This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Four-body Semileptonic Charm Decays DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} Based on
SU(3) Flavor Analysis

Ru-Min Wang1,†,   Yi Qiao1,   Yi-Jie Zhang1,   Xiao-Dong Cheng2,§,   Yuan-Guo Xu1,♯
1College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
2College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
ruminwang@sina.com
   §chengxd@mails.ccnu.edu.cn   yuanguoxu@jxnu.edu.cn
ruminwang@sina.com
Abstract

Motivated by the significant experimental progress in probing semileptonic decays DP1P2+ν(=μ,e)D\to P_{1}P_{2}\ell^{+}\nu_{\ell}\leavevmode\nobreak\ (\ell=\mu,e), we analyze the branching ratios of the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays with the nonresonant, the light scalar meson resonant and the vector meson resonant contributions in this work. We obtain the hadronic amplitude relations between different decay modes by the SU(3) flavor analysis, and then predict relevant branching ratios of the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays by the present experimental data with 2σ2\sigma errors. Most of our predicted branching ratios are consistent with present experimental data within 2σ2\sigma error bars, and others are consistent with the data within 3σ3\sigma error bars. We find that the branching ratios of the nonresonant decays D0πK¯0+ν,π0K+νD^{0}\to\pi^{-}\overline{K}^{0}\ell^{+}\nu_{\ell},\pi^{0}K^{-}\ell^{+}\nu_{\ell}, D+π+K+ν,π0K¯0+ν,π+π+ν,π0π0+νD^{+}\to\pi^{+}K^{-}\ell^{+}\nu_{\ell},\pi^{0}\overline{K}^{0}\ell^{+}\nu_{\ell},\pi^{+}\pi^{-}\ell^{+}\nu_{\ell},\pi^{0}\pi^{0}\ell^{+}\nu_{\ell}, and Ds+K+K+ν,K0K¯0+νD^{+}_{s}\to K^{+}K^{-}\ell^{+}\nu_{\ell},K^{0}\overline{K}^{0}\ell^{+}\nu_{\ell} are on the order of 𝒪(103104)\mathcal{O}(10^{-3}-10^{-4}). The vector meson resonant contributions are dominant in the D0πK¯0+ν,π0K+ν,π0π+νD^{0}\to\pi^{-}\overline{K}^{0}\ell^{+}\nu_{\ell},\pi^{0}K^{-}\ell^{+}\nu_{\ell},\pi^{0}\pi^{-}\ell^{+}\nu_{\ell}, D+π+K+ν,π0K¯0+ν,π+π+νD^{+}\to\pi^{+}K^{-}\ell^{+}\nu_{\ell},\pi^{0}\overline{K}^{0}\ell^{+}\nu_{\ell},\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}, and Ds+K+K+ν,K0K¯0+ν,K+π+ν,K0π0+νD^{+}_{s}\to K^{+}K^{-}\ell^{+}\nu_{\ell},K^{0}\overline{K}^{0}\ell^{+}\nu_{\ell},K^{+}\pi^{-}\ell^{+}\nu_{\ell},K^{0}\pi^{0}\ell^{+}\nu_{\ell} decays. The nonresonant, the vector meson resonant and the scalar resonant contributions are all important in the D0ηπ+νD^{0}\to\eta\pi^{-}\ell^{+}\nu_{\ell} decays. The D0KK0+ν,ηπ+νD^{0}\to K^{-}K^{0}\ell^{+}\nu_{\ell},\eta^{\prime}\pi^{-}\ell^{+}\nu_{\ell} and D+K¯0K0+ν,π0π0+ν,ηπ0+ν,ηπ0+νD^{+}\to\overline{K}^{0}K^{0}\ell^{+}\nu_{\ell},\pi^{0}\pi^{0}\ell^{+}\nu_{\ell},\eta\pi^{0}\ell^{+}\nu_{\ell},\eta^{\prime}\pi^{0}\ell^{+}\nu_{\ell} decays only receive both the nonresonant and the scalar resonant contributions, and both contributions are important in their branching ratios. According to our predictions, many decay modes could be observed in the experiments like BESIII, LHCb, and BelleII, and some decay modes might be measured in these experiments in the near future.

I INTRODUCTION

Semileptonic heavy meson decays dominated by tree-level exchange of WW-bosons in the SM are very important processes in testing the standard model and in searching for the new physics beyond the standard model, for example, the extraction of the Cabbibo-Kobayashi-Maskawa (CKM) matrix elements. Four-body semileptonic exclusive decays DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} are generated by the cs/d+νc\to s/d\ell^{+}\nu_{\ell} transitions, and they can receive contributions from the nonresonant, the light scalar meson resonant and the vector meson resonant contributions, etc. Therefore, these decays are also a good laboratory for probing the internal structure of light hadrons Wang:2009azc ; Oset:2016lyh ; Achasov:2012kk . Some nonresonant DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays, the light scalar meson resonant decays DS(SP1P2)+νD\to S(S\to P_{1}P_{2})\ell^{+}\nu_{\ell} and the vector meson resonant decays DS(SP1P2)+νD\to S(S\to P_{1}P_{2})\ell^{+}\nu_{\ell} have been observed by BESIII, BABAR, CLEO, and MARKIII PDG2022 ; BESIII:2018qmf ; BESIII:2018sjg ; BESIII:2021tfk ; BESIII:2021pdt ; BaBar:2010vmf ; CLEO:2009ugx ; MARK-III:1990bbt . Present experimental measurements give us an opportunity to additionally test theoretical approaches.

Experimental backgrounds of the semileptonic decays are cleaner than ones of the hadronic decays, and theoretical description of the semileptonic exclusive decays are relatively simple. Since leptons do not participate in the strong interaction, the weak and strong dynamics can be separated in these processes. All the strong dynamics in the initial and final hadrons is included in the hadronic transition form factors, which are important for testing the theoretical calculations of the involved strong interaction. The form factors can be calculated, for example, by the chiral perturbation theory Kang:2013jaa , the unitarized chiral perturbation theory Shi:2017pgh ; Shi:2020rkz , the light-cone sum rules Sekihara:2015iha ; Cheng:2017smj ; Hambrock:2015aor , and the QCD factorization Boer:2016iez . Nevertheless, due to our poor understanding of hadronic interactions, the evaluations of the form factors are difficult and often plugged with large uncertainties. One needs to find ways to minimize the uncertainties to extract useful information.

In the lack of reliable calculations, symmetries provide very important information for particle physics. SU(3) flavor symmetry is a symmetry in QCD for strong interaction. From the perspective of the SU(3) flavor symmetry, the leptonic part of the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decay is the SU(3) flavor singlet, which makes no difference between different decay modes with certain lepton (ee or μ\mu). The different hadronic parts (the hadronic amplitudes or the hadronic form factors) of the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays could be related by the SU(3) flavor symmetry without the detailed dynamics. Nevertheless, the size of the hadronic amplitudes or the form factors cannot be determined by itself in the SU(3) flavor symmetry approach. However, if experimental data are enough, one may use the data to extract the hadronic amplitudes or the form factors, which can be viewed as predictions based on symmetry, and has a smaller dependency on estimated form factors. Although the SU(3) flavor symmetry is only an approximate symmetry because up, down and strange quarks have different masses, it still provides some very useful information about the decays. The SU(3) flavor symmetry has been widely used to study hadron decays, for instance, bb-hadron decays He:1998rq ; He:2000ys ; Fu:2003fy ; Hsiao:2015iiu ; He:2015fwa ; He:2015fsa ; Deshpande:1994ii ; Gronau:1994rj ; Gronau:1995hm ; Shivashankara:2015cta ; Zhou:2016jkv ; Cheng:2014rfa ; Wang:2021uzi ; Wang:2020wxn , cc-hadron decays Wang:2021uzi ; Wang:2020wxn ; Grossman:2012ry ; Pirtskhalava:2011va ; Savage:1989qr ; Savage:1991wu ; Altarelli:1975ye ; Lu:2016ogy ; Geng:2017esc ; Geng:2018plk ; Geng:2017mxn ; Geng:2019bfz ; Wang:2017azm ; Wang:2019dls ; Wang:2017gxe ; Muller:2015lua , and light hadron decays Wang:2019alu ; Wang:2021uzi ; Xu:2020jfr ; Chang:2014iba ; Zenczykowski:2005cs ; Zenczykowski:2006se ; Cabibbo:1963yz .

Although the SU(3) flavor symmetry works well in heavy hadron decays, the calculations of SU(3) flavor breaking effects would play a key role in the precise theoretical predictions of the observables and a precise test of the unitarity of the CKM matrix. If up and down quark masses are neglected, a nonzero strange quark mass breaks the SU(3) flavor symmetry down to the isospin symmetry. When up and down quark mass difference is kept, isospin symmetry is also broken. Applications of the SU(3) flavor breaking approach on hadron decays can be found in Refs. Dery:2020lbc ; Sasaki:2008ha ; Pham:2012db ; Geng:2018bow ; Flores-Mendieta:1998tfv ; Cheng:2012xb ; Xu:2013dta ; He:2014xha . The SU(3) flavor breaking effects due to the fact of msmu,dm_{s}\gg m_{u,d} will be considered in our analysis of the nonresonant DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays.

Four-body semileptonic decays DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} have been studied, for instance, in Refs. Shi:2021bvy ; Shi:2017pgh ; Kim:2017dfr ; Achasov:2020qfx ; Wiss:2007mr ; Wang:2016wpc ; Achasov:2021dvt . In this work, we will study the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays with the SU(3) flavor symmetry/breaking. In three cases of the nonresonant decays, the light scalar meson resonant decays and the vector meson resonant decays, we will firstly construct the hadronic amplitude relations between different decay modes, use the available data to extract the hadronic amplitudes, then predict the not-yet-measured modes for further tests in experiments, and finally analyze the contributions with the non-resonance, the light scalar meson resonances and the vector meson resonances in the branching ratios.

This paper is organized as follows. In Sec. II, the expressions of the branching ratios are given. In Sec. III, we will give our numerical results of the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu decays with the nonresonant, the light scalar meson resonant and the vector meson resonant contributions. Our conclusions are given in Sec. IV.

II Theoretical frame

II.1 Decay branching ratios

The effective Hamiltonian for cqi+νc\to q_{i}\ell^{+}\nu_{\ell} transition can be written as

eff(cqi+ν)\displaystyle\mathcal{H}_{eff}(c\rightarrow q_{i}\ell^{+}\nu_{\ell}) =\displaystyle= GF2Vcqiq¯iγμ(1γ5)cν¯γμ(1γ5),\displaystyle\frac{G_{F}}{\sqrt{2}}V_{cq_{i}}\bar{q}_{i}\gamma^{\mu}(1-\gamma_{5})c\leavevmode\nobreak\ \bar{\nu}_{\ell}\gamma_{\mu}(1-\gamma_{5})\ell, (1)

where GFG_{F} is the Fermi constant, VcqiV_{cq_{i}} is the CKM matrix element, and qi=d,sq_{i}=d,s for i=2,3i=2,3. The decay amplitude of the D(p)P1(k1)P2(k2)+(q1)ν(q2)D(p)\to P_{1}(k_{1})P_{2}(k_{2})\ell^{+}(q_{1})\nu_{\ell}(q_{2}) decay can be divided into leptonic and hadronic parts

𝒜(DP1P2+ν)\displaystyle\mathcal{A}(D\rightarrow P_{1}P_{2}\ell^{+}\nu_{\ell}) =\displaystyle= P1(k1)P2(k2)+(q1)ν(q2)|eff(cqi+ν)|D(p)\displaystyle\langle P_{1}(k_{1})P_{2}(k_{2})\ell^{+}(q_{1})\nu_{\ell}(q_{2})|\mathcal{H}_{eff}(c\rightarrow q_{i}\ell^{+}\nu_{\ell})|D(p)\rangle (2)
=\displaystyle= GF2VcqiLμHμ,\displaystyle\frac{G_{F}}{\sqrt{2}}V_{cq_{i}}L_{\mu}H^{\mu}, (3)

where Lμ=ν¯γμ(1γ5)L_{\mu}=\bar{\nu_{\ell}}\gamma_{\mu}(1-\gamma_{5})\ell is the leptonic charged current, and Hμ=P1(k1)P2(k2)|s¯/d¯γμ(1γ5)c|D(p)H^{\mu}=\langle P_{1}(k_{1})P_{2}(k_{2})|\bar{s}/\bar{d}\gamma^{\mu}(1-\gamma_{5})c|D(p)\rangle is the hadronic matrix element. The leptonic part LμL_{\mu} is calculable using the perturbation theory, while the hadronic part HμH^{\mu} is encoded into the transition form factors. Following Refs. Boer:2016iez ; Faller:2013dwa , the DP1P2D\to P_{1}P_{2} form factors are given as

P1(k1)P2(k2)|s¯/d¯γμc|D(p)\displaystyle\langle P_{1}(k_{1})P_{2}(k_{2})|\bar{s}/\bar{d}\gamma^{\mu}c|D(p)\rangle =\displaystyle= iF1k2qμ,\displaystyle iF_{\perp}\frac{1}{\sqrt{k^{2}}}q^{\mu}_{\perp}, (4)
P1(k1)P2(k2)|s¯/d¯γμγ5c|D(p)\displaystyle-\langle P_{1}(k_{1})P_{2}(k_{2})|\bar{s}/\bar{d}\gamma^{\mu}\gamma_{5}c|D(p)\rangle =\displaystyle= Ftqμq2+F02q2λk0μ+F1k2k¯μ,\displaystyle F_{t}\frac{q^{\mu}}{\sqrt{q^{2}}}+F_{0}\frac{2\sqrt{q^{2}}}{\sqrt{\lambda}}k^{\mu}_{0}+F_{\parallel}\frac{1}{\sqrt{k^{2}}}\bar{k}^{\mu}_{\parallel}, (5)

with

k0μ\displaystyle k^{\mu}_{0} =\displaystyle= kμkqq2qμ,\displaystyle k^{\mu}-\frac{k\cdot q}{q^{2}}q^{\mu}, (6)
k¯μ\displaystyle\bar{k}^{\mu}_{\parallel} =\displaystyle= k¯μ4(kq)(qk¯)λkμ+4k2(qk¯)λqμ,\displaystyle\bar{k}^{\mu}-\frac{4(k\cdot q)(q\cdot\bar{k})}{\lambda}k^{\mu}+\frac{4k^{2}(q\cdot\bar{k})}{\lambda}q^{\mu}, (7)
qμ\displaystyle q^{\mu}_{\perp} =\displaystyle= 2ϵμαβγqαkβk¯γλ,\displaystyle 2\epsilon^{\mu\alpha\beta\gamma}\frac{q_{\alpha}k_{\beta}\bar{k}_{\gamma}}{\sqrt{\lambda}}, (8)

where kk1+k2k\equiv k_{1}+k_{2}, qq1+q2q\equiv q_{1}+q_{2}, k¯k1k2\bar{k}\equiv k_{1}-k_{2}, q¯q2q1\bar{q}\equiv q_{2}-q_{1}, and λ=λ(mD2,q2,k2)\lambda=\lambda(m_{D}^{2},q^{2},k^{2}) with λ(a,b,c)=a2+b2+c22ab2bc2ac\lambda(a,b,c)=a^{2}+b^{2}+c^{2}-2ab-2bc-2ac.

In terms of the form factors, the differential branching ratio of the nonresonant DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays can be written as Boer:2016iez

d(DP1P2+ν)Ndq2dk2=12τD|𝒩|2β(3β)|FA|2,\displaystyle\frac{d\mathcal{B}(D\to P_{1}P_{2}\ell^{+}\nu)_{N}}{dq^{2}\leavevmode\nobreak\ dk^{2}}=\frac{1}{2}\tau_{D}|\mathcal{N}|^{2}\beta_{\ell}(3-\beta_{\ell})|F_{A}|^{2}, (9)

with

|𝒩|2\displaystyle|\mathcal{N}|^{2} =\displaystyle= GF2|Vcq|2βq2λ(mD2,q2,k2)3210π5mD3withβ=1m2q2,\displaystyle G_{F}^{2}|V_{cq}|^{2}\frac{\beta_{\ell}q^{2}\sqrt{\lambda(m_{D}^{2},q^{2},k^{2})}}{3\cdot 2^{10}\pi^{5}m_{D}^{3}}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \mbox{with}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \beta_{\ell}=1-\frac{m_{\ell}^{2}}{q^{2}},
|FA|2\displaystyle|F_{A}|^{2} =\displaystyle= |F0|2+23(|F|2+|F|2)+3m2q2(3β)|Ft|2,\displaystyle|F_{0}|^{2}+\frac{2}{3}(|F_{\parallel}|^{2}+|F_{\perp}|^{2})+\frac{3m_{\ell}^{2}}{q^{2}(3-\beta_{\ell})}|F_{t}|^{2}, (10)

where τM\tau_{M}(mMm_{M}) is lifetime(mass) of MM particle. In this work, we ignore the small contributions of the |Ft|2|F_{t}|^{2} term, which is proportional to m2m_{\ell}^{2}. The corresponding limits of integration are given by (mP1+mP2)2k2(mDqm)2(m_{P_{1}}+m_{P_{2}})^{2}\leq k^{2}\leq(m_{D_{q}}-m_{\ell})^{2} and m2q2(mDqk2)2m_{\ell}^{2}\leq q^{2}\leq(m_{D_{q}}-\sqrt{k^{2}})^{2}. The calculations of the form factors F0,F,FF_{0},\leavevmode\nobreak\ F_{\parallel},\leavevmode\nobreak\ F_{\perp}, and FtF_{t} are quite complicated, and their specific expressions in the QCD factorization limit can be found in Ref. Boer:2016iez . Nevertheless, we will not use the specific expressions in this work, and we will relate the different hadronic decay amplitudes or the different form factors between different decay modes by the SU(3) flavor symmetry/breaking, which are discussed in later Sec. II.3.

Except for the nonresonant DP1P2+νD\rightarrow P_{1}P_{2}\ell^{+}\nu_{\ell} decays, the resonant DR(RP1P2)+νD\to R(R\to P_{1}P_{2})\ell^{+}\nu_{\ell} decays with the scalar(R=SR=S) resonance and the vector(R=VR=V) resonance are also studied in this work. In the case of the decay widths of the resonances are very narrow, the resonant decay branching ratios respect a simple factorization relation

(DR+ν,RP1P2)=(DR+ν)×(RP1P2),\displaystyle\mathcal{B}(D\to R\ell^{+}\nu_{\ell},R\to P_{1}P_{2})=\mathcal{B}(D\to R\ell^{+}\nu_{\ell})\times\mathcal{B}(R\to P_{1}P_{2}), (11)

and this result is also a good approximation for wider resonances. Above Eq. (11) will be used in our analysis for the scalar resonant DS(SP1P2)+νD\to S(S\to P_{1}P_{2})\ell^{+}\nu_{\ell} decays and the vector resonant DV(VP1P2)+νD\to V(V\to P_{1}P_{2})\ell^{+}\nu_{\ell} decays in Secs. III.2 and III.3, respectively. Relevant (DR+ν)\mathcal{B}(D\to R\ell^{+}\nu_{\ell}) and (RP1P2)\mathcal{B}(R\to P_{1}P_{2}) are also obtained by the SU(3) flavor symmetry in our later analysis.

II.2 Meson multiplets

Before giving the hadronic amplitudes based on the SU(3) flavor analysis, we will collect the representations for the multiplets of the SU(3) flavor group first in this subsection.

Charmed mesons containing one heavy cc quark are flavor SU(3) antitriplets

Di=(D0(cu¯),D+(cd¯),Ds+(cs¯)).\displaystyle D_{i}=\Big{(}D^{0}(c\bar{u}),\leavevmode\nobreak\ D^{+}(c\bar{d}),\leavevmode\nobreak\ D^{+}_{s}(c\bar{s})\Big{)}. (12)

Light pseudoscalar meson (PP) and vector meson (VV) octets and singlets under the SU(3) flavor symmetry of light u,d,su,d,s quarks are He:2018joe

P\displaystyle P =\displaystyle= (π02+η86+η13π+K+ππ02+η86+η13K0KK¯02η86+η13),\displaystyle\left(\begin{array}[]{ccc}\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta_{8}}{\sqrt{6}}+\frac{\eta_{1}}{\sqrt{3}}&\pi^{+}&K^{+}\\ \pi^{-}&-\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta_{8}}{\sqrt{6}}+\frac{\eta_{1}}{\sqrt{3}}&K^{0}\\ K^{-}&\overline{K}^{0}&-\frac{2\eta_{8}}{\sqrt{6}}+\frac{\eta_{1}}{\sqrt{3}}\end{array}\right)\,, (16)
V\displaystyle V =\displaystyle= (ρ02+ω2ρ+K+ρρ02+ω2K0KK¯0ϕ),\displaystyle\left(\begin{array}[]{ccc}\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega}{\sqrt{2}}&\rho^{+}&K^{*+}\\ \rho^{-}&-\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega}{\sqrt{2}}&K^{*0}\\ K^{*-}&\overline{K}^{*0}&\phi\end{array}\right)\,, (20)

where the η\eta and η\eta^{\prime} are mixtures of η1=uu¯+dd¯+ss¯3\eta_{1}=\frac{u\bar{u}+d\bar{d}+s\bar{s}}{\sqrt{3}} and η8=uu¯+dd¯2ss¯6\eta_{8}=\frac{u\bar{u}+d\bar{d}-2s\bar{s}}{\sqrt{6}} with the mixing angle θP\theta_{P}

(ηη)=(cosθPsinθPsinθPcosθP)(η8η1).\displaystyle\left(\begin{array}[]{c}\eta\\ \eta^{\prime}\end{array}\right)\,=\left(\begin{array}[]{cc}\mbox{cos}\theta_{P}&-\mbox{sin}\theta_{P}\\ \mbox{sin}\theta_{P}&\mbox{cos}\theta_{P}\end{array}\right)\,\left(\begin{array}[]{c}\eta_{8}\\ \eta_{1}\end{array}\right)\,. (27)

And θP=[20,10]\theta_{P}=[-20^{\circ},-10^{\circ}] from the Particle Data Group (PDG) PDG2022 will be used in our numerical analysis.

The structures of the light scalar mesons are not fully understood yet. Many suggestions are discussed, such as ordinary two-quark state, four-quark state, meson-meson bound state, molecular state, glueball state, or hybrid state; for examples, see Refs. Dai:2018fmx ; Maiani:2004uc ; tHooft:2008rus ; Pelaez:2003dy ; Sun:2010nv ; Oller:1997ti ; Baru:2003qq ; Cheng:2005nb ; Achasov:1996ei . In this work, we will consider the two-quark and the four-quark scenarios for the scalar mesons below or near 1 GeV. In the two-quark picture, the light scalar mesons can be written as Momeni:2022gqb

S\displaystyle S =\displaystyle= (a002+σ2a0+K0+a0a002+σ2K00K0K¯00f0).\displaystyle\left(\begin{array}[]{ccc}\frac{a^{0}_{0}}{\sqrt{2}}+\frac{\sigma}{\sqrt{2}}&a^{+}_{0}&K^{+}_{0}\\ a_{0}^{-}&-\frac{a_{0}^{0}}{\sqrt{2}}+\frac{\sigma}{\sqrt{2}}&K^{0}_{0}\\ K^{-}_{0}&\overline{K}^{0}_{0}&f_{0}\end{array}\right)\,. (31)

The two isoscalars f0(980)f_{0}(980) and f0(500)f_{0}(500) are obtained by the mixing of σ=uu¯+dd¯2\sigma=\frac{u\bar{u}+d\bar{d}}{\sqrt{2}} and f0=ss¯f_{0}=s\bar{s},

(f0(980)f0(500))=(cosθSsinθSsinθScosθS)(f0σ),\displaystyle\left(\begin{array}[]{c}f_{0}(980)\\ f_{0}(500)\end{array}\right)\,=\left(\begin{array}[]{cc}\mbox{cos}\theta_{S}&\mbox{sin}\theta_{S}\\ -\mbox{sin}\theta_{S}&\mbox{cos}\theta_{S}\end{array}\right)\,\left(\begin{array}[]{c}f_{0}\\ \sigma\end{array}\right)\,, (38)

where the three possible ranges of the mixing angle θS\theta_{S} Cheng:2005nb ; LHCb:2013dkk , 25<θS<4025^{\circ}<\theta_{S}<40^{\circ}, 140<θS<165140^{\circ}<\theta_{S}<165^{\circ} and 30<θS<30\leavevmode\nobreak\ -30^{\circ}<\theta_{S}<30^{\circ} will be analyzed in our numerical results. In the four-quark picture, the light scalar mesons are given as Jaffe:1976ig ; PDG2022

σ=uu¯dd¯,f0=(uu¯+dd¯)ss¯/2,\displaystyle\sigma=u\bar{u}d\bar{d},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ f_{0}=(u\bar{u}+d\bar{d})s\bar{s}/\sqrt{2},
a00=(uu¯dd¯)ss¯/2,a0+=ud¯ss¯,a0=du¯ss¯,\displaystyle a^{0}_{0}=(u\bar{u}-d\bar{d})s\bar{s}/\sqrt{2},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ a^{+}_{0}=u\bar{d}s\bar{s},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ a^{-}_{0}=d\bar{u}s\bar{s},
K0+=us¯dd¯,K00=ds¯uu¯,K¯00=sd¯uu¯,K0=su¯dd¯,\displaystyle K^{+}_{0}=u\bar{s}d\bar{d},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ K^{0}_{0}=d\bar{s}u\bar{u},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \overline{K}^{0}_{0}=s\bar{d}u\bar{u},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ K^{-}_{0}=s\bar{u}d\bar{d}, (39)

and the two isoscalars are expressed as

(f0(980)f0(500))=(cosϕSsinϕSsinϕScosϕS)(f0σ),\displaystyle\left(\begin{array}[]{c}f_{0}(980)\\ f_{0}(500)\end{array}\right)\,=\left(\begin{array}[]{cc}\mbox{cos}\phi_{S}&\mbox{sin}\phi_{S}\\ -\mbox{sin}\phi_{S}&\mbox{cos}\phi_{S}\end{array}\right)\,\left(\begin{array}[]{c}f_{0}\\ \sigma\end{array}\right)\,, (46)

where the constrained mixing angle ϕS=(174.63.2+3.4)\phi_{S}=(174.6^{+3.4}_{-3.2})^{\circ} Maiani:2004uc .

II.3 Nonresonant hadronic amplitudes

Since the hadronic amplitudes of the semileptonic DV/S+νD\to V/S\ell^{+}\nu_{\ell} decays based on the SU(3) flavor symmetry/breaking have been discussed in Ref. Wang:D2MlvSU3 , we will focus on the hadronic amplitudes of the nonresonant DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays in this subsection.

In terms of the SU(3) flavor symmetry, the quark current q¯iγμ(1γ5)c\bar{q}_{i}\gamma^{\mu}(1-\gamma_{5})c can be expressed as a SU(3) flavor anti-triplet (3¯)(\bar{3}), and the effective Hamiltonian in Eq. (1) is transformed as Geng:2017mxn

eff(cqi+ν)\displaystyle\mathcal{H}_{eff}(c\rightarrow q_{i}\ell^{+}\nu_{\ell}) =\displaystyle= GF2H(3¯)ν¯γμ(1γ5),\displaystyle\frac{G_{F}}{\sqrt{2}}H(\bar{3})\leavevmode\nobreak\ \bar{\nu}_{\ell}\gamma_{\mu}(1-\gamma_{5})\ell, (47)

with H(3¯)=(0,Vcd,Vcs)H(\bar{3})=(0,V_{cd},V_{cs}). The decay amplitude of the nonresonant DP1P2+νD\rightarrow P_{1}P_{2}\ell^{+}\nu_{\ell} decay can be written as

𝒜(DP1P2+ν)N=GF2H(DP1P2)Nν¯γμ(1γ5),\displaystyle\mathcal{A}(D\rightarrow P_{1}P_{2}\ell^{+}\nu_{\ell})_{N}=\frac{G_{F}}{\sqrt{2}}H(D\to P_{1}P_{2})_{N}\leavevmode\nobreak\ \bar{\nu}_{\ell}\gamma_{\mu}(1-\gamma_{5})\ell, (48)

and the hadronic amplitude H(DP1P2)NH(D\to P_{1}P_{2})_{N} can be parameterized as

H(DP1P2)N=c10DiPjiPkjH(3¯)k+c20DiPjiH(3¯)jPkk+c30DiH(3¯)iPkjPjk+c40DiH(3¯)iPkkPjj,\displaystyle H(D\to P_{1}P_{2})_{N}=c_{10}D_{i}P^{i}_{j}P^{j}_{k}H(\bar{3})^{k}+c_{20}D_{i}P^{i}_{j}H(\bar{3})^{j}P^{k}_{k}+c_{30}D_{i}H(\bar{3})^{i}P^{j}_{k}P^{k}_{j}+c_{40}D_{i}H(\bar{3})^{i}P^{k}_{k}P^{j}_{j}, (49)

where ci0(i=1,2,3,4)c_{i0}(i=1,2,3,4) are the nonperturbative coefficients under the SU(3) flavor symmetry. Feynman diagrams for the nonresonant DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays are displayed in Fig. 1.

Refer to caption
Figure 1: Diagrams of the nonresonant DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays.

SU(3) flavor breaking effects come from different masses of uu, dd and ss quarks, and they will become useful once we have measurements of several DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays that are precise enough to see deviations from the SU(3) flavor symmetry. The diagonalized mass matrix can be expressed as Xu:2013dta ; He:2014xha

(mu000md000ms)=13(mu+md+ms)I+12(mumd)X+16(mu+md2ms)W,\displaystyle\left(\begin{array}[]{ccc}m_{u}&0&0\\ 0&m_{d}&0\\ 0&0&m_{s}\end{array}\right)=\frac{1}{3}(m_{u}+m_{d}+m_{s})I+\frac{1}{2}(m_{u}-m_{d})X+\frac{1}{6}(m_{u}+m_{d}-2m_{s})W, (53)

with

X=(100010000),W=(100010002).\displaystyle X=\left(\begin{array}[]{ccc}1&0&0\\ 0&-1&0\\ 0&0&0\end{array}\right),\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ W=\left(\begin{array}[]{ccc}1&0&0\\ 0&1&0\\ 0&0&-2\end{array}\right). (60)

Compared with ss quark mass, the uu and dd quark masses are much smaller which can be ignored. The SU(3) flavor breaking effects due to a nonzero ss quark mass dominate the SU(3) breaking effects. When uu and dd quark mass difference is ignored, the residual SU(3) flavor symmetry becomes the isospin symmetry and the term proportional to XX can be dropped. The identity II part contributes to the DP1P2+νD\rightarrow P_{1}P_{2}\ell^{+}\nu_{\ell} decay amplitudes in a similar way as that given in Eq. (48) which can be absorbed into the coefficients ci0c_{i0}. Only the WW part will contribute to the SU(3) breaking effects. The SU(3) breaking contributions to the hadronic amplitudes due to the fact of msmu,dm_{s}\gg m_{u,d} are

ΔH(DP1P2)N\displaystyle\Delta H(D\to P_{1}P_{2})_{N} =\displaystyle= c11DiWaiPjaPkjH(3¯)k+c12DiPjiWajPkaH(3¯)k+c13DiPjiPkjWakH(3¯)a\displaystyle c_{11}D_{i}W^{i}_{a}P^{a}_{j}P^{j}_{k}H(\bar{3})^{k}+c_{12}D_{i}P^{i}_{j}W^{j}_{a}P^{a}_{k}H(\bar{3})^{k}+c_{13}D_{i}P^{i}_{j}P^{j}_{k}W^{k}_{a}H(\bar{3})^{a} (61)
+\displaystyle+ c21DiWaiPjaH(3¯)jPkk+c22DiPjiWajH(3¯)aPkk\displaystyle c_{21}D_{i}W^{i}_{a}P^{a}_{j}H(\bar{3})^{j}P^{k}_{k}+c_{22}D_{i}P^{i}_{j}W^{j}_{a}H(\bar{3})^{a}P^{k}_{k}
+\displaystyle+ c31DiWaiH(3¯)aPkjPjk+c32DiH(3¯)iPkjWakPja\displaystyle c_{31}D_{i}W^{i}_{a}H(\bar{3})^{a}P^{j}_{k}P^{k}_{j}+c_{32}D_{i}H(\bar{3})^{i}P^{j}_{k}W^{k}_{a}P^{a}_{j}
+\displaystyle+ c41DiWaiH(3¯)aPkkPjj,\displaystyle c_{41}D_{i}W^{i}_{a}H(\bar{3})^{a}P^{k}_{k}P^{j}_{j},

where cij(i,j=1,2,3,4)c_{ij}\leavevmode\nobreak\ (i,j=1,2,3,4) are the nonperturbative SU(3) flavor breaking coefficients.

Full hadronic amplitudes of the different nonresonant DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu decays and their relations under the SU(3) flavor symmetry/breaking are given in Sec. III.1.

III Numerical results of the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu decays

The branching ratios with the nonresonant contributions, the light scalar meson resonant contributions and the vector meson resonant contributions will be analyzed in this section. If not specially specified, the theoretical input parameters, such as the lifetimes and the masses, and the experimental data within the 2σ2\sigma error bars from PDG PDG2022 will be used in our numerical analysis.

III.1 Nonresonant DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu decays

The hadronic amplitudes of the nonresonant DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays including both the SU(3) flavor symmetry and the SU(3) flavor breaking terms are summarized in the second column of Tab. 1, in which we can see the relations of different hadronic amplitudes. The following relations are held in both the SU(3) flavor symmetry and the SU(3) flavor breaking due to a strange quark mass:

H(D0πK¯0+ν)N\displaystyle H(D^{0}\to\pi^{-}\overline{K}^{0}\ell^{+}\nu_{\ell})_{N} =\displaystyle= H(D+π+K+ν)N=2H(D0π0K+ν)N=2H(D+π0K¯0+ν)N,\displaystyle H(D^{+}\to\pi^{+}K^{-}\ell^{+}\nu_{\ell})_{N}=\sqrt{2}H(D^{0}\to\pi^{0}K^{-}\ell^{+}\nu_{\ell})_{N}=-\sqrt{2}H(D^{+}\to\pi^{0}\overline{K}^{0}\ell^{+}\nu_{\ell})_{N},
H(D0η8K+ν)N\displaystyle H(D^{0}\to\eta_{8}K^{-}\ell^{+}\nu_{\ell})_{N} =\displaystyle= H(D+η8K¯0+ν)N,\displaystyle H(D^{+}\to\eta_{8}\overline{K}^{0}\ell^{+}\nu_{\ell})_{N},
H(D0η1K+ν)N\displaystyle H(D^{0}\to\eta_{1}K^{-}\ell^{+}\nu_{\ell})_{N} =\displaystyle= H(D+η1K¯0+ν)N,\displaystyle H(D^{+}\to\eta_{1}\overline{K}^{0}\ell^{+}\nu_{\ell})_{N},
H(Ds+K+K+ν)N\displaystyle H(D^{+}_{s}\to K^{+}K^{-}\ell^{+}\nu_{\ell})_{N} =\displaystyle= H(Ds+K0K¯0+ν)N,\displaystyle H(D^{+}_{s}\to K^{0}\overline{K}^{0}\ell^{+}\nu_{\ell})_{N},
H(D0KK0+ν)N\displaystyle H(D^{0}\to K^{-}K^{0}\ell^{+}\nu_{\ell})_{N} =\displaystyle= H(D+K¯0K0+ν)NH(D+K+K+ν)N,\displaystyle H(D^{+}\to\overline{K}^{0}K^{0}\ell^{+}\nu_{\ell})_{N}-H(D^{+}\to K^{+}K^{-}\ell^{+}\nu_{\ell})_{N},
H(Ds+K+π+ν)N\displaystyle H(D^{+}_{s}\to K^{+}\pi^{-}\ell^{+}\nu_{\ell})_{N} =\displaystyle= 2H(Ds+K0π0+ν)N.\displaystyle-\sqrt{2}H(D^{+}_{s}\to K^{0}\pi^{0}\ell^{+}\nu_{\ell})_{N}. (62)
Table 1: The hadronic amplitudes for the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays. C1c10+c11+c122c13C_{1}\equiv c_{10}+c_{11}+c_{12}-2c_{13}, C2c20+c212c22C_{2}\equiv c_{20}+c_{21}-2c_{22}, C3c302c31C_{3}\equiv c_{30}-2c_{31}, C4c402c41C_{4}\equiv c_{40}-2c_{41}, and [C,′′]R[C^{{}^{\prime},^{\prime\prime}}]_{R} denotes the contributions come from the decays with RR resonances.
     Decay modes Nonresonant hadronic amplitudes Scalar resonant ones Vector resonant ones
cs+νc\to s\ell^{+}\nu_{\ell}:
D0πK¯0+νD^{0}\to\pi^{-}\overline{K}^{0}\ell^{+}\nu_{\ell} C1C_{1} [C1]K0\big{[}C^{\prime}_{1}\big{]}_{K^{-}_{0}} [C1′′]K\big{[}C^{\prime\prime}_{1}\big{]}_{K^{*-}}
D0π0K+νD^{0}\to\pi^{0}K^{-}\ell^{+}\nu_{\ell} 12C1\frac{1}{\sqrt{2}}C_{1} [12C1]K0\big{[}\frac{1}{\sqrt{2}}C^{\prime}_{1}\big{]}_{K^{-}_{0}} [12C1′′]K\big{[}\frac{1}{\sqrt{2}}C^{\prime\prime}_{1}\big{]}_{K^{*-}}
D0η8K+νD^{0}\to\eta_{8}K^{-}\ell^{+}\nu_{\ell} 16C1-\frac{1}{\sqrt{6}}C_{1} +6c12+\sqrt{6}c_{12} \cdots \cdots
D0η1K+νD^{0}\to\eta_{1}K^{-}\ell^{+}\nu_{\ell} 23(C1+32C2)\frac{2}{\sqrt{3}}\big{(}C_{1}+\frac{3}{2}C_{2}\big{)} 3c12-\sqrt{3}c_{12} \cdots \cdots
D+π+K+νD^{+}\to\pi^{+}K^{-}\ell^{+}\nu_{\ell} C1C_{1} [C1]K¯00\big{[}C^{\prime}_{1}\big{]}_{\overline{K}^{0}_{0}} [C1′′]K0\big{[}C^{\prime\prime}_{1}\big{]}_{K^{*0}}
D+π0K¯0+νD^{+}\to\pi^{0}\overline{K}^{0}\ell^{+}\nu_{\ell} 12C1-\frac{1}{\sqrt{2}}C_{1} [12C1]K¯00\big{[}\frac{1}{\sqrt{2}}C^{\prime}_{1}\big{]}_{\overline{K}^{0}_{0}} [12C1′′]K0\big{[}\frac{1}{\sqrt{2}}C^{\prime\prime}_{1}\big{]}_{K^{*0}}
D+η8K¯0+νD^{+}\to\eta_{8}\overline{K}^{0}\ell^{+}\nu_{\ell} 16C1-\frac{1}{\sqrt{6}}C_{1} +6c12+\sqrt{6}c_{12} \cdots \cdots
D+η1K¯0+νD^{+}\to\eta_{1}\overline{K}^{0}\ell^{+}\nu_{\ell} 23(C1+32C2)\frac{2}{\sqrt{3}}\big{(}C_{1}+\frac{3}{2}C_{2}\big{)} 3c12-\sqrt{3}c_{12} \cdots \cdots
Ds+K+K+νD^{+}_{s}\to K^{+}K^{-}\ell^{+}\nu_{\ell} C1+2C3C_{1}+2C_{3}  3c11c32-3c_{11}-c_{32} [cos2θSC1]f0(980)\big{[}cos^{2}\theta_{S}\leavevmode\nobreak\ C^{\prime}_{1}\big{]}_{f_{0}(980)} [C1′′]ϕ\big{[}C^{\prime\prime}_{1}\big{]}_{\phi}
Ds+K0K¯0+νD^{+}_{s}\to K^{0}\overline{K}^{0}\ell^{+}\nu_{\ell} C1+2C3C_{1}+2C_{3}  3c11c32-3c_{11}-c_{32} [cos2θSC1]f0(980)\big{[}cos^{2}\theta_{S}\leavevmode\nobreak\ C^{\prime}_{1}\big{]}_{f_{0}(980)} [C1′′]ϕ\big{[}C^{\prime\prime}_{1}\big{]}_{\phi}
Ds+π0π0+νD^{+}_{s}\to\pi^{0}\pi^{0}\ell^{+}\nu_{\ell} 2C3\sqrt{2}C_{3} +2c32+\sqrt{2}c_{32} [sinθScosθSC1]f0(500)[sinθScosθSC1]f0(980){}^{\big{[}sin\theta_{S}cos\theta_{S}C^{\prime}_{1}\big{]}_{f_{0}(980)}}_{\big{[}-sin\theta_{S}cos\theta_{S}C^{\prime}_{1}\big{]}_{f_{0}(500)}} \cdots
Ds+π+π+νD^{+}_{s}\to\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} 2(C3+c32)2(C_{3}+c_{32}) [2sinθScosθSC1]f0(500)[2sinθScosθSC1]f0(980){}^{\big{[}\sqrt{2}sin\theta_{S}cos\theta_{S}C^{\prime}_{1}\big{]}_{f_{0}(980)}}_{\big{[}-\sqrt{2}sin\theta_{S}cos\theta_{S}C^{\prime}_{1}\big{]}_{f_{0}(500)}} \cdots
Ds+η8η8+νD^{+}_{s}\to\eta_{8}\eta_{8}\ell^{+}\nu_{\ell} 223(C1+32C3)\frac{2\sqrt{2}}{3}\big{(}C_{1}+\frac{3}{2}C_{3}\big{)} 2(2c11+2c12+c32)-\sqrt{2}\big{(}2c_{11}+2c_{12}+c_{32}\big{)} \cdots \cdots
Ds+η1η1+νD^{+}_{s}\to\eta_{1}\eta_{1}\ell^{+}\nu_{\ell} 23(C1+3C2+3C3+9C4)\frac{\sqrt{2}}{3}(C_{1}+3C_{2}+3C_{3}+9C_{4})  2(c11+c12+3c21)-\sqrt{2}(c_{11}+c_{12}+3c_{21}) \cdots \cdots
Ds+η8η1+νD^{+}_{s}\to\eta_{8}\eta_{1}\ell^{+}\nu_{\ell} 223(C1+32C2)-\frac{2\sqrt{2}}{3}\big{(}C_{1}+\frac{3}{2}C_{2}\big{)} +22(c11+c12+32c21+c32)+2\sqrt{2}(c_{11}+c_{12}+\frac{3}{2}c_{21}+c_{32}) \cdots \cdots
cd+νc\to d\ell^{+}\nu_{\ell}:
D0KK0+νD^{0}\to K^{-}K^{0}\ell^{+}\nu_{\ell} C1C_{1}  3(c12c13)-3(c_{12}-c_{13}) [C1]a0(980)\big{[}C^{\prime}_{1}\big{]}_{a_{0}(980)} \cdots
D0π0π+νD^{0}\to\pi^{0}\pi^{-}\ell^{+}\nu_{\ell} \cdots \cdots [12C1′′]ρ\big{[}\frac{1}{\sqrt{2}}C^{\prime\prime}_{1}\big{]}_{\rho^{-}}
D0η8π+νD^{0}\to\eta_{8}\pi^{-}\ell^{+}\nu_{\ell} 23C1\sqrt{\frac{2}{3}}C_{1} +6c13+\sqrt{6}c_{13} [23C1]a0(980)\sqrt{\frac{2}{3}}C^{\prime}_{1}\big{]}_{a_{0}(980)} [16C1′′]ρ\big{[}\frac{1}{\sqrt{6}}C^{\prime\prime}_{1}\big{]}_{\rho^{-}}
D0η1π+νD^{0}\to\eta_{1}\pi^{-}\ell^{+}\nu_{\ell} 23(C1+32C2)\frac{2}{\sqrt{3}}\big{(}C_{1}+\frac{3}{2}C_{2}\big{)} +3(2c13+3c22)+\sqrt{3}(2c_{13}+3c_{22}) [23C1]a0(980)\big{[}\frac{2}{\sqrt{3}}C^{\prime}_{1}\big{]}_{a_{0}(980)} [13C1′′]ρ\big{[}\frac{1}{\sqrt{3}}C^{\prime\prime}_{1}\big{]}_{\rho^{-}}
D+K¯0K0+νD^{+}\to\overline{K}^{0}K^{0}\ell^{+}\nu_{\ell} C1+2C3C_{1}+2C_{3} 3(c12c132c31)c32-3(c_{12}-c_{13}-2c_{31})-c_{32} [12sinθScosθSC1]f0(980)[12C1]a0(980){}^{\big{[}\frac{1}{2}C^{\prime}_{1}\big{]}_{a_{0}(980)}}_{\big{[}\frac{1}{\sqrt{2}}sin\theta_{S}cos\theta_{S}C^{\prime}_{1}\big{]}_{f_{0}(980)}} \cdots
D+K+K+νD^{+}\to K^{+}K^{-}\ell^{+}\nu_{\ell} 2C32C_{3} +6c31c32+6c_{31}-c_{32} [12sinθScosθSC1]f0(980)[12C1]a0(980){}^{\big{[}-\frac{1}{2}C^{\prime}_{1}\big{]}_{a_{0}(980)}}_{\big{[}\frac{1}{\sqrt{2}}sin\theta_{S}cos\theta_{S}C^{\prime}_{1}\big{]}_{f_{0}(980)}} \cdots
D+π+π+νD^{+}\to\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} C1+2C3C_{1}+2C_{3} +3c13+6c31+2c32+3c_{13}+6c_{31}+2c_{32} [cos2θSC1]f0(500)[sin2θSC1]f0(980){}^{\big{[}sin^{2}\theta_{S}C^{\prime}_{1}\big{]}_{f_{0}(980)}}_{\big{[}cos^{2}\theta_{S}C^{\prime}_{1}\big{]}_{f_{0}(500)}} [12C1′′]ρ0,ω\big{[}\frac{1}{2}C^{\prime\prime}_{1}\big{]}_{\rho^{0},\omega}
D+π0π0+νD^{+}\to\pi^{0}\pi^{0}\ell^{+}\nu_{\ell} 12(C1+2C3)\frac{1}{\sqrt{2}}(C_{1}+2C_{3}) +12(3c13+6c31+2c32)+\frac{1}{\sqrt{2}}(3c_{13}+6c_{31}+2c_{32}) [12cos2θSC1]f0(500)[12sin2θSC1]f0(980){}^{\big{[}\frac{1}{\sqrt{2}}sin^{2}\theta_{S}C^{\prime}_{1}\big{]}_{f_{0}(980)}}_{\big{[}\frac{1}{\sqrt{2}}cos^{2}\theta_{S}C^{\prime}_{1}\big{]}_{f_{0}(500)}} \cdots
D+η8π0+νD^{+}\to\eta_{8}\pi^{0}\ell^{+}\nu_{\ell} 13(C1+C2)-\frac{1}{\sqrt{3}}\big{(}C_{1}+C_{2}\big{)} 3(c13+c22)-\sqrt{3}\big{(}c_{13}+c_{22}\big{)} [16C1]a0(980)\big{[}-\frac{1}{\sqrt{6}}C^{\prime}_{1}\big{]}_{a_{0}(980)} \cdots
D+η1π0+νD^{+}\to\eta_{1}\pi^{0}\ell^{+}\nu_{\ell} 23(C1+C2)-\sqrt{\frac{2}{3}}\big{(}C_{1}+C_{2}\big{)} 16(6c13+9c22)-\frac{1}{\sqrt{6}}\big{(}6c_{13}+9c_{22}\big{)} [13C1]a0(980)\big{[}-\frac{1}{\sqrt{3}}C^{\prime}_{1}\big{]}_{a_{0}(980)} \cdots
D+η8η8+νD^{+}\to\eta_{8}\eta_{8}\ell^{+}\nu_{\ell} 26(C1+6C3)\frac{\sqrt{2}}{6}\big{(}C_{1}+6C_{3}\big{)}  +12(c13+6c312c32)+\frac{1}{\sqrt{2}}(c_{13}+6c_{31}-2c_{32}) \cdots \cdots
D+η1η1+νD^{+}\to\eta_{1}\eta_{1}\ell^{+}\nu_{\ell} 23(C1+3C2+3C3+9C4)+2(c13+3c22+3c31+9c41)\frac{\sqrt{2}}{3}(C_{1}+3C_{2}+3C_{3}+9C_{4})+\sqrt{2}(c_{13}+3c_{22}+3c_{31}+9c_{41}) \cdots \cdots
D+η8η1+νD^{+}\to\eta_{8}\eta_{1}\ell^{+}\nu_{\ell} 23(C1+32C2)\frac{\sqrt{2}}{3}\big{(}C_{1}+\frac{3}{2}C_{2}\big{)} +2(c13+32c22+2c32)+\sqrt{2}\big{(}c_{13}+\frac{3}{2}c_{22}+2c_{32}\big{)} \cdots \cdots
Ds+K+π+νD^{+}_{s}\to K^{+}\pi^{-}\ell^{+}\nu_{\ell} C1C_{1} 3c11+3c13-3c_{11}+3c_{13} [C1]K00\big{[}C^{\prime}_{1}\big{]}_{K^{0}_{0}} [C1′′]K0\big{[}C^{\prime\prime}_{1}\big{]}_{K^{*0}}
Ds+K0π0+νD^{+}_{s}\to K^{0}\pi^{0}\ell^{+}\nu_{\ell} 12C1-\frac{1}{\sqrt{2}}C_{1} 12(3c11+3c13)-\frac{1}{\sqrt{2}}(-3c_{11}+3c_{13}) [12C1]K00\big{[}-\frac{1}{\sqrt{2}}C^{\prime}_{1}\big{]}_{K^{0}_{0}} [12C1′′]K0\big{[}\frac{1}{\sqrt{2}}C^{\prime\prime}_{1}\big{]}_{K^{*0}}
Ds+η8K0+νD^{+}_{s}\to\eta_{8}K^{0}\ell^{+}\nu_{\ell} 16C1-\frac{1}{\sqrt{6}}C_{1} +16(3c11+6c123c13)+\frac{1}{\sqrt{6}}\big{(}3c_{11}+6c_{12}-3c_{13}\big{)} \cdots \cdots
Ds+η1K0+νD^{+}_{s}\to\eta_{1}K^{0}\ell^{+}\nu_{\ell} 23(C1+32C2)\frac{2}{\sqrt{3}}\big{(}C_{1}+\frac{3}{2}C_{2}\big{)} 3(2c11+c122c13+3c213c22)-\sqrt{3}\big{(}2c_{11}+c_{12}-2c_{13}+3c_{21}-3c_{22}\big{)} \cdots \cdots

If assuming the SU(3) flavor breaking effects are small and can be ignored, more amplitude relations will be obtained. Moreover, as shown in Fig. 1, the SU(3) flavor symmetry contributions of Fig. 1 (b-d) are suppressed by the Okubo-Zweig-Iizuka (OZI) rule Okubo:1963fa ; Lipkin:1986bi ; Lipkin:1996ny . If ignoring both the OZI suppressed SU(3) flavor symmetry contributions and the SU(3) flavor breaking contributions, almost all hadronic amplitudes of the nonresonant DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays can be related by the coefficient c10c_{10}.

Since the leptonic charged current ν¯γμ(1γ5)\bar{\nu}_{\ell}\gamma_{\mu}(1-\gamma_{5})\ell is the SU(3) flavor singlet, and it is completely generic between different decay modes with certain =e\ell=e or μ\mu. The same relations as the hadronic amplitudes listed in Tab. 1 are valid in the decay amplitudes of the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays and the form factors of the DP1P2D\to P_{1}P_{2} transitions. For the nonresonant DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays, only (D+π+Kμ+νμ)N\mathcal{B}(D^{+}\to\pi^{+}K^{-}\mu^{+}\nu_{\mu})_{N} has been measured, and (D+π+Ke+νe)N\mathcal{B}(D^{+}\to\pi^{+}K^{-}e^{+}\nu_{e})_{N} has been upper limited. Because the nonresonant DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays have not been measured enough to reveal the OZI suppressed SU(3) flavor symmetry contributions and the SU(3) symmetry breaking effects, we ignore both of them in our analysis, and then almost all hadronic amplitudes, form factors or decay amplitudes can be related by the SU(3) flavor symmetry coefficient c10c_{10}. The simple relations associated by the coefficient c10c_{10} for FAF_{A} given in Eq. (10) will be used to obtain our numerical results. Note that, for consistency, only the SU(3) flavor symmetry contributions will be considered in the light scalar meson resonant DS(SP1P2)+νD\to S(S\to P_{1}P_{2})\ell^{+}\nu_{\ell} decays and the vector meson resonant DV(VP1P2)+νD\to V(V\to P_{1}P_{2})\ell^{+}\nu_{\ell} decays in Sec. III.2 and Sec. III.3, respectively.

The experimental data of (D+π+Kμ+νμ)N\mathcal{B}(D^{+}\to\pi^{+}K^{-}\mu^{+}\nu_{\mu})_{N} within 2σ2\sigma errors and the upper limit of (D+π+Ke+νe)N\mathcal{B}(D^{+}\to\pi^{+}K^{-}e^{+}\nu_{e})_{N} at 90% confidence level from PDG PDG2022 are listed in the second column of Tab. 2, which will be used to determine c10c_{10} in the nonresonant D+π+K+νD^{+}\to\pi^{+}K^{-}\ell^{+}\nu_{\ell} decays, and we obtain |c01|=12.95±3.75|c_{01}|=12.95\pm 3.75 after considering 2σ2\sigma theoretical and experimental errors. Then many other branching ratios of the nonresonant DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays can be predicted by using the constrained c10c_{10} from the data of (D+π+K+ν)N\mathcal{B}(D^{+}\to\pi^{+}K^{-}\ell^{+}\nu_{\ell})_{N} listed in the second column of Tab. 2. Our predictions are listed in the third column of Tab. 2 for the cs+νc\to s\ell^{+}\nu_{\ell} transitions and in the second column of Tab. 3 for the cd+νc\to d\ell^{+}\nu_{\ell} transitions.

From Tabs. 2-3, one can see that many branching ratios of the nonresonant DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays, such as (D0πK¯0+ν)N\mathcal{B}(D^{0}\to\pi^{-}\overline{K}^{0}\ell^{+}\nu_{\ell})_{N}, (D0π0K+ν)N\mathcal{B}(D^{0}\to\pi^{0}K^{-}\ell^{+}\nu_{\ell})_{N}, (D+π+K+ν)N\mathcal{B}(D^{+}\to\pi^{+}K^{-}\ell^{+}\nu_{\ell})_{N}, (D+π0K¯0+ν)N\mathcal{B}(D^{+}\to\pi^{0}\overline{K}^{0}\ell^{+}\nu_{\ell})_{N}, (Ds+K+K+ν)N\mathcal{B}(D^{+}_{s}\to K^{+}K^{-}\ell^{+}\nu_{\ell})_{N}, (Ds+K0K¯0+ν)N\mathcal{B}(D^{+}_{s}\to K^{0}\overline{K}^{0}\ell^{+}\nu_{\ell})_{N}, (D+π+π+ν)N\mathcal{B}(D^{+}\to\pi^{+}\pi^{-}\ell^{+}\nu_{\ell})_{N} and (D+π0π0+ν)N\mathcal{B}(D^{+}\to\pi^{0}\pi^{0}\ell^{+}\nu_{\ell})_{N}, are on the orders of 𝒪(103104)\mathcal{O}(10^{-3}-10^{-4}), which could be measured by the BESIII, LHCb, and BelleII experiments. Nevertheless, for other decays, for example, the nonresonant DηP+νD\to\eta P\ell^{+}\nu_{\ell} decays, are strongly suppressed by the narrow phase spaces, the mixing angle θP\theta_{P}, or the CKM matrix element VcdV_{cd}, their branching ratios are on the orders of 𝒪(105107)\mathcal{O}(10^{-5}-10^{-7}), and many of them might be observed by the BESIII and Belle II experiments in the near future.

Table 2: The experimental data and the SU(3) flavor symmetry predictions of the nonresonant branching ratios and the total branching ratios of the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays with the cs+νc\to s\ell^{+}\nu_{\ell} transitions within the 2σ2\sigma errors. The experimental data are taken from PDG PDG2022 , ‘N’ denotes the nonresonant contributions, and ‘T’ denotes the total contributions including the non-resonance, the light scalar meson resonances as well as the vector meson resonances. The same below.
Branching ratios Exp. data with N Ones with N Exp. data with T Ones with T
(D0πK¯0e+νe)(×102)\mathcal{B}(D^{0}\to\pi^{-}\overline{K}^{0}e^{+}\nu_{e})(\times 10^{-2}) \cdots 0.076±0.0410.076\pm 0.041 1.44±0.081.44\pm 0.08 1.57±0.141.57\pm 0.14
(D0π0Ke+νe)(×102)\mathcal{B}(D^{0}\to\pi^{0}K^{-}e^{+}\nu_{e})(\times 10^{-2}) \cdots 0.039±0.0210.039\pm 0.021 1.61.0+2.61.6^{+2.6}_{-1.0} 0.80±0.070.80\pm 0.07
(D0ηKe+νe)(×106)\mathcal{B}(D^{0}\to\eta K^{-}e^{+}\nu_{e})(\times 10^{-6}) \cdots 3.51±3.513.51\pm 3.51 \cdots 3.51±3.513.51\pm 3.51
(D0ηKe+νe)(×106)\mathcal{B}(D^{0}\to\eta^{\prime}K^{-}e^{+}\nu_{e})(\times 10^{-6}) \cdots 4.03±2.174.03\pm 2.17 \cdots 4.03±2.174.03\pm 2.17
(D+π+Ke+νe)(×102)\mathcal{B}(D^{+}\to\pi^{+}K^{-}e^{+}\nu_{e})(\times 10^{-2}) <0.7<0.7 0.20±0.100.20\pm 0.10 4.02±0.364.02\pm 0.36 4.06±0.304.06\pm 0.30
(D+π0K¯0e+νe)(×102)\mathcal{B}(D^{+}\to\pi^{0}\overline{K}^{0}e^{+}\nu_{e})(\times 10^{-2}) \cdots 0.100±0.0520.100\pm 0.052 \cdots 2.01±0.152.01\pm 0.15
(D+ηK¯0e+νe)(×105)\mathcal{B}(D^{+}\to\eta\overline{K}^{0}e^{+}\nu_{e})(\times 10^{-5}) \cdots 0.89±0.890.89\pm 0.89 \cdots 0.89±0.890.89\pm 0.89
(D+ηK¯0e+νe)(×105)\mathcal{B}(D^{+}\to\eta^{\prime}\overline{K}^{0}e^{+}\nu_{e})(\times 10^{-5}) \cdots 1.03±0.551.03\pm 0.55 \cdots 1.03±0.551.03\pm 0.55
(Ds+K+Ke+νe)(×102)\mathcal{B}(D^{+}_{s}\to K^{+}K^{-}e^{+}\nu_{e})(\times 10^{-2}) \cdots 0.034±0.0180.034\pm 0.018 \cdots 1.27±0.131.27\pm 0.13
(Ds+K0K¯0e+νe)(×103)\mathcal{B}(D^{+}_{s}\to K^{0}\overline{K}^{0}e^{+}\nu_{e})(\times 10^{-3}) \cdots 0.33±0.180.33\pm 0.18 \cdots 8.58±0.958.58\pm 0.95
(Ds+π+πe+νe)(×103)\mathcal{B}(D^{+}_{s}\to\pi^{+}\pi^{-}e^{+}\nu_{e})(\times 10^{-3}) \cdots \cdots \cdots 1.47±0.791.47\pm 0.79
(Ds+π0π0e+νe)(×104)\mathcal{B}(D^{+}_{s}\to\pi^{0}\pi^{0}e^{+}\nu_{e})(\times 10^{-4}) \cdots \cdots \cdots 8.58±3.508.58\pm 3.50
(Ds+ηηe+νe)(×104)\mathcal{B}(D^{+}_{s}\to\eta\eta e^{+}\nu_{e})(\times 10^{-4}) \cdots 0.56±0.490.56\pm 0.49 \cdots 0.56±0.490.56\pm 0.49
(Ds+ηηe+νe)(×106)\mathcal{B}(D^{+}_{s}\to\eta\eta^{\prime}e^{+}\nu_{e})(\times 10^{-6}) \cdots 5.38±3.195.38\pm 3.19 \cdots 5.38±3.195.38\pm 3.19
(D0πK¯0μ+νμ)(×102)\mathcal{B}(D^{0}\to\pi^{-}\overline{K}^{0}\mu^{+}\nu_{\mu})(\times 10^{-2}) \cdots 0.073±0.0390.073\pm 0.039 \cdots 1.47±0.131.47\pm 0.13
(D0π0Kμ+νμ)(×102)\mathcal{B}(D^{0}\to\pi^{0}K^{-}\mu^{+}\nu_{\mu})(\times 10^{-2}) \cdots 0.038±0.0200.038\pm 0.020 \cdots 0.75±0.070.75\pm 0.07
(D0ηKμ+νμ)(×106)\mathcal{B}(D^{0}\to\eta K^{-}\mu^{+}\nu_{\mu})(\times 10^{-6}) \cdots 3.18±3.183.18\pm 3.18 \cdots 3.18±3.183.18\pm 3.18
(D0ηKμ+νμ)(×106)\mathcal{B}(D^{0}\to\eta^{\prime}K^{-}\mu^{+}\nu_{\mu})(\times 10^{-6}) \cdots 2.76±1.492.76\pm 1.49 \cdots 2.76±1.492.76\pm 1.49
(D+π+Kμ+νμ)(×102)\mathcal{B}(D^{+}\to\pi^{+}K^{-}\mu^{+}\nu_{\mu})(\times 10^{-2}) 0.19±0.100.19\pm 0.10 0.19±0.100.19\pm 0.10 3.65±0.683.65\pm 0.68 3.80±0.273.80\pm 0.27
(D+π0K¯0μ+νμ)(×102)\mathcal{B}(D^{+}\to\pi^{0}\overline{K}^{0}\mu^{+}\nu_{\mu})(\times 10^{-2}) \cdots 0.095±0.0500.095\pm 0.050 \cdots 1.89±0.131.89\pm 0.13
(D+ηK¯0μ+νμ)(×105)\mathcal{B}(D^{+}\to\eta\overline{K}^{0}\mu^{+}\nu_{\mu})(\times 10^{-5}) \cdots 0.81±0.810.81\pm 0.81 \cdots 0.81±0.810.81\pm 0.81
(D+ηK¯0μ+νμ)(×105)\mathcal{B}(D^{+}\to\eta^{\prime}\overline{K}^{0}\mu^{+}\nu_{\mu})(\times 10^{-5}) \cdots 0.71±0.380.71\pm 0.38 \cdots 0.71±0.380.71\pm 0.38
(Ds+K+Kμ+νμ)(×102)\mathcal{B}(D^{+}_{s}\to K^{+}K^{-}\mu^{+}\nu_{\mu})(\times 10^{-2}) \cdots 0.032±0.0170.032\pm 0.017 \cdots 1.19±0.121.19\pm 0.12
(Ds+K0K¯0μ+νμ)(×103)\mathcal{B}(D^{+}_{s}\to K^{0}\overline{K}^{0}\mu^{+}\nu_{\mu})(\times 10^{-3}) \cdots 0.30±0.160.30\pm 0.16 \cdots 8.02±0.888.02\pm 0.88
(Ds+π+πμ+νμ)(×103)\mathcal{B}(D^{+}_{s}\to\pi^{+}\pi^{-}\mu^{+}\nu_{\mu})(\times 10^{-3}) \cdots \cdots \cdots 1.25±0.691.25\pm 0.69
(Ds+π0π0μ+νμ)(×104)\mathcal{B}(D^{+}_{s}\to\pi^{0}\pi^{0}\mu^{+}\nu_{\mu})(\times 10^{-4}) \cdots \cdots \cdots 7.34±3.097.34\pm 3.09
(Ds+ηημ+νμ)(×104)\mathcal{B}(D^{+}_{s}\to\eta\eta\mu^{+}\nu_{\mu})(\times 10^{-4}) \cdots 0.51±0.450.51\pm 0.45 \cdots 0.51±0.450.51\pm 0.45
(Ds+ηημ+νμ)(×106)\mathcal{B}(D^{+}_{s}\to\eta\eta^{\prime}\mu^{+}\nu_{\mu})(\times 10^{-6}) \cdots 3.98±2.363.98\pm 2.36 \cdots 3.98±2.363.98\pm 2.36
Table 3: The experimental data and the SU(3) flavor symmetry predictions of the nonresonant branching ratios and the total branching ratios of the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays with the cd+νc\to d\ell^{+}\nu_{\ell} transitions within the 2σ2\sigma errors.
       Branching ratios        Ones with N        Exp. data with T        Ones with T
       (D0KK0e+νe)(×105)\mathcal{B}(D^{0}\to K^{-}K^{0}e^{+}\nu_{e})(\times 10^{-5})        0.83±0.450.83\pm 0.45        \cdots        1.25±0.641.25\pm 0.64
       (D0π0πe+νe)(×103)\mathcal{B}(D^{0}\to\pi^{0}\pi^{-}e^{+}\nu_{e})(\times 10^{-3})        0        1.45±0.141.45\pm 0.14        1.85±0.111.85\pm 0.11
       (D0ηπe+νe)(×105)\mathcal{B}(D^{0}\to\eta\pi^{-}e^{+}\nu_{e})(\times 10^{-5})        4.34±2.684.34\pm 2.68        \cdots        16.38±5.1016.38\pm 5.10
       (D0ηπe+νe)(×105)\mathcal{B}(D^{0}\to\eta^{\prime}\pi^{-}e^{+}\nu_{e})(\times 10^{-5})        0.39±0.260.39\pm 0.26        \cdots        0.57±0.350.57\pm 0.35
       (D+K¯0K0e+νe)(×105)\mathcal{B}(D^{+}\to\overline{K}^{0}K^{0}e^{+}\nu_{e})(\times 10^{-5})        2.11±1.132.11\pm 1.13        \cdots        3.31±1.693.31\pm 1.69
       (D+K+Ke+νe)(×105)\mathcal{B}(D^{+}\to K^{+}K^{-}e^{+}\nu_{e})(\times 10^{-5})        \cdots        \cdots        1.31±0.631.31\pm 0.63
       (D+π+πe+νe)(×103)\mathcal{B}(D^{+}\to\pi^{+}\pi^{-}e^{+}\nu_{e})(\times 10^{-3})        0.26±0.140.26\pm 0.14        2.45±0.202.45\pm 0.20        3.08±0.513.08\pm 0.51
       (D+π0π0e+νe)(×104)\mathcal{B}(D^{+}\to\pi^{0}\pi^{0}e^{+}\nu_{e})(\times 10^{-4})        1.33±0.711.33\pm 0.71        \cdots        2.88±1.752.88\pm 1.75
       (D+ηπ0e+νe)(×105)\mathcal{B}(D^{+}\to\eta\pi^{0}e^{+}\nu_{e})(\times 10^{-5})        5.68±3.505.68\pm 3.50        \cdots        9.68±4.499.68\pm 4.49
       (D+ηπ0e+νe)(×106)\mathcal{B}(D^{+}\to\eta^{\prime}\pi^{0}e^{+}\nu_{e})(\times 10^{-6})        5.21±3.465.21\pm 3.46        \cdots        8.28±5.008.28\pm 5.00
       (D+ηηe+νe)(×106)\mathcal{B}(D^{+}\to\eta\eta e^{+}\nu_{e})(\times 10^{-6})        3.16±2.263.16\pm 2.26        \cdots        3.16±2.263.16\pm 2.26
       (D+ηηe+νe)(×108)\mathcal{B}(D^{+}\to\eta\eta^{\prime}e^{+}\nu_{e})(\times 10^{-8})        3.96±2.373.96\pm 2.37        \cdots        3.96±2.373.96\pm 2.37
       (Ds+K+πe+νe)(×103)\mathcal{B}(D^{+}_{s}\to K^{+}\pi^{-}e^{+}\nu_{e})(\times 10^{-3})        0.075±0.0410.075\pm 0.041        \cdots        1.66±0.171.66\pm 0.17
       (Ds+K0π0e+νe)(×104)\mathcal{B}(D^{+}_{s}\to K^{0}\pi^{0}e^{+}\nu_{e})(\times 10^{-4})        0.38±0.210.38\pm 0.21        \cdots        8.24±0.858.24\pm 0.85
       (Ds+ηK0e+νe)(×105)\mathcal{B}(D^{+}_{s}\to\eta K^{0}e^{+}\nu_{e})(\times 10^{-5})        1.70±1.061.70\pm 1.06        \cdots        1.70±1.061.70\pm 1.06
       (Ds+ηK0e+νe)(×107)\mathcal{B}(D^{+}_{s}\to\eta^{\prime}K^{0}e^{+}\nu_{e})(\times 10^{-7})        5.21±3.475.21\pm 3.47        \cdots        5.21±3.475.21\pm 3.47
       (D0KK0μ+νμ)(×105)\mathcal{B}(D^{0}\to K^{-}K^{0}\mu^{+}\nu_{\mu})(\times 10^{-5})        0.76±0.430.76\pm 0.43        \cdots        1.11±0.571.11\pm 0.57
       (D0π0πμ+νμ)(×103)\mathcal{B}(D^{0}\to\pi^{0}\pi^{-}\mu^{+}\nu_{\mu})(\times 10^{-3})        0        \cdots        1.76±0.101.76\pm 0.10
       (D0ηπμ+νμ)(×105)\mathcal{B}(D^{0}\to\eta\pi^{-}\mu^{+}\nu_{\mu})(\times 10^{-5})        4.13±2.554.13\pm 2.55        \cdots        15.04±4.7615.04\pm 4.76
       (D0ηπμ+νμ)(×105)\mathcal{B}(D^{0}\to\eta^{\prime}\pi^{-}\mu^{+}\nu_{\mu})(\times 10^{-5})        0.34±0.230.34\pm 0.23        \cdots        0.50±0.310.50\pm 0.31
       (D+K¯0K0μ+νμ)(×105)\mathcal{B}(D^{+}\to\overline{K}^{0}K^{0}\mu^{+}\nu_{\mu})(\times 10^{-5})        1.93±1.041.93\pm 1.04        \cdots        2.94±1.502.94\pm 1.50
       (D+K+Kμ+νμ)(×105)\mathcal{B}(D^{+}\to K^{+}K^{-}\mu^{+}\nu_{\mu})(\times 10^{-5})        \cdots        \cdots        1.09±0.531.09\pm 0.53
       (D+π+πμ+νμ)(×103)\mathcal{B}(D^{+}\to\pi^{+}\pi^{-}\mu^{+}\nu_{\mu})(\times 10^{-3})        0.25±0.140.25\pm 0.14        \cdots        2.92±0.482.92\pm 0.48
       (D+π0π0μ+νμ)(×104)\mathcal{B}(D^{+}\to\pi^{0}\pi^{0}\mu^{+}\nu_{\mu})(\times 10^{-4})        1.29±0.691.29\pm 0.69        \cdots        2.68±1.652.68\pm 1.65
       (D+ηπ0μ+νμ)(×105)\mathcal{B}(D^{+}\to\eta\pi^{0}\mu^{+}\nu_{\mu})(\times 10^{-5})        5.40±3.335.40\pm 3.33        \cdots        8.71±4.168.71\pm 4.16
       (D+ηπ0μ+νμ)(×106)\mathcal{B}(D^{+}\to\eta^{\prime}\pi^{0}\mu^{+}\nu_{\mu})(\times 10^{-6})        4.67±3.104.67\pm 3.10        \cdots        7.23±4.377.23\pm 4.37
       (D+ηημ+νμ)(×106)\mathcal{B}(D^{+}\to\eta\eta\mu^{+}\nu_{\mu})(\times 10^{-6})        2.83±2.022.83\pm 2.02        \cdots        2.83±2.022.83\pm 2.02
       (D+ηημ+νμ)(×108)\mathcal{B}(D^{+}\to\eta\eta^{\prime}\mu^{+}\nu_{\mu})(\times 10^{-8})        2.43±1.462.43\pm 1.46        \cdots        2.43±1.462.43\pm 1.46
       (Ds+K+πμ+νμ)(×103)\mathcal{B}(D^{+}_{s}\to K^{+}\pi^{-}\mu^{+}\nu_{\mu})(\times 10^{-3})        0.072±0.0390.072\pm 0.039        \cdots        1.58±0.161.58\pm 0.16
       (Ds+K0π0μ+νμ)(×104)\mathcal{B}(D^{+}_{s}\to K^{0}\pi^{0}\mu^{+}\nu_{\mu})(\times 10^{-4})        0.36±0.200.36\pm 0.20        \cdots        7.81±0.807.81\pm 0.80
       (Ds+ηK0μ+νμ)(×105)\mathcal{B}(D^{+}_{s}\to\eta K^{0}\mu^{+}\nu_{\mu})(\times 10^{-5})        1.57±0.981.57\pm 0.98        \cdots        1.57±0.981.57\pm 0.98
       (Ds+ηK0μ+νμ)(×107)\mathcal{B}(D^{+}_{s}\to\eta^{\prime}K^{0}\mu^{+}\nu_{\mu})(\times 10^{-7})        4.08±2.724.08\pm 2.72        \cdots        4.08±2.724.08\pm 2.72

III.2 DS(SP1P2)+νD\to S(S\to P_{1}P_{2})\ell^{+}\nu_{\ell} decays

We will analyze the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays with the light scalar resonances in this subsection. As given in Eq. (11), their branching ratios can be obtained by using (DS+ν)\mathcal{B}(D\to S\ell^{+}\nu_{\ell}) and (SP1P2)\mathcal{B}(S\to P_{1}P_{2}). The detailed analysis of (DS+ν)\mathcal{B}(D\to S\ell^{+}\nu_{\ell}) by the SU(3) flavor symmetry can be found in Ref. Wang:D2MlvSU3 .

III.2.1 Branching ratios of the SP1P2S\to P_{1}P_{2} decays

As for the SP1P2S\to P_{1}P_{2} decays, the partial decay widths can be written as Cheng:2020ipp

Γ(SP1P2)=pc8πmS2gSP1P22,\displaystyle\Gamma(S\to P_{1}P_{2})=\frac{p_{c}}{8\pi m^{2}_{S}}g^{2}_{S\to P_{1}P_{2}}, (63)

where the center-of-mass momentum pcλ(mS2,mP12,mP22)2mSp_{c}\equiv\frac{\sqrt{\lambda(m_{S}^{2},m_{P_{1}}^{2},m_{P_{2}}^{2})}}{2m_{S}}, and gSP1P2g_{S\to P_{1}P_{2}} is the strong coupling constant. With the SU(3) flavor symmetry, the strong coupling constant can be parametrized as

gSP1P22q=g2SjiPikPkj\displaystyle g^{2q}_{S\to P_{1}P_{2}}=g_{2}S^{i}_{j}P^{k}_{i}P^{j}_{k} (64)

for the two-quark scalar states, and

gSP1P24q=g4SjnimPijPmn+g4SjmimPinPnj\displaystyle g^{4q}_{S\to P_{1}P_{2}}=g_{4}S^{im}_{jn}P^{j}_{i}P^{n}_{m}+g^{\prime}_{4}S^{im}_{jm}P^{n}_{i}P^{j}_{n} (65)

for the four-quark scalar states, where g2g_{2}, g4g_{4} and g4g^{\prime}_{4} are the nonperturbative parameters. The strong coupling constants of these decays are listed in the second and third columns of Tab. 4 for the two-quark scalar states and the four-quark scalar states, respectively.

Table 4: The strong coupling constants of the SP1P2S\to P_{1}P_{2} decays by the SU(3) flavor symmetry.
      Strong couplings       Ones for two-quark state       Ones for four-quark state
      gK0π0Kg_{K_{0}^{-}\to\pi^{0}K^{-}}       12g2\frac{1}{\sqrt{2}}\leavevmode\nobreak\ g_{2}       12g4-\frac{1}{\sqrt{2}}g_{4}
      gK0πK¯0g_{K_{0}^{-}\to\pi^{-}\overline{K}^{0}}       g2g_{2}       g4g_{4}
      gK¯00π+Kg_{\overline{K}_{0}^{0}\to\pi^{+}K^{-}}       g2g_{2}       g4g_{4}
      gK¯00π0K¯0g_{\overline{K}_{0}^{0}\to\pi^{0}\overline{K}^{0}}       12g2-\frac{1}{\sqrt{2}}\leavevmode\nobreak\ g_{2}       12g4\frac{1}{\sqrt{2}}g_{4}
      ga0(980)ηπg_{a_{0}(980)^{-}\to\eta\pi^{-}}       2g2(16cosθP13sinθP)2\leavevmode\nobreak\ g_{2}\leavevmode\nobreak\ \big{(}\frac{1}{\sqrt{6}}cos\theta_{P}-\frac{1}{\sqrt{3}}sin\theta_{P}\big{)}       2g4(16cosθP13sinθP)2\leavevmode\nobreak\ g^{\prime}_{4}\leavevmode\nobreak\ \big{(}\frac{1}{\sqrt{6}}cos\theta_{P}-\frac{1}{\sqrt{3}}sin\theta_{P}\big{)}
      ga0(980)ηπg_{a_{0}(980)^{-}\to\eta^{\prime}\pi^{-}}       2g2(16sinθP+13cosθP)2\leavevmode\nobreak\ g_{2}\leavevmode\nobreak\ \big{(}\frac{1}{\sqrt{6}}sin\theta_{P}+\frac{1}{\sqrt{3}}cos\theta_{P}\big{)}       2g4(16sinθP+13cosθP)2\leavevmode\nobreak\ g^{\prime}_{4}\leavevmode\nobreak\ \big{(}\frac{1}{\sqrt{6}}sin\theta_{P}+\frac{1}{\sqrt{3}}cos\theta_{P}\big{)}
      ga0(980)K0Kg_{a_{0}(980)^{-}\to K^{0}K^{-}}       g2g_{2}       g4g_{4}
      ga0(980)0ηπ0g_{a_{0}(980)^{0}\to\eta\pi^{0}}       g2(13cosθP23sinθP)g_{2}\leavevmode\nobreak\ \big{(}\frac{1}{\sqrt{3}}cos\theta_{P}-\sqrt{\frac{2}{3}}sin\theta_{P}\big{)}       g4(16cosθP13sinθP)g^{\prime}_{4}\leavevmode\nobreak\ \big{(}\frac{1}{\sqrt{6}}cos\theta_{P}-\frac{1}{\sqrt{3}}sin\theta_{P}\big{)}
      ga0(980)0ηπ0g_{a_{0}(980)^{0}\to\eta^{\prime}\pi^{0}}       g2(13sinθP+23cosθP)g_{2}\leavevmode\nobreak\ \big{(}\frac{1}{\sqrt{3}}sin\theta_{P}+\sqrt{\frac{2}{3}}cos\theta_{P}\big{)}       g4(16sinθP+13cosθP)g^{\prime}_{4}\leavevmode\nobreak\ \big{(}\frac{1}{\sqrt{6}}sin\theta_{P}+\frac{1}{\sqrt{3}}cos\theta_{P}\big{)}
      ga0(980)0K+Kg_{a_{0}(980)^{0}\to K^{+}K^{-}}       12g2\frac{1}{\sqrt{2}}\leavevmode\nobreak\ g_{2}       12g4\frac{1}{\sqrt{2}}\leavevmode\nobreak\ g_{4}
      ga0(980)0K0K¯0g_{a_{0}(980)^{0}\to K^{0}\overline{K}^{0}}       12g2-\frac{1}{\sqrt{2}}\leavevmode\nobreak\ g_{2}       12g4-\frac{1}{\sqrt{2}}\leavevmode\nobreak\ g_{4}
      gf0(980)π+πg_{f_{0}(980)\to\pi^{+}\pi^{-}}       2g2sinθS\sqrt{2}\leavevmode\nobreak\ g_{2}\leavevmode\nobreak\ sin\theta_{S}       2g4cosϕS+g4sinϕS\sqrt{2}\leavevmode\nobreak\ g^{\prime}_{4}\leavevmode\nobreak\ cos\phi_{S}+g_{4}sin\phi_{S}
      gf0(980)π0π0g_{f_{0}(980)\to\pi^{0}\pi^{0}}       g2sinθSg_{2}\leavevmode\nobreak\ sin\theta_{S}       g4cosϕS12g4sinϕSg^{\prime}_{4}\leavevmode\nobreak\ cos\phi_{S}-\frac{1}{\sqrt{2}}g_{4}sin\phi_{S}
      gf0(980)K+Kg_{f_{0}(980)\to K^{+}K^{-}}       g2cosθSg_{2}\leavevmode\nobreak\ cos\theta_{S}       12g4cosϕS\frac{1}{\sqrt{2}}g_{4}cos\phi_{S}
      gf0(980)K0K¯0g_{f_{0}(980)\to K^{0}\overline{K}^{0}}       g2cosθSg_{2}\leavevmode\nobreak\ cos\theta_{S}       12g4cosϕS\frac{1}{\sqrt{2}}g_{4}cos\phi_{S}
      gf0(500)π+πg_{f_{0}(500)\to\pi^{+}\pi^{-}}       2g2cosθS\sqrt{2}\leavevmode\nobreak\ g_{2}\leavevmode\nobreak\ cos\theta_{S}       2g4sinϕS+g4cosϕS-\sqrt{2}\leavevmode\nobreak\ g^{\prime}_{4}\leavevmode\nobreak\ sin\phi_{S}+g_{4}cos\phi_{S}
      gf0(500)π0π0g_{f_{0}(500)\to\pi^{0}\pi^{0}}       g2cosθSg_{2}\leavevmode\nobreak\ cos\theta_{S}       g4sinϕS12g4cosϕS-g^{\prime}_{4}\leavevmode\nobreak\ sin\phi_{S}-\frac{1}{\sqrt{2}}g_{4}cos\phi_{S}

Since the width determination is very model dependent, there are not accurate values about the decay widths of a0(980)a_{0}(980), f0(980)f_{0}(980) and f0(500)f_{0}(500) mesons in Ref. PDG2022 . Therefore, it is difficult to obtain accurate (SP1P2)\mathcal{B}(S\to P_{1}P_{2}) in terms of Γ(SP1P2)/ΓS\Gamma(S\to P_{1}P_{2})/\Gamma_{S}, where ΓS\Gamma_{S} is the decay width of scalar meson. We assume the light scalar mesons decay dominantly into pairs of pseudoscalar mesons and all other decay channels are negligible, and then one can obtain (SP1P2)\mathcal{B}(S\to P_{1}P_{2}) without the decay width values of the light scalar mesons, for example, (f0(500)π+π)Γ(f0(500)π+π)Γ(f0(500)π+π)+Γ(f0(500)π0π0)\mathcal{B}(f_{0}(500)\to\pi^{+}\pi^{-})\approx\frac{\Gamma(f_{0}(500)\to\pi^{+}\pi^{-})}{\Gamma(f_{0}(500)\to\pi^{+}\pi^{-})+\Gamma(f_{0}(500)\to\pi^{0}\pi^{0})}.

In the two-quark picture, the parameter g2g_{2} is cancelled in the branching ratios. Therefore, (K0πK,a0(980)KK,f0(500)ππ)\mathcal{B}(K_{0}\to\pi K,a_{0}(980)\to KK,f_{0}(500)\to\pi\pi) only depend on the masses of relevant mesons, (a0(980)ηπ,ηπ)\mathcal{B}(a_{0}(980)\to\eta^{\prime}\pi,\eta^{\prime}\pi) depend on the meson masses and the mixing angle θP\theta_{P}, and (f0(980)ππ,KK)\mathcal{B}(f_{0}(980)\to\pi\pi,KK) depend on the meson masses and the mixing angle θS\theta_{S}. The numerical results of (SP1P2)\mathcal{B}(S\to P_{1}P_{2}) in the two-quark picture are listed in the second column of Tab. 5. One can see that the branching ratios of the K0,a0(980),f0(500)K_{0},a_{0}(980),f_{0}(500) decays are accurately predicted; nevertheless, (f0(980)ππ,KK)\mathcal{B}(f_{0}(980)\to\pi\pi,KK) are predicted with large error due to the indeterminate mixing angle θS\theta_{S}. The three possible ranges for the mixing angle θS\theta_{S}, 25<θS<4025^{\circ}<\theta_{S}<40^{\circ}, 140<θS<165140^{\circ}<\theta_{S}<165^{\circ} and 30<θS<30\leavevmode\nobreak\ -30^{\circ}<\theta_{S}<30^{\circ} Cheng:2005nb ; LHCb:2013dkk , have been considered, and the predictions of (f0(980)ππ,KK)\mathcal{B}(f_{0}(980)\to\pi\pi,KK) are quite dependent on the mixing angle θS\theta_{S}.

In the third column of Tab. 5, we also give the predictions with two-quark picture of (SP1P2)\mathcal{B}(S\to P_{1}P_{2}) further constrained from the relevant experimental data of (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}) listed in later Tabs. 6-7. The predictions of (f0(980)P1P2)\mathcal{B}(f_{0}(980)\to P_{1}P_{2}) are quite accurate when θS\theta_{S} is further constrained from [25,40][25^{\circ},40^{\circ}] to [25,36][25^{\circ},36^{\circ}], from [140,165][140^{\circ},165^{\circ}] to [144,151][144^{\circ},151^{\circ}] and from |ϕS|30|\phi_{S}|\leq 30^{\circ} to 22|ϕS|3022^{\circ}\leq|\phi_{S}|\leq 30^{\circ} by the relevant experimental data of (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}) with 2σ2\sigma errors. Since θS\theta_{S} in the two-quark picture has been further constrained by (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}), the predictions of (f(980)ππ,KK)\mathcal{B}(f(980)\to\pi\pi,KK) are more accurate as listed in the third column of Tab. 5. Other (SP1P2)\mathcal{B}(S\to P_{1}P_{2}) are not further constrained from the data of (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}), so we do not list them in the third column of Tab. 5.

In the four-quark picture, the two nonperturbative parameters g4g_{4} and g4g^{\prime}_{4} in the a0(980),f0(980),f0(500)a_{0}(980),f_{0}(980),f_{0}(500) decays, and |g4/g4|=0.61±0.13|g^{\prime}_{4}/g_{4}|=0.61\pm 0.13 are obtained by the data Γ(a0(980)KK¯)/Γ(a0(980)ηπ)=0.177±0.048\Gamma(a_{0}(980)\to K\bar{K})/\Gamma(a_{0}(980)\to\eta\pi)=0.177\pm 0.048 from PDG PDG2022 . In this work, we treat g4g_{4} and g4g^{\prime}_{4} as real number, then two possible cases (g4/g4>0g^{\prime}_{4}/g_{4}>0 and g4/g4<0g^{\prime}_{4}/g_{4}<0) are analyzed. The numerical results with the four-quark picture are listed in the last column of Tab. 5. As for (f0(980)ππ)\mathcal{B}(f_{0}(980)\to\pi\pi) and (f0(500)ππ)\mathcal{B}(f_{0}(500)\to\pi\pi), very large errors come from the mixing angles ϕS\phi_{S}, and they are obviously different in the g4/g4>0g^{\prime}_{4}/g_{4}>0 and g4/g4<0g^{\prime}_{4}/g_{4}<0 cases. In general, there is a relative strong phase between g4g^{\prime}_{4} and g4g_{4}; therefore, the common relevant branching ratios are between those in the g4/g4>0g^{\prime}_{4}/g_{4}>0 case and those in the g4/g4<0g^{\prime}_{4}/g_{4}<0 case. In addition, (K0P1P2)\mathcal{B}(K_{0}\to P_{1}P_{2}) are the same in both the two-quark and four-quark pictures.

III.2.2 Branching ratios of the DS(SP1P2)+νD\to S(S\to P_{1}P_{2})\ell^{+}\nu_{\ell} decays

Then (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}) can be obtained in terms of (SP1P2)\mathcal{B}(S\to P_{1}P_{2}) listed in Tab. 5 and the expressions of (DS+ν)\mathcal{B}(D\to S\ell^{+}\nu_{\ell}) given in Ref. Wang:D2MlvSU3 . Using the experimental data of (Ds+f0(980)e+νe)=(2.3±0.8)×103\mathcal{B}(D^{+}_{s}\to f_{0}(980)e^{+}\nu_{e})=(2.3\pm 0.8)\times 10^{-3} PDG2022 as well as (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}) listed in the second columns of Tabs. 6 and 7. The numerical results of (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}) with 2σ2\sigma errors for the two-quark and four-quark pictures are given in Tab. 6 and 7 for the cs+νc\to s\ell^{+}\nu_{\ell} and cd+νc\to d\ell^{+}\nu_{\ell} transitions, respectively. Our comments on the results are as follows.

  • The experimental lower limits of (D0a0(980)e+νe,a0(980)ηπ)\mathcal{B}(D^{0}\to a_{0}(980)^{-}e^{+}\nu_{e},\leavevmode\nobreak\ a_{0}(980)^{-}\to\eta\pi^{-}) and (D+f0(500)e+νe,f0(500)π+π)\mathcal{B}(D^{+}\to f_{0}(500)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(500)\to\pi^{+}\pi^{-}) have not been used to constrain the predictions of (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}), since the two lower limits of the SU(3) flavor symmetry predictions are slightly lower than their experimental data in both the two-quark and four-quark pictures. For (D0a0(980)e+νe,a0(980)ηπ)\mathcal{B}(D^{0}\to a_{0}(980)^{-}e^{+}\nu_{e},\leavevmode\nobreak\ a_{0}(980)^{-}\to\eta\pi^{-}), one can see that the prediction in the two-quark picture agrees with experimental data within 2σ2\sigma error bars; nevertheless, the prediction in the four-quark picture is smaller, which only agrees with experimental data within 3σ3\sigma error bars. As for (D+f0(500)e+νe,f0(500)π+π)\mathcal{B}(D^{+}\to f_{0}(500)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(500)\to\pi^{+}\pi^{-}), the prediction in the two-quark picture is much smaller than its experimental lower limit with 2σ2\sigma error, nevertheless, the prediction with g4g4>0\frac{g^{\prime}_{4}}{g_{4}}>0 (g4g4<0\frac{g^{\prime}_{4}}{g_{4}}<0 ) in the four-quark picture agrees with its data within 2σ2\sigma (3σ3\sigma) error bars. Therefore, in the later analysis of total contributions to (DP1P2+ν)\mathcal{B}(D\to P_{1}P_{2}\ell^{+}\nu_{\ell}), the predictions of (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}) with g4g4>0\frac{g^{\prime}_{4}}{g_{4}}>0 in the four-quark picture will be used.

  • In the two-quark picture, though the mixing angle θS\theta_{S} only appears in the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays with f0(980)f_{0}(980) and f0(500)f_{0}(500) resonances, all other predictions of the branching ratios are slightly affected by the experimental constraints. So we list all predictions in the three possible ranges of the mixing angle θS\theta_{S} in the third through fifth columns of Tabs. 6 and 7. One can see that all of the predictions that included the decays with f0(980)f_{0}(980) and f0(500)f_{0}(500) resonances are similar in the three possible ranges of the mixing angle θS\theta_{S}. As mentioned before, θS\theta_{S} is constrained from [25,40][25^{\circ},40^{\circ}] to [25,36][25^{\circ},36^{\circ}], from [140,165][140^{\circ},165^{\circ}] to [144,151][144^{\circ},151^{\circ}] and from |ϕS|30|\phi_{S}|\leq 30^{\circ} to 22|ϕS|3022^{\circ}\leq|\phi_{S}|\leq 30^{\circ} by the relevant experimental data with 2σ2\sigma errors.

  • A lot of the branching ratio predictions are quite different between the two-quark picture and the four-quark picture. Present datum of (D+f0(500)e+νe,f0(500)π+π)\mathcal{B}(D^{+}\to f_{0}(500)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(500)\to\pi^{+}\pi^{-}) favors the four-quark picture of scalar mesons. (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}) with the cs+νc\to s\ell^{+}\nu_{\ell} transitions are predicted on the order of 𝒪(103104)\mathcal{O}(10^{-3}-10^{-4}). Due to the CKM matrix element VcdV_{cd} suppressed, (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}) with the cd+νc\to d\ell^{+}\nu_{\ell} transitions are predicted on the order of 𝒪(104106)\mathcal{O}(10^{-4}-10^{-6}).

  • Some branching ratios of the DS(SP1P2)+νD\to S(S\to P_{1}P_{2})\ell^{+}\nu_{\ell} decays have been obtained in Refs. Shi:2017pgh ; Shi:2021bvy . (D+Se+νe,Sπ+π)=(6.99±2.46)×104\mathcal{B}(D^{+}\to Se^{+}\nu_{e},S\to\pi^{+}\pi^{-})=(6.99\pm 2.46)\times 10^{-4} Shi:2017pgh , (D+Sμ+νμ,Sπ+π)=(7.20±2.52)×104\mathcal{B}(D^{+}\to S\mu^{+}\nu_{\mu},S\to\pi^{+}\pi^{-})=(7.20\pm 2.52)\times 10^{-4} Shi:2017pgh , and (D0a0(980)+ν,a0(980)ηπ)=(1.36±0.21)×104\mathcal{B}(D^{0}\to a_{0}(980)^{-}\ell^{+}\nu_{\ell},a_{0}(980)^{-}\to\eta\pi^{-})=(1.36\pm 0.21)\times 10^{-4} Shi:2021bvy . Our predictions in the four-quark picture of (D+S+ν,Sπ+π)\mathcal{B}(D^{+}\to S\ell^{+}\nu_{\ell},S\to\pi^{+}\pi^{-}) are consistent with ones in Ref. Shi:2017pgh ; our predictions in the two-quark picture of (D0a0(980)+ν,a0(980)ηπ)\mathcal{B}(D^{0}\to a_{0}(980)^{-}\ell^{+}\nu_{\ell},a_{0}(980)^{-}\to\eta\pi^{-}) are consistent with ones in Ref. Shi:2021bvy ; nevertheless, our predictions in the four-quark picture are smaller than ones in Ref. Shi:2021bvy .

Table 5: Branching ratios of the SP1P2S\to P_{1}P_{2} decays within 2σ2\sigma errors. The results are obtained by the SU(3) flavor symmetry relations and Γ(a0(980)KK¯)/Γ(a0(980)ηπ)=0.177±0.048\Gamma(a_{0}(980)\to K\bar{K})/\Gamma(a_{0}(980)\to\eta\pi)=0.177\pm 0.048 PDG2022 . denotes the results with g4g4>0\frac{g^{\prime}_{4}}{g_{4}}>0, and denotes ones with g4g4<0\frac{g^{\prime}_{4}}{g_{4}}<0.
Branching ratios ones with 2q2q state in S1S_{1} case ones with 2q2q state in S2S_{2} case ones with 4q4q state
(K0π0K)\mathcal{B}(K_{0}^{-}\to\pi^{0}K^{-}) 0.34±0.000.34\pm 0.00 0.34±0.000.34\pm 0.00
(K0πK¯0)\mathcal{B}(K_{0}^{-}\to\pi^{-}\overline{K}^{0}) 0.66±0.000.66\pm 0.00 0.66±0.000.66\pm 0.00
(K¯00π+K)\mathcal{B}(\overline{K}_{0}^{0}\to\pi^{+}K^{-}) 0.67±0.000.67\pm 0.00 0.67±0.000.67\pm 0.00
(K¯00π0K¯0)\mathcal{B}(\overline{K}_{0}^{0}\to\pi^{0}\overline{K}^{0}) 0.33±0.000.33\pm 0.00 0.33±0.000.33\pm 0.00
(a0(980)ηπ)\mathcal{B}(a_{0}(980)^{-}\to\eta\pi^{-}) 0.64±0.040.64\pm 0.04 0.86±0.030.86\pm 0.03
(a0(980)ηπ)\mathcal{B}(a_{0}(980)^{-}\to\eta^{\prime}\pi^{-}) 0.03±0.010.03\pm 0.01 0.04±0.010.04\pm 0.01
(a0(980)K0K)\mathcal{B}(a_{0}(980)^{-}\to K^{0}K^{-}) 0.33±0.030.33\pm 0.03 0.10±0.020.10\pm 0.02
(a0(980)0ηπ0)\mathcal{B}(a_{0}(980)^{0}\to\eta\pi^{0}) 0.60±0.040.60\pm 0.04 0.67±0.060.67\pm 0.06
(a0(980)0ηπ0)\mathcal{B}(a_{0}(980)^{0}\to\eta^{\prime}\pi^{0}) 0.04±0.010.04\pm 0.01 0.05±0.020.05\pm 0.02
(a0(980)0K+K)\mathcal{B}(a_{0}(980)^{0}\to K^{+}K^{-}) 0.19±0.020.19\pm 0.02 0.15±0.030.15\pm 0.03
(a0(980)0K0K¯0)\mathcal{B}(a_{0}(980)^{0}\to K^{0}\bar{K}^{0}) 0.17±0.010.17\pm 0.01 0.13±0.030.13\pm 0.03
0.45±0.09θS=[25,40]0.45\pm 0.09_{\theta_{S}=[25^{\circ},40^{\circ}]} 0.43±0.07θS=[25,35]0.43\pm 0.07_{\theta_{S}=[25^{\circ},35^{\circ}]} 0.42±0.160.42\pm 0.16^{\dagger}
(f0(980)π+π)\mathcal{B}(f_{0}(980)\to\pi^{+}\pi^{-}) 0.36±0.17θS=[140,165]0.36\pm 0.17_{\theta_{S}=[140^{\circ},165^{\circ}]} 0.41±0.09θS=[144,158]0.41\pm 0.09_{\theta_{S}=[144^{\circ},158^{\circ}]} 0.59±0.130.59\pm 0.13^{\sharp}
0.22±0.22θS=[30,30]0.22\pm 0.22_{\theta_{S}=[-30^{\circ},30^{\circ}]} 0.38±0.06[22|θS|30]0.38\pm 0.06_{[22^{\circ}\leq|\theta_{S}|\leq 30^{\circ}]}
0.22±0.04θS=[25,40]0.22\pm 0.04_{\theta_{S}=[25^{\circ},40^{\circ}]} 0.21±0.03θS=[25,35]0.21\pm 0.03_{\theta_{S}=[25^{\circ},35^{\circ}]} 0.34±0.110.34\pm 0.11^{\dagger}
(f0(980)π0π0)\mathcal{B}(f_{0}(980)\to\pi^{0}\pi^{0}) 0.18±0.09θS=[140,165]0.18\pm 0.09_{\theta_{S}=[140^{\circ},165^{\circ}]} 0.21±0.04θS=[144,158]0.21\pm 0.04_{\theta_{S}=[144^{\circ},158^{\circ}]} 0.20±0.100.20\pm 0.10^{\sharp}
0.11±0.11θS=[30,30]0.11\pm 0.11_{\theta_{S}=[-30^{\circ},30^{\circ}]} 0.19±0.03[22|θS|30]0.19\pm 0.03_{[22^{\circ}\leq|\theta_{S}|\leq 30^{\circ}]}
0.17±0.07θS=[25,40]0.17\pm 0.07_{\theta_{S}=[25^{\circ},40^{\circ}]} 0.19±0.05θS=[25,35]0.19\pm 0.05_{\theta_{S}=[25^{\circ},35^{\circ}]}
(f0(980)K+K)\mathcal{B}(f_{0}(980)\to K^{+}K^{-}) 0.24±0.14θS=[140,165]0.24\pm 0.14_{\theta_{S}=[140^{\circ},165^{\circ}]} 0.20±0.07θS=[144,158]0.20\pm 0.07_{\theta_{S}=[144^{\circ},158^{\circ}]} 0.12±0.040.12\pm 0.04
0.35±0.17θS=[30,30]0.35\pm 0.17_{\theta_{S}=[-30^{\circ},30^{\circ}]} 0.22±0.04[22|θS|30]0.22\pm 0.04_{[22^{\circ}\leq|\theta_{S}|\leq 30^{\circ}]}
0.16±0.06θS=[25,40]0.16\pm 0.06_{\theta_{S}=[25^{\circ},40^{\circ}]} 0.17±0.05θS=[25,35]0.17\pm 0.05_{\theta_{S}=[25^{\circ},35^{\circ}]}
(f0(980)K0K¯0)\mathcal{B}(f_{0}(980)\to K^{0}\bar{K}^{0}) 0.22±0.12θS=[140,165]0.22\pm 0.12_{\theta_{S}=[140^{\circ},165^{\circ}]} 0.18±0.06θS=[144,158]0.18\pm 0.06_{\theta_{S}=[144^{\circ},158^{\circ}]} 0.11±0.040.11\pm 0.04
0.32±0.16θS=[30,30]0.32\pm 0.16_{\theta_{S}=[-30^{\circ},30^{\circ}]} 0.20±0.04[22|θS|30]0.20\pm 0.04_{[22^{\circ}\leq|\theta_{S}|\leq 30^{\circ}]}
(f0(500)π+π)\mathcal{B}(f_{0}(500)\to\pi^{+}\pi^{-}) 0.66±0.000.66\pm 0.00 0.73±0.090.73\pm 0.09^{\dagger}
0.57±0.120.57\pm 0.12^{\sharp}
(f0(500)π0π0)\mathcal{B}(f_{0}(500)\to\pi^{0}\pi^{0}) 0.34±0.000.34\pm 0.00 0.27±0.090.27\pm 0.09^{\dagger}
0.43±0.120.43\pm 0.12^{\sharp}
Table 6: The experimental data and the SU(3) flavor symmetry predictions of the DS(SP1P2)+νD\to S(S\to P_{1}P_{2})\ell^{+}\nu_{\ell} decays with the cs+νc\to s\ell^{+}\nu_{\ell} transitions within 2σ2\sigma errors. denotes the results with g4g4>0\frac{g^{\prime}_{4}}{g_{4}}>0, and denotes ones with g4g4<0\frac{g^{\prime}_{4}}{g_{4}}<0.
Branching ratios Exp. Data Ones in the 2-quark picture with Ones in the 4-quark picture
θS=[25,35]\theta_{S}=[25^{\circ},35^{\circ}] θS=[144,158]\theta_{S}=[144^{\circ},158^{\circ}] 22|θS|3022^{\circ}\leq|\theta_{S}|\leq 30^{\circ}
(D0K0e+νe,K0πK¯0)(×104)\mathcal{B}(D^{0}\to K^{-}_{0}e^{+}\nu_{e},\leavevmode\nobreak\ K^{-}_{0}\to\pi^{-}\overline{K}^{0})(\times 10^{-4}) \cdots 19.99±7.3419.99\pm 7.34 19.86±7.2619.86\pm 7.26 19.74±6.9719.74\pm 6.97 8.37±3.018.37\pm 3.01
(D0K0e+νe,K0π0K)(×104)\mathcal{B}(D^{0}\to K^{-}_{0}e^{+}\nu_{e},\leavevmode\nobreak\ K^{-}_{0}\to\pi^{0}K^{-})(\times 10^{-4}) \cdots 10.18±3.7710.18\pm 3.77 10.12±3.7310.12\pm 3.73 10.05±3.5710.05\pm 3.57 4.19±1.504.19\pm 1.50
(D+K¯00e+νe,K¯00π+K)(×103)\mathcal{B}(D^{+}\to\overline{K}^{0}_{0}e^{+}\nu_{e},\leavevmode\nobreak\ \overline{K}^{0}_{0}\to\pi^{+}K^{-})(\times 10^{-3}) \cdots 5.17±1.925.17\pm 1.92 5.19±1.855.19\pm 1.85 5.12±1.865.12\pm 1.86 2.24±0.832.24\pm 0.83
(D+K¯00e+νe,K¯00π0K¯0)(×103)\mathcal{B}(D^{+}\to\overline{K}^{0}_{0}e^{+}\nu_{e},\leavevmode\nobreak\ \overline{K}^{0}_{0}\to\pi^{0}\overline{K}^{0})(\times 10^{-3}) \cdots 2.57±0.962.57\pm 0.96 2.59±0.922.59\pm 0.92 2.55±0.922.55\pm 0.92 1.12±0.421.12\pm 0.42
(Ds+f0(980)e+νe,f0(980)π+π)(×103)\mathcal{B}(D^{+}_{s}\to f_{0}(980)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(980)\to\pi^{+}\pi^{-})(\times 10^{-3}) 1.30±0.631.30\pm 0.63 Hietala:2015jqa 1.19±0.181.19\pm 0.18 1.17±0.171.17\pm 0.17 1.18±0.171.18\pm 0.17 1.22±0.55, 1.44±0.491.22\pm 0.55^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 1.44\pm 0.49^{\sharp}
(Ds+f0(980)e+νe,f0(980)π0π0)(×104)\mathcal{B}(D^{+}_{s}\to f_{0}(980)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(980)\to\pi^{0}\pi^{0})(\times 10^{-4}) 7.9±2.97.9\pm 2.9 BESIII:2021pdt 5.95±0.925.95\pm 0.92 5.89±0.855.89\pm 0.85 5.90±0.865.90\pm 0.86 7.91±2.85, 7.13±2.107.91\pm 2.85^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 7.13\pm 2.10^{\sharp}
(Ds+f0(980)e+νe,f0(980)K+K)(×104)\mathcal{B}(D^{+}_{s}\to f_{0}(980)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(980)\to K^{+}K^{-})(\times 10^{-4}) \cdots 5.11±2.345.11\pm 2.34 5.53±2.785.53\pm 2.78 6.28±2.076.28\pm 2.07 3.33±1.53, 3.07±1.343.33\pm 1.53^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 3.07\pm 1.34^{\sharp}
(Ds+f0(980)e+νe,f0(980)K0K¯0)(×104)\mathcal{B}(D^{+}_{s}\to f_{0}(980)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(980)\to K^{0}\overline{K}^{0})(\times 10^{-4}) \cdots 4.62±2.124.62\pm 2.12 5.01±2.525.01\pm 2.52 5.68±1.875.68\pm 1.87 3.01±1.39, 2.78±1.223.01\pm 1.39^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 2.78\pm 1.22^{\sharp}
(Ds+f0(500)e+νe,f0(500)π+π)(×104)\mathcal{B}(D^{+}_{s}\to f_{0}(500)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(500)\to\pi^{+}\pi^{-})(\times 10^{-4}) \cdots 9.91±2.839.91\pm 2.83 9.67±3.079.67\pm 3.07 9.44±3.309.44\pm 3.30 2.49±2.49, 0.90±0.902.49\pm 2.49^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 0.90\pm 0.90^{\sharp}
(Ds+f0(500)e+νe,f0(500)π0π0)(×105)\mathcal{B}(D^{+}_{s}\to f_{0}(500)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(500)\to\pi^{0}\pi^{0})(\times 10^{-5}) <64<64 BESIII:2021pdt 49.77±14.2349.77\pm 14.23 48.57±15.4348.57\pm 15.43 47.44±16.5647.44\pm 16.56 6.66±6.66, 0.78±0.786.66\pm 6.66^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 0.78\pm 0.78^{\sharp}
(D0K0μ+νμ,K0πK0)(×104)\mathcal{B}(D^{0}\to K^{-}_{0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ K^{-}_{0}\to\pi^{-}K^{0})(\times 10^{-4}) \cdots 17.27±6.4817.27\pm 6.48 17.16±6.4117.16\pm 6.41 17.04±6.1417.04\pm 6.14 7.19±2.637.19\pm 2.63
(D0K0μ+νμ,K0π0K)(×104)\mathcal{B}(D^{0}\to K^{-}_{0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ K^{-}_{0}\to\pi^{0}K^{-})(\times 10^{-4}) \cdots 8.63±3.248.63\pm 3.24 8.58±3.208.58\pm 3.20 8.52±3.078.52\pm 3.07 3.59±1.323.59\pm 1.32
(D+K¯00μ+νμ,K¯00π+K)(×103)\mathcal{B}(D^{+}\to\overline{K}^{0}_{0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ \overline{K}^{0}_{0}\to\pi^{+}K^{-})(\times 10^{-3}) \cdots 4.43±1.684.43\pm 1.68 4.46±1.624.46\pm 1.62 4.40±1.624.40\pm 1.62 1.92±0.731.92\pm 0.73
(D+K¯00μ+νμ,K¯00π0K0)(×103)\mathcal{B}(D^{+}\to\overline{K}^{0}_{0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ \overline{K}^{0}_{0}\to\pi^{0}K^{0})(\times 10^{-3}) \cdots 2.22±0.842.22\pm 0.84 2.23±0.812.23\pm 0.81 2.20±0.812.20\pm 0.81 0.96±0.360.96\pm 0.36
(Ds+f0(980)μ+νμ,f0(980)π+π)(×103)\mathcal{B}(D^{+}_{s}\to f_{0}(980)\mu^{+}\nu_{\mu},\leavevmode\nobreak\ f_{0}(980)\to\pi^{+}\pi^{-})(\times 10^{-3}) \cdots 1.01±0.161.01\pm 0.16 1.00±0.151.00\pm 0.15 1.00±0.161.00\pm 0.16 1.02±0.46, 1.23±0.421.02\pm 0.46^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 1.23\pm 0.42^{\sharp}
(Ds+f0(980)μ+νμ,f0(980)π0π0)(×104)\mathcal{B}(D^{+}_{s}\to f_{0}(980)\mu^{+}\nu_{\mu},\leavevmode\nobreak\ f_{0}(980)\to\pi^{0}\pi^{0})(\times 10^{-4}) \cdots 5.05±0.835.05\pm 0.83 4.99±0.774.99\pm 0.77 5.00±0.785.00\pm 0.78 6.72±2.48, 6.04±1.826.72\pm 2.48^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 6.04\pm 1.82^{\sharp}
(Ds+f0(980)μ+νμ,f0(980)K+K)(×104)\mathcal{B}(D^{+}_{s}\to f_{0}(980)\mu^{+}\nu_{\mu},\leavevmode\nobreak\ f_{0}(980)\to K^{+}K^{-})(\times 10^{-4}) \cdots 4.31±1.944.31\pm 1.94 4.70±2.344.70\pm 2.34 5.34±1.755.34\pm 1.75 2.79±1.28, 2.59±1.142.79\pm 1.28^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 2.59\pm 1.14^{\sharp}
(Ds+f0(980)μ+νμ,f0(980)K0K¯0)(×104)\mathcal{B}(D^{+}_{s}\to f_{0}(980)\mu^{+}\nu_{\mu},\leavevmode\nobreak\ f_{0}(980)\to K^{0}\overline{K}^{0})(\times 10^{-4}) \cdots 3.90±1.763.90\pm 1.76 4.25±2.124.25\pm 2.12 4.83±1.584.83\pm 1.58 2.52±1.16, 2.34±1.032.52\pm 1.16^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 2.34\pm 1.03^{\sharp}
(Ds+f0(500)μ+νμ,f0(500)π+π)(×104)\mathcal{B}(D^{+}_{s}\to f_{0}(500)\mu^{+}\nu_{\mu},\leavevmode\nobreak\ f_{0}(500)\to\pi^{+}\pi^{-})(\times 10^{-4}) \cdots 8.88±2.628.88\pm 2.62 8.70±2.868.70\pm 2.86 8.49±3.058.49\pm 3.05 2.30±2.30, 0.83±0.832.30\pm 2.30^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 0.83\pm 0.83^{\sharp}
(Ds+f0(500)μ+νμ,f0(500)π0π0)(×105)\mathcal{B}(D^{+}_{s}\to f_{0}(500)\mu^{+}\nu_{\mu},\leavevmode\nobreak\ f_{0}(500)\to\pi^{0}\pi^{0})(\times 10^{-5}) \cdots 44.67±13.2344.67\pm 13.23 43.85±14.5343.85\pm 14.53 42.77±15.4942.77\pm 15.49 6.16±6.16, 7.23±7.236.16\pm 6.16^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 7.23\pm 7.23^{\sharp}
Table 7: The experimental data and the SU(3) flavor symmetry predictions of the DS(SP1P2)+νD\to S(S\to P_{1}P_{2})\ell^{+}\nu_{\ell} decays with the cd+νc\to d\ell^{+}\nu_{\ell} transitions within 2σ2\sigma errors. denotes the results with g4g4>0\frac{g^{\prime}_{4}}{g_{4}}>0, denotes ones with g4g4<0\frac{g^{\prime}_{4}}{g_{4}}<0, and a denotes the experimental lower limits not used to constrain the predictions.
Branching ratios Exp. Data Ones in the 2-quark picture with Ones in the 4-quark picture
θS=[25,35]\theta_{S}=[25^{\circ},35^{\circ}] θS=[144,158]\theta_{S}=[144^{\circ},158^{\circ}] 22|θS|3022^{\circ}\leq|\theta_{S}|\leq 30^{\circ}
(D0a0(980)e+νe,a0(980)ηπ)(×105)\mathcal{B}(D^{0}\to a_{0}(980)^{-}e^{+}\nu_{e},\leavevmode\nobreak\ a_{0}(980)^{-}\to\eta\pi^{-})(\times 10^{-5}) 13.36.0a+6.813.3^{+6.8}_{-6.0^{a}} 5.99±2.695.99\pm 2.69 5.86±2.485.86\pm 2.48 6.05±2.576.05\pm 2.57 3.81±0.983.81\pm 0.98
(D0a0(980)e+νe,a0(980)ηπ)(×106)\mathcal{B}(D^{0}\to a_{0}(980)^{-}e^{+}\nu_{e},\leavevmode\nobreak\ a_{0}(980)^{-}\to\eta^{\prime}\pi^{-})(\times 10^{-6}) \cdots 2.88±1.712.88\pm 1.71 2.97±1.772.97\pm 1.77 2.97±1.732.97\pm 1.73 1.88±0.981.88\pm 0.98
(D0a0(980)e+νe,a0(980)K0K)(×106)\mathcal{B}(D^{0}\to a_{0}(980)^{-}e^{+}\nu_{e},\leavevmode\nobreak\ a_{0}(980)^{-}\to K^{0}K^{-})(\times 10^{-6}) \cdots 29.99±13.8129.99\pm 13.81 30.73±13.8130.73\pm 13.81 30.57±13.7030.57\pm 13.70 4.22±1.934.22\pm 1.93
(D+a0(980)0e+νe,a0(980)0ηπ0)(×105)\mathcal{B}(D^{+}\to a_{0}(980)^{0}e^{+}\nu_{e},\leavevmode\nobreak\ a_{0}(980)^{0}\to\eta\pi^{0})(\times 10^{-5}) 1714+1617^{+16}_{-14} 7.35±3.287.35\pm 3.28 7.25±3.137.25\pm 3.13 7.32±3.177.32\pm 3.17 4.00±1.004.00\pm 1.00
(D+a0(980)0e+νe,a0(980)0ηπ0)(×106)\mathcal{B}(D^{+}\to a_{0}(980)^{0}e^{+}\nu_{e},\leavevmode\nobreak\ a_{0}(980)^{0}\to\eta^{\prime}\pi^{0})(\times 10^{-6}) \cdots 5.53±3.265.53\pm 3.26 5.69±3.325.69\pm 3.32 5.65±3.205.65\pm 3.20 3.08±1.563.08\pm 1.56
(D+a0(980)0e+νe,a0(980)0K+K)(×105)\mathcal{B}(D^{+}\to a_{0}(980)^{0}e^{+}\nu_{e},\leavevmode\nobreak\ a_{0}(980)^{0}\to K^{+}K^{-})(\times 10^{-5}) \cdots 2.28±1.062.28\pm 1.06 2.30±1.002.30\pm 1.00 2.29±0.992.29\pm 0.99 0.88±0.360.88\pm 0.36
(D+a0(980)0e+νe,a0(980)0K0K¯0)(×105)\mathcal{B}(D^{+}\to a_{0}(980)^{0}e^{+}\nu_{e},\leavevmode\nobreak\ a_{0}(980)^{0}\to K^{0}\overline{K}^{0})(\times 10^{-5}) \cdots 1.99±0.921.99\pm 0.92 2.01±0.882.01\pm 0.88 2.00±0.862.00\pm 0.86 0.77±0.310.77\pm 0.31
(D+f0(980)e+νe,f0(980)π+π)(×105)\mathcal{B}(D^{+}\to f_{0}(980)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(980)\to\pi^{+}\pi^{-})(\times 10^{-5}) <2.8BESIII:2018qmf <2.8\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{BESIII:2018qmf}{\@@citephrase{(}}{\@@citephrase{)}}}} 1.15±0.501.15\pm 0.50 1.10±0.581.10\pm 0.58 0.96±0.430.96\pm 0.43 1.65±1.15, 2.14±0.651.65\pm 1.15^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 2.14\pm 0.65^{\sharp}
(D+f0(980)e+νe,f0(980)π0π0)(×106)\mathcal{B}(D^{+}\to f_{0}(980)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(980)\to\pi^{0}\pi^{0})(\times 10^{-6}) \cdots 5.75±2.535.75\pm 2.53 5.51±2.925.51\pm 2.92 4.80±2.184.80\pm 2.18 10.53±3.67, 10.10±5.3710.53\pm 3.67^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 10.10\pm 5.37^{\sharp}
(D+f0(980)e+νe,f0(980)K+K)(×106)\mathcal{B}(D^{+}\to f_{0}(980)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(980)\to K^{+}K^{-})(\times 10^{-6}) \cdots 5.07±0.885.07\pm 0.88 5.06±0.855.06\pm 0.85 5.01±0.805.01\pm 0.80 4.35±2.78, 4.60±2.764.35\pm 2.78^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 4.60\pm 2.76^{\sharp}
(D+f0(980)e+νe,f0(980)K0K¯0)(×106)\mathcal{B}(D^{+}\to f_{0}(980)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(980)\to K^{0}\overline{K}^{0})(\times 10^{-6}) \cdots 5.07±0.885.07\pm 0.88 5.06±0.855.06\pm 0.85 5.01±0.805.01\pm 0.80 4.35±2.78, 4.60±2.764.35\pm 2.78^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 4.60\pm 2.76^{\sharp}
(D+f0(500)e+νe,f0(500)π+π)(×104)\mathcal{B}(D^{+}\to f_{0}(500)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(500)\to\pi^{+}\pi^{-})(\times 10^{-4}) 6.3±1.0a6.3\pm 1.0^{a} 1.44±0.641.44\pm 0.64 1.72±0.921.72\pm 0.92 1.79±0.851.79\pm 0.85 3.64±2.57, 2.95±1.873.64\pm 2.57^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 2.95\pm 1.87^{\sharp}
(D+f0(500)e+νe,f0(500)π0π0)(×104)\mathcal{B}(D^{+}\to f_{0}(500)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(500)\to\pi^{0}\pi^{0})(\times 10^{-4}) \cdots 0.72±0.320.72\pm 0.32 0.87±0.460.87\pm 0.46 0.91±0.430.91\pm 0.43 1.45±1.02, 2.08±1.571.45\pm 1.02^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 2.08\pm 1.57^{\sharp}
(Ds+K00e+νe,K00πK+)(×105)\mathcal{B}(D^{+}_{s}\to K^{0}_{0}e^{+}\nu_{e},\leavevmode\nobreak\ K^{0}_{0}\to\pi^{-}K^{+})(\times 10^{-5}) \cdots 22.34±8.0922.34\pm 8.09 22.13±7.9722.13\pm 7.97 22.34±7.6422.34\pm 7.64 9.54±3.389.54\pm 3.38
(Ds+K00e+νe,K00π0K0)(×105)\mathcal{B}(D^{+}_{s}\to K^{0}_{0}e^{+}\nu_{e},\leavevmode\nobreak\ K^{0}_{0}\to\pi^{0}K^{0})(\times 10^{-5}) \cdots 11.17±4.0411.17\pm 4.04 11.07±3.9911.07\pm 3.99 11.17±3.8211.17\pm 3.82 4.77±1.694.77\pm 1.69
(D0a0(980)μ+νμ,a0(980)ηπ)(×105)\mathcal{B}(D^{0}\to a_{0}(980)^{-}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ a_{0}(980)^{-}\to\eta\pi^{-})(\times 10^{-5}) \cdots 4.95±2.274.95\pm 2.27 4.84±2.104.84\pm 2.10 5.00±2.185.00\pm 2.18 3.14±0.843.14\pm 0.84
(D0a0(980)μ+νμ,a0(980)ηπ)(×106)\mathcal{B}(D^{0}\to a_{0}(980)^{-}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ a_{0}(980)^{-}\to\eta^{\prime}\pi^{-})(\times 10^{-6}) \cdots 2.39±1.442.39\pm 1.44 2.46±1.482.46\pm 1.48 2.45±1.452.45\pm 1.45 1.56±0.821.56\pm 0.82
(D0a0(980)μ+νμ,a0(980)K0K)(×106)\mathcal{B}(D^{0}\to a_{0}(980)^{-}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ a_{0}(980)^{-}\to K^{0}K^{-})(\times 10^{-6}) \cdots 24.78±11.6824.78\pm 11.68 25.37±11.6225.37\pm 11.62 25.20±11.5325.20\pm 11.53 3.51±1.623.51\pm 1.62
(D+a0(980)0μ+νμ,a0(980)0ηπ0)(×105)\mathcal{B}(D^{+}\to a_{0}(980)^{0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ a_{0}(980)^{0}\to\eta\pi^{0})(\times 10^{-5}) \cdots 6.09±2.786.09\pm 2.78 6.00±2.656.00\pm 2.65 6.06±2.696.06\pm 2.69 3.30±0.863.30\pm 0.86
(D+a0(980)0μ+νμ,a0(980)0ηπ0)(×106)\mathcal{B}(D^{+}\to a_{0}(980)^{0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ a_{0}(980)^{0}\to\eta^{\prime}\pi^{0})(\times 10^{-6}) \cdots 4.58±2.744.58\pm 2.74 4.72±2.794.72\pm 2.79 4.67±2.694.67\pm 2.69 2.55±1.312.55\pm 1.31
(D+a0(980)0μ+νμ,a0(980)0K+K)(×105)\mathcal{B}(D^{+}\to a_{0}(980)^{0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ a_{0}(980)^{0}\to K^{+}K^{-})(\times 10^{-5}) \cdots 1.89±0.891.89\pm 0.89 1.91±0.851.91\pm 0.85 1.89±0.831.89\pm 0.83 0.73±0.300.73\pm 0.30
(D+a0(980)0μ+νμ,a0(980)0K0K¯0)(×105)\mathcal{B}(D^{+}\to a_{0}(980)^{0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ a_{0}(980)^{0}\to K^{0}\overline{K}^{0})(\times 10^{-5}) \cdots 1.65±0.781.65\pm 0.78 1.66±0.741.66\pm 0.74 1.65±0.731.65\pm 0.73 0.64±0.270.64\pm 0.27
(D+f0(980)μ+νμ,f0(980)π+π)(×105)\mathcal{B}(D^{+}\to f_{0}(980)\mu^{+}\nu_{\mu},\leavevmode\nobreak\ f_{0}(980)\to\pi^{+}\pi^{-})(\times 10^{-5}) \cdots 0.94±0.430.94\pm 0.43 0.91±0.480.91\pm 0.48 0.79±0.360.79\pm 0.36 1.37±0.96, 1.76±0.551.37\pm 0.96^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 1.76\pm 0.55^{\sharp}
(D+f0(980)μ+νμ,f0(980)π0π0)(×106)\mathcal{B}(D^{+}\to f_{0}(980)\mu^{+}\nu_{\mu},\leavevmode\nobreak\ f_{0}(980)\to\pi^{0}\pi^{0})(\times 10^{-6}) \cdots 4.74±2.144.74\pm 2.14 4.58±2.434.58\pm 2.43 3.97±1.823.97\pm 1.82 8.67±3.13, 8.32±4.478.67\pm 3.13^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 8.32\pm 4.47^{\sharp}
(D+f0(980)μ+νμ,f0(980)K+K)(×106)\mathcal{B}(D^{+}\to f_{0}(980)\mu^{+}\nu_{\mu},\leavevmode\nobreak\ f_{0}(980)\to K^{+}K^{-})(\times 10^{-6}) \cdots 4.21±0.734.21\pm 0.73 4.19±0.714.19\pm 0.71 4.15±0.674.15\pm 0.67 3.55±2.29, 3.76±2.263.55\pm 2.29^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 3.76\pm 2.26^{\sharp}
(D+f0(980)μ+νμ,f0(980)K0K¯0)(×106)\mathcal{B}(D^{+}\to f_{0}(980)\mu^{+}\nu_{\mu},\leavevmode\nobreak\ f_{0}(980)\to K^{0}\overline{K}^{0})(\times 10^{-6}) \cdots 4.21±0.734.21\pm 0.73 4.19±0.714.19\pm 0.71 4.15±0.674.15\pm 0.67 3.55±2.29, 3.76±2.263.55\pm 2.29^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 3.76\pm 2.26^{\sharp}
(D+f0(500)μ+νμ,f0(980)π+π)(×104)\mathcal{B}(D^{+}\to f_{0}(500)\mu^{+}\nu_{\mu},\leavevmode\nobreak\ f_{0}(980)\to\pi^{+}\pi^{-})(\times 10^{-4}) \cdots 1.28±0.591.28\pm 0.59 1.54±0.841.54\pm 0.84 1.61±0.791.61\pm 0.79 3.30±2.39, 2.68±1.743.30\pm 2.39^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 2.68\pm 1.74^{\sharp}
(D+f0(500)μ+νμ,f0(980)π0π0)(×104)\mathcal{B}(D^{+}\to f_{0}(500)\mu^{+}\nu_{\mu},\leavevmode\nobreak\ f_{0}(980)\to\pi^{0}\pi^{0})(\times 10^{-4}) \cdots 0.64±0.300.64\pm 0.30 0.78±0.430.78\pm 0.43 0.81±0.400.81\pm 0.40 1.32±0.95, 1.89±1.461.32\pm 0.95^{\dagger},\leavevmode\nobreak\ \leavevmode\nobreak\ 1.89\pm 1.46^{\sharp}
(Ds+K00μ+νμ,K00πK+)(×105)\mathcal{B}(D^{+}_{s}\to K^{0}_{0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ K^{0}_{0}\to\pi^{-}K^{+})(\times 10^{-5}) \cdots 19.61±7.2019.61\pm 7.20 19.43±7.1019.43\pm 7.10 19.60±6.8019.60\pm 6.80 8.38±3.018.38\pm 3.01
(Ds+K00μ+νμ,K00π0K0)(×105)\mathcal{B}(D^{+}_{s}\to K^{0}_{0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ K^{0}_{0}\to\pi^{0}K^{0})(\times 10^{-5}) \cdots 9.80±3.609.80\pm 3.60 9.71±3.559.71\pm 3.55 9.80±3.409.80\pm 3.40 4.19±1.504.19\pm 1.50

III.3 DV(VP1P2)+νD\to V(V\to P_{1}P_{2})\ell^{+}\nu_{\ell} decays

We will analyze the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays with the vector resonances in this subsection. Since the light vector mesons are understood well, the calculations of (DV+ν,VP1P2)\mathcal{B}(D\to V\ell^{+}\nu_{\ell},V\to P_{1}P_{2}) are much easier than the ones of (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}). From Eq. (11), their branching ratios of DV(VP1P2)+νD\to V(V\to P_{1}P_{2})\ell^{+}\nu_{\ell} can be obtained by using (DV+ν)\mathcal{B}(D\to V\ell^{+}\nu_{\ell}) and (VP1P2)\mathcal{B}(V\to P_{1}P_{2}). The DV+νD\to V\ell^{+}\nu_{\ell} decays have been studied by the SU(3) flavor symmetry in Ref. Wang:D2MlvSU3 . Many (DV+ν)\mathcal{B}(D\to V\ell^{+}\nu_{\ell}) have been accurately measured and have been listed in the second column of Tab. V in Ref. Wang:D2MlvSU3 . The expressions of (DV+ν)\mathcal{B}(D\to V\ell^{+}\nu_{\ell}) within the C3C_{3} case in Ref. Wang:D2MlvSU3 will be taken for our analysis.

Following Ref. Cheng:2020ipp , (VP1P2)\mathcal{B}(V\to P_{1}P_{2}) can be written as

(VP1P2)=τVpc36πmV2gVP1P22,\displaystyle\mathcal{B}(V\to P_{1}P_{2})=\frac{\tau_{V}p^{\prime 3}_{c}}{6\pi m^{2}_{V}}g^{2}_{V\to P_{1}P_{2}}, (66)

where pcλ(mV2,mP12,mP22)2mVp^{\prime}_{c}\equiv\frac{\sqrt{\lambda(m_{V}^{2},m_{P_{1}}^{2},m_{P_{2}}^{2})}}{2m_{V}} and gVP1P2g_{V\to P_{1}P_{2}} are the strong coupling constants. Similar to gSP1P22qg_{S\to P_{1}P_{2}}^{2q} in Eq. (64), gVP1P2g_{V\to P_{1}P_{2}} can be parametrized by the SU(3) flavor symmetry

gVP1P2=gVVjiPikPkj,\displaystyle g_{V\to P_{1}P_{2}}=g_{V}V^{i}_{j}P^{k}_{i}P^{j}_{k}, (67)

where gVg_{V} is the corresponding nonperturbative parameter.

At present, many involved (VP1P2)\mathcal{B}(V\to P_{1}P_{2}) have been well measured PDG2022

(K+πK)=(99.902±0.018)%,\displaystyle\mathcal{B}(K^{*+}\to\pi K)=(99.902\pm 0.018)\%,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ (K0πK)=(99.754±0.042)%,\displaystyle\mathcal{B}(K^{*0}\to\pi K)=(99.754\pm 0.042)\%, (68)
(ρ+π0π+)=100%,\displaystyle\mathcal{B}(\rho^{+}\to\pi^{0}\pi^{+})=100\%,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ (ρ0π+π)=100%,\displaystyle\mathcal{B}(\rho^{0}\to\pi^{+}\pi^{-})=100\%,
(ϕK+K)=(49.1±1.0)%,\displaystyle\mathcal{B}(\phi\to K^{+}K^{-})=(49.1\pm 1.0)\%,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ (ωπ+π)=(1.530.26+0.22)%.\displaystyle\mathcal{B}(\omega\to\pi^{+}\pi^{-})=(1.53^{+0.22}_{-0.26})\%.

From Eq. (67), the relations of the strong coupling constants can be obtained

2gKπ0K=gKπK0,2gK0π0K0=gK0πK+,\displaystyle\sqrt{2}g_{K^{*-}\to\pi^{0}K^{-}}=g_{K^{*-}\to\pi^{-}K^{0}},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \sqrt{2}g_{K^{*0}\to\pi^{0}K^{0}}=g_{K^{*0}\to\pi^{-}K^{+}},
gρπ0π=3gρη8π=3/2gρη1π,gϕK+K=gϕK0K¯0,\displaystyle g_{\rho^{-}\to\pi^{0}\pi^{-}}=\sqrt{3}g_{\rho^{-}\to\eta_{8}\pi^{-}}=\sqrt{3/2}g_{\rho^{-}\to\eta_{1}\pi^{-}},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ g_{\phi\to K^{+}K^{-}}=g_{\phi\to K^{0}\overline{K}^{0}}, (69)

In terms of Eq. (68) and Eq. (69), the strong coupling constants are

|gKπK0|=4.62±0.08,\displaystyle|g_{K^{*-}\to\pi^{-}K^{0}}|=4.62\pm 0.08,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ |gK0πK+|=4.40±0.10,\displaystyle|g_{K^{*0}\to\pi^{-}K^{+}}|=4.40\pm 0.10, (70)
|gρπ0π|=6.00±0.03,\displaystyle|g_{\rho^{-}\to\pi^{0}\pi^{-}}|=6.00\pm 0.03,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ |gρ0π+π|=5.95±0.04,\displaystyle|g_{\rho^{0}\to\pi^{+}\pi^{-}}|=5.95\pm 0.04,
|gϕK+K|=4.47±0.08,\displaystyle|g_{\phi\to K^{+}K^{-}}|=4.47\pm 0.08,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ |gωπ+π|=0.18±0.02.\displaystyle|g_{\omega\to\pi^{+}\pi^{-}}|=0.18\pm 0.02.

Then the following (VP1P2)\mathcal{B}(V\to P_{1}P_{2}) can be written as

(K0π0K0)=(33.02±0.02)%,\displaystyle\mathcal{B}(K^{*0}\to\pi^{0}K^{0})=(33.02\pm 0.02)\%,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ (K0πK+)=(66.74±0.04)%,\displaystyle\mathcal{B}(K^{*0}\to\pi^{-}K^{+})=(66.74\pm 0.04)\%, (71)
(K+π0K+)=(33.62±0.01)%,\displaystyle\mathcal{B}(K^{*+}\to\pi^{0}K^{+})=(33.62\pm 0.01)\%,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ (K+π+K0)=(66.28±0.01)%,\displaystyle\mathcal{B}(K^{*+}\to\pi^{+}K^{0})=(66.28\pm 0.01)\%,
(ρ+ηπ+)=(4.38±0.66)%,\displaystyle\mathcal{B}(\rho^{+}\to\eta\pi^{+})=(4.38\pm 0.66)\%,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ (ϕK0K0)=(32.42±1.04)%.\displaystyle\mathcal{B}(\phi\to K^{0}K^{0})=(32.42\pm 1.04)\%.
Table 8: The experimental data and the SU(3) flavor symmetry predictions of DV(VP1P2)+νD\to V(V\to P_{1}P_{2})\ell^{+}\nu_{\ell} decays within 2σ2\sigma errors.
Branching ratios Exp. Data Our predictions Previous ones
cse+νec\to se^{+}\nu_{e}:
(D0Ke+νe,KπK¯0)(×102)\mathcal{B}(D^{0}\to K^{*-}e^{+}\nu_{e},\leavevmode\nobreak\ K^{*-}\to\pi^{-}\overline{K}^{0})(\times 10^{-2}) \dots 1.42±0.071.42\pm 0.07 \dots
(D0Ke+νe,Kπ0K)(×103)\mathcal{B}(D^{0}\to K^{*-}e^{+}\nu_{e},\leavevmode\nobreak\ K^{*-}\to\pi^{0}K^{-})(\times 10^{-3}) \dots 7.18±0.377.18\pm 0.37 7.177.17 Kim:2017dfr
(D+K¯0e+νe,K¯0π+K)(×102)\mathcal{B}(D^{+}\to\overline{K}^{*0}e^{+}\nu_{e},\leavevmode\nobreak\ \overline{K}^{*0}\to\pi^{+}K^{-})(\times 10^{-2}) 3.77±0.343.77\pm 0.34 3.64±0.113.64\pm 0.11 3.513.51 Kim:2017dfr
(D+K¯0e+νe,K¯0π0K¯0)(×102)\mathcal{B}(D^{+}\to\overline{K}^{*0}e^{+}\nu_{e},\leavevmode\nobreak\ \overline{K}^{*0}\to\pi^{0}\overline{K}^{0})(\times 10^{-2}) \dots 1.80±0.061.80\pm 0.06 \dots
(Ds+ϕe+νe,ϕK+K)(×102)\mathcal{B}(D^{+}_{s}\to\phi e^{+}\nu_{e},\leavevmode\nobreak\ \phi\to K^{+}K^{-})(\times 10^{-2}) \dots 1.20±0.101.20\pm 0.10 \dots
(Ds+ϕe+νe,ϕK0K¯0)(×103)\mathcal{B}(D^{+}_{s}\to\phi e^{+}\nu_{e},\leavevmode\nobreak\ \phi\to K^{0}\overline{K}^{0})(\times 10^{-3}) \dots 7.94±0.657.94\pm 0.65 \dots
csμ+νμc\to s\mu^{+}\nu_{\mu}:
(D0Kμ+νμ,KπK¯0)(×102)\mathcal{B}(D^{0}\to K^{*-}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ K^{*-}\to\pi^{-}\overline{K}^{0})(\times 10^{-2}) \dots 1.33±0.071.33\pm 0.07 \dots
(D0Kμ+νμ,Kπ0K)(×103)\mathcal{B}(D^{0}\to K^{*-}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ K^{*-}\to\pi^{0}K^{-})(\times 10^{-3}) \dots 6.76±0.356.76\pm 0.35 7.177.17 Kim:2017dfr
(D+K¯0μ+νμ,K¯0π+K)(×102)\mathcal{B}(D^{+}\to\overline{K}^{*0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ \overline{K}^{*0}\to\pi^{+}K^{-})(\times 10^{-2}) 3.52±0.203.52\pm 0.20 3.43±0.113.43\pm 0.11 3.513.51 Kim:2017dfr
(D+K¯0μ+νμ,K¯0π0K¯0)(×102)\mathcal{B}(D^{+}\to\overline{K}^{*0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ \overline{K}^{*0}\to\pi^{0}\overline{K}^{0})(\times 10^{-2}) \dots 1.70±0.051.70\pm 0.05 \dots
(Ds+ϕμ+νμ,ϕK+K)(×102)\mathcal{B}(D^{+}_{s}\to\phi\mu^{+}\nu_{\mu},\leavevmode\nobreak\ \phi\to K^{+}K^{-})(\times 10^{-2}) \dots 1.13±0.091.13\pm 0.09 \dots
(Ds+ϕμ+νμ,ϕK0K¯0)(×103)\mathcal{B}(D^{+}_{s}\to\phi\mu^{+}\nu_{\mu},\leavevmode\nobreak\ \phi\to K^{0}\overline{K}^{0})(\times 10^{-3}) \dots 7.46±0.627.46\pm 0.62 \dots
cde+νec\to de^{+}\nu_{e}:
(D0ρe+νe,ρπ0π)(×103)\mathcal{B}(D^{0}\to\rho^{-}e^{+}\nu_{e},\leavevmode\nobreak\ \rho^{-}\to\pi^{0}\pi^{-})(\times 10^{-3}) \dots 1.85±0.111.85\pm 0.11 1.631.63 Kim:2017dfr
(D0ρe+νe,ρηπ)(×105)\mathcal{B}(D^{0}\to\rho^{-}e^{+}\nu_{e},\leavevmode\nobreak\ \rho^{-}\to\eta\pi^{-})(\times 10^{-5}) \dots 8.23±1.598.23\pm 1.59 \dots
(D+ρ0e+νe,ρ0π+π)(×103)\mathcal{B}(D^{+}\to\rho^{0}e^{+}\nu_{e},\leavevmode\nobreak\ \rho^{0}\to\pi^{+}\pi^{-})(\times 10^{-3}) \dots 2.40±0.122.40\pm 0.12 1.57±0.07Shi:2017pgh , 2.10Kim:2017dfr 1.57\pm 0.07\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Shi:2017pgh}{\@@citephrase{(}}{\@@citephrase{)}}}},\leavevmode\nobreak\ \leavevmode\nobreak\ 2.10\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Kim:2017dfr}{\@@citephrase{(}}{\@@citephrase{)}}}}
(D+ωe+νe,ωπ+π)(×105)\mathcal{B}(D^{+}\to\omega e^{+}\nu_{e},\leavevmode\nobreak\ \omega\to\pi^{+}\pi^{-})(\times 10^{-5}) \dots 3.55±0.823.55\pm 0.82 \dots
(Ds+K0e+νe,K0πK+)(×103)\mathcal{B}(D^{+}_{s}\to K^{*0}e^{+}\nu_{e},\leavevmode\nobreak\ K^{*0}\to\pi^{-}K^{+})(\times 10^{-3}) \dots 1.49±0.101.49\pm 0.10 \dots
(Ds+K0e+νe,K0π0K0)(×104)\mathcal{B}(D^{+}_{s}\to K^{*0}e^{+}\nu_{e},\leavevmode\nobreak\ K^{*0}\to\pi^{0}K^{0})(\times 10^{-4}) \dots 7.39±0.517.39\pm 0.51 \dots
cdμ+νμc\to d\mu^{+}\nu_{\mu}:
(D0ρμ+νμ,ρπ0π)(×103)\mathcal{B}(D^{0}\to\rho^{-}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ \rho^{-}\to\pi^{0}\pi^{-})(\times 10^{-3}) \dots 1.76±0.101.76\pm 0.10 \dots
(D0ρμ+νμ,ρηπ)(×105)\mathcal{B}(D^{0}\to\rho^{-}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ \rho^{-}\to\eta\pi^{-})(\times 10^{-5}) \dots 7.83±1.517.83\pm 1.51 \dots
(D+ρ0μ+νμ,ρ0π+π)(×103)\mathcal{B}(D^{+}\to\rho^{0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ \rho^{0}\to\pi^{+}\pi^{-})(\times 10^{-3}) \dots 2.29±0.112.29\pm 0.11 1.57±0.071.57\pm 0.07 Shi:2017pgh
(D+ωμ+νμ,ωπ+π)(×105)\mathcal{B}(D^{+}\to\omega\mu^{+}\nu_{\mu},\leavevmode\nobreak\ \omega\to\pi^{+}\pi^{-})(\times 10^{-5}) \dots 3.38±0.783.38\pm 0.78 \dots
(Ds+K0μ+νμ,K0πK+)(×103)\mathcal{B}(D^{+}_{s}\to K^{*0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ K^{*0}\to\pi^{-}K^{+})(\times 10^{-3}) \dots 1.42±0.101.42\pm 0.10 \dots
(Ds+K0μ+νμ,K0π0K0)(×104)\mathcal{B}(D^{+}_{s}\to K^{*0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ K^{*0}\to\pi^{0}K^{0})(\times 10^{-4}) \dots 7.03±0.487.03\pm 0.48 \dots

For DV(VP1P2)+νD\to V(V\to P_{1}P_{2})\ell^{+}\nu_{\ell} decays, the branching ratios of D+K¯0(K¯0π+K)e+νeD^{+}\to\overline{K}^{*0}(\overline{K}^{*0}\to\pi^{+}K^{-})e^{+}\nu_{e} and D+K¯0(K¯0π+K)μ+νμD^{+}\to\overline{K}^{*0}(\overline{K}^{*0}\to\pi^{+}K^{-})\mu^{+}\nu_{\mu} have been measured, and the experimental data with 2σ2\sigma errors are listed in the second column of Tab. 8. Using the experimental data of (D+K¯0+ν,K¯0π+K)\mathcal{B}(D^{+}\to\overline{K}^{*0}\ell^{+}\nu_{\ell},\overline{K}^{*0}\to\pi^{+}K^{-}), (VP1P2)\mathcal{B}(V\to P_{1}P_{2}) and (DV+ν)\mathcal{B}(D\to V\ell^{+}\nu_{\ell}), we obtain the predictions of (DV+ν,VP1P2)\mathcal{B}(D\to V\ell^{+}\nu_{\ell},V\to P_{1}P_{2}) by the SU(3) flavor symmetry, which are given in the third column of Tab. 8. We can see that (DV+ν,VP1P2)\mathcal{B}(D\to V\ell^{+}\nu_{\ell},V\to P_{1}P_{2}) with the cs+νc\to s\ell^{+}\nu_{\ell} transitions are predicted on the order of 𝒪(102103)\mathcal{O}(10^{-2}-10^{-3}), and (DV+ν,VP1P2)\mathcal{B}(D\to V\ell^{+}\nu_{\ell},V\to P_{1}P_{2}) with the cd+νc\to d\ell^{+}\nu_{\ell} transitions are predicted on the order of 𝒪(103105)\mathcal{O}(10^{-3}-10^{-5}). The predictions of (DV+ν,VP1P2)\mathcal{B}(D\to V\ell^{+}\nu_{\ell},V\to P_{1}P_{2}) are about one order larger than those of the corresponding (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}).

Previous predictions are also listed in the last column of Tab. 8. Our predictions of (D0K+ν,Kπ0K)\mathcal{B}(D^{0}\to K^{*-}\ell^{+}\nu_{\ell},\leavevmode\nobreak\ K^{*-}\to\pi^{0}K^{-}) and (D+K¯0+ν,K¯0π+K)\mathcal{B}(D^{+}\to\overline{K}^{*0}\ell^{+}\nu_{\ell},\leavevmode\nobreak\ \overline{K}^{*0}\to\pi^{+}K^{-}) are in good agreement with those in Ref. Kim:2017dfr . And our predictions of (D+ρ0+ν,ρ0π+π)\mathcal{B}(D^{+}\to\rho^{0}\ell^{+}\nu_{\ell},\leavevmode\nobreak\ \rho^{0}\to\pi^{+}\pi^{-}) are slight larger than those obtained by the light-front quark model and the light-cone sum rules in Ref. Shi:2017pgh .

III.4 Total branching ratios

As analyzed above, some four-body semileptonic decays of DD mesons receive the contributions of the nonresonant states, the scalar resonant states, and the vector resonant states; nevertheless, some decay modes only receive one or two kinds of them. For clearly showing the resonant contributions, we also list the scalar and vector resonant amplitudes in the third and last columns of Tab. 1, respectively. The resonant amplitudes are obtained by multiplying the hadronic helicity amplitudes H(DR+ν)H(D\to R\ell^{+}\nu_{\ell}) given in Ref. Wang:D2MlvSU3 and the strong coupling constants gRP1P2g_{R\to P_{1}P_{2}} obtained in this work. Note that the resonant amplitudes listed in the last two columns of Tab. 1 are given only to see clearly the kinds of the resonant contributions, and we do not use them to obtain the numerical total branching ratios (DP1P2+ν)T\mathcal{B}(D\to P_{1}P_{2}\ell^{+}\nu_{\ell})_{T}.

We have some comments for the contributions in Tab. 1. For D(s)ηK+ν,ηK+ν,ηη+ν,ηη+νD_{(s)}\to\eta K\ell^{+}\nu_{\ell},\leavevmode\nobreak\ \eta^{\prime}K\ell^{+}\nu_{\ell},\leavevmode\nobreak\ \eta\eta\ell^{+}\nu_{\ell},\leavevmode\nobreak\ \eta\eta^{\prime}\ell^{+}\nu_{\ell} decays, since both final state mesons are quite heavy, they only receive the nonresonant contributions. The decays Ds+π0π0+ν,D_{s}^{+}\to\pi^{0}\pi^{0}\ell^{+}\nu_{\ell}, Ds+π+π+ν,D_{s}^{+}\to\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}, D0KK0+ν,D^{0}\to K^{-}K^{0}\ell^{+}\nu_{\ell}, D+K¯0K0+ν,D^{+}\to\overline{K}^{0}K^{0}\ell^{+}\nu_{\ell}, D+K+K+ν,D^{+}\to K^{+}K^{-}\ell^{+}\nu_{\ell}, D+π0π0+νD^{+}\to\pi^{0}\pi^{0}\ell^{+}\nu_{\ell}, and D+η()π0+νD^{+}\to\eta^{(^{\prime})}\pi^{0}\ell^{+}\nu_{\ell} receive both the nonresonant contributions and the scalar resonant contributions; moreover, the nonresonant contributions in the Ds+π0π0+ν,D_{s}^{+}\to\pi^{0}\pi^{0}\ell^{+}\nu_{\ell}, Ds+π+π+νD_{s}^{+}\to\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} and D+K+K+νD^{+}\to K^{+}K^{-}\ell^{+}\nu_{\ell} decays are suppressed by the OZI rule, and the main contributions of these decay branching ratios come from the scalar resonant states. All other decay modes except the D0π0π+νD^{0}\to\pi^{0}\pi^{-}\ell^{+}\nu_{\ell} decays receive all three kinds of the contributions, and their branching ratios are dominant by the vector resonant states. Due to the quantum number constraint, the D0π0π+νD^{0}\to\pi^{0}\pi^{-}\ell^{+}\nu_{\ell} decays only receive the contributions of the vector resonant states.

In the last columns of Tabs. 2 and 3, total branching ratio predictions of the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu decays including the possible nonresonant, scalar resonant and vector resonant contributions are listed. The present six experimental data with 2σ2\sigma errors are also listed in the forth column of Tab. 2 and in third column of Tab. 3 for convenient comparison. One can see that for (D0πK¯e+νe)\mathcal{B}(D^{0}\to\pi^{-}\overline{K}^{-}e^{+}\nu_{e}), (D0π0Ke+νe)\mathcal{B}(D^{0}\to\pi^{0}K^{-}e^{+}\nu_{e}), (D+π+Ke+νe)\mathcal{B}(D^{+}\to\pi^{+}K^{-}e^{+}\nu_{e}), (D+π+Kμ+νμ)\mathcal{B}(D^{+}\to\pi^{+}K^{-}\mu^{+}\nu_{\mu}), and (D+π+πe+νe)\mathcal{B}(D^{+}\to\pi^{+}\pi^{-}e^{+}\nu_{e}), our SU(3) flavor symmetry predictions are consistent with present data within 2σ2\sigma error bars. Our prediction of (D0π0πe+νe)\mathcal{B}(D^{0}\to\pi^{0}\pi^{-}e^{+}\nu_{e}) is slightly larger than its experimental datum; nevertheless, the prediction will be very close to the datum within 3σ3\sigma error bars.

For some Cabibbo suppressed decays due to cd+νc\to d\ell^{+}\nu_{\ell} transitions, such as the D0KK0+ν,D^{0}\to K^{-}K^{0}\ell^{+}\nu_{\ell}, D0ηπ+ν,D^{0}\to\eta^{\prime}\pi^{-}\ell^{+}\nu_{\ell}, D+K¯0K0+ν,D^{+}\to\overline{K}^{0}K^{0}\ell^{+}\nu_{\ell}, D+π0π0+νD^{+}\to\pi^{0}\pi^{0}\ell^{+}\nu_{\ell}, D+ηπ0+νD^{+}\to\eta\pi^{0}\ell^{+}\nu_{\ell} and D+ηπ0+νD^{+}\to\eta^{\prime}\pi^{0}\ell^{+}\nu_{\ell} decays, they only receive both the nonresonant contributions and the scalar resonant contributions, and we can see that both the nonresonant and the scalar resonant contributions are important. The nonresonant contributions in the D+K+K+νD^{+}\to K^{+}K^{-}\ell^{+}\nu_{\ell} decays are suppressed by the OZI rule, and the scalar resonant contributions in the D+K+K+νD^{+}\to K^{+}K^{-}\ell^{+}\nu_{\ell} decays are dominant.

Please note that the interference terms between nonresonant, scalar, and vector resonant contributions exist. As discussed in Refs. Kang:2013jaa ; Faller:2013dwa , the interference terms between different partial waves vanish upon angular integration in the branching ratios, but they may effect a number of angular observables of these decays, which have not been discussed in this work. Nevertheless, there still are the interference effects between nonresonant and resonant contributions as well as the ones between different scalar resonances in the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays, for example, between D+(a0(980)K¯0K0)+νD^{+}\to(a_{0}(980)\to\overline{K}^{0}K^{0})\ell^{+}\nu_{\ell} and D+(f0(980)K¯0K0)+νD^{+}\to(f_{0}(980)\to\overline{K}^{0}K^{0})\ell^{+}\nu_{\ell}. So the interference effects might also be important for the D0π0K+ν,D^{0}\to\pi^{0}K^{-}\ell^{+}\nu_{\ell}, Ds+π+π+ν,D^{+}_{s}\to\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}, Ds+π0π0+ν,D^{+}_{s}\to\pi^{0}\pi^{0}\ell^{+}\nu_{\ell}, D0KK0+ν,D^{0}\to K^{-}K^{0}\ell^{+}\nu_{\ell}, D0ηπ+ν,D^{0}\to\eta\pi^{-}\ell^{+}\nu_{\ell}, D0ηπ+ν,D^{0}\to\eta^{\prime}\pi^{-}\ell^{+}\nu_{\ell}, D+K¯0K0+ν,D^{+}\to\overline{K}^{0}K^{0}\ell^{+}\nu_{\ell}, D+π+π+νD^{+}\to\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}, D+π0π0+νD^{+}\to\pi^{0}\pi^{0}\ell^{+}\nu_{\ell}, D+ηπ0+νD^{+}\to\eta\pi^{0}\ell^{+}\nu_{\ell} and D+ηπ0+νD^{+}\to\eta^{\prime}\pi^{0}\ell^{+}\nu_{\ell} decays, in which the two or three kinds of contributions are important. Currently, we cannot determine the size of interference effects by the SU(3) flavor symmetry.

IV Summary

Semileptonic decays of heavy mesons are quite interesting not only because of relatively simple theoretical description but also the clean experimental signals. Some semileptonic decays DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} have been measured by BESIII, CLEO, and BABARBABAR, etc. Using the present data of (DP1P2+ν)\mathcal{B}(D\to P_{1}P_{2}\ell^{+}\nu_{\ell}) and the SU(3) flavor symmetry, we have presented a theoretical analysis of the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays with the nonresonant, the light scalar meson resonant, and the vector meson resonant contributions.

  • Nonresonant DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays: The amplitude relations including the SU(3) flavor breaking effects have been obtained. Almost all amplitudes can be related after ignoring the OZI suppressed and the SU(3) flavor breaking contributions. Via the experimental data of the nonresonant branching ratios (D+π+K+ν)N\mathcal{B}(D^{+}\to\pi^{+}K^{-}\ell^{+}\nu_{\ell})_{N}, we have predicted other nonresonant branching ratios. We have found that the branching ratios of the nonresonant decays D0πK¯0+ν,π0K+νD^{0}\to\pi^{-}\overline{K}^{0}\ell^{+}\nu_{\ell},\pi^{0}K^{-}\ell^{+}\nu_{\ell}, D+π+K+ν,π0K¯0+ν,π+π+ν,π0π0+νD^{+}\to\pi^{+}K^{-}\ell^{+}\nu_{\ell},\pi^{0}\overline{K}^{0}\ell^{+}\nu_{\ell},\pi^{+}\pi^{-}\ell^{+}\nu_{\ell},\pi^{0}\pi^{0}\ell^{+}\nu_{\ell}, and Ds+K+K+ν,K0K¯0+νD^{+}_{s}\to K^{+}K^{-}\ell^{+}\nu_{\ell},K^{0}\overline{K}^{0}\ell^{+}\nu_{\ell} are on the order of 𝒪(103104)\mathcal{O}(10^{-3}-10^{-4}), which might be measured by the BESIII, LHCb, and Belle II experiments, and some other decays might be measured at these experiments in the near future.

  • Decays with the light scalar meson resonances: Using the SU(3) flavor symmetry and the present experimental data of (DS+ν)\mathcal{B}(D\to S\ell^{+}\nu_{\ell}), (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}) as well as (SP1P2)\mathcal{B}(S\to P_{1}P_{2}), the not-measured (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}) have been obtained by the SU(3) flavor symmetry. We have found that (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}) with the cs+νc\to s\ell^{+}\nu_{\ell} transitions are predicted on the order of 𝒪(103104)\mathcal{O}(10^{-3}-10^{-4}), and (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},S\to P_{1}P_{2}) with the cd+νc\to d\ell^{+}\nu_{\ell} transitions are predicted on the order of 𝒪(104106)\mathcal{O}(10^{-4}-10^{-6}). The two-quark picture and the four-quark picture for the scalar mesons have been analyzed in the DS(SP1P2)+νD\to S(S\to P_{1}P_{2})\ell^{+}\nu_{\ell} decays. Present experimental data might favor the four-quark picture for the scalar mesons.

  • Decays with the vector meson resonances: Using the experimental data of (D+K¯0e+νe,K¯0π+K)\mathcal{B}(D^{+}\to\overline{K}^{*0}e^{+}\nu_{e},\leavevmode\nobreak\ \overline{K}^{*0}\to\pi^{+}K^{-}), (D+K¯0μ+νμ,K¯0π+K)\mathcal{B}(D^{+}\to\overline{K}^{*0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ \overline{K}^{*0}\to\pi^{+}K^{-}), many (DV+ν)\mathcal{B}(D\to V\ell^{+}\nu_{\ell}) and many (VP1P2)\mathcal{B}(V\to P_{1}P_{2}), the not-measured B(DV+ν,VP1P2)B(D\to V\ell^{+}\nu_{\ell},V\to P_{1}P_{2}) have been predicted by the SU(3) flavor symmetry. We have found that (DV+ν,VP1P2)\mathcal{B}(D\to V\ell^{+}\nu_{\ell},V\to P_{1}P_{2}) with the cs+νc\to s\ell^{+}\nu_{\ell} transitions are predicted on the order of 𝒪(102103)\mathcal{O}(10^{-2}-10^{-3}), and (DV+ν,VP1P2)\mathcal{B}(D\to V\ell^{+}\nu_{\ell},V\to P_{1}P_{2}) with the cd+νc\to d\ell^{+}\nu_{\ell} transitions are predicted on the order of 𝒪(103105)\mathcal{O}(10^{-3}-10^{-5}).

  • Total branching ratios: Total branching ratio predictions including the possible nonresonant, light scalar meson resonant and vector meson resonant contributions have been obtained. The six total branching ratios have been measured, and we did not use them to further constrain the predictions. Our five predictions are consistent with present data within 2σ2\sigma errors, and the prediction of (D0π0πe+νe)\mathcal{B}(D^{0}\to\pi^{0}\pi^{-}e^{+}\nu_{e}) will be very close to the datum within 3σ3\sigma error bars. We have found that the vector meson resonant contributions are dominant in the D0πK¯0+ν,π0K+ν,π0π+νD^{0}\to\pi^{-}\overline{K}^{0}\ell^{+}\nu_{\ell},\pi^{0}K^{-}\ell^{+}\nu_{\ell},\pi^{0}\pi^{-}\ell^{+}\nu_{\ell}, D+π+K+ν,π0K¯0+ν,π+π+νD^{+}\to\pi^{+}K^{-}\ell^{+}\nu_{\ell},\pi^{0}\overline{K}^{0}\ell^{+}\nu_{\ell},\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}, and Ds+K+K+ν,K0K¯0+ν,K+π+ν,K0π0+νD^{+}_{s}\to K^{+}K^{-}\ell^{+}\nu_{\ell},K^{0}\overline{K}^{0}\ell^{+}\nu_{\ell},K^{+}\pi^{-}\ell^{+}\nu_{\ell},K^{0}\pi^{0}\ell^{+}\nu_{\ell} decays. All three kinds of contributions are important in D0ηπ+νD^{0}\to\eta\pi^{-}\ell^{+}\nu_{\ell} decays. Both the nonresonant and the scalar resonant contributions are important in D0KK0+ν,ηπ+νD^{0}\to K^{-}K^{0}\ell^{+}\nu_{\ell},\eta^{\prime}\pi^{-}\ell^{+}\nu_{\ell} and D+K¯0K0+ν,π0π0+ν,ηπ0+ν,ηπ0+νD^{+}\to\overline{K}^{0}K^{0}\ell^{+}\nu_{\ell},\pi^{0}\pi^{0}\ell^{+}\nu_{\ell},\eta\pi^{0}\ell^{+}\nu_{\ell},\eta^{\prime}\pi^{0}\ell^{+}\nu_{\ell} decays.

Although SU(3) flavor symmetry is approximate, it can still provide very useful information about these decays. According to our rough predictions, many decay modes could be observed at BESIII, LHCb, and Belle II, and some decay modes might be measured in near future experiments. Therefore, the SU(3) flavor symmetry will be further tested by these semileptonic decays in future experiments.

ACKNOWLEDGEMENTS

The work was supported by the National Natural Science Foundation of China, No. 12175088.

References

References

  • (1) W. Wang and C. D. Lü, Phys. Rev. D 82 (2010), 034016 [arXiv:0910.0613 [hep-ph]].
  • (2) N. N. Achasov and A. V. Kiselev, Phys. Rev. D 86 (2012), 114010 [arXiv:1206.5500 [hep-ph]].
  • (3) E. Oset et al. Int. J. Mod. Phys. E 25 (2016), 1630001 [arXiv:1601.03972 [hep-ph]].
  • (4) M. Ablikim et al. [BESIII], [arXiv:2110.13994 [hep-ex]].
  • (5) M. Ablikim et al. [BESIII], Phys. Rev. Lett. 122 (2019) no.6, 062001 [arXiv:1809.06496 [hep-ex]].
  • (6) M. Ablikim et al. [BESIII], Phys. Rev. Lett. 121 (2018) no.8, 081802 [arXiv:1803.02166 [hep-ex]].
  • (7) M. Ablikim et al. [BESIII], Phys. Rev. D 103 (2021) no.9, 092004 [arXiv:2103.11855 [hep-ex]].
  • (8) K. M. Ecklund et al. [CLEO], Phys. Rev. D 80 (2009), 052009 [arXiv:0907.3201 [hep-ex]].
  • (9) P. del Amo Sanchez et al. [BaBar], Phys. Rev. D 83 (2011), 072001 [arXiv:1012.1810 [hep-ex]].
  • (10) Z. Bai et al. [MARK-III], Phys. Rev. Lett. 66 (1991), 1011-1014.
  • (11) R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
  • (12) X. W. Kang, B. Kubis, C. Hanhart and U. G. Meißner, Phys. Rev. D 89 (2014), 053015 [arXiv:1312.1193 [hep-ph]].
  • (13) Y. J. Shi, W. Wang and S. Zhao, Eur. Phys. J. C 77 (2017) no.7, 452 [arXiv:1701.07571 [hep-ph]].
  • (14) Y. J. Shi, C. Y. Seng, F. K. Guo, B. Kubis, U. G. Meißner and W. Wang, JHEP 04 (2021), 086 [arXiv:2011.00921 [hep-ph]].
  • (15) S. Cheng, A. Khodjamirian and J. Virto, JHEP 05 (2017), 157 [arXiv:1701.01633 [hep-ph]].
  • (16) T. Sekihara and E. Oset, Phys. Rev. D 92 (2015) no.5, 054038 [arXiv:1507.02026 [hep-ph]].
  • (17) C. Hambrock and A. Khodjamirian, Nucl. Phys. B 905 (2016), 373-390 [arXiv:1511.02509 [hep-ph]].
  • (18) P. Böer, T. Feldmann and D. van Dyk, JHEP 02 (2017), 133 [arXiv:1608.07127 [hep-ph]].
  • (19) X. G. He, Eur. Phys. J. C 9, 443 (1999) [hep-ph/9810397].
  • (20) X. G. He, Y. K. Hsiao, J. Q. Shi, Y. L. Wu and Y. F. Zhou, Phys. Rev. D 64, 034002 (2001) [hep-ph/0011337].
  • (21) H. K. Fu, X. G. He and Y. K. Hsiao, Phys. Rev. D 69, 074002 (2004) [hep-ph/0304242].
  • (22) Y. K. Hsiao, C. F. Chang and X. G. He, Phys. Rev. D 93, no. 11, 114002 (2016) [arXiv:1512.09223 [hep-ph]].
  • (23) X. G. He and G. N. Li, Phys. Lett. B 750, 82 (2015) [arXiv:1501.00646 [hep-ph]].
  • (24) M. Gronau, O. F. Hernandez, D. London and J. L. Rosner, Phys. Rev. D 50, 4529 (1994) [hep-ph/9404283].
  • (25) M. Gronau, O. F. Hernandez, D. London and J. L. Rosner, Phys. Rev. D 52, 6356 (1995) [hep-ph/9504326].
  • (26) S. H. Zhou, Q. A. Zhang, W. R. Lyu and C. D. Lü, Eur. Phys. J. C 77, no. 2, 125 (2017) [arXiv:1608.02819 [hep-ph]].
  • (27) H. Y. Cheng, C. W. Chiang and A. L. Kuo, Phys. Rev. D 91, no. 1, 014011 (2015) [arXiv:1409.5026 [hep-ph]].
  • (28) M. He, X. G. He and G. N. Li, Phys. Rev. D 92, no. 3, 036010 (2015) [arXiv:1507.07990 [hep-ph]].
  • (29) N. G. Deshpande and X. G. He, Phys. Rev. Lett.  75, 1703 (1995) [hep-ph/9412393].
  • (30) S. Shivashankara, W. Wu and A. Datta, Phys. Rev. D 91, 115003 (2015) [arXiv:1502.07230 [hep-ph]].
  • (31) R. M. Wang, Y. G. Xu, C. Hua and X. D. Cheng, Phys. Rev. D 103 (2021) no.1, 013007 [arXiv:2101.02421 [hep-ph]].
  • (32) R. M. Wang, X. D. Cheng, Y. Y. Fan, J. L. Zhang and Y. G. Xu, J. Phys. G 48 (2021), 085001 [arXiv:2008.06624 [hep-ph]].
  • (33) Y. Grossman and D. J. Robinson, JHEP 1304, 067 (2013) [arXiv:1211.3361 [hep-ph]].
  • (34) D. Pirtskhalava and P. Uttayarat, Phys. Lett. B 712, 81 (2012) [arXiv:1112.5451 [hep-ph]].
  • (35) M. J. Savage and R. P. Springer, Phys. Rev. D 42, 1527 (1990).
  • (36) M. J. Savage, Phys. Lett. B 257, 414 (1991).
  • (37) G. Altarelli, N. Cabibbo and L. Maiani, Phys. Lett.  57B, 277 (1975).
  • (38) C. D. Lü, W. Wang and F. S. Yu, Phys. Rev. D 93, no. 5, 056008 (2016) [arXiv:1601.04241 [hep-ph]].
  • (39) C. Q. Geng, Y. K. Hsiao, Y. H. Lin and L. L. Liu, Phys. Lett. B 776, 265 (2018) [arXiv:1708.02460 [hep-ph]].
  • (40) C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, Phys. Rev. D 97, no. 7, 073006 (2018) [arXiv:1801.03276 [hep-ph]].
  • (41) C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, JHEP 1711, 147 (2017) [arXiv:1709.00808 [hep-ph]].
  • (42) C. Q. Geng, C. W. Liu, T. H. Tsai and S. W. Yeh, arXiv:1901.05610 [hep-ph].
  • (43) W. Wang, Z. P. Xing and J. Xu, Eur. Phys. J. C 77, no. 11, 800 (2017) [arXiv:1707.06570 [hep-ph]].
  • (44) D. Wang, arXiv:1901.01776 [hep-ph].
  • (45) D. Wang, P. F. Guo, W. H. Long and F. S. Yu, JHEP 1803, 066 (2018) [arXiv:1709.09873 [hep-ph]].
  • (46) S. Müller, U. Nierste and S. Schacht, Phys. Rev. D 92, no. 1, 014004 (2015) [arXiv:1503.06759 [hep-ph]].
  • (47) R. M. Wang, M. Z. Yang, H. B. Li and X. D. Cheng, Phys. Rev. D 100 (2019) no.7, 076008 [arXiv:1906.08413 [hep-ph]].
  • (48) Y. G. Xu, X. D. Cheng, J. L. Zhang and R. M. Wang, J. Phys. G 47 (2020) no.8, 085005 [arXiv:2001.06907 [hep-ph]].
  • (49) H. M. Chang, M. González-Alonso and J. Martin Camalich, Phys. Rev. Lett. 114 (2015), 161802 [arXiv:1412.8484 [hep-ph]].
  • (50) P. Zenczykowski, Phys. Rev. D 73 (2006), 076005 [arXiv:hep-ph/0512122 [hep-ph]].
  • (51) P. Zenczykowski, Nucl. Phys. B Proc. Suppl. 167 (2007), 54-57 [arXiv:hep-ph/0610191 [hep-ph]].
  • (52) N. Cabibbo, Phys. Rev. Lett. 10 (1963), 531-533.
  • (53) H. Y. Cheng and C. W. Chiang, Phys. Rev. D 86, 014014 (2012) [arXiv:1205.0580 [hep-ph]].
  • (54) A. Dery, M. Ghosh, Y. Grossman and S. Schacht, JHEP 03 (2020), 165 [arXiv:2001.05397 [hep-ph]].
  • (55) S. Sasaki and T. Yamazaki, Phys. Rev. D 79 (2009), 074508 [arXiv:0811.1406 [hep-ph]].
  • (56) T. N. Pham, Phys. Rev. D 87 (2013) no.1, 016002 [arXiv:1210.3981 [hep-ph]].
  • (57) C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, Eur. Phys. J. C 78 (2018) no.7, 593 [arXiv:1804.01666 [hep-ph]].
  • (58) R. Flores-Mendieta, E. E. Jenkins and A. V. Manohar, Phys. Rev. D 58 (1998), 094028 [arXiv:hep-ph/9805416 [hep-ph]].
  • (59) D. Xu, G. N. Li and X. G. He, Int. J. Mod. Phys. A 29 (2014), 1450011 [arXiv:1307.7186 [hep-ph]].
  • (60) X. G. He, G. N. Li and D. Xu, Phys. Rev. D 91 (2015) no.1, 014029 [arXiv:1410.0476 [hep-ph]].
  • (61) Y. J. Shi and U. G. Meißner, Eur. Phys. J. C 81 (2021) no.5, 412 [arXiv:2103.12977 [hep-ph]].
  • (62) C. S. Kim, G. L. Castro and S. L. Tostado, Phys. Rev. D 95 (2017) no.7, 073003 [arXiv:1702.01704 [hep-ph]].
  • (63) N. N. Achasov, A. V. Kiselev and G. N. Shestakov, Phys. Rev. D 104 (2021) no.1, 016034 [arXiv:2106.10670 [hep-ph]].
  • (64) J. Wiss, eConf C070805 (2007), 34 [arXiv:0709.3247 [hep-ex]].
  • (65) W. Wang, Phys. Lett. B 759 (2016), 501-506 [arXiv:1602.05288 [hep-ph]].
  • (66) N. N. Achasov, A. V. Kiselev and G. N. Shestakov, Phys. Rev. D 102 (2020) no.1, 016022 [arXiv:2005.06455 [hep-ph]].
  • (67) S. Faller, T. Feldmann, A. Khodjamirian, T. Mannel and D. van Dyk, Phys. Rev. D 89 (2014) no.1, 014015 [arXiv:1310.6660 [hep-ph]].
  • (68) X. G. He, Y. J. Shi and W. Wang, Eur. Phys. J. C 80, no.5, 359 (2020) [arXiv:1811.03480 [hep-ph]].
  • (69) H. Y. Cheng, C. K. Chua and K. C. Yang, Phys. Rev. D 73 (2006), 014017 [arXiv:hep-ph/0508104 [hep-ph]].
  • (70) L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. Lett. 93 (2004), 212002 [arXiv:hep-ph/0407017 [hep-ph]].
  • (71) L. Y. Dai, X. W. Kang and U. G. Meißner, Phys. Rev. D 98 (2018) no.7, 074033 [arXiv:1808.05057 [hep-ph]].
  • (72) G. ’t Hooft, G. Isidori, L. Maiani, A. D. Polosa and V. Riquer, Phys. Lett. B 662 (2008), 424-430 [arXiv:0801.2288 [hep-ph]].
  • (73) J. R. Pelaez, Phys. Rev. Lett. 92 (2004), 102001 [arXiv:hep-ph/0309292 [hep-ph]].
  • (74) Y. J. Sun, Z. H. Li and T. Huang, Phys. Rev. D 83 (2011), 025024 [arXiv:1011.3901 [hep-ph]].
  • (75) J. A. Oller and E. Oset, Nucl. Phys. A 620 (1997), 438-456 [erratum: Nucl. Phys. A 652 (1999), 407-409] [arXiv:hep-ph/9702314 [hep-ph]].
  • (76) V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova and A. E. Kudryavtsev, Phys. Lett. B 586 (2004), 53-61 [arXiv:hep-ph/0308129 [hep-ph]].
  • (77) N. N. Achasov, V. V. Gubin and V. I. Shevchenko, Phys. Rev. D 56 (1997), 203-211 doi:10.1103/PhysRevD.56.203 [arXiv:hep-ph/9605245 [hep-ph]].
  • (78) S. Momeni and M. Saghebfar, Eur. Phys. J. C 82 (2022) no.5, 473.
  • (79) R. Aaij et al. [LHCb], Phys. Rev. D 87 (2013) no.5, 052001 [arXiv:1301.5347 [hep-ex]].
  • (80) R. L. Jaffe, Phys. Rev. D 15 (1977), 267.
  • (81) Ru-Min Wang, Yue-Xin Liu, Chong Hua, Jin-Huan Sheng, Yuan-Guo Xu, arXiv:2301.00079[hep-ph].
  • (82) S. Okubo, Phys. Lett. 5 (1963), 165-168.
  • (83) H. J. Lipkin, Nucl. Phys. B 291 (1987), 720-730.
  • (84) H. J. Lipkin and B. s. Zou, Phys. Rev. D 53 (1996), 6693-6696.
  • (85) H. Y. Cheng and C. K. Chua, Phys. Rev. D 102 (2020) no.5, 053006 [arXiv:2007.02558 [hep-ph]].
  • (86) J. Hietala, D. Cronin-Hennessy, T. Pedlar and I. Shipsey, Phys. Rev. D 92 (2015) no.1, 012009 [arXiv:1505.04205 [hep-ex]].