This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Fragmentation fraction fΩbf_{\Omega_{b}} and the ΩbΩJ/ψ\Omega_{b}\to\Omega J/\psi decay
in the light-front formalism

Yu-Kuo Hsiao yukuohsiao@gmail.com School of Physics and Information Engineering, Shanxi Normal University, Taiyuan, 030031    Chong-Chung Lih cclih@phys.nthu.edu.tw Department of Optometry, Central Taiwan University of Science and Technology, Taichung 40601
Abstract

One has measured fΩb(ΩbΩJ/Ψ)f_{\Omega_{b}}{\cal B}(\Omega_{b}^{-}\to\Omega^{-}J/\Psi) at the level of 10610^{-6}, where the fragmentation faction fΩbf_{\Omega_{b}} is to evaluate the bb-quark to Ωb\Omega_{b}^{-} production rate. Using the ΩbΩ\Omega_{b}\to\Omega transition form factors calculated in the light-front quark model, we predict (ΩbΩJ/Ψ)=(5.32.12.7+3.3+3.8)×104{\cal B}(\Omega_{b}^{-}\to\Omega^{-}J/\Psi)=(5.3^{+3.3+3.8}_{-2.1-2.7})\times 10^{-4}. In particular, we extract fΩb=(0.540.220.280.15+0.34+0.39+0.21)×102f_{\Omega_{b}}=(0.54^{+0.34+0.39+0.21}_{-0.22-0.28-0.15})\times 10^{-2}, demonstrating that the bb to Ωb\Omega_{b} productions are much more difficult than the bb to Λb(Ξb)\Lambda_{b}(\Xi_{b}) ones. Since fΩbf_{\Omega_{b}} has not been determined experimentally, fΩbf_{\Omega_{b}} added to theoretical branching fractions can be compared to future measurements of the Ωb\Omega_{b} decays.

I introduction

The anti-triplet bb-baryons (Λb,Ξb0,Ξb)(\Lambda_{b},\Xi_{b}^{0},\Xi_{b}^{-}) and Ωb\Omega_{b}^{-} all decay weakly pdg , where Ωb\Omega_{b} belongs to the sextet bb-baryon states. Interestingly, only Ωb\Omega_{b} is allowed to have a direct transition to 𝐁{\bf B}^{*} in the weak interaction, where 𝐁{\bf B}^{*} stands for a spin-3/2 decuplet baryon. This is due to the fact that Ωb\Omega_{b} and 𝐁{\bf B}^{*} both have totally symmetric quark orderings. By contrast, the anti-triplet baryon 𝐁b{\bf B}_{b} consisting of (q1q2q2q1)b(q_{1}q_{2}-q_{2}q_{1})b mismatches 𝐁{\bf B}^{*} with (q1q2+q2q1)q3(q_{1}q_{2}+q_{2}q_{1})q_{3} in the 𝐁b{\bf B}_{b} to 𝐁{\bf B}^{*} transition. Clearly, the Ωb\Omega_{b} decay into 𝐁{\bf B}^{*} worths an investigation.

One has barely measured the Ωb\Omega_{b} decays. Moreover, the fragmentation fraction f𝐁b(Ωb)f_{{\bf B}_{b}(\Omega_{b})} that evaluates the bb-quark to 𝐁b(Ωb){\bf B}_{b}(\Omega_{b}) production rate has not been determined yet. Consequently, the charmful Ωb\Omega_{b} decay channel ΩbΩJ/Ψ\Omega_{b}^{-}\to\Omega^{-}J/\Psi can only be partially measured. In addition to ΛbΛJ/ψ\Lambda_{b}\to\Lambda J/\psi and ΞbΞJ/ψ\Xi_{b}^{-}\to\Xi^{-}J/\psi, the partial branching fractions are given by pdg

fΩb(ΩbΩJ/Ψ)\displaystyle f_{\Omega_{b}}{\cal B}(\Omega_{b}^{-}\to\Omega^{-}J/\Psi) =\displaystyle= (2.90.8+1.1)×106,\displaystyle(2.9^{+1.1}_{-0.8})\times 10^{-6}\,,
fΛb(ΛbΛJ/ψ)\displaystyle f_{\Lambda_{b}}{\cal B}(\Lambda_{b}\to\Lambda J/\psi) =\displaystyle= (5.8±0.8)×105,\displaystyle(5.8\pm 0.8)\times 10^{-5}\,,
fΞb(ΞbΞJ/ψ)\displaystyle f_{\Xi_{b}}{\cal B}(\Xi_{b}^{-}\to\Xi^{-}J/\psi) =\displaystyle= (1.020.21+0.26)×105,\displaystyle(1.02^{+0.26}_{-0.21})\times 10^{-5}\,, (1)

where fΞb=fΞb(0)f_{\Xi_{b}}=f_{\Xi_{b}^{-(0)}}. Some theoretical attempts have been given to extract f𝐁b(Ωb)f_{{\bf B}_{b}(\Omega_{b})} Hsiao:2015cda ; Hsiao:2015txa ; Jiang:2018iqa . Using the calculations of (ΛbΛJ/ψ){\cal B}(\Lambda_{b}\to\Lambda J/\psi) and (ΞbΞJ/ψ){\cal B}(\Xi_{b}^{-}\to\Xi^{-}J/\psi) Hsiao:2015cda ; Hsiao:2015txa , one extracts fΛbf_{\Lambda_{b}} and fΞbf_{\Xi_{b}} as some certain numbers. Without a careful study of ΩbΩJ/Ψ\Omega_{b}^{-}\to\Omega^{-}J/\Psi Hsiao:2015cda ; Hsiao:2015txa , it is roughly estimated that fΩb<0.108f_{\Omega_{b}}<0.108. Therefore, it can be an important task to explore the charmful ΩbΩJ/Ψ\Omega_{b}^{-}\to\Omega^{-}J/\Psi decay.

See Fig. 1, ΩbΩJ/Ψ\Omega_{b}^{-}\to\Omega^{-}J/\Psi is depicted to proceed through the ΩbΩ\Omega_{b}^{-}\to\Omega^{-} transition, while J/ΨJ/\Psi is produced from the internal WW-boson emission. To calculate the branching fraction, the information of the ΩbΩ\Omega_{b}\to\Omega transition is required. On the other hand, the light-front quark model has provided its calculation on the ΩcΩ\Omega_{c}\to\Omega transition form factors, such that one interprets the relative branching fractions of Ωc0Ωρ+\Omega_{c}^{0}\to\Omega^{-}\rho^{+} and Ωc0Ω+ν¯\Omega_{c}^{0}\to\Omega^{-}\ell^{+}\bar{\nu}_{\ell} to that of Ωπ+\Omega^{-}\pi^{+} Hsiao:2020gtc . Therefore, we propose to calculate the ΩbΩ\Omega_{b}^{-}\to\Omega^{-} transition form factors in the light-front formalism, as applied to the Ωc\Omega_{c} decays as well as the other heavy hadron decays Zhao:2018zcb ; Bakker:2003up ; Ji:2000rd ; Bakker:2002aw ; Choi:2013ira ; Cheng:2003sm ; Schlumpf:1992vq ; Hsiao:2019wyd ; Jaus:1991cy ; Melosh:1974cu ; Dosch:1988hu ; Zhao:2018mrg ; Geng:2013yfa ; Geng:2000if ; Ke:2012wa ; Ke:2017eqo ; Ke:2019smy ; Hu:2020mxk ; Chung:1988mu . We will be able to predict (ΩbΩJ/Ψ){\cal B}(\Omega_{b}^{-}\to\Omega^{-}J/\Psi), and extract fΩbf_{\Omega_{b}}. Besides, we will compare the branching fractions of ΩbΩJ/Ψ\Omega_{b}^{-}\to\Omega^{-}J/\Psi, ΛbΛJ/ψ\Lambda_{b}\to\Lambda J/\psi and ΞbΞJ/ψ\Xi_{b}^{-}\to\Xi^{-}J/\psi, and their fragmentation fractions.

II Formalism

Refer to caption
Figure 1: Feynman diagram for ΩbΩJ/Ψ\Omega_{b}^{-}\to\Omega^{-}J/\Psi.

According to Fig. 1, the amplitude of ΩbΩJ/Ψ\Omega_{b}^{-}\to\Omega^{-}J/\Psi combines the matrix elements of the ΩbΩ\Omega_{b}^{-}\to\Omega^{-} transition and J/ΨJ/\Psi production, written as Hsiao:2015cda ; Hsiao:2015txa

(ΩbΩJ/Ψ)\displaystyle{\cal M}(\Omega_{b}^{-}\to\Omega^{-}J/\Psi) =\displaystyle= GF2VcbVcsa2J/ψ|c¯γμ(1γ5)c|0Ω|s¯γμ(1γ5)b|Ωb,\displaystyle\frac{G_{F}}{\sqrt{2}}V_{cb}V_{cs}^{*}a_{2}\,\langle J/\psi|\bar{c}\gamma^{\mu}(1-\gamma_{5})c|0\rangle\langle\Omega^{-}|\bar{s}\gamma_{\mu}(1-\gamma_{5})b|\Omega_{b}^{-}\rangle\,, (2)

where GFG_{F} is the Fermi constant, and Vcb(s)()V_{cb(s)}^{(*)} the Cabibbo-Kobayashi-Maskawa (CKM) matrix element. The factorization derives that a2=c2eff+c1eff/Nca_{2}=c_{2}^{eff}+c_{1}^{eff}/N_{c}, where c1,2effc_{1,2}^{eff} are the effective Wilson coefficients, and NcN_{c} the color number ali ; Hsiao:2014mua . For the J/ΨJ/\Psi production, the matrix elements read Becirevic:2013bsa

J/ψ|c¯γμ(1γ5)c|0=mJ/ψfJ/ψεμ,\displaystyle\langle J/\psi|\bar{c}\gamma^{\mu}(1-\gamma_{5})c|0\rangle=m_{J/\psi}f_{J/\psi}\varepsilon_{\mu}^{*}\,, (3)

where mJ/ψm_{J/\psi}, fJ/ψf_{J/\psi} and εμ\varepsilon_{\mu}^{*} are the mass, decay constant and polarization four-vector, respectively. The matrix elements of the Ωb(bss)Ω(sss)\Omega_{b}^{-}(bss)\to\Omega^{-}(sss) transition are parameterized as Zhao:2018mrg ; Gutsche:2018utw

TμΩ(sss)|s¯γμ(1γ5)b|Ωb(bss)\displaystyle\langle T^{\mu}\rangle\equiv\langle\Omega(sss)|\bar{s}\gamma^{\mu}(1-\gamma_{5})b|\Omega_{b}(bss)\rangle
=u¯α[PαM(γμF1V+PμMF2V+PμMF3V)+gαμF4V]γ5u\displaystyle=\bar{u}_{\alpha}\left[\frac{P^{\alpha}}{M}\left(\gamma^{\mu}F^{V}_{1}+\frac{P^{\mu}}{M}F^{V}_{2}+\frac{P^{\,\prime\mu}}{M^{\prime}}F^{V}_{3}\right)+g^{\alpha\mu}F^{V}_{4}\right]\gamma_{5}u
u¯α[PαM(γμF1A+PμMF2A+PμMF3A)+gαμF4A]u,\displaystyle\quad-\bar{u}_{\alpha}\left[\frac{P^{\alpha}}{M}\left(\gamma^{\mu}F^{A}_{1}+\frac{P^{\mu}}{M}F^{A}_{2}+\frac{P^{\,\prime\mu}}{M^{\prime}}F^{A}_{3}\right)+g^{\alpha\mu}F^{A}_{4}\right]u\,, (4)

where M()M^{(\prime)} and P()P^{(\prime)} represent the mass and momentum of Ωb(Ω)\Omega_{b}(\Omega), respectively, and FiV,AF^{V,A}_{i} (i=1,2,..,4i=1,2,..,4) are the form factors. By substituting the matrix elements of Eqs. (3, II) for those of Eq. (2), we derive the amplitude in the helicity basis Gutsche:2018utw ,

\displaystyle{\cal M} =\displaystyle= cWλΩ,λJ(HλΩλJVHλΩλJA),\displaystyle c_{W}\sum_{\lambda_{\Omega},\lambda_{J}}(H^{V}_{\lambda_{\Omega}\lambda_{J}}-H^{A}_{\lambda_{\Omega}\lambda_{J}})\,, (5)

where cW(GF/2)VcbVcsa2mJ/ψfJ/ψc_{W}\equiv(G_{F}/\sqrt{2})V_{cb}V_{cs}^{*}\,a_{2}m_{J/\psi}f_{J/\psi}, and λΩ=(±3/2,±1/2)\lambda_{\Omega}=(\pm 3/2,\pm 1/2) and λJ=(0,±1)\lambda_{J}=(0,\pm 1) denote the helicity states of Ω\Omega and J/ΨJ/\Psi, respectively. Due to the helicity conservation, λΩb=λΩλJ\lambda_{\Omega_{b}}=\lambda_{\Omega}-\lambda_{J} should be respected, where λΩb=±1/2\lambda_{\Omega_{b}}=\pm 1/2. Subsequently, we obtain Gutsche:2018utw

H120V(A)=23Q2q2[F1V(A)(Q±2M2MM)(F2V(A)+F3V(A)MM)(|P|2M)F4V(A)M¯],\displaystyle H_{\frac{1}{2}0}^{V(A)}=\sqrt{\frac{2}{3}\frac{Q^{2}_{\mp}}{q^{2}}}\left[F_{1}^{V(A)}\left(\frac{Q^{2}_{\pm}M_{\mp}}{2MM^{\prime}}\right)\mp\left(F_{2}^{V(A)}+F_{3}^{V(A)}\frac{M}{M^{\prime}}\right)\left(\frac{|\vec{P}^{\prime}|^{2}}{M^{\prime}}\right)\mp F_{4}^{V(A)}\bar{M}^{\prime}_{-}\right]\,,
H121V(A)=Q23[F1V(A)(Q±2MM)F4V(A)],\displaystyle H_{\frac{1}{2}1}^{V(A)}=-\sqrt{\frac{Q^{2}_{\mp}}{3}}\left[F_{1}^{V(A)}\left(\frac{Q^{2}_{\pm}}{MM^{\prime}}\right)-F_{4}^{V(A)}\right]\,,
H321V(A)=Q2F4V(A),\displaystyle H_{\frac{3}{2}1}^{V(A)}=\mp\sqrt{Q^{2}_{\mp}}\,F_{4}^{V(A)}\,, (6)

and HλΩλJV(A)=HλΩλfV(A)H^{V(A)}_{-\lambda_{\Omega}-\lambda_{J}}=\mp H^{V(A)}_{\lambda_{\Omega}\lambda_{f}}, with M±=M±MM_{\pm}=M\pm M^{\prime}, Q±2=M±2q2Q^{2}_{\pm}=M_{\pm}^{2}-q^{2}, M¯±()=(M+M±q2)/(2M())\bar{M}_{\pm}^{(\prime)}=(M_{+}M_{-}\pm q^{2})/(2M^{(\prime)}) and |P|=Q+2Q2/(2M)|\vec{P}^{\prime}|=\sqrt{Q^{2}_{+}Q^{2}_{-}}/(2M).

In the light-front quark model, we can calculate the form factors. To start with, we consider the baryon as a bound state that consists of three quarks q1q_{1}, q2q_{2} and q3q_{3}, where q2,3q_{2,3} are combined as a diquark, denoted by q[2,3]q_{[2,3]}. Explicitly, the baryon bound state can be written as Dosch:1988hu

|𝐁(P,S,Sz)={d3p1}{d3p2}\displaystyle|{\bf B}(P,S,S_{z})\rangle=\int\{d^{3}p_{1}\}\{d^{3}p_{2}\} (7)
×2(2π)3δ3(P~p~1p~2)λ1,λ2ΨSSz(p~1,p~2,λ1,λ2)|q1(p1,λ1)q[2,3](p2,λ2),\displaystyle\times 2(2\pi)^{3}\delta^{3}(\tilde{P}-\tilde{p}_{1}-\tilde{p}_{2})\sum_{\lambda_{1},\lambda_{2}}\Psi^{SS_{z}}(\tilde{p}_{1},\tilde{p}_{2},\lambda_{1},\lambda_{2})|q_{1}(p_{1},\lambda_{1})q_{[2,3]}(p_{2},\lambda_{2})\rangle\,,

where pip_{i} and λi\lambda_{i} stand for the momentum and helicity state, respectively, and ΨSSz(p~1,p~2,λ1,λ2)\Psi^{SS_{z}}(\tilde{p}_{1},\tilde{p}_{2},\lambda_{1},\lambda_{2}) is the momentum-space wave function. In the light-front frame, one defines P=(P,P+,P)P=(P^{-},P^{+},P_{\bot}) with P±=P0±P3P^{\pm}=P^{0}\pm P^{3} and P=(P1,P2)P_{\bot}=(P^{1},P^{2}), and pi=(pi,pi+,pi)p_{i}=(p_{i}^{-},p_{i}^{+},p_{i\bot}) with pi±=pi0±pi3p_{i}^{\pm}=p_{i}^{0}\pm p_{i}^{3} and pi=(pi1,pi2)p_{i\bot}=(p_{i}^{1},p_{i}^{2}), together with P~=(P+,P)\tilde{P}=(P^{+},P_{\bot}) and p~i=(pi+,pi)\tilde{p}_{i}=(p_{i}^{+},p_{i\bot}), which result in P+P=M2+P2P^{+}P^{-}=M^{2}+P_{\bot}^{2} and pi+pi=mi2+pi2p_{i}^{+}p_{i}^{-}={m_{i}^{2}+p_{i\bot}^{2}} with (m1,m2)=(mq1,mq2+mq3)(m_{1},m_{2})=(m_{q_{1}},m_{q_{2}}+m_{q_{3}}). Moreover, PP and pip_{i} are related as P+=p1++p2+P^{+}=p^{+}_{1}+p^{+}_{2} and P=p1+p2P_{\bot}=p_{1\bot}+p_{2\bot}, where

p1+=(1x)P+,p2+=xP+,\displaystyle p^{+}_{1}=(1-x)P^{+}\,,\;p^{+}_{2}=xP^{+}\,,\;
p1=(1x)Pk,p2=xP+k,\displaystyle p_{1\bot}=(1-x)P_{\bot}-k_{\bot}\,,\;p_{2\bot}=xP_{\bot}+k_{\bot}\,, (8)

with kk_{\perp} from k=(k,kz)\vec{k}=(k_{\perp},k_{z}) the relative momentum. By means of eimi2+k2e_{i}\equiv\sqrt{m^{2}_{i}+\vec{k}^{2}} the energy of the (di)quark and M0e1+e2M_{0}\equiv e_{1}+e_{2}, the above parameters can be rewritten as

(x,1x)=(e2kz,e1+kz)/(e1+e2),kz=xM02m22+k22xM0.\displaystyle(x,1-x)=(e_{2}-k_{z},e_{1}+k_{z})/(e_{1}+e_{2})\,,\;k_{z}=\frac{xM_{0}}{2}-\frac{m^{2}_{2}+k^{2}_{\perp}}{2xM_{0}}\,. (9)

In addition, we obtain M02=(m12+k2)/(1x)+(m22+k2)/xM_{0}^{2}=(m_{1}^{2}+k_{\bot}^{2})/(1-x)+(m_{2}^{2}+k_{\bot}^{2})/x. We also get (P¯μγμM0)u(P¯,Sz)=0(\bar{P}_{\mu}\gamma^{\mu}-M_{0})u(\bar{P},S_{z})=0 with P¯p1+p2\bar{P}\equiv p_{1}+p_{2}, where p1,2p_{1,2} describe the internal motions of the internal quarks. Under the Melosh transformation Melosh:1974cu , we derive ΨSSz\Psi^{SS_{z}} as Ke:2012wa ; Ke:2017eqo ; Zhao:2018mrg ; Hu:2020mxk

ΨSSz(p~1,p~2,λ1,λ2)\displaystyle\Psi^{SS_{z}}(\tilde{p}_{1},\tilde{p}_{2},\lambda_{1},\lambda_{2}) =\displaystyle= C2(p1P¯+m1M0)u¯(p1,λ1)Γu(P¯,Sz)ϕ(x,k),\displaystyle\sqrt{\frac{C}{2(p_{1}\cdot\bar{P}+m_{1}M_{0})}}\;\bar{u}(p_{1},\lambda_{1})\Gamma u(\bar{P},S_{z})\phi(x,k_{\perp})\,, (10)

where Γ=ΓS(ΓA(α))\Gamma=\Gamma_{S}(\Gamma_{A}^{(\alpha)}) represents the vertex function for the scalar (axial-vector) quantity of the diquark, given by Ke:2012wa ; Ke:2017eqo ; Zhao:2018mrg ; Hu:2020mxk

ΓS=1,\displaystyle\Gamma_{S}=1\,,\;
ΓA=13γ5ϵ/(p2,λ2),ΓAα=ϵα(p2,λ2).\displaystyle\Gamma_{A}=-\frac{1}{\sqrt{3}}\gamma_{5}\epsilon\!\!/^{*}(p_{2},\lambda_{2})\,,\;\Gamma_{A}^{\alpha}=\epsilon^{*\alpha}(p_{2},\lambda_{2})\,. (11)

Moreover, the parameter CC for (ΓS(A),ΓAα)(\Gamma_{S(A)},\Gamma_{A}^{\alpha}) is given by

C=(3(m1M0+p1P¯)3m1M0+p1P¯+2(p1p2)(p2P¯)/m22,3m22M022m22M02+(p2P¯)2).\displaystyle C=\bigg{(}\frac{3(m_{1}M_{0}+p_{1}\cdot\bar{P})}{3m_{1}M_{0}+p_{1}\cdot\bar{P}+2(p_{1}\cdot p_{2})(p_{2}\cdot\bar{P})/m_{2}^{2}}\,,\;\frac{3m_{2}^{2}M_{0}^{2}}{2m_{2}^{2}M_{0}^{2}+(p_{2}\cdot\bar{P})^{2}}\bigg{)}\,. (12)

In Eq. (10), ϕ(x,k)\phi(x,k_{\perp}) is the wave function that illustrates the momentum distribution of the constituent quark-diquark states. Here, we present ϕ(x,k)\phi(x,k_{\perp}) in the Gaussian form Hsiao:2020gtc ; Zhao:2018zcb ; Ke:2012wa ; Ke:2017eqo ; Zhao:2018mrg ; Hu:2020mxk ; Ke:2019smy :

ϕ(x,k)\displaystyle\phi(x,k_{\perp}) =\displaystyle= 4(πβ2)3/4e1e2x(1x)M0exp(k22β2),\displaystyle 4\left(\frac{\pi}{\beta^{2}}\right)^{3/4}\sqrt{\frac{e_{1}e_{2}}{x(1-x)M_{0}}}\exp\left(\frac{-\vec{k}^{2}}{2\beta^{2}}\right)\,, (13)

with ββb[ss](βs[ss])\beta\equiv\beta_{b[ss]}(\beta_{s[ss]}) to shape the momentum distribution of the bb-[ss][ss] (ss-[ss][ss]) system in the Ωb\Omega_{b} (Ω\Omega) bound state.

Using the bound states of |Ωb(P,S,Sz)|\Omega_{b}(P,S,S_{z})\rangle and |Ω(P,S,Sz)|\Omega(P,^{\prime}S^{\prime},S^{\prime}_{z})\rangle in Eq. (7) and the above identities, we derive the matrix elements of the ΩbΩ\Omega_{b}\to\Omega transition in the light-front frame, given by Zhao:2018mrg

T¯μ\displaystyle\langle\bar{T}^{\mu}\rangle \displaystyle\equiv Ω(P,S=3/2,Sz)|s¯γμ(1γ5)b|Ωb(P,S=1/2,Sz)\displaystyle\langle\Omega(P^{\,\prime},S^{\prime}=3/2,S_{z}^{\prime})|\bar{s}\gamma^{\mu}(1-\gamma_{5})b|\Omega_{b}(P,S=1/2,S_{z})\rangle (14)
=\displaystyle= {d3p2}C^1/2ϕ(x,k)ϕ(x,k)\displaystyle\int\{d^{3}p_{2}\}\hat{C}^{-1/2}\phi^{\prime}(x^{\prime},k_{\perp}^{\prime})\phi(x,k_{\perp})
×λ2u¯α(P¯,Sz)[Γ¯Aα(p/1+m1)γμ(1γ5)(p/1+m1)ΓA]u(P¯,Sz),\displaystyle\times\sum_{\lambda_{2}}\bar{u}_{\alpha}(\bar{P}^{\,\prime},S_{z}^{\,\prime})\left[\bar{\Gamma}^{\,\prime\alpha}_{A}(p\!\!/_{1}^{\prime}+m_{1}^{\prime})\gamma^{\mu}(1-\gamma_{5})(p\!\!/_{1}+m_{1})\Gamma_{A}\right]u(\bar{P},S_{z})\,,

where m1()=mb(s)m_{1}^{(\prime)}=m_{b(s)}, Γ¯=γ0Γγ0\bar{\Gamma}=\gamma^{0}\Gamma^{\dagger}\gamma^{0} and C^=4p1+p1+(p1P¯+m1M0)(p1P¯+m1M0)\hat{C}=4p_{1}^{+}p_{1}^{\prime+}(p_{1}\cdot\bar{P}+m_{1}M_{0})(p_{1}^{\prime}\cdot\bar{P}^{\,\prime}+m_{1}^{\prime}M_{0}^{\prime}).

To determine FiV,AF_{i}^{V,A}, the identities J(5)μu¯Γμβ(γ5)uβJ_{(5)}^{\mu}\equiv\bar{u}\Gamma^{\mu\beta}(\gamma_{5})u_{\beta} and J¯(5)μu¯Γ¯μβ(γ5)uβ\bar{J}_{(5)}^{\mu}\equiv\bar{u}\bar{\Gamma}^{\mu\beta}(\gamma_{5})u_{\beta} can be useful, where Γμβ=(γμPβ,PμPβ,PμPβ,gμβ)\Gamma^{\mu\beta}=(\gamma^{\mu}P^{\beta},P^{\,\prime\mu}P^{\beta},P^{\mu}P^{\beta},g^{\mu\beta}) and Γ¯μβ=(γμP¯β,P¯μP¯β,P¯μP¯β,gμβ)\bar{\Gamma}^{\mu\beta}=(\gamma^{\mu}\bar{P}^{\beta},\bar{P}^{\,\prime\mu}\bar{P}^{\beta},\bar{P}^{\mu}\bar{P}^{\beta},g^{\mu\beta}). We can hence perform the following calculations Zhao:2018mrg ; Hsiao:2020gtc ,

J5T\displaystyle J_{5}\cdot\langle T\rangle =\displaystyle= Tr{uβu¯α[PαM(γμF1V+PμMF2V+PμMF3V)+gαμF4V]γ5u¯Γμβγ5},\displaystyle Tr\bigg{\{}u_{\beta}\bar{u}_{\alpha}\left[\frac{P^{\alpha}}{M}\left(\gamma^{\mu}F^{V}_{1}+\frac{P^{\mu}}{M}F^{V}_{2}+\frac{P^{\,\prime\mu}}{M^{\prime}}F^{V}_{3}\right)+g^{\alpha\mu}F^{V}_{4}\right]\gamma_{5}\bar{u}{\Gamma}_{\mu}^{\beta}\gamma_{5}\bigg{\}}\,,
J¯5T¯\displaystyle\bar{J}_{5}\cdot\langle\bar{T}\rangle =\displaystyle= {d3p2}C^1/2ϕ(x,k)ϕ(x,k)\displaystyle\int\{d^{3}p_{2}\}\hat{C}^{-1/2}\phi^{\prime}(x^{\prime},k_{\perp}^{\prime})\phi(x,k_{\perp}) (15)
×\displaystyle\times λ2Tr{uβu¯α[Γ¯Aα(p/1+m1)γμ(p/1+m1)ΓA]uΓ¯μβγ5}.\displaystyle\sum_{\lambda_{2}}Tr\bigg{\{}u_{\beta}\bar{u}_{\alpha}\left[\bar{\Gamma}^{\,\prime\alpha}_{A}(p\!\!/_{1}^{\prime}+m_{1}^{\prime})\gamma^{\mu}(p\!\!/_{1}+m_{1})\Gamma_{A}\right]u\bar{\Gamma}_{\mu}^{\beta}\gamma_{5}\bigg{\}}\,.

By connecting J5TJ_{5}\cdot\langle T\rangle to J¯5T¯\bar{J}_{5}\cdot\langle\bar{T}\rangle, that is, J5T=J¯5T¯J_{5}\cdot\langle T\rangle=\bar{J}_{5}\cdot\langle\bar{T}\rangle, FiVF_{i}^{V} in J5TJ_{5}\cdot\langle T\rangle can be extracted with J¯5T¯\bar{J}_{5}\cdot\langle\bar{T}\rangle in the light-front quark model, as the other extractions of the 𝐁b(c)𝐁(){\bf B}_{b(c)}\to{\bf B}^{(*)} transition form factors Hsiao:2020gtc ; Zhao:2018zcb ; Ke:2012wa ; Ke:2017eqo ; Zhao:2018mrg ; Hu:2020mxk ; Ke:2019smy . Similarly, JT=J¯T¯J\cdot\langle T\rangle=\bar{J}\cdot\langle\bar{T}\rangle enables us to get FiAF_{i}^{A}. We will present our results in the next section.

III Numerical analysis

For the numerical analysis, the CKM matrix elements and the mass (decay constant) of the J/ΨJ/\Psi meson state are given by pdg

(Vcb,Vcs)\displaystyle(V_{cb},V_{cs}) =\displaystyle= (Aλ2,1λ2/2),\displaystyle(A\lambda^{2},1-\lambda^{2}/2)\,,
(mJ/Ψ,fJ/Ψ)\displaystyle(m_{J/\Psi},f_{J/\Psi}) =\displaystyle= (3.097,0.418)GeV,\displaystyle(3.097,0.418)~{}\text{GeV}\,, (16)

with λ=0.2265\lambda=0.2265 and A=0.790A=0.790 in the Wolfenstein parameterization. The effective Wilson coefficients (c1eff,c2eff)=(1.168,0.365)(c^{eff}_{1},\,c^{eff}_{2})=(1.168,-0.365) come from Refs. ali ; Hsiao:2014mua . In the generalized version of the factorization approach, NcN_{c} is taken as a floating number, in order that the non-factorizable effects from QCD corrections can be estimated. By adopting Nc=2.15±0.17N_{c}=2.15\pm 0.17 in Hsiao:2015cda ; Hsiao:2015txa , we obtain a2=0.180.04+0.05a_{2}=0.18^{+0.05}_{-0.04}, which has been used to interpret (ΛbΛJ/ψ){\cal B}(\Lambda_{b}\to\Lambda J/\psi) and (ΞbΞJ/ψ){\cal B}(\Xi_{b}^{-}\to\Xi^{-}J/\psi).

In terms of J5T=J¯5T¯J_{5}\cdot\langle T\rangle=\bar{J}_{5}\cdot\langle\bar{T}\rangle and JT=J¯T¯J\cdot\langle T\rangle=\bar{J}\cdot\langle\bar{T}\rangle and the theoretical inputs in Eqs. (13, 14, II), given by Ke:2019smy

(mb,βb[ss])\displaystyle(m_{b},\beta_{b[ss]}) =\displaystyle= (5.00±0.20,0.78±0.04)GeV,\displaystyle(5.00\pm 0.20,0.78\pm 0.04)~{}\mathrm{GeV}\,,
(ms,βs[ss])\displaystyle(m_{s},\beta_{s[ss]}) =\displaystyle= (0.38,0.48)GeV,\displaystyle(0.38,0.48)~{}\mathrm{GeV}\,, (17)

we derive FiV(A)F^{V(A)}_{i} as the functions of q2q^{2}, depicted in Fig. 2. It is common that one parameterizes the form factors in the dipole expressions Cheng:2003sm ; Choi:2013ira ; Hsiao:2019wyd , which reproduce the momentum dependences derived in the quark model. Subsequently, the form factors can have simple forms to be used in the weak decays. In our case, we present Zhao:2018zcb ; Hsiao:2020gtc

F(q2)=F(0)1a(q2/mF2)+b(q4/mF4),\displaystyle F(q^{2})=\frac{F(0)}{1-a\left(q^{2}/m_{F}^{2}\right)+b\left(q^{4}/m_{F}^{4}\right)}\,, (18)

with mFm_{F}, aa, bb and F(0)F(0) at q2=0q^{2}=0 given in Table 1, in order to describe the momentum behaviors of FiV,AF_{i}^{V,A} in Fig. 2.

Refer to caption
Refer to caption
Figure 2: FiV(A)F^{V(A)}_{i} versus q2q^{2} (i=1,2,3,4i=1,2,3,4).
Table 1: The ΩbΩ\Omega_{b}\to\Omega transition form factors with (F(0),a,b)(F(0),a,b) in Eq. (18), where mF=6.05m_{F}=6.05 GeV is from mΩbm_{\Omega_{b}}. The uncertainties come from mbm_{b} and βb[ss]\beta_{b[ss]} in Eq. (III).
F(0)F(0)\;\;\;\;\;\; aa\;\;\; bb\;\;\;
F1VF^{V}_{1} 0.3710.042+0.0450.371^{+0.045}_{-0.042} 2.22-2.22 2.372.37
F2VF^{V}_{2} 0.1040.025+0.022-0.104^{+0.022}_{-0.025} 3.19-3.19 4.694.69
F3VF^{V}_{3} 0.0400.035+0.0420.040^{+0.042}_{-0.035} 4.114.11 11.3811.38
F4VF^{V}_{4} 0.6920.051+0.0540.692^{+0.054}_{-0.051} 2.05-2.05 1.911.91
F(0)F(0)\;\;\;\;\;\; aa\;\;\; bb\;\;\;
F1AF^{A}_{1} 0.3290.110+0.1210.329^{+0.121}_{-0.110} 1.93-1.93 2.732.73
F2AF^{A}_{2} 0.0810.020+0.022-0.081^{+0.022}_{-0.020} 3.31-3.31 4.364.36
F3AF^{A}_{3} 0.0640.140+0.130-0.064^{+0.130}_{-0.140} 3.16-3.16 0.770.77
F4AF^{A}_{4} 0.4160.082+0.092-0.416^{+0.092}_{-0.082} 1.89-1.89 0.990.99

Thus, we calculate the branching fraction and fragmentation fraction as

(ΩbΩJ/Ψ)=(5.32.12.7+3.3+3.8)×104,\displaystyle{\cal B}(\Omega_{b}^{-}\to\Omega^{-}J/\Psi)=(5.3^{+3.3+3.8}_{-2.1-2.7})\times 10^{-4}\,,
fΩb=(0.540.220.280.15+0.34+0.39+0.21)×102,\displaystyle f_{\Omega_{b}}=(0.54^{+0.34+0.39+0.21}_{-0.22-0.28-0.15})\times 10^{-2}\,, (19)

where fΩbf_{\Omega_{b}} is extracted with (ΩbΩJ/Ψ){\cal B}(\Omega_{b}^{-}\to\Omega^{-}J/\Psi) and the data in Eq. (I). Moreover, the first and second uncertainties come from a2a_{2} and FiV,AF_{i}^{V,A}, respectively, and the third one for fΩbf_{\Omega_{b}} is from the measurement.

IV Discussions and Conclusions

Because of the insufficient information on the Ωb𝐁\Omega_{b}\to{\bf B}^{*} transition, the Ωb\Omega_{b} decays have not been richly explored. In the light-front quark model, we calculate the ΩbΩ\Omega_{b}\to\Omega transition form factors. We can hence predict (ΩbΩJ/Ψ)=(5.32.12.7+3.3+3.8)×104{\cal B}(\Omega_{b}\to\Omega J/\Psi)=(5.3^{+3.3+3.8}_{-2.1-2.7})\times 10^{-4}, which is compatible with those of the anti-triplet bb-baryon decays (ΛbΛJ/Ψ)=(3.3±2.0)×104{\cal B}(\Lambda_{b}\to\Lambda J/\Psi)=(3.3\pm 2.0)\times 10^{-4} and (ΞbΞJ/Ψ)=(5.1±3.2)×104{\cal B}(\Xi_{b}^{-}\to\Xi^{-}J/\Psi)=(5.1\pm 3.2)\times 10^{-4} Hsiao:2015cda ; Hsiao:2015txa . On the other hand, (ΩbΩJ/Ψ)=8.1×104{\cal B}(\Omega_{b}\to\Omega J/\Psi)=8.1\times 10^{-4} is given by the authors of Ref. Gutsche:2018utw . In addition, the total decay width Γ(ΩbΩJ/Ψ)=3.15a22×1010\Gamma(\Omega_{b}\to\Omega J/\Psi)=3.15a_{2}^{2}\times 10^{10} s-1 Cheng:1996cs leads to (ΩbΩJ/Ψ)=16.7×104{\cal B}(\Omega_{b}\to\Omega J/\Psi)=16.7\times 10^{-4}, where we have used a2=0.18a_{2}=0.18 for the demonstration.

In the helicity basis, the branching fraction is given by

(|V|2+|A|2),\displaystyle{\cal B}\propto(|{\cal H}_{V}|^{2}+|{\cal H}_{A}|^{2})\,, (20)

where |V(A)|2|H321V(A)|2+|H121V(A)|2+|H120V(A)|2|{\cal H}_{V(A)}|^{2}\equiv|H_{\frac{3}{2}1}^{V(A)}|^{2}+|H_{\frac{1}{2}1}^{V(A)}|^{2}+|H_{\frac{1}{2}0}^{V(A)}|^{2}. It is found that (|V|2,|A|2)(|{\cal H}_{V}|^{2},|{\cal H}_{A}|^{2}) give (19,81)% of {\cal B}; besides, (|H321A|2,|H121A|2,|H120A|2)/|A|2=(54.0,22.4,23.6)%(|H_{\frac{3}{2}1}^{A}|^{2},|H_{\frac{1}{2}1}^{A}|^{2},|H_{\frac{1}{2}0}^{A}|^{2})/|{\cal H}_{A}|^{2}=(54.0,22.4,23.6)\%, such that F4AF_{4}^{A} gives the main contribution to (ΩbΩJ/Ψ){\cal B}(\Omega_{b}\to\Omega J/\Psi).

In Eq. (III), fΩb=0.54×102f_{\Omega_{b}}=0.54\times 10^{-2} agrees with the previous upper limit of 0.108 Hsiao:2015txa . By comparing our extraction to fΛb=0.175±0.106f_{\Lambda_{b}}=0.175\pm 0.106 and fΞb=0.019±0.013f_{\Xi_{b}}=0.019\pm 0.013 Hsiao:2015txa , it demonstrates that the bb to Ωb\Omega_{b} productions are much more difficult than the bb to 𝐁b{\bf B}_{b} ones. Since the fragmentation fraction has not been determined experimentally, the branching fractions of the Ωb\Omega_{b} decays should be partially measured with the factor fΩbf_{\Omega_{b}}. Therefore, our extraction for fΩbf_{\Omega_{b}} can be useful. With fΩbf_{\Omega_{b}} of Eq. (III) added to the branching fractions, one can compare his theoretical results to future measurements of the Ωb\Omega_{b} decays.

In summary, we have investigated the charmful Ωb\Omega_{b} decay channel ΩbΩJ/Ψ\Omega_{b}^{-}\to\Omega^{-}J/\Psi. In the light-front quark model, we have studied the ΩbΩ\Omega_{b}\to\Omega transition form factors (FiV,FiA)(F_{i}^{V},F_{i}^{A}) (i=1,2,,4i=1,2,...,4). We have hence predicted (ΩbΩJ/Ψ)=(5.32.12.7+3.3+3.8)×104{\cal B}(\Omega_{b}^{-}\to\Omega^{-}J/\Psi)=(5.3^{+3.3+3.8}_{-2.1-2.7})\times 10^{-4}, which is compatible with those of the ΛbΛJ/Ψ\Lambda_{b}\to\Lambda J/\Psi and ΞbΞJ/Ψ\Xi_{b}^{-}\to\Xi^{-}J/\Psi decays. In addition, F4AF_{4}^{A} has been found to give the main contribution. Particularly, we have extracted fΩb=(0.540.220.280.15+0.34+0.39+0.21)×102f_{\Omega_{b}}=(0.54^{+0.34+0.39+0.21}_{-0.22-0.28-0.15})\times 10^{-2} from the partial observation fΩb(ΩbΩJ/Ψ)=(2.90.8+1.1)×106f_{\Omega_{b}}{\cal B}(\Omega_{b}^{-}\to\Omega^{-}J/\Psi)=(2.9^{+1.1}_{-0.8})\times 10^{-6}. Since fΩbf_{\Omega_{b}} has not been determined experimentally, by adding fΩbf_{\Omega_{b}} to the branching fractions, one is allowed to compare his calculations to future observations of the Ωb\Omega_{b} decays.

ACKNOWLEDGMENTS

YKH was supported in part by National Science Foundation of China (Grants No. 11675030 and No. 12175128). CCL was supported in part by CTUST (Grant No. CTU109-P-108).

References

  • (1) P.A. Zyla et al. [Particle Data Group], PTEP 2020, 083C01 (2020).
  • (2) Y.K. Hsiao, P.Y. Lin, L.W. Luo and C.Q. Geng, Phys. Lett. B 751, 127 (2015).
  • (3) Y.K. Hsiao, P.Y. Lin, C.C. Lih and C.Q. Geng, Phys. Rev. D 92, 114013 (2015).
  • (4) H.Y. Jiang and F.S. Yu, Eur. Phys. J. C 78, 224 (2018).
  • (5) Y.K. Hsiao, L. Yang, C.C. Lih and S.Y. Tsai, Eur. Phys. J. C 80, 1066 (2020).
  • (6) Z.X. Zhao, Chin. Phys. C 42, 093101 (2018).
  • (7) H.J. Melosh, Phys. Rev. D 9, 1095 (1974).
  • (8) P.L. Chung, F. Coester and W.N. Polyzou, Phys. Lett. B 205, 545 (1988).
  • (9) H.G. Dosch, M. Jamin and B. Stech, Z. Phys. C 42, 167 (1989).
  • (10) W. Jaus, Phys. Rev. D 44, 2851 (1991).
  • (11) F. Schlumpf, Phys. Rev. D 47, 4114 (1993); Erratum: [Phys. Rev. D 49, 6246 (1994)].
  • (12) C.Q. Geng, C.C. Lih and W.M. Zhang, Mod. Phys. Lett. A 15, 2087 (2000).
  • (13) C.R. Ji and C. Mitchell, Phys. Rev. D 62, 085020 (2000).
  • (14) B.L.G. Bakker and C.R. Ji, Phys. Rev. D 65, 073002 (2002).
  • (15) B.L.G. Bakker, H.M. Choi and C.R. Ji, Phys. Rev. D 67, 113007 (2003).
  • (16) H.Y. Cheng, C.K. Chua and C.W. Hwang, Phys. Rev. D 69, 074025 (2004).
  • (17) H.M. Choi and C.R. Ji, Few Body Syst.  55, 435 (2014).
  • (18) C.Q. Geng and C.C. Lih, Eur. Phys. J. C 73, 2505 (2013).
  • (19) H.W. Ke, X.H. Yuan, X.Q. Li, Z.T. Wei and Y.X. Zhang, Phys. Rev. D 86, 114005 (2012).
  • (20) H.W. Ke, N. Hao and X.Q. Li, J. Phys. G 46, 115003 (2019).
  • (21) Z.X. Zhao, Eur. Phys. J. C 78, 756 (2018).
  • (22) X.H. Hu, R.H. Li and Z.P. Xing, Eur. Phys. J. C 80, 320 (2020).
  • (23) H.W. Ke, N. Hao and X.Q. Li, Eur. Phys. J. C 79, 540 (2019).
  • (24) Y.K. Hsiao, S.Y. Tsai, C.C. Lih and E. Rodrigues, JHEP 2004, 035 (2020).
  • (25) A. Ali, G. Kramer, and C.D. Lu, Phys. Rev. D 58, 094009 (1998).
  • (26) Y.K. Hsiao and C.Q. Geng, Phys. Rev. D 91, 116007 (2015).
  • (27) D. Bečirević, G. Duplančić, B. Klajn, B. Melić and F. Sanfilippo, Nucl. Phys. B 883, 306 (2014).
  • (28) T. Gutsche, M.A. Ivanov, J.G. Korner and V.E. Lyubovitskij, Phys. Rev. D 98, 074011 (2018).
  • (29) H.Y. Cheng, Phys. Rev. D 56, 2799 (1997).