This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Fourier analysis of spatial point processes

Junho Yang Email: junhoyang@stat.sinica.edu.tw Institute of Statistical Science, Academia Sinica Yongtao Guan Email: guanyongtao@cuhk.edu.cn Shenzhen Research Institute of Big Data, School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen)
Abstract

In this article, we develop comprehensive frequency domain methods for estimating and inferring the second-order structure of spatial point processes. The main element here is on utilizing the discrete Fourier transform (DFT) of the point pattern and its tapered counterpart. Under second-order stationarity, we show that both the DFTs and the tapered DFTs are asymptotically jointly independent Gaussian even when the DFTs share the same limiting frequencies. Based on these results, we establish an α\alpha-mixing central limit theorem for a statistic formulated as a quadratic form of the tapered DFT. As applications, we derive the asymptotic distribution of the kernel spectral density estimator and establish a frequency domain inferential method for parametric stationary point processes. For the latter, the resulting model parameter estimator is computationally tractable and yields meaningful interpretations even in the case of model misspecification. We investigate the finite sample performance of our estimator through simulations, considering scenarios of both correctly specified and misspecified models.

Keywords and phrases: Bartlett’s spectrum, data tapering, discrete Fourier transform, inhomogeneous point processes, stationary point processes, Whittle likelihood.

1 Introduction

Spatial point patterns, which are collections of events in space, are increasingly common across various disciplines, including seismology (Zhuang et al. (2004)), epidemiology (Gabriel and Diggle (2009)), ecology (Warton and Shepherd (2010)), and network analysis (D’Angelo et al. (2022)). A common assumption when analyzing such point patterns is that the underlying spatial point process is second-order stationary or second-order intensity reweighted stationary (Baddeley et al. (2000)). Under these assumptions, a majority of estimation procedures for the second-order structure of a spatial point process can be conducted through well-established tools in the spatial domain, such as the pair correlation function and KK-function (Illian et al. (2008); Waagepetersen and Guan (2009)). For a comprehensive review of spatial domain approaches, we refer the readers to Møller and Waagepetersen (2004), Chapter 4.

However, considerably less attention has been devoted to estimations in the frequency domain. In his pioneering work, Bartlett (1964) defined the spectral density function of a second-order stationary point process in two-dimensional space and proposed using the periodogram, a squared modulus of the discrete Fourier transform (DFT), as an estimator of the spectral density. For practical implementations, Mugglestone and Renshaw (1996) provided a guide to using periodograms with illustrative examples. Rajala et al. (2023) derived detailed calculations for the first- and second-order moments of the DFTs and periodograms for fixed frequencies. Despite these advances, theoretical properties of DFTs and periodograms remain largely unexplored. For example, fundamental properties for the DFTs of time series, such as asymptotic uncorrelatedness and asymptotic joint normality of the DFTs (cf. Brillinger (1981), Chapters 4.3 and 4.4), are yet to be rigorously investigated in the spatial point process setting.

One inherent challenge in conducting spectral analysis of spatial point processes is that spatial point patterns are irregularly scattered. As such, theoretical tools designed for time series data or spatial gridded data cannot be readily extended to the spatial point process setting. One potential solution is to discretize the (spatial or temporal) point pattern using regular bins. This approach allows the application of classical spectral methods from the “regular” time series or random fields to the aggregated count data. For example, Cheysson and Lang (2022) developed a frequency domain parameter estimation method for the one-dimentional stationary binned Hawkes process (refer to Section 5.1 below for details on the Hawkes process). See also Shlomovich et al. (2022) for the use of the binned Hawkes process to estimate the parameters in the spatial domain. However, aggregating events may introduce additional errors, and there is no theoretical result for binned count processes beyond the stationary Hawkes process case.

In this article, instead of focusing on the discretized count data, we aim to present a new frequency domain approach for spatial point processes utilizing the “complete” information in the process. In Section 2, we cover relevant terminologies (Section 2.1), review the concept of the DFT and periodogram incorporating data tapering (Section 2.2), and provide features contained in the spectral density functions and periodograms with illustrations (Section 2.3). Building on these concepts, we show in Section 3.1 that under an increasing domain framework and an α\alpha-mixing condition, the DFTs are asymptotically jointly Gaussian, even when the DFTs share the same limiting frequencies. Therefore, our asymptotic results extend those of Rajala et al. (2023), who considered only fixed frequencies, enabling us to quantify statistics written in terms of the integrated periodogram (we will elaborate on this below).

A crucial aspect of showing asymptotic joint normality of the DFTs is utilizing spectral analysis tools for irregularly spaced spatial data. Matsuda and Yajima (2009) proposed a novel framework to define the DFT for irregularly spaced spatial data, where the observation locations are generated from a probability distribution on the observation domain. Intriguingly, the DFTs for spatial point processes and those for irregularly spaced spatial data exhibit similar structures. Therefore, tools developed for irregularly spaced spatial data, such as those by Bandyopadhyay and Lahiri (2009) and Subba Rao (2018), are also useful in spatial point process setting.

Despite the aforementioned similarities, it is important to note that the stochastic mechanisms generating spatial point patterns and irregularly spaced spatial data are very different. The former considers the number of events in a fixed area being random, while the latter determines a (deterministic) number of sampling locations at which the random field is observed. Moreover, from a technical point of view, unlike the random field case, the spectral density function f(𝝎)f(\boldsymbol{\omega}) of the spatial point process, as given in (2.5) below, is not absolutely integrable. Therefore, the interchange of summations in the expansions of covariances and cumulants of the DFTs is not straightforward. To reconcile the differences between the spatial point process and irregularly spaced spatial data settings, we introduce in Sections 3.1 and 4 several new assumptions tailored to the spatial point process setting. In Section 5, we verify these assumptions for four widely used point process models, namely the Hawkes process, Neyman-Scott point process, log-Gaussian Cox process, and determinantal point process.

Expanding on the theoretical properties of the DFTs for spatial point processes, we also consider parameter estimations. Our main interest lies in parameters expressed in terms of the spectral mean of the form Dϕ(𝝎)f(𝝎)𝑑𝝎\int_{D}\phi(\boldsymbol{\omega})f(\boldsymbol{\omega})d\boldsymbol{\omega}, where DdD\subset\mathbb{R}^{d} is a prespecified compact region and ϕ()\phi(\cdot) is a continuous function on DD. To estimate the spectral mean, we employ the integrated periodogram as defined in (4.1) below. Parameters and estimators in this nature were first considered in Parzen (1957) and have since garnered great attention in the time series literature, given that both the kernel spectral density and autocovariance estimator take this general form. In Section 4, we derive the central limit theorem (CLT) for the integrated periodogram under an α\alpha-mixing condition. We note that since the integrated periodogram is written as a quadratic form of the DFTs, one cannot directly use the standard techniques to show the CLT for α\alpha-mixed point processes, as reviewed in Biscio and Waagepetersen (2019), Section 1. Instead, we use a series of approximation techniques to prove the CLT for the integrated periodogram. See Appendices A.4 and F in the Supplementary Material for details. As a direct application, in Theorem 4.2, we derive the asymptotic distribution of the kernel spectral density estimator.

Another major application of the integrated periodogram is the model parameter estimation. Whittle (1953) introduced the periodogram-based approximation of the Gaussian likelihood for stationary time series. Subsequently, the concept of Whittle likelihood was extended to lattice (Guyon (1982); Dahlhaus and Künsch (1987)) and irregularly spaced spatial data (Matsuda and Yajima (2009); Subba Rao (2018)). In Section 6, we develop a procedure to fit parametric spatial point process models based on the Whittle-type likelihood (hereafter, just Whittle likelihood) and obtain sampling properties of the resulting estimator. A noteworthy aspect of our estimator is that it not only estimates the true parameter when the model is correctly specified but also estimates the best fitting parameter when the model is misspecified, where “best” is defined in terms of the spectral divergence criterion. While misspecified first-order intensity models have been considered (e.g., Choiruddin et al. (2021)), as far as we aware, our result is the first attempt that studies both the first- and second-order model misspecifications for (stationary) spatial point processes. In Section 7, we compare the performances of our estimator and two existing estimation methods in the spatial domain through simulations.

Lastly, proofs, auxiliary results, and additional simulations can be found in the Supplementary Material, Yang and Guan (2024) (hereafter, just Appendix).

2 Spectral density functions for the second-order stationary point processes

2.1 Preliminaries

In this section, we introduce the notation used throughout the article and review terminologies related to the mathematical presentation of spatial point processes.

Let dd\in\mathbb{N} and let \mathbb{R} and \mathbb{C} be the real and complex fields, respectively. For a set AA, n(A)n(A) denotes the cardinality of AA and An,A^{n,\neq} (nn\in\mathbb{N}) denotes a set containing all nn-tuples of pairwise disjoint points in AA. For a vector 𝒗=(v1,,vd)d\boldsymbol{v}=(v_{1},\dots,v_{d})^{\top}\in\mathbb{C}^{d}, |𝒗|=j=1d|vj||\boldsymbol{v}|=\sum_{j=1}^{d}|v_{j}|, 𝒗={j=1d|vj|2}1/2\|\boldsymbol{v}\|=\{\sum_{j=1}^{d}|v_{j}|^{2}\}^{1/2}, and 𝒗=max1jd|vj|\|\boldsymbol{v}\|_{\infty}=\max_{1\leq j\leq d}|v_{j}| denote the 1\ell_{1} norm, Euclidean norm, and maximum norm, respectively. For vectors 𝒖=(u1,,ud)\boldsymbol{u}=(u_{1},\dots,u_{d})^{\top} and 𝒗=(v1,,vd)\boldsymbol{v}=(v_{1},\dots,v_{d})^{\top} in d\mathbb{R}^{d}, 𝒖𝒗=(u1v1,,udvd)\boldsymbol{u}\cdot\boldsymbol{v}=(u_{1}v_{1},\dots,u_{d}v_{d})^{\top} and 𝒖/𝒗=(u1/v1,,ud/vd)\boldsymbol{u}/\boldsymbol{v}=(u_{1}/v_{1},\dots,u_{d}/v_{d})^{\top}, provided v1,,vd0v_{1},\dots,v_{d}\neq 0. Now we define functional spaces. For p[1,)p\in[1,\infty) and kk\in\mathbb{N}, Lp(k)L^{p}(\mathbb{R}^{k}) denotes the set of all measurable functions g:kg:\mathbb{R}^{k}\rightarrow\mathbb{C} such that k|g|p<\int_{\mathbb{R}^{k}}|g|^{p}<\infty. For gg in either L1(k)L^{1}(\mathbb{R}^{k}) or L2(k)L^{2}(\mathbb{R}^{k}), the Fourier transform and the inverse Fourier transform are respectively defined as

(g)()=kg(𝒙)exp(i𝒙)d𝒙and1(g)()=(2π)kkg(𝒙)exp(i𝒙)d𝒙.\mathcal{F}(g)(\cdot)=\int_{\mathbb{R}^{k}}g(\boldsymbol{x})\exp(i\boldsymbol{x}^{\top}\cdot)d\boldsymbol{x}\quad\text{and}\quad\mathcal{F}^{-1}(g)(\cdot)=(2\pi)^{-k}\int_{\mathbb{R}^{k}}g(\boldsymbol{x})\exp(-i\boldsymbol{x}^{\top}\cdot)d\boldsymbol{x}.

Throughout this article, let XX be a simple spatial point process defined on d\mathbb{R}^{d}. Then, the nnth-order intensity function (also known as the product density function) of XX, denoted as λn:nd[0,)\lambda_{n}:\mathbb{R}^{nd}\rightarrow[0,\infty), satisfies the following identity

𝔼[(𝒙1,,𝒙n)Xn(d)n,q(𝒙1,,𝒙n)]=q(𝒙1,,𝒙n)λn(𝒙1,,𝒙n)j=1nd𝒙j\mathbb{E}\bigg{[}\sum_{(\boldsymbol{x}_{1},\dots,\boldsymbol{x}_{n})\in X^{n}\cap(\mathbb{R}^{d})^{n,\neq}}q(\boldsymbol{x}_{1},\dots,\boldsymbol{x}_{n})\bigg{]}=\int q(\boldsymbol{x}_{1},\dots,\boldsymbol{x}_{n})\lambda_{n}(\boldsymbol{x}_{1},\dots,\boldsymbol{x}_{n})\prod_{j=1}^{n}d\boldsymbol{x}_{j} (2.1)

for any positive measurable function q:nd[0,)q:\mathbb{R}^{nd}\rightarrow[0,\infty). Next, we define the cumulant intensity functions. For nn\in\mathbb{N}, let SnS_{n} be the set of all partitions of {1,,n}\{1,\dots,n\} and for B={i1,,im}{1,,n}B=\{i_{1},\dots,i_{m}\}\subseteq\{1,\dots,n\} (mnm\leq n), let λn(B)(𝒙B)=λm(𝒙i1,,𝒙im)\lambda_{n(B)}(\boldsymbol{x}_{B})=\lambda_{m}(\boldsymbol{x}_{i_{1}},\dots,\boldsymbol{x}_{i_{m}}). Then, the nnth-order cumulant intensity function (cf. Brillinger (1981), Chapter 2.3) of XX is defined as

γn(𝒙1,,𝒙n)=πSn(n(π)1)!(1)n(π)1Bπλn(B)(𝒙B),𝒙1,,𝒙nd.\gamma_{n}(\boldsymbol{x}_{1},\dots,\boldsymbol{x}_{n})=\sum_{\pi\in S_{n}}(n(\pi)-1)!(-1)^{n(\pi)-1}\prod_{B\in\pi}\lambda_{n(B)}(\boldsymbol{x}_{B}),\quad\boldsymbol{x}_{1},\dots,\boldsymbol{x}_{n}\in\mathbb{R}^{d}. (2.2)

2.2 Spectral density function and its estimator

From now onwards, we assume that XX is a kkth-order stationary (k2k\geq 2) point process. An extension to the nonstationary point process case will be discussed in Section I. Under the kkth-order stationarity, we can define the nnth-order reduced intensity functions as follows:

λn(𝒙1,,𝒙n)=λn,red(𝒙1𝒙n,,𝒙n1𝒙n),n{1,,k}.\lambda_{n}(\boldsymbol{x}_{1},\dots,\boldsymbol{x}_{n})=\lambda_{n,\text{red}}(\boldsymbol{x}_{1}-\boldsymbol{x}_{n},\dots,\boldsymbol{x}_{n-1}-\boldsymbol{x}_{n}),\quad n\in\{1,\dots,k\}. (2.3)

The nnth-order reduced cumulant intensity function, denoted as γn,red\gamma_{n,\text{red}}, is defined similarly, but replacing λn\lambda_{n} with γn\gamma_{n} in (2.3). In particular, when n=1n=1, we use the common notation λ1,red=γ1,red=λ\lambda_{1,\text{red}}=\gamma_{1,\text{red}}=\lambda and refer to it as the (constant) first-order intensity.

Next, the complete covariance function of XX at two locations 𝒙1,𝒙2d\boldsymbol{x}_{1},\boldsymbol{x}_{2}\in\mathbb{R}^{d} (which are not necessarily distinct) in the sense of Bartlett (1964) is defined as

C(𝒙1𝒙2)=λδ(𝒙1𝒙2)+γ2,red(𝒙1𝒙2),C(\boldsymbol{x}_{1}-\boldsymbol{x}_{2})=\lambda\delta(\boldsymbol{x}_{1}-\boldsymbol{x}_{2})+\gamma_{2,\text{red}}(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}), (2.4)

where δ()\delta(\cdot) is the Dirac-delta function. Heuristically, C(𝒙1𝒙2)d𝒙1d𝒙2C(\boldsymbol{x}_{1}-\boldsymbol{x}_{2})d\boldsymbol{x}_{1}d\boldsymbol{x}_{2} is the covariance density of NX(d𝒙1)N_{X}(d\boldsymbol{x}_{1}) and NX(d𝒙2)N_{X}(d\boldsymbol{x}_{2}), where NX()N_{X}(\cdot) is the counting measure induced by XX and d𝒙d\boldsymbol{x} is an infinitesimal region in d\mathbb{R}^{d} that contains 𝒙\boldsymbol{x}. Provided that γ2,redL1(d)\gamma_{2,\text{red}}\in L^{1}(\mathbb{R}^{d}), we can define the non-negative valued spectral density function of XX by the inverse Fourier transform of C()C(\cdot) as

f(𝝎)=(2π)ddC(𝒔)exp(i𝒙𝝎)𝑑𝒙=(2π)dλ+1(γ2,red)(𝝎),𝝎d.f(\boldsymbol{\omega})=(2\pi)^{-d}\int_{\mathbb{R}^{d}}C(\boldsymbol{s})\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega})d\boldsymbol{x}=(2\pi)^{-d}\lambda+\mathcal{F}^{-1}(\gamma_{2,\text{red}})(\boldsymbol{\omega}),\quad\boldsymbol{\omega}\in\mathbb{R}^{d}. (2.5)

Here, we use (2.4) in the second identity. See Daley and Vere-Jones (2003), Sections 8.2 for the mathematical construction of Bartlett’s spectral density function.

To estimate the spectral density function, we assume that the point process XX is observed within a compact domain (window) DndD_{n}\subset\mathbb{R}^{d} of the form

Dn=[A1/2,A1/2]×[Ad/2,Ad/2],n,D_{n}=[-A_{1}/2,A_{1}/2]\times\dots[-A_{d}/2,A_{d}/2],\quad n\in\mathbb{N}, (2.6)

where for i{1,,d}i\in\{1,\dots,d\}, {Ai=Ai(n)}n=1\{A_{i}=A_{i}(n)\}_{n=1}^{\infty} is an increasing sequence of positive numbers. Now, we define the DFT of the observed point pattern that incorporates data tapering—a commonly used approach to mitigate the bias inherent in the periodogram (Tukey (1967)). Let h()h(\cdot) be a non-negative data taper on d\mathbb{R}^{d} with compact support [1/2,1/2]d[-1/2,1/2]^{d}. For a domain DnD_{n} of form (2.6), let

Hh,k(n)(𝝎)=Dnh(𝒙/𝑨)kexp(i𝒙𝝎)𝑑𝒙,k,𝝎d,H_{h,k}^{(n)}(\boldsymbol{\omega})=\int_{D_{n}}h(\boldsymbol{x}/\boldsymbol{A})^{k}\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega})d\boldsymbol{x},\quad k\in\mathbb{N},\quad\boldsymbol{\omega}\in\mathbb{R}^{d}, (2.7)

where h(𝒙/𝑨)=h(x1/A1,,xd/Ad)h(\boldsymbol{x}/\boldsymbol{A})=h(x_{1}/A_{1},\dots,x_{d}/A_{d}). Let Hh,k=[1/2,1/2]dh(𝒙)k𝑑𝒙H_{h,k}=\int_{[-1/2,1/2]^{d}}h(\boldsymbol{x})^{k}d\boldsymbol{x}, kk\in\mathbb{N}. Throughout the article, we assume Hh,k>0H_{h,k}>0, kk\in\mathbb{N}. Using these notation, the DFT incorporating data taper hh is defined as

𝒥h,n(𝝎)=(2π)d/2Hh,21/2|Dn|1/2𝒙XDnh(𝒙/𝑨)exp(i𝒙𝝎),𝝎d,\mathcal{J}_{h,n}(\boldsymbol{\omega})=(2\pi)^{-d/2}H_{h,2}^{-1/2}|D_{n}|^{-1/2}\sum_{\boldsymbol{x}\in X\cap D_{n}}h(\boldsymbol{x}/\boldsymbol{A})\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega}),\quad\boldsymbol{\omega}\in\mathbb{R}^{d}, (2.8)

where |Dn||D_{n}| denotes the volume of DnD_{n}. We note that by setting h(𝒙)=1h(\boldsymbol{x})=1 on [1/2,1/2]d[-1/2,1/2]^{d}, the tapered DFT above encompasses the non-tapered DFT

𝒥n(𝝎)=(2π)d/2|Dn|1/2𝒙XDnexp(i𝒙𝝎),𝝎d.\mathcal{J}_{n}(\boldsymbol{\omega})=(2\pi)^{-d/2}|D_{n}|^{-1/2}\sum_{\boldsymbol{x}\in X\cap D_{n}}\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega}),\quad\boldsymbol{\omega}\in\mathbb{R}^{d}. (2.9)

Unless otherwise specified, we will use the term “DFT” to indicate the tapered DFT defined as in (2.8). Unlike the classical setting in time series or random fields, the DFT is not centered. By applying (2.1), it can be easily seen that 𝔼[𝒥h,n(𝝎)]=λch,n(𝝎)\mathbb{E}[\mathcal{J}_{h,n}(\boldsymbol{\omega})]=\lambda c_{h,n}(\boldsymbol{\omega}), where

ch,n(𝝎)=(2π)d/2Hh,21/2|Dn|1/2Hh,1(n)(𝝎),𝝎d,c_{h,n}(\boldsymbol{\omega})=(2\pi)^{-d/2}H_{h,2}^{-1/2}|D_{n}|^{-1/2}H_{h,1}^{(n)}(\boldsymbol{\omega}),\quad\boldsymbol{\omega}\in\mathbb{R}^{d}, (2.10)

is the bias factor. Therefore, the centered DFT is defined as

Jh,n(𝝎)=𝒥h,n(𝝎)𝔼[𝒥h,n(𝝎)]=𝒥h,n(𝝎)λch,n(𝝎),𝝎d.J_{h,n}(\boldsymbol{\omega})=\mathcal{J}_{h,n}(\boldsymbol{\omega})-\mathbb{E}[\mathcal{J}_{h,n}(\boldsymbol{\omega})]=\mathcal{J}_{h,n}(\boldsymbol{\omega})-\lambda c_{h,n}(\boldsymbol{\omega}),\quad\boldsymbol{\omega}\in\mathbb{R}^{d}. (2.11)

To estimate the unknown first-order intensity, the feasible criterion of Jh,n()J_{h,n}(\cdot) becomes

J^h,n(𝝎)=𝒥h,n(𝝎)λ^h,nch,n(𝝎),𝝎d,\widehat{J}_{h,n}(\boldsymbol{\omega})=\mathcal{J}_{h,n}(\boldsymbol{\omega})-\widehat{\lambda}_{h,n}c_{h,n}(\boldsymbol{\omega}),\quad\boldsymbol{\omega}\in\mathbb{R}^{d}, (2.12)

where λ^h,n=Hh,11|Dn|1𝒙XDnh(𝒙/𝑨)\widehat{\lambda}_{h,n}=H_{h,1}^{-1}|D_{n}|^{-1}\sum_{\boldsymbol{x}\in X\cap D_{n}}h(\boldsymbol{x}/\boldsymbol{A}) (nn\in\mathbb{N}) is an unbiased estimator of λ\lambda.

Finally, we define the periodogram and its feasible criterion respectively by

Ih,n(𝝎)=|Jh,n(𝝎)|2andI^h,n(𝝎)=|J^h,n(𝝎)|2,𝝎d.\displaystyle I_{h,n}(\boldsymbol{\omega})=|J_{h,n}(\boldsymbol{\omega})|^{2}\quad\hbox{and}\quad\widehat{I}_{h,n}(\boldsymbol{\omega})=|\widehat{J}_{h,n}(\boldsymbol{\omega})|^{2},\quad\boldsymbol{\omega}\in\mathbb{R}^{d}. (2.13)

2.3 Features of the spectral density functions and their estimators

To motivate the spectral approaches for spatial point processes, the top panel of Figure 1 display four spatial point patterns on the observation domain [20,20]2[-20,20]^{2}. These patterns are generated from four different stationary isotropic point process models, exhibiting clustering behaviors in realizations A and B but repulsive behaviors in realizations C and D. All four models share the same first-order intensity, set at 0.5. In the middle panel of Figure 1, we plot the pair correlation function (PCF; middle left) and spectral density function (middle right) for each process.

Realizations

Refer to caption

Pair correlation functions and spectral density functions

Refer to caption
Refer to caption

Periodograms

Refer to caption
Figure 1: Top: Realizations of the four different stationary isotropic spatial point processes on the observation domain [20,20]2[-20,20]^{2}. Middle left: Plot of the pair correlation function g(𝐱)1g(\boldsymbol{x})-1 against 𝐱[0,)\|\boldsymbol{x}\|\in[0,\infty) for each model. Middle right: Plot of the spectral density function f(𝛚)f(\boldsymbol{\omega}) in log-scale against 𝛚[0,)\|\boldsymbol{\omega}\|\in[0,\infty) for each model. Bottom: Plot of the periodogram I^h,n(𝛚)\widehat{I}_{h,n}(\boldsymbol{\omega}).

We now investigate how the features of the spatial point patterns are reflected in the spectral density functions. Since the PCF g(𝒙)=γ2,red(𝒙)/λ2+1g(\boldsymbol{x})=\gamma_{2,\text{red}}(\boldsymbol{x})/\lambda^{2}+1, by using (2.5), we have

f(𝝎)(2π)dλ=λ21(g1)(𝝎),𝝎2.f(\boldsymbol{\omega})-(2\pi)^{-d}\lambda=\lambda^{2}\mathcal{F}^{-1}(g-1)(\boldsymbol{\omega}),\quad\boldsymbol{\omega}\in\mathbb{R}^{2}. (2.14)

Given the uniqueness of the Fourier transform, the information contained in the spectral density function can be fully recovered from the first-order intensity and the PCF, and vice versa. However, while the PCF g(𝒙)g(\boldsymbol{x}) captures only ”local” information of the point process at a certain lag 𝒙\boldsymbol{x}, the spectral density function encapsulates ”global” information of the point process, including the first-order intensity (at high frequencies) and overall clustering/repulsive behavior (at low frequencies).

High frequency information. Assuming g1L1(2)g-1\in L^{1}(\mathbb{R}^{2}) (which is equivalent to the Assumption 3.2 for =2\ell=2 below), (2.14) implies lim𝝎f(𝝎)=(2π)2λ\lim_{\|\boldsymbol{\omega}\|\rightarrow\infty}f(\boldsymbol{\omega})=(2\pi)^{-2}\lambda. Therefore, at high frequencies, the spectral density function contains information about the first-order intensity.

Low frequency information. Note, g(𝒙)1>0g(\boldsymbol{x})-1>0 (resp. <0<0) implies the clustering (resp. repulsive) behavior at the fixed lag 𝒙2\boldsymbol{x}\in\mathbb{R}^{2}. In the frequency domain, by using (2.14), we have f(𝝎)(2π)2λf(0)(2π)2λ=(2π)2λ22(g(𝒙)1)𝑑𝒙f(\boldsymbol{\omega})-(2\pi)^{-2}\lambda\approx f(\textbf{0})-(2\pi)^{-2}\lambda=(2\pi)^{-2}\lambda^{2}\int_{\mathbb{R}^{2}}(g(\boldsymbol{x})-1)d\boldsymbol{x} for 𝝎0\|\boldsymbol{\omega}\|\approx\textbf{0}. Therefore, the spectral density function evaluated at low frequencies above (resp. below) the asymptote indicates the “overall” clustering (resp. repulsive) behavior of the point process.

Rate of convergence. Comparing the clustered or repulsive realizations, realization B is more clustered than A while realization D is more repulsive than C. Reflected from the PCFs of the associated models, the PCF of model B is larger at small lag distances but drops more rapidly as the lag distance increases when compared to that of model A, while the PCF of model D is smaller than that of model C. In the frequency domain, one can also extract information on the quality of the clustering and repulsive behaviors. Since the decaying rate of the Fourier transform is related to the smoothness of the original function (cf. Folland (1999), Theorem 8.22), the faster (resp. slower) convergence of the spectral density to the asymptote implies a smoother (resp. rougher) PCF.

Properties of the periodogram. Lastly, we discuss properties of the periodogram as a raw estimator of the spectral density function. The bottom panel of Figure 1 plots the periodograms I^h,n(𝝎)\widehat{I}_{h,n}(\boldsymbol{\omega}) for realizations A–D. Using a computational method described in Appendix H.2, it takes less than 0.06 seconds to evaluate the periodograms on a grid of frequencies {(2πk1/40,2πk2/40):k1,k2{40,,40}}\{(2\pi k_{1}/40,2\pi k_{2}/40):k_{1},k_{2}\in\{-40,\dots,40\}\} for each model. We observe that for all realizations, the periodograms follow the trend of the corresponding spectral density functions. However, the periodograms are very noisy, indicating that uncorrelated noise fluctuations are added to the trend. We rigorously investigate theoretical properties of the periodograms in Theorem 3.1 below. To obtain a consistent estimator of the spectral density function, one can locally smooth the periodogram. Detailed computations of the smoothed periodogram with illustrations can be found in Appendix H.1 and the theoretical results for the smoothed periodogram are presented in Sections 3.2 and 4.

3 Asymptotic properties of the DFT and periodogram

3.1 Asymptotic results

In this section, we investigate asymptotic properties of the DFT and periodogram. To do so, we require the following sets of assumptions.

The first assumption is on the increasing-domain asymptotic framework.

Assumption 3.1.

Let DnD_{n} (nn\in\mathbb{N}) be a sequence of increasing windows of form (2.6) with limn|Dn|=\lim_{n\rightarrow\infty}|D_{n}|=\infty. Moreover, DnD_{n} grows with the same speed in all coordinates of d\mathbb{R}^{d}:

Ai/Aj=O(1),n,i,j{1,,d}.A_{i}/A_{j}=O(1),\quad n\rightarrow\infty,\quad i,j\in\{1,\dots,d\}. (3.1)

The next assumption is on the higher-order cumulants of XX.

Assumption 3.2.

Let {2,3,}\ell\in\{2,3,\dots\} be fixed. For n{1,,}n\in\{1,\dots,\ell\}, the cumulant density function γn\gamma_{n} in (2.2) is well-defined and

sup𝒙ndd(n1)|γn(𝒙1,,𝒙n)|𝑑𝒙1𝑑𝒙n1<,n{2,,}.\sup_{\boldsymbol{x}_{n}\in\mathbb{R}^{d}}\int_{\mathbb{R}^{d(n-1)}}\left|\gamma_{n}(\boldsymbol{x}_{1},\dots,\boldsymbol{x}_{n})\right|d\boldsymbol{x}_{1}\cdots d\boldsymbol{x}_{n-1}<\infty,\quad n\in\{2,\dots,\ell\}. (3.2)

For an \ellth-order stationary process, Assumption 3.2 can be equivalently expressed as γn,redL1(d(n1))\gamma_{n,\text{red}}\in L^{1}(\mathbb{R}^{d(n-1)}), n{2,,}n\in\{2,\dots,\ell\}.

The next assumption concerns the α\alpha-mixing coefficient of XX that was first introduced by Rosenblatt (1956). For compact and convex subsets Ei,EjdE_{i},E_{j}\subset\mathbb{R}^{d}, let d(Ei,Ej)=inf{𝒙i𝒙j:𝒙iEi,𝒙jEj}d(E_{i},E_{j})=\inf\{\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\|_{\infty}:\boldsymbol{x}_{i}\in E_{i},\boldsymbol{x}_{j}\in E_{j}\}. Then, for p,q,k(0,)p,q,k\in(0,\infty), the α\alpha-mixing coefficient of XX is defined as

αp,q(k)\displaystyle\alpha_{p,q}(k) =supAi,Aj,Ei,Ej{|P(AiAj)P(Ai)P(Aj)|:Ai(Ei),Aj(Ej),\displaystyle=\sup_{A_{i},A_{j},E_{i},E_{j}}\Bigl{\{}\left|P(A_{i}\cap A_{j})-P(A_{i})P(A_{j})\right|:A_{i}\in\mathcal{F}(E_{i}),A_{j}\in\mathcal{F}(E_{j}), (3.3)
|Ei|p,|Ej|q,d(Ei,Ej)k},\displaystyle\qquad\qquad\quad|E_{i}|\leq p,|E_{j}|\leq q,d(E_{i},E_{j})\geq k\Bigr{\}},

where (E)\mathcal{F}(E) denotes the σ\sigma-field generated by XX in EdE\subset\mathbb{R}^{d}.

Assumption 3.3.

Let αp,q(k)\alpha_{p,q}(k) be the α\alpha-mixing coefficient of XX defined in (3.3). We assume one of the following two conditions.

  • (i)

    There exists ε>0\varepsilon>0 such that supp(0,)αp,p(k)/max(p,1)=O(kdε)\sup_{p\in(0,\infty)}\alpha_{p,p}(k)/\max(p,1)=O(k^{-d-\varepsilon}) as kk\rightarrow\infty.

  • (ii)

    There exists ε>2d\varepsilon>2d such that supp(0,)αp,p(k)/max(p,1)=O(kdε)\sup_{p\in(0,\infty)}\alpha_{p,p}(k)/\max(p,1)=O(k^{-d-\varepsilon}) as kk\rightarrow\infty.

The last set of assumptions is on the data taper.

Assumption 3.4.

The data taper h(𝐱)h(\boldsymbol{x}), 𝐱d\boldsymbol{x}\in\mathbb{R}^{d}, is non-negative and has a compact support on [1/2,1/2]d[-1/2,1/2]^{d}. Moreover, hh satisfies one of the following two conditions below.

  • (i)

    hh is continuous on [1/2,1/2]d[-1/2,1/2]^{d}.

  • (ii)

    Let mm\in\mathbb{N} be fixed. For 𝜶{0,1,}d\boldsymbol{\alpha}\in\{0,1,\dots\}^{d} with 1|𝜶|m1\leq|\boldsymbol{\alpha}|\leq m, 𝜶h\partial^{\boldsymbol{\alpha}}h exists and is continuous on d\mathbb{R}^{d}.

Assumption 3.4(i) encompasses the non-taper case, i.e., h(𝒙)=1h(\boldsymbol{x})=1 on [1/2,1/2]d[-1/2,1/2]^{d}. Assumption 3.4(ii) for m=d+1m=d+1 is used to show the |Dn|1/2|D_{n}|^{1/2}-asymptotic normality of the integrated periodogram. To be more precise, it is required to show the Fourier transform of hh is absolutely integrable on d\mathbb{R}^{d}. As an alternative condition, one can use a slightly different condition:

𝜶h\partial^{\boldsymbol{\alpha}}h exists for any 𝜶=(α1,,αd){0,1,2}d\boldsymbol{\alpha}=(\alpha_{1},\dots,\alpha_{d})\in\{0,1,2\}^{d}. (3.4)

Our theoretical results remain unchanged when substituting Assumption 3.4(ii) for m=d+1m=d+1 with (3.4). An example of a data taper that satisfies (3.4) is provided in (7.1). According to our simulation results in Section 7, the choice of data taper does not seem to affect the performance of the periodogram-based estimator.

Using the aformentioned sets of assumptions, we now establish the asymptotic joint distribution of the feasible criteria of the DFTs and periodograms. Recall (2.10) and (2.12). It is easily seen that J^h,n(0)=0\widehat{J}_{h,n}(\textbf{0})=0. Consequently, we exclude the frequency at the origin. Next, we introduce the concept of asymptotically distant frequencies by Bandyopadhyay and Lahiri (2009). For two sequences of frequencies {𝝎1,n}n=1\{\boldsymbol{\omega}_{1,n}\}_{n=1}^{\infty} and {𝝎2,n}n=1\{\boldsymbol{\omega}_{2,n}\}_{n=1}^{\infty} on d\mathbb{R}^{d}, we say {𝝎1,n}\{\boldsymbol{\omega}_{1,n}\} and {𝝎2,n}\{\boldsymbol{\omega}_{2,n}\} are asymptotically distant if

limn|Dn|1/d𝝎1,n𝝎2,n=.\lim_{n\rightarrow\infty}|D_{n}|^{1/d}\|\boldsymbol{\omega}_{1,n}-\boldsymbol{\omega}_{2,n}\|=\infty.

Now, we compute the limit of cov(J^h,n(𝝎1,n),J^h,n(𝝎2,n))\mathrm{cov}(\widehat{J}_{h,n}(\boldsymbol{\omega}_{1,n}),\widehat{J}_{h,n}(\boldsymbol{\omega}_{2,n})) and cov(I^h,n(𝝎1,n),I^h,n(𝝎2,n))\mathrm{cov}(\widehat{I}_{h,n}(\boldsymbol{\omega}_{1,n}),\widehat{I}_{h,n}(\boldsymbol{\omega}_{2,n})) for two asymptotically distant frequencies.

Theorem 3.1 (Asymptotic uncorrelatedness of the DFT and periodogram).

Let XX be a second-order stationary point process on d\mathbb{R}^{d}. Suppose that Assumptions 3.1, 3.2 (for =2\ell=2), and 3.4(i) hold. Let {𝛚1,n}\{\boldsymbol{\omega}_{1,n}\} and {𝛚2,n}\{\boldsymbol{\omega}_{2,n}\} be sequences on d\mathbb{R}^{d} such that {𝛚1,n}\{\boldsymbol{\omega}_{1,n}\}, {𝛚2,n}\{\boldsymbol{\omega}_{2,n}\}, and {0}\{\textbf{0}\} are pairwise asymptotically distant. Moreover, let {𝛚n}\{\boldsymbol{\omega}_{n}\} be a sequence that is asymptotically distant from {0}\{\textbf{0}\} and converges to the fixed frequency 𝛚d\boldsymbol{\omega}\in\mathbb{R}^{d}. Then,

limncov(J^h,n(𝝎1,n),J^h,n(𝝎2,n))=0.\displaystyle\lim_{n\rightarrow\infty}\mathrm{cov}(\widehat{J}_{h,n}(\boldsymbol{\omega}_{1,n}),\widehat{J}_{h,n}(\boldsymbol{\omega}_{2,n}))=0. (3.5)
andlimnvar(J^h,n(𝝎n))=f(𝝎).\displaystyle\text{and}\quad\lim_{n\rightarrow\infty}\mathrm{var}(\widehat{J}_{h,n}(\boldsymbol{\omega}_{n}))=f(\boldsymbol{\omega}). (3.6)

If we further assume Assumption 3.2 for =4\ell=4 holds and {𝛚1,n}\{\boldsymbol{\omega}_{1,n}\} and {𝛚2,n}\{-\boldsymbol{\omega}_{2,n}\} are asymptotically distant, then

limncov(I^h,n(𝝎1,n),I^h,n(𝝎2,n))=0andlimnvar(I^h,n(𝝎n))=f(𝝎)2.\lim_{n\rightarrow\infty}\mathrm{cov}(\widehat{I}_{h,n}(\boldsymbol{\omega}_{1,n}),\widehat{I}_{h,n}(\boldsymbol{\omega}_{2,n}))=0\quad\text{and}\quad\lim_{n\rightarrow\infty}\mathrm{var}(\widehat{I}_{h,n}(\boldsymbol{\omega}_{n}))=f(\boldsymbol{\omega})^{2}. (3.7)
Proof.

See Appendix B.1. ∎

By using the aforementioned moment properties in conjunction with the α\alpha-mixing condition, we derive the asymptotic joint distribution of the DFTs and periodograms.

Theorem 3.2 (Asymptotic joint distribution of the DFTs and periodograms).

Let XX be a second-order stationary point process on d\mathbb{R}^{d}. Suppose that Assumptions 3.1, 3.2 (for =4\ell=4), 3.3(i), and 3.4(i) hold. For a fixed rr\in\mathbb{N}, {𝛚1,n}\{\boldsymbol{\omega}_{1,n}\}, …, {𝛚r,n}\{\boldsymbol{\omega}_{r,n}\} denote rr sequences on d\mathbb{R}^{d} that satisfy the following three conditions: for (i,j){1,,r}2,(i,j)\in\{1,\dots,r\}^{2,\neq},

  • (1)

    limn𝝎i,n=𝝎id\lim_{n\rightarrow\infty}\boldsymbol{\omega}_{i,n}=\boldsymbol{\omega}_{i}\in\mathbb{R}^{d}.

  • (2)

    {𝝎i,n}\{\boldsymbol{\omega}_{i,n}\} is asymptotically distant from {0}\{\textbf{0}\}.

  • (3)

    {𝝎i,n+𝝎j,n}\{\boldsymbol{\omega}_{i,n}+\boldsymbol{\omega}_{j,n}\} and {𝝎i,n𝝎j,n}\{\boldsymbol{\omega}_{i,n}-\boldsymbol{\omega}_{j,n}\} are asymptotically distant from {0}\{\textbf{0}\}.

Then, we have

(J^h,n(𝝎1,n)(12f(𝝎1))1/2,,J^h,n(𝝎r,n)(12f(𝝎r))1/2)𝒟(Z1,,Zr),n,\left(\frac{\widehat{J}_{h,n}(\boldsymbol{\omega}_{1,n})}{(\frac{1}{2}f(\boldsymbol{\omega}_{1}))^{1/2}},\dots,\frac{\widehat{J}_{h,n}(\boldsymbol{\omega}_{r,n})}{(\frac{1}{2}f(\boldsymbol{\omega}_{r}))^{1/2}}\right)\stackrel{{\scriptstyle\mathcal{D}}}{{\rightarrow}}(Z_{1},\dots,Z_{r}),\quad n\rightarrow\infty,

where 𝒟\stackrel{{\scriptstyle\mathcal{D}}}{{\rightarrow}} denotes weak convergence and {Zk}k=1r\{Z_{k}\}_{k=1}^{r} are independent standard normal random variables on \mathbb{C}. Therefore, by using the continunous mapping theorem, we have

(I^h,n(𝝎1,n)12f(𝝎1),,I^h,n(𝝎r,n)12f(𝝎r))𝒟(χ12,,χr2),n,\left(\frac{\widehat{I}_{h,n}(\boldsymbol{\omega}_{1,n})}{\frac{1}{2}f(\boldsymbol{\omega}_{1})},\dots,\frac{\widehat{I}_{h,n}(\boldsymbol{\omega}_{r,n})}{\frac{1}{2}f(\boldsymbol{\omega}_{r})}\right)\stackrel{{\scriptstyle\mathcal{D}}}{{\rightarrow}}(\chi^{2}_{1},\dots,\chi^{2}_{r}),\quad n\rightarrow\infty,

where {χk2}k=1r\{\chi^{2}_{k}\}_{k=1}^{r} are independent chi-squared random variables with degrees of freedom two.

Proof.

See Appendix B.2. ∎

Remark 3.1.

The limit frequencies 𝛚1,,𝛚rd\boldsymbol{\omega}_{1},\dots,\boldsymbol{\omega}_{r}\in\mathbb{R}^{d} need not be distinct nor nonzero, as long as the sequences {𝛚1,n},,{𝛚r,n}\{\boldsymbol{\omega}_{1,n}\},\dots,\{\boldsymbol{\omega}_{r,n}\} satisfy the conditions (1)–(3) in Theorem 3.2.

3.2 Nonparametric kernel spectral density estimator

We observe from Theorem 3.1 that limnvar(I^h,n(𝝎))=f(𝝎)2>0\lim_{n\rightarrow\infty}\mathrm{var}(\widehat{I}_{h,n}(\boldsymbol{\omega}))=f(\boldsymbol{\omega})^{2}>0, 𝝎d\{0}\boldsymbol{\omega}\in\mathbb{R}^{d}\backslash\{\textbf{0}\}. Therefore, the periodogram is an inconsistent estimator of the spectral density function. In this section, we obtain a consistent estimator of the spectral density function via periodogram smoothing.

Let W:dW:\mathbb{R}^{d}\rightarrow\mathbb{R} be a positive continuous and symmetric kernel function with compact support on [1/2,1/2]d[-1/2,1/2]^{d}, satisfying dW(𝒙)𝑑𝒙=1\int_{\mathbb{R}^{d}}W(\boldsymbol{x})d\boldsymbol{x}=1 and dW(𝒙)2𝑑𝒙<\int_{\mathbb{R}^{d}}W(\boldsymbol{x})^{2}d\boldsymbol{x}<\infty. For a bandwidth 𝒃=(b1,,bd)(0,)d\boldsymbol{b}=(b_{1},\dots,b_{d})^{\top}\in(0,\infty)^{d}, let W𝒃(𝒙)=(b1bd)1W(𝒙/𝒃)W_{\boldsymbol{b}}(\boldsymbol{x})=(b_{1}\cdots b_{d})^{-1}W(\boldsymbol{x}/\boldsymbol{b}), 𝒙d\boldsymbol{x}\in\mathbb{R}^{d}. For ease of presentation, we set b1==bd=b(0,)b_{1}=\cdots=b_{d}=b\in(0,\infty). Thus, we write Wb(𝒙)=W𝒃(𝒙)=bdW(b1𝒙)W_{b}(\boldsymbol{x})=W_{\boldsymbol{b}}(\boldsymbol{x})=b^{-d}W(b^{-1}\boldsymbol{x}), 𝒙d\boldsymbol{x}\in\mathbb{R}^{d}. Now, we define the kernel spectral density estimator f^n,b(𝝎)\widehat{f}_{n,b}(\boldsymbol{\omega}) by

f^n,b(𝝎)=dWb(𝝎𝒙)I^h,n(𝒙)𝑑𝒙,n,𝝎d.\widehat{f}_{n,b}(\boldsymbol{\omega})=\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x})\widehat{I}_{h,n}(\boldsymbol{x})d\boldsymbol{x},\quad n\in\mathbb{N},\quad\boldsymbol{\omega}\in\mathbb{R}^{d}. (3.8)

Below, we show that f^n,b\widehat{f}_{n,b} consistently estimates the spectral density function.

Theorem 3.3.

Let XX be a second-order stationary point process on d\mathbb{R}^{d}. Suppose that Assumptions 3.1, 3.2 (for =4\ell=4), and 3.4(i) hold. Moreover, the bandwidth b=b(n)b=b(n) is such that limnb(n)+|Dn|1b(n)d=0\lim_{n\rightarrow\infty}b(n)+|D_{n}|^{-1}b(n)^{-d}=0. Then, for 𝛚d\boldsymbol{\omega}\in\mathbb{R}^{d},

f^n,b(𝝎)𝒫f(𝝎),n,\widehat{f}_{n,b}(\boldsymbol{\omega})\stackrel{{\scriptstyle\mathcal{P}}}{{\rightarrow}}f(\boldsymbol{\omega}),\quad n\rightarrow\infty,

where 𝒫\stackrel{{\scriptstyle\mathcal{P}}}{{\rightarrow}} denotes convergence in probability.

Proof.

See Appendix B.3. ∎

4 Estimation of the spectral mean statistics

Let DD be a prespecified compact region on d\mathbb{R}^{d} that does not depend on the index nn\in\mathbb{N}. For a real continuous function ϕ()\phi(\cdot) on DD, our goal is to estimate parameter written in terms of the the spectral mean on DD:

A(ϕ)=Dϕ(𝝎)f(𝝎)𝑑𝝎.A(\phi)=\int_{D}\phi(\boldsymbol{\omega})f(\boldsymbol{\omega})d\boldsymbol{\omega}. (4.1)

A natural estimator of A(ϕ)A(\phi) is the integrated periodogram

A^h,n(ϕ)=Dϕ(𝝎)I^h,n(𝝎)𝑑𝝎,n.\widehat{A}_{h,n}(\phi)=\int_{D}\phi(\boldsymbol{\omega})\widehat{I}_{h,n}(\boldsymbol{\omega})d\boldsymbol{\omega},\quad n\in\mathbb{N}. (4.2)

We briefly mention two examples of estimation problems for spatial point processes that fall under the above framework. First, let ϕ()=ϕb()=Wb(𝝎)\phi(\cdot)=\phi_{b}(\cdot)=W_{b}(\boldsymbol{\omega}-\cdot), where WbW_{b} is a kernel function with bandwidth b(0,)b\in(0,\infty) as in Section 3.2. Since f(𝝎)f(\boldsymbol{\omega}) is locally constant in a small neighborhood of 𝝎d\boldsymbol{\omega}\in\mathbb{R}^{d}, as b=b(n)0b=b(n)\rightarrow 0, we have A(ϕb)f(𝝎)A(\phi_{b})\approx f(\boldsymbol{\omega}). Thus, f^n,b(𝝎)=A^h,n(ϕb)\widehat{f}_{n,b}(\boldsymbol{\omega})=\widehat{A}_{h,n}(\phi_{b}), as in (3.8), is our non-parametric estimator of the spectral density. Second, let ϕ()=ϕ(;𝜽)=f𝜽1()\phi(\cdot)=\phi(\cdot;\boldsymbol{\theta})=f_{\boldsymbol{\theta}}^{-1}(\cdot), where {f𝜽}\{f_{\boldsymbol{\theta}}\} is a family of spectral density functions with parameter 𝜽Θ\boldsymbol{\theta}\in\Theta. Then, A(ϕ(;𝜽))+Dlogf𝜽(𝝎)𝑑𝝎A(\phi(\cdot;\boldsymbol{\theta}))+\int_{D}\log f_{\boldsymbol{\theta}}(\boldsymbol{\omega})d\boldsymbol{\omega} denotes the spectral divergence between ff and f𝜽f_{\boldsymbol{\theta}}. An estimator of the spectral divergence is given by A^h,n(ϕ(;𝜽))+Dlogf𝜽(𝝎)𝑑𝝎\widehat{A}_{h,n}(\phi(\cdot;\boldsymbol{\theta}))+\int_{D}\log f_{\boldsymbol{\theta}}(\boldsymbol{\omega})d\boldsymbol{\omega}, which we refer to as the Whittle likelihood. Please see Section 6 for further details on the Whittle likelihood and the resulting model parameter estimation.

To derive the asymptotic properties of the integrated periodogram, we note that the variance expression of A^h,n(ϕ)\widehat{A}_{h,n}(\phi) involves the fourth-order cumulant term of XX. To obtain a simple limiting variance expression of A^h,n(ϕ)\widehat{A}_{h,n}(\phi), we assume that XX is fourth-order stationary, thus both λn,red\lambda_{n,\text{red}} and γn,red\gamma_{n,\text{red}} in (2.3) are well-defined for n{1,2,3,4}n\in\{1,2,3,4\}. Following an argument similar to Bartlett (1964), we introduce the complete fourth-order reduced cumulant density function, denoted as κ4,red(𝒕1𝒕4,𝒕2𝒕4,𝒕3𝒕4)\kappa_{4,\text{red}}(\boldsymbol{t}_{1}-\boldsymbol{t}_{4},\boldsymbol{t}_{2}-\boldsymbol{t}_{4},\boldsymbol{t}_{3}-\boldsymbol{t}_{4}). Heuristically, this function is defined as a cumulant density function of NX(d𝒕1)N_{X}(d\boldsymbol{t}_{1}), NX(d𝒕2)N_{X}(d\boldsymbol{t}_{2}), NX(d𝒕3)N_{X}(d\boldsymbol{t}_{3}), and NX(d𝒕4)N_{X}(d\boldsymbol{t}_{4}), where 𝒕1,,𝒕4d\boldsymbol{t}_{1},\dots,\boldsymbol{t}_{4}\in\mathbb{R}^{d} may not necessarily be distinct. Explicitly, κ4,red(,,)\kappa_{4,\text{red}}(\cdot,\cdot,\cdot) can be written as a sum of reduced cumulant intensity functions of orders up to four. See (D.14) in the Appendix for a precise expression. Therefore, under Assumption 3.2 for =4\ell=4, it can be easily seen that κ4,redL1(3d)\kappa_{4,\text{red}}\in L^{1}(\mathbb{R}^{3d}), in turn, the fourth-order spectral density of XX can be defined as an inverse Fourier transform of κ4,red\kappa_{4,\text{red}}

f4(𝝎1,𝝎2,𝝎3)=(2π)3d3dexp(ii=13𝝎i𝒙i)κ4,red(𝒙1,𝒙2,𝒙3)𝑑𝒙1𝑑𝒙2𝑑𝒙3f_{4}(\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2},\boldsymbol{\omega}_{3})=(2\pi)^{-3d}\int_{\mathbb{R}^{3d}}\exp\left(-i\sum_{i=1}^{3}\boldsymbol{\omega}_{i}^{\top}\boldsymbol{x}_{i}\right)\kappa_{4,\text{red}}(\boldsymbol{x}_{1},\boldsymbol{x}_{2},\boldsymbol{x}_{3})d\boldsymbol{x}_{1}d\boldsymbol{x}_{2}d\boldsymbol{x}_{3} (4.3)

for 𝝎1,𝝎2,𝝎3d\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2},\boldsymbol{\omega}_{3}\in\mathbb{R}^{d}. We now introduce the following assumptions on ff and f4f_{4}. For 𝜶=(α1,,αd){0,1,}d\boldsymbol{\alpha}=(\alpha_{1},\dots,\alpha_{d})\in\{0,1,\dots\}^{d}, let 𝜶=(/ω1)α1(/ωd)αd\partial^{\boldsymbol{\alpha}}=\left(\partial/\partial\omega_{1}\right)^{\alpha_{1}}\cdots\left(\partial/\partial\omega_{d}\right)^{\alpha_{d}} be the 𝜶\boldsymbol{\alpha}th-order partial derivative.

Assumption 4.1.

Suppose the spectral density function f(𝛚)f(\boldsymbol{\omega}) of XX is well-defined for all 𝛚d\boldsymbol{\omega}\in\mathbb{R}^{d}. Moreover, ff satisfies the following: (i) f(𝛚)(2π)dλL1(d)f(\boldsymbol{\omega})-(2\pi)^{-d}\lambda\in L^{1}(\mathbb{R}^{d}) and (ii) for 𝛂{0,1,2}d\boldsymbol{\alpha}\in\{0,1,2\}^{d} with |𝛂|=2|\boldsymbol{\alpha}|=2, 𝛂f(𝛚)\partial^{\boldsymbol{\alpha}}f(\boldsymbol{\omega}) exists for 𝛚d\boldsymbol{\omega}\in\mathbb{R}^{d} and sup𝛚|𝛂f(𝛚)|<\sup_{\boldsymbol{\omega}}\left|\partial^{\boldsymbol{\alpha}}f(\boldsymbol{\omega})\right|<\infty.

We make two remarks on the above assumptions. Firstly, we observe from (2.5) that ff is not absolutely integrable. Instead, given Assumption 4.1(i), the spectral density function, when appropriately “shifted”, admits the Fourier transformation

γ2,red(𝒙)=(f(𝝎)(2π)dλ)=d{f(𝝎)(2π)dλ}exp(i𝒙𝝎)𝑑𝝎.\gamma_{2,\text{red}}(\boldsymbol{x})=\mathcal{F}(f(\boldsymbol{\omega})-(2\pi)^{-d}\lambda)=\int_{\mathbb{R}^{d}}\left\{f(\boldsymbol{\omega})-(2\pi)^{-d}\lambda\right\}\exp(i\boldsymbol{x}^{\top}\boldsymbol{\omega})d\boldsymbol{\omega}. (4.4)

Secondly, for some parametric models (e.g., the log-Gaussian Cox processes in Section 5.3 below), a closed-form expression for ff is not available, while γ2,red\gamma_{2,\text{red}} has an analytic form. In this case, a sufficient condition for Assumption 4.1(i) to hold is that γ2,red\gamma_{2,\text{red}} has continuous partial derivatives up to order (d+1)(d+1), as per Folland (1999), Theorem 8.22 (see also page 257 of the same reference). Moreover, since (2f/ωiωj)(𝝎)=(2π)ddxixjγ2,red(𝒙)exp(i𝝎𝒙)𝑑𝒙(\partial^{2}f/\partial\omega_{i}\partial\omega_{j})(\boldsymbol{\omega})=-(2\pi)^{-d}\int_{\mathbb{R}^{d}}x_{i}x_{j}\gamma_{2,\text{red}}(\boldsymbol{x})\exp(-i\boldsymbol{\omega}^{\top}\boldsymbol{x})d\boldsymbol{x}, Assumption 4.1(ii) holds if |𝒙|2γ2,red(𝒙)L1(d)|\boldsymbol{x}|^{2}\gamma_{2,\text{red}}(\boldsymbol{x})\in L^{1}(\mathbb{R}^{d}).

Assumption 4.2.

Suppose that f4(𝛚1,𝛚2,𝛚3)f_{4}(\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2},\boldsymbol{\omega}_{3}), is well-defined for all 𝛚1,𝛚2,𝛚3d\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2},\boldsymbol{\omega}_{3}\in\mathbb{R}^{d}. Moreover, f4f_{4} satisfies the following: (i) f4(2π)3dλL1(3d)f_{4}-(2\pi)^{-3d}\lambda\in L^{1}(\mathbb{R}^{3d}) and (ii) f4(𝛚1,𝛚2,𝛚3)f_{4}(\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2},\boldsymbol{\omega}_{3}) is twice partial differentiable with respect to 𝛚2\boldsymbol{\omega}_{2} and the second-order partial derivative is bounded above.

By using the same auguments above, sufficient conditions for Assumption 4.2 to hold in terms of the differentiability and integrability of γn,red\gamma_{n,\text{red}} (n{2,3,4}n\in\{2,3,4\}) also can be easily derived.

Now, we are ready to state our main theorem addressing the asymptotic normality of A^h,n(ϕ)\widehat{A}_{h,n}(\phi).

Theorem 4.1 (Asymptotic distribution of the integrated periodogram).

Let XX be a fourth-order stationary point process on d\mathbb{R}^{d}, that is, (2.3) is satisfied for k=4k=4. Then, the following three assertions hold.

  • (i)

    Suppose that Assumptions 3.1, 3.2 (for =2\ell=2), 3.4(ii) (for m=1m=1), and 4.1(ii) hold. Then,

    𝔼[A^h,n(ϕ)]=A(ϕ)+O(|Dn|2/d),n.\mathbb{E}[\widehat{A}_{h,n}(\phi)]=A(\phi)+O(|D_{n}|^{-2/d}),\quad n\rightarrow\infty.
  • (ii)

    Suppose that Assumptions 3.1, 3.2 (for =4\ell=4), 4.1(i), and 4.2 hold. Furthermore, the data taper hh is constant on [1/2,1/2]d[-1/2,1/2]^{d} or satisfies Assumption 3.4(ii) for m=d+1m=d+1. Then,

    limn|Dn|var(A^h,n(ϕ))=(2π)d(Hh,4/Hh,22)(Ω1+Ω2),\lim_{n\rightarrow\infty}|D_{n}|\mathrm{var}(\widehat{A}_{h,n}(\phi))=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})(\Omega_{1}+\Omega_{2}),

    where

    Ω1\displaystyle\Omega_{1} =Dϕ(𝝎)(ϕ(𝝎)+ϕ(𝝎))f(𝝎)2𝑑𝝎\displaystyle=\int_{D}\phi(\boldsymbol{\omega})\left(\phi(\boldsymbol{\omega})+\phi(-\boldsymbol{\omega})\right)f(\boldsymbol{\omega})^{2}d\boldsymbol{\omega} (4.5)
    andΩ2\displaystyle\text{and}\quad\Omega_{2} =D2ϕ(𝝎1)ϕ(𝝎2)f4(𝝎1,𝝎1,𝝎2)𝑑𝝎1𝑑𝝎2.\displaystyle=\int_{D^{2}}\phi(\boldsymbol{\omega}_{1})\phi(\boldsymbol{\omega}_{2})f_{4}(\boldsymbol{\omega}_{1},-\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2})d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}.
  • (iii)

    Now, let d{1,2,3}d\in\{1,2,3\}. Suppose that Assumptions 3.1, 3.2 (for =8\ell=8), 3.3(ii), 3.4(ii) (for m=d+1m=d+1), 4.1, and 4.2 hold. Then,

    |Dn|1/2(A^h,n(ϕ)A(ϕ))𝒟𝒩(0,(2π)d(Hh,4/Hh,22)(Ω1+Ω2)),n.|D_{n}|^{1/2}(\widehat{A}_{h,n}(\phi)-A(\phi))\stackrel{{\scriptstyle\mathcal{D}}}{{\rightarrow}}\mathcal{N}\left(0,(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})(\Omega_{1}+\Omega_{2})\right),\quad n\rightarrow\infty.
Proof.

See Appendix A. ∎

Remark 4.1 (Estimation of the asymptotic variance).

Since Ω1\Omega_{1} and Ω2\Omega_{2} above are unknown functions of the spectral density and fourth-order spectral density function, the asymptotic variance of A^h,n(ϕ)\widehat{A}_{h,n}(\phi) needs to be estimated. In Appendix G, we provide details on the estimation of (2π)d(Hh,4/Hh,22)(Ω1+Ω2)(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})(\Omega_{1}+\Omega_{2}) using the subsampling method.

As a direct application of the above theorem, we derive the asymptotic distribution of the kernel spectral density estimator. Recall (3.8).

Theorem 4.2.

Let XX be a fourth-order stationary point process on d\mathbb{R}^{d}, that is, (2.3) is satisfied for k=4k=4. Suppose that Assumptions 3.1, 3.2 (for =8\ell=8), 3.3(ii), 3.4(ii) (for m=d+1m=d+1), 4.1, and 4.2 hold. Moreover, the bandwidth b=b(n)b=b(n) is such that

limnb(n)+|Dn|1b(n)d=0 and limn|Dn|1/2b(n)d/2(|Dn|2/d+b(n)2)=0.\lim_{n\rightarrow\infty}b(n)+|D_{n}|^{-1}b(n)^{-d}=0\text{~{}~{}and~{}~{}}\lim_{n\rightarrow\infty}|D_{n}|^{1/2}b(n)^{d/2}(|D_{n}|^{-2/d}+b(n)^{2})=0.

Let W2=dW(𝐱)2𝑑𝐱W_{2}=\int_{\mathbb{R}^{d}}W(\boldsymbol{x})^{2}d\boldsymbol{x}. Then, for 𝛚d\{0}\boldsymbol{\omega}\in\mathbb{R}^{d}\backslash\{\textbf{0}\},

|Dn|bd(f^n,b(𝝎)f(𝝎))𝒟𝒩(0,(2π)d(Hh,4/Hh,22)W2f(𝝎)2),n\sqrt{|D_{n}|b^{d}}\big{(}\widehat{f}_{n,b}(\boldsymbol{\omega})-f(\boldsymbol{\omega})\big{)}\stackrel{{\scriptstyle\mathcal{D}}}{{\rightarrow}}\mathcal{N}\left(0,(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})W_{2}f(\boldsymbol{\omega})^{2}\right),\quad n\rightarrow\infty

and for 𝛚=0\boldsymbol{\omega}=\textbf{0},

|Dn|bd(f^n,b(𝝎)f(𝝎))𝒟𝒩(0,2(2π)d(Hh,4/Hh,22)W2f(𝝎)2),n.\sqrt{|D_{n}|b^{d}}\big{(}\widehat{f}_{n,b}(\boldsymbol{\omega})-f(\boldsymbol{\omega})\big{)}\stackrel{{\scriptstyle\mathcal{D}}}{{\rightarrow}}\mathcal{N}\left(0,2(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})W_{2}f(\boldsymbol{\omega})^{2}\right),\quad n\rightarrow\infty.
Proof.

See Appendix B.4. ∎

5 Examples of spatial point process models

In this section, we provide examples of four widely used stationary spatial point process models and specify the conditions under which each model satisfies Assumptions 3.2, 3.3, and 4.1, which are required to establish the asymptotic results in Sections 3 and 4.

5.1 Example I: Hawkes processes

The Hawkes process is a doubly stochastic process on \mathbb{R} characterized by self-exciting and clustering properties (Hawkes (1971a, b)). A stationary Hawkes process is described by a conditional intensity function of the form λ(t)=ν+tη(tu)NX(du)\lambda(t)=\nu+\int_{-\infty}^{t}\eta(t-u)N_{X}(du), tt\in\mathbb{R}. Here, ν>0\nu>0 is the immigration intensity and η:[0,)[0,)\eta:[0,\infty)\rightarrow[0,\infty) is a measurable function satisfying η(u)𝑑u<1\int_{\mathbb{R}}\eta(u)du<1, referred to as the reproduction function. The spectral density function of the Hawkes process, as stated in Daley and Vere-Jones (2003), Example 8.2(e), is given by f(ω)=(2π)1λ|1(η)(ω)|2f(\omega)=(2\pi)^{-1}\lambda\left|1-\mathcal{F}(\eta)(\omega)\right|^{-2}, ω\omega\in\mathbb{R}. Here, λ=𝔼[λ(t)]=ν/{1η(u)𝑑u}(0,)\lambda=\mathbb{E}[\lambda(t)]=\nu/\{1-\int_{\mathbb{R}}\eta(u)du\}\in(0,\infty) denotes the first-order intensity of the corresponding Hawkes process.

To verify Assumption 3.2 for Hawkes processes, Jovanović et al. (2015) provides explicit expressions of the cumulant intensity functions, thus one can check (3.2) for the specified cumulant intensity functions. To assess the α\alpha-mixing conditions, Cheysson and Lang (2022), Theorem 1, states that if 0u1+δη(u)𝑑u<\int_{0}^{\infty}u^{1+\delta}\eta(u)du<\infty, for some δ>0\delta>0, then supp,q(0,)αp,q(k)=O(kδ)\sup_{p,q\in(0,\infty)}\alpha_{p,q}(k)=O(k^{-\delta}), as kk\rightarrow\infty. Therefore, if η()\eta(\cdot) has a (2+δ)(2+\delta)th-moment (resp. (4+δ)(4+\delta)th-moment) for some δ>0\delta>0, then the corresponding Hawkes process satisfies Assumption 3.3(i) (resp. 3.3(ii)). Lastly, to check for Assumption 4.1, one can employ the expression of f(𝝎)f(\boldsymbol{\omega}), provided the Fourier transform of η()\eta(\cdot) has a closed form expression. For example, if the reproduction function has a form η()=αexp(β)\eta(\cdot)=\alpha\exp(-\beta\cdot) for some 0<α<β0<\alpha<\beta, then f(ω)(2π)1λ=α(2βα)/{(βα)2+ω2}f(\omega)-(2\pi)^{-1}\lambda=\alpha(2\beta-\alpha)/\{(\beta-\alpha)^{2}+\omega^{2}\}, ω\omega\in\mathbb{R}. Therefore, the defined ff satisfies Assumption 4.1.

5.2 Example II: Neyman-Scott point processes

A Neyman-Scott (N-S) process (Neyman and Scott (1958)) is a special class of the Cox process, where the random latent intensity field is given by Λ(𝒖)=𝒙Φαk(𝒖𝒙)\Lambda(\boldsymbol{u})=\sum_{\boldsymbol{x}\in\Phi}\alpha k(\boldsymbol{u}-\boldsymbol{x}), 𝒖d\boldsymbol{u}\in\mathbb{R}^{d}. Here, Φ\Phi is a homogeneous Poisson process with intensity κ>0\kappa>0 and k()k(\cdot) is a probability density (kernel) function on d\mathbb{R}^{d}. Common choices for kk include k1()=(2πσ2)d/2exp(2/(2σ2))k_{1}(\cdot)=(2\pi\sigma^{2})^{-d/2}\exp(-\|\cdot\|^{2}/(2\sigma^{2})) and k2()=(rdsd)1I(r)k_{2}(\cdot)=(r^{d}s_{d})^{-1}I(\|\cdot\|\leq r), where sds_{d} is the volume of the unit ball on d\mathbb{R}^{d}. The corresponding N-S process for the kernel functions k1k_{1} and k2k_{2} are known as the Thomas cluster process and Matérn cluster process. Using, for example, Chandler (1997), Equation (37) (see also Daley and Vere-Jones (2003), Exercise 8.2.9(c)), the spectral density function for the N-S process is given by f(𝝎)=(2π)dλ(1+α|(k)(𝝎)|2)f(\boldsymbol{\omega})=(2\pi)^{-d}\lambda\left(1+\alpha|\mathcal{F}(k)(\boldsymbol{\omega})|^{2}\right), 𝝎d\boldsymbol{\omega}\in\mathbb{R}^{d}, where λ=κα\lambda=\kappa\alpha denotes the first-order intensity of the corresponding N-S process. In particular, the spectral density function of the Thomas cluster process is given by

f(TCP)(𝒙)=(2π)dλ{1+αexp(σ2𝒙2)},𝝎d.f^{(TCP)}(\boldsymbol{x})=(2\pi)^{-d}\lambda\left\{1+\alpha\exp(-\sigma^{2}\|\boldsymbol{x}\|^{2})\right\},\quad\boldsymbol{\omega}\in\mathbb{R}^{d}. (5.1)

Prokešová and Jensen (2013) (page 398) showed that the N-S process satisfies Assumption 3.2 for all \ell\in\mathbb{N}. Moreover, according to Lemma 1 of the same reference, if k(𝒙)=O(𝒙2dε)k(\boldsymbol{x})=O(\|\boldsymbol{x}\|^{-2d-\varepsilon}) as 𝒙\|\boldsymbol{x}\|\rightarrow\infty for some ε>0\varepsilon>0 (resp. ε>2d\varepsilon>2d), then the corresponding N-S process satisfies Assumption 3.3(i) (resp. 3.3(ii)). Assumption 4.1 can be verified for specific kernel functions with known forms of their Fourier transform. In particular, spectral density functions associated with Thomas cluster processes and Matérn cluster processes satisfy Assumption 4.1.

5.3 Example III: Log-Gaussian Cox Processes

The log-Gaussian Cox process (LGCP; Møller et al. (1998)) is a special class of the Cox process where the logarithm of the intensify field is a Gaussian random field. Let XX be a stationary LGCP driven by the intensity field Λ()\Lambda(\cdot) and let R(𝒙)=cov(logΛ(𝒙),logΛ(0))R(\boldsymbol{x})=\mathrm{cov}(\log\Lambda(\boldsymbol{x}),\log\Lambda(\textbf{0})), 𝒙d\boldsymbol{x}\in\mathbb{R}^{d}, be the autocovariance function of the log intensity field. Then, by using Møller et al. (1998), Equation (4), the second-order reduced cumulant is given by γ2,red(𝒙)=exp{R(𝒙)}1\gamma_{2,\text{red}}(\boldsymbol{x})=\exp\{R(\boldsymbol{x})\}-1, 𝒙d\boldsymbol{x}\in\mathbb{R}^{d}.

Assumption 3.2 holds for arbitrary \ell\in\mathbb{N}, provided R()L1(d)R(\cdot)\in L^{1}(\mathbb{R}^{d}). See Zhu et al. (2023), Lemma D.1. Concerning Assumption 3.3, Doukhan (1994), page 59, stated that for a stationary random field on d\mathbb{Z}^{d}, if R(𝒙)=O(𝒙2dε)R(\boldsymbol{x})=O(\|\boldsymbol{x}\|^{-2d-\varepsilon}) as 𝒙\|\boldsymbol{x}\|\rightarrow\infty for some ε>0\varepsilon>0 (resp. ε>2d\varepsilon>2d), then the corresponding LGCP on d\mathbb{Z}^{d} satisfies Assumption 3.3(i) (resp. 3.3(ii)). However, a general α\alpha-mixing condition for stationary Gaussian random fields on d\mathbb{R}^{d} is not readily available. Lastly, since the second-order reduced cumulant function has a closed-form expression in terms of R()R(\cdot), Assumption 4.1 can be easily verified when R()R(\cdot) is specified (see the remarks after Assumption 4.1).

5.4 Example IV: Determinantal point processes

The Determinantal point process (DPP), first introduced by Macchi (1975), has the intensity function characterized by the determinant of some function. To be specific, a stationary determinantal point process induced by a kernel function K:dK:\mathbb{R}^{d}\rightarrow\infty, denoted as DPP(KK), has the reduced intensity function λn,red(𝒙1𝒙n,,𝒙n1𝒙n)=det(K(𝒙i𝒙j)1i,jn)\lambda_{n,\text{red}}(\boldsymbol{x}_{1}-\boldsymbol{x}_{n},\dots,\boldsymbol{x}_{n-1}-\boldsymbol{x}_{n})=\det(K(\boldsymbol{x}_{i}-\boldsymbol{x}_{j})_{1\leq i,j\leq n}), nn\in\mathbb{N}, 𝒙1,,𝒙nd\boldsymbol{x}_{1},\dots,\boldsymbol{x}_{n}\in\mathbb{R}^{d}. Here, we assume that the kernel function KK is symmetric, continuous, and belongs to L2(d)L^{2}(\mathbb{R}^{d}) satisfying (K)(𝝎)[0,1]\mathcal{F}(K)(\boldsymbol{\omega})\in[0,1], 𝝎d\boldsymbol{\omega}\in\mathbb{R}^{d}. Then, the second-order reduced cumulant function and the spectral density function of DPP(KK) are respectively given by γ2,red(𝒙)=|K(𝒙)|2\gamma_{2,\text{red}}(\boldsymbol{x})=-|K(\boldsymbol{x})|^{2} and f(𝝎)=(2π)dK(0)1(|K|2)(𝝎)f(\boldsymbol{\omega})=(2\pi)^{-d}K(0)-\mathcal{F}^{-1}(|K|^{2})(\boldsymbol{\omega}). Therefore, the DPPs exhibit a repulsive behavior. For example, choosing the Gaussian kernel K(G)(𝒙)=λexp(𝒙2/ρ2)K^{(G)}(\boldsymbol{x})=\lambda\exp(-\|\boldsymbol{x}\|^{2}/\rho^{2}) with parameter restriction 0<ρ1/(πλ1/d)0<\rho\leq 1/(\sqrt{\pi}\lambda^{1/d}), the spectral density function corresponds to DPP(K(G))DPP(K^{(G)}) is given by

f(GDPP)(𝝎)=(2π)d{λλ2(πρ2/2)d/2exp(ρ2𝝎2/8)},𝝎d.f^{(GDPP)}(\boldsymbol{\omega})=(2\pi)^{-d}\left\{\lambda-\lambda^{2}(\pi\rho^{2}/2)^{d/2}\exp(-\rho^{2}\|\boldsymbol{\omega}\|^{2}/8)\right\},\quad\boldsymbol{\omega}\in\mathbb{R}^{d}. (5.2)

Biscio and Lavancier (2016) showed that DPP(KK) satisfies Assumption 3.2 for any \ell\in\mathbb{N}. Moreover, Poinas et al. (2019) showed αp,p(k)/pCktd1sup𝒙=t|γ2,red(𝒙)|dt\alpha_{p,p}(k)/p\leq C\int_{k}^{\infty}t^{d-1}\sup_{\|\boldsymbol{x}\|=t}|\gamma_{2,\text{red}}(\boldsymbol{x})|dt, p(0,)p\in(0,\infty). Therefore, if there exists ε>0\varepsilon>0 (resp. ε>2d\varepsilon>2d) such that sup𝒙=t|K(𝒙)|=O(td(ε/2))\sup_{\|\boldsymbol{x}\|=t}|K(\boldsymbol{x})|=O(t^{-d-(\varepsilon/2)}) as tt\rightarrow\infty, then DPP(KK) satisfies Assumption 3.3(i) (resp. 3.3(ii)). Therefore, DPP with the Gaussian kernel K(G)K^{(G)} satisfies Assumption 3.3(ii). Lastly, Assumption 4.1 can be verified provided |K|2|K|^{2} has a known Fourier transform, including the case of f(GDPP)()f^{(GDPP)}(\cdot) in (5.2).

6 Frequency domain parameter estimation under possible model misspecification

As an application of the CLT results in Section 4, we turn our attention to inferences for spatial point processes in the frequency domain through the Whittle likelihood. Let {X𝜽}\{X_{\boldsymbol{\theta}}\} be a family of second-order stationary spatial point processes with parameter 𝜽Θp\boldsymbol{\theta}\in\Theta\subset\mathbb{R}^{p}. The associated spectral density function of X𝜽X_{\boldsymbol{\theta}} is denoted as f𝜽f_{\boldsymbol{\theta}}, 𝜽Θ\boldsymbol{\theta}\in\Theta. Then, we fit the model with spectral density f𝜽f_{\boldsymbol{\theta}} using the pseudo-likelihood given by

Ln(𝜽)=D(I^h,n(𝝎)f𝜽(𝝎)+logf𝜽(𝝎))𝑑𝝎,n,𝜽Θp.L_{n}(\boldsymbol{\theta})=\int_{D}\left(\frac{\widehat{I}_{h,n}(\boldsymbol{\omega})}{f_{\boldsymbol{\theta}}(\boldsymbol{\omega})}+\log f_{\boldsymbol{\theta}}(\boldsymbol{\omega})\right)d\boldsymbol{\omega},\quad n\in\mathbb{N},\quad\boldsymbol{\theta}\in\Theta\subset\mathbb{R}^{p}. (6.1)

Here, DD is a prespecified compact and symmetric region on d\mathbb{R}^{d}. Let

𝜽^n=argmin𝜽ΘLn(𝜽),n,\widehat{\boldsymbol{\theta}}_{n}=\arg\min_{\boldsymbol{\theta}\in\Theta}L_{n}(\boldsymbol{\theta}),\qquad n\in\mathbb{N}, (6.2)

be our proposed model parameter estimator. Here, we do not necessarily assuming the existence of 𝜽0Θ\boldsymbol{\theta}_{0}\in\Theta such that the true spectral density function f=f𝜽0f=f_{\boldsymbol{\theta}_{0}}. Since the periodogram is an unbiased estimator of the “true” spectral density, the best fitting parameter could be

𝜽0=argmin𝜽Θ(𝜽),where(𝜽)=D(f(𝝎)f𝜽(𝝎)+logf𝜽(𝝎))𝑑𝝎.\boldsymbol{\theta}_{0}=\arg\min_{\boldsymbol{\theta}\in\Theta}\mathcal{L}(\boldsymbol{\theta}),\quad\text{where}\quad\mathcal{L}(\boldsymbol{\theta})=\int_{D}\left(\frac{f(\boldsymbol{\omega})}{f_{\boldsymbol{\theta}}(\boldsymbol{\omega})}+\log f_{\boldsymbol{\theta}}(\boldsymbol{\omega})\right)d\boldsymbol{\omega}. (6.3)

The best fitting parameter 𝜽0\boldsymbol{\theta}_{0} has a clear interpretation in terms of the spectral divergence criterion, as (𝜽)\mathcal{L}(\boldsymbol{\theta}) above computes the spectral (information) divergence between the true and conjectured spectral densities. Investigations into the properties of the Whittle estimator under model misspecification for time series and random fields can be found in Dahlhaus and Wefelmeyer (1996); Dahlhaus and Sahm (2000); Subba Rao and Yang (2021). We mention that, in the case where the mapping 𝜽f𝜽\boldsymbol{\theta}\rightarrow f_{\boldsymbol{\theta}} is injective and the model is correctly specified, it can be easily seen that 𝜽0\boldsymbol{\theta}_{0} is uniquely determined and satisfies f=f𝜽0f=f_{\boldsymbol{\theta}_{0}}.

Now, we assume the following for the parameter space.

Assumption 6.1.

The parameter space Θ\Theta is a compact subset of p\mathbb{R}^{p}, pp\in\mathbb{N}. The parametric family of spectral density functions {f𝛉}\{f_{\boldsymbol{\theta}}\} is uniformly bounded above and bounded below from zero. f𝛉(𝛚)f_{\boldsymbol{\theta}}(\boldsymbol{\omega}) is twice differentiable with respect to 𝛉\boldsymbol{\theta} and its first and second derivatives are continuous on Θ×D\Theta\times D. 𝛉0\boldsymbol{\theta}_{0} in (6.3) is uniquely determined and lies in the interior of Θ\Theta. Lastly, 𝛉^n\widehat{\boldsymbol{\theta}}_{n} in (6.2) exists for all nn\in\mathbb{N} and lies in the interior of Θ\Theta.

To obtain the asymptotic variance of 𝜽^n\widehat{\boldsymbol{\theta}}_{n}, for 𝜽Θ\boldsymbol{\theta}\in\Theta, let

Γ(𝜽)\displaystyle\Gamma(\boldsymbol{\theta}) =12(2π)dD[(f(𝝎)f𝜽(𝝎))2f𝜽1(𝝎)+(logf𝜽(𝝎))(logf𝜽(𝝎))]𝑑𝝎,\displaystyle=\frac{1}{2(2\pi)^{d}}\int_{D}\bigg{[}\left(f(\boldsymbol{\omega})-f_{\boldsymbol{\theta}}(\boldsymbol{\omega})\right)\nabla^{2}f_{\boldsymbol{\theta}}^{-1}(\boldsymbol{\omega})+(\nabla\log f_{\boldsymbol{\theta}}(\boldsymbol{\omega}))(\nabla\log f_{\boldsymbol{\theta}}(\boldsymbol{\omega}))^{\top}\bigg{]}d\boldsymbol{\omega}, (6.4)
S1(𝜽)\displaystyle S_{1}(\boldsymbol{\theta}) =12(2π)dDf(𝝎)2(f𝜽1(𝝎))(f𝜽1(𝝎))𝑑𝝎,and\displaystyle=\frac{1}{2(2\pi)^{d}}\int_{D}f(\boldsymbol{\omega})^{2}(\nabla f_{\boldsymbol{\theta}}^{-1}(\boldsymbol{\omega}))(\nabla f_{\boldsymbol{\theta}}^{-1}(\boldsymbol{\omega}))^{\top}d\boldsymbol{\omega},\quad\text{and}
S2(𝜽)\displaystyle S_{2}(\boldsymbol{\theta}) =14(2π)dD2f4(𝝎1,𝝎1,𝝎2)(f𝜽1(𝝎))(f𝜽1(𝝎))𝑑𝝎1𝑑𝝎2.\displaystyle=\frac{1}{4(2\pi)^{d}}\int_{D^{2}}f_{4}(\boldsymbol{\omega}_{1},-\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2})(\nabla f_{\boldsymbol{\theta}}^{-1}(\boldsymbol{\omega}))(\nabla f_{\boldsymbol{\theta}}^{-1}(\boldsymbol{\omega}))^{\top}d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}.

Here, f𝜽\nabla f_{\boldsymbol{\theta}} and 2f𝜽\nabla^{2}f_{\boldsymbol{\theta}} are the first- and second-order derivatives of f𝜽f_{\boldsymbol{\theta}} with respect to 𝜽\boldsymbol{\theta}, respectively, and f4f_{4} denotes the (true) fourth-order spectral density of XX. In the scenario where the model is correctly specified, we have Γ(𝜽0)=S1(𝜽0)\Gamma(\boldsymbol{\theta}_{0})=S_{1}(\boldsymbol{\theta}_{0}).

The following theorem addresses the asymptotic behavior of the our proposed estimator under possible model misspecification.

Theorem 6.1.

Let XX be a fourth-order stationary point process on d\mathbb{R}^{d}, that is, (2.3) is satisfied for k=4k=4. Suppose that Assumptions 3.1, 3.2 (for =4\ell=4), 3.4(ii) (for m=1m=1), 4.1, and 6.1 hold. Then,

𝜽^n𝒫𝜽0,n.\widehat{\boldsymbol{\theta}}_{n}\stackrel{{\scriptstyle\mathcal{P}}}{{\rightarrow}}\boldsymbol{\theta}_{0},\quad n\rightarrow\infty. (6.5)

Now, let d{1,2,3}d\in\{1,2,3\}. Suppose Γ(𝛉0)\Gamma(\boldsymbol{\theta}_{0}) in (6.4) is invertible. Then, under Assumptions 3.1, 3.2 (for =8\ell=8), 3.3(ii), 3.4(ii) (for m=d+1m=d+1), 4.1, 4.2, and 6.1, we have

|Dn|1/2(𝜽^n𝜽0)𝒟𝒩(0,(Hh,4/Hh,22)Γ(𝜽0)1(S1(𝜽0)+S2(𝜽0))Γ(𝜽0)1),n.|D_{n}|^{1/2}(\widehat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0})\stackrel{{\scriptstyle\mathcal{D}}}{{\rightarrow}}\mathcal{N}\left(\textbf{0},(H_{h,4}/H_{h,2}^{2})\Gamma(\boldsymbol{\theta}_{0})^{-1}\left(S_{1}(\boldsymbol{\theta}_{0})+S_{2}(\boldsymbol{\theta}_{0})\right)\Gamma(\boldsymbol{\theta}_{0})^{-1}\right),~{}~{}~{}n\rightarrow\infty. (6.6)
Proof.

See Appendix B.5. ∎

Remark 6.1.

The condition on dd being less than four in the asymptotic normality of 𝛉^n\widehat{\boldsymbol{\theta}}_{n} is required to ensure that the bias of |Dn|1/2𝛉^n|D_{n}|^{1/2}\widehat{\boldsymbol{\theta}}_{n} converges to zero. This restriction is also imposed in the random fields literature (e.g., Dahlhaus and Künsch (1987); Matsuda and Yajima (2009)). By using the debiasing technique considered in Guillaumin et al. (2022), one can establish the asymptotic normality of the “debiased” Whittle estimator for all dd\in\mathbb{N}. The details will be reported in a future study.

Remark 6.2.

We provide a summary of the procedure for estimating the asymptotic variance of 𝛉^n\widehat{\boldsymbol{\theta}}_{n}. Recall (6.6). Γ(𝛉0)\Gamma(\boldsymbol{\theta}_{0}) can be easily estimated by replacing f(𝛚)f(\boldsymbol{\omega}) and 𝛉0\boldsymbol{\theta}_{0} with f^n,b(𝛚)\widehat{f}_{n,b}(\boldsymbol{\omega}) and 𝛉^n\widehat{\boldsymbol{\theta}}_{n}, respectively, in (6.4). To estimate S1(𝛉0)+S2(𝛉0)S_{1}(\boldsymbol{\theta}_{0})+S_{2}(\boldsymbol{\theta}_{0}) one can employ the subsampling variance estimation method for Ah,n(f𝛉^n1)A_{h,n}(\nabla f_{\widehat{\boldsymbol{\theta}}_{n}}^{-1}), as described in Appendix G (see also, Remark 4.1). The theoretical properties of this estimated variance will not be investigated in this article.

7 Simulation studies

To corroborate our theoretical results, we conduct some simulations on the model parameter estimation. Additional simulation results can be found in Appendices H.2H.4. Due to space constraints, we only consider the following two point process models on 2\mathbb{R}^{2}:

  • Stationary Thomas cluster processes (TCPs) with parameter 𝜽=(κ,α,σ2)\boldsymbol{\theta}=(\kappa,\alpha,\sigma^{2})^{\top} as in Section 5.2. The spectral density function of TCP, denoted as f𝜽(TCP)()f^{(TCP)}_{\boldsymbol{\theta}}(\cdot), is given in (5.1) with the first-order intensity λ=κα\lambda=\kappa\alpha. TCP exhibits clustering behavior.

  • Stationary determinantal point processes with Gaussian kernel (GDPPs) with parameter 𝜽=(λ,ρ2)\boldsymbol{\theta}=(\lambda,\rho^{2})^{\top} as in Section 5.4. The spectral density function of GDPP, denoted as f𝜽(GDPP)()f^{(GDPP)}_{\boldsymbol{\theta}}(\cdot), is given in (5.2). GDPP exhibits repulsive behavior.

For each model, we generate spatial point patterns within the observation domain (window) Dn=[A/2,A/2]2D_{n}=[-A/2,A/2]^{2} for varying side lengths A{10,20,40}A\in\{10,20,40\}. To assess the performance of the different parameter estimation methods, we compare our estimator as in (6.2) with two existing methods in the spatial domain: the maximum likelihood-based method (ML) and the minimum contrast method (MC).

Specifically, for the ML method, given the intractable nature of the likelihood functions for TCPs and GDPPs, we maximize the log-Palm likelihood (Tanaka et al. (2008)) for the TCPs and use the asymptotic approximation of the likelihood (Poinas and Lavancier (2023)) for GDPPs. For the MC method, we minimize the contrast function of form K(𝜽)=rminrmax|g(t;𝜽)cg^(t)c|2𝑑tK(\boldsymbol{\theta})=\int_{r_{\text{min}}}^{r_{\text{max}}}|g(t;\boldsymbol{\theta})^{c}-\widehat{g}(t)^{c}|^{2}dt where g(;𝜽)g(\cdot;\boldsymbol{\theta}) denotes the parametric pair correlation function (PCF) for the isotropic process and g^()\widehat{g}(\cdot) is an estimator of the PCF. Since the PCF of the TCP model does not include the parameter α\alpha, we do not include the estimation of α\alpha in the MC method for TCPs. Similarly, as the PCF of GDPP is solely a function of ρ2\rho^{2}, we do not include the estimation of λ\lambda in the MC method for GDPPs. Finally, following the guidelines from Biscio and Lavancier (2017) (see also, Diggle (2013)), for MC methods, we choose the tuning parameters rmin=0.01Ar_{\text{min}}=0.01A and rmax=0.25Ar_{\text{max}}=0.25A where A{10,20,40}A\in\{10,20,40\} is the length of the window and c=0.25c=0.25 for TCPs and c=0.5c=0.5 for GDPPs.

Lastly, all simulations are conducted over 500 independent replications of spatial point patterns and for each replication, we compute the three previously mentioned three model parameter estimators.

7.1 Practical guidelines for the frequency domain method

We now discuss three practical issues arising during the evaluation of our estimator.

Choice of the data taper.   We use the data taper h(𝒙)=j=1dh0.025(xj)h(\boldsymbol{x})=\prod_{j=1}^{d}h_{0.025}(x_{j}), where for a(0,1/2)a\in(0,1/2),

ha(x)={(x+0.5)/a12πsin(2π(x+0.5)/a),1/2x(1/2)+a.1,(1/2)+a<x<(1/2)a.ha(x),(1/2)a<x1/2.h_{a}(x)=\begin{cases}(x+0.5)/a-\frac{1}{2\pi}\sin(2\pi(x+0.5)/a),&-1/2\leq x\leq(-1/2)+a.\\ 1,&(-1/2)+a<x<(1/2)-a.\\ h_{a}(-x),&(1/2)-a<x\leq 1/2.\end{cases} (7.1)

Then, it is easily seen that hh satisfies (3.4), in turn, meeting the condition on hh in Theorem 6.1. However, in our simulations, selection of a(0,1/2)a\in(0,1/2) seems not notably impact the performance of our estimator.

Choice of DD.   In practice, we select the prespecified domain DdD\subset\mathbb{R}^{d} for the Whittle likelihood in (6.1) as D={𝝎2:d0𝝎d1}D=\{\boldsymbol{\omega}\in\mathbb{R}^{2}:d_{0}\leq\|\boldsymbol{\omega}\|_{\infty}\leq d_{1}\} for some 0d0<d1<0\leq d_{0}<d_{1}<\infty. Inspecting Theorem 3.1 (also Theorem B.1 in the Appendix) we exclude the frequencies near the origin (corresponding to frequencies such that 𝝎<d0\|\boldsymbol{\omega}\|_{\infty}<d_{0}) due to the large bias of the periodogram at frequencies close to the origin. The upper bound d1(0,)d_{1}\in(0,\infty) can be chosen such that |f(𝝎)(2π)dλ|0|f(\boldsymbol{\omega})-(2\pi)^{-d}\lambda|\approx 0 for 𝝎>d1\|\boldsymbol{\omega}\|_{\infty}>d_{1}, ensuring information outside DD has little contribution to the form of spectral density function. In case where no information on the true spectral density function is available, ff can be replaced with its kernel smoothed periodogram f^n,b\widehat{f}_{n,b} in the selection criterion of d1d_{1}.

Discretization.   Since the Whittle likelihood Ln(𝜽)L_{n}(\boldsymbol{\theta}) in (6.1) is defined as an integral, we approximate Ln(𝜽)L_{n}(\boldsymbol{\theta}) with its Riemann sum

Ln(R)(𝜽)=𝝎𝒌,ΩD(I^h,n(𝝎𝒌,Ω)f𝜽(𝝎𝒌,Ω)+logf𝜽(𝝎𝒌,Ω)),n,𝜽Θp,L_{n}^{(R)}(\boldsymbol{\theta})=\sum_{\boldsymbol{\omega}_{\boldsymbol{k},\Omega}\in D}\left(\frac{\widehat{I}_{h,n}(\boldsymbol{\omega}_{\boldsymbol{k},\Omega})}{f_{\boldsymbol{\theta}}(\boldsymbol{\omega}_{\boldsymbol{k},\Omega})}+\log f_{\boldsymbol{\theta}}(\boldsymbol{\omega}_{\boldsymbol{k},\Omega})\right),\quad n\in\mathbb{N},\quad\boldsymbol{\theta}\in\Theta\subset\mathbb{R}^{p}, (7.2)

where for Ω>0\Omega>0 and 𝒌=(k1,k2)2\boldsymbol{k}=(k_{1},k_{2})^{\top}\in\mathbb{Z}^{2}, 𝝎𝒌,Ω=(2πk1/Ω,2πk2/Ω)\boldsymbol{\omega}_{\boldsymbol{k},\Omega}=(2\pi k_{1}/\Omega,2\pi k_{2}/\Omega)^{\top}. The feasible criterion of 𝜽^n\widehat{\boldsymbol{\theta}}_{n} in (6.2) is 𝜽^n(R)=argmin𝜽ΘLn(R)(𝜽)\widehat{\boldsymbol{\theta}}_{n}^{(R)}=\arg\min_{\boldsymbol{\theta}\in\Theta}L_{n}^{(R)}(\boldsymbol{\theta}). An efficient way to compute the periodograms on a grid is discussed in Appendix H.2.

In simulations, we set Ω=A\Omega=A, where A>0A>0 is the side length of the window. As a theoretical justification, Subba Rao (2018) proved the asymptotic normality of the averaged periodogram under an irregularly spaced spatial data framework. She also showed that setting ΩA\Omega\propto A is ”optimal” in the sense that a finer grid (Ω>>A\Omega>>A) does not improve the variance of the averaged periodogram. However, we do not yet have theoretical results for the asymptotics of 𝜽^n(R)\widehat{\boldsymbol{\theta}}_{n}^{(R)} in the spatial point process framework. These will be investigated in future research.

7.2 Results under correctly specified models

In this section, we simulate the spatial point patterns from the TCP model with parameter (κ0,α0,σ02)=(0.2,10,0.52)(\kappa_{0},\alpha_{0},\sigma_{0}^{2})=(0.2,10,0.5^{2}) and the GDPP model with parameter (λ0,ρ02)=(1,0.552)(\lambda_{0},\rho_{0}^{2})=(1,0.55^{2}). For spatial patterns generated by the TCPs (resp. GDPPs), we fit the parametric TCP models (resp. GDPP models) using three different estimation methods. Following the guideline in Section 7.1, we set the prespecified domain D2π={𝝎2:110π𝝎2π}D_{2\pi}=\{\boldsymbol{\omega}\in\mathbb{R}^{2}:\frac{1}{10}\pi\leq\|\boldsymbol{\omega}\|_{\infty}\leq 2\pi\} in our estimator for both TCP and GDPP. This choice captures the shape of the spectral densities without adding unnecessary computation.

The bias and standard errors of three different methods are presented in Table 1. See also, Figures H.2 and H.3 in the Appendix for the empirical distributions

Model Window Parameter Method
Ours ML MC
TCP [5,5]2[-5,5]^{2} κ\kappa -0.04(0.11) -0.07(0.70) -0.04(0.10)
α\alpha 0.72(3.52) -0.62(9.51)
σ2\sigma^{2} 0.02(0.07) -0.06(0.35) 0.01(0.10)
Time(sec) 0.74 0.38 0.07
[10,10]2[-10,10]^{2} κ\kappa -0.02(0.05) -0.02(0.05) -0.01(0.05)
α\alpha 0.60(1.77) 0.24(3.37)
σ2\sigma^{2} 0.01(0.04) -0.02(0.20) 0.00(0.06)
Time(sec) 2.38 5.67 0.23
[20,20]2[-20,20]^{2} κ\kappa -0.01(0.04) 0.00(0.03) 0.00(0.03)
α\alpha 0.25(1.03) 0.15(1.23)
σ2\sigma^{2} 0.01(0.02) 0.00(0.03) 0.00(0.03)
Time(sec) 9.15 173.66 1.95
GDPP [5,5]2[-5,5]^{2} λ\lambda 0.00(0.10) 0.03(0.07)
ρ2\rho^{2} 0.01(0.09) -0.02(0.03) 0.05(0.07)
Time(sec) 0.14 1.84 0.05
[10,10]2[-10,10]^{2} λ\lambda 0.00(0.06) 0.01(0.04)
ρ2\rho^{2} 0.01(0.04) -0.01(0.01) 0.02(0.03)
Time(sec) 0.39 30.70 0.08
[20,20]2[-20,20]^{2} λ\lambda 0.00(0.03) 0.01(0.02)
ρ2\rho^{2} 0.00(0.02) 0.00(0.01) 0.00(0.02)
Time(sec) 1.62 590.02 0.67
Table 1: The bias and the standard errors (in the parentheses) of the estimated parameters based on three different approaches for the TCP and the GDPP. The true parameters are (κ0,α0,σ02)=(0.2,10,0.52)(\kappa_{0},\alpha_{0},\sigma_{0}^{2})=(0.2,10,0.5^{2}) for TCP and (λ0,ρ02)=(1,0.552)(\lambda_{0},\rho_{0}^{2})=(1,0.55^{2}) for GDPP. The time is calculated as an averaged computational time (using a parallel computing in R on a desktop computer with an i7-10700 Intel CPU) of each method per one simulation from 500 independent replications. We use bold to denote the smallest RMSE.

First, we examine the accuracy of the estimators. Our estimator exhibits the smallest root-mean-squared erorr (RMSE) of α\alpha and σ2\sigma^{2} in the TCP model across all windows; has the smallest RMSE for κ\kappa when Dn=[5,5]2D_{n}=[-5,5]^{2}; and has reliable estimation results for the GDPP model. The MC estimator performs well for both the TCP and GDPP models, achieving the smallest RMSE for κ\kappa in the TCP model for Dn=[10,10]2D_{n}=[-10,10]^{2} and [20,20]2[-20,20]^{2}. The ML estimator consistently performs the best for the GDPP model. For the TCP model, the ML estimators of κ\kappa and σ2\sigma^{2} yield satisfactory finite sample results, but that of α\alpha exhibits a relatively large standard error. Overall, the biases and standard errors of all three estimators tend to decrease to zero as the window size increases.

Moving on, we consider the computation time of each method. Firstly, the MC method has the fastest computation time for both models and all windows. Secondly, the ML method exhibits a reasonable computation speed for both models when Dn=[5,5]2D_{n}=[-5,5]^{2}, yielding the expected number of observations equal to 200 (for TCP) or 100 (for GDPP). However, when the number of observations are in the order of a few thousands (corresponding to Dn=[20,20]2D_{n}=[-20,20]^{2}), the ML method incurs the longest computational time. Lastly, our method takes less than 10 seconds to compute the parameter estimates for the TCP model and less than 2 seconds for the GDPP model both under Dn=[20,20]2D_{n}=[-20,20]^{2}. Specifically, the computation for our method involves two steps: (a) evaluation of {I^h,n(𝝎𝒌,A):𝝎𝒌,AD2π}\{\widehat{I}_{h,n}(\boldsymbol{\omega}_{\boldsymbol{k},A}):\boldsymbol{\omega}_{\boldsymbol{k},A}\in D_{2\pi}\} and (b) optimization of Ln(R)(𝜽)L_{n}^{(R)}(\boldsymbol{\theta}) in (7.2). Once step (a) is done, there is no need to update the set of periodograms in the optimization step. In the simulations, it takes, on average, less than 0.5 seconds to evaluate {I^h,n(𝝎𝒌,40):𝝎𝒌,40D2π}\{\widehat{I}_{h,n}(\boldsymbol{\omega}_{\boldsymbol{k},40}):\boldsymbol{\omega}_{\boldsymbol{k},40}\in D_{2\pi}\} for both TCP and GDPP. This indicates that most of the computational burden for our method stems from the optimization of the Whittle likelihood. By employing a coarse grid in (7.2), i.e., using Ω=A/2\Omega=A/2 instead of Ω=A\Omega=A, the computational time can dramatically decrease.

As a final note, bear in mind that the number of parameters for the MC method is one for TCP and two for GDPP, representing a lower parameter count compared to the corresponding ours or ML estimators. Additionally, the contrast function of the MC method for both TCP and GDPP is specifically designed for isotropic processes. Therefore, for the models we consider in this simulations, the MC method clearly holds a computational advantage over both our method and the ML method.

7.3 Results under misspecified models

Now, we consider the case when the models fail to identify the true point patterns. For the data-generating process, we simulate from the LGCP model driven by the latent intensity field Λ(𝒙)\Lambda(\boldsymbol{x}), 𝒙2\boldsymbol{x}\in\mathbb{R}^{2}, where the first-order intensity is λ(true)=exp(0.5)1.65\lambda^{(true)}=\exp(0.5)\approx 1.65 and the covariance function is R(𝒙)=cov(logΛ(𝒙),logΛ(0))=2exp(𝒙)R(\boldsymbol{x})=\mathrm{cov}(\log\Lambda(\boldsymbol{x}),\log\Lambda(\textbf{0}))=2\exp(-\|\boldsymbol{x}\|), 𝒙2\boldsymbol{x}\in\mathbb{R}^{2}. Following the arguments in Section 5.3, the true spectral density function f(𝝎)f(\boldsymbol{\omega}), 𝝎2\boldsymbol{\omega}\in\mathbb{R}^{2}, is given by

f(𝝎)=(2π)d[λ(true)+(λ(true))22(exp{2exp(𝒙)}1)ei𝒙𝝎𝑑𝒙].f(\boldsymbol{\omega})=(2\pi)^{-d}\left[\lambda^{(true)}+(\lambda^{(true)})^{2}\int_{\mathbb{R}^{2}}\left(\exp\{2\exp(-\|\boldsymbol{x}\|)\}-1\right)e^{-i\boldsymbol{x}^{\top}\boldsymbol{\omega}}d\boldsymbol{x}\right]. (7.3)

In each simulation, we fit the TCP model with parameter 𝜽=(κ,α,σ2)\boldsymbol{\theta}=(\kappa,\alpha,\sigma^{2})^{\top}. To examine the effect of the selection of the prespecified domain, we use D2π={𝝎2:110π𝝎2π}D_{2\pi}=\{\boldsymbol{\omega}\in\mathbb{R}^{2}:\frac{1}{10}\pi\leq\|\boldsymbol{\omega}\|_{\infty}\leq 2\pi\} and D5π={𝝎2:110π𝝎5π}D_{5\pi}=\{\boldsymbol{\omega}\in\mathbb{R}^{2}:\frac{1}{10}\pi\leq\|\boldsymbol{\omega}\|_{\infty}\leq 5\pi\} when evaluating our estimator.

Next, we consider the best fitting TCP model. The best fitting TCP parameter is given by 𝜽0(D,A)=argmin𝜽Θ(R)(𝜽)\boldsymbol{\theta}_{0}(D,A)=\arg\min_{\boldsymbol{\theta}\in\Theta}\mathcal{L}^{(R)}(\boldsymbol{\theta}), where

(R)(𝜽)=𝝎𝒌,AD(f(𝝎𝒌,A)f𝜽(TCP)(𝝎𝒌,A)+logf𝜽(TCP)(𝝎𝒌,A)),𝜽Θ,\mathcal{L}^{(R)}(\boldsymbol{\theta})=\sum_{\boldsymbol{\omega}_{\boldsymbol{k},A}\in D}\left(\frac{f(\boldsymbol{\omega}_{\boldsymbol{k},A})}{f_{\boldsymbol{\theta}}^{(TCP)}(\boldsymbol{\omega}_{\boldsymbol{k},A})}+\log f_{\boldsymbol{\theta}}^{(TCP)}(\boldsymbol{\omega}_{\boldsymbol{k},A})\right),\quad\boldsymbol{\theta}\in\Theta, (7.4)

is the Riemann sum analogue of (𝜽)\mathcal{L}(\boldsymbol{\theta}) in (6.3). Figure 2 illustrates the (log-scale of) the true spectral density (ff; solid line) and the best fitting TCP spectral density functions f𝜽(TCP)f_{\boldsymbol{\theta}}^{(TCP)} for 𝜽=𝜽0(D2π,10)\boldsymbol{\theta}=\boldsymbol{\theta}_{0}(D_{2\pi},10) (dashed line) and 𝜽=𝜽0(D5π,10)\boldsymbol{\theta}=\boldsymbol{\theta}_{0}(D_{5\pi},10) (dotted line). We note that the best TCP spectral densities evaluated on two different domains (D2πD_{2\pi} and D5πD_{5\pi}) have distinct characteristics. In detail, f𝜽(TCP)f_{\boldsymbol{\theta}}^{(TCP)} for 𝜽=𝜽0(D2π,10)\boldsymbol{\theta}=\boldsymbol{\theta}_{0}(D_{2\pi},10) captures the peak and the curvature of the true spectral density more accurately but fails to identify the true asymptote (horizontal line with amplitude (2π)2λ(true)(2\pi)^{-2}\lambda^{(true)}). On the other hand, f𝜽(TCP)f_{\boldsymbol{\theta}}^{(TCP)} for 𝜽=𝜽0(D5π,10)\boldsymbol{\theta}=\boldsymbol{\theta}_{0}(D_{5\pi},10) successfully captures the asymptote of the true density but underestimates the power near the origin.

Refer to caption
Figure 2: The true spectral density function (f(𝛚)f(\boldsymbol{\omega}); solid line) as in (7.3) and the two best fitting TCP spectral densities for A=10A=10 evaluated on D2πD_{2\pi} (dashed line) and on D5πD_{5\pi} (dotted line). All three spectral densities are plotted in log-scale against 𝛚[0,)\|\boldsymbol{\omega}\|\in[0,\infty). The horizontal line indicates the asymptote of ff which takes a value (2π)2λ(true)(2\pi)^{-2}\lambda^{(true)}.

Table 2 below summarizes parameter estimation results. The empirical distribution of each estimator can be found in Figure H.4 in Appendix. For the parameter fitting, we also report the estimation of the first-order intensity λ=κα\lambda=\kappa\alpha.

Window Par. Best Par. Method
D2πD_{2\pi} D5πD_{5\pi} Ours(D2πD_{2\pi}) Ours(D5πD_{5\pi}) ML MC
[5,5]2[-5,5]^{2} κ\kappa 0.32 0.25 0.38(0.23) 0.38(0.23) 0.43(1.73) 0.25(0.28)
α\alpha 7.46 7.08 7.49(7.75) 6.41(5.19) 14.96(19.59)
σ2\sigma^{2} 0.17 0.10 0.32(0.80) 0.16(0.28) 0.34(0.34) 0.24(0.17)
λ=κα\lambda=\kappa\alpha 2.38 1.79 2.16(1.34) 1.76(0.75) 1.49(0.53)
Time(sec) 0.61 3.43 0.21 0.07
[10,10]2[-10,10]^{2} κ\kappa 0.31 0.24 0.36(0.13) 0.30(0.10) 0.12(0.07) 0.13(0.06)
α\alpha 7.74 7.37 7.33(3.79) 6.88(3.69) 20.02(18.46)
σ2\sigma^{2} 0.18 0.10 0.20(0.08) 0.11(0.05) 0.48(0.53) 0.36(0.25)
λ=κα\lambda=\kappa\alpha 2.43 1.80 2.36(0.92) 1.79(0.43) 1.60(0.31)
Time(sec) 1.68 11.13 2.99 0.16
[20,20]2[-20,20]^{2} κ\kappa 0.32 0.25 0.34(0.08) 0.27(0.06) 0.09(0.03) 0.09(0.03)
α\alpha 7.63 7.13 7.53(2.21) 7.16(2.36) 20.44(10.52)
σ2\sigma^{2} 0.18 0.10 0.19(0.04) 0.11(0.03) 0.41(0.20) 0.46(0.19)
λ=κα\lambda=\kappa\alpha 2.44 1.80 2.44(0.59) 1.81(0.24) 1.64(0.17)
Time(sec) 5.17 40.45 71.16 1.36
Table 2: The average and the standard errors (in the parentheses) of the estimated parameters for the misspecified LGCP fitting with the TCP model. The best fitting parameters are calculated by minimizing (R)(𝛉)\mathcal{L}^{(R)}(\boldsymbol{\theta}) in (7.4). When evaluating our estimator, we use two different prespecified domains, D2πD_{2\pi} and D5πD_{5\pi}.

We first discuss the best fitting parameters. As already shown in Figure 2 above, the best fitting parameter results reveal substantial differences between D2πD_{2\pi} and D5πD_{5\pi}. Surprisingly, the first-order intensity of the best fitting TCP model on D2πD_{2\pi} is 2.382.38 which significantly deviates from the true first-intensity (1.65\approx 1.65). The rationale behind this discrepancy is that the true spectral density function f(𝝎)f(\boldsymbol{\omega}) in 𝝎D2π\boldsymbol{\omega}\in D_{2\pi} is still distant from its asymptote value (2π)2λ(true)(2\pi)^{-2}\lambda^{(true)}. Therefore, the information contained in {I^h,n(𝝎):𝝎D2π}\{\widehat{I}_{h,n}(\boldsymbol{\omega}):\boldsymbol{\omega}\in D_{2\pi}\} proves insufficient for estimating the true first-order intensity. As a remedy for the discrepancy between the fitted first-order intensity and the true first-order intensity, one may fit the ”reduced” TCP model. Specifically, we can fit the TCP model with a parameter constraint α=λ^n/κ\alpha=\widehat{\lambda}_{n}/\kappa, where λ^n=NX(Dn)/|Dn|\widehat{\lambda}_{n}=N_{X}(D_{n})/|D_{n}| is the unbiased estimator of λ(true)\lambda^{(\text{true})}. One advantage of using such a parameter constraint is that the estimated first-order intensity of the reduced TCP model always correctly estimates the true first-order intensity. Please refer to Appendix H.4 for details on the construction of the reduced TCP model and its parameter fitting results.

Next, we examine the estimation outcomes from different methods. As the window size increases, our estimators evaluated on D2πD_{2\pi} and D5πD_{5\pi} converge toward the corresponding best fitting parameters. These results substantiate the asymptotic behavior of our estimator in Theorem 6.1. For the ML estimator, the standard errors of the estimation of κ\kappa and σ2\sigma^{2} decrease as the window size increases, however, the standard error of the estimated α\alpha is still large even the window size is large. It is observed that σ2\sigma^{2} tends to converges to a fixed value (approximately 1.6), but the estimated α\alpha value (resp. estimated κ\kappa value) tends to increase (resp. decrease) as DnD_{n} increases. It is intriguing that the ML estimator estimates the true first-order intensity of the process even the model is misspecified. However, to the best of our knowledge, there are no theoretical results available for the ML estimator under model misspecification. Lastly, the standard errors of the MC estimators decreases as the window increases. However, based on the results on Table 2, it is not clear that the MC estimator under model misspecification converges to a fixed parameter which is non-shrinking or non-diverging.

Lastly, our estimator based on the prespecified domain D2πD_{2\pi} is reasonably fast even for the largest window Dn=[20,20]2D_{n}=[-20,20]^{2}. However, when the prespecified domain is D5πD_{5\pi}, the computation time can take up to 40 seconds per simulation. This is because when computing Ln(R)(𝜽)L_{n}^{(R)}(\boldsymbol{\theta}), the number of computational grids for D5πD_{5\pi} is about (5/2)2=6.25(5/2)^{2}=6.25 times larger than that of D2πD_{2\pi}. To reduce the computation time, one may consider using a coarse grid on D5πD_{5\pi} such as using a coarse grid Ω=A/2\Omega=A/2.

8 Concluding remarks and possible extensions

In this article, we study the frequency domain estimation and inferential methods for spatial point processes. We show that the DFTs for spatial point processes still satisfy the asymptotic joint Gaussianity, which is a classical result for the DFTs applicable to time series or spatial statistics. Our approach accommodates irregularly scattered point patterns, thus the fast Fourier transform algorithm is not applicable for evaluating the DFTs on a set of grids. Nevertheless, our simulations indicate that the DFT based model parameter estimation method remains computationally attractive with satisfactory finite sample performance. The advantage of our method becomes more pronounced when fitting a model with misspecification. We prove that our proposed model parameter estimator is asymptotically Gaussian, estimating the “best” fitting parameter that minimizes the spectral divergence between the true and conjectured spectra. According to our simulation results, it appears that our method is the only promising approach that exhibits satisfactory large sample properties under model misspecification, distinguishing itself from other two spatial domain methods—the likelihood-based method and least square method.

We anticipate that our frequency domain approaches can be well extended to multivariate point processes. In multivariate case, one need to consider the “joint” higher-order intensity and cumulant intensity functions, as introduced in Zhu et al. (2023), Section 2. Additionally, the sets of assumptions presented in this paper need appropriate reformulation (see Section 4.1 of the same reference). In Appendix I, we show that our DFT-based approaches can also be extended to the class of inhomogeneous processes, but a significant portion of the theoretical development on frequency domain methods of the inhomogeneous processes are remained open. This will be a good revenue for the furture research.

Acknowledgments

JY acknowledge the support of the Taiwan’s National Science and Technology Council (grants 110-2118-M-001-014-MY3 and 113-2118-M-001-012). The authors thank Hsin-Cheng Huang and Suhasini Subba Rao for fruitful comments and suggestions, and Qi-Wen Ding for assistance with simulations. The authors also wish to thank the two anonymous referees and editors for their valuable comments and corrections, which have greatly improved the article in all aspects.

References

  • Baddeley et al. (2000) A. J. Baddeley, J. Møller, and R. Waagepetersen. Non-and semi-parametric estimation of interaction in inhomogeneous point patterns. Stat. Neerl., 54(3):329–350, 2000. doi: 10.1111/1467-9574.00144.
  • Bandyopadhyay and Lahiri (2009) S. Bandyopadhyay and S. N. Lahiri. Asymptotic properties of discrete Fourier transforms for spatial data. Sankhya A, 71(2):221–259, 2009.
  • Bartlett (1964) M. S. Bartlett. The spectral analysis of two-dimensional point processes. Biometrika, 51(3/4):299–311, 1964. doi: 10.2307/2334136.
  • Biscio and Lavancier (2016) C. A. N. Biscio and F. Lavancier. Brillinger mixing of determinantal point processes and statistical applications. Electron. J. Stat., 10(1):582–607, 2016. doi: 10.1214/16-EJS1116.
  • Biscio and Lavancier (2017) C. A. N. Biscio and F. Lavancier. Contrast estimation for parametric stationary determinantal point processes. Scand. J. Stat., 44(1):204–229, 2017. doi: 10.1111/sjos.12249.
  • Biscio and Waagepetersen (2019) C. A. N. Biscio and R. Waagepetersen. A general central limit theorem and a subsampling variance estimator for α\alpha-mixing point processes. Scand. J. Stat., 46(4):1168–1190, 2019. doi: 10.1111/sjos.12389.
  • Brillinger (1981) D. R. Brillinger. Time series: Data Analysis and Theory. Holden-Day, INC., San Francisco, CA, 1981. Expanded edition.
  • Chandler (1997) R. E. Chandler. A spectral method for estimating parameters in rainfall models. Bernoulli, 3(3):301–322, 1997. doi: 10.2307/3318594.
  • Cheysson and Lang (2022) F. Cheysson and G. Lang. Spectral estimation of Hawkes processes from count data. Ann. Statist., 50(3):1722–1746, 2022. doi: 10.1214/22-AOS2173.
  • Choiruddin et al. (2021) A. Choiruddin, J.-F. Coeurjolly, and R. Waagepetersen. Information criteria for inhomogeneous spatial point processes. Aust. N. Z. J. Stat., 63(1):119–143, 2021. doi: 10.1111/anzs.12327.
  • Dahlhaus (1997) R. Dahlhaus. Fitting time series models to nonstationary processes. Ann. Statist., 25(1):1–37, 1997. doi: 10.1214/aos/1034276620.
  • Dahlhaus and Künsch (1987) R. Dahlhaus and H. Künsch. Edge effects and efficient parameter estimation for stationary random fields. Biometrika, 74(4):877–882, 1987. doi: 10.1093/biomet/74.4.877.
  • Dahlhaus and Sahm (2000) R. Dahlhaus and M. Sahm. Likelihood methods for nonstationary time series and random fields. Resenhas IME-USP (São Paulo J. Math. Sci.), 4(4):457–477, 2000.
  • Dahlhaus and Wefelmeyer (1996) R. Dahlhaus and W. Wefelmeyer. Asymptotically optimal estimation in misspecified time series models. Ann. Statist., 24(3):952–974, 1996. doi: 10.1214/aos/1032526951.
  • Daley and Vere-Jones (2003) D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods. Springer, New York City, NY., 2003. doi: 10.1007/b97277. second edition.
  • D’Angelo et al. (2022) N. D’Angelo, G. Adelfio, A. Abbruzzo, and J. Mateu. Inhomogeneous spatio-temporal point processes on linear networks for visitors’ stops data. Ann. Appl. Stat., 16(2):791–815, 2022. doi: 10.1214/21-AOAS1519.
  • Diggle (2013) P. J. Diggle. Statistical Analysis of Spatial and Spatio-Temporal Point Patterns. CRC press, New York, NY, 2013. doi: 10.1201/b15326. 3rd edition.
  • Ding et al. (2024) Q.-W. Ding, J. Shin, and J. Yang. Pseudo-spectra of multivariate inhomogeneous spatial point processes. Technical report, 2024.
  • Doukhan (1994) P. Doukhan. Mixing: Properties and Examples. Springer, New York City, NY., 1994. doi: 10.1007/978-1-4612-2642-0.
  • Folland (1999) G. B. Folland. Real Analysis: Modern Techniques and Their Applications, volume 40. John Wiley & Sons, New York, NY, 1999. 2nd edition.
  • Gabriel and Diggle (2009) E. Gabriel and P. J. Diggle. Second-order analysis of inhomogeneous spatio-temporal point process data. Stat. Neerl., 63(1):43–51, 2009. doi: 10.1111/j.1467-9574.2008.00407.x.
  • Guan and Sherman (2007) Y. Guan and M. Sherman. On least squares fitting for stationary spatial point processes. J. R. Stat. Soc. Ser. B. Stat. Methodol., 69(1):31–49, 2007. doi: 10.1111/j.1467-9868.2007.00575.x.
  • Guillaumin et al. (2022) A. P. Guillaumin, A. M. Sykulski, S. C. Olhede, and F. J. Simons. The debiased spatial Whittle likelihood. J. R. Stat. Soc. Ser. B. Stat. Methodol., 84(4):1526–1557, 2022. doi: 10.1111/rssb.12539.
  • Guyon (1982) X. Guyon. Parameter estimation for a stationary process on a dd-dimensional lattice. Biometrika, 69(1):95–105, 1982. doi: 10.2307/2335857.
  • Hawkes (1971a) A. G. Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58(1):83–90, 1971a. doi: 10.2307/2334319.
  • Hawkes (1971b) A. G. Hawkes. Point spectra of some mutually exciting point processes. J. R. Stat. Soc. Ser. B. Stat. Methodol., 33(3):438–443, 1971b. doi: 10.1111/j.2517-6161.1971.tb01530.x.
  • Illian et al. (2008) J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan. Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley & Sons, Hoboken, NJ., 2008. doi: 10.1002/9780470725160.
  • Jovanović et al. (2015) S. Jovanović, J. Hertz, and S. Rotter. Cumulants of Hawkes point processes. Phys. Rev. E, 91(4):042802, 2015. doi: 10.1103/PhysRevE.91.042802.
  • Macchi (1975) O. Macchi. The coincidence approach to stochastic point processes. Adv. in Appl. Probab., 7(1):83–122, 1975. doi: 10.1017/s0001867800040313.
  • Matsuda and Yajima (2009) Y. Matsuda and Y. Yajima. Fourier analysis of irregularly spaced data on RdR^{d}. J. R. Stat. Soc. Ser. B. Stat. Methodol., 71(1):191–217, 2009. doi: 10.1111/j.1467-9868.2008.00685.x.
  • Møller and Waagepetersen (2004) J. Møller and R. Waagepetersen. Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton, FL, 2004. doi: 10.1201/9780203496930.
  • Møller et al. (1998) J. Møller, A. R. Syversveen, and R. P. Waagepetersen. Log Gaussian Cox processes. Scand. J. Stat., 25(3):451–482, 1998. doi: 10.1111/1467-9469.00115.
  • Mugglestone and Renshaw (1996) M. A. Mugglestone and E. Renshaw. A practical guide to the spectral analysis of spatial point processes. Comput. Statist. Data Anal., 21(1):43–65, 1996. doi: 10.1016/0167-9473(95)00007-0.
  • Newey (1991) W. K. Newey. Uniform convergence in probability and stochastic equicontinuity. Econometrica, 59(4):1161–1167, 1991. doi: 10.2307/2938179.
  • Neyman and Scott (1958) J. Neyman and E. L. Scott. Statistical approach to problems of cosmology. J. R. Stat. Soc. Ser. B. Stat. Methodol., 20(1):1–29, 1958. doi: 10.1111/j.2517-6161.1958.tb00272.x.
  • Parzen (1957) E. Parzen. On consistent estimates of the spectrum of a stationary time series. Ann. Math. Stat., 28(2):329–348, 1957. doi: 10.1214/aoms/1177706962.
  • Pawlas (2009) Z. Pawlas. Empirical distributions in marked point processes. Stochastic Process. Appl., 119(12):4194–4209, 2009. doi: 10.1016/j.spa.2009.10.002.
  • Poinas and Lavancier (2023) A. Poinas and F. Lavancier. Asymptotic approximation of the likelihood of stationary determinantal point processes. Scand. J. Stat., 50(2):842–874, 2023. doi: 10.1111/sjos.12613.
  • Poinas et al. (2019) A. Poinas, B. Delyon, and F. Lavancier. Mixing properties and central limit theorem for associated point processes. Bernoulli, 25(3):1724–1754, 2019. doi: 10.3150/18-BEJ1033.
  • Prokešová and Jensen (2013) M. Prokešová and E. V. B. Jensen. Asymptotic Palm likelihood theory for stationary point processes. Ann. Inst. Statist. Math., 65(2):387–412, 2013. doi: 10.1007/s10463-012-0376-7.
  • Rajala et al. (2023) T. A. Rajala, S. C. Olhede, J. P. Grainger, and D. J. Murrell. What is the Fourier transform of a spatial point process? IEEE Trans. Inform. Theory, 69(8):5219–5252, 2023. doi: 10.1109/TIT.2023.3269514.
  • Rosenblatt (1956) M. Rosenblatt. A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA, 42(1):43–47, 1956. doi: 10.1073/pnas.42.1.43.
  • Shlomovich et al. (2022) L. Shlomovich, E. A. K. Cohen, N. Adams, and L. Patel. Parameter estimation of binned Hawkes processes. J. Comput. Graph. Statist., 31(4):990–1000, 2022. doi: 10.1080/10618600.2022.2050247.
  • Subba Rao (2018) S. Subba Rao. Statistical inference for spatial statistics defined in the Fourier domain. Ann. Statist., 46(2):469–499, 2018. doi: 10.1214/17-AOS1556.
  • Subba Rao and Yang (2021) S. Subba Rao and J. Yang. Reconciling the Gaussian and Whittle likelihood with an application to estimation in the frequency domain. Ann. Statist., 49(5):2774–2802, 2021. doi: 10.1214/21-AOS2055.
  • Tanaka et al. (2008) U. Tanaka, Y. Ogata, and D. Stoyan. Parameter estimation and model selection for Neyman-Scott point processes. Biom. J., 50(1):43–57, 2008. doi: 10.1002/bimj.200610339.
  • Tukey (1967) J. W. Tukey. An introduction to the calculations of numerical spectrum analysis. In Spectral Analysis of Time Series (Proc. Advanced Sem., Madison, Wis., 1966), pages 25–46. John Wiley, New York, 1967.
  • Waagepetersen and Guan (2009) R. Waagepetersen and Y. Guan. Two-step estimation for inhomogeneous spatial point processes. J. R. Stat. Soc. Ser. B. Stat. Methodol., 71(3):685–702, 2009. doi: 10.1111/j.1467-9868.2008.00702.x.
  • Warton and Shepherd (2010) D. I. Warton and L. C. Shepherd. Poisson point process models solve the “pseudo-absence problem” for presence-only data in ecology. Ann. Appl. Stat., 4(3):1383–1402, 2010. doi: 10.1214/10-aoas331.
  • Whittle (1953) P. Whittle. The analysis of multiple stationary time series. J. R. Stat. Soc. Ser. B. Stat. Methodol., 15:125–139, 1953. doi: 10.1111/j.2517-6161.1953.tb00131.x.
  • Yang and Guan (2024) J. Yang and Y. Guan. Supplement to “Fourier analysis of spatial point processes”. Technical report, 2024.
  • Zhu et al. (2023) L. Zhu, J. Yang, M. Jun, and S. Cook. On minimum contrast method for multivariate spatial point processes. arXiv preprint arXiv:2208.07044, 2023.
  • Zhuang et al. (2004) J. Zhuang, Y. Ogata, and D. Vere-Jones. Analyzing earthquake clustering features by using stochastic reconstruction. J. Geophys. Res. Solid Earth, 109(B05301), 2004. doi: 10.1029/2003JB002879.

Appendix A Proof of Theorem 4.1

A.1 Equivalence between the feasible and infeasible criteria

Let

A~h,n(ϕ)=Dϕ(𝝎)Ih,n(𝝎)𝑑𝝎,n,\widetilde{A}_{h,n}(\phi)=\int_{D}\phi(\boldsymbol{\omega})I_{h,n}(\boldsymbol{\omega})d\boldsymbol{\omega},\quad n\in\mathbb{N}, (A.1)

be a feasible criterion of the integrated periodogram A^h,n(ϕ)\widehat{A}_{h,n}(\phi) as in (4.2). In theorem below, we show that |Dn|1/2(A^h,n(ϕ)A(ϕ))|D_{n}|^{1/2}(\widehat{A}_{h,n}(\phi)-A(\phi)) and |Dn|1/2(A~h,n(ϕ)A(ϕ))|D_{n}|^{1/2}(\widetilde{A}_{h,n}(\phi)-A(\phi)) are asymptotically equivalent. Therefore, both statistics share the same asymptotic distribution.

Theorem A.1.

Let XX be a second-order stationary point process on d\mathbb{R}^{d}. Suppose that Assumptions 3.1, 3.2 (for =4\ell=4), and 3.4(i) hold. Then,

|Dn|1/2(A^h,n(ϕ)A(ϕ))|Dn|1/2(A~h,n(ϕ)A(ϕ))L20,n,|D_{n}|^{1/2}(\widehat{A}_{h,n}(\phi)-A(\phi))-|D_{n}|^{1/2}(\widetilde{A}_{h,n}(\phi)-A(\phi))\stackrel{{\scriptstyle L_{2}}}{{\rightarrow}}0,\quad n\rightarrow\infty,

where L2\stackrel{{\scriptstyle L_{2}}}{{\rightarrow}} denotes convergences in L2L_{2}.

Proof. Let Kh,n(𝝎)=ch,n(𝝎)Jh,n(𝝎)+ch,n(𝝎)Jh,n(𝝎)K_{h,n}(\boldsymbol{\omega})=c_{h,n}(\boldsymbol{\omega})J_{h,n}(-\boldsymbol{\omega})+c_{h,n}(-\boldsymbol{\omega})J_{h,n}(\boldsymbol{\omega}), 𝝎d\boldsymbol{\omega}\in\mathbb{R}^{d}, and let

R1(𝝎)=(λ^h,nλ)Kh,n(𝝎)andR2(𝝎)=|ch,n(𝝎)|2(λ^h,nλ)2,𝝎d.R_{1}(\boldsymbol{\omega})=-(\widehat{\lambda}_{h,n}-\lambda)K_{h,n}(\boldsymbol{\omega})~{}~{}\text{and}~{}~{}R_{2}(\boldsymbol{\omega})=|c_{h,n}(\boldsymbol{\omega})|^{2}(\widehat{\lambda}_{h,n}-\lambda)^{2},\quad\boldsymbol{\omega}\in\mathbb{R}^{d}.

Then, we have I^h,n(𝝎)Ih,n(𝝎)=R1(𝝎)+R2(𝝎)\widehat{I}_{h,n}(\boldsymbol{\omega})-I_{h,n}(\boldsymbol{\omega})=R_{1}(\boldsymbol{\omega})+R_{2}(\boldsymbol{\omega}), 𝝎d\boldsymbol{\omega}\in\mathbb{R}^{d}. Therefore, the difference between the feasible integrated periodogram and its theoretical counterpart can be expressed as

|Dn|1/2(A^h,n(ϕ)A~h,n(ϕ))\displaystyle|D_{n}|^{1/2}(\widehat{A}_{h,n}(\phi)-\widetilde{A}_{h,n}(\phi)) =\displaystyle= |Dn|1/2Dϕ(𝝎)(I^h,n(𝝎)Ih,n(𝝎))𝑑𝝎\displaystyle|D_{n}|^{1/2}\int_{D}\phi(\boldsymbol{\omega})\left(\widehat{I}_{h,n}(\boldsymbol{\omega})-I_{h,n}(\boldsymbol{\omega})\right)d\boldsymbol{\omega}
=\displaystyle= S1+S2,𝝎d,\displaystyle S_{1}+S_{2},~{}~{}\boldsymbol{\omega}\in\mathbb{R}^{d},

where Si=|Dn|1/2Dϕ(𝝎)Ri(𝝎)𝑑𝝎S_{i}=|D_{n}|^{1/2}\int_{D}\phi(\boldsymbol{\omega})R_{i}(\boldsymbol{\omega})d\boldsymbol{\omega}, i{1,2}i\in\{1,2\}. By using Theorem E.2 below, both S1S_{1} and S2S_{2} converges to zero in L2L_{2} as nn\rightarrow\infty. Thus, we get the desired results. \Box

Thanks to the above theorem, it is enough to prove Theorem A.1 for A~h,n(ϕ)\widetilde{A}_{h,n}(\phi) replacing A^h,n(ϕ)\widehat{A}_{h,n}(\phi) in the statement.

A.2 Proof of the asymptotic bias

By using Theorem D.1 below, an expectation of the (theoretical) periodogram can be expressed as

𝔼[Ih,n(𝝎)]=df(𝒙)Fh,n(𝝎𝒙)𝑑𝒙,n,𝝎d,\mathbb{E}[I_{h,n}(\boldsymbol{\omega})]=\int_{\mathbb{R}^{d}}f(\boldsymbol{x})F_{h,n}(\boldsymbol{\omega}-\boldsymbol{x})d\boldsymbol{x},\quad n\in\mathbb{N},\quad\boldsymbol{\omega}\in\mathbb{R}^{d},

where Fh,nF_{h,n} is the Fejér Kernel defined as in (C.15). Therefore, applying Lemma C.3(b) to the above expression, we have

𝔼[Ih,n(𝝎)]f(𝝎)=df(𝒙)Fh,n(𝝎𝒙)𝑑𝒙f(𝝎)=O(|Dn|2/d),n\mathbb{E}[I_{h,n}(\boldsymbol{\omega})]-f(\boldsymbol{\omega})=\int_{\mathbb{R}^{d}}f(\boldsymbol{x})F_{h,n}(\boldsymbol{\omega}-\boldsymbol{x})d\boldsymbol{x}-f(\boldsymbol{\omega})=O(|D_{n}|^{-2/d}),\quad n\rightarrow\infty (A.2)

uniformly in 𝝎d\boldsymbol{\omega}\in\mathbb{R}^{d}. Therefore, an expectation of A~h,n(ϕ)A(ϕ)\widetilde{A}_{h,n}(\phi)-A(\phi) is bounded by

|𝔼[A~h,n(ϕ)]A(ϕ)|D|ϕ(𝝎)||𝔼[Ih,n(𝝎)]f(𝝎)|𝑑𝝎C|Dn|2/dD|ϕ(𝝎)|𝑑𝝎=O(|Dn|2/d)|\mathbb{E}[\widetilde{A}_{h,n}(\phi)]-A(\phi)|\leq\int_{D}|\phi(\boldsymbol{\omega})||\mathbb{E}[I_{h,n}(\boldsymbol{\omega})]-f(\boldsymbol{\omega})|d\boldsymbol{\omega}\leq C|D_{n}|^{-2/d}\int_{D}|\phi(\boldsymbol{\omega})|d\boldsymbol{\omega}=O(|D_{n}|^{-2/d})

as nn\rightarrow\infty. Thus, combining the above with Theorem A.1, we show (i). \Box

A.3 Proof of the asymptotic variance

To show the asymptotic variance, we first fix term. First, we view ϕ\phi as a function on d\mathbb{R}^{d} by letting ϕ(𝝎)=0\phi(\boldsymbol{\omega})=0 when 𝝎D\boldsymbol{\omega}\notin D. Since ϕL1(d)\phi\in L^{1}(\mathbb{R}^{d}), let

ϕ^(𝝀)=(ϕ)(𝝀)=dϕ(𝝎)exp(i𝝀𝝎)𝑑𝝎,𝝀d\widehat{\phi}(\boldsymbol{\lambda})=\mathcal{F}(\phi)(\boldsymbol{\lambda})=\int_{\mathbb{R}^{d}}\phi(\boldsymbol{\omega})\exp(i\boldsymbol{\lambda}^{\top}\boldsymbol{\omega})d\boldsymbol{\omega},\quad\boldsymbol{\lambda}\in\mathbb{R}^{d} (A.3)

be the Fourier transform of ϕ\phi. Next, for a finite region BM=i=1d[Mi,Mi]dB_{M}=\prod_{i=1}^{d}[-M_{i},M_{i}]\subset\mathbb{R}^{d}, let

ϕM(𝝀)=1(ϕ^(𝝎)IBM(𝝎))(𝝀),𝝀d,\phi_{M}(\boldsymbol{\lambda})=\mathcal{F}^{-1}(\widehat{\phi}(\boldsymbol{\omega})I_{B_{M}}(\boldsymbol{\omega}))(\boldsymbol{\lambda}),\quad\boldsymbol{\lambda}\in\mathbb{R}^{d}, (A.4)

where IM(𝒙)=1I_{M}(\boldsymbol{x})=1 if 𝒙BM\boldsymbol{x}\in B_{M} and zero otherwise. Therefore, the Fourier transform of ϕM(𝝀)\phi_{M}(\boldsymbol{\lambda}), denoted ϕ^M(𝝎)\widehat{\phi}_{M}(\boldsymbol{\omega}), is equal to ϕ^(𝝎)IBM(𝝎)\widehat{\phi}(\boldsymbol{\omega})I_{B_{M}}(\boldsymbol{\omega}) which vanishes outside BMB_{M}. By using similar arguments as in Matsuda and Yajima (2009), Lemmas 4 and 5, we have ϕMϕ\phi_{M}\rightarrow\phi as BMdB_{M}\rightarrow\mathbb{R}^{d} in L2L^{2} sense and for large enough BMB_{M}, |Dn|var(A~h,n(ϕ))|D_{n}|\mathrm{var}(\widetilde{A}_{h,n}(\phi)) is closely approximated with |Dn|var(A~h,n(ϕM))|D_{n}|\mathrm{var}(\widetilde{A}_{h,n}(\phi_{M})) uniformly for all nn\in\mathbb{N}.

Now, we make an expansion of |Dn|var(A~h,n(ϕM))|D_{n}|\mathrm{var}(\widetilde{A}_{h,n}(\phi_{M})). By using that Ih,n(𝝎)=|Jh,n(𝝎)|2=Jh,n(𝝎)Jh,n(𝝎)I_{h,n}(\boldsymbol{\omega})=|J_{h,n}(\boldsymbol{\omega})|^{2}=J_{h,n}(\boldsymbol{\omega})J_{h,n}(-\boldsymbol{\omega}), for 𝝎1,𝝎2d\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}\in\mathbb{R}^{d}, we have

cov(Ih,n(𝝎1),Ih,n(𝝎2))\displaystyle\mathrm{cov}(I_{h,n}(\boldsymbol{\omega}_{1}),I_{h,n}(\boldsymbol{\omega}_{2})) =cov(Jh,n(𝝎1)Jh,n(𝝎1),Jh,n(𝝎2)Jh,n(𝝎2))\displaystyle=\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1})J_{h,n}(-\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2})J_{h,n}(-\boldsymbol{\omega}_{2})) (A.5)
=cov(Jh,n(𝝎1),Jh,n(𝝎2))cov(Jh,n(𝝎1),Jh,n(𝝎2))\displaystyle=\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2}))\mathrm{cov}(J_{h,n}(-\boldsymbol{\omega}_{1}),J_{h,n}(-\boldsymbol{\omega}_{2}))
+cov(Jh,n(𝝎1),Jh,n(𝝎2))cov(Jh,n(𝝎1),Jh,n(𝝎2))\displaystyle+\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(-\boldsymbol{\omega}_{2}))\mathrm{cov}(J_{h,n}(-\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2}))
+cum(Jh,n(𝝎1),Jh,n(𝝎1),Jh,n(𝝎2),Jh,n(𝝎2)).\displaystyle+\mathrm{cum}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(-\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2}),J_{h,n}(-\boldsymbol{\omega}_{2})).

Therefore, we have |Dn|var(A~h,n(ϕM))=A1+A2+A3|D_{n}|\mathrm{var}(\widetilde{A}_{h,n}(\phi_{M}))=A_{1}+A_{2}+A_{3}, where

A1\displaystyle A_{1} =\displaystyle= |Dn|2dϕM(𝝎1)ϕM(𝝎2)cov(Jh,n(𝝎1),Jh,n(𝝎2))cov(Jh,n(𝝎1),Jh,n(𝝎2))𝑑𝝎1𝑑𝝎2,\displaystyle|D_{n}|\int_{\mathbb{R}^{2d}}\phi_{M}(\boldsymbol{\omega}_{1})\phi_{M}(\boldsymbol{\omega}_{2})\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2}))\mathrm{cov}(J_{h,n}(-\boldsymbol{\omega}_{1}),J_{h,n}(-\boldsymbol{\omega}_{2}))d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2},
A2\displaystyle A_{2} =\displaystyle= |Dn|2dϕM(𝝎1)ϕM(𝝎2)cov(Jh,n(𝝎1),Jh,n(𝝎2))cov(Jn(𝝎1),Jh,n(𝝎2))𝑑𝝎1𝑑𝝎2,\displaystyle|D_{n}|\int_{\mathbb{R}^{2d}}\phi_{M}(\boldsymbol{\omega}_{1})\phi_{M}(\boldsymbol{\omega}_{2})\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(-\boldsymbol{\omega}_{2}))\mathrm{cov}(J_{n}(-\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2}))d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2},
andA3\displaystyle\text{and}\quad A_{3} =\displaystyle= |Dn|2dϕM(𝝎1)ϕM(𝝎2)cum(Jh,n(𝝎1),Jh,n(𝝎1),Jh,n(𝝎2),Jh,n(𝝎2))𝑑𝝎1𝑑𝝎2.\displaystyle|D_{n}|\int_{\mathbb{R}^{2d}}\phi_{M}(\boldsymbol{\omega}_{1})\phi_{M}(\boldsymbol{\omega}_{2})\mathrm{cum}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(-\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2}),J_{h,n}(-\boldsymbol{\omega}_{2}))d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}.

By using Theorem D.3 below, we have

limnA1=(2π)d(Hh,4/Hh,22)df(𝝎)2ϕM(𝝎)2𝑑𝝎.\lim_{n\rightarrow\infty}A_{1}=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})\int_{\mathbb{R}^{d}}f(\boldsymbol{\omega})^{2}\phi_{M}(\boldsymbol{\omega})^{2}d\boldsymbol{\omega}. (A.6)

Therefore, for sufficiently large BMB_{M}, limnA1\lim_{n\rightarrow\infty}A_{1} is arbitrary close to (2π)d(Hh,4/Hh,22)Df2ϕ2(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})\int_{D}f^{2}\phi^{2}.

Similarly, the limit of A2A_{2} is

limnA2\displaystyle\lim_{n\rightarrow\infty}A_{2} =\displaystyle= (2π)d(Hh,4/Hh,22)dϕM(𝝎)ϕM(𝝎)f(𝝎)2𝑑𝝎\displaystyle(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})\int_{\mathbb{R}^{d}}\phi_{M}(\boldsymbol{\omega})\phi_{M}(-\boldsymbol{\omega})f(\boldsymbol{\omega})^{2}d\boldsymbol{\omega} (A.7)
\displaystyle\approx (2π)d(Hh,4/Hh,22)Dϕ(𝝎)ϕ(𝝎)f(𝝎)2𝑑𝝎.\displaystyle(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})\int_{D}\phi(\boldsymbol{\omega})\phi(-\boldsymbol{\omega})f(\boldsymbol{\omega})^{2}d\boldsymbol{\omega}.

Lastly, by using Theorem D.4 below, we have

limnA3\displaystyle\lim_{n\rightarrow\infty}A_{3} =(2π)d(Hh,4/Hh,22)2dϕM(𝝀1)ϕM(𝝀3)f4(𝝀1,𝝀1,𝝀3)𝑑𝝀1𝑑𝝀3\displaystyle=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})\int_{\mathbb{R}^{2d}}\phi_{M}(\boldsymbol{\lambda}_{1})\phi_{M}(\boldsymbol{\lambda}_{3})f_{4}(\boldsymbol{\lambda}_{1},-\boldsymbol{\lambda}_{1},\boldsymbol{\lambda}_{3})d\boldsymbol{\lambda}_{1}d\boldsymbol{\lambda}_{3} (A.8)
(2π)d(Hh,4/Hh,22)D2ϕ(𝝀1)ϕ(𝝀3)f4(𝝀1,𝝀1,𝝀3)𝑑𝝀1𝑑𝝀3.\displaystyle\approx(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})\int_{D^{2}}\phi(\boldsymbol{\lambda}_{1})\phi(\boldsymbol{\lambda}_{3})f_{4}(\boldsymbol{\lambda}_{1},-\boldsymbol{\lambda}_{1},\boldsymbol{\lambda}_{3})d\boldsymbol{\lambda}_{1}d\boldsymbol{\lambda}_{3}.

Combining (A.6)–(A.8), we have

limn|Dn|var(A~h,n(ϕ))=(2π)d(Hh,4/Hh,22)(Ω1+Ω2),\lim_{n\rightarrow\infty}|D_{n}|\mathrm{var}(\widetilde{A}_{h,n}(\phi))=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})(\Omega_{1}+\Omega_{2}),

where Ω1\Omega_{1} and Ω2\Omega_{2} are defined as in (4.5). Thus, combining the aboves, we show (ii). \Box

A.4 Proof of the asymptotic normality

Because of Theorem A.1, it is enough to show the asymptotic normality of the feasible Gh,n(ϕ)=|Dn|1/2(A~h,n(ϕ)A(ϕ))G_{h,n}(\phi)=|D_{n}|^{1/2}(\widetilde{A}_{h,n}(\phi)-A(\phi)). Let d{1,2,3}d\in\{1,2,3\} and let

G~h,n(ϕ)=|Dn|1/2Dϕ(𝝎){Ih,n(𝝎)𝔼[Ih,n(𝝎)]}𝑑𝝎=|Dn|1/2(A~h,n(ϕ)𝔼[A~h,n(ϕ)]).\widetilde{G}_{h,n}(\phi)=|D_{n}|^{1/2}\int_{D}\phi(\boldsymbol{\omega})\left\{I_{h,n}(\boldsymbol{\omega})-\mathbb{E}[I_{h,n}(\boldsymbol{\omega})]\right\}d\boldsymbol{\omega}=|D_{n}|^{1/2}\left(\widetilde{A}_{h,n}(\phi)-\mathbb{E}[\widetilde{A}_{h,n}(\phi)]\right). (A.9)

Then, Gh,n(ϕ)G~h,n(ϕ)G_{h,n}(\phi)-\widetilde{G}_{h,n}(\phi) is nonstochastic and is bounded by O(|Dn|1/2(2/d))=o(1)O(|D_{n}|^{1/2-(2/d)})=o(1) as nn\rightarrow\infty due to Theorem 4.1(i). Therefore, Gh,n(ϕ)G_{h,n}(\phi) and G~h,n(ϕ)\widetilde{G}_{h,n}(\phi) are asymptotically equivalent.

Now, we focus on the asymptotic distribution of G~h,n(ϕ)\widetilde{G}_{h,n}(\phi). Since Ih,n()I_{h,n}(\cdot) cannot be written as an additive form of the periodograms of the sub-blocks, one cannot directly apply for the standard central limit theorem techniques that are reviewed in Biscio and Waagepetersen (2019), Section 1. Instead, we will “linearize” the periodogram and show that the associated linear term dominates.

Without loss of generality, we assume that there exists C(1,)C\in(1,\infty) such that C1nd|Dn|CndC^{-1}n^{d}\leq|D_{n}|\leq Cn^{d}, nn\in\mathbb{N}. Therefore, A1,,AdA_{1},\cdots,A_{d} increases proportional to the order of nn. Next, let β,γ(0,1)\beta,\gamma\in(0,1) be chosen such that 2d/ε<β<γ<12d/\varepsilon<\beta<\gamma<1, where ε>2d\varepsilon>2d is from Assumption 3.3(ii). Let

An={𝒌:𝒌nγdandDn(𝒌)=𝒌+[(nγnβ)/2,(nγnβ)/2]dDn},n.A_{n}=\{\boldsymbol{k}:\boldsymbol{k}\in n^{\gamma}\mathbb{Z}^{d}~{}~{}\text{and}~{}~{}D_{n}^{(\boldsymbol{k})}=\boldsymbol{k}+[-(n^{\gamma}-n^{\beta})/2,(n^{\gamma}-n^{\beta})/2]^{d}\subset D_{n}\},~{}~{}n\in\mathbb{N}.

Therefore, 𝒌AnDn(𝒌)\bigcup_{\boldsymbol{k}\in A_{n}}D_{n}^{(\boldsymbol{k})} is a disjoint union that is included in DnD_{n}. Let Jh,n(𝒌)(𝝎)=𝒥h,n(𝒌)(𝝎)𝔼[𝒥h,n(𝒌)(𝝎)]J_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})=\mathcal{J}_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})-\mathbb{E}[\mathcal{J}_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})], where

𝒥h,n(𝒌)(𝝎)=(2π)d/2Hh,21/2|Dn(𝒌)|1/2𝒙XDn(𝒌)h(𝒙/𝑨)exp(i𝒙𝝎),𝒌An,𝝎d.\mathcal{J}_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})=(2\pi)^{-d/2}H_{h,2}^{-1/2}|D_{n}^{(\boldsymbol{k})}|^{-1/2}\sum_{\boldsymbol{x}\in X\cap D_{n}^{(\boldsymbol{k})}}h(\boldsymbol{x}/\boldsymbol{A})\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega}),\quad\boldsymbol{k}\in A_{n},\quad\boldsymbol{\omega}\in\mathbb{R}^{d}.

Therefore, 𝒥h,n(𝒌)()\mathcal{J}_{h,n}^{(\boldsymbol{k})}(\cdot) is the DFT evaluated within the sub-block Dn(𝒌)D_{n}^{(\boldsymbol{k})} of DnD_{n}. Let

G~h,n(𝒌)(ϕ)=|Dn(𝒌)|1/2Dϕ(𝝎)(|Jh,n(𝒌)(𝝎)|2𝔼[|Jh,n(𝒌)(𝝎)|2])𝑑𝝎,n,𝒌An.\widetilde{G}_{h,n}^{(\boldsymbol{k})}(\phi)=|D_{n}^{(\boldsymbol{k})}|^{1/2}\int_{D}\phi(\boldsymbol{\omega})\left(|J_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})|^{2}-\mathbb{E}[|J_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})|^{2}]\right)d\boldsymbol{\omega},\quad n\in\mathbb{N},\quad\boldsymbol{k}\in A_{n}.

Let kn=|An|k_{n}=|A_{n}| and let

Vh,n(ϕ)=kn1/2𝒌AnG~h,n(𝒌)(ϕ),n.V_{h,n}(\phi)=k_{n}^{-1/2}\sum_{\boldsymbol{k}\in A_{n}}\widetilde{G}_{h,n}^{(\boldsymbol{k})}(\phi),\quad n\in\mathbb{N}. (A.10)

In Theorem F.3 below, we show that G~h,n(ϕ)\widetilde{G}_{h,n}(\phi) and Vh,n(ϕ)V_{h,n}(\phi) are asymptotically equivalent. An advantage of using Vh,n(ϕ)V_{h,n}(\phi) over G~h,n(ϕ)\widetilde{G}_{h,n}(\phi) is that Vh,n(ϕ)V_{h,n}(\phi) is written in terms of the sum of {G~h,n(𝒌)(ϕ)}𝒌An\{\widetilde{G}_{h,n}^{(\boldsymbol{k})}(\phi)\}_{\boldsymbol{k}\in A_{n}} which are based on the statistics on the non-overlapping sub-blocks of DnD_{n}. Therefore, one can show the α\alpha-mixing CLT for Vh,n(ϕ)V_{h,n}(\phi) using the standard independent and telescoping sum techniques (cf. Guan and Sherman (2007)). Details can be found in Appendix F.2 (Theorem F.5). This together with Theorem 4.1(i) and (ii), we get the desired results. \Box

Appendix B Additional proofs of the main results

B.1 Proof of Theorem 3.1

Below we show that the feasible DFT J^h,n(𝝎)\widehat{J}_{h,n}(\boldsymbol{\omega}) is asymptotically equivalent to its theoretical counterpart Jh,n(𝝎)J_{h,n}(\boldsymbol{\omega}) as in (2.11).

Theorem B.1.

Let XX be a second-order stationary point process on d\mathbb{R}^{d} and let hh be the data taper such that sup𝛚dh(𝛚)<\sup_{\boldsymbol{\omega}\in\mathbb{R}^{d}}h(\boldsymbol{\omega})<\infty. Suppose that Assumptions 3.1 and 3.2(for =2\ell=2) hold. Let {𝛚n}\{\boldsymbol{\omega}_{n}\} be a sequence on d\mathbb{R}^{d} that is asymptotically distant from {0}\{\textbf{0}\}. Then,

J^h,n(𝝎n)Jh,n(𝝎n)L20,n.\widehat{J}_{h,n}(\boldsymbol{\omega}_{n})-J_{h,n}(\boldsymbol{\omega}_{n})\stackrel{{\scriptstyle L_{2}}}{{\rightarrow}}0,\quad n\rightarrow\infty.

Proof. By definition, J^h,n(𝝎n)Jh,n(𝝎n)=(λ^h,nλ)ch,n(𝝎n)\widehat{J}_{h,n}(\boldsymbol{\omega}_{n})-J_{h,n}(\boldsymbol{\omega}_{n})=-(\widehat{\lambda}_{h,n}-\lambda)c_{h,n}(\boldsymbol{\omega}_{n}). By using Lemma E.1(b) below, we have 𝔼[|λ^h,nλ|2]=var(λ^h,n)C|Dn|1\mathbb{E}[|\widehat{\lambda}_{h,n}-\lambda|^{2}]=\mathrm{var}(\widehat{\lambda}_{h,n})\leq C|D_{n}|^{-1} for some C(0,)C\in(0,\infty). Therefore, 𝔼[|J^h,n(𝝎n)Jh,n(𝝎n)|2]C|Dn|1|ch,n(𝝎n)|2\mathbb{E}[|\widehat{J}_{h,n}(\boldsymbol{\omega}_{n})-J_{h,n}(\boldsymbol{\omega}_{n})|^{2}]\leq C|D_{n}|^{-1}|c_{h,n}(\boldsymbol{\omega}_{n})|^{2}. Next, by using (2.10) and Lemma C.2 below, we have
limn|Dn|1/2|ch,n(𝝎n)|=0\lim_{n\rightarrow\infty}|D_{n}|^{-1/2}|c_{h,n}(\boldsymbol{\omega}_{n})|=0. Thus, we get the desired result. \Box

Now we are ready to prove Theorem 3.1. Thanks to the above theorem, it is enough to prove the theorem for Jh,n(𝝎n)J_{h,n}(\boldsymbol{\omega}_{n}) replacing J^h,n(𝝎n)\widehat{J}_{h,n}(\boldsymbol{\omega}_{n}) in the statement. First, we will show (3.5). Recall Hh,k(n)H_{h,k}^{(n)} in (2.7). By using Theorem D.2 below, the leading term of cov(Jh,n(𝝎1,n),Jh,n(𝝎2,n))\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1,n}),J_{h,n}(\boldsymbol{\omega}_{2,n})) is |Dn|1Hh,21f(𝝎1,n)Hh,2(n)(𝝎1,n𝝎2,n)|D_{n}|^{-1}H_{h,2}^{-1}f(\boldsymbol{\omega}_{1,n})H_{h,2}^{(n)}(\boldsymbol{\omega}_{1,n}-\boldsymbol{\omega}_{2,n}). Therefore, by using Lemma C.2 below, we have

cov(Jh,n(𝝎1,n),Jh,n(𝝎2,n))\displaystyle\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1,n}),J_{h,n}(\boldsymbol{\omega}_{2,n})) =\displaystyle= |Dn|1Hh,21f(𝝎1,n)Hh,2(n)(𝝎1,n𝝎2,n)+o(1)\displaystyle|D_{n}|^{-1}H_{h,2}^{-1}f(\boldsymbol{\omega}_{1,n})H_{h,2}^{(n)}(\boldsymbol{\omega}_{1,n}-\boldsymbol{\omega}_{2,n})+o(1)
\displaystyle\leq Hh,21(sup𝝎df(𝝎))o(1)+o(1),n.\displaystyle H_{h,2}^{-1}\big{(}\sup_{\boldsymbol{\omega}\in\mathbb{R}^{d}}f(\boldsymbol{\omega})\big{)}o(1)+o(1),\quad n\rightarrow\infty.

Since Assumption 3.2(for =2\ell=2) implies sup𝝎df(𝝎)<\sup_{\boldsymbol{\omega}\in\mathbb{R}^{d}}f(\boldsymbol{\omega})<\infty, by taking a limit on each side above, we show (3.5).

Next, we will show (3.6). Using Theorem D.2 again together with Hh,2(n)(0)=|Dn|Hh,2H_{h,2}^{(n)}(\textbf{0})=|D_{n}|H_{h,2}, we have

var(Jh,n(𝝎n))=cov(Jh,n(𝝎n),Jh,n(𝝎n))=f(𝝎n)+o(1),n,\displaystyle\mathrm{var}(J_{h,n}(\boldsymbol{\omega}_{n}))=\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{n}),J_{h,n}(\boldsymbol{\omega}_{n}))=f(\boldsymbol{\omega}_{n})+o(1),\quad n\rightarrow\infty, (B.1)

where o(1)o(1) error above is uniform in 𝝎nd\boldsymbol{\omega}_{n}\in\mathbb{R}^{d}. Since ff is continuous, provided Assumption 3.2 for =2\ell=2, the right hand side above converges to f(𝝎)f(\boldsymbol{\omega}) as nn\rightarrow\infty. Thus, we show (3.6).

Lastly, to show (3.7), by using an expansion (A.5) together with (3.5) and (3.6), we have

cov(Ih,n(𝝎1,n),Ih,n(𝝎2,n))\displaystyle\mathrm{cov}(I_{h,n}(\boldsymbol{\omega}_{1,n}),I_{h,n}(\boldsymbol{\omega}_{2,n})) =\displaystyle= |cov(Jh,n(𝝎1,n),Jh,n(𝝎2,n))|2+|cov(Jh,n(𝝎1,n),Jh,n(𝝎2,n))|2\displaystyle|\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1,n}),J_{h,n}(\boldsymbol{\omega}_{2,n}))|^{2}+|\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1,n}),J_{h,n}(-\boldsymbol{\omega}_{2,n}))|^{2}
+cum(Jh,n(𝝎1,n),Jh,n(𝝎1,n),Jh,n(𝝎2,n),Jh,n(𝝎2,n))\displaystyle~{}~{}+\mathrm{cum}(J_{h,n}(\boldsymbol{\omega}_{1,n}),J_{h,n}(-\boldsymbol{\omega}_{1,n}),J_{h,n}(\boldsymbol{\omega}_{2,n}),J_{h,n}(-\boldsymbol{\omega}_{2,n}))
=\displaystyle= f(𝝎)2I(𝝎1,n=𝝎2,n)+o(1)\displaystyle f(\boldsymbol{\omega})^{2}I(\boldsymbol{\omega}_{1,n}=\boldsymbol{\omega}_{2,n})+o(1)
+cum(Jh,n(𝝎1,n),Jh,n(𝝎1,n),Jh,n(𝝎2,n),Jh,n(𝝎2,n))\displaystyle~{}+\mathrm{cum}(J_{h,n}(\boldsymbol{\omega}_{1,n}),J_{h,n}(-\boldsymbol{\omega}_{1,n}),J_{h,n}(\boldsymbol{\omega}_{2,n}),J_{h,n}(-\boldsymbol{\omega}_{2,n}))

as nn\rightarrow\infty. The last term above is O(|Dn|1)O(|D_{n}|^{-1}) as nn\rightarrow\infty due to Lemma D.5 below. Therefore, we have limncov(Ih,n(𝝎1,n),Ih,n(𝝎2,n))=0\lim_{n\rightarrow\infty}\mathrm{cov}(I_{h,n}(\boldsymbol{\omega}_{1,n}),I_{h,n}(\boldsymbol{\omega}_{2,n}))=0 and limnvar(Ih,n(𝝎n))=f(𝝎)2\lim_{n\rightarrow\infty}\mathrm{var}(I_{h,n}(\boldsymbol{\omega}_{n}))=f(\boldsymbol{\omega})^{2}. This proves (3.7). All together, we prove the theorem. \Box

B.2 Proof of Theorem 3.2

Let Jh,n(𝝎)\Re J_{h,n}(\boldsymbol{\omega}) and Jh,n(𝝎)\Im J_{h,n}(\boldsymbol{\omega}) be the real and imaginary parts of Jh,n(𝝎)J_{h,n}(\boldsymbol{\omega}), respectively. Then, by using Theorem B.1 above, it is enough to show

(Jh,n(𝝎1,n)(f(𝝎1)/2)1/2,Jh,n(𝝎1,n)(f(𝝎1)/2)1/2,,Jh,n(𝝎r,n)(f(𝝎r)/2)1/2)𝒟𝒮𝒩2r,n,\left(\frac{\Re J_{h,n}(\boldsymbol{\omega}_{1,n})}{(f(\boldsymbol{\omega}_{1})/2)^{1/2}},\frac{\Im J_{h,n}(\boldsymbol{\omega}_{1,n})}{(f(\boldsymbol{\omega}_{1})/2)^{1/2}},\dots,\frac{\Im J_{h,n}(\boldsymbol{\omega}_{r,n})}{(f(\boldsymbol{\omega}_{r})/2)^{1/2}}\right)^{\top}\stackrel{{\scriptstyle\mathcal{D}}}{{\rightarrow}}\mathcal{SN}_{2r},\quad n\rightarrow\infty, (B.2)

where 𝒮𝒩2r\mathcal{SN}_{2r} is the 2r2r-dimensional standard normal random variable.

To show (B.2), we will first show that the asymptotic variance of the left hand side of above is an unit matrix. Note that

Jh,n(𝝎)=12(Jh,n(𝝎)+Jh,n(𝝎))andJh,n(𝝎)=12i(Jh,n(𝝎)Jh,n(𝝎)),𝝎d.\Re J_{h,n}(\boldsymbol{\omega})=\frac{1}{2}(J_{h,n}(\boldsymbol{\omega})+J_{h,n}(-\boldsymbol{\omega}))\quad\text{and}\quad\Im J_{h,n}(\boldsymbol{\omega})=\frac{1}{2i}(J_{h,n}(\boldsymbol{\omega})-J_{h,n}(-\boldsymbol{\omega})),\quad\boldsymbol{\omega}\in\mathbb{R}^{d}.

Therefore, for i,j{1,,r}i,j\in\{1,\dots,r\}, we have

cov(Jh,n(𝝎i,n),Jh,n(𝝎j,n))\displaystyle\mathrm{cov}(\Re J_{h,n}(\boldsymbol{\omega}_{i,n}),\Re J_{h,n}(\boldsymbol{\omega}_{j,n})) =\displaystyle= 14(cov(Jh,n(𝝎i,n),Jh,n(𝝎j,n))+cov(Jh,n(𝝎i,n),Jh,n(𝝎j,n))\displaystyle\frac{1}{4}\big{(}\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{i,n}),J_{h,n}(\boldsymbol{\omega}_{j,n}))+\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{i,n}),J_{h,n}(-\boldsymbol{\omega}_{j,n}))
+cov(Jh,n(𝝎i,n),Jh,n(𝝎j,n))+cov(Jh,n(𝝎i,n),Jh,n(𝝎j,n))).\displaystyle~{}~{}+\mathrm{cov}(J_{h,n}(-\boldsymbol{\omega}_{i,n}),J_{h,n}(\boldsymbol{\omega}_{j,n}))+\mathrm{cov}(J_{h,n}(-\boldsymbol{\omega}_{i,n}),J_{h,n}(-\boldsymbol{\omega}_{j,n}))\big{)}.

Therefore, by using Theorem 3.1, one can show

limncov(Jh,n(𝝎i,n),Jh,n(𝝎j,n))=12f(𝝎i)I(i=j).\lim_{n\rightarrow\infty}\mathrm{cov}(\Re J_{h,n}(\boldsymbol{\omega}_{i,n}),\Re J_{h,n}(\boldsymbol{\omega}_{j,n}))=\frac{1}{2}f(\boldsymbol{\omega}_{i})I(i=j).

Similarly, for i,j{1,,r}i,j\in\{1,\dots,r\},

limncov(Jh,n(𝝎i,n),Jh,n(𝝎j,n))\displaystyle\lim_{n\rightarrow\infty}\mathrm{cov}(\Re J_{h,n}(\boldsymbol{\omega}_{i,n}),\Im J_{h,n}(\boldsymbol{\omega}_{j,n})) =\displaystyle= 0,\displaystyle 0,
limncov(Jh,n(𝝎i,n),Jh,n(𝝎j,n))\displaystyle\lim_{n\rightarrow\infty}\mathrm{cov}(\Im J_{h,n}(\boldsymbol{\omega}_{i,n}),\Re J_{h,n}(\boldsymbol{\omega}_{j,n})) =\displaystyle= 0,\displaystyle 0,
andlimncov(Jh,n(𝝎i,n),Jh,n(𝝎j,n))\displaystyle\text{and}\quad\lim_{n\rightarrow\infty}\mathrm{cov}(\Im J_{h,n}(\boldsymbol{\omega}_{i,n}),\Im J_{h,n}(\boldsymbol{\omega}_{j,n})) =\displaystyle= 12f(𝝎i)I(i=j).\displaystyle\frac{1}{2}f(\boldsymbol{\omega}_{i})I(i=j).

All together, we show that the limiting variance of the left hand side of (B.2) is a unit matrix.

Next, let {aj}j=1r,{bj}j=1r\{a_{j}\}_{j=1}^{r},\{b_{j}\}_{j=1}^{r}\in\mathbb{R}. We define 𝒵n=|Dn|1/2𝒙XDngn(𝒙)\mathcal{Z}_{n}=|D_{n}|^{-1/2}\sum_{\boldsymbol{x}\in X\cap D_{n}}g_{n}(\boldsymbol{x}), where

gn(𝒙)=j=1rajh(𝒙/𝑨)12(e𝒙𝝎j,n+e𝒙𝝎j,n)+j=1rbjh(𝒙/𝑨)12i(e𝒙𝝎j,ne𝒙𝝎j,n).g_{n}(\boldsymbol{x})=\sum_{j=1}^{r}a_{j}h(\boldsymbol{x}/\boldsymbol{A})\frac{1}{2}(e^{-\boldsymbol{x}^{\top}\boldsymbol{\omega}_{j,n}}+e^{\boldsymbol{x}^{\top}\boldsymbol{\omega}_{j,n}})+\sum_{j=1}^{r}b_{j}h(\boldsymbol{x}/\boldsymbol{A})\frac{1}{2i}(e^{-\boldsymbol{x}^{\top}\boldsymbol{\omega}_{j,n}}-e^{\boldsymbol{x}^{\top}\boldsymbol{\omega}_{j,n}}). (B.3)

Then, it is easily seen that any linear combination of the left hand side of (B.2) can be expressed as 𝒵n𝔼[𝒵n]\mathcal{Z}_{n}-\mathbb{E}[\mathcal{Z}_{n}] for an appropriate gng_{n}. Therefore, thanks to Cramér-Wald device, to show the asymptotic normality in (B.2), it is enough to show that 𝒵n𝔼[𝒵n]\mathcal{Z}_{n}-\mathbb{E}[\mathcal{Z}_{n}] is asymptotically normal. CLT for 𝒵n𝔼[𝒵n]\mathcal{Z}_{n}-\mathbb{E}[\mathcal{Z}_{n}] under α\alpha-mixing condition can be easily seen using standard techniques (cf. Guan and Sherman (2007)). One thing that is needed to verify is to show there exists δ>0\delta>0 such that

supn𝔼|𝒵n𝔼[𝒵n]|2+δ<.\sup_{n\in\mathbb{N}}\mathbb{E}\left|\mathcal{Z}_{n}-\mathbb{E}[\mathcal{Z}_{n}]\right|^{2+\delta}<\infty. (B.4)

We will show the above holds for δ=2\delta=2, provided Assumption 3.2(i) for =4\ell=4. We note that

𝔼|𝒵n𝔼[𝒵n]|4=𝔼(𝒵n𝔼[𝒵n])4=κ4(𝒵n)+3κ2(𝒵n)2,\mathbb{E}\left|\mathcal{Z}_{n}-\mathbb{E}[\mathcal{Z}_{n}]\right|^{4}=\mathbb{E}(\mathcal{Z}_{n}-\mathbb{E}[\mathcal{Z}_{n}])^{4}=\kappa_{4}(\mathcal{Z}_{n})+3\kappa_{2}(\mathcal{Z}_{n})^{2}, (B.5)

where κ2(X)=cum(X,X)\kappa_{2}(X)=\mathrm{cum}(X,X) and κ4(X)=cum(X,X,X,X)\kappa_{4}(X)=\mathrm{cum}(X,X,X,X). Therefore, since gn(𝒙)g_{n}(\boldsymbol{x}) in (B.3) is bounded above uniformly in nn\in\mathbb{N} and 𝒙d\boldsymbol{x}\in\mathbb{R}^{d}, we can apply Lemma D.5 and get

supn𝔼|𝒵n𝔼[𝒵n]|4supn|κ4(𝒵n)|+3supnκ2(𝒵n)2=O(1).\sup_{n\in\mathbb{N}}\mathbb{E}\left|\mathcal{Z}_{n}-\mathbb{E}[\mathcal{Z}_{n}]\right|^{4}\leq\sup_{n\in\mathbb{N}}|\kappa_{4}(\mathcal{Z}_{n})|+3\sup_{n\in\mathbb{N}}\kappa_{2}(\mathcal{Z}_{n})^{2}=O(1).

Thus, we show (B.4) for δ=2\delta=2. The remaining parts for proving CLT are routine (which may be obtained from the authors upon request). \Box

B.3 Proof of Theorem 3.3

Let

f~n,b(𝝎)=dWb(𝝎𝒙)Ih,n(𝒙)𝑑𝒙,n,𝝎d,\widetilde{f}_{n,b}(\boldsymbol{\omega})=\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x})I_{h,n}(\boldsymbol{x})d\boldsymbol{x},\quad n\in\mathbb{N},\quad\boldsymbol{\omega}\in\mathbb{R}^{d}, (B.6)

be the theoretical counterpart of the kernel spectral density estimator. Then, in Corollary E.1 below, we show that f~n,b(𝝎)\widetilde{f}_{n,b}(\boldsymbol{\omega}) and f^n,b(𝝎)\widehat{f}_{n,b}(\boldsymbol{\omega}) are asymptotically equivalent. Therefore, it is enough to show that f~n,b(𝝎)\widetilde{f}_{n,b}(\boldsymbol{\omega}) consistently estimates the spectral density f(𝝎)f(\boldsymbol{\omega}) for all 𝝎d\boldsymbol{\omega}\in\mathbb{R}^{d}. By using (B.1) together with dWb(𝝎𝒙)𝑑𝒙=1\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x})d\boldsymbol{x}=1, we have

|𝔼[f~n,b(𝝎)]dWb(𝝎𝒙)f(𝒙)𝑑𝒙|dWb(𝝎𝒙)o(1)𝑑𝒙=o(1),n.\left|\mathbb{E}[\widetilde{f}_{n,b}(\boldsymbol{\omega})]-\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x})f(\boldsymbol{x})d\boldsymbol{x}\right|\leq\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x})o(1)d\boldsymbol{x}=o(1),\quad n\rightarrow\infty.

Moreover, by using classcial kernel method (cf. Ding et al. (2024), proof of Theorem 5.1), it can be easily seen that |dWb(𝝎𝒙)f(𝒙)𝑑𝒙f(𝝎)|=o(1)|\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x})f(\boldsymbol{x})d\boldsymbol{x}-f(\boldsymbol{\omega})|=o(1) as b+|Dn|1bdb+|D_{n}|^{-1}b^{-d}\rightarrow\infty. Therefore, by using triangular inequality, we have

limn|𝔼[f~n,b(𝝎)]f(𝝎)|=0.\lim_{n\rightarrow\infty}\big{|}\mathbb{E}[\widetilde{f}_{n,b}(\boldsymbol{\omega})]-f(\boldsymbol{\omega})\big{|}=0. (B.7)

Next, by using a similar argument as in Appendix A.3 (see also, the proof of Ding et al. (2024), Theorem 5.1), it can be seen that the variance of f~n,b(𝝎)\widetilde{f}_{n,b}(\boldsymbol{\omega}) is bounded by

var(f~n,b(𝝎))C|Dn|1dWb(𝝎𝒙)2𝑑𝒙=O(|Dn|1bd)=o(1),n.\mathrm{var}(\widetilde{f}_{n,b}(\boldsymbol{\omega}))\leq C|D_{n}|^{-1}\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x})^{2}d\boldsymbol{x}=O(|D_{n}|^{-1}b^{-d})=o(1),\quad n\rightarrow\infty. (B.8)

We mention that unlike the case of Appendix A.3, we do not require Assumption 4.2 to prove (B.8). This is because in the expansion of var(f~n,b(𝝎))\mathrm{var}(\widetilde{f}_{n,b}(\boldsymbol{\omega})) using (A.5), the fourth-order cumulant term is bounded by |Dn|1dWb(𝒙)2𝑑𝒙|D_{n}|^{-1}\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{x})^{2}d\boldsymbol{x} due to Lemma D.5 below. Therefore, combining (B.7) and (B.8), we have f~n,b(𝝎)𝒫f(𝒙)\widetilde{f}_{n,b}(\boldsymbol{\omega})\stackrel{{\scriptstyle\mathcal{P}}}{{\rightarrow}}f(\boldsymbol{x}) as nn\rightarrow\infty. This proves the theorem. \Box

B.4 Proof of Theorem 4.2

By using Corollary E.1 below, |Dn|bd(f~n,b(𝝎)f(𝝎))\sqrt{|D_{n}|b^{d}}(\widetilde{f}_{n,b}(\boldsymbol{\omega})-f(\boldsymbol{\omega})) and |Dn|bd(f^n,b(𝝎)f(𝝎))\sqrt{|D_{n}|b^{d}}(\widehat{f}_{n,b}(\boldsymbol{\omega})-f(\boldsymbol{\omega})) share the same asymptotic distribution. Therefore, it is enough to show the asymptotic normality of |Dn|bd(f~n,b(𝝎)f(𝝎))\sqrt{|D_{n}|b^{d}}(\widetilde{f}_{n,b}(\boldsymbol{\omega})-f(\boldsymbol{\omega})). Since the scaled kernel function WbW_{b} has a support on [b/2,b/2]d[-b/2,b/2]^{d}, f~n,b(𝝎)\widetilde{f}_{n,b}(\boldsymbol{\omega}) can be written as an (theoretical) integrated periodogram by setting ϕb(𝒙)=Wb(𝝎𝒙)\phi_{b}(\boldsymbol{x})=W_{b}(\boldsymbol{\omega}-\boldsymbol{x}), 𝒙d\boldsymbol{x}\in\mathbb{R}^{d}. Therefore, the proof of the asymptotic normality is almost identical to that of the proof of Theorem 4.1. We will only sketch the proof.

The bias.   By using Lemma C.3(b), we have

|𝔼[f~n,b(𝝎)]dWb(𝝎𝒙)f(𝒙)𝑑𝒙|=dWb(𝝎𝒙)O(|Dn|2/d)𝑑𝒙=O(|Dn|2/d),n.\bigg{|}\mathbb{E}[\widetilde{f}_{n,b}(\boldsymbol{\omega})]-\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x})f(\boldsymbol{x})d\boldsymbol{x}\bigg{|}=\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x})O(|D_{n}|^{-2/d})d\boldsymbol{x}=O(|D_{n}|^{-2/d}),\quad n\rightarrow\infty.

Moreover, by using classical nonparametric kernel estimation results (cf. Ding et al. (2024), Theorem 5.2), we have |dWb(𝝎𝒙)f(𝒙)𝑑𝒙f(𝝎)|=O(b2)|\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x})f(\boldsymbol{x})d\boldsymbol{x}-f(\boldsymbol{\omega})|=O(b^{2}), nn\rightarrow\infty. Therefore,
limn|Dn|bd|𝔼[f~n,b(𝝎)]f(𝝎)|=0\lim_{n\rightarrow\infty}\sqrt{|D_{n}|b^{d}}\big{|}\mathbb{E}[\widetilde{f}_{n,b}(\boldsymbol{\omega})]-f(\boldsymbol{\omega})\big{|}=0, provided limn|Dn|1/2bd/2{|Dn|2/d+b2}=0\lim_{n\rightarrow\infty}|D_{n}|^{1/2}b^{d/2}\{|D_{n}|^{-2/d}+b^{2}\}=0.

The variance.   By using a similar argument to prove Theorem 4.1(ii), one can get

|Dn|bdvar(f~n,b(𝝎))=(2π)d(Hh,4/Hh,22)bd(Ωb,1+Ωb,2)+o(1),n,|D_{n}|b^{d}\mathrm{var}(\widetilde{f}_{n,b}(\boldsymbol{\omega}))=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})b^{d}(\Omega_{b,1}+\Omega_{b,2})+o(1),\quad n\rightarrow\infty,

where

Ωb,1\displaystyle\Omega_{b,1} =\displaystyle= dWb(𝝎𝒙){Wb(𝝎𝒙)+Wb(𝝎+𝒙)}f(𝒙)2𝑑𝒙\displaystyle\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x})\{W_{b}(\boldsymbol{\omega}-\boldsymbol{x})+W_{b}(\boldsymbol{\omega}+\boldsymbol{x})\}f(\boldsymbol{x})^{2}d\boldsymbol{x}
andΩb,2\displaystyle\text{and}\quad\Omega_{b,2} =\displaystyle= 2dWb(𝝎𝒙1)Wb(𝝎𝒙2)f4(𝒙1,𝒙1,𝒙2)𝑑𝒙1𝑑𝒙2.\displaystyle\int_{\mathbb{R}^{2d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x}_{1})W_{b}(\boldsymbol{\omega}-\boldsymbol{x}_{2})f_{4}(\boldsymbol{x}_{1},-\boldsymbol{x}_{1},\boldsymbol{x}_{2})d\boldsymbol{x}_{1}d\boldsymbol{x}_{2}.

Now, we calculate the limit of Ωb,i\Omega_{b,i} for i{1,2}i\in\{1,2\}. We note that bdWb(𝝎𝒙)2=bd(W2)(b1(𝝎𝒙))b^{d}W_{b}(\boldsymbol{\omega}-\boldsymbol{x})^{2}=b^{-d}(W^{2})(b^{-1}(\boldsymbol{\omega}-\boldsymbol{x})), 𝒙d\boldsymbol{x}\in\mathbb{R}^{d}. Therefore, by treating W2W^{2} as a new kernel function in the convolution equation and using that dbd(W2)(b1𝒙)𝑑𝒙=dW(𝒙)2𝑑𝒙=W2\int_{\mathbb{R}^{d}}b^{-d}(W^{2})(b^{-1}\boldsymbol{x})d\boldsymbol{x}=\int_{\mathbb{R}^{d}}W(\boldsymbol{x})^{2}d\boldsymbol{x}=W_{2}, it is easily seen that

limnbddWb(𝝎𝒙)2f(𝒙)2𝑑𝒙=W2f(𝝎)2.\lim_{n\rightarrow\infty}b^{d}\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x})^{2}f(\boldsymbol{x})^{2}d\boldsymbol{x}=W_{2}f(\boldsymbol{\omega})^{2}.

Similarly, one can show that

limnbddWb(𝝎𝒙)Wb(𝝎+𝒙)f(𝒙)2𝑑𝒙={W2f(𝝎)2,𝝎=0.0,𝝎d\{0}.\lim_{n\rightarrow\infty}b^{d}\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x})W_{b}(\boldsymbol{\omega}+\boldsymbol{x})f(\boldsymbol{x})^{2}d\boldsymbol{x}=\begin{cases}W_{2}f(\boldsymbol{\omega})^{2},&\boldsymbol{\omega}=\textbf{0}.\\ 0,&\boldsymbol{\omega}\in\mathbb{R}^{d}\backslash\{\textbf{0}\}.\end{cases}

To calculate the limit of Ωb,2\Omega_{b,2}, we note that

bd2dWb(𝝎𝒙1)Wb(𝝎𝒙2)f4(𝒙1,𝒙1,𝒙2)𝑑𝒙1𝑑𝒙2\displaystyle b^{d}\int_{\mathbb{R}^{2d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x}_{1})W_{b}(\boldsymbol{\omega}-\boldsymbol{x}_{2})f_{4}(\boldsymbol{x}_{1},-\boldsymbol{x}_{1},\boldsymbol{x}_{2})d\boldsymbol{x}_{1}d\boldsymbol{x}_{2}
=bddWb(𝝎𝒙2)(dWb(𝝎𝒙1)f4(𝒙1,𝒙1,𝒙2)𝑑𝒙1)𝑑𝒙2\displaystyle=b^{d}\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x}_{2})\left(\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x}_{1})f_{4}(\boldsymbol{x}_{1},-\boldsymbol{x}_{1},\boldsymbol{x}_{2})d\boldsymbol{x}_{1}\right)d\boldsymbol{x}_{2}
=bddWb(𝝎𝒙2)(f4(𝝎,𝝎,𝒙2)+o(1))𝑑𝒙2=O(bd),n.\displaystyle=b^{d}\int_{\mathbb{R}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{x}_{2})\left(f_{4}(\boldsymbol{\omega},-\boldsymbol{\omega},\boldsymbol{x}_{2})+o(1)\right)d\boldsymbol{x}_{2}=O(b^{d}),\quad n\rightarrow\infty.

Therefore, limnbdΩ2,b=0\lim_{n\rightarrow\infty}b^{d}\Omega_{2,b}=0. All together, we have

limn|Dn|bdvar(f~n,b(𝝎))={2(2π)d(Hh,4/Hh,22)W2f(𝝎)2,𝝎=0.(2π)d(Hh,4/Hh,22)W2f(𝝎)2,𝝎d\{0}.\lim_{n\rightarrow\infty}|D_{n}|b^{d}\mathrm{var}(\widetilde{f}_{n,b}(\boldsymbol{\omega}))=\begin{cases}2(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})W_{2}f(\boldsymbol{\omega})^{2},&\boldsymbol{\omega}=\textbf{0}.\\ (2\pi)^{d}(H_{h,4}/H_{h,2}^{2})W_{2}f(\boldsymbol{\omega})^{2},&\boldsymbol{\omega}\in\mathbb{R}^{d}\backslash\{\textbf{0}\}.\end{cases}

The asymptotic normality.   Proof of the asymptotic normality of |Dn|bd(f~n,b(𝝎)f(𝝎))\sqrt{|D_{n}|b^{d}}(\widetilde{f}_{n,b}(\boldsymbol{\omega})-f(\boldsymbol{\omega})) is almost identical with the proof of the asymptotic normality of G~h,n(ϕ)\widetilde{G}_{h,n}(\phi) in (A.9) (we omit the details). All together, we prove the theorem. \Box

B.5 Proof of Theorem 6.1

First, we will show the consistency of 𝜽^n\widehat{\boldsymbol{\theta}}_{n}. Recall (𝜽)\mathcal{L}(\boldsymbol{\theta}) in (6.3). We will first show the uniform convergence of Ln()L_{n}(\cdot), that is,

sup𝜽Θ|Ln(𝜽)(𝜽)|𝒫0.\sup_{\boldsymbol{\theta}\in\Theta}|L_{n}(\boldsymbol{\theta})-\mathcal{L}(\boldsymbol{\theta})|\stackrel{{\scriptstyle\mathcal{P}}}{{\rightarrow}}0. (B.9)

By using Theorem 4.1(i) together with uniform boundedness of f𝜽1(𝝎)f_{\boldsymbol{\theta}}^{-1}(\boldsymbol{\omega}), we have
sup𝜽Θ|𝔼[Ln(𝜽)](𝜽)|=o(1)\sup_{\boldsymbol{\theta}\in\Theta}|\mathbb{E}[L_{n}(\boldsymbol{\theta})]-\mathcal{L}(\boldsymbol{\theta})|=o(1), nn\rightarrow\infty. Next, since var(Ln(𝜽))=O(|Dn|1)\mathrm{var}(L_{n}(\boldsymbol{\theta}))=O(|D_{n}|^{-1}) as nn\rightarrow\infty due to argument in Appendix A.3, we have Ln(𝜽)𝔼[Ln(𝜽)]𝒫0L_{n}(\boldsymbol{\theta})-\mathbb{E}[L_{n}(\boldsymbol{\theta})]\stackrel{{\scriptstyle\mathcal{P}}}{{\rightarrow}}0 for each 𝜽Θ\boldsymbol{\theta}\in\Theta. Therefore, to show (B.9), it is enough to show that {Ln(𝜽):𝜽Θ}\{L_{n}(\boldsymbol{\theta}):\boldsymbol{\theta}\in\Theta\} is stochastic equicontinuous (Newey (1991), Theorem 2.1).

Let δ>0\delta>0 and we choose 𝜽1,𝜽2Θ\boldsymbol{\theta}_{1},\boldsymbol{\theta}_{2}\in\Theta such that 𝜽1𝜽2δ\|\boldsymbol{\theta}_{1}-\boldsymbol{\theta}_{2}\|\leq\delta. Then, since f𝜽1(𝝎)f_{\boldsymbol{\theta}}^{-1}(\boldsymbol{\omega}) and logf𝜽\log f_{\boldsymbol{\theta}} has a first order derivative with respect to 𝜽\boldsymbol{\theta} which are continuous on the compact domain Θ×D\Theta\times D, there exist C1,C2(0,)C_{1},C_{2}\in(0,\infty) such that

|f𝜽11(𝝎)f𝜽21(𝝎)|C1δand|logf𝜽1(𝝎)logf𝜽2(𝝎)|C2δ,𝝎D.|f_{\boldsymbol{\theta}_{1}}^{-1}(\boldsymbol{\omega})-f_{\boldsymbol{\theta}_{2}}^{-1}(\boldsymbol{\omega})|\leq C_{1}\delta\quad\text{and}|\log f_{\boldsymbol{\theta}_{1}}(\boldsymbol{\omega})-\log f_{\boldsymbol{\theta}_{2}}(\boldsymbol{\omega})|\leq C_{2}\delta,~{}~{}\boldsymbol{\omega}\in D.

Therefore, for arbitrary 𝜽1,𝜽2Θ\boldsymbol{\theta}_{1},\boldsymbol{\theta}_{2}\in\Theta with 𝜽1𝜽2δ\|\boldsymbol{\theta}_{1}-\boldsymbol{\theta}_{2}\|\leq\delta

|Ln(𝜽1)Ln(𝜽2)|δ(C1DI^h,n(𝝎)𝑑𝝎+C2|D|),n.|L_{n}(\boldsymbol{\theta}_{1})-L_{n}(\boldsymbol{\theta}_{2})|\leq\delta\left(C_{1}\int_{D}\widehat{I}_{h,n}(\boldsymbol{\omega})d\boldsymbol{\omega}+C_{2}|D|\right),~{}~{}n\rightarrow\infty.

Using Theorem 4.1(i,ii) and the term in the bracket above is Op(1)O_{p}(1) as nn\rightarrow\infty uniformly over 𝜽1,𝜽2Θ\boldsymbol{\theta}_{1},\boldsymbol{\theta}_{2}\in\Theta. Therefore, {Ln(𝜽):𝜽Θ}\{L_{n}(\boldsymbol{\theta}):\boldsymbol{\theta}\in\Theta\} is stochastic equicontinuous and, in turn, we show the uniform convergence (B.9).

Next, recall 𝜽^n\widehat{\boldsymbol{\theta}}_{n} and 𝜽0\boldsymbol{\theta}_{0} are minimizers of LnL_{n} and \mathcal{L}, respectively. Then, by using (B.9),

0(𝜽^n)(𝜽0)\displaystyle 0\leq\mathcal{L}(\widehat{\boldsymbol{\theta}}_{n})-\mathcal{L}(\boldsymbol{\theta}_{0}) \displaystyle\leq ((𝜽^n)Ln(𝜽^n))+(Ln(𝜽^n)Ln(𝜽0))+(Ln(𝜽0)(𝜽0))\displaystyle(\mathcal{L}(\widehat{\boldsymbol{\theta}}_{n})-L_{n}(\widehat{\boldsymbol{\theta}}_{n}))+(L_{n}(\widehat{\boldsymbol{\theta}}_{n})-L_{n}(\boldsymbol{\theta}_{0}))+(L_{n}(\boldsymbol{\theta}_{0})-\mathcal{L}(\boldsymbol{\theta}_{0}))
\displaystyle\leq 2sup𝜽Θ|(𝜽)Ln(𝜽)|.\displaystyle 2\sup_{\boldsymbol{\theta}\in\Theta}|\mathcal{L}(\boldsymbol{\theta})-L_{n}(\boldsymbol{\theta})|.

Therefore, we have (𝜽^n)(𝜽0)𝒫0\mathcal{L}(\widehat{\boldsymbol{\theta}}_{n})-\mathcal{L}(\boldsymbol{\theta}_{0})\stackrel{{\scriptstyle\mathcal{P}}}{{\rightarrow}}0 and since, by assumption, 𝜽0\boldsymbol{\theta}_{0} is the unique minimizer of \mathcal{L}, we have 𝜽^n𝒫𝜽0\widehat{\boldsymbol{\theta}}_{n}\stackrel{{\scriptstyle\mathcal{P}}}{{\rightarrow}}\boldsymbol{\theta}_{0}. This proves (6.5).

Next, we show the asymptotic normality of 𝜽^n\widehat{\boldsymbol{\theta}}_{n}. By using a Taylor expansion and using that (Ln/𝜽)(𝜽^n)=0(\partial L_{n}/\partial\boldsymbol{\theta})(\widehat{\boldsymbol{\theta}}_{n})=0, there exists 𝜽~n\widetilde{\boldsymbol{\theta}}_{n}, a convex combination of 𝜽^n\widehat{\boldsymbol{\theta}}_{n} and 𝜽0\boldsymbol{\theta}_{0}, such that

|Dn|1/2(𝜽^n𝜽0)=(2Ln(𝜽~n))1(|Dn|1/2Ln(𝜽0))=Pn(𝜽~n)1Qn(𝜽0).|D_{n}|^{1/2}(\widehat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0})=\left(\nabla^{2}L_{n}(\widetilde{\boldsymbol{\theta}}_{n})\right)^{-1}\left(-|D_{n}|^{1/2}\nabla L_{n}(\boldsymbol{\theta}_{0})\right)=P_{n}(\widetilde{\boldsymbol{\theta}}_{n})^{-1}Q_{n}(\boldsymbol{\theta}_{0}).

We first focus on Pn(𝜽~n)P_{n}(\widetilde{\boldsymbol{\theta}}_{n}). By simple algebra, we have

Pn(𝜽)=2Ln(𝜽)\displaystyle P_{n}(\boldsymbol{\theta})=\nabla^{2}L_{n}(\boldsymbol{\theta}) =\displaystyle= 2D(logf𝜽(𝝎))(logf𝜽(𝝎))1f𝜽(𝝎)(I^h,n(𝝎)f(𝝎))𝑑𝝎\displaystyle 2\int_{D}(\nabla\log f_{\boldsymbol{\theta}}(\boldsymbol{\omega}))(\nabla\log f_{\boldsymbol{\theta}}(\boldsymbol{\omega}))^{\top}\frac{1}{f_{\boldsymbol{\theta}}(\boldsymbol{\omega})}\left(\widehat{I}_{h,n}(\boldsymbol{\omega})-f(\boldsymbol{\omega})\right)d\boldsymbol{\omega}
D1f𝜽(𝝎)22f𝜽(𝝎)(I^h,n(𝝎)f(𝝎))𝑑𝝎+2(2π)dΓ(𝜽),𝜽Θ.\displaystyle~{}-\int_{D}\frac{1}{f_{\boldsymbol{\theta}}(\boldsymbol{\omega})^{2}}\nabla^{2}f_{\boldsymbol{\theta}}(\boldsymbol{\omega})\left(\widehat{I}_{h,n}(\boldsymbol{\omega})-f(\boldsymbol{\omega})\right)d\boldsymbol{\omega}+2(2\pi)^{d}\Gamma(\boldsymbol{\theta}),~{}~{}\boldsymbol{\theta}\in\Theta.

By using the (uniform) continuity of f𝜽1f_{\boldsymbol{\theta}}^{-1}, logf𝜽\nabla\log f_{\boldsymbol{\theta}}, 2f𝜽1\nabla^{2}f^{-1}_{\boldsymbol{\theta}}, and 2f𝜽\nabla^{2}f_{\boldsymbol{\theta}}, and since 𝜽~n\widetilde{\boldsymbol{\theta}}_{n} is also a consistent estimator of 𝜽0\boldsymbol{\theta}_{0}, we have Pn(𝜽~n)Pn(𝜽0)=op(1)P_{n}(\widetilde{\boldsymbol{\theta}}_{n})-P_{n}(\boldsymbol{\theta}_{0})=o_{p}(1) as nn\rightarrow\infty. Next, by using Theorems 4.1, the first two terms in Pn(𝜽0)P_{n}(\boldsymbol{\theta}_{0}) is op(1)o_{p}(1) as nn\rightarrow\infty. Therefore, we have

Pn(𝜽~n)=2(2π)dΓ(𝜽0)+op(1),n.P_{n}(\widetilde{\boldsymbol{\theta}}_{n})=2(2\pi)^{d}\Gamma(\boldsymbol{\theta}_{0})+o_{p}(1),\quad n\rightarrow\infty. (B.10)

Next, we focus on Qn(𝜽0)Q_{n}(\boldsymbol{\theta}_{0}). By simple algebra, we have

Qn(𝜽0)\displaystyle Q_{n}(\boldsymbol{\theta}_{0})
=|Dn|1/2Df𝜽01(𝝎)(I^h,n(𝝎)f𝜽0(𝝎))𝑑𝝎\displaystyle=-|D_{n}|^{1/2}\int_{D}\nabla f_{\boldsymbol{\theta}_{0}}^{-1}(\boldsymbol{\omega})\left(\widehat{I}_{h,n}(\boldsymbol{\omega})-f_{\boldsymbol{\theta}_{0}}(\boldsymbol{\omega})\right)d\boldsymbol{\omega}
=|Dn|1/2Df𝜽01(𝝎)(f(𝝎)f𝜽0(𝝎))𝑑𝝎|Dn|1/2Df𝜽01(𝝎)[I^h,n(𝝎)f(𝝎)]𝑑𝝎.\displaystyle=-|D_{n}|^{1/2}\int_{D}\nabla f_{\boldsymbol{\theta}_{0}}^{-1}(\boldsymbol{\omega})\left(f(\boldsymbol{\omega})-f_{\boldsymbol{\theta}_{0}}(\boldsymbol{\omega})\right)d\boldsymbol{\omega}-|D_{n}|^{1/2}\int_{D}\nabla f_{\boldsymbol{\theta}_{0}}^{-1}(\boldsymbol{\omega})\left[\widehat{I}_{h,n}(\boldsymbol{\omega})-f(\boldsymbol{\omega})\right]d\boldsymbol{\omega}.

The first term above is zero since (𝜽0)=0\nabla\mathcal{L}(\boldsymbol{\theta}_{0})=0 and by using Theorem 4.1 with a help of Cramér-Wald device, the second term is asymptotically centered normal with variance
(2π)d(Hh,4/Hh,22)(Ω1(𝜽0)+Ω2(𝜽0))(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})(\Omega_{1}(\boldsymbol{\theta}_{0})+\Omega_{2}(\boldsymbol{\theta}_{0})) where

Ω1(𝜽0)\displaystyle\Omega_{1}(\boldsymbol{\theta}_{0}) =\displaystyle= 2D(f𝜽01(𝝎))(f𝜽01(𝝎))f(𝝎)2𝑑𝝎=4(2π)dS1(𝜽0)and\displaystyle 2\int_{D}(\nabla f_{\boldsymbol{\theta}_{0}}^{-1}(\boldsymbol{\omega}))(\nabla f_{\boldsymbol{\theta}_{0}}^{-1}(\boldsymbol{\omega}))^{\top}f(\boldsymbol{\omega})^{2}d\boldsymbol{\omega}=4(2\pi)^{d}S_{1}(\boldsymbol{\theta}_{0})\quad\text{and}
Ω2(𝜽0)\displaystyle\Omega_{2}(\boldsymbol{\theta}_{0}) =\displaystyle= D2(f𝜽01(𝝎))(f𝜽01(𝝎))f4(𝝎1,𝝎1,𝝎)𝑑𝝎1𝑑𝝎2=4(2π)dS2(𝜽0).\displaystyle\int_{D^{2}}(\nabla f_{\boldsymbol{\theta}_{0}}^{-1}(\boldsymbol{\omega}))(\nabla f_{\boldsymbol{\theta}_{0}}^{-1}(\boldsymbol{\omega}))^{\top}f_{4}(\boldsymbol{\omega}_{1},-\boldsymbol{\omega}_{1},\boldsymbol{\omega})d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}=4(2\pi)^{d}S_{2}(\boldsymbol{\theta}_{0}).

Therefore, we conclude,

Qn(𝜽0)𝒟𝒩(0,4(2π)2d(Hh,4/Hh,22)(S1(𝜽0)+S2(𝜽0))).Q_{n}(\boldsymbol{\theta}_{0})\stackrel{{\scriptstyle\mathcal{D}}}{{\rightarrow}}\mathcal{N}\left(\textbf{0},4(2\pi)^{2d}(H_{h,4}/H_{h,2}^{2})(S_{1}(\boldsymbol{\theta}_{0})+S_{2}(\boldsymbol{\theta}_{0}))\right). (B.11)

Combining (B.10) and (B.11) and by using continuous mapping theorem, we have

|Dn|1/2(𝜽^n𝜽0)\displaystyle|D_{n}|^{1/2}(\widehat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}) =\displaystyle= Pn(𝜽~n)1Qn(𝜽0)\displaystyle P_{n}(\widetilde{\boldsymbol{\theta}}_{n})^{-1}Q_{n}(\boldsymbol{\theta}_{0})
𝒟\displaystyle\stackrel{{\scriptstyle\mathcal{D}}}{{\rightarrow}} 𝒩(0,(Hh,4/Hh,22)Γ(𝜽0)1(S1(𝜽0)+S2(𝜽0))Γ(𝜽0)1)),n.\displaystyle\mathcal{N}\left(\textbf{0},(H_{h,4}/H_{h,2}^{2})\Gamma(\boldsymbol{\theta}_{0})^{-1}(S_{1}(\boldsymbol{\theta}_{0})+S_{2}(\boldsymbol{\theta}_{0}))\Gamma(\boldsymbol{\theta}_{0})^{-1}\right)),\quad n\rightarrow\infty.

Thus, we show (6.6). All together, we get the desired results. \Box

Appendix C Representations and approximations of the Fourier transform of the data taper

Let DnD_{n} has a form in (2.6). Recall Hh,k(n)(𝝎)H_{h,k}^{(n)}(\boldsymbol{\omega}) in (2.7)

Hh,k(n)(𝝎)=Dnh(𝒙/𝑨)kexp(i𝒙𝝎)𝑑𝒙,k,n,𝝎d.H_{h,k}^{(n)}(\boldsymbol{\omega})=\int_{D_{n}}h(\boldsymbol{x}/\boldsymbol{A})^{k}\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega})d\boldsymbol{x},\quad k,n\in\mathbb{N},\quad\boldsymbol{\omega}\in\mathbb{R}^{d}.

For two data taper functions f,gf,g with support [1/2,1/2]d[-1/2,1/2]^{d}, we define

Rh,g(n)(𝒕,𝝎)=dh(𝒙𝑨)(g(𝒙+𝒕𝑨)g(𝒙𝑨))exp(i𝒙𝝎)𝑑𝒙,n,𝒕,𝝎d.R_{h,g}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})=\int_{\mathbb{R}^{d}}h(\frac{\boldsymbol{x}}{\boldsymbol{A}})\left(g(\frac{\boldsymbol{x}+\boldsymbol{t}}{\boldsymbol{A}})-g(\frac{\boldsymbol{x}}{\boldsymbol{A}})\right)\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega})d\boldsymbol{x},\quad n\in\mathbb{N},~{}~{}\boldsymbol{t},\boldsymbol{\omega}\in\mathbb{R}^{d}. (C.1)

The term Hh,k(n)(𝝎)H_{h,k}^{(n)}(\boldsymbol{\omega}) and Rh,g(n)(𝒕,𝝎)R_{h,g}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}) frequently appears throughout the proof of main results. For example, they are related to the expression of cov(Jh,n(𝝎1),Jh,n(𝝎2))\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2})). See Lemma D.1 below.

In this section, our focus is to investigate the representations and approximations of Hh,k(n)(𝝎)H_{h,k}^{(n)}(\boldsymbol{\omega}) and Rh,g(n)(𝒕,𝝎)R_{h,g}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}). We first begin with Rh,g(n)(𝒕,𝝎)R_{h,g}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}). Since the support of h(/𝑨)h(\cdot/\boldsymbol{A}) is DnD_{n}, Rh,g(n)R_{h,g}^{(n)} can be written as Rh,g(n)(𝒕,𝝎)=Rh,g,1(n)(𝒕,𝝎)+Rh,g,2(n)(𝒕,𝝎)R_{h,g}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})=R_{h,g,1}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})+R_{h,g,2}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}), where

Rh,g,1(n)(𝒕,𝝎)\displaystyle R_{h,g,1}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}) =Dn(Dn𝒕)h(𝒙𝑨)(g(𝒙+𝒕𝑨)g(𝒙𝑨))exp(i𝒙𝝎)𝑑𝒙\displaystyle=\int_{D_{n}\cap(D_{n}-\boldsymbol{t})}h(\frac{\boldsymbol{x}}{\boldsymbol{A}})\left(g(\frac{\boldsymbol{x}+\boldsymbol{t}}{\boldsymbol{A}})-g(\frac{\boldsymbol{x}}{\boldsymbol{A}})\right)\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega})d\boldsymbol{x} (C.2)
andRh,g,2(n)(𝒕,𝝎)\displaystyle\text{and}\quad R_{h,g,2}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}) =Dn\(Dn𝒕)h(𝒙𝑨)g(𝒙𝑨)exp(i𝒙𝝎)𝑑𝒙,𝒕,𝝎d.\displaystyle=-\int_{D_{n}\backslash(D_{n}-\boldsymbol{t})}h(\frac{\boldsymbol{x}}{\boldsymbol{A}})g(\frac{\boldsymbol{x}}{\boldsymbol{A}})\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega})d\boldsymbol{x},\quad\boldsymbol{t},\boldsymbol{\omega}\in\mathbb{R}^{d}.

In the theorem below, we obtain a rough bound for Rh,g(n)(𝒕,𝝎)R_{h,g}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}). Let

ρ(x)=min(x,1),x.\rho(x)=\min(x,1),\quad x\in\mathbb{R}.

Throughout this section, we let C(0,)C\in(0,\infty) be a generic constant that varies line by line.

Theorem C.1.

Let hh and gg are the data taper on a compact support [1/2,1/2]d[-1/2,1/2]^{d}. Suppose limn|Dn|=\lim_{n\rightarrow\infty}|D_{n}|=\infty, sup𝛚dh(𝛚)<\sup_{\boldsymbol{\omega}\in\mathbb{R}^{d}}h(\boldsymbol{\omega})<\infty, and gg satisfies Assumption 3.4(i). Then,

supnsup𝒕,𝝎d|Dn|1|Rh,g(n)(𝒕,𝝎)|<\displaystyle\sup_{n\in\mathbb{N}}\sup_{\boldsymbol{t},\boldsymbol{\omega}\in\mathbb{R}^{d}}|D_{n}|^{-1}|R_{h,g}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})|<\infty (C.3)
and |Dn|1sup𝝎d|Rh,g(n)(𝒕,𝝎)|=o(1),𝒕d,n.\displaystyle|D_{n}|^{-1}\sup_{\boldsymbol{\omega}\in\mathbb{R}^{d}}|R_{h,g}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})|=o(1),~{}~{}\boldsymbol{t}\in\mathbb{R}^{d},~{}~{}n\rightarrow\infty. (C.4)

If we further assume that gg is Lipschitz continuous on [1/2,1/2]d[-1/2,1/2]^{d}, then the right hand side of (C.4) is bounded by Cρ(𝐭/𝐀)C\rho(\|\boldsymbol{t}/\boldsymbol{A}\|) for some C(0,)C\in(0,\infty) that does not depend on 𝐭d\boldsymbol{t}\in\mathbb{R}^{d}.

Proof. Recall (C.2). We bound Rh,g,1(n)(𝒕,𝝎)R_{h,g,1}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}) and Rh,g,2(n)(𝒕,𝝎)R_{h,g,2}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}) separately. First, Rh,g,2(n)(𝒕,𝝎)R_{h,g,2}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}) is bounded by

|Rh,g,2(n)(𝒕,𝝎)|sup𝝎h(𝝎)Dn\(Dn𝒕)|g(𝒙/𝑨)|𝑑𝒙C|Dn\(Dn𝒕)|.|R_{h,g,2}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})|\leq\sup_{\boldsymbol{\omega}}h(\boldsymbol{\omega})\int_{D_{n}\backslash(D_{n}-\boldsymbol{t})}\left|g(\boldsymbol{x}/\boldsymbol{A})\right|d\boldsymbol{x}\leq C|D_{n}\backslash(D_{n}-\boldsymbol{t})|.

Since DnD_{n} has a rectangle shape, it is easily seen that

|Dn\(Dn𝒕)||Dn|ρ(i=1d|ti/Ai|)C|Dn|ρ(𝒕/𝑨),𝒕d.|D_{n}\backslash(D_{n}-\boldsymbol{t})|\leq|D_{n}|\rho(\sum_{i=1}^{d}|t_{i}/A_{i}|)\leq C|D_{n}|\rho(\|\boldsymbol{t}/\boldsymbol{A}\|),\quad\boldsymbol{t}\in\mathbb{R}^{d}. (C.5)

Therefore, |Dn|1sup𝝎d|Rh,g,2(n)(𝒕,𝝎)||D_{n}|^{-1}\sup_{\boldsymbol{\omega}\in\mathbb{R}^{d}}|R_{h,g,2}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})| is bounded by

|Dn|1|Rh,g,2(n)(𝒕,𝝎)|Cρ(𝒕/𝑨),n,𝒕d.|D_{n}|^{-1}|R_{h,g,2}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})|\leq C\rho(\|\boldsymbol{t}/\boldsymbol{A}\|),\quad n\in\mathbb{N},~{}~{}\boldsymbol{t}\in\mathbb{R}^{d}. (C.6)

Next, we bound Rh,g,1(n)(𝒕,𝝎)R_{h,g,1}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}). We note that

|Dn|1sup𝝎d|Rh,g,1(n)(𝒕,𝝎)|\displaystyle|D_{n}|^{-1}\sup_{\boldsymbol{\omega}\in\mathbb{R}^{d}}|R_{h,g,1}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})| (C.7)
|Dn|1sup𝝎h(𝝎)Dn(Dn𝒕)|g((𝒙+𝒕)/𝑨)g(𝒙/𝑨)|𝑑𝒙\displaystyle~{}~{}\leq|D_{n}|^{-1}\sup_{\boldsymbol{\omega}}h(\boldsymbol{\omega})\int_{D_{n}\cap(D_{n}-\boldsymbol{t})}\left|g((\boldsymbol{x}+\boldsymbol{t})/\boldsymbol{A})-g(\boldsymbol{x}/\boldsymbol{A})\right|d\boldsymbol{x}
Csup𝒙Dn(Dn𝒕)|g((𝒙+𝒕)/𝑨)g(𝒙/𝑨)|.\displaystyle~{}~{}\leq C\sup_{\boldsymbol{x}\in D_{n}\cap(D_{n}-\boldsymbol{t})}\left|g((\boldsymbol{x}+\boldsymbol{t})/\boldsymbol{A})-g(\boldsymbol{x}/\boldsymbol{A})\right|.

Since gg is continuous on a compact support, gg is bounded and uniformly continuous in [1/2,1/2]d[-1/2,1/2]^{d}. Therefore,

sup𝒕dsup𝒙Dn(Dn𝒕)|g((𝒙+𝒕)/𝑨)g(𝒙/𝑨)|<\sup_{\boldsymbol{t}\in\mathbb{R}^{d}}\sup_{\boldsymbol{x}\in D_{n}\cap(D_{n}-\boldsymbol{t})}\left|g((\boldsymbol{x}+\boldsymbol{t})/\boldsymbol{A})-g(\boldsymbol{x}/\boldsymbol{A})\right|<\infty

and for fixed 𝒕d\boldsymbol{t}\in\mathbb{R}^{d},

limnsup𝒙Dn(Dn𝒕)|g((𝒙+𝒕)/𝑨)g(𝒙/𝑨)|=0.\lim_{n\rightarrow\infty}\sup_{\boldsymbol{x}\in D_{n}\cap(D_{n}-\boldsymbol{t})}\left|g((\boldsymbol{x}+\boldsymbol{t})/\boldsymbol{A})-g(\boldsymbol{x}/\boldsymbol{A})\right|=0.

Substitute the above two into (C.7), we have supnsup𝒕,𝝎d|Dn|1|Rh,g,1(n)(𝒕,𝝎)|<\sup_{n\in\mathbb{N}}\sup_{\boldsymbol{t},\boldsymbol{\omega}\in\mathbb{R}^{d}}|D_{n}|^{-1}|R_{h,g,1}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})|<\infty and

sup𝝎d|Dn|1|Rh,g,1(n)(𝒕,𝝎)|=o(1),𝒕d,n.\sup_{\boldsymbol{\omega}\in\mathbb{R}^{d}}|D_{n}|^{-1}|R_{h,g,1}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})|=o(1),\quad\boldsymbol{t}\in\mathbb{R}^{d},~{}~{}n\rightarrow\infty.

Combining these results with (C.6), we show (C.3) and (C.4).

If we further assume that gg is Lipschitz continuous on [1/2,1/2]d[-1/2,1/2]^{d}, then

sup𝒙Dn(Dn𝒕)|g((𝒙+𝒕)/𝑨)g(𝒙/𝑨)|Cρ(𝒕/𝑨),n,𝒕d.\sup_{\boldsymbol{x}\in D_{n}\cap(D_{n}-\boldsymbol{t})}\left|g((\boldsymbol{x}+\boldsymbol{t})/\boldsymbol{A})-g(\boldsymbol{x}/\boldsymbol{A})\right|\leq C\rho(\|\boldsymbol{t}/\boldsymbol{A}\|),\quad n\in\mathbb{N},~{}~{}\boldsymbol{t}\in\mathbb{R}^{d}.

Therefore, from (C.6) and (C.7), we have

|Dn|1sup𝝎d|Rh,g(n)(𝒕,𝝎)|Cρ(𝒕/𝑨),n,𝒕d.|D_{n}|^{-1}\sup_{\boldsymbol{\omega}\in\mathbb{R}^{d}}|R_{h,g}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})|\leq C\rho(\|\boldsymbol{t}/\boldsymbol{A}\|),\quad n\in\mathbb{N},~{}~{}\boldsymbol{t}\in\mathbb{R}^{d}.

Therefore, we prove the assertion. All together, we get the desired results. \Box

To show the limiting variance of the integrated periodogram in (4.2), we require sharper bound for Rh,g(n)(𝒕,𝝎)R_{h,g}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}). Below, we give a bound for |Dn|1/2|Rh,g(n)(𝒕,𝝎)||D_{n}|^{1/2}|R_{h,g}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})|, provided hh and gg are either constant in [1/2,1/2]d[-1/2,1/2]^{d} or satisfies Assumption 3.4(ii) for m=d+1m=d+1. To do so, let {h𝒋}𝒋d\{h_{\boldsymbol{j}}\}_{\boldsymbol{j}\in\mathbb{Z}^{d}} be the Fourier coefficients of h()h(\cdot) that satisfies

h(𝒙)=𝒋dh𝒋exp(2πi𝒋𝒙),𝒙[1/2,1/2]d.h(\boldsymbol{x})=\sum_{\boldsymbol{j}\in\mathbb{Z}^{d}}h_{\boldsymbol{j}}\exp(2\pi i\boldsymbol{j}^{\top}\boldsymbol{x}),\quad\boldsymbol{x}\in[-1/2,1/2]^{d}. (C.8)

The Fourier coefficients {g𝒋}𝒋d\{g_{\boldsymbol{j}}\}_{\boldsymbol{j}\in\mathbb{Z}^{d}} of g()g(\cdot) are defined in the same manner. For centered rectangle RdR\in\mathbb{R}^{d} (which also includes the degenerate rectangles), we let

cR(𝝎)={(2π)d/2|R|1/2Rexp(i𝒙𝝎)𝑑𝒙,|R|>0,0,|R|=0,𝝎d.c_{R}(\boldsymbol{\omega})=\begin{cases}(2\pi)^{-d/2}|R|^{-1/2}\int_{R}\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega})d\boldsymbol{x},&|R|>0,\\ 0,&|R|=0,\end{cases}\quad\boldsymbol{\omega}\in\mathbb{R}^{d}. (C.9)
Theorem C.2.

Let hh and gg are the data taper on a compact support [1/2,1/2]d[-1/2,1/2]^{d}. Suppose hh and gg are either constant on [1/2,1/2]d[-1/2,1/2]^{d} or satisfy Assumption 3.4(ii) for m=d+1m=d+1. Then, the following two assertions hold.

  • (i)

    Rh,g(n)(𝒕,𝝎)R_{h,g}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}) satisfies the following identity

    Rh,g(n)(𝒕,𝝎)\displaystyle R_{h,g}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}) =\displaystyle= 𝒋,𝒌dh𝒋g𝒌(exp(2πi𝒌(𝒕/𝑨))1)Dn(Dn𝒕)ei𝒙(𝝎2π(𝒋+𝒌)/𝑨)𝑑𝒙\displaystyle\sum_{\boldsymbol{j},\boldsymbol{k}\in\mathbb{Z}^{d}}h_{\boldsymbol{j}}g_{\boldsymbol{k}}\left(\exp(2\pi i\boldsymbol{k}^{\top}(\boldsymbol{t}/\boldsymbol{A}))-1\right)\int_{D_{n}\cap(D_{n}-\boldsymbol{t})}e^{-i\boldsymbol{x}^{\top}(\boldsymbol{\omega}-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A})}d\boldsymbol{x}
    𝒋,𝒌dh𝒋g𝒌Dn\(Dn𝒕)ei𝒙(𝝎2π(𝒋+𝒌)/𝑨)𝑑𝒙,n,𝒕,𝝎d.\displaystyle\quad-\sum_{\boldsymbol{j},\boldsymbol{k}\in\mathbb{Z}^{d}}h_{\boldsymbol{j}}g_{\boldsymbol{k}}\int_{D_{n}\backslash(D_{n}-\boldsymbol{t})}e^{-i\boldsymbol{x}^{\top}(\boldsymbol{\omega}-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A})}d\boldsymbol{x},\quad n\in\mathbb{N},~{}~{}\boldsymbol{t},\boldsymbol{\omega}\in\mathbb{R}^{d}.
  • (ii)

    Let md=2d1m_{d}=2^{d}-1. Then, there exist C(0,)C\in(0,\infty) and mdm_{d} number of sequences of centered rectangles (which may include degenerate rectangles) {Dn,i(𝒕)}i=0md\{D_{n,i}(\boldsymbol{t})\}_{i=0}^{m_{d}} where Dn,i(𝒕)D_{n,i}(\boldsymbol{t}) depends only on DnD_{n} and 𝒕d\boldsymbol{t}\in\mathbb{R}^{d} such that for nn\in\mathbb{N} and 𝒕,𝝎d\boldsymbol{t},\boldsymbol{\omega}\in\mathbb{R}^{d},

    |Dn|1/2|Rh,g(n)(𝒕,𝝎)|\displaystyle|D_{n}|^{-1/2}|R_{h,g}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})|
    Ci=0md𝒋,𝒌d|h𝒋||g𝒌|ρ({𝒌+1}𝒕/𝑨)1/2|cDn,i(𝒕)(𝝎2π(𝒋+𝒌)/𝑨)|.\displaystyle\quad\leq C\sum_{i=0}^{m_{d}}\sum_{\boldsymbol{j},\boldsymbol{k}\in\mathbb{Z}^{d}}|h_{\boldsymbol{j}}||g_{\boldsymbol{k}}|\rho(\{\|\boldsymbol{k}\|+1\}\|\boldsymbol{t}/\boldsymbol{A}\|)^{1/2}|c_{D_{n,i}(\boldsymbol{t})}(\boldsymbol{\omega}-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A})|.

Proof. First, we will show (i). We will assume that hh and gg both satisfies Assumption 3.4(ii) for m=d+1m=d+1. The case when either hh or gg is constant on [1/2,1/2]d[-1/2,1/2]^{d} is straightforward since the corresponding Fourier coefficients for h(𝒙)ch(\boldsymbol{x})\equiv c in [1/2,1/2]d[-1/2,1/2]^{d} are h𝒋=ch_{\boldsymbol{j}}=c if 𝒋=0\boldsymbol{j}=\textbf{0} and zero otherwise. By using Folland (1999), Theorem 8.22(e) (see also an argument on page 257 of the same reference), we have |h𝒋|,|g𝒋|(1+𝒋)d1|h_{\boldsymbol{j}}|,|g_{\boldsymbol{j}}|\leq(1+\|\boldsymbol{j}\|)^{-d-1} and thus both 𝒋d|h𝒋|\sum_{\boldsymbol{j}\in\mathbb{Z}^{d}}|h_{\boldsymbol{j}}| and 𝒋d|g𝒋|\sum_{\boldsymbol{j}\in\mathbb{Z}^{d}}|g_{\boldsymbol{j}}| are finite. For 𝒕,𝝎d\boldsymbol{t},\boldsymbol{\omega}\in\mathbb{R}^{d},

Rh,g,1(n)(𝒕,𝝎)\displaystyle R_{h,g,1}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}) (C.10)
=Dn(Dn𝒕)h(𝒙𝑨)(g(𝒙+𝒕𝑨)g(𝒙𝑨))ei𝒙𝝎𝑑𝒙\displaystyle~{}~{}=\int_{D_{n}\cap(D_{n}-\boldsymbol{t})}h(\frac{\boldsymbol{x}}{\boldsymbol{A}})\left(g(\frac{\boldsymbol{x}+\boldsymbol{t}}{\boldsymbol{A}})-g(\frac{\boldsymbol{x}}{\boldsymbol{A}})\right)e^{-i\boldsymbol{x}^{\top}\boldsymbol{\omega}}d\boldsymbol{x}
=Dn(Dn𝒕)𝒋,𝒌dh𝒋g𝒌exp(2πi𝒋(𝒙/𝑨))exp(2πi𝒌(𝒙/𝑨))\displaystyle~{}~{}=\int_{D_{n}\cap(D_{n}-\boldsymbol{t})}\sum_{\boldsymbol{j},\boldsymbol{k}\in\mathbb{Z}^{d}}h_{\boldsymbol{j}}g_{\boldsymbol{k}}\exp(2\pi i\boldsymbol{j}^{\top}(\boldsymbol{x}/\boldsymbol{A}))\exp(2\pi i\boldsymbol{k}^{\top}(\boldsymbol{x}/\boldsymbol{A}))
×(exp(2πi𝒌(𝒕/𝑨))1)exp(i𝒙𝝎)d𝒙\displaystyle\qquad\times\left(\exp(2\pi i\boldsymbol{k}^{\top}(\boldsymbol{t}/\boldsymbol{A}))-1\right)\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega})d\boldsymbol{x}
=𝒋,𝒌dh𝒋g𝒌(exp(2πi𝒌(𝒕/𝑨))1)Dn(Dn𝒕)ei𝒙(2π(𝒋+𝒌)/𝑨+𝝎)𝑑𝒙.\displaystyle~{}~{}=\sum_{\boldsymbol{j},\boldsymbol{k}\in\mathbb{Z}^{d}}h_{\boldsymbol{j}}g_{\boldsymbol{k}}\left(\exp(2\pi i\boldsymbol{k}^{\top}(\boldsymbol{t}/\boldsymbol{A}))-1\right)\int_{D_{n}\cap(D_{n}-\boldsymbol{t})}e^{-i\boldsymbol{x}^{\top}(-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A}+\boldsymbol{\omega})}d\boldsymbol{x}.

Here, we use Fubini’s theorem in the second identity which is due to 𝒋d|h𝒋|<\sum_{\boldsymbol{j}\in\mathbb{Z}^{d}}|h_{\boldsymbol{j}}|<\infty and 𝒋d|g𝒋|<\sum_{\boldsymbol{j}\in\mathbb{Z}^{d}}|g_{\boldsymbol{j}}|<\infty. Similarly, for 𝒕,𝝎d\boldsymbol{t},\boldsymbol{\omega}\in\mathbb{R}^{d},

Rh,g,2(n)(𝒕,𝝎)=𝒋,𝒌dh𝒋g𝒌Dn\(Dn𝒕)exp(i𝒙(2π(𝒋+𝒌)/𝑨+𝝎))𝑑𝒙.R_{h,g,2}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})=-\sum_{\boldsymbol{j},\boldsymbol{k}\in\mathbb{Z}^{d}}h_{\boldsymbol{j}}g_{\boldsymbol{k}}\int_{D_{n}\backslash(D_{n}-\boldsymbol{t})}\exp(-i\boldsymbol{x}^{\top}(-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A}+\boldsymbol{\omega}))d\boldsymbol{x}. (C.11)

Combining the above two expressions, we show (i).

Next, we will show (ii). We first focus on Rh,g,1(n)(𝒕,𝝎)R_{h,g,1}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}). From (C.10), we have

|Rh,g,1(n)(𝒕,𝝎)|\displaystyle|R_{h,g,1}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})| \displaystyle\leq 𝒋,𝒌d|h𝒋||g𝒌||exp(2πi𝒌(𝒕/𝑨))1||Dn(Dn𝒕)ei𝒙(2π(𝒋+𝒌)/𝑨+𝝎)𝑑𝒙|\displaystyle\sum_{\boldsymbol{j},\boldsymbol{k}\in\mathbb{Z}^{d}}|h_{\boldsymbol{j}}||g_{\boldsymbol{k}}||\exp(2\pi i\boldsymbol{k}^{\top}(\boldsymbol{t}/\boldsymbol{A}))-1|\left|\int_{D_{n}\cap(D_{n}-\boldsymbol{t})}e^{-i\boldsymbol{x}^{\top}(-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A}+\boldsymbol{\omega})}d\boldsymbol{x}\right|
\displaystyle\leq C𝒋,𝒌d|h𝒋||g𝒌|ρ(𝒌𝒕/𝑨)1/2|Dn(Dn𝒕)ei𝒙(2π(𝒋+𝒌)/𝑨+𝝎)𝑑𝒙|.\displaystyle C\sum_{\boldsymbol{j},\boldsymbol{k}\in\mathbb{Z}^{d}}|h_{\boldsymbol{j}}||g_{\boldsymbol{k}}|\rho(\|\boldsymbol{k}\|\|\boldsymbol{t}/\boldsymbol{A}\|)^{1/2}\left|\int_{D_{n}\cap(D_{n}-\boldsymbol{t})}e^{-i\boldsymbol{x}^{\top}(-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A}+\boldsymbol{\omega})}d\boldsymbol{x}\right|.

Here, we use

|ei𝒙𝒚e0|2ρ(|𝒙𝒚|)2ρ(𝒙𝒚)2ρ(𝒙𝒚)1/2,𝒙,𝒚d|e^{i\boldsymbol{x}^{\top}\boldsymbol{y}}-e^{0}|\leq 2\rho(|\boldsymbol{x}^{\top}\boldsymbol{y}|)\leq 2\rho(\|\boldsymbol{x}\|\|\boldsymbol{y}\|)\leq 2\rho(\|\boldsymbol{x}\|\|\boldsymbol{y}\|)^{1/2},\quad\boldsymbol{x},\boldsymbol{y}\in\mathbb{R}^{d}

in the second inequality. We note that Dn(Dn𝒕)D_{n}\cap(D_{n}-\boldsymbol{t}) is also a rectangle, and |cR+𝒙(𝝎)|=|cR(𝝎)||c_{R+\boldsymbol{x}}(\boldsymbol{\omega})|=|c_{R}(\boldsymbol{\omega})| for all 𝒙,𝝎d\boldsymbol{x},\boldsymbol{\omega}\in\mathbb{R}^{d}. Therefore, for the centered version of the rectangle Dn(Dn𝒕)D_{n}\cap(D_{n}-\boldsymbol{t}), denoted Dn,0(𝒕)D_{n,0}(\boldsymbol{t}), we have

|Dn(Dn𝒕)ei𝒙(2π(𝒋+𝒌)/𝑨+𝝎)𝑑𝒙|\displaystyle\left|\int_{D_{n}\cap(D_{n}-\boldsymbol{t})}e^{-i\boldsymbol{x}^{\top}(-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A}+\boldsymbol{\omega})}d\boldsymbol{x}\right| =\displaystyle= (2π)d/2|Dn(Dn𝒕)|1/2|cDn,0(𝒕)(𝝎2π(𝒋+𝒌)/𝑨+𝝎)|\displaystyle(2\pi)^{d/2}|D_{n}\cap(D_{n}-\boldsymbol{t})|^{1/2}|c_{D_{n,0}(\boldsymbol{t})}(\boldsymbol{\omega}-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A}+\boldsymbol{\omega})|
\displaystyle\leq C|Dn|1/2|cDn,0(𝒕)(𝝎2π(𝒋+𝒌)/𝑨+𝝎)|.\displaystyle C|D_{n}|^{1/2}|c_{D_{n,0}(\boldsymbol{t})}(\boldsymbol{\omega}-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A}+\boldsymbol{\omega})|.

Substitute this into the upper bound of |Rh,g,1(n)(𝒕,𝝎)||R_{h,g,1}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})|, we have

|Dn|1/2|Rh,g,1(n)(𝒕,𝝎)|\displaystyle|D_{n}|^{-1/2}|R_{h,g,1}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})| (C.12)
C𝒋,𝒌d|h𝒋||g𝒌|ρ({𝒌+1}𝒕/𝑨)1/2|cDn,0(𝒕)(𝝎2π(𝒋+𝒌)/𝑨+𝝎)|.\displaystyle~{}~{}\leq C\sum_{\boldsymbol{j},\boldsymbol{k}\in\mathbb{Z}^{d}}|h_{\boldsymbol{j}}||g_{\boldsymbol{k}}|\rho(\{\|\boldsymbol{k}\|+1\}\|\boldsymbol{t}/\boldsymbol{A}\|)^{1/2}|c_{D_{n,0}(\boldsymbol{t})}(\boldsymbol{\omega}-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A}+\boldsymbol{\omega})|.

Secondly, we focus in Rh,g,2(n)(𝒕,𝝎)R_{h,g,2}^{(n)}(\boldsymbol{t},\boldsymbol{\omega}). We first note that Dn\(Dn𝒕)D_{n}\backslash(D_{n}-\boldsymbol{t}) can be written as a disjoint union of finite number of rectangles, where the number of the rectangles are at most md=2d1m_{d}=2^{d}-1. See the example in the Figure C.1 below for d=2d=2.

Refer to caption
Figure C.1: Example of disjoint partitions of Dn\(Dn𝒕)D_{n}\backslash(D_{n}-\boldsymbol{t}) when d=2d=2.

Let Dn\(Dn𝒕)=i=1mdD~n,i(𝒕)D_{n}\backslash(D_{n}-\boldsymbol{t})=\cup_{i=1}^{m_{d}}\widetilde{D}_{n,i}(\boldsymbol{t}) be the disjoint union of rectangles and Dn,i(𝒕)D_{n,i}(\boldsymbol{t}) is the centered D~n,i(𝒕)\widetilde{D}_{n,i}(\boldsymbol{t}). Then, by using (C.11), we have

|Rh,g,2(n)(𝒕,𝝎)|\displaystyle|R_{h,g,2}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})| \displaystyle\leq (2π)d/2𝒋,𝒌d|h𝒋||g𝒌|i=1md|Dn,i(𝒕)|1/2|cDn,i(𝒕)(𝝎2π(𝒋+𝒌)/𝑨+𝝎)|\displaystyle(2\pi)^{d/2}\sum_{\boldsymbol{j},\boldsymbol{k}\in\mathbb{Z}^{d}}|h_{\boldsymbol{j}}||g_{\boldsymbol{k}}|\sum_{i=1}^{m_{d}}|D_{n,i}(\boldsymbol{t})|^{1/2}|c_{D_{n,i}(\boldsymbol{t})}(\boldsymbol{\omega}-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A}+\boldsymbol{\omega})|
\displaystyle\leq (2π)d/2i=1md𝒋,𝒌d|h𝒋||g𝒌||Dn\(Dn𝒕)|1/2|cDn,i(𝒕)(𝝎2π(𝒋+𝒌)/𝑨+𝝎)|\displaystyle(2\pi)^{d/2}\sum_{i=1}^{m_{d}}\sum_{\boldsymbol{j},\boldsymbol{k}\in\mathbb{Z}^{d}}|h_{\boldsymbol{j}}||g_{\boldsymbol{k}}||D_{n}\backslash(D_{n}-\boldsymbol{t})|^{1/2}|c_{D_{n,i}(\boldsymbol{t})}(\boldsymbol{\omega}-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A}+\boldsymbol{\omega})|
\displaystyle\leq C|Dn|1/2i=1md𝒋,𝒌d|h𝒋||g𝒌|ρ(𝒕/𝑨)1/2|cDn,i(𝒕)(𝝎2π(𝒋+𝒌)/𝑨+𝝎)|.\displaystyle C|D_{n}|^{1/2}\sum_{i=1}^{m_{d}}\sum_{\boldsymbol{j},\boldsymbol{k}\in\mathbb{Z}^{d}}|h_{\boldsymbol{j}}||g_{\boldsymbol{k}}|\rho(\|\boldsymbol{t}/\boldsymbol{A}\|)^{1/2}|c_{D_{n,i}(\boldsymbol{t})}(\boldsymbol{\omega}-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A}+\boldsymbol{\omega})|.

Here, we use (C.5) in the last inequality above. Therefore, we have

|Dn|1/2|Rh,g,2(n)(𝒕,𝝎)|\displaystyle|D_{n}|^{-1/2}|R_{h,g,2}^{(n)}(\boldsymbol{t},\boldsymbol{\omega})| (C.13)
Ci=1md𝒋,𝒌d|h𝒋||g𝒌|ρ((𝒌+1)𝒕/𝑨)1/2|cDn,i(𝒕)(𝝎2π(𝒋+𝒌)/𝑨+𝝎)|.\displaystyle~{}\leq C\sum_{i=1}^{m_{d}}\sum_{\boldsymbol{j},\boldsymbol{k}\in\mathbb{Z}^{d}}|h_{\boldsymbol{j}}||g_{\boldsymbol{k}}|\rho\left((\|\boldsymbol{k}\|+1)\|\boldsymbol{t}/\boldsymbol{A}\|\right)^{1/2}|c_{D_{n,i}(\boldsymbol{t})}(\boldsymbol{\omega}-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A}+\boldsymbol{\omega})|.

Combining (C.12) and (C.13), we get the desired result. All together, we prove the theorem. \Box

Next, we focus on Hh,k(n)()H_{h,k}^{(n)}(\cdot) in (2.7). The following lemma provides an approximation of Hh,k(n)()H_{h,k}^{(n)}(\cdot).

Lemma C.1.

Let h()h(\cdot) be a data taper that satisfies Assumption 3.4(i). Then, for k{2,3,,}k\in\{2,3,\dots,\},

supnsup𝝎,𝒖1,,𝒖k1d|Dn|1|Hh,k(n)(𝝎)d(h(𝒙/𝑨)j=1k1h((𝒙+𝒖j)/𝑨)exp(i𝒙𝝎))𝑑𝒙|<.\sup_{n\in\mathbb{N}}\sup_{\boldsymbol{\omega},\boldsymbol{u}_{1},\dots,\boldsymbol{u}_{k-1}\in\mathbb{R}^{d}}|D_{n}|^{-1}\bigg{|}H_{h,k}^{(n)}(\boldsymbol{\omega})-\int_{\mathbb{R}^{d}}\left(h(\boldsymbol{x}/\boldsymbol{A})\prod_{j=1}^{k-1}h((\boldsymbol{x}+\boldsymbol{u}_{j})/\boldsymbol{A})\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega})\right)d\boldsymbol{x}\bigg{|}<\infty.

Suppose limn|Dn|=\lim_{n\rightarrow\infty}|D_{n}|=\infty. Then, for fixed 𝐮1,,𝐮k1d\boldsymbol{u}_{1},\dots,\boldsymbol{u}_{k-1}\in\mathbb{R}^{d}, as nn\rightarrow\infty,

|Dn|1sup𝝎d|Hh,k(n)(𝝎)d(h(𝒙/𝑨)j=1k1h((𝒙+𝒖j)/𝑨)exp(i𝒙𝝎))𝑑𝒙|=o(1).|D_{n}|^{-1}\sup_{\boldsymbol{\omega}\in\mathbb{R}^{d}}\bigg{|}H_{h,k}^{(n)}(\boldsymbol{\omega})-\int_{\mathbb{R}^{d}}\left(h(\boldsymbol{x}/\boldsymbol{A})\prod_{j=1}^{k-1}h((\boldsymbol{x}+\boldsymbol{u}_{j})/\boldsymbol{A})\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega})\right)d\boldsymbol{x}\bigg{|}=o(1).

If further assume that hh is Lipschitz continuous on [1/2,1/2]d[-1/2,1/2]^{d}, then the left term above is bounded by Cj=1k1ρ(𝐮j/𝐀)C\sum_{j=1}^{k-1}\rho(\|\boldsymbol{u}_{j}/\boldsymbol{A}\|) uniformly in 𝛚d\boldsymbol{\omega}\in\mathbb{R}^{d}.

Proof. We will show the lemma for k=2k=2. The case for k3k\geq 3 is treated similarly (cf. Brillinger (1981), page 402). For k=2k=2, the left hand side above is equal to |Dn|1|Rh,h(n)(𝒖1,𝝎)||D_{n}|^{-1}|R_{h,h}^{(n)}(\boldsymbol{u}_{1},\boldsymbol{\omega})|. Thus, by Theorem C.1, the above is true for k=2k=2. \Box

Next, we bound Hh,k(n)(𝝎)H_{h,k}^{(n)}(\boldsymbol{\omega}) for 𝝎0\boldsymbol{\omega}\neq\textbf{0}. The lemma below together with Theorem C.1 are used to prove the asymptotic orthogonality of the DFT in Theorem 3.1.

Lemma C.2.

Let {Dn}\{D_{n}\} satisfies Assumption 3.1. Let hh be a data taper such that sup𝛚dh(𝛚)<\sup_{\boldsymbol{\omega}\in\mathbb{R}^{d}}h(\boldsymbol{\omega})<\infty. Let {𝛚n}\{\boldsymbol{\omega}_{n}\} be a sequence on d\mathbb{R}^{d} that is asymptotically distant from {0}\{\textbf{0}\}. Then,

|Dn|1|Hh,k(n)(𝝎n)|=o(1),n.|D_{n}|^{-1}|H_{h,k}^{(n)}(\boldsymbol{\omega}_{n})|=o(1),\quad n\rightarrow\infty. (C.14)

Proof. Since hh has a compact support and sup𝝎dh(𝝎)<\sup_{\boldsymbol{\omega}\in\mathbb{R}^{d}}h(\boldsymbol{\omega})<\infty, hL1(d)h\in L^{1}(\mathbb{R}^{d}). Therefore,

|Dn|1Hh,k(n)(𝝎n)\displaystyle|D_{n}|^{-1}H_{h,k}^{(n)}(\boldsymbol{\omega}_{n}) =\displaystyle= |Dn|1Dnh(𝒙/𝑨)exp(i𝒙𝝎n)𝑑𝒙=[1/2,1/2]dh(𝒚)exp(i𝒚(𝑨𝝎n))𝑑𝒚\displaystyle|D_{n}|^{-1}\int_{D_{n}}h(\boldsymbol{x}/\boldsymbol{A})\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega}_{n})d\boldsymbol{x}=\int_{[-1/2,1/2]^{d}}h(\boldsymbol{y})\exp(-i\boldsymbol{y}^{\top}(\boldsymbol{A}\cdot\boldsymbol{\omega}_{n}))d\boldsymbol{y}
=\displaystyle= (2π)d1(h)(𝑨𝝎n).\displaystyle(2\pi)^{d}\mathcal{F}^{-1}(h)(\boldsymbol{A}\cdot\boldsymbol{\omega}_{n}).

Here, we use change of variables 𝒚=𝒙/𝑨\boldsymbol{y}=\boldsymbol{x}/\boldsymbol{A} in the second identity. Note that 𝑨𝝎nC|Dn|1/d𝝎n\|\boldsymbol{A}\cdot\boldsymbol{\omega}_{n}\|_{\infty}\geq C|D_{n}|^{1/d}\|\boldsymbol{\omega}_{n}\|_{\infty}\rightarrow\infty as nn\rightarrow\infty due to Assumption 3.1. Therefore, by Riemann-Lebesgue lemma, we have limn|1(h)(𝑨𝝎n)|=0\lim_{n\rightarrow\infty}|\mathcal{F}^{-1}(h)(\boldsymbol{A}\cdot\boldsymbol{\omega}_{n})|=0. Thus, we get the desired result. \Box

Finally, we generalize the Fejér Kernel that are associated with data taper hh (cf. Matsuda and Yajima (2009), Equation (21)). For h()h(\cdot) with support on [1/2,1/2]d[-1/2,1/2]^{d}, let

Fh,n(𝝎)=(2π)dHh,21|Dn|1|Hh,1(n)(𝝎)|2=|ch,n(𝝎)|2,n,𝝎d.F_{h,n}(\boldsymbol{\omega})=(2\pi)^{-d}H_{h,2}^{-1}|D_{n}|^{-1}|H_{h,1}^{(n)}(\boldsymbol{\omega})|^{2}=|c_{h,n}(\boldsymbol{\omega})|^{2},\quad n\in\mathbb{N},~{}~{}\boldsymbol{\omega}\in\mathbb{R}^{d}. (C.15)

where ch,n(𝝎)c_{h,n}(\boldsymbol{\omega}) is defined as in (2.10) and Hh,2=[1/2,1/2]dh(𝒙)2𝑑𝒙H_{h,2}=\int_{[-1/2,1/2]^{d}}h(\boldsymbol{x})^{2}d\boldsymbol{x}.

Lemma C.3.

Let ch,n(𝛚)c_{h,n}(\boldsymbol{\omega}) and Fh,n(𝛚)F_{h,n}(\boldsymbol{\omega}) be defined as in (2.10) and (C.15), respectively. Then, the follow assertions hold:

  • (a)

    dFh,n(𝝎)𝑑𝝎=1\int_{\mathbb{R}^{d}}F_{h,n}(\boldsymbol{\omega})d\boldsymbol{\omega}=1.

  • (b)

    Suppose that Assumptions 3.1 and 3.4(ii)(for m=1m=1) hold. Then, for ϕ(𝝎)\phi(\boldsymbol{\omega}) with bounded second derivatives, we have

    dϕ(𝝎)Fh,n(𝝎)𝑑𝝎=ϕ(0)+O(|Dn|2/d),n.\int_{\mathbb{R}^{d}}\phi(\boldsymbol{\omega})F_{h,n}(\boldsymbol{\omega})d\boldsymbol{\omega}=\phi(\textbf{0})+O(|D_{n}|^{-2/d}),\quad n\rightarrow\infty.
  • (c)

    Suppose that Assumptions 3.1 and 3.4(ii) (for m=d+1m=d+1) hold. Then, for a bounded function ϕ\phi,

    |dϕ(𝝎)ch,n(𝝎)𝑑𝝎|=O(|Dn|1/2),n.\left|\int_{\mathbb{R}^{d}}\phi(\boldsymbol{\omega})c_{h,n}(\boldsymbol{\omega})d\boldsymbol{\omega}\right|=O(|D_{n}|^{-1/2}),\quad n\rightarrow\infty.
  • (d)

    For a bounded function ϕ(𝝎)\phi(\boldsymbol{\omega}), 𝝎d\boldsymbol{\omega}\in\mathbb{R}^{d}, there exists C(0,)C\in(0,\infty) which depends only on ϕ()\phi(\cdot) such that

    d|ϕ(𝝎)ch1,n(𝝎)ch2,n(𝝎+𝒖)|𝑑𝝎C,n.\int_{\mathbb{R}^{d}}|\phi(\boldsymbol{\omega})c_{h_{1},n}(\boldsymbol{\omega})c_{h_{2},n}(\boldsymbol{\omega}+\boldsymbol{u})|d\boldsymbol{\omega}\leq C,\qquad n\in\mathbb{N}.
  • (e)

    For a bounded and compactly supported function ϕ(𝝎)\phi(\boldsymbol{\omega}), there exists C(0,)C\in(0,\infty) which depends only on ϕ()\phi(\cdot) such that

    d|ϕ(𝝎)ch,n(𝝎)|𝑑𝝎C,n.\int_{\mathbb{R}^{d}}|\phi(\boldsymbol{\omega})c_{h,n}(\boldsymbol{\omega})|d\boldsymbol{\omega}\leq C,\quad n\in\mathbb{N}.

Proof. (a)–(d) are due to Matsuda and Yajima (2009), Lemmas 1 and 2. The upper bound of (d) is sup𝝎d|ϕ(𝝎)|\sup_{\boldsymbol{\omega}\in\mathbb{R}^{d}}|\phi(\boldsymbol{\omega})| which depends only on ϕ()\phi(\cdot). To show (e), let DdD\subset\mathbb{R}^{d} be the compact support of ϕ\phi. Then, by using Cauchy-Schwarz inequality and point (a),

d|ϕ(𝝎)ch,n(𝝎)|𝑑𝝎(Dϕ(𝝎)2𝑑𝝎)1/2,n.\int_{\mathbb{R}^{d}}|\phi(\boldsymbol{\omega})c_{h,n}(\boldsymbol{\omega})|d\boldsymbol{\omega}\leq\left(\int_{D}\phi(\boldsymbol{\omega})^{2}d\boldsymbol{\omega}\right)^{1/2},\quad n\in\mathbb{N}.

Thus, we prove (e). All together, we get the desired results. \Box

Appendix D Bounds for the cumulants of the DFT

In this section, we study the expressions and bounds of terms that are written in terms of the product of cumulants of the DFT. This section is essential to prove the asympotic orthogonality of the DFTs in Theorem 3.1 and includes the limit of the variance of the integrated periodogram in Section 4. Throughout the section, we let C(0,)C\in(0,\infty) be a generic constant that varies line by line.

D.1 Expressions of the covariance of the DFTs

To begin with, we obtain the expressions for cov(Jh,n(𝝎1),Jh,n(𝝎2))\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2})) in terms of the second-order measures. Note that these expressions above were also verified in Rajala et al. (2023), Proposition IV.1 and Equation (47).

Theorem D.1.

Let XX be a second-order stationary point process on d\mathbb{R}^{d} and let hh be the taper function such that sup𝐱dh(𝐱)<\sup_{\boldsymbol{x}\in\mathbb{R}^{d}}h(\boldsymbol{x})<\infty. Suppose that Assumption 3.2 holds for =2\ell=2. Then, for 𝛚1,𝛚2d\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}\in\mathbb{R}^{d}, we have

cov(Jh,n(𝝎1),Jh,n(𝝎2))\displaystyle\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2}))
=(2π)dHh,21|Dn|1λDnh(𝒙/𝑨)2ei𝒙(𝝎1𝝎2)𝑑𝒙\displaystyle\quad=(2\pi)^{-d}H_{h,2}^{-1}|D_{n}|^{-1}\lambda\int_{D_{n}}h(\boldsymbol{x}/\boldsymbol{A})^{2}e^{-i\boldsymbol{x}^{\top}(\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})}d\boldsymbol{x}
+(2π)dHh,21|Dn|1Dn2h(𝒙/𝑨)h(𝒚/𝑨)ei(𝒙𝝎1𝒚𝝎2)γ2,red(𝒙𝒚)𝑑𝒙𝑑𝒚\displaystyle\quad~{}~{}+(2\pi)^{-d}H_{h,2}^{-1}|D_{n}|^{-1}\int_{D_{n}^{2}}h(\boldsymbol{x}/\boldsymbol{A})h(\boldsymbol{y}/\boldsymbol{A})e^{-i(\boldsymbol{x}^{\top}\boldsymbol{\omega}_{1}-\boldsymbol{y}^{\top}\boldsymbol{\omega}_{2})}\gamma_{2,\text{red}}(\boldsymbol{x}-\boldsymbol{y})d\boldsymbol{x}d\boldsymbol{y} (D.1)
=(2π)dHh,21|Dn|1Dn2h(𝒙/𝑨)h(𝒚/𝑨)ei(𝒙𝝎1𝒚𝝎2)C(𝒙𝒚)𝑑𝒙𝑑𝒚.\displaystyle\quad=(2\pi)^{-d}H_{h,2}^{-1}|D_{n}|^{-1}\int_{D_{n}^{2}}h(\boldsymbol{x}/\boldsymbol{A})h(\boldsymbol{y}/\boldsymbol{A})e^{-i(\boldsymbol{x}^{\top}\boldsymbol{\omega}_{1}-\boldsymbol{y}^{\top}\boldsymbol{\omega}_{2})}C(\boldsymbol{x}-\boldsymbol{y})d\boldsymbol{x}d\boldsymbol{y}. (D.2)

Suppose that Assumptions 4.1(i) and 3.2(for =2\ell=2) hold. Then, for 𝛚d\boldsymbol{\omega}\in\mathbb{R}^{d}, we have

var(Jh,n(𝝎))=df(𝒙)|ch,n(𝝎𝒙)|2𝑑𝒙.\mathrm{var}(J_{h,n}(\boldsymbol{\omega}))=\int_{\mathbb{R}^{d}}f(\boldsymbol{x})|c_{h,n}(\boldsymbol{\omega}-\boldsymbol{x})|^{2}d\boldsymbol{x}. (D.3)

Proof. We will only show (D.1) and (D.2) for the non-tapered case. A general case can be treated similarly. Since Jn(𝝎)=𝒥n(𝝎)λcn(𝝎)J_{n}(\boldsymbol{\omega})=\mathcal{J}_{n}(\boldsymbol{\omega})-\lambda c_{n}(\boldsymbol{\omega}) is centered DFT and λcn(𝝎)\lambda c_{n}(\boldsymbol{\omega}) is deterministic, we have

cov(Jn(𝝎1),Jn(𝝎2))=𝔼[𝒥n(𝝎1)𝒥n(𝝎2)]λ2cn(𝝎1)cn(𝝎2).\mathrm{cov}(J_{n}(\boldsymbol{\omega}_{1}),J_{n}(\boldsymbol{\omega}_{2}))=\mathbb{E}[\mathcal{J}_{n}(\boldsymbol{\omega}_{1})\mathcal{J}_{n}(-\boldsymbol{\omega}_{2})]-\lambda^{2}c_{n}(\boldsymbol{\omega}_{1})c_{n}(-\boldsymbol{\omega}_{2}).

By using (2.9),

𝒥n(𝝎1)𝒥n(𝝎2)=(2π)d|Dn|1(𝒙XDnexp(i𝒙(𝝎1𝝎2))+𝒙𝒚XDnexp(i(𝒙𝝎1𝒚𝝎2))).\mathcal{J}_{n}(\boldsymbol{\omega}_{1})\mathcal{J}_{n}(-\boldsymbol{\omega}_{2})=(2\pi)^{-d}|D_{n}|^{-1}\bigg{(}\sum_{\boldsymbol{x}\in X\cap D_{n}}\exp(-i\boldsymbol{x}^{\top}(\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2}))+\sum_{\boldsymbol{x}\neq\boldsymbol{y}\in X\cap D_{n}}\exp(-i(\boldsymbol{x}^{\top}\boldsymbol{\omega}_{1}-\boldsymbol{y}^{\top}\boldsymbol{\omega}_{2}))\bigg{)}.

Thus, by using (2.1) for both terms above, we have

𝔼[𝒥n(𝝎1)𝒥n(𝝎2)]\displaystyle\mathbb{E}[\mathcal{J}_{n}(\boldsymbol{\omega}_{1})\mathcal{J}_{n}(-\boldsymbol{\omega}_{2})] =\displaystyle= (2π)d|Dn|1{λDnei𝒙(𝝎1𝝎2)d𝒙\displaystyle(2\pi)^{-d}|D_{n}|^{-1}\bigg{\{}\lambda\int_{D_{n}}e^{-i\boldsymbol{x}^{\top}(\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})}d\boldsymbol{x}
+DnDnexp(i(𝒙𝝎1𝒚𝝎2))λ2,red(𝒙𝒚)d𝒙d𝒚}.\displaystyle+\int_{D_{n}}\int_{D_{n}}\exp(-i(\boldsymbol{x}^{\top}\boldsymbol{\omega}_{1}-\boldsymbol{y}^{\top}\boldsymbol{\omega}_{2}))\lambda_{2,\text{red}}(\boldsymbol{x}-\boldsymbol{y})d\boldsymbol{x}d\boldsymbol{y}\bigg{\}}.

Next, by using that Dn2exp(i(𝒙𝝎1𝒚𝝎2))𝑑𝒙𝑑𝒚=(2π)d|Dn|cn(𝝎1)cn(𝝎2)\int_{D_{n}^{2}}\exp(-i(\boldsymbol{x}^{\top}\boldsymbol{\omega}_{1}-\boldsymbol{y}^{\top}\boldsymbol{\omega}_{2}))d\boldsymbol{x}d\boldsymbol{y}=(2\pi)^{d}|D_{n}|c_{n}(\boldsymbol{\omega}_{1})c_{n}(-\boldsymbol{\omega}_{2}) and γ2,red(𝒙)=λ2,red(𝒙)λ2\gamma_{2,\text{red}}(\boldsymbol{x})=\lambda_{2,\text{red}}(\boldsymbol{x})-\lambda^{2}, we have

𝔼[𝒥n(𝝎1)𝒥n(𝝎2)]λ2cn(𝝎1)cn(𝝎2)=(2π)d|Dn|1λDnei𝒙(𝝎1𝝎2)𝑑𝒙\displaystyle\mathbb{E}[\mathcal{J}_{n}(\boldsymbol{\omega}_{1})\mathcal{J}_{n}(-\boldsymbol{\omega}_{2})]-\lambda^{2}c_{n}(\boldsymbol{\omega}_{1})c_{n}(-\boldsymbol{\omega}_{2})=(2\pi)^{-d}|D_{n}|^{-1}\lambda\int_{D_{n}}e^{-i\boldsymbol{x}^{\top}(\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})}d\boldsymbol{x}
+(2π)d|Dn|1DnDnexp(i(𝒙𝝎1𝒚𝝎2))γ2,red(𝒙𝒚)𝑑𝒙𝑑𝒚.\displaystyle~{}~{}+(2\pi)^{-d}|D_{n}|^{-1}\int_{D_{n}}\int_{D_{n}}\exp(-i(\boldsymbol{x}^{\top}\boldsymbol{\omega}_{1}-\boldsymbol{y}^{\top}\boldsymbol{\omega}_{2}))\gamma_{2,\text{red}}(\boldsymbol{x}-\boldsymbol{y})d\boldsymbol{x}d\boldsymbol{y}.

Therefore, we show (D.1) for h(𝒙)1h(\boldsymbol{x})\equiv 1 on [1/2,1/2]d[-1/2,1/2]^{d}.

(D.2) can be easily seen by using the above identity and C(𝒙)=λδ(𝒙)+γ2,red(𝒙)C(\boldsymbol{x})=\lambda\delta(\boldsymbol{x})+\gamma_{2,\text{red}}(\boldsymbol{x}).

Lastly, to show (D.3), by substituting (4.4) into (D.1) for 𝝎1=𝝎2=𝝎\boldsymbol{\omega}_{1}=\boldsymbol{\omega}_{2}=\boldsymbol{\omega}, we have

var(Jh,n(𝝎))\displaystyle\mathrm{var}(J_{h,n}(\boldsymbol{\omega}))
=(2π)dHh,21|Dn|1λDnh(𝒙/𝑨)2𝑑𝒙+(2π)dHh,21|Dn|1Dn2h(𝒙/𝑨)h(𝒚/𝑨)\displaystyle~{}~{}=(2\pi)^{-d}H_{h,2}^{-1}|D_{n}|^{-1}\lambda\int_{D_{n}}h(\boldsymbol{x}/\boldsymbol{A})^{2}d\boldsymbol{x}+(2\pi)^{-d}H_{h,2}^{-1}|D_{n}|^{-1}\int_{D_{n}^{2}}h(\boldsymbol{x}/\boldsymbol{A})h(\boldsymbol{y}/\boldsymbol{A})
×ei(𝒙𝝎𝒚𝝎)dei(𝒙𝒚)𝒕(f(𝒕)(2π)dλ)𝑑𝒕𝑑𝒙𝑑𝒚.\displaystyle~{}~{}\quad\times e^{-i(\boldsymbol{x}^{\top}\boldsymbol{\omega}-\boldsymbol{y}^{\top}\boldsymbol{\omega})}\int_{\mathbb{R}^{d}}e^{i(\boldsymbol{x}-\boldsymbol{y})^{\top}\boldsymbol{t}}(f(\boldsymbol{t})-(2\pi)^{-d}\lambda)d\boldsymbol{t}d\boldsymbol{x}d\boldsymbol{y}.

Since f(𝝎)(2π)dλL1(d)f(\boldsymbol{\omega})-(2\pi)^{-d}\lambda\in L^{1}(\mathbb{R}^{d}) due to Assumption 4.1(i) and sup𝒙dh(𝒙)<\sup_{\boldsymbol{x}\in\mathbb{R}^{d}}h(\boldsymbol{x})<\infty, we can apply Fubini’s theorem to interchange the summation above and get

var(Jh,n(𝝎))\displaystyle\mathrm{var}(J_{h,n}(\boldsymbol{\omega}))
=(2π)dHh,21|Dn|1λDnh(𝒙/𝑨)2𝑑𝒙+(2π)dHh,21|Dn|1d𝑑𝒕(f(𝒕)(2π)dλ)\displaystyle\quad=(2\pi)^{-d}H_{h,2}^{-1}|D_{n}|^{-1}\lambda\int_{D_{n}}h(\boldsymbol{x}/\boldsymbol{A})^{2}d\boldsymbol{x}+(2\pi)^{-d}H_{h,2}^{-1}|D_{n}|^{-1}\int_{\mathbb{R}^{d}}d\boldsymbol{t}(f(\boldsymbol{t})-(2\pi)^{-d}\lambda)
×Dnh(𝒙/𝑨)ei𝒙(𝝎𝒕)d𝒙Dnh(𝒚/𝑨)ei𝒚(𝒕𝝎)d𝒚\displaystyle\quad~{}~{}~{}\times\int_{D_{n}}h(\boldsymbol{x}/\boldsymbol{A})e^{-i\boldsymbol{x}^{\top}(\boldsymbol{\omega}-\boldsymbol{t})}d\boldsymbol{x}\int_{D_{n}}h(\boldsymbol{y}/\boldsymbol{A})e^{-i\boldsymbol{y}^{\top}(\boldsymbol{t}-\boldsymbol{\omega})}d\boldsymbol{y}
=(2π)dλ+d{f(𝒕)(2π)dλ}|ch,n(𝝎𝒕)|2𝑑𝒕=df(𝒕)|ch,n(𝝎𝒕)|2𝑑𝒕.\displaystyle\quad=(2\pi)^{-d}\lambda+\int_{\mathbb{R}^{d}}\{f(\boldsymbol{t})-(2\pi)^{-d}\lambda\}|c_{h,n}(\boldsymbol{\omega}-\boldsymbol{t})|^{2}d\boldsymbol{t}=\int_{\mathbb{R}^{d}}f(\boldsymbol{t})|c_{h,n}(\boldsymbol{\omega}-\boldsymbol{t})|^{2}d\boldsymbol{t}.

Here, we use (2.10) and Dnh(𝒙/𝑨)2𝑑𝒙=Hh,2|Dn|\int_{D_{n}}h(\boldsymbol{x}/\boldsymbol{A})^{2}d\boldsymbol{x}=H_{h,2}|D_{n}| on the second identity and Lemma C.3(a) on the last identity. Thus, we get the desired results.

All together, we prove the theorem. \Box

Now, we give an expression of cov(Jh,n(𝝎1),Jh,n(𝝎2))\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2})) in terms of Hh,k(n)H_{h,k}^{(n)} and Rh,g(n)R_{h,g}^{(n)} in (2.7) and (C.1), respectively.

Lemma D.1.

Suppose that Assumption 3.2 holds for =2\ell=2. Then, for 𝛚1,𝛚2d\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}\in\mathbb{R}^{d},

cov(Jh,n(𝝎1),Jh,n(𝝎2))\displaystyle\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2}))
=(2π)dHh,21|Dn|1dei𝒖𝝎1C(𝒖)(Hh,2(n)(𝝎1𝝎2)+Rh,h(n)(𝒖,𝝎1𝝎2))𝑑𝒖.\displaystyle~{}=(2\pi)^{-d}H_{h,2}^{-1}|D_{n}|^{-1}\int_{\mathbb{R}^{d}}e^{-i\boldsymbol{u}^{\top}\boldsymbol{\omega}_{1}}C(\boldsymbol{u})\left(H_{h,2}^{(n)}(\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})+R_{h,h}^{(n)}(\boldsymbol{u},\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})\right)d\boldsymbol{u}.

Proof. By using (D.2) and using that h(/𝑨)h(\cdot/\boldsymbol{A}) has a support on DnD_{n},

cov(Jh,n(𝝎1),Jh,n(𝝎2))\displaystyle\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2}))
=(2π)dHh,21|Dn|12dh(𝒙/𝑨)h(𝒚/𝑨)ei(𝒙𝝎1𝒚𝝎2)C(𝒙𝒚)𝑑𝒙𝑑𝒚\displaystyle~{}~{}=(2\pi)^{-d}H_{h,2}^{-1}|D_{n}|^{-1}\int_{\mathbb{R}^{2d}}h(\boldsymbol{x}/\boldsymbol{A})h(\boldsymbol{y}/\boldsymbol{A})e^{-i(\boldsymbol{x}^{\top}\boldsymbol{\omega}_{1}-\boldsymbol{y}^{\top}\boldsymbol{\omega}_{2})}C(\boldsymbol{x}-\boldsymbol{y})d\boldsymbol{x}d\boldsymbol{y}
=(2π)dHh,21|Dn|1d𝑑𝒖ei𝒖𝝎1C(𝒖)dh((𝒖+𝒗)/𝑨)h(𝒗/𝑨)ei𝒗(𝝎1𝝎2)𝑑𝒗\displaystyle~{}~{}=(2\pi)^{-d}H_{h,2}^{-1}|D_{n}|^{-1}\int_{\mathbb{R}^{d}}d\boldsymbol{u}e^{-i\boldsymbol{u}^{\top}\boldsymbol{\omega}_{1}}C(\boldsymbol{u})\int_{\mathbb{R}^{d}}h((\boldsymbol{u}+\boldsymbol{v})/\boldsymbol{A})h(\boldsymbol{v}/\boldsymbol{A})e^{-i\boldsymbol{v}^{\top}(\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})}d\boldsymbol{v}
=(2π)dHh,21|Dn|1d𝑑𝒖ei𝒖𝝎1C(𝒖)(Hh,2(n)(𝝎1𝝎2)+Rh,h(n)(𝒖,𝝎1𝝎2)).\displaystyle~{}~{}=(2\pi)^{-d}H_{h,2}^{-1}|D_{n}|^{-1}\int_{\mathbb{R}^{d}}d\boldsymbol{u}e^{-i\boldsymbol{u}^{\top}\boldsymbol{\omega}_{1}}C(\boldsymbol{u})\left(H_{h,2}^{(n)}(\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})+R_{h,h}^{(n)}(\boldsymbol{u},\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})\right).

Here, we use change of variables 𝒖=𝒙𝒚\boldsymbol{u}=\boldsymbol{x}-\boldsymbol{y} and 𝒗=𝒚\boldsymbol{v}=\boldsymbol{y} in the second identity. Thus, we get the desired result. \Box

Using the above lemma together with bound for Rh,h(n)()R_{h,h}^{(n)}(\cdot) in Theorem C.1, we obtain the leading term of cov(Jn(𝝎1),Jn(𝝎2))\mathrm{cov}(J_{n}(\boldsymbol{\omega}_{1}),J_{n}(\boldsymbol{\omega}_{2})).

Theorem D.2.

Suppose that Assumptions 3.1, 3.2 (for =2\ell=2) and 3.4(i) hold. Let ff be the spectral density function and let Hh,k(n)H_{h,k}^{(n)} be defined as in (2.7). Then, for 𝛚1,𝛚2d\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}\in\mathbb{R}^{d},

cov(Jh,n(𝝎1),Jh,n(𝝎2))=|Dn|1Hh,21f(𝝎1)Hh,2(n)(𝝎1𝝎2)+o(1),n.\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2}))=|D_{n}|^{-1}H_{h,2}^{-1}f(\boldsymbol{\omega}_{1})H_{h,2}^{(n)}(\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})+o(1),\quad~{}~{}n\rightarrow\infty. (D.4)

Here, the o(1)o(1) error above is uniform over 𝛚1,𝛚2d\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}\in\mathbb{R}^{d}.

Proof. By using Lemma D.1 and C()=λδ()+γ2,red()C(\cdot)=\lambda\delta(\cdot)+\gamma_{2,\text{red}}(\cdot), the first term in the expansion of cov(Jh,n(𝝎1),Jh,n(𝝎2))\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2})) is

(2π)dλ|Dn|1Hh,21Hh,2(n)(𝝎1𝝎2)+|Dn|1Hh,21Hh,2(n)(𝝎1𝝎2)1(γ2,red)(𝝎1)\displaystyle(2\pi)^{-d}\lambda|D_{n}|^{-1}H_{h,2}^{-1}H_{h,2}^{(n)}(\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})+|D_{n}|^{-1}H_{h,2}^{-1}H_{h,2}^{(n)}(\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})\mathcal{F}^{-1}(\gamma_{2,\text{red}})(\boldsymbol{\omega}_{1})
=|Dn|1Hh,21((2π)dλ+1(γ2,red)(𝝎1))Hh,2(n)(𝝎1𝝎2)\displaystyle~{}~{}=|D_{n}|^{-1}H_{h,2}^{-1}\left((2\pi)^{-d}\lambda+\mathcal{F}^{-1}(\gamma_{2,\text{red}})(\boldsymbol{\omega}_{1})\right)H_{h,2}^{(n)}(\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})
=|Dn|1Hh,21f(𝝎1)Hh,2(n)(𝝎1𝝎2).\displaystyle~{}~{}=|D_{n}|^{-1}H_{h,2}^{-1}\cdot f(\boldsymbol{\omega}_{1})H_{h,2}^{(n)}(\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2}).

Here, we use (2.5) in the last identity. Similarly, the remainder term of the difference between cov(Jh,n(𝝎1),Jh,n(𝝎2))\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2})) and |Dn|1Hh,21f(𝝎1)Hh,2(n)(𝝎1𝝎2)|D_{n}|^{-1}H_{h,2}^{-1}f(\boldsymbol{\omega}_{1})H_{h,2}^{(n)}(\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2}) is bounded by

C|Dn|1|Rh,h(n)(0,𝝎1𝝎2)|+C|Dn|1d|γ2,red(𝒖)||Rh,h(n)(𝒖,𝝎1𝝎2)|𝑑𝒖.C|D_{n}|^{-1}|R_{h,h}^{(n)}(\textbf{0},\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})|+C|D_{n}|^{-1}\int_{\mathbb{R}^{d}}|\gamma_{2,\text{red}}(\boldsymbol{u})||R_{h,h}^{(n)}(\boldsymbol{u},\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})|d\boldsymbol{u}. (D.5)

By using Theorem C.1, the first term above is o(1)o(1) as nn\rightarrow\infty uniformly in 𝝎1,𝝎2d\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}\in\mathbb{R}^{d}. To bound the second term, by using C.1 again, we have |Dn|1|γ2,red(𝒖)||Rh,h(n)(𝒖,𝝎1𝝎2)|C|γ2,red(𝒖)|L1(d)|D_{n}|^{-1}|\gamma_{2,\text{red}}(\boldsymbol{u})||R_{h,h}^{(n)}(\boldsymbol{u},\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})|\leq C|\gamma_{2,\text{red}}(\boldsymbol{u})|\in L^{1}(\mathbb{R}^{d}) and limn|Dn|1|γ2,red(𝒖)||Rh,h(n)(𝒖,𝝎1+𝝎2)|=0\lim_{n\rightarrow\infty}|D_{n}|^{-1}|\gamma_{2,\text{red}}(\boldsymbol{u})||R_{h,h}^{(n)}(\boldsymbol{u},\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})|=0, 𝒖d\boldsymbol{u}\in\mathbb{R}^{d}. Therefore, by dominated convergence theorem, the second term above is o(1)o(1) as nn\rightarrow\infty uniformly in 𝝎1,𝝎2d\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}\in\mathbb{R}^{d}. Thus, we get the desired result. \Box

D.2 Bounds on the terms involving covariances

Let

Tn(𝒕1,𝒕2)\displaystyle T_{n}(\boldsymbol{t}_{1},\boldsymbol{t}_{2}) =|Dn|12dh(𝒙𝑨)h(𝒚𝑨)h(𝒙+𝒕1𝑨)h(𝒚+𝒕2𝑨)\displaystyle=|D_{n}|^{-1}\int_{\mathbb{R}^{2d}}h(\frac{\boldsymbol{x}}{\boldsymbol{A}})h(\frac{\boldsymbol{y}}{\boldsymbol{A}})h(\frac{\boldsymbol{x}+\boldsymbol{t}_{1}}{\boldsymbol{A}})h(\frac{\boldsymbol{y}+\boldsymbol{t}_{2}}{\boldsymbol{A}}) (D.6)
×C(𝒙𝒚)C(𝒕1+𝒙𝒕2𝒚)d𝒙d𝒚,𝒕1,𝒕2d.\displaystyle~{}~{}\times C(\boldsymbol{x}-\boldsymbol{y})C(\boldsymbol{t}_{1}+\boldsymbol{x}-\boldsymbol{t}_{2}-\boldsymbol{y})d\boldsymbol{x}d\boldsymbol{y},~{}~{}\boldsymbol{t}_{1},\boldsymbol{t}_{2}\in\mathbb{R}^{d}.

The term TnT_{n} appears in the integrated form of cov(Jh,n(𝝎1),Jh,n(𝝎2))cov(Jh,n(𝝎1),Jh,n(𝝎2))\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2}))\mathrm{cov}(J_{h,n}(-\boldsymbol{\omega}_{1}),J_{h,n}(-\boldsymbol{\omega}_{2})) in the proof of Theorem 4.1. Below, we give an approximation of TnT_{n}. Let

f~(𝝎)=f(𝝎)(2π)dλ,𝝎d,\widetilde{f}(\boldsymbol{\omega})=f(\boldsymbol{\omega})-(2\pi)^{-d}\lambda,\qquad\boldsymbol{\omega}\in\mathbb{R}^{d}, (D.7)

and let

Rn(𝒕1,𝒕2,𝝎1,𝝎2)\displaystyle R_{n}(\boldsymbol{t}_{1},\boldsymbol{t}_{2},\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}) (D.8)
=Hh,2(n)(𝝎1𝝎2)Rh,h(n)(𝒕2,𝝎1+𝝎2)+Hh,2(n)(𝝎1+𝝎2)Rh,h(n)(𝒕1,𝝎1𝝎2)\displaystyle~{}~{}=H_{h,2}^{(n)}(-\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})R_{h,h}^{(n)}(\boldsymbol{t}_{2},\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})+H_{h,2}^{(n)}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})R_{h,h}^{(n)}(\boldsymbol{t}_{1},-\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})
+Rh,h(n)(𝒕2,𝝎1+𝝎2)Rh,h(n)(𝒕1,𝝎1𝝎2),n,𝒕1,𝒕2,𝝎1,𝝎2d.\displaystyle~{}~{}~{}~{}+R_{h,h}^{(n)}(\boldsymbol{t}_{2},\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})R_{h,h}^{(n)}(\boldsymbol{t}_{1},-\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2}),\quad n\in\mathbb{N},~{}~{}\boldsymbol{t}_{1},\boldsymbol{t}_{2},\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}\in\mathbb{R}^{d}.
Lemma D.2.

Let γ2,red\gamma_{2,\emph{red}} and C()C(\cdot) be the reduced second-order cumulant intensity function and the complete covariance function defined as in (2.4). Suppose that Assumptions 3.1, 3.2 (for =2\ell=2), and 4.1(i) hold. Furthermore, the data taper hh is Lipschitz continuous on [1/2,1/2]d[-1/2,1/2]^{d}. Then, for 𝐭1,𝐭2DnDn\boldsymbol{t}_{1},\boldsymbol{t}_{2}\in D_{n}-D_{n},

Tn(𝒕1,𝒕2)\displaystyle T_{n}(\boldsymbol{t}_{1},\boldsymbol{t}_{2}) =\displaystyle= λ2δ(𝒕1𝒕2)(Hh,4+O(|Dn|1/d)𝒕2)\displaystyle\lambda^{2}\delta(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})\left(H_{h,4}+O(|D_{n}|^{-1/d})\|\boldsymbol{t}_{2}\|\right)
+2λγ2,red(𝒕1𝒕2)(Hh,4+O(|Dn|1/d)[𝒕1+𝒕2])\displaystyle+2\lambda\gamma_{2,\emph{red}}(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})\left(H_{h,4}+O(|D_{n}|^{-1/d})[\|\boldsymbol{t}_{1}\|+\|\boldsymbol{t}_{2}\|]\right)
+2dei(𝒕1𝒕2)𝝎2f~(𝝎1)f~(𝝎2)((2π)dHh,4Fh2,n(𝝎1+𝝎2)\displaystyle+\int_{\mathbb{R}^{2d}}e^{i(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})^{\top}\boldsymbol{\omega}_{2}}\widetilde{f}(\boldsymbol{\omega}_{1})\widetilde{f}(\boldsymbol{\omega}_{2})\bigg{(}(2\pi)^{d}H_{h,4}F_{h^{2},n}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})
+|Dn|1Rn(𝒕1,𝒕2,𝝎1,𝝎2))d𝝎1d𝝎2,n,\displaystyle\quad+|D_{n}|^{-1}R_{n}(\boldsymbol{t}_{1},\boldsymbol{t}_{2},\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2})\bigg{)}d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2},\qquad n\rightarrow\infty,

where Fh2,nF_{h^{2},n} is the Fejér kernel in (C.15) based on h2h^{2}.

Proof. Recall C(𝒙)=λδ(𝒙)+γ2,red(𝒙)C(\boldsymbol{x})=\lambda\delta(\boldsymbol{x})+\gamma_{2,\emph{red}}(\boldsymbol{x}). Substitute this to (D.6), Tn(𝒕1,𝒕2)T_{n}(\boldsymbol{t}_{1},\boldsymbol{t}_{2}) can be decomposed into four terms. The first term is

|Dn|1λ22dh(𝒙𝑨)h(𝒚𝑨)h(𝒙+𝒕1𝑨)h(𝒚+𝒕2𝑨)δ(𝒙𝒚)δ(𝒕1+𝒙𝒕2𝒚)𝑑𝒙𝑑𝒚.\displaystyle|D_{n}|^{-1}\lambda^{2}\int_{\mathbb{R}^{2d}}h(\frac{\boldsymbol{x}}{\boldsymbol{A}})h(\frac{\boldsymbol{y}}{\boldsymbol{A}})h(\frac{\boldsymbol{x}+\boldsymbol{t}_{1}}{\boldsymbol{A}})h(\frac{\boldsymbol{y}+\boldsymbol{t}_{2}}{\boldsymbol{A}})\delta(\boldsymbol{x}-\boldsymbol{y})\delta(\boldsymbol{t}_{1}+\boldsymbol{x}-\boldsymbol{t}_{2}-\boldsymbol{y})d\boldsymbol{x}d\boldsymbol{y}.

The above term is nonzero if and only if 𝒕1=𝒕2\boldsymbol{t}_{1}=\boldsymbol{t}_{2}. Therefore, the first term is equivalent to

|Dn|1λ2δ(𝒕1𝒕2)dh(𝒚𝑨)2h(𝒚+𝒕2𝑨)2𝑑𝒚.|D_{n}|^{-1}\lambda^{2}\delta(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})\int_{\mathbb{R}^{d}}h(\frac{\boldsymbol{y}}{\boldsymbol{A}})^{2}h(\frac{\boldsymbol{y}+\boldsymbol{t}_{2}}{\boldsymbol{A}})^{2}d\boldsymbol{y}.

By applying Lemma C.1, we have

|Dn|1λ2δ(𝒕1𝒕2)dh(𝒚𝑨)2h(𝒚+𝒕2𝑨)2𝑑𝒚=λ2δ(𝒕1𝒕2)(Hh,4+Cρ(𝒕2/𝑨)),n.|D_{n}|^{-1}\lambda^{2}\delta(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})\int_{\mathbb{R}^{d}}h(\frac{\boldsymbol{y}}{\boldsymbol{A}})^{2}h(\frac{\boldsymbol{y}+\boldsymbol{t}_{2}}{\boldsymbol{A}})^{2}d\boldsymbol{y}=\lambda^{2}\delta(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})\left(H_{h,4}+C\rho(\|\boldsymbol{t}_{2}/\boldsymbol{A}\|)\right),~{}n\rightarrow\infty.

Here, we use |Dn|1Dnh(𝒙/𝑨)4𝑑𝒙=[1/2,1/2]dh(𝒙)4𝑑𝒙=Hh,4|D_{n}|^{-1}\int_{D_{n}}h(\boldsymbol{x}/\boldsymbol{A})^{4}d\boldsymbol{x}=\int_{[-1/2,1/2]^{d}}h(\boldsymbol{x})^{4}d\boldsymbol{x}=H_{h,4} in the identity. Moreover, under Assumption 3.1, it is easily seen that ρ(𝒙/𝑨)𝒙/𝑨=O(|Dn|1/d)𝒙\rho(\|\boldsymbol{x}/\boldsymbol{A}\|)\leq\|\boldsymbol{x}/\boldsymbol{A}\|=O(|D_{n}|^{-1/d})\|\boldsymbol{x}\| as nn\rightarrow\infty. Therefore, the first term is λ2δ(𝒕1𝒕2)(Hh,4+O(|Dn|1/d)𝒕2)\lambda^{2}\delta(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})\left(H_{h,4}+O(|D_{n}|^{-1/d})\|\boldsymbol{t}_{2}\|\right) as nn\rightarrow\infty.

Similarly, the second and third terms are equal to

|Dn|1λ2dh(𝒙𝑨)h(𝒚𝑨)h(𝒙+𝒕1𝑨)h(𝒚+𝒕2𝑨)δ(𝒙𝒚)γ2,red(𝒕1+𝒙𝒕2𝒚)𝑑𝒙𝑑𝒚\displaystyle|D_{n}|^{-1}\lambda\int_{\mathbb{R}^{2d}}h(\frac{\boldsymbol{x}}{\boldsymbol{A}})h(\frac{\boldsymbol{y}}{\boldsymbol{A}})h(\frac{\boldsymbol{x}+\boldsymbol{t}_{1}}{\boldsymbol{A}})h(\frac{\boldsymbol{y}+\boldsymbol{t}_{2}}{\boldsymbol{A}})\delta(\boldsymbol{x}-\boldsymbol{y})\gamma_{2,\emph{red}}(\boldsymbol{t}_{1}+\boldsymbol{x}-\boldsymbol{t}_{2}-\boldsymbol{y})d\boldsymbol{x}d\boldsymbol{y}
=|Dn|1λγ2,red(𝒕1𝒕2)dh(𝒚𝑨)2h(𝒚+𝒕1𝑨)h(𝒚+𝒕2𝑨)𝑑𝒚\displaystyle=|D_{n}|^{-1}\lambda\gamma_{2,\emph{red}}(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})\int_{\mathbb{R}^{d}}h(\frac{\boldsymbol{y}}{\boldsymbol{A}})^{2}h(\frac{\boldsymbol{y}+\boldsymbol{t}_{1}}{\boldsymbol{A}})h(\frac{\boldsymbol{y}+\boldsymbol{t}_{2}}{\boldsymbol{A}})d\boldsymbol{y}
=λγ2,red(𝒕1𝒕2)(Hh,4+O(|Dn|1/d)(𝒕1+𝒕2)),n.\displaystyle=\lambda\gamma_{2,\emph{red}}(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})\left(H_{h,4}+O(|D_{n}|^{-1/d})(\|\boldsymbol{t}_{1}\|+\|\boldsymbol{t}_{2}\|)\right),\qquad n\rightarrow\infty.

Finally, by using (4.4), the fourth term is equal to

|Dn|12dh(𝒙𝑨)h(𝒚𝑨)h(𝒙+𝒕1𝑨)h(𝒚+𝒕2𝑨)γ2,red(𝒙𝒚)γ2,red(𝒕1+𝒙𝒕2𝒚)𝑑𝒙𝑑𝒚\displaystyle|D_{n}|^{-1}\int_{\mathbb{R}^{2d}}h(\frac{\boldsymbol{x}}{\boldsymbol{A}})h(\frac{\boldsymbol{y}}{\boldsymbol{A}})h(\frac{\boldsymbol{x}+\boldsymbol{t}_{1}}{\boldsymbol{A}})h(\frac{\boldsymbol{y}+\boldsymbol{t}_{2}}{\boldsymbol{A}})\gamma_{2,\emph{red}}(\boldsymbol{x}-\boldsymbol{y})\gamma_{2,\emph{red}}(\boldsymbol{t}_{1}+\boldsymbol{x}-\boldsymbol{t}_{2}-\boldsymbol{y})d\boldsymbol{x}d\boldsymbol{y}
=|Dn|12dh(𝒙𝑨)h(𝒚𝑨)h(𝒙+𝒕1𝑨)h(𝒚+𝒕2𝑨)\displaystyle=|D_{n}|^{-1}\int_{\mathbb{R}^{2d}}h(\frac{\boldsymbol{x}}{\boldsymbol{A}})h(\frac{\boldsymbol{y}}{\boldsymbol{A}})h(\frac{\boldsymbol{x}+\boldsymbol{t}_{1}}{\boldsymbol{A}})h(\frac{\boldsymbol{y}+\boldsymbol{t}_{2}}{\boldsymbol{A}})
×2df~(𝝎1)f~(𝝎2)ei(𝒙𝒚)(𝝎1+𝝎2)ei(𝒕1𝒕2)𝝎2d𝝎1d𝝎2d𝒙d𝒚.\displaystyle~{}~{}\times\int_{\mathbb{R}^{2d}}\widetilde{f}(\boldsymbol{\omega}_{1})\widetilde{f}(\boldsymbol{\omega}_{2})e^{i(\boldsymbol{x}-\boldsymbol{y})^{\top}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})}e^{i(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})^{\top}\boldsymbol{\omega}_{2}}d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}d\boldsymbol{x}d\boldsymbol{y}.

Since f~L1(d)\widetilde{f}\in L^{1}(\mathbb{R}^{d}) due to Assumption 4.1(i), we can apply Fubini’s theorem and get

|Dn|12dh(𝒙𝑨)h(𝒚𝑨)h(𝒙+𝒕1𝑨)h(𝒚+𝒕2𝑨)\displaystyle|D_{n}|^{-1}\int_{\mathbb{R}^{2d}}h(\frac{\boldsymbol{x}}{\boldsymbol{A}})h(\frac{\boldsymbol{y}}{\boldsymbol{A}})h(\frac{\boldsymbol{x}+\boldsymbol{t}_{1}}{\boldsymbol{A}})h(\frac{\boldsymbol{y}+\boldsymbol{t}_{2}}{\boldsymbol{A}})
×2df~(𝝎1)f~(𝝎2)ei(𝒙𝒚)(𝝎1+𝝎2)ei(𝒕1𝒕2)𝝎2d𝝎1d𝝎2d𝒙d𝒚\displaystyle~{}~{}\times\int_{\mathbb{R}^{2d}}\widetilde{f}(\boldsymbol{\omega}_{1})\widetilde{f}(\boldsymbol{\omega}_{2})e^{i(\boldsymbol{x}-\boldsymbol{y})^{\top}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})}e^{i(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})^{\top}\boldsymbol{\omega}_{2}}d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}d\boldsymbol{x}d\boldsymbol{y}
=|Dn|12dei(𝒕1𝒕2)𝝎2f~(𝝎1)f~(𝝎2)(dh(𝒚𝑨)h(𝒚+𝒕2𝑨)ei𝒚(𝝎1+𝝎2)𝑑𝒚)\displaystyle=|D_{n}|^{-1}\int_{\mathbb{R}^{2d}}e^{i(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})^{\top}\boldsymbol{\omega}_{2}}\widetilde{f}(\boldsymbol{\omega}_{1})\widetilde{f}(\boldsymbol{\omega}_{2})\left(\int_{\mathbb{R}^{d}}h(\frac{\boldsymbol{y}}{\boldsymbol{A}})h(\frac{\boldsymbol{y}+\boldsymbol{t}_{2}}{\boldsymbol{A}})e^{-i\boldsymbol{y}^{\top}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})}d\boldsymbol{y}\right)
×(dh(𝒙𝑨)h(𝒙+𝒕1𝑨)ei𝒙(𝝎1+𝝎2)𝑑𝒙)d𝝎1d𝝎2\displaystyle~{}~{}\times\left(\int_{\mathbb{R}^{d}}h(\frac{\boldsymbol{x}}{\boldsymbol{A}})h(\frac{\boldsymbol{x}+\boldsymbol{t}_{1}}{\boldsymbol{A}})e^{i\boldsymbol{x}^{\top}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})}d\boldsymbol{x}\right)d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}
=2dei(𝒕1𝒕2)𝝎2f~(𝝎1)f~(𝝎2)(|Dn|1|Hh,2(n)(𝝎1+𝝎2)|2+|Dn|1Rn(𝒕1,𝒕2,𝝎1,𝝎2))𝑑𝝎1𝑑𝝎2,\displaystyle=\int_{\mathbb{R}^{2d}}e^{i(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})^{\top}\boldsymbol{\omega}_{2}}\widetilde{f}(\boldsymbol{\omega}_{1})\widetilde{f}(\boldsymbol{\omega}_{2})\left(|D_{n}|^{-1}|H_{h,2}^{(n)}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})|^{2}+|D_{n}|^{-1}R_{n}(\boldsymbol{t}_{1},\boldsymbol{t}_{2},\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2})\right)d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2},

where Rn(𝒕1,𝒕2,𝝎1,𝝎2)R_{n}(\boldsymbol{t}_{1},\boldsymbol{t}_{2},\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}) is defined as in (D.8).

Next, from (C.15), the Fejér kernel based on h2h^{2} is

Fh2,n(𝝎)=(2π)dHh,41|Dn|1|Hh,2(n)(𝝎)|2.F_{h^{2},n}(\boldsymbol{\omega})=(2\pi)^{-d}H_{h,4}^{-1}|D_{n}|^{-1}|H_{h,2}^{(n)}(\boldsymbol{\omega})|^{2}. (D.9)

Substitute this into the above, we have

|Dn|12dh(𝒙𝑨)h(𝒚𝑨)h(𝒙+𝒕1𝑨)h(𝒚+𝒕2𝑨)\displaystyle|D_{n}|^{-1}\int_{\mathbb{R}^{2d}}h(\frac{\boldsymbol{x}}{\boldsymbol{A}})h(\frac{\boldsymbol{y}}{\boldsymbol{A}})h(\frac{\boldsymbol{x}+\boldsymbol{t}_{1}}{\boldsymbol{A}})h(\frac{\boldsymbol{y}+\boldsymbol{t}_{2}}{\boldsymbol{A}})
×2df~(𝝎1)f~(𝝎2)ei(𝒙𝒚)(𝝎1+𝝎2)ei(𝒕1𝒕2)𝝎2d𝝎1d𝝎2d𝒙d𝒚\displaystyle~{}~{}\times\int_{\mathbb{R}^{2d}}\widetilde{f}(\boldsymbol{\omega}_{1})\widetilde{f}(\boldsymbol{\omega}_{2})e^{i(\boldsymbol{x}-\boldsymbol{y})^{\top}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})}e^{i(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})^{\top}\boldsymbol{\omega}_{2}}d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}d\boldsymbol{x}d\boldsymbol{y}
=2dei(𝒕1𝒕2)𝝎2f~(𝝎1)f~(𝝎2)((2π)dHh,4Fh2,n(𝝎1+𝝎2)+|Dn|1Rn(𝒕1,𝒕2,𝝎1,𝝎2))𝑑𝝎1𝑑𝝎2.\displaystyle=\int_{\mathbb{R}^{2d}}e^{i(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})^{\top}\boldsymbol{\omega}_{2}}\widetilde{f}(\boldsymbol{\omega}_{1})\widetilde{f}(\boldsymbol{\omega}_{2})\left((2\pi)^{d}H_{h,4}F_{h^{2},n}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})+|D_{n}|^{-1}R_{n}(\boldsymbol{t}_{1},\boldsymbol{t}_{2},\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2})\right)d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}.

All together, we show the lemma. \Box

Next, we bound the term that are associated with Rn(𝒕1,𝒕2,𝝎1,𝝎2)R_{n}(\boldsymbol{t}_{1},\boldsymbol{t}_{2},\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}) in (D.8).

Lemma D.3.

Suppose the same set of assumptions in Theorem 4.1(ii) holds. Let ϕ^M\widehat{\phi}_{M} and f~\widetilde{f} be defined as in (A.4) and (D.7), respectively. Then,

|Dn|1BM2𝑑𝒕1𝑑𝒕2ϕ^M(𝒕1)ϕ^M(𝒕2)2dei(𝒕1𝒕2)𝝎2f~(𝝎1)f~(𝝎2)Rn(𝒕1,𝒕2,𝝎1,𝝎2)𝑑𝝎1𝑑𝝎2\displaystyle|D_{n}|^{-1}\int_{B_{M}^{2}}d\boldsymbol{t}_{1}d\boldsymbol{t}_{2}\widehat{\phi}_{M}(\boldsymbol{t}_{1})\widehat{\phi}_{M}(-\boldsymbol{t}_{2})\int_{\mathbb{R}^{2d}}e^{i(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})^{\top}\boldsymbol{\omega}_{2}}\widetilde{f}(\boldsymbol{\omega}_{1})\widetilde{f}(\boldsymbol{\omega}_{2})R_{n}(\boldsymbol{t}_{1},\boldsymbol{t}_{2},\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2})d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}
=o(1),n.\displaystyle~{}~{}=o(1),\quad n\rightarrow\infty. (D.10)

Proof. Recall (D.8). By using Theorem C.2(ii), the first term in the expression of
|Dn|1/2Rn(𝒕1,𝒕2,𝝎1,𝝎2)|D_{n}|^{-1/2}R_{n}(\boldsymbol{t}_{1},\boldsymbol{t}_{2},\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}) is bounded by

C|Hh,2(n)(𝝎1𝝎2)|i=0md𝒋,𝒌d|h𝒋||h𝒌|ρ({𝒌+1}𝒕2/𝑨)1/2|cDn,i(𝒕2)(𝝎1+𝝎22π(𝒋+𝒌)/𝑨)|.C|H_{h,2}^{(n)}(-\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})|\sum_{i=0}^{m_{d}}\sum_{\boldsymbol{j},\boldsymbol{k}\in\mathbb{Z}^{d}}|h_{\boldsymbol{j}}||h_{\boldsymbol{k}}|\rho(\{\|\boldsymbol{k}\|+1\}\|\boldsymbol{t}_{2}/\boldsymbol{A}\|)^{1/2}|c_{D_{n,i}(\boldsymbol{t}_{2})}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2}-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A})|.

Substitute the above into (D.10), the first term in the expansion of (D.10) is bounded by

Ci=0md𝒋,𝒌d|h𝒋||h𝒌|BM|ϕ^M(𝒕1)|𝑑𝒕1BM|ϕ^M(𝒕2)|ρ((𝒌+1)𝒕2/𝑨)1/2𝑑𝒕2\displaystyle C\sum_{i=0}^{m_{d}}\sum_{\boldsymbol{j},\boldsymbol{k}\in\mathbb{Z}^{d}}|h_{\boldsymbol{j}}||h_{\boldsymbol{k}}|\int_{B_{M}}|\widehat{\phi}_{M}(\boldsymbol{t}_{1})|d\boldsymbol{t}_{1}\int_{B_{M}}|\widehat{\phi}_{M}(-\boldsymbol{t}_{2})|\rho\left((\|\boldsymbol{k}\|+1)\|\boldsymbol{t}_{2}/\boldsymbol{A}\|\right)^{1/2}d\boldsymbol{t}_{2}
×d|f~(𝝎2)|d|f~(𝝎1)ch2,n(𝝎1𝝎2)cDn,i(𝒕2)(𝝎1+𝝎22π(𝒋+𝒌)/𝑨)|d𝝎1d𝝎2.\displaystyle~{}~{}\times\int_{\mathbb{R}^{d}}|\widetilde{f}(\boldsymbol{\omega}_{2})|\int_{\mathbb{R}^{d}}\left|\widetilde{f}(\boldsymbol{\omega}_{1})c_{h^{2},n}(-\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})c_{D_{n,i}(\boldsymbol{t}_{2})}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2}-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A})\right|d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}.

Since sup𝝎d|f~(𝝎)|<\sup_{\boldsymbol{\omega}\in\mathbb{R}^{d}}|\widetilde{f}(\boldsymbol{\omega})|<\infty and f~L1(d)\widetilde{f}\in L^{1}(\mathbb{R}^{d}) due to Assumption 4.1, we can apply Lemma C.3(d) and get

d|f~(𝝎2)|d|f~(𝝎1)ch2,n(𝝎1𝝎2)cDn,i(𝒕2)(𝝎1+𝝎22π(𝒋+𝒌)/𝑨)|𝑑𝝎1𝑑𝝎2<,\int_{\mathbb{R}^{d}}|\widetilde{f}(\boldsymbol{\omega}_{2})|\int_{\mathbb{R}^{d}}\left|\widetilde{f}(\boldsymbol{\omega}_{1})c_{h^{2},n}(-\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2})c_{D_{n,i}(\boldsymbol{t}_{2})}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2}-2\pi(\boldsymbol{j}+\boldsymbol{k})/\boldsymbol{A})\right|d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}<\infty,

uniformly over 𝒋,𝒌d\boldsymbol{j},\boldsymbol{k}\in\mathbb{Z}^{d}. Thus, the above term is bounded by

C(md+1)(𝒋d|h𝒋|)(BM|ϕ^M(𝒕1)|𝑑𝒕1)(𝒌d|h𝒌|BM|ϕ^M(𝒕2)|ρ((𝒌+1)𝒕2/𝑨)1/2𝑑𝒕2).\displaystyle C(m_{d}+1)\left(\sum_{\boldsymbol{j}\in\mathbb{Z}^{d}}|h_{\boldsymbol{j}}|\right)\left(\int_{B_{M}}|\widehat{\phi}_{M}(\boldsymbol{t}_{1})|d\boldsymbol{t}_{1}\right)\left(\sum_{\boldsymbol{k}\in\mathbb{Z}^{d}}|h_{\boldsymbol{k}}|\int_{B_{M}}|\widehat{\phi}_{M}(-\boldsymbol{t}_{2})|\rho\left((\|\boldsymbol{k}\|+1)\|\boldsymbol{t}_{2}/\boldsymbol{A}\|\right)^{1/2}d\boldsymbol{t}_{2}\right).

We first note that |h𝒌|limnBM|ϕ^M(𝒕)|ρ({𝒌+1}𝒕2/𝑨)1/2𝑑𝒕2=0|h_{\boldsymbol{k}}|\lim_{n\rightarrow\infty}\int_{B_{M}}|\widehat{\phi}_{M}(\boldsymbol{t})|\rho(\{\|\boldsymbol{k}\|+1\}\|\boldsymbol{t}_{2}/\boldsymbol{A}\|)^{1/2}d\boldsymbol{t}_{2}=0 due to the dominated convergence theorem. Moreover, since 𝒌d|h𝒌|BM|ϕ^M(𝒕)|ρ({𝒌+1}𝒕2/𝑨)1/2𝑑𝒕2<C𝒌d|h𝒌|<\sum_{\boldsymbol{k}\in\mathbb{Z}^{d}}|h_{\boldsymbol{k}}|\int_{B_{M}}|\widehat{\phi}_{M}(\boldsymbol{t})|\rho(\{\|\boldsymbol{k}\|+1\}\|\boldsymbol{t}_{2}/\boldsymbol{A}\|)^{1/2}d\boldsymbol{t}_{2}<C\sum_{\boldsymbol{k}\in\mathbb{Z}^{d}}|h_{\boldsymbol{k}}|<\infty, by applying dominated convergence theorem again, we show that the above term is o(1)o(1) as nn\rightarrow\infty.

Similarly, the second term in the decomposition of (D.10) is o(1)o(1) as nn\rightarrow\infty.

Lastly, we bound the third term. By using Theorem C.2(ii) again, the third term in the decomposition of (D.10) is bounded by

Cp,q=0md𝒋1,𝒌1,𝒋2,𝒌2d|h𝒋1||h𝒌1||h𝒋2||h𝒌2|BM2𝑑𝒕1𝑑𝒕2|ϕ^M(𝒕1)||ϕ^M(𝒕2)|ρ((𝒌1+1)𝒕1/𝑨)1/2\displaystyle C\sum_{p,q=0}^{m_{d}}\sum_{\boldsymbol{j}_{1},\boldsymbol{k}_{1},\boldsymbol{j}_{2},\boldsymbol{k}_{2}\in\mathbb{Z}^{d}}|h_{\boldsymbol{j}_{1}}||h_{\boldsymbol{k}_{1}}||h_{\boldsymbol{j}_{2}}||h_{\boldsymbol{k}_{2}}|\int_{B_{M}^{2}}d\boldsymbol{t}_{1}d\boldsymbol{t}_{2}|\widehat{\phi}_{M}(\boldsymbol{t}_{1})||\widehat{\phi}_{M}(-\boldsymbol{t}_{2})|\rho\left((\|\boldsymbol{k}_{1}\|+1)\|\boldsymbol{t}_{1}/\boldsymbol{A}\|\right)^{1/2}
×ρ((𝒌2+1)𝒕2/𝑨)1/22d|f~(𝝎1)||f~(𝝎2)||cDn,p(𝒕1)(2π(𝒋1+𝒌1)/𝑨(𝝎1+𝝎2))|\displaystyle~{}~{}\times\rho\left((\|\boldsymbol{k}_{2}\|+1)\|\boldsymbol{t}_{2}/\boldsymbol{A}\|\right)^{1/2}\int_{\mathbb{R}^{2d}}|\widetilde{f}(\boldsymbol{\omega}_{1})||\widetilde{f}(\boldsymbol{\omega}_{2})||c_{D_{n,p}(\boldsymbol{t}_{1})}(-2\pi(\boldsymbol{j}_{1}+\boldsymbol{k}_{1})/\boldsymbol{A}-(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2}))|
×|cDn,q(𝒕2)(2π(𝒋2+𝒌2)/𝑨+(𝝎1+𝝎2))|d𝝎1d𝝎2.\displaystyle~{}~{}\times|c_{D_{n,q}(\boldsymbol{t}_{2})}(-2\pi(\boldsymbol{j}_{2}+\boldsymbol{k}_{2})/\boldsymbol{A}+(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2}))|d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}.

By using Lemma C.3(d) and f~L1(d)\widetilde{f}\in L^{1}(\mathbb{R}^{d}), the integral 2d()𝑑𝝎1𝑑𝝎2\int_{\mathbb{R}^{2d}}(\cdots)d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2} is bounded above and the upper bound is depends only on f~\widetilde{f}. Therefore, the above is bounded by

C(md+1)2(𝒋d|h𝒋|)2(𝒌d|h𝒌|BM|ϕ^M(𝒕)|ρ((𝒌+1)𝒕/𝑨)1/2𝑑𝒕)2.C(m_{d}+1)^{2}\left(\sum_{\boldsymbol{j}\in\mathbb{Z}^{d}}|h_{\boldsymbol{j}}|\right)^{2}\left(\sum_{\boldsymbol{k}\in\mathbb{Z}^{d}}|h_{\boldsymbol{k}}|\int_{B_{M}}|\widehat{\phi}_{M}(\boldsymbol{t})|\rho\left((\|\boldsymbol{k}\|+1)\|\boldsymbol{t}/\boldsymbol{A}\|\right)^{1/2}d\boldsymbol{t}\right)^{2}.

By using a similar dominated convergence argument above, the third term is o(1)o(1) as nn\rightarrow\infty.

All together, we show prove the lemma. \Box

Now, we are ready to compute the limit of A1A_{1} in Section A.3. Recall

A1=|Dn|2dϕM(𝝎1)ϕM(𝝎2)cov(Jh,n(𝝎1),Jh,n(𝝎2))cov(Jh,n(𝝎1),Jh,n(𝝎2))𝑑𝝎1𝑑𝝎2.A_{1}=|D_{n}|\int_{\mathbb{R}^{2d}}\phi_{M}(\boldsymbol{\omega}_{1})\phi_{M}(\boldsymbol{\omega}_{2})\mathrm{cov}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2}))\mathrm{cov}(J_{h,n}(-\boldsymbol{\omega}_{1}),J_{h,n}(-\boldsymbol{\omega}_{2}))d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}.
Theorem D.3.

Suppose the same set of assumptions in Theorem 4.1(ii) holds. Then,

limnA1=(2π)d(Hh,4/Hh,22)df(𝝎)2ϕM(𝝎)2𝑑𝝎.\lim_{n\rightarrow\infty}A_{1}=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})\int_{\mathbb{R}^{d}}f(\boldsymbol{\omega})^{2}\phi_{M}(\boldsymbol{\omega})^{2}d\boldsymbol{\omega}.

Proof. First, by using (D.2), we have

A1\displaystyle A_{1} =\displaystyle= (2π)2dHh,22|Dn|12d𝑑𝝎1𝑑𝝎2ϕM(𝝎1)ϕM(𝝎2)Dn2𝑑𝒙𝑑𝒚h(𝒙/𝑨)h(𝒚/𝑨)\displaystyle(2\pi)^{-2d}H_{h,2}^{-2}|D_{n}|^{-1}\int_{\mathbb{R}^{2d}}d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}\phi_{M}(\boldsymbol{\omega}_{1})\phi_{M}(\boldsymbol{\omega}_{2})\int_{D_{n}^{2}}d\boldsymbol{x}d\boldsymbol{y}h(\boldsymbol{x}/\boldsymbol{A})h(\boldsymbol{y}/\boldsymbol{A})
×ei(𝒙𝝎1𝒚𝝎2)C(𝒙𝒚)Dn2𝑑𝒖𝑑𝒗h(𝒖/𝑨)h(𝒗/𝑨)ei(𝒖𝝎1𝒗𝝎2)C(𝒖𝒗).\displaystyle\times e^{-i(\boldsymbol{x}^{\top}\boldsymbol{\omega}_{1}-\boldsymbol{y}^{\top}\boldsymbol{\omega}_{2})}C(\boldsymbol{x}-\boldsymbol{y})\int_{D_{n}^{2}}d\boldsymbol{u}d\boldsymbol{v}h(\boldsymbol{u}/\boldsymbol{A})h(\boldsymbol{v}/\boldsymbol{A})e^{i(\boldsymbol{u}^{\top}\boldsymbol{\omega}_{1}-\boldsymbol{v}^{\top}\boldsymbol{\omega}_{2})}C(\boldsymbol{u}-\boldsymbol{v}).

By using Cauchy-Schwarz inequality, the above is absolutely integrable, thus, we can interchange the summations and get

A1\displaystyle A_{1} =\displaystyle= (2π)2dHh,22|Dn|1Dn2𝑑𝒙𝑑𝒚h(𝒙/𝑨)h(𝒚/𝑨)C(𝒙𝒚)Dn2𝑑𝒖𝑑𝒗h(𝒖/𝑨)h(𝒗/𝑨)C(𝒖𝒗)\displaystyle(2\pi)^{-2d}H_{h,2}^{-2}|D_{n}|^{-1}\int_{D_{n}^{2}}d\boldsymbol{x}d\boldsymbol{y}h(\boldsymbol{x}/\boldsymbol{A})h(\boldsymbol{y}/\boldsymbol{A})C(\boldsymbol{x}-\boldsymbol{y})\int_{D_{n}^{2}}d\boldsymbol{u}d\boldsymbol{v}h(\boldsymbol{u}/\boldsymbol{A})h(\boldsymbol{v}/\boldsymbol{A})C(\boldsymbol{u}-\boldsymbol{v})
×dϕM(𝝎1)ei(𝒖𝒙)𝝎1d𝝎1dϕM(𝝎2)ei(𝒚𝒗)𝝎2d𝝎2\displaystyle\times\int_{\mathbb{R}^{d}}\phi_{M}(\boldsymbol{\omega}_{1})e^{i(\boldsymbol{u}-\boldsymbol{x})^{\top}\boldsymbol{\omega}_{1}}d\boldsymbol{\omega}_{1}\int_{\mathbb{R}^{d}}\phi_{M}(\boldsymbol{\omega}_{2})e^{i(\boldsymbol{y}-\boldsymbol{v})^{\top}\boldsymbol{\omega}_{2}}d\boldsymbol{\omega}_{2}
=\displaystyle= (2π)2dHh,22|Dn|1Dn4h(𝒙/𝑨)h(𝒚/𝑨)h(𝒖/𝑨)h(𝒗/𝑨)\displaystyle(2\pi)^{-2d}H_{h,2}^{-2}|D_{n}|^{-1}\int_{D_{n}^{4}}h(\boldsymbol{x}/\boldsymbol{A})h(\boldsymbol{y}/\boldsymbol{A})h(\boldsymbol{u}/\boldsymbol{A})h(\boldsymbol{v}/\boldsymbol{A})
×C(𝒙𝒚)C(𝒖𝒗)ϕ^M(𝒖𝒙)ϕ^M(𝒚𝒗)d𝒙d𝒚d𝒖d𝒗\displaystyle\times C(\boldsymbol{x}-\boldsymbol{y})C(\boldsymbol{u}-\boldsymbol{v})\widehat{\phi}_{M}(\boldsymbol{u}-\boldsymbol{x})\widehat{\phi}_{M}(\boldsymbol{y}-\boldsymbol{v})d\boldsymbol{x}d\boldsymbol{y}d\boldsymbol{u}d\boldsymbol{v}
=\displaystyle= (2π)2dHh,22DnDnDnDnϕ^M(𝒕1)ϕ^M(𝒕2)Tn(𝒕1,𝒕2)𝑑𝒕1𝑑𝒕2,\displaystyle(2\pi)^{-2d}H_{h,2}^{-2}\int_{D_{n}-D_{n}}\int_{D_{n}-D_{n}}\widehat{\phi}_{M}(\boldsymbol{t}_{1})\widehat{\phi}_{M}(-\boldsymbol{t}_{2})T_{n}(\boldsymbol{t}_{1},\boldsymbol{t}_{2})d\boldsymbol{t}_{1}d\boldsymbol{t}_{2},

where Tn(𝒕1,𝒕2)T_{n}(\boldsymbol{t}_{1},\boldsymbol{t}_{2}) is from (D.6). In the above, we use an inverse transform of (A.4) in the second identity and the change of variables 𝒕1=𝒖𝒙\boldsymbol{t}_{1}=\boldsymbol{u}-\boldsymbol{x} and 𝒕2=𝒗𝒚\boldsymbol{t}_{2}=\boldsymbol{v}-\boldsymbol{y} in the last identity.

Next, recall f~\widetilde{f} in (D.7). Then, by Assumption 4.1(i), f~L1(d)\widetilde{f}\in L^{1}(\mathbb{R}^{d}) and has the Fourier representation as in (4.4). We note that BMDnDnB_{M}\subset D_{n}-D_{n} for large enough nn\in\mathbb{N} due to Assumption 3.1. Thus, by using this fact together with Lemma D.2, for large enough nn\in\mathbb{N}, we have A1=A11+2A12+A13A_{1}=A_{11}+2A_{12}+A_{13}, where

A11\displaystyle A_{11} =\displaystyle= (2π)2dHh,22λ2BM2ϕ^M(𝒕1)ϕ^M(𝒕2)δ(𝒕1𝒕2)(Hh,4+O(|Dn|1/d)𝒕2)𝑑𝒕1𝑑𝒕2,\displaystyle(2\pi)^{-2d}H_{h,2}^{-2}\lambda^{2}\int_{B_{M}^{2}}\widehat{\phi}_{M}(\boldsymbol{t}_{1})\widehat{\phi}_{M}(-\boldsymbol{t}_{2})\delta(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})\left(H_{h,4}+O(|D_{n}|^{-1/d})\|\boldsymbol{t}_{2}\|\right)d\boldsymbol{t}_{1}d\boldsymbol{t}_{2},
A12\displaystyle A_{12} =\displaystyle= (2π)2dHh,22λBM2ϕ^M(𝒕1)ϕ^M(𝒕2)γ2,red(𝒕1𝒕2)[Hh,4+O(|Dn|1/d)(𝒕1+𝒕2)]𝑑𝒕1𝑑𝒕2,\displaystyle(2\pi)^{-2d}H_{h,2}^{-2}\lambda\int_{B_{M}^{2}}\widehat{\phi}_{M}(\boldsymbol{t}_{1})\widehat{\phi}_{M}(-\boldsymbol{t}_{2})\gamma_{2,\emph{red}}(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})\left[H_{h,4}+O(|D_{n}|^{-1/d})(\|\boldsymbol{t}_{1}\|+\|\boldsymbol{t}_{2}\|)\right]d\boldsymbol{t}_{1}d\boldsymbol{t}_{2},

as nn\rightarrow\infty, and

A13\displaystyle A_{13} =\displaystyle= (2π)2dHh,22BM2ϕ^M(𝒕1)ϕ^M(𝒕2)2dei(𝒕1𝒕2)𝝎2f~(𝝎1)f~(𝝎2)\displaystyle(2\pi)^{-2d}H_{h,2}^{-2}\int_{B_{M}^{2}}\widehat{\phi}_{M}(\boldsymbol{t}_{1})\widehat{\phi}_{M}(-\boldsymbol{t}_{2})\int_{\mathbb{R}^{2d}}e^{i(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})^{\top}\boldsymbol{\omega}_{2}}\widetilde{f}(\boldsymbol{\omega}_{1})\widetilde{f}(\boldsymbol{\omega}_{2})
×((2π)dHh,4Fh2,n(𝝎1+𝝎2)+|Dn|1Rn(𝝎1,𝝎2,𝒕1,𝒕2))d𝝎1d𝝎2d𝒕1d𝒕2,n,\displaystyle~{}~{}\times\left((2\pi)^{d}H_{h,4}F_{h^{2},n}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})+|D_{n}|^{-1}R_{n}(\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2},\boldsymbol{t}_{1},\boldsymbol{t}_{2})\right)d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}d\boldsymbol{t}_{1}d\boldsymbol{t}_{2},\quad n\rightarrow\infty,

where Fh2,nF_{h^{2},n} is Fejér kernel based on h2h^{2} defined as in (D.9) and Rn(𝝎1,𝝎2,𝒕1,𝒕2)R_{n}(\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2},\boldsymbol{t}_{1},\boldsymbol{t}_{2}) is the remainder term defined as in (D.8).

We bound each term above. The first term is

A11\displaystyle A_{11} =(Hh,4/Hh,22)R2BM|ϕ^M(𝒕1)|2𝑑𝒕1+O(|Dn|1/d)\displaystyle=(H_{h,4}/H_{h,2}^{2})R^{2}\int_{B_{M}}|\widehat{\phi}_{M}(\boldsymbol{t}_{1})|^{2}d\boldsymbol{t}_{1}+O(|D_{n}|^{-1/d}) (D.11)
=(2π)d(Hh,4/Hh,22)R2d|ϕM(𝝎)|2𝑑𝝎+o(1),n,\displaystyle=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})R^{2}\int_{\mathbb{R}^{d}}|\phi_{M}(\boldsymbol{\omega})|^{2}d\boldsymbol{\omega}+o(1),\quad n\rightarrow\infty,

where R=(2π)dλR=(2\pi)^{-d}\lambda. Here, the last identity is due to Plancherel theorem. By using (4.4) and (A.4) together with Fubini’s theorem, the second term is

A12\displaystyle A_{12} (D.12)
=(2π)d(Hh,4/Hh,22)RBM2ϕ^M(𝒕1)ϕ^M(𝒕2)df~(𝝎)ei𝝎(𝒕1𝒕2)𝑑𝝎𝑑𝒕1𝑑𝒕2+O(|Dn|1/d)\displaystyle=(2\pi)^{-d}(H_{h,4}/H_{h,2}^{2})R\int_{B_{M}^{2}}\widehat{\phi}_{M}(\boldsymbol{t}_{1})\widehat{\phi}_{M}(-\boldsymbol{t}_{2})\int_{\mathbb{R}^{d}}\widetilde{f}(\boldsymbol{\omega})e^{i\boldsymbol{\omega}^{\top}(\boldsymbol{t}_{1}-\boldsymbol{t}_{2})}d\boldsymbol{\omega}d\boldsymbol{t}_{1}d\boldsymbol{t}_{2}+O(|D_{n}|^{-1/d})
=(2π)d(Hh,4/Hh,22)Rdf~(𝝎)(BMϕ^M(𝒕2)ei𝝎𝒕2𝑑𝒕2)(BMϕ^M(𝒕1)ei𝝎𝒕1𝑑𝒕1)𝑑𝝎+o(1)\displaystyle=(2\pi)^{-d}(H_{h,4}/H_{h,2}^{2})R\int_{\mathbb{R}^{d}}\widetilde{f}(\boldsymbol{\omega})\left(\int_{B_{M}}\widehat{\phi}_{M}(-\boldsymbol{t}_{2})e^{-i\boldsymbol{\omega}^{\top}\boldsymbol{t}_{2}}d\boldsymbol{t}_{2}\right)\left(\int_{B_{M}}\widehat{\phi}_{M}(\boldsymbol{t}_{1})e^{i\boldsymbol{\omega}^{\top}\boldsymbol{t}_{1}}d\boldsymbol{t}_{1}\right)d\boldsymbol{\omega}+o(1)
=(2π)d(Hh,4/Hh,22)Rdf~(𝝎)ϕM(𝝎)2𝑑𝝎+o(1),n.\displaystyle=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})R\int_{\mathbb{R}^{d}}\widetilde{f}(\boldsymbol{\omega})\phi_{M}(\boldsymbol{\omega})^{2}d\boldsymbol{\omega}+o(1),\quad n\rightarrow\infty.

Finally, by using Fubini’s theorem and Lemmas C.3(b) and D.3, the third term is

A13\displaystyle A_{13} =(2π)d(Hh,4/Hh,22)2d𝑑𝝎1𝑑𝝎2f~(𝝎1)f~(𝝎2)Fh2,n(𝝎1+𝝎2)\displaystyle=(2\pi)^{-d}(H_{h,4}/H_{h,2}^{2})\int_{\mathbb{R}^{2d}}d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}\widetilde{f}(\boldsymbol{\omega}_{1})\widetilde{f}(\boldsymbol{\omega}_{2})F_{h^{2},n}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2}) (D.13)
×BMϕ^M(𝒕1)ei𝒕1𝝎2d𝒕1BMϕ^M(𝒕2)ei𝒕2𝝎2d𝒕2+o(1)\displaystyle~{}~{}\times\int_{B_{M}}\widehat{\phi}_{M}(\boldsymbol{t}_{1})e^{i\boldsymbol{t}_{1}^{\top}\boldsymbol{\omega}_{2}}d\boldsymbol{t}_{1}\int_{B_{M}}\widehat{\phi}_{M}(-\boldsymbol{t}_{2})e^{-i\boldsymbol{t}_{2}^{\top}\boldsymbol{\omega}_{2}}d\boldsymbol{t}_{2}+o(1)
=(2π)d(Hh,4/Hh,22)df~(𝝎2)ϕM(𝝎2)2df~(𝝎1)Fh2,n(𝝎1+𝝎2)𝑑𝝎1𝑑𝝎2+o(1)\displaystyle=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})\int_{\mathbb{R}^{d}}\widetilde{f}(\boldsymbol{\omega}_{2})\phi_{M}(-\boldsymbol{\omega}_{2})^{2}\int_{\mathbb{R}^{d}}\widetilde{f}(\boldsymbol{\omega}_{1})F_{h^{2},n}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}+o(1)
=(2π)d(Hh,4/Hh,22)df~(𝝎2)2ϕM(𝝎2)2𝑑𝝎2+o(1),n.\displaystyle=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})\int_{\mathbb{R}^{d}}\widetilde{f}(\boldsymbol{\omega}_{2})^{2}\phi_{M}(\boldsymbol{\omega}_{2})^{2}d\boldsymbol{\omega}_{2}+o(1),\qquad n\rightarrow\infty.

Combining (D.11)–(D.13), we conclude

limnA1\displaystyle\lim_{n\rightarrow\infty}A_{1} =\displaystyle= (2π)d(Hh,4/Hh,22)d(f~(𝝎)2+2Rf~(𝝎)+R2)ϕM(𝝎)2𝑑𝝎\displaystyle(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})\int_{\mathbb{R}^{d}}\left(\widetilde{f}(\boldsymbol{\omega})^{2}+2R\widetilde{f}(\boldsymbol{\omega})+R^{2}\right)\phi_{M}(\boldsymbol{\omega})^{2}d\boldsymbol{\omega}
=\displaystyle= (2π)d(Hh,4/Hh,22)df(𝝎)2ϕM(𝝎)2𝑑𝝎.\displaystyle(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})\int_{\mathbb{R}^{d}}f(\boldsymbol{\omega})^{2}\phi_{M}(\boldsymbol{\omega})^{2}d\boldsymbol{\omega}.

Thus, we prove the theorem. \Box

D.3 Bounds on the terms involving higher order cumulants

We give an expression of the complete fourth-order cumulant of the DFTs. Through a simple combinatorial argument, the fourth-order complete reduced cumulant, denoted κ4,red(𝒙,𝒚,𝒛)\kappa_{4,\text{red}}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}), can be written as a sum of the 15 different reduced cumulant functions:

κ4,red(𝒙,𝒚,𝒛)\displaystyle\kappa_{4,\text{red}}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) =γ4,red(𝒙,𝒚,𝒛)+[γ3,red(𝒙,𝒛)δ(𝒙𝒚)+γ3,red(𝒙,𝒚)δ(𝒙𝒛)\displaystyle=\gamma_{4,\text{red}}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})+\bigg{[}\gamma_{3,\text{red}}(\boldsymbol{x},\boldsymbol{z})\delta(\boldsymbol{x}-\boldsymbol{y})+\gamma_{3,\text{red}}(\boldsymbol{x},\boldsymbol{y})\delta(\boldsymbol{x}-\boldsymbol{z}) (D.14)
+γ3,red(𝒙,𝒚)δ(𝒚𝒛)+γ3,red(𝒙𝒛,𝒚𝒛){δ(𝒙)+δ(𝒚)+δ(𝒛)}]\displaystyle\qquad\qquad+\gamma_{3,\text{red}}(\boldsymbol{x},\boldsymbol{y})\delta(\boldsymbol{y}-\boldsymbol{z})+\gamma_{3,\text{red}}(\boldsymbol{x}-\boldsymbol{z},\boldsymbol{y}-\boldsymbol{z})\left\{\delta(\boldsymbol{x})+\delta(\boldsymbol{y})+\delta(\boldsymbol{z})\right\}\bigg{]}
+[γ2,red(𝒙)(δ(𝒚)δ(𝒛)+δ(𝒙𝒚)δ(𝒙𝒛)+δ(𝒙𝒚)δ(𝒛)+δ(𝒙𝒛)δ(𝒚))\displaystyle+\bigg{[}\gamma_{2,\text{red}}(\boldsymbol{x})\left(\delta(\boldsymbol{y})\delta(\boldsymbol{z})+\delta(\boldsymbol{x}-\boldsymbol{y})\delta(\boldsymbol{x}-\boldsymbol{z})+\delta(\boldsymbol{x}-\boldsymbol{y})\delta(\boldsymbol{z})+\delta(\boldsymbol{x}-\boldsymbol{z})\delta(\boldsymbol{y})\right)
+γ2,red(𝒚)(δ(𝒙)δ(𝒛)+δ(𝒙)δ(𝒚𝒛))+γ2,red(𝒛)δ(𝒙)δ(𝒚)]\displaystyle\qquad+\gamma_{2,\text{red}}(\boldsymbol{y})\left(\delta(\boldsymbol{x})\delta(\boldsymbol{z})+\delta(\boldsymbol{x})\delta(\boldsymbol{y}-\boldsymbol{z})\right)+\gamma_{2,\text{red}}(\boldsymbol{z})\delta(\boldsymbol{x})\delta(\boldsymbol{y})\bigg{]}
+λδ(𝒙)δ(𝒚)δ(𝒛),𝒙,𝒚,𝒛d.\displaystyle+\lambda\delta(\boldsymbol{x})\delta(\boldsymbol{y})\delta(\boldsymbol{z}),\qquad\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}\in\mathbb{R}^{d}.
Lemma D.4.

Let XX be a fourth-order stationary point process on d\mathbb{R}^{d} and let κ4\kappa_{4} be the fourth-order complete cumulant density function defined as in (D.14). Suppose that Assumption 3.2 holds for =4\ell=4. Then, for 𝛚1,,𝛚4d\boldsymbol{\omega}_{1},\dots,\boldsymbol{\omega}_{4}\in\mathbb{R}^{d},

cum(Jh,n(𝝎1),Jh,n(𝝎2),Jh,n(𝝎3),Jh,n(𝝎4))=(2π)2dHh,22|Dn|2\displaystyle\mathrm{cum}\left(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2}),J_{h,n}(\boldsymbol{\omega}_{3}),J_{h,n}(\boldsymbol{\omega}_{4})\right)=(2\pi)^{-2d}H_{h,2}^{-2}|D_{n}|^{-2}
×Dn4(j=14h(𝒕j/𝑨))exp(ij=14𝒕j𝝎j)κ4(𝒕1𝒕4,𝒕2𝒕4,𝒕3𝒕4)j=14d𝒕j.\displaystyle~{}~{}\times\int_{D_{n}^{4}}\left(\prod_{j=1}^{4}h(\boldsymbol{t}_{j}/\boldsymbol{A})\right)\exp(-i\sum_{j=1}^{4}\boldsymbol{t}_{j}^{\top}\boldsymbol{\omega}_{j})\kappa_{4}(\boldsymbol{t}_{1}-\boldsymbol{t}_{4},\boldsymbol{t}_{2}-\boldsymbol{t}_{4},\boldsymbol{t}_{3}-\boldsymbol{t}_{4})\prod_{j=1}^{4}d\boldsymbol{t}_{j}.

Proof. The proof is similar to that of the proof of Theorem D.1. We omit the details. \Box

Using the above expression, we calculate the limit of A3A_{3} in Section A.3. Recall

A3=|Dn|2dϕM(𝝎1)ϕM(𝝎2)cum(Jh,n(𝝎1),Jh,n(𝝎1),Jh,n(𝝎2),Jh,n(𝝎2))𝑑𝝎1𝑑𝝎2.A_{3}=|D_{n}|\int_{\mathbb{R}^{2d}}\phi_{M}(\boldsymbol{\omega}_{1})\phi_{M}(\boldsymbol{\omega}_{2})\mathrm{cum}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(-\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2}),J_{h,n}(-\boldsymbol{\omega}_{2}))d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}.
Theorem D.4.

Suppose the same set of assumptions in Theorem 4.1(ii) holds. Then,

limnA3=(2π)d(Hh,4/Hh,22)2dϕM(𝝀1)ϕM(𝝀3)f4(𝝀1,𝝀1,𝝀3)𝑑𝝀1𝑑𝝀3,\lim_{n\rightarrow\infty}A_{3}=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})\int_{\mathbb{R}^{2d}}\phi_{M}(\boldsymbol{\lambda}_{1})\phi_{M}(\boldsymbol{\lambda}_{3})f_{4}(\boldsymbol{\lambda}_{1},-\boldsymbol{\lambda}_{1},\boldsymbol{\lambda}_{3})d\boldsymbol{\lambda}_{1}d\boldsymbol{\lambda}_{3},

where f4f_{4} is the fourth-order spectrum.

Proof. By using Lemma D.4 and Fubini’s theorem, A3A_{3} can be written as

A3\displaystyle A_{3} =\displaystyle= (2π)2dHh,22|Dn|1Dn4(j=14h(𝒕j/𝑨))κ4,red(𝒕1𝒕4,𝒕2𝒕4,𝒕3𝒕4)\displaystyle(2\pi)^{-2d}H_{h,2}^{-2}|D_{n}|^{-1}\int_{D_{n}^{4}}\left(\prod_{j=1}^{4}h(\boldsymbol{t}_{j}/\boldsymbol{A})\right)\kappa_{4,\text{red}}(\boldsymbol{t}_{1}-\boldsymbol{t}_{4},\boldsymbol{t}_{2}-\boldsymbol{t}_{4},\boldsymbol{t}_{3}-\boldsymbol{t}_{4})
×(dϕM(𝝎1)ei(𝒕2𝒕1)𝝎1𝑑𝝎1)(dϕM(𝝎2)ei(𝒕4𝒕3)𝝎2𝑑𝝎2)d𝒕1d𝒕2d𝒕3d𝒕4\displaystyle\times\left(\int_{\mathbb{R}^{d}}\phi_{M}(\boldsymbol{\omega}_{1})e^{i(\boldsymbol{t}_{2}-\boldsymbol{t}_{1})^{\top}\boldsymbol{\omega}_{1}}d\boldsymbol{\omega}_{1}\right)\left(\int_{\mathbb{R}^{d}}\phi_{M}(\boldsymbol{\omega}_{2})e^{i(\boldsymbol{t}_{4}-\boldsymbol{t}_{3})^{\top}\boldsymbol{\omega}_{2}}d\boldsymbol{\omega}_{2}\right)d\boldsymbol{t}_{1}d\boldsymbol{t}_{2}d\boldsymbol{t}_{3}d\boldsymbol{t}_{4}
=\displaystyle= (2π)2dHh,22|Dn|1Dn4(j=14h(𝒕j/𝑨))κ4,red(𝒕1𝒕4,𝒕2𝒕4,𝒕3𝒕4)\displaystyle(2\pi)^{-2d}H_{h,2}^{-2}|D_{n}|^{-1}\int_{D_{n}^{4}}\left(\prod_{j=1}^{4}h(\boldsymbol{t}_{j}/\boldsymbol{A})\right)\kappa_{4,\text{red}}(\boldsymbol{t}_{1}-\boldsymbol{t}_{4},\boldsymbol{t}_{2}-\boldsymbol{t}_{4},\boldsymbol{t}_{3}-\boldsymbol{t}_{4})
×ϕ^M(𝒕2𝒕1)ϕ^M(𝒕4𝒕3)d𝒕1d𝒕2d𝒕3d𝒕4.\displaystyle~{}~{}\times\widehat{\phi}_{M}(\boldsymbol{t}_{2}-\boldsymbol{t}_{1})\widehat{\phi}_{M}(\boldsymbol{t}_{4}-\boldsymbol{t}_{3})d\boldsymbol{t}_{1}d\boldsymbol{t}_{2}d\boldsymbol{t}_{3}d\boldsymbol{t}_{4}.

Let κ~4,red(𝒙,𝒚,𝒛)=κ4,red(𝒙,𝒚,𝒛)λδ(𝒙)δ(𝒚)δ(𝒛)\widetilde{\kappa}_{4,\text{red}}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})=\kappa_{4,\text{red}}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})-\lambda\delta(\boldsymbol{x})\delta(\boldsymbol{y})\delta(\boldsymbol{z}). Then, from (D.14) and (4.3), the inverse Fourier transform of κ~4,red\widetilde{\kappa}_{4,\text{red}} is f~4(𝒙,𝒚,𝒛)=f4(𝒙,𝒚,𝒛)(2π)3dλ\widetilde{f}_{4}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})=f_{4}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})-(2\pi)^{-3d}\lambda. By using a similar decomposition as in Lemma D.2, we have A3=A31+A32A_{3}=A_{31}+A_{32}, where

A31\displaystyle A_{31} =\displaystyle= (2π)2dHh,22|Dn|1λDn4(j=14h(𝒕j/𝑨))δ(𝒕1𝒕4)δ(𝒕2𝒕4)δ(𝒕3𝒕4)\displaystyle(2\pi)^{-2d}H_{h,2}^{-2}|D_{n}|^{-1}\lambda\int_{D_{n}^{4}}\left(\prod_{j=1}^{4}h(\boldsymbol{t}_{j}/\boldsymbol{A})\right)\delta(\boldsymbol{t}_{1}-\boldsymbol{t}_{4})\delta(\boldsymbol{t}_{2}-\boldsymbol{t}_{4})\delta(\boldsymbol{t}_{3}-\boldsymbol{t}_{4})
×ϕ^M(𝒕2𝒕1)ϕ^M(𝒕4𝒕3)d𝒕1d𝒕2d𝒕3d𝒕4\displaystyle~{}~{}\times\widehat{\phi}_{M}(\boldsymbol{t}_{2}-\boldsymbol{t}_{1})\widehat{\phi}_{M}(\boldsymbol{t}_{4}-\boldsymbol{t}_{3})d\boldsymbol{t}_{1}d\boldsymbol{t}_{2}d\boldsymbol{t}_{3}d\boldsymbol{t}_{4}
=\displaystyle= (2π)2dHh,22|Dn|1λϕ^M(0)2Dnh(𝒕/𝑨)4𝑑𝒕=(2π)2d(Hh,4/Hh,22)λϕ^M(0)2\displaystyle(2\pi)^{-2d}H_{h,2}^{-2}|D_{n}|^{-1}\lambda\widehat{\phi}_{M}(\textbf{0})^{2}\int_{D_{n}}h(\boldsymbol{t}/\boldsymbol{A})^{4}d\boldsymbol{t}=(2\pi)^{-2d}(H_{h,4}/H_{h,2}^{2})\lambda\widehat{\phi}_{M}(\textbf{0})^{2}

and

A32\displaystyle A_{32} =\displaystyle= (2π)2dHh,22|Dn|1Dn4(j=14h(𝒕j/𝑨))κ~4,red(𝒕1𝒕4,𝒕2𝒕4,𝒕3𝒕4)\displaystyle(2\pi)^{-2d}H_{h,2}^{-2}|D_{n}|^{-1}\int_{D_{n}^{4}}\left(\prod_{j=1}^{4}h(\boldsymbol{t}_{j}/\boldsymbol{A})\right)\widetilde{\kappa}_{4,\text{red}}(\boldsymbol{t}_{1}-\boldsymbol{t}_{4},\boldsymbol{t}_{2}-\boldsymbol{t}_{4},\boldsymbol{t}_{3}-\boldsymbol{t}_{4})
×ϕ^M(𝒕2𝒕1)ϕ^M(𝒕4𝒕3)d𝒕1d𝒕2d𝒕3d𝒕4\displaystyle~{}~{}\times\widehat{\phi}_{M}(\boldsymbol{t}_{2}-\boldsymbol{t}_{1})\widehat{\phi}_{M}(\boldsymbol{t}_{4}-\boldsymbol{t}_{3})d\boldsymbol{t}_{1}d\boldsymbol{t}_{2}d\boldsymbol{t}_{3}d\boldsymbol{t}_{4}
=\displaystyle= (2π)2dHh,22|Dn|1DnDnDnDn𝑑𝒖𝑑𝒗ϕ^M(𝒖)ϕ^M(𝒗)2dh(𝒕1/𝑨)h((𝒕1+𝒖)/𝑨)\displaystyle(2\pi)^{-2d}H_{h,2}^{-2}|D_{n}|^{-1}\int_{D_{n}-D_{n}}\int_{D_{n}-D_{n}}d\boldsymbol{u}d\boldsymbol{v}\widehat{\phi}_{M}(\boldsymbol{u})\widehat{\phi}_{M}(\boldsymbol{v})\int_{\mathbb{R}^{2d}}h(\boldsymbol{t}_{1}/\boldsymbol{A})h((\boldsymbol{t}_{1}+\boldsymbol{u})/\boldsymbol{A})
×h(𝒕3/𝑨)h((𝒕3+𝒗)/𝑨)κ~4,red(𝒕1𝒕3𝒗,𝒕1𝒕3+𝒖𝒗,𝒗)d𝒕1d𝒕3.\displaystyle~{}~{}\times h(\boldsymbol{t}_{3}/\boldsymbol{A})h((\boldsymbol{t}_{3}+\boldsymbol{v})/\boldsymbol{A})\widetilde{\kappa}_{4,\text{red}}(\boldsymbol{t}_{1}-\boldsymbol{t}_{3}-\boldsymbol{v},\boldsymbol{t}_{1}-\boldsymbol{t}_{3}+\boldsymbol{u}-\boldsymbol{v},-\boldsymbol{v})d\boldsymbol{t}_{1}d\boldsymbol{t}_{3}.

Here, we use change of variables 𝒖=𝒕2𝒕1\boldsymbol{u}=\boldsymbol{t}_{2}-\boldsymbol{t}_{1} and 𝒗=𝒕4𝒕3\boldsymbol{v}=\boldsymbol{t}_{4}-\boldsymbol{t}_{3} in the second identity above. To obtain an expression of A31A_{31}, by using (A.3), ϕ^M(0)2=ϕ^(0)2=D2ϕ(𝝎1)ϕ(𝝎2)𝑑𝝎1𝑑𝝎2\widehat{\phi}_{M}(\textbf{0})^{2}=\widehat{\phi}(\textbf{0})^{2}=\int_{D^{2}}\phi(\boldsymbol{\omega}_{1})\phi(\boldsymbol{\omega}_{2})d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}. Therefore,

A31=(2π)2d(Hh,4/Hh,22)λD2ϕ(𝝎1)ϕ(𝝎2)𝑑𝝎1𝑑𝝎2.A_{31}=(2\pi)^{-2d}(H_{h,4}/H_{h,2}^{2})\lambda\int_{D^{2}}\phi(\boldsymbol{\omega}_{1})\phi(\boldsymbol{\omega}_{2})d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}. (D.15)

Obtaining an expression for limnA32\lim_{n\rightarrow\infty}A_{32} is similar to that in deriving an expression for limnA13\lim_{n\rightarrow\infty}A_{13} above. By using similar techniques as in Lemmas D.2 and D.3, it can be shown that for large nn\in\mathbb{N},

A32\displaystyle A_{32} =\displaystyle= (2π)d(Hh,4/Hh,22)BM2𝑑𝒖𝑑𝒗ϕ^M(𝒖)ϕ^M(𝒗)3df~4(𝝀1,𝝀2,𝝀3)Fh2,n(𝝀1+𝝀2)\displaystyle(2\pi)^{-d}(H_{h,4}/H_{h,2}^{2})\int_{B_{M}^{2}}d\boldsymbol{u}d\boldsymbol{v}\widehat{\phi}_{M}(\boldsymbol{u})\widehat{\phi}_{M}(\boldsymbol{v})\int_{\mathbb{R}^{3d}}\widetilde{f}_{4}(\boldsymbol{\lambda}_{1},\boldsymbol{\lambda}_{2},\boldsymbol{\lambda}_{3})F_{h^{2},n}(\boldsymbol{\lambda}_{1}+\boldsymbol{\lambda}_{2})
×exp(i(𝝀1𝒗+𝝀2(𝒖𝒗)𝝀3𝒗))d𝝀1d𝝀2d𝝀3+o(1)\displaystyle~{}~{}\times\exp\left(i(-\boldsymbol{\lambda}_{1}^{\top}\boldsymbol{v}+\boldsymbol{\lambda}_{2}^{\top}(\boldsymbol{u}-\boldsymbol{v})-\boldsymbol{\lambda}_{3}^{\top}\boldsymbol{v})\right)d\boldsymbol{\lambda}_{1}d\boldsymbol{\lambda}_{2}d\boldsymbol{\lambda}_{3}+o(1)
=\displaystyle= (2π)d(Hh,4/Hh,22)BM2𝑑𝒖𝑑𝒗ϕ^M(𝒖)ϕ^M(𝒗)2df~4(𝝀1,𝝀1,𝝀3)ei(𝝀1𝒖+𝝀3𝒗)𝑑𝝀1𝑑𝝀3+o(1)\displaystyle(2\pi)^{-d}(H_{h,4}/H_{h,2}^{2})\int_{B_{M}^{2}}d\boldsymbol{u}d\boldsymbol{v}\widehat{\phi}_{M}(\boldsymbol{u})\widehat{\phi}_{M}(\boldsymbol{v})\int_{\mathbb{R}^{2d}}\widetilde{f}_{4}(\boldsymbol{\lambda}_{1},-\boldsymbol{\lambda}_{1},\boldsymbol{\lambda}_{3})e^{-i(\boldsymbol{\lambda}_{1}^{\top}\boldsymbol{u}+\boldsymbol{\lambda}_{3}^{\top}\boldsymbol{v})}d\boldsymbol{\lambda}_{1}d\boldsymbol{\lambda}_{3}+o(1)
=\displaystyle= (2π)d(Hh,4/Hh,22)2df~4(𝝀1,𝝀1,𝝀3)ϕM(𝝀1)ϕM(𝝀3)𝑑𝝀1𝑑𝝀3+o(1),n.\displaystyle(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})\int_{\mathbb{R}^{2d}}\widetilde{f}_{4}(\boldsymbol{\lambda}_{1},-\boldsymbol{\lambda}_{1},\boldsymbol{\lambda}_{3})\phi_{M}(\boldsymbol{\lambda}_{1})\phi_{M}(\boldsymbol{\lambda}_{3})d\boldsymbol{\lambda}_{1}d\boldsymbol{\lambda}_{3}+o(1),\quad n\rightarrow\infty.

Here, we use Lemma C.3(b) in the second identity and Fubini’s theorem and (A.4) in the last identity. Therefore,

limnA32=(2π)d(Hh,4/Hh,22)2dϕM(𝝀1)ϕM(𝝀3)f~4(𝝀1,𝝀1,𝝀3)𝑑𝝀1𝑑𝝀3.\lim_{n\rightarrow\infty}A_{32}=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})\int_{\mathbb{R}^{2d}}\phi_{M}(\boldsymbol{\lambda}_{1})\phi_{M}(\boldsymbol{\lambda}_{3})\widetilde{f}_{4}(\boldsymbol{\lambda}_{1},-\boldsymbol{\lambda}_{1},\boldsymbol{\lambda}_{3})d\boldsymbol{\lambda}_{1}d\boldsymbol{\lambda}_{3}. (D.16)

Combining (D.15) and (D.16), we have

limnA3=(2π)d(Hh,4/Hh,22)2dϕM(𝝀1)ϕM(𝝀3)f4(𝝀1,𝝀1,𝝀3)𝑑𝝀1𝑑𝝀3.\lim_{n\rightarrow\infty}A_{3}=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})\int_{\mathbb{R}^{2d}}\phi_{M}(\boldsymbol{\lambda}_{1})\phi_{M}(\boldsymbol{\lambda}_{3})f_{4}(\boldsymbol{\lambda}_{1},-\boldsymbol{\lambda}_{1},\boldsymbol{\lambda}_{3})d\boldsymbol{\lambda}_{1}d\boldsymbol{\lambda}_{3}.

Thus, we obtain the limit of A3A_{3}. \Box

To end this section, we obtain the bounds for the general higher order cumulant term.

Lemma D.5.

Suppose that Assumptions 3.1 and 3.2 (for some {2,3,}\ell\in\{2,3,\dots\}) hold. Let

𝒵j,n=|Dn|αj𝒙XDngj,n(𝒙),j{1,,},\mathcal{Z}_{j,n}=|D_{n}|^{-\alpha_{j}}\sum_{\boldsymbol{x}\in X\cap D_{n}}g_{j,n}(\boldsymbol{x}),\quad j\in\{1,\dots,\ell\},

where αj[0,)\alpha_{j}\in[0,\infty) and gj,n(𝐱)g_{j,n}(\boldsymbol{x}) is a bounded function on d\mathbb{R}^{d} uniformly in nn\in\mathbb{N} and 𝐱d\boldsymbol{x}\in\mathbb{R}^{d}. Then, we have

|cum(𝒵1,n,,𝒵j,n)|=O(|Dn|k=1jαk+1),j{2,,}.\big{|}\mathrm{cum}(\mathcal{Z}_{1,n},\dots,\mathcal{Z}_{j,n})\big{|}=O(|D_{n}|^{-\sum_{k=1}^{j}\alpha_{k}+1}),\qquad j\in\{2,\dots,\ell\}.

Proof. We will only show the above for (j,)=(4,4)(j,\ell)=(4,4) under fourth-order stationarity. The general cases are treated similarly (see the statement after Assumption 3.2). Let α=k=14αk\alpha=\sum_{k=1}^{4}\alpha_{k}. By generalizing Lemma D.4, we have

cum(𝒵1,n,,𝒵4,n)=|Dn|αDn4j=14gj,n(𝒕j)×κ4,red(𝒕1𝒕4,𝒕2𝒕4,𝒕3𝒕4)d𝒕1d𝒕2d𝒕3d𝒕4,\mathrm{cum}(\mathcal{Z}_{1,n},\dots,\mathcal{Z}_{4,n})=|D_{n}|^{-\alpha}\int_{D_{n}^{4}}\prod_{j=1}^{4}g_{j,n}(\boldsymbol{t}_{j})\times\kappa_{4,\text{red}}(\boldsymbol{t}_{1}-\boldsymbol{t}_{4},\boldsymbol{t}_{2}-\boldsymbol{t}_{4},\boldsymbol{t}_{3}-\boldsymbol{t}_{4})d\boldsymbol{t}_{1}d\boldsymbol{t}_{2}d\boldsymbol{t}_{3}d\boldsymbol{t}_{4},

where κ4,red(,,)\kappa_{4,\text{red}}(\cdot,\cdot,\cdot) is defined as in (D.14). Let supnsup𝒙d|gj,n(𝒙)|<Cj<\sup_{n\in\mathbb{N}}\sup_{\boldsymbol{x}\in\mathbb{R}^{d}}|g_{j,n}(\boldsymbol{x})|<C_{j}<\infty, j{1,2,3,4}j\in\{1,2,3,4\}, and let C=max{C1,,C4}C=\max\{C_{1},\dots,C_{4}\}. Then, we have

|cum(𝒵1,n,,𝒵4,n)|\displaystyle|\mathrm{cum}(\mathcal{Z}_{1,n},\dots,\mathcal{Z}_{4,n})| \displaystyle\leq C4|Dn|αDn4|κ4,red(𝒕1𝒕4,𝒕2𝒕4,𝒕3𝒕4)|𝑑𝒕1𝑑𝒕2𝑑𝒕3𝑑𝒕4\displaystyle C^{4}|D_{n}|^{-\alpha}\int_{D_{n}^{4}}|\kappa_{4,\text{red}}(\boldsymbol{t}_{1}-\boldsymbol{t}_{4},\boldsymbol{t}_{2}-\boldsymbol{t}_{4},\boldsymbol{t}_{3}-\boldsymbol{t}_{4})|d\boldsymbol{t}_{1}d\boldsymbol{t}_{2}d\boldsymbol{t}_{3}d\boldsymbol{t}_{4}
\displaystyle\leq C4|Dn|αDnDn𝒕4Dn𝒕4Dn𝒕4|κ4,red(𝒙,𝒚,𝒛)|𝑑𝒙𝑑𝒚𝑑𝒛𝑑𝒕4\displaystyle C^{4}|D_{n}|^{-\alpha}\int_{D_{n}}\int_{D_{n}-\boldsymbol{t}_{4}}\int_{D_{n}-\boldsymbol{t}_{4}}\int_{D_{n}-\boldsymbol{t}_{4}}|\kappa_{4,\text{red}}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})|d\boldsymbol{x}d\boldsymbol{y}d\boldsymbol{z}d\boldsymbol{t}_{4}
\displaystyle\leq C4|Dn|α(Dn𝑑𝒕4)(3d|κ4,red(𝒙,𝒚,𝒛)|𝑑𝒙𝑑𝒚𝑑𝒛)=O(|Dn|α+1).\displaystyle C^{4}|D_{n}|^{-\alpha}\left(\int_{D_{n}}d\boldsymbol{t}_{4}\right)\left(\int_{\mathbb{R}^{3d}}|\kappa_{4,\text{red}}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})|d\boldsymbol{x}d\boldsymbol{y}d\boldsymbol{z}\right)=O(|D_{n}|^{-\alpha+1}).

Here, we use change of variables 𝒙=𝒕1𝒕4\boldsymbol{x}=\boldsymbol{t}_{1}-\boldsymbol{t}_{4}, 𝒚=𝒕2𝒕4\boldsymbol{y}=\boldsymbol{t}_{2}-\boldsymbol{t}_{4}, and 𝒛=𝒕3𝒕4\boldsymbol{z}=\boldsymbol{t}_{3}-\boldsymbol{t}_{4} in the second inequality, and the last identity is due to absolute integrability of κ4,red(,,)\kappa_{4,\text{red}}(\cdot,\cdot,\cdot) under Assumption 3.2 for =4\ell=4. Thus, we prove the lemma for (j,)=(4,4)(j,\ell)=(4,4) under fourth-order stationarity. \Box

Appendix E Asymptotic equivalence of the periodograms

In this section, we obtain some cumulant bounds that appear in the first and second moments of the different I^h,n(𝝎)Ih,n(𝝎)\widehat{I}_{h,n}(\boldsymbol{\omega})-I_{h,n}(\boldsymbol{\omega}). These bounds are mainly used to prove an asymptotic equivalence between the feasible and infeasible integrated periodograms (see Theorem A.1). However, the results derived in this section may also be of independent interest in periodogram-based methods for spatial point process. Throughout the section, we let C(0,)C\in(0,\infty) be a generic constant that varies line by line. Recall (2.13):

I^h,n(𝝎)Ih,n(𝝎)\displaystyle\widehat{I}_{h,n}(\boldsymbol{\omega})-I_{h,n}(\boldsymbol{\omega}) (E.1)
=(λ^h,nλ)(ch,n(𝝎)Jh,n(𝝎)+ch,n(𝝎)Jh,n(𝝎))+(λ^h,nλ)2|ch,n(𝝎)|2\displaystyle~{}~{}=-(\widehat{\lambda}_{h,n}-\lambda)\left(c_{h,n}(\boldsymbol{\omega})J_{h,n}(-\boldsymbol{\omega})+c_{h,n}(-\boldsymbol{\omega})J_{h,n}(\boldsymbol{\omega})\right)+(\widehat{\lambda}_{h,n}-\lambda)^{2}|c_{h,n}(\boldsymbol{\omega})|^{2}
=R1(𝝎)+R2(𝝎).\displaystyle~{}~{}=R_{1}(\boldsymbol{\omega})+R_{2}(\boldsymbol{\omega}).

In the following lemma, we bound the cumulants that are made of λ^h,n\widehat{\lambda}_{h,n} and

Kh,n(𝝎)=ch,n(𝝎)Jh,n(𝝎)+ch,n(𝝎)Jh,n(𝝎),𝝎d.K_{h,n}(\boldsymbol{\omega})=c_{h,n}(\boldsymbol{\omega})J_{h,n}(-\boldsymbol{\omega})+c_{h,n}(-\boldsymbol{\omega})J_{h,n}(\boldsymbol{\omega}),\quad\boldsymbol{\omega}\in\mathbb{R}^{d}. (E.2)
Lemma E.1.

Suppose that Assumptions 3.2(for =2\ell=2) and 3.4(i) hold. Then, we obtain the following two bounds:

  • (a)

    For 𝝎d\boldsymbol{\omega}\in\mathbb{R}^{d}, |cum(λ^h,n,Kh,n(𝝎))|C|Dn|1|ch,n(𝝎)||ch2,n(𝝎)|+|Dn|1/2|ch,n(𝝎)|o(1)|\mathrm{cum}(\widehat{\lambda}_{h,n},K_{h,n}(\boldsymbol{\omega}))|\leq C|D_{n}|^{-1}|c_{h,n}(\boldsymbol{\omega})||c_{h^{2},n}(\boldsymbol{\omega})|+|D_{n}|^{-1/2}|c_{h,n}(\boldsymbol{\omega})|o(1) as nn\rightarrow\infty, where o(1)o(1) error is uniform over 𝝎d\boldsymbol{\omega}\in\mathbb{R}^{d}.

  • (b)

    cum(λ^h,n,λ^h,n)=var(λ^h,n)C|Dn|1\mathrm{cum}(\widehat{\lambda}_{h,n},\widehat{\lambda}_{h,n})=\mathrm{var}(\widehat{\lambda}_{h,n})\leq C|D_{n}|^{-1}.

If we further assume Assumption 3.2 holds for =4\ell=4. Then, we have

  • (c)

    For 𝝎1,𝝎2d\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}\in\mathbb{R}^{d}, |cum(λ^h,n,Kh,n(𝝎1),λ^h,n,Kh,n(𝝎2))|C|ch,n(𝝎1)||ch,n(𝝎2)||Dn|2|\mathrm{cum}(\widehat{\lambda}_{h,n},K_{h,n}(\boldsymbol{\omega}_{1}),\widehat{\lambda}_{h,n},K_{h,n}(\boldsymbol{\omega}_{2}))|\leq C|c_{h,n}(\boldsymbol{\omega}_{1})||c_{h,n}(\boldsymbol{\omega}_{2})||D_{n}|^{-2}.

  • (d)

    |cum(λ^h,n,λ^h,n,λ^h,n,λ^h,n)|C|Dn|3|\mathrm{cum}(\widehat{\lambda}_{h,n},\widehat{\lambda}_{h,n},\widehat{\lambda}_{h,n},\widehat{\lambda}_{h,n})|\leq C|D_{n}|^{-3}.

  • (e)

    cum((λ^h,nλ)2,(λ^h,nλ)2)=var((λ^h,nλ)2)C|Dn|2\mathrm{cum}((\widehat{\lambda}_{h,n}-\lambda)^{2},(\widehat{\lambda}_{h,n}-\lambda)^{2})=\mathrm{var}((\widehat{\lambda}_{h,n}-\lambda)^{2})\leq C|D_{n}|^{-2}.

Proof. Recall λ^h,n=Hh,11|Dn|1𝒙XDnh(𝒙/𝑨)\widehat{\lambda}_{h,n}=H_{h,1}^{-1}|D_{n}|^{-1}\sum_{\boldsymbol{x}\in X\cap D_{n}}h(\boldsymbol{x}/\boldsymbol{A}). (b) and (d) are straightforward due to Lemma D.5. To show (e), we note that

cum((λ^h,nλ)2,(λ^h,nλ)2)=2var(λ^h,n)2+cum(λ^h,n,λ^h,n,λ^h,n,λ^h,n).\mathrm{cum}((\widehat{\lambda}_{h,n}-\lambda)^{2},(\widehat{\lambda}_{h,n}-\lambda)^{2})=2\mathrm{var}(\widehat{\lambda}_{h,n})^{2}+\mathrm{cum}(\widehat{\lambda}_{h,n},\widehat{\lambda}_{h,n},\widehat{\lambda}_{h,n},\widehat{\lambda}_{h,n}).

Thus, (e) follows from (b) and (d).

Next, we will show (a). We first note that λ^h,n=(2π)d/2Hh,21/2Hh,11|Dn|1/2𝒥h,n(0)\widehat{\lambda}_{h,n}=(2\pi)^{d/2}H_{h,2}^{1/2}H_{h,1}^{-1}|D_{n}|^{-1/2}\mathcal{J}_{h,n}(\textbf{0}). Therefore, by using Theorem D.2,

cum(λ^h,n,ch,n(𝝎)Jh,n(𝝎))\displaystyle\mathrm{cum}(\widehat{\lambda}_{h,n},c_{h,n}(\boldsymbol{\omega})J_{h,n}(-\boldsymbol{\omega})) =\displaystyle= (2π)d/2Hh,21/2Hh,11|Dn|1/2ch,n(𝝎)cum(Jh,n(0),Jh,n(𝝎))\displaystyle(2\pi)^{d/2}H_{h,2}^{1/2}H_{h,1}^{-1}|D_{n}|^{-1/2}c_{h,n}(\boldsymbol{\omega})\mathrm{cum}(J_{h,n}(\textbf{0}),J_{h,n}(-\boldsymbol{\omega}))
=\displaystyle= C|Dn|3/2ch,n(𝝎)f(0)Hh,2(n)(𝝎)+|Dn|1/2ch,n(𝝎)o(1),n,\displaystyle C|D_{n}|^{-3/2}c_{h,n}(\boldsymbol{\omega})f(\textbf{0})H_{h,2}^{(n)}(-\boldsymbol{\omega})+|D_{n}|^{-1/2}c_{h,n}(\boldsymbol{\omega})o(1),~{}~{}n\rightarrow\infty,

where ff is the spectral density and o(1)o(1) error above is uniform over 𝝎d\boldsymbol{\omega}\in\mathbb{R}^{d}. Since f(0)<f(\textbf{0})<\infty under Assumption 3.2(for =2\ell=2) and by using (2.10), we have

|cum(λ^h,n,ch,n(𝝎)Jh,n(𝝎))|C|Dn|1|ch,n(𝝎)||ch2,n(𝝎)|+|Dn|1/2|ch,n(𝝎)|o(1),n.|\mathrm{cum}(\widehat{\lambda}_{h,n},c_{h,n}(\boldsymbol{\omega})J_{h,n}(-\boldsymbol{\omega}))|\leq C|D_{n}|^{-1}|c_{h,n}(\boldsymbol{\omega})||c_{h^{2},n}(\boldsymbol{\omega})|+|D_{n}|^{-1/2}|c_{h,n}(\boldsymbol{\omega})|o(1),\quad n\rightarrow\infty.

Similarly, we have |cum(λ^h,n,ch,n(𝝎)Jh,n(𝝎))|C|Dn|1|ch,n(𝝎)||ch2,n(𝝎)|+|Dn|1/2|ch,n(𝝎)|o(1)|\mathrm{cum}(\widehat{\lambda}_{h,n},c_{h,n}(-\boldsymbol{\omega})J_{h,n}(\boldsymbol{\omega}))|\leq C|D_{n}|^{-1}|c_{h,n}(\boldsymbol{\omega})||c_{h^{2},n}(\boldsymbol{\omega})|+|D_{n}|^{-1/2}|c_{h,n}(\boldsymbol{\omega})|o(1) as nn\rightarrow\infty. Thus, we show (a).

Lastly, (c) is straightforward due to Lemma D.5. All together, we get the desired results. \Box

Using the bounds derived above, we obtain the bounds for the first-order moments for R1(𝝎)R_{1}(\boldsymbol{\omega}) and R2(𝝎)R_{2}(\boldsymbol{\omega}) and the second-order moment for R2(𝝎)R_{2}(\boldsymbol{\omega}).

Theorem E.1.

Suppose that Assumptions 3.2(for =2\ell=2) and 3.4(i) hold. Let R1()R_{1}(\cdot) and R2()R_{2}(\cdot) be defined as in (E.1). Then, for 𝛚d\boldsymbol{\omega}\in\mathbb{R}^{d}, we have

|𝔼[R1(𝝎)]|\displaystyle\left|\mathbb{E}[R_{1}(\boldsymbol{\omega})]\right| \displaystyle\leq C|Dn|1|ch,n(𝝎)||ch2,n(𝝎)|+|Dn|1/2|ch,n(𝝎)|o(1)\displaystyle C|D_{n}|^{-1}|c_{h,n}(\boldsymbol{\omega})||c_{h^{2},n}(\boldsymbol{\omega})|+|D_{n}|^{-1/2}|c_{h,n}(\boldsymbol{\omega})|o(1) (E.3)
and|𝔼[R2(𝝎)]|\displaystyle\text{and}\quad\left|\mathbb{E}[R_{2}(\boldsymbol{\omega})]\right| \displaystyle\leq C|Dn|1|ch,n(𝝎)|2,n,\displaystyle C|D_{n}|^{-1}|c_{h,n}(\boldsymbol{\omega})|^{2},\quad n\rightarrow\infty, (E.4)

where o(1)o(1) error above is uniform over 𝛚d\boldsymbol{\omega}\in\mathbb{R}^{d}.

If we further assume Assumption 3.2 for =4\ell=4. Then, for 𝛚1,𝛚2d\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}\in\mathbb{R}^{d},

|cov(R2(𝝎1),R2(𝝎2))|C|Dn|2|ch,n(𝝎1)|2|ch,n(𝝎2)|2.|\mathrm{cov}(R_{2}(\boldsymbol{\omega}_{1}),R_{2}(\boldsymbol{\omega}_{2}))|\leq C|D_{n}|^{-2}|c_{h,n}(\boldsymbol{\omega}_{1})|^{2}|c_{h,n}(\boldsymbol{\omega}_{2})|^{2}. (E.5)

Proof. To show (E.3), we use Lemma E.1(a) and get

|𝔼[R1(𝝎)]|=|cum(λ^n,Kh,n(𝝎))|C|Dn|1|ch,n(𝝎)||ch2,n(𝝎)|+|Dn|1/2|ch,n(𝝎)|o(1)\left|\mathbb{E}[R_{1}(\boldsymbol{\omega})]\right|=|\mathrm{cum}(\widehat{\lambda}_{n},K_{h,n}(\boldsymbol{\omega}))|\leq C|D_{n}|^{-1}|c_{h,n}(\boldsymbol{\omega})||c_{h^{2},n}(\boldsymbol{\omega})|+|D_{n}|^{-1/2}|c_{h,n}(\boldsymbol{\omega})|o(1)

as nn\rightarrow\infty. Thus, we show (E.3).

To show (E.4), by Lemma E.1(b),

|𝔼[R2(𝝎)]|=|ch,n(𝝎)|2cum(λ^n,λ^n)C|Dn|1|ch,n(𝝎)|2,𝝎d.|\mathbb{E}[R_{2}(\boldsymbol{\omega})]|=|c_{h,n}(\boldsymbol{\omega})|^{2}\mathrm{cum}(\widehat{\lambda}_{n},\widehat{\lambda}_{n})\leq C|D_{n}|^{-1}|c_{h,n}(\boldsymbol{\omega})|^{2},~{}~{}\boldsymbol{\omega}\in\mathbb{R}^{d}.

Thus, we show (E.4).

To show (E.5), by Lemma E.1(e), we have

cov(R2(𝝎1),R2(𝝎2))\displaystyle\mathrm{cov}(R_{2}(\boldsymbol{\omega}_{1}),R_{2}(\boldsymbol{\omega}_{2}))
=|ch,n(𝝎1)|2|ch,n(𝝎2)|2var((λ^nλ)2)C|Dn|2|ch,n(𝝎1)|2|ch,n(𝝎2)|2,𝝎1,𝝎2d.\displaystyle~{}~{}=|c_{h,n}(\boldsymbol{\omega}_{1})|^{2}|c_{h,n}(\boldsymbol{\omega}_{2})|^{2}\mathrm{var}((\widehat{\lambda}_{n}-\lambda)^{2})\leq C|D_{n}|^{-2}|c_{h,n}(\boldsymbol{\omega}_{1})|^{2}|c_{h,n}(\boldsymbol{\omega}_{2})|^{2},~{}~{}\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}\in\mathbb{R}^{d}.

Thus, we show (E.5). All together, we prove the theorem. \Box

Now, let

Si=|Dn|1/2Dϕ(𝝎)Ri(𝝎)𝑑𝝎,i{1,2},S_{i}=|D_{n}|^{1/2}\int_{D}\phi(\boldsymbol{\omega})R_{i}(\boldsymbol{\omega})d\boldsymbol{\omega},\quad i\in\{1,2\},

where DD is a compact region on d\mathbb{R}^{d} and ϕ\phi is a symmetric continuous function on DD. In the following theorem, we show that S1S_{1} and S2S_{2} are asympototically negligible.

Theorem E.2.

Suppose that Assumptions 3.1, 3.2 (for =4\ell=4), and 3.4(i) hold. Then,

S1,S2L20,n,S_{1},S_{2}\stackrel{{\scriptstyle L_{2}}}{{\rightarrow}}0,\quad n\rightarrow\infty,

where L2\stackrel{{\scriptstyle L_{2}}}{{\rightarrow}} denotes convergence in L2L_{2}.

Proof. We first calculate the expectations. By using (E.4) and Lemma C.3(d), we have

|𝔼[S2]|\displaystyle|\mathbb{E}[S_{2}]| |Dn|1/2D|ϕ(𝝎)||𝔼[R2(𝝎)]|𝑑𝝎\displaystyle\leq|D_{n}|^{1/2}\int_{D}|\phi(\boldsymbol{\omega})||\mathbb{E}[R_{2}(\boldsymbol{\omega})]|d\boldsymbol{\omega} (E.6)
C|Dn|1/2D|ϕ(𝝎)||ch,n(𝝎)|2𝑑𝝎=O(|Dn|1/2),n.\displaystyle\leq C|D_{n}|^{-1/2}\int_{D}|\phi(\boldsymbol{\omega})||c_{h,n}(\boldsymbol{\omega})|^{2}d\boldsymbol{\omega}=O(|D_{n}|^{-1/2}),~{}~{}n\rightarrow\infty.

Similarly, by using (E.3) and Lemma C.3(d),(e), we have

|𝔼[S1]|\displaystyle|\mathbb{E}[S_{1}]| |Dn|1/2D|ϕ(𝝎)||𝔼[R1(𝝎)]|𝑑𝝎\displaystyle\leq|D_{n}|^{1/2}\int_{D}|\phi(\boldsymbol{\omega})||\mathbb{E}[R_{1}(\boldsymbol{\omega})]|d\boldsymbol{\omega} (E.7)
C|Dn|1/2D|ϕ(𝝎)||ch,n(𝝎)||ch2,n(𝝎)|𝑑𝝎+o(1)D|ϕ(𝝎)||ch,n(𝝎)|𝑑𝝎\displaystyle\leq C|D_{n}|^{-1/2}\int_{D}|\phi(\boldsymbol{\omega})||c_{h,n}(\boldsymbol{\omega})||c_{h^{2},n}(\boldsymbol{\omega})|d\boldsymbol{\omega}+o(1)\int_{D}|\phi(\boldsymbol{\omega})||c_{h,n}(\boldsymbol{\omega})|d\boldsymbol{\omega}
=o(1),n.\displaystyle=o(1),~{}~{}n\rightarrow\infty.

Next, we calculate the variances. By using (E.5) and Lemma C.3(d), var(S2)\mathrm{var}(S_{2}) is bounded by

var(S2)\displaystyle\mathrm{var}(S_{2}) |Dn|D2|ϕ(𝝎1)||ϕ(𝝎2)||cov(R2(𝝎1),R2(𝝎2))|𝑑𝝎1𝑑𝝎2\displaystyle\leq|D_{n}|\int_{D^{2}}|\phi(\boldsymbol{\omega}_{1})||\phi(\boldsymbol{\omega}_{2})||\mathrm{cov}(R_{2}(\boldsymbol{\omega}_{1}),R_{2}(\boldsymbol{\omega}_{2}))|d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2} (E.8)
C|Dn|1(D|ϕ(𝝎1)||ch,n(𝝎)|2𝑑𝝎1)2=O(|Dn|1),n.\displaystyle\leq C|D_{n}|^{-1}\left(\int_{D}|\phi(\boldsymbol{\omega}_{1})||c_{h,n}(\boldsymbol{\omega})|^{2}d\boldsymbol{\omega}_{1}\right)^{2}=O(|D_{n}|^{-1}),\quad n\rightarrow\infty.

To bound var(S1)\mathrm{var}(S_{1}), we need more sophisticated calculations. By using indecomposable partitions, for 𝝎1,𝝎2d\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}\in\mathbb{R}^{d}, we have

cov(R1(𝝎1),R1(𝝎2))\displaystyle\mathrm{cov}(R_{1}(\boldsymbol{\omega}_{1}),R_{1}(\boldsymbol{\omega}_{2}))
=cum((λ^h,nλ)Kh,n(𝝎1),(λ^h,nλ)Kh,n(𝝎2))\displaystyle=\mathrm{cum}((\widehat{\lambda}_{h,n}-\lambda)K_{h,n}(\boldsymbol{\omega}_{1}),(\widehat{\lambda}_{h,n}-\lambda)K_{h,n}(\boldsymbol{\omega}_{2}))
=var(λ^h,n)cum(Kh,n(𝝎1),Kh,n(𝝎2))+cum(λ^h,n,Kh,n(𝝎1))cum(λ^h,n,Kh,n(𝝎2))\displaystyle=\mathrm{var}(\widehat{\lambda}_{h,n})\mathrm{cum}(K_{h,n}(\boldsymbol{\omega}_{1}),K_{h,n}(\boldsymbol{\omega}_{2}))+\mathrm{cum}(\widehat{\lambda}_{h,n},K_{h,n}(\boldsymbol{\omega}_{1}))\mathrm{cum}(\widehat{\lambda}_{h,n},K_{h,n}(\boldsymbol{\omega}_{2}))
+cum(λ^h,n,Kh,n(𝝎1),λ^h,n,Kh,n(𝝎2)).\displaystyle~{}~{}+\mathrm{cum}(\widehat{\lambda}_{h,n},K_{h,n}(\boldsymbol{\omega}_{1}),\widehat{\lambda}_{h,n},K_{h,n}(\boldsymbol{\omega}_{2})).

Thus, we have var(S1)=L1+L2+L3\mathrm{var}(S_{1})=L_{1}+L_{2}+L_{3}, where

L1\displaystyle L_{1} =\displaystyle= |Dn|var(λ^h,n)D2ϕ(𝝎1)ϕ(𝝎2)cum(Kh,n(𝝎1),Kh,n(𝝎2))𝑑𝝎1𝑑𝝎2,\displaystyle|D_{n}|\mathrm{var}(\widehat{\lambda}_{h,n})\int_{D^{2}}\phi(\boldsymbol{\omega}_{1})\phi(\boldsymbol{\omega}_{2})\mathrm{cum}(K_{h,n}(\boldsymbol{\omega}_{1}),K_{h,n}(\boldsymbol{\omega}_{2}))d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2},
L2\displaystyle L_{2} =\displaystyle= |Dn|(Dϕ(𝝎)cum(λ^h,n,Kh,n(𝝎))𝑑𝝎)2,and\displaystyle|D_{n}|\left(\int_{D}\phi(\boldsymbol{\omega})\mathrm{cum}(\widehat{\lambda}_{h,n},K_{h,n}(\boldsymbol{\omega}))d\boldsymbol{\omega}\right)^{2},~{}~{}\text{and}
L3\displaystyle L_{3} =\displaystyle= |Dn|D2ϕ(𝝎1)ϕ(𝝎2)cum(λ^h,n,Kh,n(𝝎1),λ^h,n,Kh,n(𝝎2))𝑑𝝎1𝑑𝝎2.\displaystyle|D_{n}|\int_{D^{2}}\phi(\boldsymbol{\omega}_{1})\phi(\boldsymbol{\omega}_{2})\mathrm{cum}(\widehat{\lambda}_{h,n},K_{h,n}(\boldsymbol{\omega}_{1}),\widehat{\lambda}_{h,n},K_{h,n}(\boldsymbol{\omega}_{2}))d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}.

We will bound each term above. First, since L2=𝔼[S1]2L_{2}=\mathbb{E}[S_{1}]^{2}, we have

L2=|E[S1]|2=o(1),n.L_{2}=|E[S_{1}]|^{2}=o(1),~{}~{}n\rightarrow\infty. (E.9)

By using Lemmas C.3(e) and E.1(c), L3L_{3} is bounded by

L3C|Dn|1(D|ϕ(𝝎)||ch,n(𝝎)|𝑑𝝎)2=O(|Dn|1),n.L_{3}\leq C|D_{n}|^{-1}\left(\int_{D}|\phi(\boldsymbol{\omega})||c_{h,n}(\boldsymbol{\omega})|d\boldsymbol{\omega}\right)^{2}=O(|D_{n}|^{-1}),\quad n\rightarrow\infty. (E.10)

To bound L1L_{1}, we only focus on the ch,n(𝝎1)ch,n(𝝎2)cum(Jh,n(𝝎1),Jh,n(𝝎2))c_{h,n}(\boldsymbol{\omega}_{1})c_{h,n}(\boldsymbol{\omega}_{2})\mathrm{cum}(J_{h,n}(-\boldsymbol{\omega}_{1}),J_{h,n}(-\boldsymbol{\omega}_{2})) term in the expansion of cum(Kh,n(𝝎1),Kh,n(𝝎2))\mathrm{cum}(K_{h,n}(\boldsymbol{\omega}_{1}),K_{h,n}(\boldsymbol{\omega}_{2})) and other three terms are treated similarly. By using Lemma E.1(b) and Theorem D.2, (a part of) L1L_{1} is bounded by

C|Dn|1D2ϕ(𝝎1)ϕ(𝝎2)ch,n(𝝎1)ch,n(𝝎2)(Hh,2(n)(𝝎1+𝝎2)+o(1))𝑑𝝎1𝑑𝝎2,n,C|D_{n}|^{-1}\int_{D^{2}}\phi(\boldsymbol{\omega}_{1})\phi(\boldsymbol{\omega}_{2})c_{h,n}(\boldsymbol{\omega}_{1})c_{h,n}(\boldsymbol{\omega}_{2})\left(H_{h,2}^{(n)}(-\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})+o(1)\right)d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2},\quad n\rightarrow\infty,

where o(1)o(1) error is uniform over 𝝎1,𝝎2d\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}\in\mathbb{R}^{d}. By using Lemma C.3(e), the second term above is o(|Dn|1)o(|D_{n}|^{-1}) as nn\rightarrow\infty. Moreover, the first term is bounded by

C|Dn|1/2D2|ϕ(𝝎1)ϕ(𝝎2)ch,n(𝝎1)ch,n(𝝎2)||ch2,n(𝝎1+𝝎2)|𝑑𝝎1𝑑𝝎2\displaystyle C|D_{n}|^{-1/2}\int_{D^{2}}|\phi(\boldsymbol{\omega}_{1})\phi(\boldsymbol{\omega}_{2})c_{h,n}(\boldsymbol{\omega}_{1})c_{h,n}(\boldsymbol{\omega}_{2})||c_{h^{2},n}(-\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})|d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}
=C|Dn|1/2D𝑑𝝎1|ϕ(𝝎1)ch,n(𝝎1)|D|ϕ(𝝎2)ch,n(𝝎2)ch2,n(𝝎1+𝝎2)|𝑑𝝎2\displaystyle\quad=C|D_{n}|^{-1/2}\int_{D}d\boldsymbol{\omega}_{1}|\phi(\boldsymbol{\omega}_{1})c_{h,n}(\boldsymbol{\omega}_{1})|\int_{D}|\phi(\boldsymbol{\omega}_{2})c_{h,n}(\boldsymbol{\omega}_{2})c_{h^{2},n}(-\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})|d\boldsymbol{\omega}_{2}
C|Dn|1/2D𝑑𝝎1|ϕ(𝝎1)ch,n(𝝎1)|=O(|Dn|1/2),n.\displaystyle\quad\leq C|D_{n}|^{-1/2}\int_{D}d\boldsymbol{\omega}_{1}|\phi(\boldsymbol{\omega}_{1})c_{h,n}(\boldsymbol{\omega}_{1})|=O(|D_{n}|^{-1/2}),\quad n\rightarrow\infty.

Here, the inequality is due to Lemma C.3(d) and the second identity is due to Lemma C.3(e). All together, we conclude that

L1=o(1),n.L_{1}=o(1),\qquad n\rightarrow\infty. (E.11)

Combining (E.9), (E.10), and (E.11), we conclude

var(S1)L1+L2+L3=o(1),n.\mathrm{var}(S_{1})\leq L_{1}+L_{2}+L_{3}=o(1),\qquad n\rightarrow\infty. (E.12)

Combining (E.7) and (E.12), we have S1L20S_{1}\stackrel{{\scriptstyle L_{2}}}{{\rightarrow}}0 as nn\rightarrow\infty and (E.6) and (E.8) yield S2L20S_{2}\stackrel{{\scriptstyle L_{2}}}{{\rightarrow}}0 as nn\rightarrow\infty. Thus, we get the desired results. \Box

Lastly, recall the theoretical counterpart of the kernel spectral density estimator f~n,b(𝝎)\widetilde{f}_{n,b}(\boldsymbol{\omega}) in (B.6). As a consequence of the above theorem, we obtain the probabilistic bound for the difference f~n,b(𝝎)f^n,b(𝝎)\widetilde{f}_{n,b}(\boldsymbol{\omega})-\widehat{f}_{n,b}(\boldsymbol{\omega}).

Corollary E.1.

Suppose that Assumptions 3.1, 3.2 (for =4\ell=4), and 3.4(i) hold. Moreover, the bandwidth b=b(n)b=b(n) is such that limnb(n)=0\lim_{n\rightarrow\infty}b(n)=0, then

|Dn|bd(f~n,b(𝝎)f^n,b(𝝎))L20,n.\sqrt{|D_{n}|b^{d}}(\widetilde{f}_{n,b}(\boldsymbol{\omega})-\widehat{f}_{n,b}(\boldsymbol{\omega}))\stackrel{{\scriptstyle L_{2}}}{{\rightarrow}}0,\quad n\rightarrow\infty. (E.13)

Proof. Let ϕb(𝒙)=Wb(𝝎𝒙)=bdW(b1(𝝎𝒙))\phi_{b}(\boldsymbol{x})=W_{b}(\boldsymbol{\omega}-\boldsymbol{x})=b^{-d}W(b^{-1}(\boldsymbol{\omega}-\boldsymbol{x})), 𝒙d\boldsymbol{x}\in\mathbb{R}^{d}. Then, |Dn|bd(f^n,b(𝝎)f~n,b(𝝎))=Q1+Q2\sqrt{|D_{n}|b^{d}}(\widehat{f}_{n,b}(\boldsymbol{\omega})-\widetilde{f}_{n,b}(\boldsymbol{\omega}))=Q_{1}+Q_{2}, where

Qi=|Dn|bddϕb(𝒙)Ri(𝒙)d𝒙,i{1,2}.Q_{i}=\sqrt{|D_{n}|b^{d}}\int_{\mathbb{R}^{d}}\phi_{b}(\boldsymbol{x})R_{i}(\boldsymbol{x})d\boldsymbol{x},\quad i\in\{1,2\}.

By simple calculation, we have

dϕb(𝒙)d𝒙=dW(𝒙)d𝒙=1anddϕb(𝒙)2d𝒙=bddW(𝒙)2d𝒙=Cbd.\int_{\mathbb{R}^{d}}\phi_{b}(\boldsymbol{x})d\boldsymbol{x}=\int_{\mathbb{R}^{d}}W(\boldsymbol{x})d\boldsymbol{x}=1\quad\text{and}\quad\int_{\mathbb{R}^{d}}\phi_{b}(\boldsymbol{x})^{2}d\boldsymbol{x}=b^{-d}\int_{\mathbb{R}^{d}}W(\boldsymbol{x})^{2}d\boldsymbol{x}=Cb^{-d}.

Therefore, by using similar techniques to bound the first- and second-order moments of S2S_{2} in Theorem E.2, we have

𝔼[Q2]=O(|Dn|1/2bd/2)=o(1)andvar(Q2)=O(|Dn|1bd)=o(1),n.\displaystyle\mathbb{E}[Q_{2}]=O(|D_{n}|^{-1/2}b^{d/2})=o(1)\quad\text{and}\quad\mathrm{var}(Q_{2})=O(|D_{n}|^{-1}b^{d})=o(1),~{}~{}n\rightarrow\infty.

To bound the expectation of Q1Q_{1}, by using a similar argument as in (E.7), we have

𝔼[Q1]\displaystyle\mathbb{E}[Q_{1}] \displaystyle\leq C|Dn|1/2bd/2(|Dn|1O(1)+|Dn|1/2o(1)d|ϕb(𝒙)||ch,n(𝝎)|d𝒙)\displaystyle C|D_{n}|^{1/2}b^{d/2}\left(|D_{n}|^{-1}O(1)+|D_{n}|^{-1/2}o(1)\int_{\mathbb{R}^{d}}|\phi_{b}(\boldsymbol{x})||c_{h,n}(\boldsymbol{\omega})|d\boldsymbol{x}\right)
\displaystyle\leq C|Dn|1/2bd/2+o(1)=o(1),n.\displaystyle C|D_{n}|^{-1/2}b^{d/2}+o(1)=o(1),\quad n\rightarrow\infty.

Here, we use a modification of Lemma C.3(e)

bd/2d|ϕb(𝒙)||ch,n(𝝎)|d𝒙C(bdϕb(𝒙)2d𝒙)1/2=O(1),nb^{d/2}\int_{\mathbb{R}^{d}}|\phi_{b}(\boldsymbol{x})||c_{h,n}(\boldsymbol{\omega})|d\boldsymbol{x}\leq C\left(b^{d}\int\phi_{b}(\boldsymbol{x})^{2}d\boldsymbol{x}\right)^{1/2}=O(1),\quad n\rightarrow\infty

in the second inequality above. Similarly, by using an expansion of var(S1)\mathrm{var}(S_{1}) in the proof of Theorem E.2, one can easily seen that var(Q1)=o(1)\mathrm{var}(Q_{1})=o(1) as nn\rightarrow\infty. Therefore, both Q1Q_{1} and Q2Q_{2} converges to zero in L2L_{2} as nn\rightarrow\infty. Thus, we prove the theorem. \Box

Appendix F Verification of the α\alpha-mixing CLT for the integrated periodogram

In this section, we will provide greater details the CLT for G~h,n(ϕ)\widetilde{G}_{h,n}(\phi) defined as in (A.9). With loss of generality, we assume that |Dn||D_{n}| grows proportional to ndn^{d} as nn\rightarrow\infty. Thus, A1,,AdA_{1},\cdots,A_{d} increases with order nn. Next, let β,γ(0,1)\beta,\gamma\in(0,1) be chosen such that 2d/ε<β<γ<12d/\varepsilon<\beta<\gamma<1, where ε>2d\varepsilon>2d is from Assumption 3.3(ii).. For nn\in\mathbb{N}, let

An={𝒌:𝒌nγdandDn(𝒌)=𝒌+[(nγnβ)/2,(nγnβ)/2]dDn}.A_{n}=\{\boldsymbol{k}:\boldsymbol{k}\in n^{\gamma}\mathbb{Z}^{d}~{}~{}\text{and}~{}~{}D_{n}^{(\boldsymbol{k})}=\boldsymbol{k}+[-(n^{\gamma}-n^{\beta})/2,(n^{\gamma}-n^{\beta})/2]^{d}\subset D_{n}\}.

Thus, D~n=𝒌AnDn(𝒌)\widetilde{D}_{n}=\bigcup_{\boldsymbol{k}\in A_{n}}D_{n}^{(\boldsymbol{k})} is a disjoint union that is included in DnD_{n}. Let kn=|An|k_{n}=|A_{n}| and let En=Dn\D~nE_{n}=D_{n}\backslash\widetilde{D}_{n}. Then, it can be easily seen that

limn|D~n||Dn|=limn(1|En||Dn|)=1.\lim_{n\rightarrow\infty}\frac{|\widetilde{D}_{n}|}{|D_{n}|}=\lim_{n\rightarrow\infty}\left(1-\frac{|E_{n}|}{|D_{n}|}\right)=1. (F.1)

F.1 Linearization of the integrated periodogram

Now, decompose the DFT using sub-blocks. Let

𝒥h,n1(𝝎)\displaystyle\mathcal{J}_{h,n}^{1}(\boldsymbol{\omega}) =\displaystyle= (2π)d/2Hh,21/2|D~n|1/2𝒙XD~nh(𝒙/𝑨)exp(i𝒙𝝎)\displaystyle(2\pi)^{-d/2}H_{h,2}^{-1/2}|\widetilde{D}_{n}|^{-1/2}\sum_{\boldsymbol{x}\in X\cap\widetilde{D}_{n}}h(\boldsymbol{x}/\boldsymbol{A})\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega})
and𝒥h,n2(𝝎)\displaystyle\text{and}\quad\mathcal{J}_{h,n}^{2}(\boldsymbol{\omega}) =\displaystyle= (2π)d/2Hh,21/2|En|1/2𝒙XEnh(𝒙/𝑨)exp(i𝒙𝝎).\displaystyle(2\pi)^{-d/2}H_{h,2}^{-1/2}|E_{n}|^{-1/2}\sum_{\boldsymbol{x}\in X\cap E_{n}}h(\boldsymbol{x}/\boldsymbol{A})\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega}).

Let Jh,ni(𝝎)=𝒥h,ni(𝝎)𝔼[𝒥h,ni(𝝎)]J_{h,n}^{i}(\boldsymbol{\omega})=\mathcal{J}_{h,n}^{i}(\boldsymbol{\omega})-\mathbb{E}[\mathcal{J}_{h,n}^{i}(\boldsymbol{\omega})], i{1,2}i\in\{1,2\}, be the centered DFTs. Then, since DnD_{n} is a disjoint union of D~n\widetilde{D}_{n} and EnE_{n}, we have

Jh,n(𝝎)=|D~n|1/2|Dn|1/2Jh,n1(𝝎)+|En|1/2|Dn|1/2Jh,n2(𝝎),n.J_{h,n}(\boldsymbol{\omega})=\frac{|\widetilde{D}_{n}|^{1/2}}{|D_{n}|^{1/2}}J_{h,n}^{1}(\boldsymbol{\omega})+\frac{|E_{n}|^{1/2}}{|D_{n}|^{1/2}}J_{h,n}^{2}(\boldsymbol{\omega}),\quad n\in\mathbb{N}. (F.2)

Furthermore, since D~n=𝒌AnDn(𝒌)\widetilde{D}_{n}=\bigcup_{\boldsymbol{k}\in A_{n}}D_{n}^{(\boldsymbol{k})} is a disjoint union and |D~n|=kn|Dn(𝒌)||\widetilde{D}_{n}|=k_{n}|D_{n}^{(\boldsymbol{k})}|. Jh,n1(𝝎)J_{h,n}^{1}(\boldsymbol{\omega}) can be written as

Jh,n1(𝝎)=kn1/2𝒌AnJh,n(𝒌)(𝝎)=kn1/2𝒌An(𝒥h,n(𝒌)(𝝎)𝔼[𝒥h,n(𝒌)(𝝎)]),J_{h,n}^{1}(\boldsymbol{\omega})=k_{n}^{-1/2}\sum_{\boldsymbol{k}\in A_{n}}J_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})=k_{n}^{-1/2}\sum_{\boldsymbol{k}\in A_{n}}\left(\mathcal{J}_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})-\mathbb{E}[\mathcal{J}_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})]\right), (F.3)

where

𝒥h,n(𝒌)(𝝎)=(2π)d/2Hh,21/2|Dn(𝒌)|1/2𝒙XDn(𝒌)h(𝒙/𝑨)exp(i𝒙𝝎),𝒌An.\mathcal{J}_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})=(2\pi)^{-d/2}H_{h,2}^{-1/2}|D_{n}^{(\boldsymbol{k})}|^{-1/2}\sum_{\boldsymbol{x}\in X\cap D_{n}^{(\boldsymbol{k})}}h(\boldsymbol{x}/\boldsymbol{A})\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega}),\quad\boldsymbol{k}\in A_{n}. (F.4)

Recall G~h,n(ϕ)\widetilde{G}_{h,n}(\phi) and Vh,n(ϕ)V_{h,n}(\phi) from (A.9) and (A.10), respectively. Our aim in this section is to show that G~h,n(ϕ)Vh,n(ϕ)\widetilde{G}_{h,n}(\phi)-V_{h,n}(\phi) is asymptotically negligible. To do so, we introduce an intermediate statistic. For nn\in\mathbb{N}, let

Sh,n(ϕ)=|D~n|1/2Dϕ(𝝎)(|J1h,n(𝝎)|2𝔼[|J1h,n(𝝎)|2])d𝝎.S_{h,n}(\phi)=|\widetilde{D}_{n}|^{1/2}\int_{D}\phi(\boldsymbol{\omega})\left(|J^{1}_{h,n}(\boldsymbol{\omega})|^{2}-\mathbb{E}[|J^{1}_{h,n}(\boldsymbol{\omega})|^{2}]\right)d\boldsymbol{\omega}. (F.5)

In the next two theorems, we will show that G~h,n(ϕ)Sh,n(ϕ)\widetilde{G}_{h,n}(\phi)-S_{h,n}(\phi) and Sh,n(ϕ)Vh,n(ϕ)S_{h,n}(\phi)-V_{h,n}(\phi) are asymptotically negligible.

Theorem F.1.

Suppose that Assumptions 3.1, 3.2 (for =4\ell=4), and 4.1 hold. Suppose further the data taper hh is either constant on [1/2,1/2]d[-1/2,1/2]^{d} or satisfies Assumption 3.4(for m=d+1m=d+1). Then,

G~h,n(ϕ)Sh,n(ϕ)=op(1),n.\widetilde{G}_{h,n}(\phi)-S_{h,n}(\phi)=o_{p}(1),\quad n\rightarrow\infty.

Proof. Since both G~h,n(ϕ)\widetilde{G}_{h,n}(\phi) and Sh,n(ϕ)S_{h,n}(\phi) are centered, we will only require to show that
limnvar(G~h,n(ϕ)Sh,n(ϕ))=0\lim_{n\rightarrow\infty}\mathrm{var}(\widetilde{G}_{h,n}(\phi)-S_{h,n}(\phi))=0. Let J~h,n1(𝝎)=|D~n|1/2|Dn|1/2Jh,n1(𝝎)\widetilde{J}_{h,n}^{1}(\boldsymbol{\omega})=\frac{|\widetilde{D}_{n}|^{1/2}}{|D_{n}|^{1/2}}J_{h,n}^{1}(\boldsymbol{\omega}) and J~h,n2(𝝎)=|En|1/2|Dn|1/2Jh,n2(𝝎)\widetilde{J}_{h,n}^{2}(\boldsymbol{\omega})=\frac{|E_{n}|^{1/2}}{|D_{n}|^{1/2}}J_{h,n}^{2}(\boldsymbol{\omega}). Then, we have

var(G~h,n(ϕ)|D~n|1/2|Dn|1/2Sh,n(ϕ))=|Dn|var(Dϕ(𝝎)(|Jh,n(𝝎)|2|J~h,n1(𝝎)|2)d𝝎)\displaystyle\mathrm{var}\left(\widetilde{G}_{h,n}(\phi)-\frac{|\widetilde{D}_{n}|^{1/2}}{|D_{n}|^{1/2}}S_{h,n}(\phi)\right)=|D_{n}|\mathrm{var}\left(\int_{D}\phi(\boldsymbol{\omega})\left(|J_{h,n}(\boldsymbol{\omega})|^{2}-|\widetilde{J}_{h,n}^{1}(\boldsymbol{\omega})|^{2}\right)d\boldsymbol{\omega}\right)
=|Dn|D2ϕ(𝝎1)ϕ(𝝎2)cov(|Jh,n(𝝎1)|2|J~h,n1(𝝎1)|2,|Jh,n(𝝎2)|2|J~h,n1(𝝎2)|2)d𝝎1d𝝎2.\displaystyle~{}=|D_{n}|\int_{D^{2}}\phi(\boldsymbol{\omega}_{1})\phi(\boldsymbol{\omega}_{2})\mathrm{cov}\left(|J_{h,n}(\boldsymbol{\omega}_{1})|^{2}-|\widetilde{J}_{h,n}^{1}(\boldsymbol{\omega}_{1})|^{2},|J_{h,n}(\boldsymbol{\omega}_{2})|^{2}-|\widetilde{J}_{h,n}^{1}(\boldsymbol{\omega}_{2})|^{2}\right)d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}.
(F.6)

From (F.2), we have

|Jh,n(𝝎)|2|J~h,n1(𝝎)|2\displaystyle|J_{h,n}(\boldsymbol{\omega})|^{2}-|\widetilde{J}_{h,n}^{1}(\boldsymbol{\omega})|^{2} =\displaystyle= Jh,n(𝝎)(Jh,n(𝝎)J~h,n1(𝝎))+(Jh,n(𝝎)J~h,n1(𝝎))J~h,n1(𝝎)\displaystyle J_{h,n}(\boldsymbol{\omega})\left(J_{h,n}(-\boldsymbol{\omega})-\widetilde{J}_{h,n}^{1}(-\boldsymbol{\omega})\right)+\left(J_{h,n}(\boldsymbol{\omega})-\widetilde{J}_{h,n}^{1}(\boldsymbol{\omega})\right)\widetilde{J}_{h,n}^{1}(-\boldsymbol{\omega})
=\displaystyle= Jh,n(𝝎)J~h,n2(𝝎)+J~h,n2(𝝎)J~h,n1(𝝎),𝝎d.\displaystyle J_{h,n}(\boldsymbol{\omega})\widetilde{J}_{h,n}^{2}(-\boldsymbol{\omega})+\widetilde{J}_{h,n}^{2}(\boldsymbol{\omega})\widetilde{J}_{h,n}^{1}(-\boldsymbol{\omega}),\quad\boldsymbol{\omega}\in\mathbb{R}^{d}.

Therefore, the variance term (F.6) can be decomposed into four terms. We will only focus on the term

|Dn|D2ϕ(𝝎1)ϕ(𝝎2)cov(Jh,n(𝝎1)J~h,n2(𝝎1),Jh,n(𝝎2)J~h,n2(𝝎2))d𝝎1d𝝎2|D_{n}|\int_{D^{2}}\phi(\boldsymbol{\omega}_{1})\phi(\boldsymbol{\omega}_{2})\mathrm{cov}\left(J_{h,n}(\boldsymbol{\omega}_{1})\widetilde{J}_{h,n}^{2}(-\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2})\widetilde{J}_{h,n}^{2}(-\boldsymbol{\omega}_{2})\right)d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2} (F.7)

and other three terms can be treated similarly. Using indecomposable partition, the above term is B1+B2+B3B_{1}+B_{2}+B_{3}, where

B1\displaystyle B_{1} =\displaystyle= |Dn|D2ϕ(𝝎1)ϕ(𝝎2)cum(Jh,n(𝝎1),Jh,n(𝝎2))cum(J~2h,n(𝝎1),J~2h,n(𝝎2))d𝝎1d𝝎2,\displaystyle|D_{n}|\int_{D^{2}}\phi(\boldsymbol{\omega}_{1})\phi(\boldsymbol{\omega}_{2})\mathrm{cum}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(-\boldsymbol{\omega}_{2}))\mathrm{cum}(\widetilde{J}^{2}_{h,n}(-\boldsymbol{\omega}_{1}),\widetilde{J}^{2}_{h,n}(\boldsymbol{\omega}_{2}))d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2},
B2\displaystyle B_{2} =\displaystyle= |Dn|D2ϕ(𝝎1)ϕ(𝝎2)cum(Jh,n(𝝎1),J~2h,n(𝝎2))cum(J~2h,n(𝝎1),Jh,n(𝝎2))d𝝎1d𝝎2,\displaystyle|D_{n}|\int_{D^{2}}\phi(\boldsymbol{\omega}_{1})\phi(\boldsymbol{\omega}_{2})\mathrm{cum}(J_{h,n}(\boldsymbol{\omega}_{1}),\widetilde{J}^{2}_{h,n}(\boldsymbol{\omega}_{2}))\mathrm{cum}(\widetilde{J}^{2}_{h,n}(-\boldsymbol{\omega}_{1}),J_{h,n}(-\boldsymbol{\omega}_{2}))d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2},
B3\displaystyle B_{3} =\displaystyle= |Dn|D2ϕ(𝝎1)ϕ(𝝎2)cum(Jh,n(𝝎1),Jh,n(𝝎2),J~2h,n(𝝎1),J~2h,n(𝝎2))d𝝎1d𝝎2.\displaystyle|D_{n}|\int_{D^{2}}\phi(\boldsymbol{\omega}_{1})\phi(\boldsymbol{\omega}_{2})\mathrm{cum}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(-\boldsymbol{\omega}_{2}),\widetilde{J}^{2}_{h,n}(-\boldsymbol{\omega}_{1}),\widetilde{J}^{2}_{h,n}(\boldsymbol{\omega}_{2}))d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}.

By using a similar techniques to show Lemma D.5, we have

|cum(Jh,n(𝝎1),Jh,n(𝝎2),J~2h,n(𝝎1),J~2h,n(𝝎2))|C|En||Dn|2,𝝎1,𝝎2d.\left|\mathrm{cum}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(-\boldsymbol{\omega}_{2}),\widetilde{J}^{2}_{h,n}(-\boldsymbol{\omega}_{1}),\widetilde{J}^{2}_{h,n}(\boldsymbol{\omega}_{2}))\right|\leq C\frac{|E_{n}|}{|D_{n}|^{2}},\quad\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}\in\mathbb{R}^{d}.

Therefore,

|B3|C|En||Dn|(D|ϕ(𝝎)|)2=o(1),n.|B_{3}|\leq C\frac{|E_{n}|}{|D_{n}|}\left(\int_{D}|\phi(\boldsymbol{\omega})|\right)^{2}=o(1),\quad n\rightarrow\infty.

Here, the second identity is due to (F.1). Now, let

hEn(𝒙/𝑨)=h(𝒙/𝑨)I(𝒙En),n,𝒙Dnh_{E_{n}}(\boldsymbol{x}/\boldsymbol{A})=h(\boldsymbol{x}/\boldsymbol{A})I(\boldsymbol{x}\in E_{n}),\quad n\in\mathbb{N},\quad\boldsymbol{x}\in D_{n}

be a truncated taper function. Then, we have

|En|1/2|Dn|1/2𝒥2h,n(𝝎)=(2π)d/2Hh,21/2|Dn|1/2𝒙XDnhEn(𝒙/𝑨)exp(i𝒙𝝎),𝝎d.\frac{|E_{n}|^{1/2}}{|D_{n}|^{1/2}}\mathcal{J}^{2}_{h,n}(\boldsymbol{\omega})=(2\pi)^{-d/2}H_{h,2}^{-1/2}|D_{n}|^{-1/2}\sum_{\boldsymbol{x}\in X\cap D_{n}}h_{E_{n}}(\boldsymbol{x}/\boldsymbol{A})\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega}),\quad\boldsymbol{\omega}\in\mathbb{R}^{d}.

Therefore, J~2h,n(𝝎)\widetilde{J}^{2}_{h,n}(\boldsymbol{\omega}) can be viewed as a (centered) DFT on DnD_{n} with taper function hEnh_{E_{n}}. Thus, from the modification of the results of Theorem 4.1(ii), we have

|B1|C|Dn|1Dnh(𝒙/𝑨)2hEn(𝒙/𝑨)2d𝒙=C|Dn|1Dnh(𝒙/𝑨)4I(𝒙En)d𝒙C|En||Dn|.|B_{1}|\leq C|D_{n}|^{-1}\int_{D_{n}}h(\boldsymbol{x}/\boldsymbol{A})^{2}h_{E_{n}}(\boldsymbol{x}/\boldsymbol{A})^{2}d\boldsymbol{x}=C|D_{n}|^{-1}\int_{D_{n}}h(\boldsymbol{x}/\boldsymbol{A})^{4}I(\boldsymbol{x}\in E_{n})d\boldsymbol{x}\leq C^{\prime}\frac{|E_{n}|}{|D_{n}|}.

Therefore, by using (F.1), we conclude B1=o(1)B_{1}=o(1) as nn\rightarrow\infty. Similarly, we can show B2=o(1)B_{2}=o(1) as nn\rightarrow\infty. All together, the term in (F.7) limits to zero as nn\rightarrow\infty. By using similar technique, we can bound other three terms in the decomposition in (F.6). Therefore, we have

var(G~h,n(ϕ)|D~n|1/2|Dn|1/2Sh,n(ϕ))=o(1),n.\mathrm{var}\left(\widetilde{G}_{h,n}(\phi)-\frac{|\widetilde{D}_{n}|^{1/2}}{|D_{n}|^{1/2}}S_{h,n}(\phi)\right)=o(1),\quad n\rightarrow\infty.

Lastly, since var(G~h,n(ϕ))\mathrm{var}(\widetilde{G}_{h,n}(\phi)) is finite, so does var(Sh,n(ϕ))\mathrm{var}(S_{h,n}(\phi)). Therefore, by using (F.1), we show limnvar(G~h,n(ϕ)Sh,n(ϕ))=0\lim_{n\rightarrow\infty}\mathrm{var}(\widetilde{G}_{h,n}(\phi)-S_{h,n}(\phi))=0. Thus, we get the desired results. \Box

Now, we study the asymptotic equivalence of Sh,n(ϕ)Vh,n(ϕ)S_{h,n}(\phi)-V_{h,n}(\phi). Recall (F.3) and (F.5). We have

Sh,n(ϕ)\displaystyle S_{h,n}(\phi) =\displaystyle= |D~n|1/2Dϕ(𝝎)(|J1h,n(𝝎)|2𝔼[|J1h,n(𝝎)|2])d𝝎\displaystyle|\widetilde{D}_{n}|^{1/2}\int_{D}\phi(\boldsymbol{\omega})\left(|J^{1}_{h,n}(\boldsymbol{\omega})|^{2}-\mathbb{E}[|J^{1}_{h,n}(\boldsymbol{\omega})|^{2}]\right)d\boldsymbol{\omega}
=\displaystyle= kn1/2𝒋,𝒌An|Dn(𝒌)|1/2Dϕ(𝝎)(J(𝒋)h,n(𝝎)J(𝒌)h,n(𝝎)𝔼[J(𝒋)h,n(𝝎)J(𝒌)h,n(𝝎)])d𝝎\displaystyle k_{n}^{-1/2}\sum_{\boldsymbol{j},\boldsymbol{k}\in A_{n}}|D_{n}^{(\boldsymbol{k})}|^{1/2}\int_{D}\phi(\boldsymbol{\omega})\left(J^{(\boldsymbol{j})}_{h,n}(\boldsymbol{\omega})J^{(\boldsymbol{k})}_{h,n}(-\boldsymbol{\omega})-\mathbb{E}[J^{(\boldsymbol{j})}_{h,n}(\boldsymbol{\omega})J^{(\boldsymbol{k})}_{h,n}(-\boldsymbol{\omega})]\right)d\boldsymbol{\omega}
=\displaystyle= Vh,n(ϕ)+Th,n(ϕ),\displaystyle V_{h,n}(\phi)+T_{h,n}(\phi),

where

Th,n(ϕ)=kn1/2𝒋𝒌An|Dn(𝒌)|1/2Dϕ(𝝎)(J(𝒋)h,n(𝝎)J(𝒌)h,n(𝝎)𝔼[J(𝒋)h,n(𝝎)J(𝒌)h,n(𝝎)])d𝝎.T_{h,n}(\phi)=k_{n}^{-1/2}\sum_{\boldsymbol{j}\neq\boldsymbol{k}\in A_{n}}|D_{n}^{(\boldsymbol{k})}|^{1/2}\int_{D}\phi(\boldsymbol{\omega})\left(J^{(\boldsymbol{j})}_{h,n}(\boldsymbol{\omega})J^{(\boldsymbol{k})}_{h,n}(-\boldsymbol{\omega})-\mathbb{E}[J^{(\boldsymbol{j})}_{h,n}(\boldsymbol{\omega})J^{(\boldsymbol{k})}_{h,n}(-\boldsymbol{\omega})]\right)d\boldsymbol{\omega}. (F.8)

To show that Th,n(ϕ)T_{h,n}(\phi) is asymptotically negligible, we require the covariance inequality below. For 𝒋,𝒌nγ\boldsymbol{j},\boldsymbol{k}\in n^{\gamma}\mathbb{Z}, let

k(𝒋,𝒌)=𝒋𝒌nγ+nβ{nβ,nβ+nγ,nβ+2nγ,}.k(\boldsymbol{j},\boldsymbol{k})=\|\boldsymbol{j}-\boldsymbol{k}\|_{\infty}-n^{\gamma}+n^{\beta}\in\{n^{\beta},n^{\beta}+n^{\gamma},n^{\beta}+2n^{\gamma},\dots\}.
Lemma F.1.

Suppose that Assumption 3.2 for =8\ell=8 holds. Let 𝐣,𝐤,An\boldsymbol{j},\boldsymbol{k},\boldsymbol{\ell}\in A_{n} be the pairwise disjoint points and let wn=|Dn(𝐤)|w_{n}=|D_{n}^{(\boldsymbol{k})}| be the common volume of the sub-blocks. Then, for 𝛚1,𝛚2d\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}\in\mathbb{R}^{d},

|cov(J(𝒋)h,n(𝝎1)J(𝒋)h,n(𝝎1),J(𝒌)h,n(𝝎2)J()h,n(𝝎2))|Cαwn,2wn(k(𝒋,𝒌)k(𝒋,))1/2,\displaystyle\left|\mathrm{cov}(J^{(\boldsymbol{j})}_{h,n}(\boldsymbol{\omega}_{1})J^{(\boldsymbol{j})}_{h,n}(-\boldsymbol{\omega}_{1}),J^{(\boldsymbol{k})}_{h,n}(\boldsymbol{\omega}_{2})J^{(\boldsymbol{\ell})}_{h,n}(-\boldsymbol{\omega}_{2}))\right|\leq C\alpha_{w_{n},2w_{n}}\left(k(\boldsymbol{j},\boldsymbol{k})\wedge k(\boldsymbol{j},\boldsymbol{\ell})\right)^{1/2}, (F.9)
|cov(J(𝒋)h,n(𝝎1)J(𝒋)h,n(𝝎1),J(𝒋)h,n(𝝎2)J(𝒌)h,n(𝝎2))|Cαwn,wn(k(𝒋,𝒌))1/2,\displaystyle\left|\mathrm{cov}(J^{(\boldsymbol{j})}_{h,n}(\boldsymbol{\omega}_{1})J^{(\boldsymbol{j})}_{h,n}(-\boldsymbol{\omega}_{1}),J^{(\boldsymbol{j})}_{h,n}(\boldsymbol{\omega}_{2})J^{(\boldsymbol{k})}_{h,n}(-\boldsymbol{\omega}_{2}))\right|\leq C\alpha_{w_{n},w_{n}}\left(k(\boldsymbol{j},\boldsymbol{k})\right)^{1/2}, (F.10)

where αp,q()\alpha_{p,q}(\cdot) is the α\alpha-mixing coefficient defined as in (3.3).

Proof. We first show (F.9). For the brevity, we write J(𝒋)h,n(𝝎1)=J(𝒋)(𝝎1),J^{(\boldsymbol{j})}_{h,n}(\boldsymbol{\omega}_{1})=J^{(\boldsymbol{j})}(\boldsymbol{\omega}_{1}),\cdots. Note that Dn(𝒋)D_{n}^{(\boldsymbol{j})} and Dn(𝒌)Dn()D_{n}^{(\boldsymbol{k})}\cup D_{n}^{(\boldsymbol{\ell})} are disjoint and d(Dn(𝒋),Dn(𝒌)Dn())=k(𝒋,𝒌)k(𝒋,)d(D_{n}^{(\boldsymbol{j})},D_{n}^{(\boldsymbol{k})}\cup D_{n}^{(\boldsymbol{\ell})})=k(\boldsymbol{j},\boldsymbol{k})\wedge k(\boldsymbol{j},\boldsymbol{\ell}). Therefore, by using well-known covariance inequality (cf. Doukhan (1994), Theorem 3(1)), we have

|cov(J(𝒋)(𝝎1)J(𝒋)(𝝎1),J(𝒌)(𝝎2)J()(𝝎2))|\displaystyle\left|\mathrm{cov}(J^{(\boldsymbol{j})}(\boldsymbol{\omega}_{1})J^{(\boldsymbol{j})}(-\boldsymbol{\omega}_{1}),J^{(\boldsymbol{k})}(\boldsymbol{\omega}_{2})J^{(\boldsymbol{\ell})}(-\boldsymbol{\omega}_{2}))\right|
8αwn,2wn(k(𝒋,𝒌)k(𝒋,))1/2J(𝒋)(𝝎1)J(𝒋)(𝝎1)𝔼,4J(𝒌)(𝝎2)J()(𝝎2))𝔼,4,\displaystyle~{}~{}\leq 8\alpha_{w_{n},2w_{n}}\left(k(\boldsymbol{j},\boldsymbol{k})\wedge k(\boldsymbol{j},\boldsymbol{\ell})\right)^{1/2}\|J^{(\boldsymbol{j})}(\boldsymbol{\omega}_{1})J^{(\boldsymbol{j})}(-\boldsymbol{\omega}_{1})\|_{\mathbb{E},4}\|J^{(\boldsymbol{k})}(\boldsymbol{\omega}_{2})J^{(\boldsymbol{\ell})}(-\boldsymbol{\omega}_{2}))\|_{\mathbb{E},4},

where X𝔼,4={𝔼|X|4}1/4\|X\|_{\mathbb{E},4}=\{\mathbb{E}|X|^{4}\}^{1/4}. Then, by using X𝔼,44=κ4(X)+3var(X)2\|X\|_{\mathbb{E},4}^{4}=\kappa_{4}(X)+3\mathrm{var}(X)^{2} and Lemma D.5, we show J(𝒋)(𝝎)J(𝒋)(𝝎)𝔼,4=O(1)\|J^{(\boldsymbol{j})}(\boldsymbol{\omega})J^{(\boldsymbol{j})}(-\boldsymbol{\omega})\|_{\mathbb{E},4}=O(1) as nn\rightarrow\infty, provided Assumption 3.2 for =8\ell=8 holds. Substitute this to above, we show (F.9).

To show (F.10), we first note that for a centered random variable X,Y,Z,WX,Y,Z,W, cov(XY,ZW)=cov(XYZ¯,W)cov(XY)cov(ZW)¯\mathrm{cov}(XY,ZW)=\mathrm{cov}(XY\overline{Z},W)-\mathrm{cov}(XY)\overline{\mathrm{cov}(ZW)}. Apply this identity to the left hand side of (F.10), we get

|cov(J(𝒋)(𝝎1)J(𝒋)(𝝎1),J(𝒋)(𝝎2)J(𝒌)(𝝎2))||cov(J(𝒋)(𝝎1)J(𝒋)(𝝎1)J(𝒋)(𝝎2),J(𝒌)(𝝎2))|\displaystyle\left|\mathrm{cov}(J^{(\boldsymbol{j})}(\boldsymbol{\omega}_{1})J^{(\boldsymbol{j})}(-\boldsymbol{\omega}_{1}),J^{(\boldsymbol{j})}(\boldsymbol{\omega}_{2})J^{(\boldsymbol{k})}(-\boldsymbol{\omega}_{2}))\right|\leq\left|\mathrm{cov}(J^{(\boldsymbol{j})}(\boldsymbol{\omega}_{1})J^{(\boldsymbol{j})}(-\boldsymbol{\omega}_{1})J^{(\boldsymbol{j})}(-\boldsymbol{\omega}_{2}),J^{(\boldsymbol{k})}(-\boldsymbol{\omega}_{2}))\right|
+|cov(J(𝒋)(𝝎1)J(𝒋)(𝝎1))||cov(J(𝒋)(𝝎2),J(𝒌)(𝝎2))|.\displaystyle+\left|\mathrm{cov}(J^{(\boldsymbol{j})}(\boldsymbol{\omega}_{1})J^{(\boldsymbol{j})}(-\boldsymbol{\omega}_{1}))\right|\cdot\left|\mathrm{cov}(J^{(\boldsymbol{j})}(-\boldsymbol{\omega}_{2}),J^{(\boldsymbol{k})}(\boldsymbol{\omega}_{2}))\right|.

By using similar arguments above, the second term above is bounded by Cαwn,wn(k(𝒋,𝒌))1/2C\alpha_{w_{n},w_{n}}\left(k(\boldsymbol{j},\boldsymbol{k})\right)^{1/2}. To bound for the first term, we first note that J(𝒋)(𝝎1)J(𝒋)(𝝎1)=I(𝒋)(𝝎)J^{(\boldsymbol{j})}(\boldsymbol{\omega}_{1})J^{(\boldsymbol{j})}(-\boldsymbol{\omega}_{1})=I^{(\boldsymbol{j})}(\boldsymbol{\omega})\in\mathbb{R} and by using Hölder’s inequality, we have

𝔼|I(𝒋)(𝝎1)J(𝒋)(𝝎2)|8/3\displaystyle\mathbb{E}|I^{(\boldsymbol{j})}(\boldsymbol{\omega}_{1})J^{(\boldsymbol{j})}(-\boldsymbol{\omega}_{2})|^{8/3} =\displaystyle= 𝔼[I(𝒋)(𝝎1)8/3I(𝒋)(𝝎2)|J(𝒋)(𝝎2)|2/3]\displaystyle\mathbb{E}[I^{(\boldsymbol{j})}(\boldsymbol{\omega}_{1})^{8/3}I^{(\boldsymbol{j})}(\boldsymbol{\omega}_{2})|J^{(\boldsymbol{j})}(-\boldsymbol{\omega}_{2})|^{2/3}]
\displaystyle\leq I(𝒋)(𝝎2)|J(𝒋)(𝝎2)|2/3𝔼,3I(𝒋)(𝝎1)8/3𝔼,3/2\displaystyle\|I^{(\boldsymbol{j})}(\boldsymbol{\omega}_{2})|J^{(\boldsymbol{j})}(-\boldsymbol{\omega}_{2})|^{2/3}\|_{\mathbb{E},3}\|I^{(\boldsymbol{j})}(\boldsymbol{\omega}_{1})^{8/3}\|_{\mathbb{E},3/2}
\displaystyle\leq I(𝒋)(𝝎2)4𝔼,11/3I(𝒋)(𝝎1)4𝔼,12/3=O(1),n.\displaystyle\|I^{(\boldsymbol{j})}(\boldsymbol{\omega}_{2})^{4}\|_{\mathbb{E},1}^{1/3}\|I^{(\boldsymbol{j})}(\boldsymbol{\omega}_{1})^{4}\|_{\mathbb{E},1}^{2/3}=O(1),\quad n\rightarrow\infty.

Therefore, by using covariance inequality and the Hölder’s inequality, we have

|cov(J(𝒋)(𝝎1)J(𝒋)(𝝎1)J(𝒋)(𝝎2),J(𝒌)(𝝎2))|\displaystyle\left|\mathrm{cov}(J^{(\boldsymbol{j})}(\boldsymbol{\omega}_{1})J^{(\boldsymbol{j})}(-\boldsymbol{\omega}_{1})J^{(\boldsymbol{j})}(-\boldsymbol{\omega}_{2}),J^{(\boldsymbol{k})}(-\boldsymbol{\omega}_{2}))\right|
8αwn,wn(k(𝒋,𝒌))1/2I(𝒋)(𝝎1)J(𝒋)(𝝎2)𝔼,8/3J(𝒌)(𝝎2)𝔼,8Cαwn,wn(k(𝒋,𝒌))1/2.\displaystyle~{}~{}\leq 8\alpha_{w_{n},w_{n}}\left(k(\boldsymbol{j},\boldsymbol{k})\right)^{1/2}\left\|I^{(\boldsymbol{j})}(\boldsymbol{\omega}_{1})J^{(\boldsymbol{j})}(-\boldsymbol{\omega}_{2})\right\|_{\mathbb{E},8/3}\|J^{(\boldsymbol{k})}(-\boldsymbol{\omega}_{2})\|_{\mathbb{E},8}\leq C\alpha_{w_{n},w_{n}}\left(k(\boldsymbol{j},\boldsymbol{k})\right)^{1/2}.

Thus, we show (F.10). All together, we get the desired results. \Box

Now, we are ready to prove the theorem below.

Theorem F.2.

Suppose that Assumptions 3.1, 3.2 (for =8\ell=8), 3.3(ii), 4.1, and 4.2 hold. Suppose further the data taper hh is either constant on [1/2,1/2]d[-1/2,1/2]^{d} or satisfies Assumption 3.4(for m=d+1m=d+1). Then,

Sh,n(ϕ)Vh,n(ϕ)=Th,n(ϕ)=op(1),n.S_{h,n}(\phi)-V_{h,n}(\phi)=T_{h,n}(\phi)=o_{p}(1),\quad n\rightarrow\infty.

Proof. By using a similar argument as in the proof of Theorem F.1, it is enough to show limnvar(Th,n(ϕ))=0\lim_{n\rightarrow\infty}\mathrm{var}(T_{h,n}(\phi))=0. Note

var(Th,n(ϕ))=(var(Sh,n(ϕ))var(Vh,n(ϕ)))2cov(Th,n(ϕ),Vh,n(ϕ)).\mathrm{var}(T_{h,n}(\phi))=\left(\mathrm{var}(S_{h,n}(\phi))-\mathrm{var}(V_{h,n}(\phi))\right)-2\mathrm{cov}(T_{h,n}(\phi),V_{h,n}(\phi)). (F.11)

We will bound each term above. To bound the first term, by using Theorems 4.1(ii), F.1, and F.4 (below), we have

limnvar(Sh,n(ϕ))=limnvar(Vh,n(ϕ))=(2π)d(Hh,4/Hh,22)(Ω1+Ω2),\lim_{n\rightarrow\infty}\mathrm{var}(S_{h,n}(\phi))=\lim_{n\rightarrow\infty}\mathrm{var}(V_{h,n}(\phi))=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})(\Omega_{1}+\Omega_{2}), (F.12)

where Ω1\Omega_{1} and Ω2\Omega_{2} are defined as in (4.5). Therefore, the first term in (F.11) is o(1)o(1) as nn\rightarrow\infty. To bound the second term, we will use a α\alpha-mixing condition. For qq\in\mathbb{N}, let (An)q,(A_{n})^{q,\neq} be a set of qq disjoints points in AnA_{n}. Then,

cov(Th,n(ϕ),Vh,n(ϕ))=kn1𝒋An(𝒌,)(An)2,cov(G~h,n(𝒋,𝒋)(ϕ),G~h,n(𝒌,)(ϕ))\displaystyle\mathrm{cov}(T_{h,n}(\phi),V_{h,n}(\phi))=k_{n}^{-1}\sum_{\boldsymbol{j}\in A_{n}}\sum_{(\boldsymbol{k},\boldsymbol{\ell})\in(A_{n})^{2,\neq}}\mathrm{cov}(\widetilde{G}_{h,n}^{(\boldsymbol{j},\boldsymbol{j})}(\phi),\widetilde{G}_{h,n}^{(\boldsymbol{k},\boldsymbol{\ell})}(\phi))
=kn1(𝒋,𝒌,)(An)3,cov(G~h,n(𝒋,𝒋)(ϕ),G~h,n(𝒌,)(ϕ))+kn1(𝒋,𝒌)(An)2,cov(G~h,n(𝒋,𝒋)(ϕ),G~h,n(𝒌,𝒋)(ϕ))\displaystyle=k_{n}^{-1}\sum_{(\boldsymbol{j},\boldsymbol{k},\boldsymbol{\ell})\in(A_{n})^{3,\neq}}\mathrm{cov}(\widetilde{G}_{h,n}^{(\boldsymbol{j},\boldsymbol{j})}(\phi),\widetilde{G}_{h,n}^{(\boldsymbol{k},\boldsymbol{\ell})}(\phi))+k_{n}^{-1}\sum_{(\boldsymbol{j},\boldsymbol{k})\in(A_{n})^{2,\neq}}\mathrm{cov}(\widetilde{G}_{h,n}^{(\boldsymbol{j},\boldsymbol{j})}(\phi),\widetilde{G}_{h,n}^{(\boldsymbol{k},\boldsymbol{j})}(\phi))
+kn1(𝒋,𝒌)(An)2,cov(G~h,n(𝒋,𝒋)(ϕ),G~h,n(𝒋,𝒌)(ϕ)),\displaystyle~{}~{}+k_{n}^{-1}\sum_{(\boldsymbol{j},\boldsymbol{k})\in(A_{n})^{2,\neq}}\mathrm{cov}(\widetilde{G}_{h,n}^{(\boldsymbol{j},\boldsymbol{j})}(\phi),\widetilde{G}_{h,n}^{(\boldsymbol{j},\boldsymbol{k})}(\phi)),

where

G~h,n(𝒌,)(ϕ)=|Dn(𝒌)|1/2Dϕ(𝝎)(J(𝒌)h,n(𝝎)J()h,n(𝝎)𝔼[J(𝒌)h,n(𝝎)J()h,n(𝝎)])d𝝎,𝒌,An.\widetilde{G}_{h,n}^{(\boldsymbol{k},\boldsymbol{\ell})}(\phi)=|D_{n}^{(\boldsymbol{k})}|^{1/2}\int_{D}\phi(\boldsymbol{\omega})\left(J^{(\boldsymbol{k})}_{h,n}(\boldsymbol{\omega})J^{(\boldsymbol{\ell})}_{h,n}(-\boldsymbol{\omega})-\mathbb{E}[J^{(\boldsymbol{k})}_{h,n}(\boldsymbol{\omega})J^{(\boldsymbol{\ell})}_{h,n}(-\boldsymbol{\omega})]\right)d\boldsymbol{\omega},\quad\boldsymbol{k},\boldsymbol{\ell}\in A_{n}.

We will bound each term in the expansion of cov(Th,n(ϕ),Vh,n(ϕ))\mathrm{cov}(T_{h,n}(\phi),V_{h,n}(\phi)). By using (F.9), the first term is bounded by

kn1|(𝒋,𝒌,)(An)3,cov(G~h,n(𝒋,𝒋)(ϕ),G~h,n(𝒌,)(ϕ))|\displaystyle k_{n}^{-1}\left|\sum_{(\boldsymbol{j},\boldsymbol{k},\boldsymbol{\ell})\in(A_{n})^{3,\neq}}\mathrm{cov}(\widetilde{G}_{h,n}^{(\boldsymbol{j},\boldsymbol{j})}(\phi),\widetilde{G}_{h,n}^{(\boldsymbol{k},\boldsymbol{\ell})}(\phi))\right|
kn1wn(𝒋,𝒌,)(An)3,D2|ϕ(𝝎1)ϕ(𝝎2)||cov(J(𝒋)h,n(𝝎1)J(𝒋)h,n(𝝎1),J(𝒌)h,n(𝝎2)J()h,n(𝝎2))|d𝝎1d𝝎2\displaystyle~{}~{}\leq k_{n}^{-1}w_{n}\sum_{(\boldsymbol{j},\boldsymbol{k},\boldsymbol{\ell})\in(A_{n})^{3,\neq}}\int_{D^{2}}|\phi(\boldsymbol{\omega}_{1})\phi(\boldsymbol{\omega}_{2})|\left|\mathrm{cov}(J^{(\boldsymbol{j})}_{h,n}(\boldsymbol{\omega}_{1})J^{(\boldsymbol{j})}_{h,n}(-\boldsymbol{\omega}_{1}),J^{(\boldsymbol{k})}_{h,n}(\boldsymbol{\omega}_{2})J^{(\boldsymbol{\ell})}_{h,n}(-\boldsymbol{\omega}_{2}))\right|d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}
Ckn1wn(𝒋,𝒌,)(An)3,αwn,2wn(k(𝒋,𝒌)k(𝒋,))1/2.\displaystyle~{}~{}\leq Ck_{n}^{-1}w_{n}\sum_{(\boldsymbol{j},\boldsymbol{k},\boldsymbol{\ell})\in(A_{n})^{3,\neq}}\alpha_{w_{n},2w_{n}}\left(k(\boldsymbol{j},\boldsymbol{k})\wedge k(\boldsymbol{j},\boldsymbol{\ell})\right)^{1/2}.

Let nγmin(𝒋𝒌,𝒋)=m{1,2,}n^{-\gamma}\min(\|\boldsymbol{j}-\boldsymbol{k}\|_{\infty},\|\boldsymbol{j}-\boldsymbol{\ell}\|_{\infty})=m\in\{1,2,\dots\}. Then, for fixed 𝒋An\boldsymbol{j}\in A_{n} and mm\in\mathbb{N}, the number of disjoint pairs (𝒌,)(An)2,(\boldsymbol{k},\boldsymbol{\ell})\in(A_{n})^{2,\neq} that satisfies nγmin(𝒋𝒌,𝒋)=mn^{-\gamma}\min(\|\boldsymbol{j}-\boldsymbol{k}\|_{\infty},\|\boldsymbol{j}-\boldsymbol{\ell}\|_{\infty})=m is upper bounded by Cknmd1Ck_{n}m^{d-1} for some constant C>0C>0. Therefore, by using Assumption 3.3(ii) the right hand side above is bounded by

C1kn1wn(𝒋,𝒌,)(An)3,αwn,2wn(k(𝒋,𝒌)k(𝒋,))1/2\displaystyle C_{1}k_{n}^{-1}w_{n}\sum_{(\boldsymbol{j},\boldsymbol{k},\boldsymbol{\ell})\in(A_{n})^{3,\neq}}\alpha_{w_{n},2w_{n}}\left(k(\boldsymbol{j},\boldsymbol{k})\wedge k(\boldsymbol{j},\boldsymbol{\ell})\right)^{1/2}
C2wn𝒋Anm=1md1wn1/2(nγ(m1)+nβ)(d+ε)/2\displaystyle~{}~{}\leq C_{2}w_{n}\sum_{\boldsymbol{j}\in A_{n}}\sum_{m=1}^{\infty}m^{d-1}\cdot w_{n}^{1/2}(n^{\gamma}(m-1)+n^{\beta})^{-(d+\varepsilon)/2}
C3knwn3/2(nβ(d+ε)/2+m=1md1(nγm)(d+ε)/2)\displaystyle~{}~{}\leq C_{3}k_{n}w_{n}^{3/2}\left(n^{-\beta(d+\varepsilon)/2}+\sum_{m=1}^{\infty}m^{d-1}(n^{\gamma}m)^{-(d+\varepsilon)/2}\right)
C4ndnγd/2(nβ(d+ε)/2+nγ(d+ε)/2)=o(1),n.\displaystyle~{}~{}\leq C_{4}n^{d}n^{\gamma d/2}\left(n^{-\beta(d+\varepsilon)/2}+n^{-\gamma(d+\varepsilon)/2}\right)=o(1),\quad n\rightarrow\infty.

Here, we use Assumption 3.3(ii) on the first inequality, (m+1)d12md1(m+1)^{d-1}\leq 2m^{d-1} and nγ(m1)+nβ>nγ(m1)n^{\gamma}(m-1)+n^{\beta}>n^{\gamma}(m-1) on the second inequality, knwn|Dn|Cndk_{n}w_{n}\leq|D_{n}|\leq Cn^{d}, wn1/2nγd/2w_{n}^{1/2}\leq n^{\gamma d/2}, and m=1md1(d+ε)/2<\sum_{m=1}^{\infty}m^{d-1-(d+\varepsilon)/2}<\infty on the third inequality, and β,γ>2d/ε\beta,\gamma>2d/\varepsilon on the identity. Thus, we have

kn1(𝒋,𝒌,)(An)3,cov(G~h,n(𝒋,𝒋)(ϕ),G~h,n(𝒌,)(ϕ))=o(1),n.k_{n}^{-1}\sum_{(\boldsymbol{j},\boldsymbol{k},\boldsymbol{\ell})\in(A_{n})^{3,\neq}}\mathrm{cov}(\widetilde{G}_{h,n}^{(\boldsymbol{j},\boldsymbol{j})}(\phi),\widetilde{G}_{h,n}^{(\boldsymbol{k},\boldsymbol{\ell})}(\phi))=o(1),\quad n\rightarrow\infty. (F.13)

To bound the second term, we use (F.10) and Assumption 3.3(ii) and get

kn1|(𝒋,𝒌)(An)2,cov(G~h,n(𝒋,𝒋)(ϕ),G~h,n(𝒌,𝒋)(ϕ))|C1kn1wn(𝒋,𝒌)(An)2,αwn,wn(k(𝒋,𝒌))1/2\displaystyle k_{n}^{-1}\left|\sum_{(\boldsymbol{j},\boldsymbol{k})\in(A_{n})^{2,\neq}}\mathrm{cov}(\widetilde{G}_{h,n}^{(\boldsymbol{j},\boldsymbol{j})}(\phi),\widetilde{G}_{h,n}^{(\boldsymbol{k},\boldsymbol{j})}(\phi))\right|\leq C_{1}k_{n}^{-1}w_{n}\sum_{(\boldsymbol{j},\boldsymbol{k})\in(A_{n})^{2,\neq}}\alpha_{w_{n},w_{n}}\left(k(\boldsymbol{j},\boldsymbol{k})\right)^{1/2}
C2wn3/2m=1md1(nγ(m1)+nβ)(d+ε)/2C3n3γd/2nγ(d+ε)/2==o(1),n.\displaystyle\quad\leq C_{2}w_{n}^{3/2}\sum_{m=1}^{\infty}m^{d-1}(n^{\gamma}(m-1)+n^{\beta})^{-(d+\varepsilon)/2}\leq C_{3}n^{3\gamma d/2}n^{-\gamma(d+\varepsilon)/2}==o(1),\quad n\rightarrow\infty.

Similarly, the third term is bounded by

kn1(𝒋,𝒌)(An)2,cov(G~h,n(𝒋,𝒋)(ϕ),G~h,n(𝒋,𝒌)(ϕ))=o(1),n.k_{n}^{-1}\sum_{(\boldsymbol{j},\boldsymbol{k})\in(A_{n})^{2,\neq}}\mathrm{cov}(\widetilde{G}_{h,n}^{(\boldsymbol{j},\boldsymbol{j})}(\phi),\widetilde{G}_{h,n}^{(\boldsymbol{j},\boldsymbol{k})}(\phi))=o(1),\quad n\rightarrow\infty.

Substitute these results into the expansion of cov(Th,n(ϕ),Vh,n(ϕ))\mathrm{cov}(T_{h,n}(\phi),V_{h,n}(\phi)), we have

limncov(Th,n(ϕ),Vh,n(ϕ))=0.\lim_{n\rightarrow\infty}\mathrm{cov}(T_{h,n}(\phi),V_{h,n}(\phi))=0. (F.14)

Substituting (F.12) and (F.14) into (F.11), we show limnvar(Th,n(ϕ))=0\lim_{n\rightarrow\infty}\mathrm{var}(T_{h,n}(\phi))=0 as nn\rightarrow\infty. Thus, we prove the theorem. \Box

Below theorem is immediately follows from Theorems F.1 and F.2.

Theorem F.3.

Suppose that Assumptions 3.1, 3.2 (for =8\ell=8), 3.3(ii), 4.1, and 4.2 hold. Suppose further the data taper hh is either constant on [1/2,1/2]d[-1/2,1/2]^{d} or satisfies Assumption 3.4(for m=d+1m=d+1). Then,

G~h,n(ϕ)Vh,n(ϕ)=op(1),n.\widetilde{G}_{h,n}(\phi)-V_{h,n}(\phi)=o_{p}(1),\quad n\rightarrow\infty.

F.2 CLT for Vh,n(ϕ)V_{h,n}(\phi)

Recall Vh,n(ϕ)=kn1/2𝒌AnG~h,n(𝒌)(ϕ)V_{h,n}(\phi)=k_{n}^{-1/2}\sum_{\boldsymbol{k}\in A_{n}}\widetilde{G}_{h,n}^{(\boldsymbol{k})}(\phi), where

G~h,n(𝒌)(ϕ)=|Dn(𝒌)|1/2Dϕ(𝝎)(|Jh,n(𝒌)(𝝎)|2𝔼[|Jh,n(𝒌)(𝝎)|2])d𝝎,n,𝒌An.\widetilde{G}_{h,n}^{(\boldsymbol{k})}(\phi)=|D_{n}^{(\boldsymbol{k})}|^{1/2}\int_{D}\phi(\boldsymbol{\omega})\left(|J_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})|^{2}-\mathbb{E}[|J_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})|^{2}]\right)d\boldsymbol{\omega},\quad n\in\mathbb{N},\quad\boldsymbol{k}\in A_{n}.

In this section, we prove the CLT for Vh,n(ϕ)V_{h,n}(\phi). First, we calculate the asymptotic variance of Vh,n(ϕ)V_{h,n}(\phi).

Theorem F.4.

Suppose that Assumptions 3.1, 3.2 (for =4\ell=4), 3.3(ii), 4.1, and 4.2 hold. Suppose further the data taper hh is either constant on [1/2,1/2]d[-1/2,1/2]^{d} or satisfies Assumption 3.4(for m=d+1m=d+1). Then,

limnvar(Vh,n(ϕ))=(2π)d(Hh,4/Hh,22)(Ω1+Ω2),\lim_{n\rightarrow\infty}\mathrm{var}(V_{h,n}(\phi))=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})(\Omega_{1}+\Omega_{2}),

where Ω1\Omega_{1} and Ω2\Omega_{2} are defined as in (4.5).

Proof. For 𝒌An\boldsymbol{k}\in A_{n}, let G^h,n(𝒌)(ϕ)\widehat{G}_{h,n}^{(\boldsymbol{k})}(\phi) be an independent copy of G~h,n(𝒌)(ϕ)\widetilde{G}_{h,n}^{(\boldsymbol{k})}(\phi) and let

V^h,n(ϕ)=kn1/2𝒌AnG^h,n(𝒌)(ϕ).\widehat{V}_{h,n}(\phi)=k_{n}^{-1/2}\sum_{\boldsymbol{k}\in A_{n}}\widehat{G}_{h,n}^{(\boldsymbol{k})}(\phi). (F.15)

Then, by using a standard telescoping sum argument (cf. Pawlas (2009)), one can easily shown that Vh,n(ϕ)V^h,n(ϕ)=op(1)V_{h,n}(\phi)-\widehat{V}_{h,n}(\phi)=o_{p}(1) as nn\rightarrow\infty. Therefore,

limnvar(Vh,n(ϕ))=limnvar(V^h,n(ϕ))=limnkn1𝒌Anvar(G~h,n(𝒌)(ϕ)).\lim_{n\rightarrow\infty}\mathrm{var}(V_{h,n}(\phi))=\lim_{n\rightarrow\infty}\mathrm{var}(\widehat{V}_{h,n}(\phi))=\lim_{n\rightarrow\infty}k_{n}^{-1}\sum_{\boldsymbol{k}\in A_{n}}\mathrm{var}(\widetilde{G}_{h,n}^{(\boldsymbol{k})}(\phi)).

Now, we focus on the variance of G^h,n(𝒌)(ϕ)\widehat{G}_{h,n}^{(\boldsymbol{k})}(\phi). Since Dn(𝒌)D_{n}^{(\boldsymbol{k})} also has a rectangle form that satisfies Assumption 3.1, from the modification of the proof of the asymptotic variance of |Dn|1/2Ah,n(ϕ)|D_{n}|^{1/2}A_{h,n}(\phi) in Theorem 4.1(ii), one can show that

var(G~h,n(𝒌)(ϕ))(2π)d|Dn(𝒌)|1(Dn(𝒌){h(𝒙/𝑨)}4d𝒙Hh,22)(Ω1+Ω2),𝒌An.\displaystyle\mathrm{var}(\widetilde{G}_{h,n}^{(\boldsymbol{k})}(\phi))\approx(2\pi)^{d}|D_{n}^{(\boldsymbol{k})}|^{-1}\left(\frac{\int_{D_{n}^{(\boldsymbol{k})}}\{h(\boldsymbol{x}/\boldsymbol{A})\}^{4}d\boldsymbol{x}}{H_{h,2}^{2}}\right)(\Omega_{1}+\Omega_{2}),\quad\boldsymbol{k}\in A_{n}.

Therefore, we have

limnkn1𝒌Anvar(G~h,n(𝒌)(ϕ))\displaystyle\lim_{n\rightarrow\infty}k_{n}^{-1}\sum_{\boldsymbol{k}\in A_{n}}\mathrm{var}(\widetilde{G}_{h,n}^{(\boldsymbol{k})}(\phi)) =\displaystyle= (2π)dlimnkn1|Dn(𝒌)|1Hh,22(D~n{h(𝒙/𝑨)}4d𝒙)(Ω1+Ω2)\displaystyle(2\pi)^{d}\lim_{n\rightarrow\infty}k_{n}^{-1}|D_{n}^{(\boldsymbol{k})}|^{-1}H_{h,2}^{-2}\left(\int_{\widetilde{D}_{n}}\{h(\boldsymbol{x}/\boldsymbol{A})\}^{4}d\boldsymbol{x}\right)(\Omega_{1}+\Omega_{2})
=\displaystyle= (2π)dHh,4Hh,22(Ω1+Ω2).\displaystyle(2\pi)^{d}\frac{H_{h,4}}{H_{h,2}^{2}}(\Omega_{1}+\Omega_{2}).

Here, the last identity is due to (F.1), kn|Dn(𝒌)|=|D~n|k_{n}|D_{n}^{(\boldsymbol{k})}|=|\widetilde{D}_{n}|, and Dnh(𝒙/𝑨)4d𝒙=|Dn|Hh,4\int_{D_{n}}h(\boldsymbol{x}/\boldsymbol{A})^{4}d\boldsymbol{x}=|D_{n}|H_{h,4}. Thus, we get the desired result. \Box

Now, we are ready to prove the CLT for Vh,n(ϕ)V_{h,n}(\phi).

Theorem F.5.

Suppose that Assumptions 3.1, 3.2 (for =8\ell=8), 3.3(ii), 4.1, and 4.2 hold. Suppose further the data taper hh is either constant on [1/2,1/2]d[-1/2,1/2]^{d} or satisfies Assumption 3.4(for m=d+1m=d+1).

Vh,n(ϕ)𝒟𝒩(0,(2π)d(Hh,4/Hh,22)(Ω1+Ω2)),n.V_{h,n}(\phi)\stackrel{{\scriptstyle\mathcal{D}}}{{\rightarrow}}\mathcal{N}\left(0,(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})(\Omega_{1}+\Omega_{2})\right),\quad n\rightarrow\infty.

Proof. Recall V^h,n(ϕ)\widehat{V}_{h,n}(\phi) from (F.15) has the same asymptotic distribution with Vh,n(ϕ)V_{h,n}(\phi). To show the CLT for V^h,n(ϕ)\widehat{V}_{h,n}(\phi), we only need to check the Lyapunov condition: for some δ>0\delta>0,

limnkn(2+δ)/2𝒌An𝔼[|G~h,n(𝒌)(ϕ)|2+δ]=0.\lim_{n\rightarrow\infty}k_{n}^{-(2+\delta)/2}\sum_{\boldsymbol{k}\in A_{n}}\mathbb{E}[|\widetilde{G}_{h,n}^{(\boldsymbol{k})}(\phi)|^{2+\delta}]=0. (F.16)

We will show the above for δ=2\delta=2, provided Assumption 3.2 for =8\ell=8. To show (F.16), it is enough to show

supn𝔼[|G~h,n(ϕ)|4]<.\sup_{n\in\mathbb{N}}\mathbb{E}[|\widetilde{G}_{h,n}(\phi)|^{4}]<\infty. (F.17)

This is because, once we show (F.17), one can show

kn2𝒌An𝔼[|G~h,n(𝒌)(ϕ)|4]Ckn10,n.k_{n}^{-2}\sum_{\boldsymbol{k}\in A_{n}}\mathbb{E}[|\widetilde{G}_{h,n}^{(\boldsymbol{k})}(\phi)|^{4}]\leq Ck_{n}^{-1}\rightarrow 0,\quad n\rightarrow\infty.

Thus, (F.16) holds for δ=2\delta=2. Using (B.5), we have

supn𝔼[|G~h,n(ϕ)|4]supnκ4(G~h,n(ϕ))+3(supnvar(G~h,n(ϕ)))2.\sup_{n\in\mathbb{N}}\mathbb{E}[|\widetilde{G}_{h,n}(\phi)|^{4}]\leq\sup_{n\in\mathbb{N}}\kappa_{4}(\widetilde{G}_{h,n}(\phi))+3\left(\sup_{n\in\mathbb{N}}\mathrm{var}(\widetilde{G}_{h,n}(\phi))\right)^{2}.

From Theorem 4.1(ii), we have

limnvar(G~h,n(ϕ))=(2π)d(Hh,4/Hh,22)(Ω1+Ω2).\lim_{n\rightarrow\infty}\mathrm{var}(\widetilde{G}_{h,n}(\phi))=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})(\Omega_{1}+\Omega_{2}). (F.18)

Therefore, supnvar(G~h,n(ϕ))<\sup_{n\in\mathbb{N}}\mathrm{var}(\widetilde{G}_{h,n}(\phi))<\infty. To bound the fourth-order cumulant term, we note that

κ4(G~h,n(ϕ))\displaystyle\kappa_{4}(\widetilde{G}_{h,n}(\phi)) =\displaystyle= |Dn|2κ4(Dϕ(𝝎)Ih,n(𝝎))=|Dn|2D4(i=14ϕ(𝝎i))\displaystyle|D_{n}|^{2}\kappa_{4}\left(\int_{D}\phi(\boldsymbol{\omega})I_{h,n}(\boldsymbol{\omega})\right)=|D_{n}|^{2}\int_{D^{4}}\left(\prod_{i=1}^{4}\phi(\boldsymbol{\omega}_{i})\right) (F.19)
×cum(Ih,n(𝝎1),Ih,n(𝝎2),Ih,n(𝝎3),Ih,n(𝝎4))d𝝎1d𝝎2d𝝎3d𝝎4.\displaystyle~{}~{}\times\mathrm{cum}(I_{h,n}(\boldsymbol{\omega}_{1}),I_{h,n}(\boldsymbol{\omega}_{2}),I_{h,n}(\boldsymbol{\omega}_{3}),I_{h,n}(\boldsymbol{\omega}_{4}))d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}d\boldsymbol{\omega}_{3}d\boldsymbol{\omega}_{4}.

Now, we will evaluate the cumulant term above. Note that

cum(Ih,n(𝝎1),Ih,n(𝝎2),Ih,n(𝝎3),Ih,n(𝝎4))\displaystyle\mathrm{cum}(I_{h,n}(\boldsymbol{\omega}_{1}),I_{h,n}(\boldsymbol{\omega}_{2}),I_{h,n}(\boldsymbol{\omega}_{3}),I_{h,n}(\boldsymbol{\omega}_{4}))
=cum(Jh,n(𝝎1)Jh,n(𝝎1),Jh,n(𝝎2)Jh,n(𝝎2),Jh,n(𝝎3)Jh,n(𝝎3),Jh,n(𝝎4)Jh,n(𝝎4)).\displaystyle~{}=\mathrm{cum}\bigg{(}J_{h,n}(\boldsymbol{\omega}_{1})J_{h,n}(-\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2})J_{h,n}(-\boldsymbol{\omega}_{2}),J_{h,n}(\boldsymbol{\omega}_{3})J_{h,n}(-\boldsymbol{\omega}_{3}),J_{h,n}(\boldsymbol{\omega}_{4})J_{h,n}(-\boldsymbol{\omega}_{4})\bigg{)}.

Using indecomposable partitions, the above joint cumulant can be written as sum of product of cumulants of form cum(Jh,n(±𝝎i1),,Jh,n(±𝝎ik))\mathrm{cum}(J_{h,n}(\pm\boldsymbol{\omega}_{i_{1}}),\dots,J_{h,n}(\pm\boldsymbol{\omega}_{i_{k}})), where k{2,,8}k\in\{2,\dots,8\} and ij{1,2,3,4}i_{j}\in\{1,2,3,4\} for j{1,,k}j\in\{1,\dots,k\}. By using an argument in Lemma D.5, the leading term (which has the largest order) is a product of four joint cumulants of order two. An example of such term is

cum(Jh,n(𝝎1),Jh,n(𝝎2))cum(Jh,n(𝝎1),Jh,n(𝝎3))\displaystyle\mathrm{cum}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2}))\mathrm{cum}(J_{h,n}(-\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{3})) (F.20)
×cum(Jh,n(𝝎2),Jh,n(𝝎4))cum(Jh,n(𝝎3),Jh,n(𝝎4)).\displaystyle~{}~{}\times\mathrm{cum}(J_{h,n}(-\boldsymbol{\omega}_{2}),J_{h,n}(-\boldsymbol{\omega}_{4}))\mathrm{cum}(J_{h,n}(-\boldsymbol{\omega}_{3}),J_{h,n}(\boldsymbol{\omega}_{4})).

Now, we will bound one of the terms in (F.19) that is associated with the above cumulant products. Let ϕ(𝝎)=0\phi(\boldsymbol{\omega})=0 outside the domain DD. By using Lemma D.1, we have

cum(Jh,n(𝝎1),Jh,n(𝝎2))\displaystyle\mathrm{cum}(J_{h,n}(\boldsymbol{\omega}_{1}),J_{h,n}(\boldsymbol{\omega}_{2}))
=|Dn|1Hh,21f(𝝎1)Hh,2(n)(𝝎1+𝝎2)+C|Dn|1dei𝒖𝝎1C(𝒖)Rh,h(n)(𝒖,𝝎1+𝝎2),\displaystyle=|D_{n}|^{-1}H_{h,2}^{-1}f(\boldsymbol{\omega}_{1})H_{h,2}^{(n)}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})+C|D_{n}|^{-1}\int_{\mathbb{R}^{d}}e^{-i\boldsymbol{u}^{\top}\boldsymbol{\omega}_{1}}C(\boldsymbol{u})R_{h,h}^{(n)}(\boldsymbol{u},\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2}), (F.21)

where Hh,2(n)()H_{h,2}^{(n)}(\cdot) and Rh,h(n)(,)R_{h,h}^{(n)}(\cdot,\cdot) are defined as in (2.7) and (C.1). Therefore, the integral term in the decomposition of (F.19) that is associated with (F.20) has 16 terms. We will only bound the two representative terms. Other 14 terms will be bounded in the similar way. The first representative term is

Hh,24|Dn|24di=14ϕ(𝝎i)×f(𝝎1)f(𝝎1)f(𝝎2)f(𝝎3)\displaystyle H_{h,2}^{-4}|D_{n}|^{-2}\int_{\mathbb{R}^{4d}}\prod_{i=1}^{4}\phi(\boldsymbol{\omega}_{i})\times f(\boldsymbol{\omega}_{1})f(-\boldsymbol{\omega}_{1})f(-\boldsymbol{\omega}_{2})f(\boldsymbol{\omega}_{3})
×Hh,2(n)(𝝎1+𝝎2)Hh,2(n)(𝝎1+𝝎3)Hh,2(n)(𝝎2𝝎4)Hh,2(n)(𝝎3+𝝎4)d𝝎1d𝝎2d𝝎3d𝝎4\displaystyle~{}~{}\times H_{h,2}^{(n)}(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})H_{h,2}^{(n)}(-\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{3})H_{h,2}^{(n)}(-\boldsymbol{\omega}_{2}-\boldsymbol{\omega}_{4})H_{h,2}^{(n)}(-\boldsymbol{\omega}_{3}+\boldsymbol{\omega}_{4})d\boldsymbol{\omega}_{1}d\boldsymbol{\omega}_{2}d\boldsymbol{\omega}_{3}d\boldsymbol{\omega}_{4}
=C4dψ(𝒕1,𝒕2,𝒕3,𝒕4)×ch2,n(𝒕1)ch2,n(𝒕2)ch2,n(𝒕3)ch2,n((𝒕1+𝒕2+𝒕3))d𝒕1d𝒕2d𝒕3d𝒕4,\displaystyle=C\int_{\mathbb{R}^{4d}}\psi(\boldsymbol{t}_{1},\boldsymbol{t}_{2},\boldsymbol{t}_{3},\boldsymbol{t}_{4})\times c_{h^{2},n}(\boldsymbol{t}_{1})c_{h^{2},n}(\boldsymbol{t}_{2})c_{h^{2},n}(\boldsymbol{t}_{3})c_{h^{2},n}(-(\boldsymbol{t}_{1}+\boldsymbol{t}_{2}+\boldsymbol{t}_{3}))d\boldsymbol{t}_{1}d\boldsymbol{t}_{2}d\boldsymbol{t}_{3}d\boldsymbol{t}_{4},

where for 𝒕1,,𝒕4d\boldsymbol{t}_{1},\dots,\boldsymbol{t}_{4}\in\mathbb{R}^{d}.

ψ(𝒕1,𝒕2,𝒕3,𝒕4)\displaystyle\psi(\boldsymbol{t}_{1},\boldsymbol{t}_{2},\boldsymbol{t}_{3},\boldsymbol{t}_{4}) =\displaystyle= α×ϕ(𝒕1+𝒕3+𝒕4)ϕ(𝒕3𝒕4)ϕ(𝒕1+𝒕2+𝒕3+𝒕4)ϕ(𝒕4)\displaystyle\alpha\times\phi(\boldsymbol{t}_{1}+\boldsymbol{t}_{3}+\boldsymbol{t}_{4})\phi(-\boldsymbol{t}_{3}-\boldsymbol{t}_{4})\phi(\boldsymbol{t}_{1}+\boldsymbol{t}_{2}+\boldsymbol{t}_{3}+\boldsymbol{t}_{4})\phi(\boldsymbol{t}_{4})
×f(𝒕1+𝒕3+𝒕4)f(𝒕1𝒕3𝒕4)f(𝒕3𝒕4)f(𝒕1+𝒕2+𝒕3+𝒕4).\displaystyle\quad\times f(\boldsymbol{t}_{1}+\boldsymbol{t}_{3}+\boldsymbol{t}_{4})f(-\boldsymbol{t}_{1}-\boldsymbol{t}_{3}-\boldsymbol{t}_{4})f(-\boldsymbol{t}_{3}-\boldsymbol{t}_{4})f(\boldsymbol{t}_{1}+\boldsymbol{t}_{2}+\boldsymbol{t}_{3}+\boldsymbol{t}_{4}).

Here, we use change of variables 𝒕1=𝝎1+𝝎2\boldsymbol{t}_{1}=\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2}, 𝒕2=𝝎1+𝝎3\boldsymbol{t}_{2}=-\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{3}, 𝒕3=𝝎2𝝎4\boldsymbol{t}_{3}=-\boldsymbol{\omega}_{2}-\boldsymbol{\omega}_{4}, and 𝒕4=𝝎4\boldsymbol{t}_{4}=\boldsymbol{\omega}_{4} in the identity above and α\alpha in ψ(,,,)\psi(\cdot,\cdot,\cdot,\cdot) is the Jacobian determinant. Since ϕ()\phi(\cdot) is bounded and has a compact support and sup𝝎df(𝝎)<\sup_{\boldsymbol{\omega}\in\mathbb{R}^{d}}f(\boldsymbol{\omega})<\infty, it is easily seen that |ψ(,,,)||\psi(\cdot,\cdot,\cdot,\cdot)| is also bounded and has a compact support. Then, by iteratively applying Lemma C.3(c),(d), and (e), we have

|4dψ(𝒕1,𝒕2,𝒕3,𝒕4)ch2,n(𝒕1)ch2,n(𝒕2)ch2,n(𝒕3)ch2,n((𝒕1+𝒕2+𝒕3))d𝒕1d𝒕2d𝒕3d𝒕4|=O(|Dn|1/2)\left|\int_{\mathbb{R}^{4d}}\psi(\boldsymbol{t}_{1},\boldsymbol{t}_{2},\boldsymbol{t}_{3},\boldsymbol{t}_{4})c_{h^{2},n}(\boldsymbol{t}_{1})c_{h^{2},n}(\boldsymbol{t}_{2})c_{h^{2},n}(\boldsymbol{t}_{3})c_{h^{2},n}(-(\boldsymbol{t}_{1}+\boldsymbol{t}_{2}+\boldsymbol{t}_{3}))d\boldsymbol{t}_{1}d\boldsymbol{t}_{2}d\boldsymbol{t}_{3}d\boldsymbol{t}_{4}\right|=O(|D_{n}|^{-1/2})

as nn\rightarrow\infty.

The second representative term is

C4|Dn|24di=14ϕ(𝝎i)4di=14C(𝒖i)×ei(𝒖1𝝎1𝒖2𝝎1𝒖3𝝎2+𝒖4𝝎3)\displaystyle C^{4}|D_{n}|^{-2}\int_{\mathbb{R}^{4d}}\prod_{i=1}^{4}\phi(\boldsymbol{\omega}_{i})\int_{\mathbb{R}^{4d}}\prod_{i=1}^{4}C(\boldsymbol{u}_{i})\times e^{-i(\boldsymbol{u}_{1}^{\top}\boldsymbol{\omega}_{1}-\boldsymbol{u}_{2}^{\top}\boldsymbol{\omega}_{1}-\boldsymbol{u}_{3}^{\top}\boldsymbol{\omega}_{2}+\boldsymbol{u}_{4}^{\top}\boldsymbol{\omega}_{3})}
×Rh,h(n)(𝒖1,𝝎1+𝝎2)Rh,h(n)(𝒖2,𝝎1+𝝎3)Rh,h(n)(𝒖3,𝝎2𝝎4)Rh,h(n)(𝒖4,𝝎3+𝝎4).\displaystyle~{}~{}\times R_{h,h}^{(n)}(\boldsymbol{u}_{1},\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2})R_{h,h}^{(n)}(\boldsymbol{u}_{2},-\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{3})R_{h,h}^{(n)}(\boldsymbol{u}_{3},-\boldsymbol{\omega}_{2}-\boldsymbol{\omega}_{4})R_{h,h}^{(n)}(\boldsymbol{u}_{4},-\boldsymbol{\omega}_{3}+\boldsymbol{\omega}_{4}).

To bound the above term, we require a sharp bound for Rh,h(n)R_{h,h}^{(n)}. Let {h𝒋}𝒋d\{h_{\boldsymbol{j}}\}_{\boldsymbol{j}\in\mathbb{Z}^{d}} be the Fourier coefficients of hh that satisfies (C.8). Then, by using Theorem C.2(ii) together with an inequality ρ(|x|)1\rho(|x|)\leq 1 and change of variables 𝒕1=𝝎1+𝝎2\boldsymbol{t}_{1}=\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2}, 𝒕2=𝝎1+𝝎3\boldsymbol{t}_{2}=-\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{3}, 𝒕3=𝝎2𝝎4\boldsymbol{t}_{3}=-\boldsymbol{\omega}_{2}-\boldsymbol{\omega}_{4}, and 𝒕4=𝝎4\boldsymbol{t}_{4}=\boldsymbol{\omega}_{4}, the above is bounded by

Cp1,,p4=0md𝒋1,,𝒋4,𝒌1,,𝒌4d(i=14|h𝒋ih𝒌i|)4dd𝒖1d𝒖2d𝒖3d𝒖4i=14|C(𝒖i)|\displaystyle C\sum_{p_{1},\cdots,p_{4}=0}^{m_{d}}\sum_{\boldsymbol{j}_{1},\dots,\boldsymbol{j}_{4},\boldsymbol{k}_{1},\dots,\boldsymbol{k}_{4}\in\mathbb{Z}^{d}}\left(\prod_{i=1}^{4}|h_{\boldsymbol{j}_{i}}h_{\boldsymbol{k}_{i}}|\right)\int_{\mathbb{R}^{4d}}d\boldsymbol{u}_{1}d\boldsymbol{u}_{2}d\boldsymbol{u}_{3}d\boldsymbol{u}_{4}\prod_{i=1}^{4}|C(\boldsymbol{u}_{i})|
×4d|ψ~(𝒕1,𝒕2,𝒕3,𝒕4)|×|cDn,p1(𝒖1)(𝒕12π(𝒋1+𝒌1)/𝑨)\displaystyle~{}~{}\times\int_{\mathbb{R}^{4d}}|\widetilde{\psi}(\boldsymbol{t}_{1},\boldsymbol{t}_{2},\boldsymbol{t}_{3},\boldsymbol{t}_{4})|\times\bigg{|}c_{D_{n,p_{1}}(\boldsymbol{u}_{1})}(\boldsymbol{t}_{1}-2\pi(\boldsymbol{j}_{1}+\boldsymbol{k}_{1})/\boldsymbol{A})
×cDn,p2(𝒖2)(𝒕22π(𝒋2+𝒌2)/𝑨)cDn,p3(𝒖3)(𝒕32π(𝒋3+𝒌3)/𝑨)\displaystyle~{}~{}\times c_{D_{n,p_{2}}(\boldsymbol{u}_{2})}(\boldsymbol{t}_{2}-2\pi(\boldsymbol{j}_{2}+\boldsymbol{k}_{2})/\boldsymbol{A})c_{D_{n,p_{3}}(\boldsymbol{u}_{3})}(\boldsymbol{t}_{3}-2\pi(\boldsymbol{j}_{3}+\boldsymbol{k}_{3})/\boldsymbol{A})
×cDn,p4(𝒖4)((𝒕1+𝒕2+𝝎3)+𝝎42π(𝒋4+𝒌4)/𝑨)|d𝒕1d𝒕2d𝒕3d𝒕4,\displaystyle~{}~{}\times c_{D_{n,p_{4}}(\boldsymbol{u}_{4})}(-(\boldsymbol{t}_{1}+\boldsymbol{t}_{2}+\boldsymbol{\omega}_{3})+\boldsymbol{\omega}_{4}-2\pi(\boldsymbol{j}_{4}+\boldsymbol{k}_{4})/\boldsymbol{A})\bigg{|}d\boldsymbol{t}_{1}d\boldsymbol{t}_{2}d\boldsymbol{t}_{3}d\boldsymbol{t}_{4},

where ψ~(𝒕1,𝒕2,𝒕3,𝒕4)\widetilde{\psi}(\boldsymbol{t}_{1},\boldsymbol{t}_{2},\boldsymbol{t}_{3},\boldsymbol{t}_{4}) is a bounded function with compact support.

By using Lemma C.3(d),(e) the term in integral with respect to d𝒕1d𝒕2d𝒕3d𝒕4d\boldsymbol{t}_{1}d\boldsymbol{t}_{2}d\boldsymbol{t}_{3}d\boldsymbol{t}_{4} is uniformly bounded above. With this observation together with jd|h𝒋|\sum_{j\in\mathbb{Z}^{d}}|h_{\boldsymbol{j}}| and C(𝒖)L1(d)C(\boldsymbol{u})\in L^{1}(\mathbb{R}^{d}), the above term is O(1)O(1) as nn\rightarrow\infty. Therefore, we conclude that the decomposition of (F.19) associated with (F.20) is O(1)O(1) as nn\rightarrow\infty.

Similarly, all other terms in the indecomposable partition are O(1)O(1) as nn\rightarrow\infty. Thus, supn|κ4(G~h,n(ϕ))|<\sup_{n\in\mathbb{N}}|\kappa_{4}(\widetilde{G}_{h,n}(\phi))|<\infty and this shows (F.17).

Lastly, once we verify (F.17), the Lyapunov condition in (F.16) is also true, thus, combining this with Theorem F.4, we obtain the desired results. \Box

Appendix G Estimation of the asymptotic variance

Recall the integrated periodgram A^h,n(ϕ)\widehat{A}_{h,n}(\phi) in (4.1). By Theorem 4.1, the (1α)(1-\alpha) (α(0,1)\alpha\in(0,1)) confidence interval of the spectral mean A(ϕ)A(\phi) of form (4.1) is

A^h,n(ϕ)±z1α/2|Dn|1/2(2π)d/2(Hh,41/2/Hh,2)Ω1+Ω2,\widehat{A}_{h,n}(\phi)\pm\frac{z_{1-\alpha/2}}{|D_{n}|^{1/2}}(2\pi)^{d/2}(H_{h,4}^{1/2}/H_{h,2})\sqrt{\Omega_{1}+\Omega_{2}},

where z1α/2z_{1-\alpha/2} is the (1α/2)(1-\alpha/2)-th quantile of the standard normal random variable and Ω1\Omega_{1} and Ω2\Omega_{2} are defined as in (4.5). The quantity Ω1+Ω2\Omega_{1}+\Omega_{2} is in terms of the unknown spectral density function and complete fourth-order spectral density function. In this section, we sketch the procedure to estimate the asymptotic variance limn|Dn|var(A^h,n(ϕ))=(2π)d(Hh,4/Hh,22)(Ω1+Ω2)\lim_{n\rightarrow\infty}|D_{n}|\mathrm{var}(\widehat{A}_{h,n}(\phi))=(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})(\Omega_{1}+\Omega_{2}) by the mean of subsampling.

To ease the presentation, we assume that |Dn||D_{n}| grows proportional to ndn^{d} as nn\rightarrow\infty. Thus the side lengthes A1,,AdA_{1},\cdots,A_{d} increases proportional to order of nn. For nn\in\mathbb{N}, let 0<a1<a2<0<a_{1}<a_{2}<\dots be a sequence of increasing numbers such that an=o(n)a_{n}=o(n) as nn\rightarrow\infty. Therefore, we have limnan/Ai(n)=0\lim_{n\rightarrow\infty}a_{n}/A_{i}(n)=0 for any i{1,,d}i\in\{1,\dots,d\}. Now, let

Tn={𝒌:𝒌dandBn(𝒌)=𝒌+[an/2,an/2]dDn},n.T_{n}=\{\boldsymbol{k}:\boldsymbol{k}\in\mathbb{Z}^{d}~{}~{}\text{and}~{}~{}B_{n}^{(\boldsymbol{k})}=\boldsymbol{k}+[-a_{n}/2,a_{n}/2]^{d}\subset D_{n}\},\quad n\in\mathbb{N}.

Unlike the subrectangle Dn(𝒌)D_{n}^{(\boldsymbol{k})} in Appendix F, {Bn(𝒌)}𝒌Tn\{B_{n}^{(\boldsymbol{k})}\}_{\boldsymbol{k}\in T_{n}} are the subrectangles of DnD_{n} that can be overlapped. For nn\in\mathbb{N} and 𝒌Tn\boldsymbol{k}\in T_{n}, we define subsampling analogous of the DFT by

𝕁h,n(𝒌)(𝝎)=(2π)d/2Hh,21/2|Bn(𝒌)|1/2𝒙XBn(𝒌)h(an1(𝒙𝒌))exp(i𝒙𝝎),𝝎d.\mathbb{J}_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})=(2\pi)^{-d/2}H_{h,2}^{-1/2}|B_{n}^{(\boldsymbol{k})}|^{-1/2}\sum_{\boldsymbol{x}\in X\cap B_{n}^{(\boldsymbol{k})}}h(a_{n}^{-1}(\boldsymbol{x}-\boldsymbol{k}))\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega}),\quad\boldsymbol{\omega}\in\mathbb{R}^{d}.

Note that the above definition is slightly different from 𝒥h,n(𝒌)(𝝎)\mathcal{J}_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega}) of (F.4) since 𝕁h,n(𝒌)()\mathbb{J}_{h,n}^{(\boldsymbol{k})}(\cdot) alters the data taper function for each subretangle. By simple calculation, we have 𝔼[𝕁h,n(𝒌)(𝝎)]=λch,n(𝒌)(𝝎)\mathbb{E}[\mathbb{J}_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})]=\lambda c_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega}), where for nn\in\mathbb{N}, 𝒌Tn\boldsymbol{k}\in T_{n}, and 𝝎d\boldsymbol{\omega}\in\mathbb{R}^{d},

ch,n(𝒌)(𝝎)=(2π)d/2Hh,21/2|Bn(𝒌)|1/2exp(i𝒌𝝎)[an/2,an/2]dh(an1𝒙)exp(i𝒙𝝎)d𝒙.c_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})=(2\pi)^{-d/2}H_{h,2}^{-1/2}|B_{n}^{(\boldsymbol{k})}|^{-1/2}\exp(i\boldsymbol{k}^{\top}\boldsymbol{\omega})\int_{[-a_{n}/2,a_{n}/2]^{d}}h(a_{n}^{-1}\boldsymbol{x})\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega})d\boldsymbol{x}.

Therefore, the subsample version of the integrated periodogram is given by

A^h,n(𝒌)(ϕ)=Dϕ(𝝎)|𝕁h,n(𝒌)(𝝎)λ^h,nch,n(𝒌)(𝝎)|2d𝝎,n,𝒌Tn,\widehat{A}_{h,n}^{(\boldsymbol{k})}(\phi)=\int_{D}\phi(\boldsymbol{\omega})\left|\mathbb{J}_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})-\widehat{\lambda}_{h,n}c_{h,n}^{(\boldsymbol{k})}(\boldsymbol{\omega})\right|^{2}d\boldsymbol{\omega},\quad n\in\mathbb{N},\quad\boldsymbol{k}\in T_{n},

where λ^h,n\widehat{\lambda}_{h,n} is an unbiased tapered estimator of the first-order intensity function. In practice, one can approximate A^h,n(𝒌)(ϕ)\widehat{A}_{h,n}^{(\boldsymbol{k})}(\phi) using Riemann sum as outlined in Section 7.1. Now, our subsampling estimator of the asymptotic variance of |Dn|var(A^h,n(ϕ))|D_{n}|\mathrm{var}(\widehat{A}_{h,n}(\phi)) is

ζn=αnd|Tn|𝒌Tn{A^h,n(𝒌)(ϕ)|Tn|1𝒋TnA^h,n(𝒌)(ϕ)}2,n,\zeta_{n}=\frac{\alpha_{n}^{d}}{|T_{n}|}\sum_{\boldsymbol{k}\in T_{n}}\left\{\widehat{A}_{h,n}^{(\boldsymbol{k})}(\phi)-|T_{n}|^{-1}\sum_{\boldsymbol{j}\in T_{n}}\widehat{A}_{h,n}^{(\boldsymbol{k})}(\phi)\right\}^{2},\quad n\in\mathbb{N},

where αnd\alpha_{n}^{d} is the common volume of Bn(𝒌)B_{n}^{(\boldsymbol{k})}. Under appropriate moment and mixing conditions such as conditions (𝒮1)(\mathcal{S}1)(𝒮6(\mathcal{S}6) in Biscio and Waagepetersen (2019) (page 1174), one may expect that ζn\zeta_{n} is a consistent estimator of the asymptotic variance (2π)d(Hh,4/Hh,22)(Ω1+Ω2)(2\pi)^{d}(H_{h,4}/H_{h,2}^{2})(\Omega_{1}+\Omega_{2}). A rigourous proof of the sampling properties of ζn\zeta_{n} will be reported in future research.

Appendix H Additional simulation results

H.1 Computation and illustration of the kernel spectral density estimator

In this section, we describe the computation of the kernel spectral density estimator and provide illustrations. Recall f^n,b(𝝎)\widehat{f}_{n,b}(\boldsymbol{\omega}) in (3.8). Since f^n,b(𝝎)\widehat{f}_{n,b}(\boldsymbol{\omega}) has an integral form, Riemann sum approximation of f^n,b(𝝎)\widehat{f}_{n,b}(\boldsymbol{\omega}) is

f^n,b(R)(𝝎)\displaystyle\widehat{f}_{n,b}^{(R)}(\boldsymbol{\omega}) =\displaystyle= 𝒌dWb(𝝎𝝎𝒌,A)I^h,n(𝝎𝒌,A)𝒌dWb(𝝎𝝎𝒌,A),𝝎d,\displaystyle\frac{\sum_{\boldsymbol{k}\in\mathbb{Z}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{\omega}_{\boldsymbol{k},A})\widehat{I}_{h,n}(\boldsymbol{\omega}_{\boldsymbol{k},A})}{\sum_{\boldsymbol{k}\in\mathbb{Z}^{d}}W_{b}(\boldsymbol{\omega}-\boldsymbol{\omega}_{\boldsymbol{k},A})},\quad\boldsymbol{\omega}\in\mathbb{R}^{d}, (H.1)

where A>0A>0 is the side length of the observation domain Dn=[A/2,A/2]dD_{n}=[-A/2,A/2]^{d} and 𝝎𝒌,A=2π𝒌/A\boldsymbol{\omega}_{\boldsymbol{k},A}=2\pi\boldsymbol{k}/A for 𝒌d\boldsymbol{k}\in\mathbb{Z}^{d}. The summation above is a finite sum due to the fact that Wb()W_{b}(\cdot) has a support [b/2,b/2]d[-b/2,b/2]^{d}. For a selection of the kernel function, we choose a triangular kernel W(𝒙)=W(x1)W(x2)W(\boldsymbol{x})=W(x_{1})W(x_{2}) for 𝒙=(x1,x2)2\boldsymbol{x}=(x_{1},x_{2})^{\top}\in\mathbb{R}^{2} where W(x)=2max{12|x|,0}W(x)=2\max\{1-2|x|,0\}. The bandwidth b(0,)b\in(0,\infty) is set at b=|Dn|1/6b=|D_{n}|^{-1/6} which is an optimal rate in the sense of mean-squared error criterion (see Ding et al. (2024), Section 6.1 for details).

In top panels of Figure H.1 below, we calculate f^n,b(R)(𝝎)\widehat{f}_{n,b}^{(R)}(\boldsymbol{\omega}) of each periodogram that are computed in the bottom panels of Figure 1. In the middle panels, we evaluate the absolute biases of I^h,n\widehat{I}_{h,n} and in the bottom panels, we evaluate the absolute biases of f^n,b(R)\widehat{f}_{n,b}^{(R)}.

Kernel spectral density estimator (KSDE)

Refer to caption

Absolute bias of the periodogram

Refer to caption

Absolute bias of the KSDE

Refer to caption
Figure H.1: Top: Kernel spectral density estimators as in (H.1) of the periodograms that are computed in the bottom panels of Figure 1. Middle: |I^h,n(𝛚)f(𝛚)||\widehat{I}_{h,n}(\boldsymbol{\omega})-f(\boldsymbol{\omega})| for each model. Bottom: f^n,b(R)(𝛚)f(𝛚)|\widehat{f}_{n,b}^{(R)}(\boldsymbol{\omega})-f(\boldsymbol{\omega})| for each model.

For all models, the absolute bias of the periodograms (middle panels) have similar patterns to those of the corresponding spectral density functions. This can be explained by using Theorem 3.1 that |I^h,n(𝝎)f(𝝎)|var(I^h,n(𝝎))1/2=f(𝝎)|\widehat{I}_{h,n}(\boldsymbol{\omega})-f(\boldsymbol{\omega})|\approx\mathrm{var}(\widehat{I}_{h,n}(\boldsymbol{\omega}))^{1/2}=f(\boldsymbol{\omega}) for 𝝎d\{0}\boldsymbol{\omega}\in\mathbb{R}^{d}\backslash\{\textbf{0}\}. Therefore, the middle panels indicate that the periodogram is inconsistent. However, the absolute bias of the smoothed periodograms (bottom panels) are nearly zero across all frequencies and all models. This solidifies the thoeretical results in Thoerem 3.3 which states that f^n,b(𝝎)\widehat{f}_{n,b}(\boldsymbol{\omega}) is a consistent estimator of f(𝝎)f(\boldsymbol{\omega}) for all 𝝎d\boldsymbol{\omega}\in\mathbb{R}^{d}.

H.2 Computation of the periodograms

In this section, we discuss an implementation of computing periodograms to evaluate the discretized Whittle likelihood in (7.2). For the simplicity, we assume d=2d=2. The cases when d=1d=1 or d{3,4,}d\in\{3,4,\dots\} can be treated similarly.

Let the observation window be Dn=[A1/2,A1/2]×[A2/2,A2/2]D_{n}=[-A_{1}/2,A_{1}/2]\times[-A_{2}/2,A_{2}/2] for A1,A2(0,)A_{1},A_{2}\in(0,\infty). Suppose that the prespecified domain D2D\subset\mathbb{R}^{2} has a rectangle form centered at the origin, thus the gridded version of DD, denotes Dgrid={2π𝒌/Ω:𝒌2,2π𝒌/ΩD}D_{\text{grid}}=\{2\pi\boldsymbol{k}/\Omega:\boldsymbol{k}\in\mathbb{Z}^{2},2\pi\boldsymbol{k}/\Omega\in D\}, also forms a rectangular grid. Let this retangular grid can be written as Dgrid={(2πk1/Ω,2πk2/Ω):|ki|ai,ki}D_{\text{grid}}=\{(2\pi k_{1}/\Omega,2\pi k_{2}/\Omega):|k_{i}|\leq a_{i},~{}~{}k_{i}\in\mathbb{Z}\} for some a1,a2a_{1},a_{2}\in\mathbb{N}. Suppose further that data taper function is separable, i.e., h(𝒙)=h1(x1)h2(x2)h(\boldsymbol{x})=h_{1}(x_{1})h_{2}(x_{2}) for some h1,h2h_{1},h_{2} and let

ui(ω,A)=Hi(n)(ω)=A/2A/2hi(x/A)exp(ixω)dx,i{1,2}.u_{i}(\omega,A)=H_{i}^{(n)}(\omega)=\int_{-A/2}^{A/2}h_{i}(x/A)\exp(-ix\omega)dx,\quad i\in\{1,2\}. (H.2)

We will assume that ui(ω,A)u_{i}(\omega,A) has a closed form expression, thus, there is no additional computational burden to approximate the integral in uiu_{i}.

Now, we will discuss an efficient way to compute {I^h,n(𝝎):𝝎Dgrid}\{\widehat{I}_{h,n}(\boldsymbol{\omega}):\boldsymbol{\omega}\in D_{\text{grid}}\} based on the observed point pattern {𝒙j=(xj,1,xj,2):1jm}\{\boldsymbol{x}_{j}=(x_{j,1},x_{j,2})^{\top}:1\leq j\leq m\} in DnD_{n}. From its definition, I^h,n(𝝎)=|𝒥h,n(𝝎)λ^h,nch,n(𝝎)|2\widehat{I}_{h,n}(\boldsymbol{\omega})=|\mathcal{J}_{h,n}(\boldsymbol{\omega})-\widehat{\lambda}_{h,n}c_{h,n}(\boldsymbol{\omega})|^{2} where 𝒥h,n(𝝎)\mathcal{J}_{h,n}(\boldsymbol{\omega}) and ch,n(𝝎)c_{h,n}(\boldsymbol{\omega}) are as in (2.8) and (2.10), respectively. Therefore, we will compute 𝒥h,n(𝝎)\mathcal{J}_{h,n}(\boldsymbol{\omega}) and ch,n(𝝎)c_{h,n}(\boldsymbol{\omega}) separately. Since hh is separable, the tapered DFT can be written as 𝒥h,n(2π𝒌/Ω)=Cj=1mv1(xj,1,k1)v2(xj,2,k2)\mathcal{J}_{h,n}(2\pi\boldsymbol{k}/\Omega)=C\sum_{j=1}^{m}v_{1}(x_{j,1},k_{1})v_{2}(x_{j,2},k_{2}), where C=(2π)d/2Hh,21/2|Dn|1/2C=(2\pi)^{-d/2}H_{h,2}^{-1/2}|D_{n}|^{-1/2} and vi(x,k)=hj(x/Ai)exp(ix(2πk/Ω))v_{i}(x,k)=h_{j}(x/A_{i})\exp(-ix(2\pi k/\Omega)), i{1,2}i\in\{1,2\}. Then, the matrix form of {𝒥h,n(𝝎):𝝎Dgrid}\{\mathcal{J}_{h,n}(\boldsymbol{\omega}):\boldsymbol{\omega}\in D_{\text{grid}}\} is equal to CV1V2CV_{1}^{\top}V_{2}, where for i{1,2}i\in\{1,2\},

Vi=[𝒗i(ai)|𝒗i(ai+1)||𝒗i(ai)],where𝒗i(k)=(vi(xi,1,k),,vi(xi,m,k)).V_{i}=[\boldsymbol{v}_{i}(-a_{i})|\boldsymbol{v}_{i}(-a_{i}+1)|\cdots|\boldsymbol{v}_{i}(a_{i})],\quad\text{where}\quad\boldsymbol{v}_{i}(k)=(v_{i}(x_{i,1},k),\dots,v_{i}(x_{i,m},k))^{\top}.

Next, we calculate ch,n(2π𝒌/Ω)c_{h,n}(2\pi\boldsymbol{k}/\Omega). Again using separability of hh, we have

ch,n(2π𝒌/Ω)=CHh,1(n)(2π𝒌/Ω)=Cu1(2πk1/Ω,A1)u2(2πk2/Ω,A2).c_{h,n}(2\pi\boldsymbol{k}/\Omega)=CH_{h,1}^{(n)}(2\pi\boldsymbol{k}/\Omega)=Cu_{1}(2\pi k_{1}/\Omega,A_{1})u_{2}(2\pi k_{2}/\Omega,A_{2}).

Here, CC is the same constant as above and u1,u2u_{1},u_{2} are as in (H.2). Therefore, a matrix form of {ch,n(𝝎):𝝎Dgrid}\{c_{h,n}(\boldsymbol{\omega}):\boldsymbol{\omega}\in D_{\text{grid}}\} is CU1U2CU_{1}U_{2}^{\top}, where

Ui=(ui(2π(ai)/Ω,A1),,ui(2π(ai)/Ω,A1)2ai+1.U_{i}=(u_{i}(2\pi(-a_{i})/\Omega,A_{1}),\dots,u_{i}(2\pi(a_{i})/\Omega,A_{1})^{\top}\in\mathbb{C}^{2a_{i}+1}.

These give algorithms for the fast computation of the periodogram on grid.

H.3 Additional Figures

In this section, we provide supplementary figures for the simulation results in Section 7.

Refer to caption
Refer to caption
Refer to caption
Figure H.2: Densities of the estimated parameters for the correctly specified Thomas clustering process model as in Section 7.2. Each row refers to different observation domains. Vertical dashed lines refer to the true parameter values.
Refer to caption
Refer to caption
Refer to caption
Figure H.3: Densities of the estimated parameters for the correctly specified determinantal point process with Gaussian kernel as in Section 7.2. Each row refers to different observation domains. Vertical dashed lines refer to the true parameter values.
Refer to caption
Refer to caption
Refer to caption
Figure H.4: Densities of the estimated parameters for the misspecified LGCP fitting with the full TCP model described as in Section 7.3. Each row refers to different observation domains. Dashed (green) and dotted (red) vertial lines refer to the best fitting TCP parameters as in (7.4) evaluated on D2πD_{2\pi} and D5πD_{5\pi}, respectively.

H.4 Additional simulations

As discussed in Section 7.3, in case the model misspecifies the true spatial point pattern, the best fitting model may not always accurately estimates the true first-intensity. In this section, we provide a potential remedy to overcome this issue by fitting the ”reduced” model.

For our simulation, we generate the same LGCP model on 2\mathbb{R}^{2} as in Section 7.3 and fit the Thomas clustering process (TCP) models with parameters (κ,α,σ2)(\kappa,\alpha,\sigma^{2})^{\top} as in Section 5.2. However, for each simulated point pattern, we constraint the parameter α=λ^/κ\alpha=\widehat{\lambda}/\kappa, where λ^\widehat{\lambda} is a nonparameteric unbiased estimator of the ”ture” first-order intensity. We denote this model with constraint as the ”reduced” TCP model. The reduced TCP model has two free parameters 𝜼=(κ,σ2)\boldsymbol{\eta}=(\kappa,\sigma^{2})^{\top} and the estimated first-order intensity for the fitted reduced TCP model is λ^\widehat{\lambda}. Therefore, the reduced TCP model corrected estimates the true first-order intensity.

For each simulation, we fit the reduced TCP model using three estimation methods: discrete version of our estimator as described in Section 7.1, maximum likelihood-based method using the log-Palm likelihood(ML; Tanaka et al. (2008)), and the minimum contrast method (MC). When evaluating our estimator, we follow the guidelines as in Section 7.1 and consider the two prespecified domains D2π={𝝎2:0.1π𝝎2π}D_{2\pi}=\{\boldsymbol{\omega}\in\mathbb{R}^{2}:0.1\pi\leq\|\boldsymbol{\omega}\|_{\infty}\leq 2\pi\} and D5π={𝝎2:0.1π𝝎5π}D_{5\pi}=\{\boldsymbol{\omega}\in\mathbb{R}^{2}:0.1\pi\leq\|\boldsymbol{\omega}\|_{\infty}\leq 5\pi\}.

Now, we consider the best fitting reduced TCP model. The (discretized) Whittle likelihood of the reduced model is

L(R)(𝜼)=𝝎𝒌,AD(I^h,n(𝝎𝒌,A)f𝜽(𝜼)(TCP)(𝝎𝒌,A)+logf𝜽(𝜼)(TCP)(𝝎𝒌,A)).L^{(R)}(\boldsymbol{\eta})=\sum_{\boldsymbol{\omega}_{\boldsymbol{k},A}\in D}\left(\frac{\widehat{I}_{h,n}(\boldsymbol{\omega}_{\boldsymbol{k},A})}{f_{\boldsymbol{\theta}(\boldsymbol{\eta})}^{(TCP)}(\boldsymbol{\omega}_{\boldsymbol{k},A})}+\log f_{\boldsymbol{\theta}(\boldsymbol{\eta})}^{(TCP)}(\boldsymbol{\omega}_{\boldsymbol{k},A})\right). (H.3)

Here, 𝜽(𝜼)=(κ,λ^/κ,σ2)\boldsymbol{\theta}(\boldsymbol{\eta})=(\kappa,\widehat{\lambda}/\kappa,\sigma^{2})^{\top}, A{10,20,40}A\in\{10,20,40\} is the side length of the observation window, and D{D2π,D5π}D\in\{D_{2\pi},D_{5\pi}\}. Then, we report 𝜼^(R)=argminL(R)(𝜼)\widehat{\boldsymbol{\eta}}^{(R)}=\arg\min L^{(R)}(\boldsymbol{\eta}). Since λ^\widehat{\lambda} varies by simulations, the best fitting reduced TCP parameters also varies by simulations. However, we note that under mild conditions, λ^\widehat{\lambda} consistently estimates the true first-order intensity λ(true)\lambda^{(true)}, the ”ideal” best reduced TCP parameters are 𝜼0(D,A)=argmin(R)(𝜼)\boldsymbol{\eta}_{0}(D,A)=\arg\min\mathcal{L}^{(R)}(\boldsymbol{\eta}), where

(R)(𝜼)=𝝎𝒌,AD(f(𝝎𝒌,A)f𝜽~(𝜼)(TCP)(𝝎𝒌,A)+logf𝜽~(𝜼)(TCP)(𝝎𝒌,A)),\mathcal{L}^{(R)}(\boldsymbol{\eta})=\sum_{\boldsymbol{\omega}_{\boldsymbol{k},A}\in D}\left(\frac{f(\boldsymbol{\omega}_{\boldsymbol{k},A})}{f_{\widetilde{\boldsymbol{\theta}}(\boldsymbol{\eta})}^{(TCP)}(\boldsymbol{\omega}_{\boldsymbol{k},A})}+\log f_{\widetilde{\boldsymbol{\theta}}(\boldsymbol{\eta})}^{(TCP)}(\boldsymbol{\omega}_{\boldsymbol{k},A})\right), (H.4)

where ff is the true spectral density function as in (7.3) and 𝜽~(𝜼)=(κ,λ(true)/κ,σ2)\widetilde{\boldsymbol{\theta}}(\boldsymbol{\eta})=(\kappa,\lambda^{(true)}/\kappa,\sigma^{2})^{\top}.

Table H.1 summarizes parameter estimation results. The results are also illustrated in Figure H.5. We note that as the observation domain increases, our estimators (for D2πD_{2\pi} and D5πD_{5\pi}) tend to converge to the corresponding (ideal) best fitting reduced TCP parameters. Whereas, the standard errors of the ML and MC estimator for σ2\sigma^{2} does not seem to significantly decrease to zero even for the sample points for few thousands (corresponds to the observation domain Dn=[20,20]2D_{n}=[-20,20]^{2}). Moreover, there is no clear evidence in Table H.1 and Figure H.5 that the parameter estimates for the ML and MC converge to some fixed non- diverging or non-shrinking parameters.

Window Par. Best Par. Method
D2πD_{2\pi} D5πD_{5\pi} Ours(D2πD_{2\pi}) Ours(D5πD_{5\pi}) ML MC
[5,5]2[-5,5]^{2} κ\kappa 0.22 0.25 0.38(0.25) 0.42(0.35) 0.28(0.34) 0.25(0.28)
σ2\sigma^{2} 0.09 0.08 0.13(0.12) 0.12(0.13) 0.19(0.15) 0.24(0.17)
Time(sec) 0.14 0.71 0.30 0.06
[10,10]2[-10,10]^{2} κ\kappa 0.21 0.24 0.27(0.09) 0.30(0.11) 0.13(0.06) 0.13(0.06)
σ2\sigma^{2} 0.09 0.08 0.10(0.04) 0.09(0.04) 0.34(0.17) 0.36(0.25)
Time(sec) 0.47 2.68 0.91 0.16
[20,20]2[-20,20]^{2} κ\kappa 0.21 0.24 0.23(0.05) 0.26(0.06) 0.09(0.03) 0.09(0.03)
σ2\sigma^{2} 0.09 0.08 0.10(0.02) 0.08(0.03) 0.41(0.19) 0.46(0.19)
Time(sec) 1.76 11.66 13.21 1.38
Table H.1: The mean and the standard errors (in the parentheses) of the estimated parameters for the misspecified LGCP fitting with the reduced TCP model. The best fitting parameters are calculated by minimizing (R)(𝛉)\mathcal{L}^{(R)}(\boldsymbol{\theta}) in (H.4). When evaluating our estimator, we use two different prespecified domains: D2πD_{2\pi} and D5πD_{5\pi}. The time is calculated as an averaged computational time (using a parallel computing in R on a desktop computer with an i7-10700 Intel CPU) of each method per one simulation from 500 independent replications.
Refer to caption
Refer to caption
Refer to caption
Figure H.5: Densities of the estimated parameters for the misspecified LGCP fitting with the reduced TCP model described as in Section H.4. Each row refers to different observation domains. Dashed (green) and dotted (red) vertial lines refer to the best fitting TCP parameters as in (H.4) evaluated on D2πD_{2\pi} and D5πD_{5\pi}, respectively.

Appendix I Spectral methods for nonstationary point processes

I.1 A new DFT for the intensity reweighted process

Recall the nnth-order intensity function λn\lambda_{n} as in (2.1). In this section, we do not presuppose the (second-order) stationarity of the point process XX. Instead, we let XX be a simple second-order intensity reweighted stationary (SOIRS) point process on d\mathbb{R}^{d} (Baddeley et al. (2000)). That is, there exists 2:d\ell_{2}:\mathbb{R}^{d}\rightarrow\mathbb{R} such that

γ2(𝒙1,𝒙2)λ1(𝒙1)λ1(𝒙2)=2(𝒙1𝒙2),𝒙1,𝒙2d,\frac{\gamma_{2}(\boldsymbol{x}_{1},\boldsymbol{x}_{2})}{\lambda_{1}(\boldsymbol{x}_{1})\lambda_{1}(\boldsymbol{x}_{2})}=\ell_{2}(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}),\quad\boldsymbol{x}_{1},\boldsymbol{x}_{2}\in\mathbb{R}^{d}, (I.1)

where λ1()\lambda_{1}(\cdot) is the first-order intensity that does not need to be a constant. The second-order stationary point processes fit within this framework by setting 2=λ2γ2,red\ell_{2}=\lambda^{-2}\gamma_{2,\text{red}}, where λ\lambda is the constant first-order intensity and γ2,red\gamma_{2,\text{red}} is the reduced second-order cumulant intensity function.

To leverage the Fourier methods developed for the stationary case, we consider a slight variant of the ordinary DFT defined in (2.8). The analogous large sample results for the ordinary DFT under the SOIRS framework are similar, with greater details provided in Ding et al. (2024).

Definition I.1 (Intensity reweighted DFT).

Let XX be an SOIRS spatial point process on DnD_{n} (nn\in\mathbb{N}) of form (2.6). Then, the intensity reweighted DFT (IR-DFT) with the data taper hh is defined as

𝒥h,n(IR)(𝝎;λ1)=(2π)d/2Hh,21/2|Dn|1/2𝒙XDnh(𝒙/𝑨)λ1(𝒙)exp(i𝒙𝝎),𝝎d.\mathcal{J}_{h,n}^{(IR)}(\boldsymbol{\omega};\lambda_{1})=(2\pi)^{-d/2}H_{h,2}^{-1/2}|D_{n}|^{-1/2}\sum_{\boldsymbol{x}\in X\cap D_{n}}\frac{h(\boldsymbol{x}/\boldsymbol{A})}{\lambda_{1}(\boldsymbol{x})}\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega}),\quad\boldsymbol{\omega}\in\mathbb{R}^{d}. (I.2)

Before investigating the theoretical properties of the IR-DFT, we draw a comparison between the IR-DFT and the ordinary DFT. Firstly, unlike the ordinary DFT, 𝒥h,n(IR)(𝝎;λ1)\mathcal{J}_{h,n}^{(IR)}(\boldsymbol{\omega};\lambda_{1}) is contingent on the underlying unknown first-order intensity function. Secondly, under stationarity, 𝒥h,n(IR)(𝝎;λ1)\mathcal{J}_{h,n}^{(IR)}(\boldsymbol{\omega};\lambda_{1}) and 𝒥h,n(𝝎)\mathcal{J}_{h,n}(\boldsymbol{\omega}) in (2.8) are related through 𝒥h,n(IR)(𝝎;λ)=λ1𝒥h,n(𝝎)\mathcal{J}_{h,n}^{(IR)}(\boldsymbol{\omega};\lambda)=\lambda^{-1}\mathcal{J}_{h,n}(\boldsymbol{\omega}), where λ\lambda is the constant first-order intensity. Lastly, by using (2.1), we have 𝔼[𝒥h,n(IR)(𝝎;λ1)]=ch,n(𝝎)\mathbb{E}[\mathcal{J}_{h,n}^{(IR)}(\boldsymbol{\omega};\lambda_{1})]=c_{h,n}(\boldsymbol{\omega}), where ch,n()c_{h,n}(\cdot) is the bias factor as defined in (2.10). Therefore, the expectation of the IR-DFT is a deterministic function depends solely on the data taper hh and the domain DnD_{n}.

By using the above bias expression, we now can define the theoretical centered IR-DFT and IR-periodogram respectively as

Jh,n(IR)(𝝎;λ1)=𝒥h,n(IR)(𝝎;λ1)ch,n(𝝎) and Ih,n(IR)(𝝎;λ1)=|Jh,n(IR)(𝝎;λ1)|2,𝝎d.J_{h,n}^{(IR)}(\boldsymbol{\omega};\lambda_{1})=\mathcal{J}_{h,n}^{(IR)}(\boldsymbol{\omega};\lambda_{1})-c_{h,n}(\boldsymbol{\omega})\text{~{}~{}and~{}~{}}I_{h,n}^{(IR)}(\boldsymbol{\omega};\lambda_{1})=|J_{h,n}^{(IR)}(\boldsymbol{\omega};\lambda_{1})|^{2},\quad\boldsymbol{\omega}\in\mathbb{R}^{d}. (I.3)

I.2 Asymptotic properties of the IR-DFT and IR-periodogram

In this section, we study asymptotic properties for the IR-DFT and IR-periodogram. To do so, we adopt a different asymptotic framework compared to the stationary case. This is because if we only rely on Assumption 3.1 as our asymptotic setup for general SOIRS processes, there is no gain in information of λ1(𝒙)\lambda_{1}(\boldsymbol{x}) at the fixed location 𝒙d\boldsymbol{x}\in\mathbb{R}^{d} as the domain DnD_{n} increases. Therefore, in a similar spirit to Dahlhaus (1997), we consider an infill-type asymptotic framework for the first-order intensity function below. For a domain WdW\in\mathbb{R}^{d}, we use the notation XWX_{W} to indicate the observations of XX are confined within WW.

Assumption I.1.

Let XDnX_{D_{n}} (nn\in\mathbb{N}) be a sequence of SOIRS processes defined on the increasing domain {Dn}\{D_{n}\} of form (2.6). Let λ1,n()\lambda_{1,n}(\cdot) and γ2,n(,)\gamma_{2,n}(\cdot,\cdot) be the first- and second-order cumulant intensity functions of XDnX_{D_{n}}, respectively. Then, the following structural assumptions on λ1,n()\lambda_{1,n}(\cdot) and γ2,n(,)\gamma_{2,n}(\cdot,\cdot) hold:

  • (i)

    For nn\in\mathbb{N}, λ1,n()\lambda_{1,n}(\cdot) is a strictly positive function on DnD_{n} and there exists non-negative function λ(𝒙)\lambda(\boldsymbol{x}), 𝒙d\boldsymbol{x}\in\mathbb{R}^{d}, with a compact support on [1/2,1/2]d[-1/2,1/2]^{d}, such that

    λ1,n(𝒙)=λ(𝒙/𝑨),n,𝒙Dn.\lambda_{1,n}(\boldsymbol{x})=\lambda(\boldsymbol{x}/\boldsymbol{A}),\quad n\in\mathbb{N},\quad\boldsymbol{x}\in D_{n}. (I.4)
  • (ii)

    For nn\in\mathbb{N} and 𝒙,𝒚Dn\boldsymbol{x},\boldsymbol{y}\in D_{n}, γ2,n(𝒙,𝒚)/(λ1,n(𝒙)λ1,n(𝒚))=2(𝒙𝒚)\gamma_{2,n}(\boldsymbol{x},\boldsymbol{y})/(\lambda_{1,n}(\boldsymbol{x})\lambda_{1,n}(\boldsymbol{y}))=\ell_{2}(\boldsymbol{x}-\boldsymbol{y}) where 2:d\ell_{2}:\mathbb{R}^{d}\rightarrow\mathbb{R} does not depend on nn.

Under Assumption I.1(i), the IR-DFT can be written as

𝒥h,n(IR)(𝝎;λ)=(2π)d/2Hh,21/2|Dn|1/2𝒙XDnh(𝒙/𝑨)λ(𝒙/𝑨)exp(i𝒙𝝎),𝝎d.\mathcal{J}_{h,n}^{(IR)}(\boldsymbol{\omega};\lambda)=(2\pi)^{-d/2}H_{h,2}^{-1/2}|D_{n}|^{-1/2}\sum_{\boldsymbol{x}\in X_{D_{n}}}\frac{h(\boldsymbol{x}/\boldsymbol{A})}{\lambda(\boldsymbol{x}/\boldsymbol{A})}\exp(-i\boldsymbol{x}^{\top}\boldsymbol{\omega}),\quad\boldsymbol{\omega}\in\mathbb{R}^{d}. (I.5)

Here, we use the notation λ\lambda instead of λ1\lambda_{1} to emphasize the asymptotic framework as in Assumption I.1(i). The centered IR-DFT and IR-periodogram, denoted by Jh,n(IR)(𝝎;λ)J_{h,n}^{(IR)}(\boldsymbol{\omega};\lambda) and Ih,n(IR)(𝝎;λ)I_{h,n}^{(IR)}(\boldsymbol{\omega};\lambda), respectively, can be defined similarly.

Theorem I.1 below addresses the asymptotic uncorrelatedness of the IR-DFTs.

Theorem I.1 (Asymptotic uncorrelatedness of the IR-DFT).

Let XDnX_{D_{n}} (nn\in\mathbb{N}) be a sequence SOIRS point processes that satisfy Assumption I.1. Suppose that Assumptions 3.1, 3.2 (for =2\ell=2), and Assumption 3.4(i) hold. Furthermore, λ()\lambda(\cdot) from (I.4) is strictly positive and continuous on [1/2,1/2]d[-1/2,1/2]^{d}. Let {𝛚1,n}\{\boldsymbol{\omega}_{1,n}\} and {𝛚2,n}\{\boldsymbol{\omega}_{2,n}\} be two asymptotic distant sequencies on d\mathbb{R}^{d}. Then,

limncov(Jh,n(IR)(𝝎1,n;λ),Jh,n(IR)(𝝎2,n;λ))=0.\lim_{n\rightarrow\infty}\mathrm{cov}(J_{h,n}^{(IR)}(\boldsymbol{\omega}_{1,n};\lambda),J_{h,n}^{(IR)}(\boldsymbol{\omega}_{2,n};\lambda))=0. (I.6)

If we further assume limn𝛚1,n=𝛚d\lim_{n\rightarrow\infty}\boldsymbol{\omega}_{1,n}=\boldsymbol{\omega}\in\mathbb{R}^{d}, then

limnvar(Jh,n(IR)(𝝎1,n;λ))=limn𝔼[Ih,n(IR)(𝝎;λ)]=(2π)dHh2/λ,1Hh,2+1(2)(𝝎).\lim_{n\rightarrow\infty}\mathrm{var}(J_{h,n}^{(IR)}(\boldsymbol{\omega}_{1,n};\lambda))=\lim_{n\rightarrow\infty}\mathbb{E}[I_{h,n}^{(IR)}(\boldsymbol{\omega};\lambda)]=(2\pi)^{-d}\frac{H_{h^{2}/\lambda,1}}{H_{h,2}}+\mathcal{F}^{-1}(\ell_{2})(\boldsymbol{\omega}). (I.7)
Proof.

To prove the theorem, we first start with the expression of the covariance of the IR-DFT. The proof of lemma below is almost identical to that of the proof of Lemma D.1 so we omit the details.

Lemma I.1.

Let XDnX_{D_{n}} (nn\in\mathbb{N}) be a sequence of SOIRS spatial point processes that satisfy Assumption I.1 and let hh be data taper such that sup𝛚dh(𝐱)<\sup_{\boldsymbol{\omega}\in\mathbb{R}^{d}}h(\boldsymbol{x})<\infty. Suppose that Assumption 3.2 for =2\ell=2 holds. Then,

cov(Jh,n(IR)(𝝎1;λ),Jh,n(IR)(𝝎2;λ))=(2π)dHh,21|Dn|1(Hh2/λ,1(n)(𝝎1𝝎2)\displaystyle\mathrm{cov}(J_{h,n}^{(IR)}(\boldsymbol{\omega}_{1};\lambda),J_{h,n}^{(IR)}(\boldsymbol{\omega}_{2};\lambda))=(2\pi)^{-d}H_{h,2}^{-1}|D_{n}|^{-1}\bigg{(}H_{h^{2}/\lambda,1}^{(n)}(\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2}) (I.8)
+Dn2h(𝒙/𝑨)h(𝒚/𝑨)ei(𝒙𝝎1𝒚𝝎2)2(𝒙𝒚)d𝒙d𝒚),𝝎1,𝝎2d.\displaystyle\quad+\int_{D_{n}^{2}}h(\boldsymbol{x}/\boldsymbol{A})h(\boldsymbol{y}/\boldsymbol{A})e^{-i(\boldsymbol{x}^{\top}\boldsymbol{\omega}_{1}-\boldsymbol{y}^{\top}\boldsymbol{\omega}_{2})}\ell_{2}(\boldsymbol{x}-\boldsymbol{y})d\boldsymbol{x}d\boldsymbol{y}\bigg{)},\quad\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2}\in\mathbb{R}^{d}.

Now, by utilizing expression (I.8) above, proofs of (I.6) and (I.7) are almost identical to those in the proof of Ding et al. (2024), Theorem 4.1 (we omit the details). ∎

Under second-order stationarity, an expectation of the periodogram converges to the spectral density function. Bearing this in mind, along with the limiting behavior in (I.7), we define the intensity reweighted pseudo-spectral density functions SOIRS processes.

Definition I.2 (Intensity reweighted pseudo-spectral density function).

Let XDnX_{D_{n}} (nn\in\mathbb{N}) be a sequence of SOIRS spatial point processes that satisfy Assumption I.1. Suppose 2\ell_{2} in (I.1) belongs to L1(d)L^{1}(\mathbb{R}^{d}). Then, the intensity reweighted pseudo-spectral density function (IR-PSD) of XDnX_{D_{n}} corresponding to the data taper hh is defined as

fh(IR)(𝝎)=(2π)dHh2/λ,1Hh,2+1(2)(𝝎),𝝎d.f_{h}^{(IR)}(\boldsymbol{\omega})=(2\pi)^{-d}\frac{H_{h^{2}/\lambda,1}}{H_{h,2}}+\mathcal{F}^{-1}(\ell_{2})(\boldsymbol{\omega}),\quad\boldsymbol{\omega}\in\mathbb{R}^{d}. (I.9)

It follows from (I.7) that fh(IR)f_{h}^{(IR)} is an even and non-negative function on d\mathbb{R}^{d}. However, unlike the classical spectral density function, the IR-PSD fh(IR)f_{h}^{(IR)} depends on the specify data taper function hh. Under stationarity, fh(IR)f_{h}^{(IR)} equals λ2f\lambda^{-2}f, where ff is the spectral density.

In the theorem below, we derive the asymptotic joint distribution of the theoretical IR-DFTs and IR-periodograms. The proof is almost identical to that of Theorem 3.2, so we omit the details.

Theorem I.2 (Asymptotic joint distribution of the IR-DFTs and IR-periodograms).

Let XDnX_{D_{n}} (nn\in\mathbb{N}) be a sequence of SOIRS spatial point processes that satisfy Assumption I.1. Suppose that Assumptions 3.1, 3.2 (for =4\ell=4), 3.3(i), and 3.4(i) hold. Furthermore, λ()\lambda(\cdot) from (I.4) is strictly positive and continuous on [1/2,1/2]d[-1/2,1/2]^{d}. For a fixed rr\in\mathbb{N}, {𝛚1,n}\{\boldsymbol{\omega}_{1,n}\}, …, {𝛚r,n}\{\boldsymbol{\omega}_{r,n}\} denote rr sequences on d\mathbb{R}^{d} that satisfy conditions (1) and (3) in the statement of Theorem 3.2. Then,

(Jh,n(IR)(𝝎1,n;λ)(12fh(IR)(𝝎1))1/2,,Jh,n(IR)(𝝎r,n;λ)(12fh(IR)(𝝎r))1/2)𝒟(Z1,,Zr),n,\left(\frac{J_{h,n}^{(IR)}(\boldsymbol{\omega}_{1,n};\lambda)}{(\frac{1}{2}f_{h}^{(IR)}(\boldsymbol{\omega}_{1}))^{1/2}},\dots,\frac{J_{h,n}^{(IR)}(\boldsymbol{\omega}_{r,n};\lambda)}{(\frac{1}{2}f_{h}^{(IR)}(\boldsymbol{\omega}_{r}))^{1/2}}\right)\stackrel{{\scriptstyle\mathcal{D}}}{{\rightarrow}}(Z_{1},\dots,Z_{r}),\quad n\rightarrow\infty,

where {Zk}k=1r\{Z_{k}\}_{k=1}^{r} are independent standard normal random variables on \mathbb{C}. By using continuous mapping theorem, we conclude

(Ih,n(IR)(𝝎1,n;λ)12fh(IR)(𝝎1),,Ih,n(IR)(𝝎r,n;λ)12fh(IR)(𝝎r))𝒟(χ21,,χ2r),n,\left(\frac{I_{h,n}^{(IR)}(\boldsymbol{\omega}_{1,n};\lambda)}{\frac{1}{2}f_{h}^{(IR)}(\boldsymbol{\omega}_{1})},\dots,\frac{I_{h,n}^{(IR)}(\boldsymbol{\omega}_{r,n};\lambda)}{\frac{1}{2}f_{h}^{(IR)}(\boldsymbol{\omega}_{r})}\right)\stackrel{{\scriptstyle\mathcal{D}}}{{\rightarrow}}(\chi^{2}_{1},\dots,\chi^{2}_{r}),\quad n\rightarrow\infty,

where {χ2k}k=1r\{\chi^{2}_{k}\}_{k=1}^{r} are independent chi-squared random variables with degrees of freedom two.