for FF. Furthermore, the top horizontal arrow is a quasi-isomorphism (it is the first term in the quasi-isomorphism \EuCΔ\EuC\EuCΔ\EuCΔ\EuC_{\Delta}\otimes_{\EuC}\EuC_{\Delta}\cong\EuC_{\Delta}); the right vertical arrow is a quasi-isomorphism (because FF is cohomologically full and faithful); the left vertical arrow is a quasi-isomorphism, by a comparison argument for the spectral sequences induced by the obvious length filtrations, again using the fact that FF is cohomologically full and faithful. It follows that the bottom map is a quasi-isomorphism. So (49) is a quasi-isomorphism when UU and VV are in the image of FF.

It follows that (49) is a quasi-isomorphism of bimodules, by Lemma 73 and the hypothesis that the image of FF split-generates \EuD\EuD.

Theorem 75.

If \EuC\EuC and \EuD\EuD are Morita equivalent, then \twsplit\EuC\twsplit\EuC and \twsplit\EuD\twsplit\EuD are quasi-equivalent.

Proof A.3.

This is a consequence of [Sta18, Proposition 13.34.6], which is due to [TT90] and [Nee92] (see also [Kel06, Theorem 3.4]). Namely, we consider the 𝖽𝗀\mathsf{dg} category \modules\EuC\modules\EuC of right AA_{\infty} \EuC\EuC-modules: its cohomological category H0(\modules\EuC)H^{0}(\modules\EuC) is a triangulated category, which admits arbitrary coproducts and is compactly generated by the Yoneda modules. We call an object of \modules\EuC\modules\EuC compact if the corresponding object of the triangulated category H0(\modules\EuC)H^{0}(\modules\EuC) is compact in the usual sense. Then, the subcategory of compact objects of \modules\EuC\modules\EuC is precisely the triangulated split-closure of the image of the Yoneda embedding, by the above-mentioned theorem. We refer to it as \EuCperf\EuC^{perf}: it is quasi-equivalent to \twsplit\EuC\twsplit\EuC by the uniqueness of triangulated split-closures [Sei08b, Lemma 4.7].

Now suppose \EuC\EuC and \EuD\EuD are Morita equivalent. Then we have a quasi-equivalence \modules\EuC\modules\EuD\modules\EuC\cong\modules\EuD, given by tensoring with the Morita bimodule. As a consequence, the respective subcategories of compact objects, \EuCperf\EuC^{perf} and \EuDperf\EuD^{perf}, are quasi-equivalent: hence \twsplit\EuC\twsplit\EuC and \twsplit\EuD\twsplit\EuD are quasi-equivalent.

Appendix B Functoriality of the Getzler–Gauss–Manin connection

The aim of this appendix is to prove Theorem 20.

Lemma 76.

Let F:\EuC\EuDF:\EuC\to\EuD be an AA_{\infty} functor. Define H1,H2:CC(\EuC)CC(\EuD)H_{1},H_{2}:CC_{\bullet}(\EuC)\to CC_{\bullet}(\EuD) by

(52) H1(a0[a1||as]):=(1)εjF(a0,,v(μ\EuC(aj+1,),,ak)[F(ak+1,)||F(,as)].H_{1}(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}}F^{*}\left(a_{0},\ldots,v(\mu^{*}_{\EuC}(a_{j+1},\ldots),\overbrace{\ldots,a_{k}}\right)\left[F^{*}(a_{k+1},\ldots)|\ldots|F^{*}(\ldots,a_{s})\right].

and

(53) H2(a0[a1||as]):=μ\EuD(F(a0,),,v(F)(),F(),,F())[F()||F(,as)].H_{2}(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum\mu^{*}_{\EuD}\left(F^{*}(a_{0},\ldots),\ldots,v(F^{*})(\ldots),\overbrace{F^{*}(\ldots),\ldots,F^{*}(\ldots)}\right)\left[F^{*}(\ldots)|\ldots|F^{*}(\ldots,a_{s})\right].

Define H:=H1H2H:=H_{1}-H_{2}. Then

F(b1|1(v(μ\EuC)|α)=b1|1(v(μ\EuD)|F(α))+b(H(α))+H(b(α))F_{*}(b^{1|1}(v(\mu^{*}_{\EuC})|\alpha)=b^{1|1}(v(\mu^{*}_{\EuD})|F_{*}(\alpha))+b(H(\alpha))+H(b(\alpha))

for all αCC(\EuC)\alpha\in CC_{\bullet}(\EuC). In particular, on the level of cohomology,

F(𝖪𝖲(v)α)=𝖪𝖲(v)F(α).F_{*}(\mathsf{KS}(v)\cap\alpha)=\mathsf{KS}(v)\cap F_{*}(\alpha).
Proof B.1.

By the AA_{\infty} functor equation,

(54) (1)εjF(a0,,μ(aj+1,),,ai)[ai+1||as]=μ(F(a0,),F(),,F(,ai))[ai+1||as]\sum(-1)^{\varepsilon_{j}}F^{*}\left(a_{0},\ldots,\mu^{*}(a_{j+1},\ldots),\ldots,a_{i}\right)[a_{i+1}|\ldots|a_{s}]\\ =\sum\mu^{*}\left(F^{*}(a_{0},\ldots),F^{*}(\ldots),\ldots,F^{*}(\ldots,a_{i})\right)[a_{i+1}|\ldots|a_{s}]

for all ii. Pre-compose this relation with the map Gi:CC(\EuC)CC(\EuC)G_{i}:CC_{\bullet}(\EuC)\to CC_{\bullet}(\EuC), defined by

Gi(a0[a1||as]):=(1)εja0[a1||v(μ)(aj+1,)||ai||as].G_{i}(a_{0}[a_{1}|\ldots|a_{s}]):=\sum(-1)^{\varepsilon_{j}}a_{0}[a_{1}|\ldots|v(\mu^{*})(a_{j+1},\ldots)|\overbrace{\ldots|a_{i}}|\ldots|a_{s}].

One obtains

(55) A1+A+A2+A3=A4+A5,A1+A+A2+A3=A4+A5,

where

(56) A1(a0[a1||as]):=(1)εj+εkF(a0,,μ(aj+1,),,v(μ)(ak+1,),,ai)[F(ai+1,)||F(,as)],A1(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}+\varepsilon_{k}}F^{*}\left(a_{0},\ldots,\mu^{*}(a_{j+1},\ldots),\ldots,v(\mu^{*})(a_{k+1},\ldots),\overbrace{\ldots,a_{i}}\right)\left[F^{*}(a_{i+1},\ldots)|\ldots|F^{*}(\ldots,a_{s})\right],
(57) A(a0[a1||as]):=(1)εj+εkF(a0,,μ(aj+1,,v(μ)(ak+1,),,ai),)[F()||F(,as)],A(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}+\varepsilon_{k}}F^{*}\left(a_{0},\ldots,\mu^{*}\left(a_{j+1},\ldots,v(\mu^{*})(a_{k+1},\ldots),\overbrace{\ldots,a_{i}}\right),\ldots\right)\left[F^{*}(\ldots)|\ldots|F^{*}(\ldots,a_{s})\right],
(58) A2(a0[a1||as]):=(1)εj+εkF(a0,,μ(aj+1,,v(μ)(ak+1,),),,ai)[F()||F(,as)],A2(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}+\varepsilon_{k}}F^{*}\left(a_{0},\ldots,\mu^{*}\left(a_{j+1},\ldots,v(\mu^{*})(a_{k+1},\ldots),\ldots\right),\overbrace{\ldots,a_{i}}\right)\left[F^{*}(\ldots)|\ldots|F^{*}(\ldots,a_{s})\right],
(59) A3(a0[a1||as]):=(1)εj+εkF(a0,,v(μ)(aj+1,),,μ(ak+1,),,ai)[F()||F(,as)],A3(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}+\varepsilon_{k}}F^{*}\left(a_{0},\ldots,v(\mu^{*})(a_{j+1},\ldots),\overbrace{\ldots,\mu^{*}(a_{k+1},\ldots),\ldots,a_{i}}\right)\left[F^{*}(\ldots)|\ldots|F^{*}(\ldots,a_{s})\right],
(60) A4(a0[a1||as]):=(1)εjμ(F(a0,),,F(,v(μ)(aj+1,),,ai),,F())[|F(,as)],A4(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}}\mu^{*}\left(F^{*}(a_{0},\ldots),\ldots,F^{*}\left(\ldots,v(\mu^{*})(a_{j+1},\ldots),\overbrace{\ldots,a_{i}}\right),\ldots,F^{*}(\ldots)\right)\left[\ldots|F^{*}(\ldots,a_{s})\right],
(61) A5(a0[a1||as]):=(1)εjμ(F(a0,),,F(,v(μ)(aj+1,),),F(),,F(,ai))[|F(,as)].A5(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}}\mu^{*}\left(F^{*}(a_{0},\ldots),\ldots,F^{*}\left(\ldots,v(\mu^{*})(a_{j+1},\ldots),\ldots\right),\overbrace{F^{*}(\ldots),\ldots,F^{*}(\ldots,a_{i})}\right)\left[\ldots|F^{*}(\ldots,a_{s})\right].

By the AA_{\infty} relations μμ=0\mu^{*}\circ\mu^{*}=0, we find that

(62) C1+C2+C3+C4=0,C1+C2+C3+C4=0,

where

(63) C1(a0[a1||as]):=(1)εjμ(F(a0,),,μ(F(aj+1,),),,v(F)(),,F(,ai))[|F(,as)],C1(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}}\mu^{*}\left(F^{*}(a_{0},\ldots),\ldots,\mu^{*}\left(F^{*}(a_{j+1},\ldots),\ldots\right),\ldots,v(F^{*})(\ldots),\overbrace{\ldots,F^{*}(\ldots,a_{i})}\right)\left[\ldots|F^{*}(\ldots,a_{s})\right],
(64) C2(a0[a1||as]):=(1)εjμ(F(a0,),,μ(F(aj+1,),,v(F)(),,F()),,ai)[|F(,as)],C2(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}}\mu^{*}\left(F^{*}(a_{0},\ldots),\ldots,\mu^{*}\left(F^{*}(a_{j+1},\ldots),\ldots,v(F^{*})(\ldots),\overbrace{\ldots,F^{*}(\ldots)}\right),\ldots,a_{i}\right)\left[\ldots|F^{*}(\ldots,a_{s})\right],
(65) C3(a0[a1||as]):=(1)εjμ(F(a0,),,μ(F(aj+1,),,v(F)(),),F(),,F(,ai))[|F(,as)],C3(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}}\mu^{*}\left(F^{*}(a_{0},\ldots),\ldots,\mu^{*}\left(F^{*}(a_{j+1},\ldots),\ldots,v(F^{*})(\ldots),\ldots\right),\overbrace{F^{*}(\ldots),\ldots,F^{*}(\ldots,a_{i})}\right)\left[\ldots|F^{*}(\ldots,a_{s})\right],
(66) C4(a0[a1||as]):=(1)εjμ(F(a0,),,v(F)(),,μ(F(aj+1,),),,F(,ai))[|F(,as)],C4(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}}\mu^{*}\left(F^{*}(a_{0},\ldots),\ldots,v(F^{*})(\ldots),\overbrace{\ldots,\mu^{*}\left(F^{*}(a_{j+1},\ldots),\ldots\right),\ldots,F^{*}(\ldots,a_{i})}\right)\left[\ldots|F^{*}(\ldots,a_{s})\right],

By differentiating the AA_{\infty} functor equation, we find that

(67) B1+C3=D+A5,B1+C3=D+A5,

where

(68) B1(a0[a1||as]):=(1)εjμ(F(),,F(),v(μ)(F(),),F(),,F(,ai))[|F(,as)],B1(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}}\mu^{*}\left(F^{*}(\ldots),\ldots,F^{*}(\ldots),v(\mu^{*})\left(F^{*}(\ldots),\ldots\right),\overbrace{F^{*}(\ldots),\ldots,F^{*}(\ldots,a_{i})}\right)\left[\ldots|F^{*}(\ldots,a_{s})\right],
(69) D(a0[a1||as]):=(1)εjμ(F(),,F(),v(F)(,μ(aj+1,),),F(),,F(,ai))[|F(,as)],D(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}}\mu^{*}\left(F^{*}(\ldots),\ldots,F^{*}(\ldots),v(F^{*})\left(\ldots,\mu^{*}(a_{j+1},\ldots),\ldots\right),\overbrace{F^{*}(\ldots),\ldots,F^{*}(\ldots,a_{i})}\right)\left[\ldots|F^{*}(\ldots,a_{s})\right],

We now compute that

(70) bH1+H1b=A4A1A2A3;b\circ H_{1}+H_{1}\circ b=A4-A1-A2-A3;

all other terms cancel by the AA_{\infty} functor equations (note: here, ‘\circ’ simply denotes composition of functions, not Gerstenhaber product). We similarly compute that

(71) bH2+H2b=C2+C1+D+C4b\circ H_{2}+H_{2}\circ b=C2+C1+D+C4

(we must apply the AA_{\infty} functor equation to obtain the terms C1C1 and C4C4).

Combining equations (55), (62), (67), (70) and (71), we find that

A=B1+bH+Hb.A=B1+b\circ H+H\circ b.

We now observe that A=F(b1|1(v(μ\EuC)|α)A=F_{*}(b^{1|1}(v(\mu^{*}_{\EuC})|\alpha) and B1=b1|1(v(μ\EuD)|F(α))B1=b^{1|1}(v(\mu^{*}_{\EuD})|F_{*}(\alpha)) by definition; so the proof is complete.

Theorem 77.

(Theorem 20) Let F:\EuC\EuDF:\EuC\to\EuD be an AA_{\infty} functor, and F:𝖧𝖢(\EuC)𝖧𝖢(\EuD)F_{*}:\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuC)\to\operatorname{\mathsf{HC}}^{-}_{\bullet}(\EuD) the map induced by FF. Denote by \nabla the Getzler–Gauss–Manin connection (Definition 19). Then

Fuv=uvFF_{*}\circ u\nabla_{v}=u\nabla_{v}\circ F_{*}

on the level of cohomology, for all v\deriv𝕜\BbKv\in\deriv_{\Bbbk}\BbK.

Proof B.2.

Define H3:CCnu(\EuC)CCnu(\EuD)H_{3}:CC_{\bullet}^{nu}(\EuC)\to CC_{\bullet}^{nu}(\EuD) by

H3(a0[a1||as]):=e+[F(a0,)||v(F)(),F(),,F(,as)].H_{3}(a_{0}[a_{1}|\ldots|a_{s}]):=\sum e^{+}\left[F^{*}(a_{0},\ldots)|\ldots|v(F^{*})(\ldots),\overbrace{F^{*}(\ldots),\ldots,F^{*}(\ldots,a_{s})}\right].

Let Hu:CC(\EuC)CC(\EuD)H^{u}:CC_{\bullet}^{-}(\EuC)\to CC_{\bullet}^{-}(\EuD) be defined by Hu:=H2H1+uH3H^{u}:=H_{2}-H_{1}+u\cdot H_{3}. We will prove that

(72) FuvuvF=(b+uB)Hu+Hu(b+uB),F_{*}\circ u\nabla_{v}-u\nabla_{v}\circ F_{*}=(b+uB)\circ H^{u}+H^{u}\circ(b+uB),

from which the result follows.

It suffices to prove (72) for αCCnu(\EuC)\alpha\in CC_{\bullet}^{nu}(\EuC), by \BbK[[u]]\BbK[\![u]\!]-linearity. We separate it into powers of uu: it is clear that the uiu^{i} term vanishes for all ii except i=0,1i=0,1. The u0u^{0} component of (72) says

(73) F(b1|1(v(μ)|α)b1|1(v(μ)|F(α))=b(H1H2)(α)+(H1H2)b(α),F_{*}(b^{1|1}(v(\mu^{*})|\alpha)-b^{1|1}(v(\mu^{*})|F_{*}(\alpha))=b\circ(H_{1}-H_{2})(\alpha)+(H_{1}-H_{2})\circ b(\alpha),

which holds by Lemma 76. The u1u^{1} component of (72) says

(74) F(v(α))v(F(α))F(B1|1(v(μ)|α)+B1|1(v(μ)|F(α))=bH3(α)+H3b(α)B(H1H2)(α)(H1H2)B(α).F_{*}(v(\alpha))-v(F_{*}(\alpha))-F_{*}(B^{1|1}(v(\mu^{*})|\alpha)+B^{1|1}(v(\mu^{*})|F_{*}(\alpha))\\ =b\circ H_{3}(\alpha)+H_{3}\circ b(\alpha)-B\circ(H_{1}-H_{2})(\alpha)-(H_{1}-H_{2})\circ B(\alpha).

First, by differentiating the AA_{\infty} functor equation, we obtain the relation

(75) Q1+Q4=Q2+Q3,Q1+Q4=Q2+Q3,

where

(76) Q1(a0[a1||as]):=(1)εjF(a0,)[F()||v(F)(,μ(aj+1,),)|F()||F(,as)],Q1(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}}F^{*}(a_{0},\ldots)\left[F^{*}(\ldots)|\ldots|v(F^{*})\left(\ldots,\mu^{*}(a_{j+1},\ldots),\ldots\right)|\overbrace{F^{*}(\ldots)|\ldots|F^{*}(\ldots,a_{s}})\right],
(77) Q2(a0[a1||as]):=(1)εjF(a0,)[F()||μ(F(aj+1,),,v(F)(),)|F()||F(,as)]Q2(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}}F^{*}(a_{0},\ldots)\left[F^{*}(\ldots)|\ldots|\mu^{*}\left(F^{*}(a_{j+1},\ldots),\ldots,v(F^{*})(\ldots),\ldots\right)|\overbrace{F^{*}(\ldots)|\ldots|F^{*}(\ldots,a_{s}})\right]
(78) Q3(a0[a1||as]):=(1)εje+[F(a0,)||v(μ)(F(aj+1,),)||F(,as)]Q3(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}}e^{+}\left[F^{*}(a_{0},\ldots)|\ldots|v(\mu^{*})\left(F^{*}(a_{j+1},\ldots),\ldots\right)|\overbrace{\ldots|F^{*}(\ldots,a_{s})}\right]
(79) Q4(a0[a1||as]):=(1)εje+[F(a0,)||F(,v(μ)(aj+1,),)||F(,as)].Q4(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}}e^{+}\left[F^{*}(a_{0},\ldots)|\ldots|F^{*}\left(\ldots,v(\mu^{*})(a_{j+1},\ldots),\ldots\right)|\overbrace{\ldots|F^{*}(\ldots,a_{s})}\right].

Now, we compute each pair of terms in (74) separately. We compute

(80) FvvF=P1P2,F_{*}\circ v-v\circ F_{*}=-P1-P2,

where

(81) P1(a0[a1||as]):=v(F)(a0,)[F()||F(,as)],P1(a_{0}[a_{1}|\ldots|a_{s}]):=\sum v(F^{*})(\overbrace{a_{0},\ldots})\left[F^{*}(\ldots)|\ldots|F^{*}(\ldots,a_{s})\right],
(82) P2(a0[a1||as]):=F(a0,)[F()||v(F)(aj+1,)||F(,as)].P2(a_{0}[a_{1}|\ldots|a_{s}]):=\sum F^{*}(\overbrace{a_{0},\ldots})\left[F^{*}(\ldots)|\ldots|v(F^{*})(a_{j+1},\ldots)|\ldots|F^{*}(\ldots,a_{s})\right].

Next, we compute

(83) bH3+H3b=P3P2+Q1R1Q2,b\circ H_{3}+H_{3}\circ b=P3-P2+Q1-R1-Q2,

where

(84) P3(a0[a1||as]):=v(F)(a0,)[F()||F(,as)],P3(a_{0}[a_{1}|\ldots|a_{s}]):=\sum v(F^{*})(a_{0},\ldots)\left[\overbrace{F^{*}(\ldots)|\ldots|F^{*}(\ldots,a_{s}})\right],
(85) R1(a0[a1||as]):=(1)εjF(a0,)[|μ(F(aj+1,),,v(F)(),F(),)||F(,as)],R1(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}}F^{*}(a_{0},\ldots)\left[\ldots|\mu^{*}\left(F^{*}(a_{j+1},\ldots),\ldots,v(F^{*})(\ldots),\overbrace{F^{*}(\ldots),\ldots}\right)|\ldots|F^{*}(\ldots,a_{s})\right],

(all other terms cancel by the AA_{\infty} functor equations). Next, we compute

(86) FB1|1(v(μ)|)B1|1(v(μ)|F())=S1+Q4Q3,F_{*}\circ B^{1|1}(v(\mu^{*})|-)-B^{1|1}(v(\mu^{*})|F_{*}(-))=S1+Q4-Q3,

where

(87) S1(a0[a1||as]):=(1)εje+[F(a0,)||F(,v(μ)(aj+1,)F(),)||F(,as)],S1(a_{0}[a_{1}|\ldots|a_{s}]):=\\ \sum(-1)^{\varepsilon_{j}}e^{+}\left[F^{*}(a_{0},\ldots)|\ldots|F^{*}\left(\ldots,v(\mu^{*})(a_{j+1},\ldots)\overbrace{F^{*}(\ldots),\ldots}\right)|\ldots|F^{*}(\ldots,a_{s})\right],

(all other terms cancel by the AA_{\infty} functor equations). Next, we compute

(88) BH1=S1B\circ H_{1}=S1

and

(89) H1B=0.H_{1}\circ B=0.

Next, we compute

(90) BH2+H2B=R1P1P3.B\circ H_{2}+H_{2}\circ B=R1-P1-P3.

Now, by substituting in (80), (86), we obtain

(91) FvvFFB1|1(v(μ)|)+B1|1(v(μ)|F())=(P1+P2)(S1+Q4Q3)=(P3P2+Q1R1Q2)S1+(R1P1P3) (applying (75) and regrouping)=(bH3+H3b)(BH1+H1B)+BH2+H2BF_{*}\circ v-v\circ F_{*}-F_{*}\circ B^{1|1}(v(\mu^{*})|-)+B^{1|1}(v(\mu^{*})|F_{*}(-))\\ =-(P1+P2)-(S1+Q4-Q3)\\ =(P3-P2+Q1-R1-Q2)-S1+(R1-P1-P3)\mbox{ (applying \eqref{eqn:Q14} and regrouping)}\\ =(b\circ H_{3}+H_{3}\circ b)-(B\circ H_{1}+H_{1}\circ B)+B\circ H_{2}+H_{2}\circ B

where the last line follows by substituting in (83), (88), (90). This completes the proof of (74), and hence the result.

Appendix C Graphical sign convention

In this appendix we explain a convenient notation for checking formulae in AA_{\infty} algebra, including the signs and gradings.

C.1 The idea

The idea is to represent compositions of multilinear operations by a diagram as in Figure 1, which we call a sign diagram. The inputs will always be at the top of the diagram, and the outputs at the bottom. Strands in the diagram are allowed to cross, but no three strands should meet at a point.

Each strand in the diagram is oriented (from input to output), and carries a degree. By convention, strands which correspond to morphisms in our AA_{\infty} category will carry their reduced degree, |a|:=|a|1|a|^{\prime}:=|a|-1. Also by convention, the sum of the degrees of the edges coming into each vertex must be equal to the sum of the degrees going out. This convention forces us to add a red strand coming into each vertex, carrying the degree of the corresponding operation (we omit it when the degree is zero). This is the case, for example, for the AA_{\infty} operations μs\mu^{s}, which have degree 11 with respect to the reduced degree.

To any sign diagram DD, we associate a sign σ(D)\Z/2\sigma(D)\in\Z/2, as follows: to each crossing of strands, we associate the product of the degrees of those strands (the Koszul sign associated to commuting the corresponding two variables). Then σ(D)\sigma(D) is the sum of these signs, over all crossings in the diagram.

Definition 78.

We say two sign diagrams are isotopic if they are related by a sequence of moves of the following two types: moving a strand over a crossing; and moving a strand over a vertex.

Lemma 79.

If sign diagrams D1D_{1} and D2D_{2} are isotopic, then σ(D1)=σ(D2)\sigma(D_{1})=\sigma(D_{2}).

Proof C.1.

It is trivial that moving a strand over a crossing does not change the sign. When one moves a strand over a vertex, the sign does not change because of the assumption that the sum of the degrees going into the vertex is equal to the sum of the degrees going out.

If we assign multilinear operations to the vertices in our sign diagram, then the sign diagram gives us a prescription for composing the operations: by convention, this composition gets multiplied by the sign associated to the sign diagram. By Lemma 79, isotopic sign diagrams give the same sign, and they also obviously give the same composition of operations: so they represent the same composed operation.

C.2 Sign diagrams for operations in this paper

In this section we give the sign diagrams associated to some of the more complicated formulae in this paper.

Refer to caption
Figure 1: The AA_{\infty} multifunctor equations (see Definition 36). The AA_{\infty} structure maps are represented by solid dots, whereas the multi-functor maps are represented by open dots. We have illustrated the case of an AA_{\infty} tri-functor, and only show one of the three types of diagrams on the right-hand side.
Refer to caption
(a) The F0;s;tF^{0;s;t} part of the tri-functor.
Refer to caption
(b) The F1;s;tF^{1;s;t} part of the tri-functor.
Figure 2: The AA_{\infty} tri-functor F:A([\EuC,\EuD])×\EuC×\EuDopA(\modules\BbK)F:A_{\infty}([\EuC,\EuD])\times\EuC\times\EuD^{op}\dashrightarrow A_{\infty}(\modules\BbK) of Lemma 39.
Refer to caption
(a) The chain map F:CC(\EuC1)CC(\EuC2)CC(\EuC3)CC(\EuD)F_{*}:CC_{\bullet}(\EuC_{1})\otimes CC_{\bullet}(\EuC_{2})\otimes CC_{\bullet}(\EuC_{3})\to CC_{\bullet}(\EuD) associated to an AA_{\infty} tri-functor F:\EuC1×\EuC2×\EuC3\EuDF:\EuC_{1}\times\EuC_{2}\times\EuC_{3}\dashrightarrow\EuD (see Lemma 42).
Refer to caption
(b) The Mukai pairing, and the higher residue pairing (see Propositions 53 and 64).
Figure 3: In these sign diagrams, we sum over cylic permutations of the inputs in each CC(\EuCi)CC_{\bullet}(\EuC_{i}), corresponding to sweeping some number of strands from front to back; however we only sum over the permutations of CC(\EuCj)CC_{\bullet}(\EuC_{j}) such that the initial term c0jc_{0}^{j} gets input to the vertex labelled ‘jj’. In the Mukai pairing on the right, the loop carries its unreduced sign, whereas all other strands carry reduced signs.

References

  • [Amo16] Lino Amorim, Tensor product of filtered AA_{\infty}-algebras, J. Pure Appl. Algebra 220 (2016), no. 12, 3984–4016. MR 3517566
  • [AT] Lino Amorim and Junwu Tu, Categorical primitive forms of Calabi–Yau AA_{\infty}-categories with semi-simple cohomology, Preprint, available at arXiv:1909.05319.
  • [Bar01] Serguei Barannikov, Quantum periods. I. Semi-infinite variations of Hodge structures, Internat. Math. Res. Notices (2001), no. 23, 1243–1264. MR 1866443
  • [Bar02]   , Non-commutative periods and mirror symmetry in higher dimensions, Comm. Math. Phys. 228 (2002), no. 2, 281–325. MR 1911737
  • [Bla16] Anthony Blanc, Topological K-theory of complex noncommutative spaces, Compos. Math. 152 (2016), no. 3, 489–555. MR 3477639
  • [CdlOGP91] Philip Candelas, Xenia de la Ossa, Paul Green, and Linda Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Physics B 359 (1991), no. 1, 21–74.
  • [CIT09] Tom Coates, Hiroshi Iritani, and Hsian-Hua Tseng, Wall-crossings in toric Gromov-Witten theory I: crepant examples, Geometry & Topology 13 (2009), no. 5, 2675–2744.
  • [CK99] David Cox and Sheldon Katz, Mirror Symmetry and Algebraic Geometry, American Mathematical Society, 1999.
  • [Cos07] Kevin Costello, Topological conformal field theories and Calabi-Yau categories, Advances in Mathematics 210 (2007), no. 1, 165–214.
  • [Cos09]   , The partition function of a topological field theory, J. Topol. 2 (2009), no. 4, 779–822. MR 2574744
  • [Gana] Sheel Ganatra, Cyclic homology, S1S^{1}-equivariant Floer cohomology, and Calabi-Yau structures, Preprint, available from https://sheelganatra.com/circle_action/circle_action.pdf.
  • [Ganb]   , Symplectic Cohomology and Duality for the Wrapped Fukaya Category, Preprint, available at arXiv:1304.7312.
  • [Ger63] Murray Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267–288. MR 0161898
  • [Get93] Ezra Getzler, Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology, Israel Math. Conf. Proc. 7 (1993), 1–12.
  • [Giv95] Alexander Givental, Homological geometry and mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, pp. 472–480. MR 1403947
  • [Giv96]   , Equivariant Gromov-Witten invariants, Int. Math. Res. Not. 1996 (1996), no. 13, 613–663.
  • [GPSa] Sheel Ganatra, Timothy Perutz, and Nick Sheridan, The cyclic open–closed map and noncommutative Hodge structures, In progress.
  • [GPSb]   , Mirror symmetry: from categories to curve counts, Preprint, available at arXiv:1510.03839.
  • [Gro11] Mark Gross, Tropical geometry and mirror symmetry, CBMS Regional Conference Series in Mathematics, 114. American Mathematical Society, Providence RI, 2011.
  • [Kal07] Dmitry Kaledin, Some remarks on formality in families, Mosc. Math. J. 7 (2007), no. 766, 643–652.
  • [Kal17]   , Spectral sequences for cyclic homology, Algebra, geometry, and physics in the 21st century, Progr. Math., vol. 324, Birkhäuser/Springer, Cham, 2017, pp. 99–129. MR 3702384
  • [Kel06] Bernhard Keller, On differential graded categories, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 151–190.
  • [KKP08] Ludmil Katzarkov, Maxim Kontsevich, and Tony Pantev, Hodge theoretic aspects of mirror symmetry, From Hodge theory to integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math. 78 (2008), 87–174.
  • [Kon95] Maxim Kontsevich, Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, pp. 120–139. MR 1403918
  • [KS08] Maxim Kontsevich and Yan Soibelman, Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I, Homological Mirror Symmetry: New Developments and Perspectives, Lecture Notes in Physics, vol. 757, Springer, 2008, pp. 153–219.
  • [LLY97] Bong Lian, Kefeng Liu, and Shing-Tung Yau, Mirror Principle I, Asian Journal of Mathematics 1 (1997), no. 4, 729–763.
  • [Lod92] Jean-Louis Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992, Appendix E by María O. Ronco. MR 1217970
  • [Lun10] Valery Lunts, Formality of DG algebras (after Kaledin), J. Algebra 323 (2010), no. 4, 878–898. MR 2578584
  • [Lyu15] Volodymyr Lyubashenko, AA_{\infty}-morphisms with several entries, Theory Appl. Categ. 30 (2015), Paper No. 45, 1501–1551. MR 3421458
  • [Mat] Akhil Mathew, Kaledin’s degeneration theorem and topological Hochschild homology, Preprint, available at arXiv:1710.09045.
  • [Mor93] David Morrison, Mirror symmetry and rational curves on quintic threefolds: A guide for mathematicians, Journal of the American Mathematical Society 6 (1993), no. 1, 223–247.
  • [Nee92] Amnon Neemann, The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Annales Scientifiques de L’E.N.S. (4) 25 (1992), no. 5, 547–566.
  • [Orl04] Dmitri Orlov, Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Proc. Steklov Inst. Math. 246 (2004), 227–248.
  • [PSa] Timothy Perutz and Nick Sheridan, Automatic split-generation for the Fukaya category, Preprint, available at arXiv:1510.03848.
  • [PSb]   , Foundations of the relative Fukaya category, In preparation.
  • [Sai83] Kyoji Saito, Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19 (1983), no. 3, 1231–1264. MR 723468
  • [Sei] Paul Seidel, Lectures on Categorical Dynamics and Symplectic Topology, Available from http://www-math.mit.edu/˜seidel/.
  • [Sei08a]   , AA_{\infty} subalgebras and natural transformations, Homology, Homotopy Appl. 10 (2008), no. 2, 83–114.
  • [Sei08b]   , Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2441780
  • [Sei17]   , Fukaya AA_{\infty}-structures associated to Lefschetz fibrations. II, Algebra, geometry, and physics in the 21st century, Progr. Math., vol. 324, Birkhäuser/Springer, Cham, 2017, pp. 295–364. MR 3727564
  • [She] Nick Sheridan, Versality of the relative Fukaya category, Preprint, available at arXiv:1709.07874.
  • [She15]   , Homological mirror symmetry for Calabi-Yau hypersurfaces in projective space, Invent. Math. 199 (2015), no. 1, 1–186.
  • [She16]   , On the Fukaya category of a Fano hypersurface in projective space, Publ. Math. Inst. Hautes Études Sci. 124 (2016), 165–317. MR 3578916
  • [Shk12] Dmytro Shklyarov, Hirzebruch–Riemann–Roch-type formula for DG algebras, Proc. Lond. Math. Soc. 106 (2012), no. 1, 1–32.
  • [Shk16]   , Matrix factorizations and higher residue pairings, Adv. Math. 292 (2016), 181–209. MR 3464022
  • [Sim97] Carlos Simpson, The Hodge filtration on nonabelian cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 217–281. MR 1492538
  • [Sta18] The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu, 2018.
  • [Tra08] Thomas Tradler, Infinity-inner-products on A-infinity-algebras, J. Homotopy Relat. Struct. 3 (2008), no. 1, 245–271.
  • [TT90] Robert Thomason and Thomas Trobaugh, Higher algebraic KK-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918
  • [Tu] Junwu Tu, Categorical Saito theory, II: Landau-Ginzburg orbifolds, Preprint, available at arXiv:1910.00037.
  • [Voi07] Claire Voisin, Hodge theory and complex algebraic geometry. II, english ed., Cambridge Studies in Advanced Mathematics, vol. 77, Cambridge University Press, Cambridge, 2007, Translated from the French by Leila Schneps. MR 2449178
  • [Wei94] Charles Weibel, An introduction to homological algebra, Cambridge University Press, Cambridge Studies in Advanced Mathematics, 38, 1994.