This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Free wreath product quantum groups: the monoidal category, approximation properties and free probability

François Lemeux and Pierre Tarrago
Abstract.

In this paper, we find the fusion rules for the free wreath product quantum groups 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} for all compact matrix quantum groups of Kac type 𝔾\mathbb{G} and N4N\geq 4. This is based on a combinatorial description of the intertwiner spaces between certain generating representations of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}. The combinatorial properties of the intertwiner spaces in 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} then allows us to obtain several probabilistic applications. We then prove the monoidal equivalence between 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} and a compact quantum group whose dual is a discrete quantum subgroup of the free product 𝔾^SUq(2)^\widehat{\mathbb{G}}*\widehat{SU_{q}(2)}, for some 0<q10<q\leq 1. We obtain as a corollary certain stability results for the operator algebras associated with the free wreath products of quantum groups such as Haagerup property, weak amenability and exactness.

Introduction

The concept of compact pseudogroup was stated in 1987 by Woronowicz in [Wor87], in an attempt to transform the abstract notion of group structure on noncommutative spaces in a more tractable theory. In particular, it encompasses in a unique framework the generalized Pontrjagin duality introduced by Kac in [VK74] and the non-trivial deformations of a compact Lie group as constructed by Drinfeld and Jimbo (see e.g ([Dri86]). This formalisation, later called compact quantum group, allowed to find new concrete examples of these noncommutative structures. Woronowicz defined the notion of compact quantum group 𝔾\mathbb{G} as a CC^{*}-algebra C(𝔾)C(\mathbb{G}) endowed with a *-homomorphism Δ:C(𝔾)C(𝔾)minC(𝔾)\Delta:C(\mathbb{G})\rightarrow C(\mathbb{G})\otimes_{\min}C(\mathbb{G}) and some additional properties. The main point is that if we consider the commutative image of C(𝔾)C(\mathbb{G}), we get through the Gelfand theorem the algebra of continuous functions on a classical group.

Besides the original example SUq(2)SU_{q}(2) studied by Woronowicz, many new compact quantum groups were introduced by Wang in [Wan98]: namely the compact quantum groups ON+,UN+O_{N}^{+},U_{N}^{+} and SN+S_{N}^{+} were defined as “free counterparts” of the known matrix groups ON,UNO_{N},U_{N} and SNS_{N}. These examples were a first step for the construction of many new compact quantum groups, either by algebraic constructions (free product introduced by Wang in [Wan95], free wreath product introduced by Bichon in [Bic04]) or by generalization of the combinatoric involved in the description of certain already known compact quantum group (in particular the easy quantum groups of Banica and Speicher in [BS09]).

In [Wor88] Woronowicz described the Tannaka-Krein duality for a compact quantum group, a fundamental tool to manipulate more effectively these objects and to study their properties: this duality associates to a compact quantum group, a certain CC^{*}-tensor category coming from its corepresentations. Banica and latter Banica and Speicher discovered that these tensor categories have, in some cases, nice combinatoric descriptions. These descriptions are a very efficient way to recover many algebraic properties of a compact quantum group. For instance, Banica used it in [Ban96], [Ban97] and [Ban99] to characterize the irreducible representations and the fusion rules for the quantum groups described in Wang thesis.

One of the main consequences of the definition of a compact quantum group is the existence of a Haar state of the CC^{*}-algebra C(𝔾)C(\mathbb{G}) of the quantum group 𝔾\mathbb{G}. This allows to consider C(𝔾)C(\mathbb{G}) as a noncommutative probability space, and in this setting many results were obtained on the stochastic behavior of some elements of C(𝔾)C(\mathbb{G}). Once again the main strategy to get some results on the stochastic level is to restrict to the associated CC^{*}-tensor category through the Tannak-Krein duality. See Banica and Collins [BC05],[BC07], Banica and Speicher in [BS09], Banica, Curran and Speicher in [BCS11], Kostler and Speicher in [KS09] for more information on the subject.

Another interesting field of investigation for compact quantum group is the study of the operator algebraic properties of the underlying algebras. One can indeed associate to a compact quantum group 𝔾\mathbb{G}, a universal CC^{*}-algebra Cu(𝔾)C_{u}(\mathbb{G}) and a reduced CC^{*}-algebra Cr(𝔾)C_{r}(\mathbb{G}), and also a von Neumann algebra L(𝔾)L^{\infty}(\mathbb{G}). One can wonder which properties are satisfied by these algebras. Banica started these studies in [Ban97] by proving the simplicity of Cr(UN+)C_{r}(U_{N}^{+}) by adapting certain argument by Powers for classical free groups. Vergnioux proved in [Ver05] the property of Akemann-Ostrand for L(UN+)L^{\infty}(U_{N}^{+}) and L(ON+)L^{\infty}(O_{N}^{+}) and together with Vaes proved the factoriality, fullness and exactess for L(ON+)L^{\infty}(O_{N}^{+}) in [VV07]. More recently, in [Bra12a] and [Bra12b], Brannan proved the Haagerup property for L(ON+)L^{\infty}(O_{N}^{+}), L(UN+)L^{\infty}(U_{N}^{+}) and L(SN+)L^{\infty}(S_{N}^{+}). Freslon proved the weak-amenability of L(ON+)L^{\infty}(O_{N}^{+}), L(UN+)L^{\infty}(U_{N}^{+}) in [Fre13] and together with De Commer and Yamashita proved the weak amenability for L(SN+)L^{\infty}(S_{N}^{+}) in [DCFY13] via a monoidal equivalence argument and by the study of L(SUq(2))L^{\infty}(SU_{q}(2)). In each of these results, the knowledge of the fusion rules of the compact quantum groups is a crucial tool to prove the properties of the associated reduced CC^{*}-algebras and von Neumann algebras.

In this article, we will mainly consider the case of the free wreath product quantum groups defined by Bichon in [Bic04]. It was introduced as the most natural construction to study the free symmetry group of several copies of a same graph. The free wreath product \wr_{*} associates to a compact quantum group 𝔾\mathbb{G} and a compact subgroup 𝔽\mathbb{F} of SN+S_{N}^{+} a new compact quantum group 𝔾𝔽\mathbb{G}\wr_{*}\mathbb{F}. It is constructed as an analogue of the wreath products of classical groups. An example of this construction was studied by Banica and Vergnioux in [BV09], and then by Banica, Belinschi, Capitaine and Collins in [BBCC11]: they focused on the free wreath product of the dual of the cyclic group /s\mathbb{Z}/s\mathbb{Z} with SN+S_{N}^{+}. Banica and Vergnioux obtained the fusion rules and Banica, Belinschi, Capitaine and Collins obtained interesting probability results involving free compound poisson variables.

Then the first author generalized these results in [Lem13a] to the case of a free wreath product between the dual Γ^\hat{\Gamma} of a discrete groupe Γ\Gamma and SN+S_{N}^{+}. Once again he was able to find the fusion rules of the quantum group as well as some operator algebraic properties by using certain results of Brannan on SN+S_{N}^{+} (see [Bra12a]).

In this article, we tackle the general problem of the free wreath product between any compact quantum group of Kac type 𝔾\mathbb{G} and SN+S_{N}^{+}. In particular we give positive answers to the following questions:

  • If one knows the intertwiners space of 𝔾\mathbb{G}, can one describe the intertwiners spaces of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} ? (See Theorem 3.7).

  • Is the fusion semi-ring of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} a free fusion semi-ring in the sense of [BV09] ? (See Theorem 5.13).

  • If the dual of 𝔾\mathbb{G} has the Haagerup property (resp. is exact, resp. is weakly amenable, resp. has the ACPAP property), does 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} possess the Haagerup property (resp. is exact, resp. is weakly amenable, resp. has the ACPAP property) ? (See Section 6 where we answer these questions and where we also study the converse implications).

  • Is it possible to express the haar state of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} starting form the haar state of SN+S_{N}^{+} ? (See Subsection 4.2).

As a consequence of certain of these results, we also answer to:

  • For a compact quantum subgroup 𝔾\mathbb{G} of SN+S_{N}^{+} with a fundamental corepresentation rr, let us denote χr\chi_{r} the character of this corepresentation. The following question was raised by Banica and Bichon in [BB+07]:

    On which conditions on (𝔸,u)(\mathbb{A},u) and (𝔹,v)(\mathbb{B},v), two quantum subgroups of SN+S_{N}^{+}, do we have the equality in law

    χuvχuχv\chi_{u\wr_{*}v}\sim\chi_{u}\boxtimes\chi_{v}

    with \boxtimes denoting the free multiplicative convolution between two noncommutating variables ?

    We were able to show that the answer to this question is positive in the case where 𝔹=SN+\mathbb{B}=S_{N}^{+} (See Subsection 4.1).

  • SUq(2)SU_{q}(2) is the first example of compact quantum group studied by Woronowicz in [Wor87]. The description of the interwiners spaces of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} yields the folloing result:

    𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} is monoidally equivalent to \mathbb{H}, where ^\hat{\mathbb{H}} a quantum subgroup of 𝔾^SUq(2)^\widehat{\mathbb{G}}\ast\widehat{SU_{q}(2)}, (see Theorem 5.11).

    Moreover we provide an explicit description of \mathbb{H}. This result implies all the operator algebraic results of Section 6.

Using the description of the intertwiner spaces, Jonas Wahl also obtained in [Wah] further interesting results on the reduced algebra and the von Neumann algebra of 𝔾SN+\mathbb{G}\wr S_{N}^{+}. In particular he obtained the simplicity of the reduced algebra and the unicity of the trace (which he identified with the Haar state), and proved that the von Neumann algebra is a II1II_{1}-factor without property Γ\Gamma.
The paper is organised as follows : the first section is dedicated to some preliminaries and notations. The second section gives some classical results and proofs that provide an insight on the final general description for the intertwiners spaces of the free wreath products. The description of the intertwiners spaces for the free wreath products 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} is the main result of the third section. In the fourth section, we give the probabilistic applications of that one can deduce from this description. Then in the fifth section, we prove the monoidal equivalence result we mentioned above. This result is fundamental to obtain the operator algebraic consequences of the sixth section which we combined with the results in [DCFY13]. Finally in an appendix we provide a dimension formula for the corepresentations of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}.

1. Preliminaries

1.1. Non-crossing partitions, diagrams. Tannaka-Krein duality

In the following paragraph, we recall a few notions on non-crossing partitions, see e.g. [BV09] for more informations. We also recall some facts on the categorical framework associated to compact quantum groups and non-crossing partitions.

Definition 1.1.

We denote by 𝒫(k,l)\mathcal{P}(k,l) (resp. NC(k,l)NC(k,l)) the set of partitions (resp. non-crossing partitions) between kk upper points and ll lower points, that is the partitions (resp. non-crossing partitions) of the set {1,,k+l}\{1,\dots,k+l\} with k+lk+l ordered elements from left to right on top and bottom, with the following pictorial representation:

{.....𝒫....}\left\{\begin{array}[]{ccccc}.&.&.&.&.\\ &&\mathscr{P}&&\\ .&.&.&.&\\ \end{array}\right\}

with kk-upper points, ll-lower points and 𝒫\mathscr{P} is a a diagram composed of strings which connect certain upper and/or lower points (resp. which do not cross one another).

Notation 1.2.

We will keep the following notation in the sequel:

  1. \bullet

    We will denote by 1k1_{k} the one-block partition with only lower points which are all connected.

  2. \bullet

    We will write pqp\leq q if pp is a refinement of qq.

From now on, we only consider non-crossing partitions, even if certain of the following definitions and propositions hold for any (possibly crossing) partition.

Non-crossing partitions give rise to new ones by tensor product, composition and involution:

Definition 1.3.

Let pNC(k,l)p\in NC(k,l) and qNC(l,m)q\in NC(l,m). Then, the tensor product, composition and involution of the partitions p,q are obtained by horizontal concatenation, vertical concatenation and symmetry with respect to upside-down turning:

pq={𝒫𝒬},pq={QP}{closed blocks, middle points},p={𝒫}.p\otimes q=\left\{\mathscr{P}\mathscr{Q}\right\},\ pq=\left\{\ \begin{picture}(1.0,1.0)\put(0.0,0.5){$\mathscr{Q}$} \put(0.0,-0.6){$\mathscr{P}$} \end{picture}\ \right\}-\{\emph{closed blocks, middle points}\},\ p^{*}=\{\mathscr{P^{\downarrow}}\}.

The operation pq={QP}p\circ q=\left\{\ \begin{picture}(1.0,1.0)\put(0.0,0.5){$\mathscr{Q}$} \put(0.0,-0.6){$\mathscr{P}$} \end{picture}\ \right\} is only defined if the number of lower points of qq is equal to the number of upper points of pp. When one performs a composition pqp\circ q, and that one identifies the lower points of pp with the upper points of qq, closed blocks might appear, that is strings which are connected neither to the new upper points nor to the new lower points. These blocks are discarded from the final pictorial representation denoted pqpq.

Example 1.4.

Following the rules stated above (discarding closed blocks and following the lines when one identifies the upper points of pp with the lower ones of qq), we get

ifp={1234123} and q={123451234} then pq={12345123}.\emph{if}\ \ \ p=\left\{\ \begin{picture}(3.0,3.0)\put(0.0,1.2){\line(0,1){0.75}} \put(2.0,1.2){\line(0,1){0.75}} \put(1.0,1.2){\line(0,1){0.75}} \put(0.0,1.228){\line(1,0){1.0}} \put(2.0,1.228){\line(1,0){1.0}} \put(3.0,1.2){\line(0,1){0.75}} \par\put(0.0,-0.878){\line(1,0){1.0}} \put(0.0,-1.6){\line(0,1){0.75}} \put(1.0,-1.6){\line(0,1){0.75}} \put(2.0,-1.6){\line(0,1){0.75}} \par\put(-0.2,2.2){1} \put(0.8,2.2){2} \put(1.8,2.2){3} \put(2.8,2.2){4} \put(-0.2,-2.2){1} \put(0.8,-2.2){2} \put(1.8,-2.2){3} \end{picture}\ \right\}\ \ \ \emph{ and }\ \ \ q=\left\{\ \begin{picture}(4.0,3.0)\put(0.0,-1.3){\line(0,1){3.2}} \put(2.0,1.2){\line(0,1){0.75}} \put(4.0,1.2){\line(0,1){0.75}} \put(1.0,-1.3){\line(0,1){3.2}} \put(2.0,1.228){\line(1,0){1.0}} \put(3.0,1.2){\line(0,1){0.75}} \par\put(2.0,-1.6){\line(0,1){0.75}} \put(3.0,-1.6){\line(0,1){0.75}} \put(2.0,-0.878){\line(1,0){1.0}} \par\put(-0.2,2.2){1} \put(0.8,2.2){2} \put(1.8,2.2){3} \put(2.8,2.2){4} \put(3.8,2.2){5} \put(-0.2,-2.2){1} \put(0.8,-2.2){2} \put(1.8,-2.2){3} \put(2.8,-2.2){4} \end{picture}\ \right\}\ \ \ \emph{ then }\ \ \ pq=\left\{\ \begin{picture}(4.0,3.0)\put(0.0,1.2){\line(0,1){0.75}} \put(2.0,1.2){\line(0,1){0.75}} \put(1.0,1.2){\line(0,1){0.75}} \put(0.0,1.228){\line(1,0){1.0}} \put(2.0,1.228){\line(1,0){1.0}} \put(3.0,1.2){\line(0,1){0.75}} \put(4.0,1.2){\line(0,1){0.75}} \par\put(0.0,-0.878){\line(1,0){1.0}} \put(0.0,-1.6){\line(0,1){0.75}} \put(1.0,-1.6){\line(0,1){0.75}} \put(2.0,-1.6){\line(0,1){0.75}} \par\put(-0.2,2.2){1} \put(0.8,2.2){2} \put(1.8,2.2){3} \put(2.8,2.2){4} \put(3.8,2.2){5} \put(-0.2,-2.2){1} \put(0.8,-2.2){2} \put(1.8,-2.2){3} \end{picture}\ \right\}.

From non-crossing partitions pNC(k,l)p\in NC(k,l) naturally arise linear maps Tp:NkNlT_{p}:\mathbb{C}^{N^{\otimes k}}\to\mathbb{C}^{N^{\otimes l}}:

Definition 1.5.

Consider (ei)(e_{i}) the canonical basis of N\mathbb{C}^{N}. Associated to any non-crossing partition pNC(k,l)p\in NC(k,l) is the linear map TpB(Nk,Nl)T_{p}\in B\left(\mathbb{C}^{N^{\otimes k}},\mathbb{C}^{N^{\otimes l}}\right):

Tp(ei1eik)=j1,,jlδp(i,j)ej1ejlT_{p}(e_{i_{1}}\otimes\dots\otimes e_{i_{k}})=\sum_{j_{1},\dots,j_{l}}\delta_{p}(i,j)e_{j_{1}}\otimes\dots\otimes e_{j_{l}}

where ii (respectively jj) is the kk-tuple (i1,,ik)(i_{1},\dots,i_{k}) (respectively ll-tuple (j1,,jl)(j_{1},\dots,j_{l})) and δp(i,j)\delta_{p}(i,j) is equal to:

  1. (1)

    11 if all the strings of pp join equal indices,

  2. (2)

    0 otherwise.

Example 1.6.

We consider an element pNC(4,3)p\in NC(4,3), choose any tuples i=(i1,i2,i3,i4)i=(i_{1},i_{2},i_{3},i_{4}) and j=(j1,j2,j3)j=(j_{1},j_{2},j_{3}), and put them on the diagram:

p={i1i2i3i4j1j2j3} Then δp(i,j)={1if i1=i2=i4=j20otherwise.p=\left\{\ \begin{picture}(3.1,3.5)\put(0.0,0.5){\line(0,1){1.5}} \put(2.0,1.0){\line(0,1){1.0}} \put(1.0,0.5){\line(0,1){1.5}} \put(0.0,0.5){\line(1,0){3.0}} \put(3.0,0.5){\line(0,1){1.5}} \put(0.4,-1.6){\line(0,1){1.0}} \put(1.4,-1.6){\line(0,1){2.1}} \put(2.4,-1.6){\line(0,1){1.0}} \put(-0.1,2.2){$\cdot$} \put(0.9,2.2){$\cdot$} \put(1.9,2.2){$\cdot$} \put(2.9,2.2){$\cdot$} \put(0.4,-2.2){$\cdot$} \put(1.4,-2.2){$\cdot$} \put(2.4,-2.2){$\cdot$} \put(-0.1,3.0){$i_{1}$} \put(0.9,3.0){$i_{2}$} \put(1.9,3.0){$i_{3}$} \put(2.9,3.0){$i_{4}$} \put(0.4,-3.0){$j_{1}$} \put(1.4,-3.0){$j_{2}$} \put(2.4,-3.0){$j_{3}$} \end{picture}\ \right\}\ \text{ Then\ }\ \delta_{p}(i,j)=\left\{\begin{array}[]{ll}1&\mbox{\emph{if} }i_{1}=i_{2}=i_{4}=j_{2}\\ 0&\mbox{\emph{otherwise.}}\end{array}\right.
Example 1.7.

We give basic examples of such linear maps

  1. (i.)

    T_ {}=idN\left\{\ \begin{picture}(0.01,1.0)\put(0.0,-0.6){\line(0,1){1.5}} \end{picture}\ \right\}=\operatorname{id}_{\mathbb{C}^{N}}

  2. (ii.)

    T_{}(1)=aeaeaT\_{\{\bigcap\}}(1)=\sum_{a}e_{a}\otimes e_{a}

Tensor products, compositions and involutions of diagrams behave as follows with respect to the associated linear maps:

Proposition 1.8.

([BS09, Proposition 1.9] Let p,qp,q be non-crossing partitions and b(p,q)b(p,q) be the number of closed blocks when performing the vertical concatenation (when it is defined). Then:

  1. (1)

    Tpq=TpTqT_{p\otimes q}=T_{p}\otimes T_{q},

  2. (2)

    Tpq=Nb(p,q)TpTqT_{p\circ q}=N^{-b(p,q)}T_{p}\circ T_{q},

  3. (3)

    Tp=TpT_{p^{*}}=T_{p}^{*}.

Furthermore, the linear maps Tp:(N)k(N)l,pNC(k,l)T_{p}:(\mathbb{C}^{N})^{\otimes k}\to(\mathbb{C}^{N})^{\otimes l},p\in NC(k,l) are linearly independent if N4N\geq 4.

The Proposition 1.8 implies easily that the collection of spaces span{Tp:pNC(k,l)}\text{span}\{T_{p}:p\in NC(k,l)\} form a CC^{*}-tensor category with \mathbb{N} as a set of objects. Furthermore, this tensor category has conjugates since the partitions of type

r={}NC(;2k)r=\left\{\ \begin{picture}(6.0,1.3)\par\put(0.0,0.5){\line(1,0){6.0}} \put(2.7,1.0){$\emptyset$} \put(0.0,-0.7){\line(0,1){1.22}} \put(1.0,-0.7){\line(0,1){0.9}} \put(5.0,-0.7){\line(0,1){0.9}} \put(1.0,0.17){\line(1,0){4.0}} \put(1.4,-0.7){...} \put(3.6,-0.7){...} \put(2.4,-0.7){\line(0,1){0.5}} \put(3.4,-0.7){\line(0,1){0.5}} \put(2.38,-0.21){\line(1,0){1.05}} \put(6.0,-0.7){\line(0,1){1.22}} \par\end{picture}\ \right\}\in NC(\emptyset;2k)

are non-crossing and since the following conjugate equations hold:

(1.1) (Trid)(idTr)=id=(idTr)(Trid).(T_{r}^{*}\otimes\operatorname{id})\circ(\operatorname{id}\otimes T_{r})=\operatorname{id}=(\operatorname{id}\otimes T_{r}^{*})\circ(T_{r}\otimes\operatorname{id}).

We recall that in a CC^{*}-tensor category with conjugates, we have the following Frobenius reciprocity theorem (see [Wor88] and [NT]) that we will use in the sequel.

Theorem 1.9.

Let 𝒞\mathscr{C} be a CC^{*}-tensor category with conjugates. If an object U𝒞U\in\mathscr{C} has a conjugate, with RR and R¯\overline{R} solving the conjugate equations (see [NT, Definition 2.2.1], or (1.1) above), then the map

Mor(UV,W)Mor(V,U¯W),T(idU¯T)(RidV)Mor(U\otimes V,W)\to Mor(V,\overline{U}\otimes W),T\mapsto(\operatorname{id}_{\overline{U}}\otimes T)(R\otimes\operatorname{id}_{V})

is a linear isomorphism with inverse S(R¯idW)(idUS)S\mapsto(\overline{R}^{*}\otimes\operatorname{id}_{W})(\operatorname{id}_{U}\otimes S).

1.2. Quantum groups

In this subsection, we recall a few facts and results about compact quantum groups and about free wreath products by the quantum permutation groups SN+S_{N}^{+}.

A compact quantum group is a pair 𝔾=(C(𝔾),Δ)\mathbb{G}=(C(\mathbb{G}),\Delta) where C(𝔾)C(\mathbb{G}) is a unital (Woronowicz)-CC^{*}-algebra and Δ:C(𝔾)C(𝔾)minC(𝔾)\Delta:C(\mathbb{G})\to C(\mathbb{G})\otimes_{min}C(\mathbb{G}) is a unital *-homomorphism i.e. they satisfy the coassociativity relation (idΔ)Δ=(Δid)Δ(\operatorname{id}\otimes\Delta)\circ\Delta=(\Delta\otimes\operatorname{id})\circ\Delta, and the cancellation property, that is span{Δ(a)(b1):a,bC(𝔾)}span\{\Delta(a)(b\otimes 1):a,b\in C(\mathbb{G})\} and span{Δ(a)(1b):a,bC(𝔾)}span\{\Delta(a)(1\otimes b):a,b\in C(\mathbb{G})\} are norm dense in C(𝔾)C(𝔾)C(\mathbb{G})\otimes C(\mathbb{G}). These assumptions allow to prove the existence and uniqueness of a Haar state h:C(𝔾)h:C(\mathbb{G})\to\mathbb{C} satisfying the bi-invariance relations (hid)Δ()=h()1=(idh)Δ()(h\otimes\operatorname{id})\circ\Delta(\cdot)=h(\cdot)1=(\operatorname{id}\otimes h)\circ\Delta(\cdot). In this paper we will deal with compact quantum groups of Kac type, that is their Haar state hh is a trace.

One can consider the GNS representation λh:C(𝔾)(L2(𝔾,h))\lambda_{h}:C(\mathbb{G})\to\mathcal{B}(L^{2}(\mathbb{G},h)) associated to the Haar state hh of 𝔾=(C(𝔾),Δ)\mathbb{G}=(C(\mathbb{G}),\Delta) and called the left regular representation. The reduced CC^{*}-algebra associated to 𝔾\mathbb{G} is then defined by Cr(𝔾)=λh(C(𝔾))C(𝔾)/Ker(λh)C_{r}(\mathbb{G})=\lambda_{h}(C(\mathbb{G}))\simeq C(\mathbb{G})/Ker(\lambda_{h}) and the von Neumann algebra by L(𝔾)=Cr(𝔾)′′L^{\infty}(\mathbb{G})=C_{r}(\mathbb{G})^{\prime\prime}. One can prove that Cr(𝔾)C_{r}(\mathbb{G}) is again a Woronowicz-CC^{*}-algebra whose Haar state extends to L(𝔾)L^{\infty}(\mathbb{G}). We will denote simply by Δ\Delta and hh the coproduct and Haar state on Cr(𝔾)C_{r}(\mathbb{G}).

An NN-dimensional (unitary) corepresentation u=(uij)iju=(u_{ij})_{ij} of 𝔾\mathbb{G} is a (unitary) matrix uMN(C(𝔾))C(𝔾)(N)u\in M_{N}(C(\mathbb{G}))\simeq C(\mathbb{G})\otimes\mathcal{B}(\mathbb{C}^{N}) such that for all i,j{1,,N}i,j\in\{1,\dots,N\}, one has

Δ(uij)=k=1Nuikukj.\Delta(u_{ij})=\sum_{k=1}^{N}u_{ik}\otimes u_{kj}.

The matrix u¯=(uij)\overline{u}=(u_{ij}^{*}) is called the conjugate of uMN(C(𝔾))u\in M_{N}(C(\mathbb{G})) and in general it is not necessarily unitary even if uu is. However all the compact quantum groups we will deal with are of Kac type and in this case the conjugate of a unitary corepresentation is also unitary.

An intertwiner between two corepresentations

uMNu(C(𝔾)) and vMNv(C(𝔾))u\in M_{N_{u}}(C(\mathbb{G}))\text{ and }v\in M_{N_{v}}(C(\mathbb{G}))

is a matrix TMNu,Nv()T\in M_{N_{u},N_{v}}(\mathbb{C}) such that v(1T)=(1T)uv(1\otimes T)=(1\otimes T)u. We say that uu is equivalent to vv, and we note uvu\sim v, if there exists an invertible intertwiner between uu and vv. We denote by Hom𝔾(u,v)\operatorname{Hom}_{\mathbb{G}}(u,v) the space of intertwiners between uu and vv. A corepresentation uu is said to be irreducible if Hom𝔾(u,u)=id\operatorname{Hom}_{\mathbb{G}}(u,u)=\mathbb{C}\operatorname{id}. We denote by Irr(𝔾)\operatorname{Irr}(\mathbb{G}) the set of equivalence classes of irreducible corepresentations of 𝔾\mathbb{G}.

We recall that C(𝔾)C(\mathbb{G}) contains a dense *-subalgebra denoted by Pol(𝔾)\text{Pol}(\mathbb{G}) and linearly generated by the coefficients of the irreducible corepresentations of 𝔾\mathbb{G}. The coefficients of a 𝔾\mathbb{G}-representation rr are given by (idϕ)(r)(\operatorname{id}\otimes\phi)(r) for some ϕ(Hr)\phi\in\mathcal{B}(H_{r})^{*} if the corepresentation acts on the Hilbert space HrH_{r}. This algebra has a Hopf-*-algebra structure and in particular there is a *-antiautomorphism κ:Pol(𝔾)Pol(𝔾)\kappa:\text{Pol}(\mathbb{G})\to\text{Pol}(\mathbb{G}) which acts on the coefficients of an irreducible corepresentation r=(rij)r=(r_{ij}) as follows κ(rij)=rij\kappa(r_{ij})=r_{ij}^{*}. This algebra is also dense in L2(𝔾,h)L^{2}(\mathbb{G},h). Since hh is faithful on the *-algebra Pol(𝔾)\text{Pol}(\mathbb{G}), one can identify Pol(𝔾)\text{Pol}(\mathbb{G}) with its image in the GNS-representation λh(C(𝔾))\lambda_{h}(C(\mathbb{G})). We will denote by χr\chi_{r} the character of the irreducible corepresentation rIrr(𝔾)r\in\operatorname{Irr}(\mathbb{G}), that is χr=(idTr)(r)\chi_{r}=(\operatorname{id}\otimes\text{Tr})(r).

A fundamental and basic family of examples of compact quantum groups is recalled in the following definition:

Definition 1.10.

([Wan98]) Let N2N\geq 2. SN+S_{N}^{+} is the compact quantum group (C(SN+),Δ)(C(S_{N}^{+}),\Delta) where C(SN+)C(S_{N}^{+}) is the universal CC^{*}-algebra generated by N2N^{2} elements uiju_{ij} such that the matrix u=(uij)u=(u_{ij}) is unitary and uij=uij=uij2,i,ju_{ij}=u_{ij}^{*}=u_{ij}^{2},\forall i,j (i.e. uu is a magic unitary) and such that the coproduct Δ\Delta is given by the usual relations making of vv a finite dimensional corepresentation of C(SN+)C(S_{N}^{+}), that is Δ(uij)=k=1Nuikukj\Delta(u_{ij})=\sum_{k=1}^{N}u_{ik}\otimes u_{kj}, i,j\forall i,j.

In the cases N=2,3N=2,3, one obtains the usual algebras C(2),C(S3)C(\mathbb{Z}_{2}),C(S_{3}). If N4N\geq 4, one can find an infinite dimensional quotient of C(SN+)C(S_{N}^{+}) so that C(SN+)C(S_{N}^{+}) is not isomorphic to C(SN)C(S_{N}), see e.g. [Wan98], [Ban05].

In [Wan95], Wang defined the free product 𝔾=𝔾1𝔾2\mathbb{G}=\mathbb{G}_{1}*\mathbb{G}_{2} of compact quantum groups, showed that 𝔾\mathbb{G} is still a compact quantum group and gave a description of the irreducible corepresentations of 𝔾\mathbb{G} as alternating tensor products of nontrivial irreducible corepresentations.

Theorem 1.11.

([Wan95]) Let 𝔾1\mathbb{G}_{1} and 𝔾2\mathbb{G}_{2} be compact quantum groups. Then the set Irr(𝔾)\emph{Irr}(\mathbb{G}) of irreducible corepresentations of the free product of quantum groups 𝔾=𝔾1𝔾2\mathbb{G}=\mathbb{G}_{1}*\mathbb{G}_{2} can be identified with the set of alternating words in Irr(𝔾1)Irr(𝔾2)\emph{Irr}(\mathbb{G}_{1})*\emph{Irr}(\mathbb{G}_{2}) and the fusion rules can be recursively described as follows:

  1. \bullet

    If the words x,yIrr(𝔾)x,y\in\emph{Irr}(\mathbb{G}) end and start in Irr(𝔾i)\emph{Irr}(\mathbb{G}_{i}) and Irr(𝔾j)\emph{Irr}(\mathbb{G}_{j}) respectively with jij\neq i then xyx\otimes y is an irreducible corepresentation of 𝔾\mathbb{G} corresponding to the concatenation xyIrr(𝔾)xy\in\emph{Irr}(\mathbb{G}).

  2. \bullet

    If x=vzx=vz and y=zwy=z^{\prime}w with z,zIrr(𝔾i)z,z^{\prime}\in\emph{Irr}(\mathbb{G}_{i}) then

    xy=1tzzvtwδz¯,z(vw)x\otimes y=\bigoplus_{1\neq t\subset z\otimes z^{\prime}}vtw\oplus\delta_{\overline{z},z^{\prime}}(v\otimes w)

    where the sum runs over all non-trivial irreducible corepresentations tIrr(𝔾i)t\in\emph{Irr}(\mathbb{G}_{i}) contained in zzz\otimes z^{\prime}, with multiplicity.

In this paper, we are interested in the free wreath product of quantum groups:

Definition 1.12.

([Bic04, Definition 2.2]) Let AA be a Woronowicz-CC^{*}-algebra, N2N\geq 2 and νi:AAN\nu_{i}:A\to A^{*N} be the canonical inclusion of the ii-th copy of AA in the free product ANA^{*N}, i=1,,Ni=1,\dots,N.

The free wreath product of AA by C(SN+)C(S_{N}^{+}) is the quotient of the CC^{*}-algebra ANC(SN+)A^{*N}*C(S_{N}^{+}) by the two-sided ideal generated by the elements

νk(a)vkivkiνk(a), 1i,kN,aA.\nu_{k}(a)v_{ki}-v_{ki}\nu_{k}(a),\ \ \ 1\leq i,k\leq N,\ \ a\in A.

It is denoted by AwC(SN+)A*_{w}C(S_{N}^{+}).

In the next result, we use the Sweedler notation ΔA(a)=a(1)a(2)AA\Delta_{A}(a)=\sum a_{(1)}\otimes a_{(2)}\in A\otimes A.

Theorem 1.13.

([Bic04, Theorem 2.3]) Let AA be a Woronowicz-CC^{*}-algebra, then free wreath product AwC(SN+)A*_{w}C(S_{N}^{+}) admits a Woronowicz-CC^{*}-algebra structure: if aAa\in A, then

Δ(vij)=k=1Nvikvkj,i,j{1,,N},\Delta(v_{ij})=\sum_{k=1}^{N}v_{ik}\otimes v_{kj},\forall i,j\in\{1,\dots,N\},
Δ(νi(a))=k=1Nνi(a(1))vikνk(a(2)),\Delta(\nu_{i}(a))=\sum_{k=1}^{N}\nu_{i}(a_{(1)})v_{ik}\otimes\nu_{k}(a_{(2)}),
ϵ(vij)=δij,ϵ(νi(a))=ϵA(a),S(vij)=vji,S(νi(a))=k=1Nνk(SA(a))vki,\epsilon(v_{ij})=\delta_{ij},\ \epsilon(\nu_{i}(a))=\epsilon_{A}(a),\ S(v_{ij})=v_{ji},\ S(\nu_{i}(a))=\sum_{k=1}^{N}\nu_{k}(S_{A}(a))v_{ki},
vij=vij,νi(a)=νi(a).v_{ij}^{*}=v_{ij},\ \nu_{i}(a)^{*}=\nu_{i}(a^{*}).

Moreover, if 𝔾\mathbb{G} is a full compact quantum group, then 𝔾SN+=(AwC(SN+),Δ)\mathbb{G}\wr_{*}S_{N}^{+}=(A*_{w}C(S_{N}^{+}),\Delta) is also a full compact quantum group.

Remark 1.14.

The homomorphisms νi:AANAwC(SN+)\nu_{i}:A\to A^{*N}\subset A*_{w}C(S_{N}^{+}) are injective and we have νi=πν¯i,\nu_{i}=\pi\circ\bar{\nu}_{i}, where

ν¯i=qνi:AAwC(SN+),\bar{\nu}_{i}=q\circ\nu_{i}:A\to A*_{w}C(S_{N}^{+}),

q:ANC(SN+)AwC(SN+)q:A^{*N}*C(S_{N}^{+})\to A*_{w}C(S_{N}^{+}) is the quotient map and π:AwC(SN+)=idϵ\pi:A*_{w}C(S_{N}^{+})=id*\epsilon. Hence the morphisms ν¯i:AAwC(SN+)\bar{\nu}_{i}:A\to A*_{w}C(S_{N}^{+}) are injective.

Recall that the case of the dual of a discrete group 𝔾=Γ^\mathbb{G}=\widehat{\Gamma} is investigated in [Lem13a]. In particular, a description of the irreducible representations is given and several operator algebraic properties are obtained from this description such as factoriality and fulness of the associated von Neumann algebras at least in most cases. In this paper, we shall obtain operator algebraic properties in the more general setting of free wreath product quantum groups 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} with 𝔾\mathbb{G} compact matrix quantum group of Kac type. To do this, we will use the notion of monoidal equivalence for compact quantum groups.

Two compact quantum groups 𝔾1\mathbb{G}_{1}, 𝔾2\mathbb{G}_{2} are monoidally equivalent if their representation categories Rep(𝔾1)\text{Rep}(\mathbb{G}_{1}), Rep(𝔾2)\text{Rep}(\mathbb{G}_{2}) are unitarily monoidally equivalent. That is:

Definition 1.15.

[BDRV06] Let 𝔾1\mathbb{G}_{1}, 𝔾2\mathbb{G}_{2} be two compact quantum groups. We say that 𝔾1\mathbb{G}_{1} and 𝔾2\mathbb{G}_{2} are monoidally equivalent, and we write 𝔾1mon𝔾2\mathbb{G}_{1}\simeq_{mon}\mathbb{G}_{2}, if there exists a bijection ϕ:Irr(𝔾1)Irr(𝔾2)\phi:\operatorname{Irr}(\mathbb{G}_{1})\to\operatorname{Irr}(\mathbb{G}_{2}) satisfying ϕ(1)=1\phi(1)=1, together with linear isomorphisms still denoted ϕ\phi

ϕ:Hom𝔾1(x1xk;y1yl)Hom𝔾2(ϕ(x1)ϕ(xk);ϕ(y1)ϕ(yl))\phi:\operatorname{Hom}_{\mathbb{G}_{1}}(x_{1}\otimes\dots\otimes x_{k};y_{1}\otimes\dots\otimes y_{l})\to\operatorname{Hom}_{\mathbb{G}_{2}}(\phi(x_{1})\otimes\dots\otimes\phi(x_{k});\phi(y_{1})\otimes\dots\otimes\phi(y_{l}))

such that:

  1. \bullet

    ϕ(id)=id\phi(\operatorname{id})=\operatorname{id},

  2. \bullet

    ϕ(ST)=ϕ(S)ϕ(T)\phi(S\otimes T)=\phi(S)\otimes\phi(T),

  3. \bullet

    ϕ(S)=ϕ(S)\phi(S^{*})=\phi(S)^{*},

  4. \bullet

    ϕ(ST)=ϕ(S)ϕ(T)\phi(ST)=\phi(S)\phi(T),

whenever the formulas make sense.

We shall prove such a monoidal equivalence for compact quantum groups whose underlying CC^{*}-algebras are generated the coefficients of generating corepresentations. It will be enough to construct the maps ϕ\phi of Definition 1.15 at the level of these generating objects and extend to the completions in the sense of Woronowicz. We refer the reader to [Wor88] and [BDRV06] for notions on monoidal CC^{*}-categories associated with compact quantum groups. The reader may also refer to [ML98] for a general introduction to categories. The following result is maybe well known but we include a proof for the convenience of the reader.

Lemma 1.16.

Let 0\mathcal{R}_{0} and 𝒮0\mathcal{S}_{0} be monoidal rigid CC^{*}-tensor categories generated by certain objects 0=α:αI\mathcal{R}_{0}=\langle\alpha:\alpha\in I\rangle, 𝒮0=β:βJ\mathcal{S}_{0}=\langle\beta:\beta\in J\rangle and with completions (with respect to direct sums and sub-objects) ,𝒮\mathcal{R},\mathcal{S}. Let φ:0𝒮0\varphi:\mathcal{R}_{0}\to\mathcal{S}_{0} be an equivalence of such categories. Then there exists a equivalence of categories φ~:𝒮\widetilde{\varphi}:\mathcal{R}\to\mathcal{S} extending φ\varphi.

Proof.

We prove that we can extend φ\varphi to the sub-objects of 0\mathcal{R}_{0}. We denote the extension φ~\widetilde{\varphi}. Let a,ba,b\in\mathcal{R}. Then aa is contained in a tensor products of generating objects aαa\subset\bigotimes\alpha, and similarly bβb\subset\bigotimes\beta. By definition, there exist isometries v:aαv:a\to\bigotimes\alpha and w:bβw:b\to\bigotimes\beta, vv=id=wwv^{*}v=\operatorname{id}=w^{*}w, such that vvEnd(β)vv^{*}\in\text{End}(\bigotimes\beta), wwEnd(α)ww^{*}\in\text{End}(\bigotimes\alpha) are the projections onto aa and bb respectively.

Now, φ(vv)End(φ(α))\varphi(vv^{*})\in\text{End}(\bigotimes\varphi(\alpha)) is a projection. Hence, there exist an object φ~(a)\widetilde{\varphi}(a)\in\mathcal{R} and an isometry φ~(v):φ~(a)φ(α)\widetilde{\varphi}(v):\widetilde{\varphi}(a)\to\bigotimes\varphi(\alpha) such that φ~(v)φ~(v)=φ~(vv)\widetilde{\varphi}(v)\widetilde{\varphi}(v)^{*}=\widetilde{\varphi}(vv^{*}) and φ~(v)φ~(v)(φ(α))=φ~(a)\widetilde{\varphi}(v)\widetilde{\varphi}(v^{*})\left(\bigotimes\varphi(\alpha)\right)=\widetilde{\varphi}(a). We can proceed similarly for φ(ww)End(φ(β))\varphi(ww^{*})\in\text{End}(\bigotimes\varphi(\beta)) and obtain similar object and isometry φ~(b)\widetilde{\varphi}(b), φ~(w)\widetilde{\varphi}(w). Then, if S:abS:a\to b, we can define φ~(S):φ(a)φ(b)\widetilde{\varphi}(S):\varphi(a)\to\varphi(b) by

φ~(S):=φ~(w)φ(wSv)φ~(v).\widetilde{\varphi}(S):=\widetilde{\varphi}(w)^{*}\varphi(wSv^{*})\widetilde{\varphi}(v).

We can make two straightforward remarks. First, a simple calculation shows that φ~(S)=φ~(S)\widetilde{\varphi}(S^{*})=\widetilde{\varphi}(S)^{*}. Now, notice that if c=abc=a\oplus b with a,b,ca,b,c\in\mathcal{R} then there exist isometries u:acu:a\to c and v:bcv:b\to c such that uu+vv=iduu^{*}+vv^{*}=\operatorname{id}. We have

id=φ~(id)=φ~(uu+vv)=φ~(u)φ~(u)+φ~(v)φ~(v),\operatorname{id}=\widetilde{\varphi}(\operatorname{id})=\widetilde{\varphi}(uu^{*}+vv^{*})=\widetilde{\varphi}(u)\widetilde{\varphi}(u)^{*}+\widetilde{\varphi}(v)\widetilde{\varphi}(v)^{*},

so that φ~\widetilde{\varphi} extends φ\varphi to direct sums.

Let us check that φ~\widetilde{\varphi} is compatible with the composition of morphisms. Compatibility with tensor product is clear and compatibility with involution was mentioned above. If T:bcT:b\to c is a morphism between b,c𝒞b,c\in\mathscr{C}, we can define φ~(T):φ(b)φ(c)\widetilde{\varphi}(T):\varphi(b)\to\varphi(c) in the same way as above starting from an isometry u:bcu:b\to c,

φ~(T):=φ~(u)φ(uTw)φ~(w)\widetilde{\varphi}(T):=\widetilde{\varphi}(u)^{*}\varphi(uTw^{*})\widetilde{\varphi}(w)

and we have

φ~(TS):=φ~(u)φ(uTSv)φ~(v):ac.\widetilde{\varphi}(T\circ S):=\widetilde{\varphi}(u)\varphi(uTSv^{*})\widetilde{\varphi}(v):a\to c.

But,

φ~(T)φ~(S)\displaystyle\widetilde{\varphi}(T)\circ\widetilde{\varphi}(S) =φ~(u)φ(uTw)φ~(w)φ~(w)φ(wSv)φ~(v)\displaystyle=\widetilde{\varphi}(u)\varphi(uTw^{*})\widetilde{\varphi}(w)\widetilde{\varphi}(w^{*})\varphi(wSv^{*})\widetilde{\varphi}(v)
=φ~(u)φ(uTw)φ~(ww)φ(wSv)φ~(v)\displaystyle=\widetilde{\varphi}(u)\varphi(uTw^{*})\widetilde{\varphi}(ww^{*})\varphi(wSv^{*})\widetilde{\varphi}(v)
=φ~(u)φ(uTwwwwSv)φ~(v)\displaystyle=\widetilde{\varphi}(u)\varphi(uTw^{*}ww^{*}wSv^{*})\widetilde{\varphi}(v)
=φ~(u)φ(uTSv)φ~(v).\displaystyle=\widetilde{\varphi}(u)\varphi(uTSv^{*})\widetilde{\varphi}(v).

where the third equality above comes from the fact that φ~(ww)\widetilde{\varphi}(ww^{*}) and then also

φ(uTw)φ~(ww)φ(wSv)\varphi(uTw^{*})\widetilde{\varphi}(ww^{*})\varphi(wSv^{*})

are morphisms in the category 0\mathcal{R}_{0}. ∎

2. Classical wreath products by permutation groups.

In this section we provide a probabilistic formula for the moments of the character coming from certain wreath products of classical groups. This is in particular a hint for the formula in the free case. Recall that we denote by 𝒫(k)\mathcal{P}(k) the set of all partitions of the set {1,,k}\{1,\dots,k\}.

Let GG be a classical group, n1n\geq 1. Then SnS_{n} acts on GnG^{n} by the automorphisms

s:σSns(σ).(g1,,gn)=(gσ1(1),,gσ1(n))s:\sigma\in S_{n}\mapsto s(\sigma).(g_{1},\dots,g_{n})=(g_{\sigma^{-1}(1)},\dots,g_{\sigma^{-1}(n)})
Definition 2.1.

The wreath product between GG and SnS_{n}, GSnG\wr S_{n}, is defined as the semi-direct product between GnG^{n} and SnS_{n}, with SnS_{n} acting on GnG^{n} by the map ss above. More precisely,

GSn={((g1,,gn),σ),giG,σSn}G\wr S_{n}=\{((g_{1},\dots,g_{n}),\sigma),g_{i}\in G,\sigma\in S_{n}\}

with the product

((g1,,gn),σ)((g1,,gn),μ)=((g1gσ1(1),,gngσ1(n)),σμ).((g_{1},\dots,g_{n}),\sigma)\cdot((g^{\prime}_{1},\dots,g^{\prime}_{n}),\mu)=((g_{1}g^{\prime}_{\sigma^{-1}(1)},\dots,g_{n}g^{\prime}_{\sigma^{-1}(n)}),\sigma\mu).

If GG is a compact group, GSnG\wr S_{n} is compact as well and thus there exists a Haar measure on GSnG\wr S_{n}. It is direct to see that on GSnG\wr S_{n} is isomorph to G××G×SnG\times\dots\times G\times S_{n} as a measure space and that the Haar measure on GSnG\wr S_{n} is given by dλGSn=idgidσd\lambda_{G\wr S_{n}}=\bigotimes_{i}dg_{i}\otimes d\sigma, where dgd_{g} designates the Haar measure on GG and dσd\sigma the normalized counting measure on SnS_{n}. If α:GU(V)\alpha:G\to U(V) is a unitary representation of GG, then GSnG\wr S_{n} acts on VnV^{\otimes n} via

αn((g1,,gn),σ)(v1vn):=α(g1)(vσ1(1))α(gn)(vσ1(n)).\displaystyle\alpha^{n}((g_{1},\dots,g_{n}),\sigma)(v_{1}\otimes\dots\otimes v_{n}):=\alpha(g_{1})(v_{\sigma^{-1}(1)})\otimes\dots\otimes\alpha(g_{n})(v_{\sigma^{-1}(n)}).

We will use the following notation in the sequel:

Notation 2.2.

If β:GU(H)\beta:G\to U(H) be a unitary representation of a compact group GG, we denote :

  1. \bullet

    χβ\chi_{\beta} denotes the character of β\beta,

  2. \bullet

    FβF_{\beta} is the exponential generating serie of the moments of χβ\chi_{\beta} with respect to the Haar measure

The purpose is to describe the distribution of χαn\chi_{\alpha^{n}} under dλGSnd\lambda_{G\wr S_{n}}, when α\alpha is a represention of GG. We will assume that GGLp()G\subset GL_{p}(\mathbb{R}) for some p1p\geq 1. In particular χαn\chi_{\alpha^{n}} is real. The computations are similar in the complex setting; we just have to deal separately with the real and imaginary part of χα\chi_{\alpha}.

Notation 2.3.

For each partition ν𝒫(k)\nu\in\mathcal{P}(k) with blocks B1,BrB_{1},\dots B_{r} and sequence of numbers (c1,,cn,)(c_{1},\dots,c_{n},\dots) of length greater than kk we write

cν=c|B1|c|B2|c|Br|c_{\nu}=c_{|B_{1}|}c_{|B_{2}|}\dots c_{|B_{r}|}

with |Bi||B_{i}| being the cardinal of the block BiB_{i}.

Proposition 2.4.

The exponential serie of the moments of χαn\chi_{\alpha^{n}} is given by

Fαn(x)=\displaystyle F_{\alpha^{n}}(x)= mαn(k)xkk!\displaystyle\sum m_{\alpha^{n}}(k)\frac{x^{k}}{k!}

with

mαn(k)=ν𝒫(k),l(ν)nmα(ν).m_{\alpha^{n}}(k)=\sum_{\nu\in\mathcal{P}(k),l(\nu)\leq n}m_{\alpha}(\nu).

with l(π)l(\pi) being the length of a partition π\pi, that is the number of blocks of π\pi.

Proof.

Let t=((g1,,gn),σ)GSnt=((g_{1},\dots,g_{n}),\sigma)\in G\wr S_{n}, we have for x>0x>0 small enough. Writing the action of tt through αn\alpha^{n} in block matrices yields the following result

Fαn(x)=\displaystyle F_{\alpha^{n}}(x)= 𝔼GSn(exp(xTr(αn(t)))=GSnexp(xi fixed point of σTr(α(gi)))dgidσ\displaystyle\mathbb{E}_{G\wr S_{n}}(\exp(x\text{Tr}(\alpha^{n}(t)))=\int_{G\wr S_{n}}\exp\left(x\sum_{i\text{ fixed point of }\sigma}\text{Tr}(\alpha(g_{i}))\right)\prod dg_{i}d\sigma
=\displaystyle= Sni fixed point of σ(Giexp(x×Tr(α(gi)))𝑑gi)dσ\displaystyle\int_{S_{n}}\prod_{i\text{ fixed point of $\sigma$}}\left(\int_{G_{i}}\exp(x\times\text{Tr}(\alpha(g_{i})))dg_{i}\right)d\sigma
=\displaystyle= Sni fixed point of σFα(x)dσ\displaystyle\int_{S_{n}}\prod_{i\text{ fixed point of $\sigma$}}F_{\alpha}(x)d\sigma
=\displaystyle= SnFα(x)# fixed points of s𝑑σ\displaystyle\int_{S_{n}}F_{\alpha}(x)^{\#\text{ fixed points of s}}d\sigma
=\displaystyle= Snexp(log(Fα(x))# fixed point of σ)𝑑σ.\displaystyle\int_{S_{n}}\exp\left(\log(F_{\alpha}(x))\#\text{ fixed point of $\sigma$}\right)d\sigma.

Considering log(Fα(x))\log(F_{\alpha}(x)) as fixed in the last integral yields the equality

(2.1) Fαn(x)=log(Fα(x))F_{\alpha^{n}}(x)=\log(F_{\alpha}(x))

where FSnF_{S_{n}} designates the exponential generating serie of the moments of the natural representation SnMn()S_{n}\hookrightarrow M_{n}(\mathbb{C}). Now, we can exploit the general facts that

(2.2) Fβ(x)=mβ(k)xkk!F_{\beta}(x)=\sum m_{\beta}(k)\frac{x^{k}}{k!}

and

(2.3) logFβ(x)=cβ(k)xkk!\log F_{\beta}(x)=\sum c_{\beta}(k)\frac{x^{k}}{k!}

where (mβ(k))k1\left(m_{\beta}(k)\right)_{k\geq 1} are the moment of the law of χβ\chi_{\beta} and (cβ(k))k1\left(c_{\beta}(k)\right)_{k\geq 1} are the classical cumulants of this law. The latter is the only sequence of real numbers satisfying:

(2.4) mβ(k)=π𝒫(k)cβ(π)m_{\beta}(k)=\sum_{\pi\in\mathcal{P}(k)}c_{\beta}(\pi)

for all k1k\geq 1. From the left-hand side of (2.1)\eqref{clstep1} and (2.2)\eqref{cldef1} we get

Fαn(x)=kmαn(k)xkk!F_{\alpha^{n}}(x)=\sum_{k}m_{\alpha^{n}}(k)\frac{x^{k}}{k!}

and from the right-hand of (2.1)\eqref{clstep1} with (2.3)\eqref{cldef2} we compute

Fαn(x)=\displaystyle F_{\alpha^{n}}(x)= rmSn(r)(cα(u)xuu!)rr!\displaystyle\sum_{r}m_{S_{n}}(r)\frac{\left(\sum c_{\alpha}(u)\frac{x^{u}}{u!}\right)^{r}}{r!}
=\displaystyle= kxkk!rmSn(r)r!u1×1++uk×k=kui=rk!r!u1!ur!(cα(1)1!)u1(cα(k)k!)uk\displaystyle\sum_{k}\frac{x^{k}}{k!}\sum_{r}\frac{m_{S_{n}}(r)}{r!}\sum_{\begin{subarray}{a}u_{1}\times 1+\dots+u_{k}\times k=k\\ \sum u_{i}=r\end{subarray}}k!\frac{r!}{u_{1}!\dots u_{r}!}\left(\frac{c_{\alpha}(1)}{1!}\right)^{u_{1}}\dots\left(\frac{c_{\alpha}(k)}{k!}\right)^{u_{k}}

The last equality above being due to the multinomial expansion. Hence, after identifying coefficients we obtain:

(2.5) mαn(k)=rmSn(r)u1×1++uk×k=kui=rk!1u1!ur!(cα(1)1!)u1(cα(k)k!)ukm_{\alpha^{n}}(k)=\sum_{r}m_{S_{n}}(r)\sum_{\begin{subarray}{a}u_{1}\times 1+\dots+u_{k}\times k=k\\ \sum u_{i}=r\end{subarray}}k!\frac{1}{u_{1}!\dots u_{r}!}\left(\frac{c_{\alpha}(1)}{1!}\right)^{u_{1}}\dots\left(\frac{c_{\alpha}(k)}{k!}\right)^{u_{k}}

We say that a partition p𝒫(k)p\in\mathcal{P}(k) is of type (1u1,,kur)(1^{u_{1}},\dots,k^{u_{r}}), if it is a partition having u1u_{1} blocks of cardinal 11, u2u_{2} of cardinal 22 and so on. We know that the number of partitions of {1,,k}\{1,\dots,k\} with type (1u1,,kur)(1^{u_{1}},\dots,k^{u_{r}}) is exactly

k!u1!uk!11!u1k!uk,\frac{k!}{u_{1}!\dots u_{k}!}\frac{1}{1!^{u_{1}}\dots k!^{u_{k}}},

see e.g. page 22 in [Mac98]. So we have by summing over every types of partition in (2.5):

(2.6) mαn(k)=rmSn(r)π𝒫(k),l(π)=rcα(π)m_{\alpha^{n}}(k)=\sum_{r}m_{S_{n}}(r)\sum_{\pi\in\mathcal{P}(k),l(\pi)=r}c_{\alpha}(\pi)

Using the fact that (see [BS09], [RS06])

(2.7) mSn(r)=#{partitions of {1,,r} having at most n blocks}m_{S_{n}}(r)=\#\{\text{partitions of $\{1,\dots,r\}$ having at most $n$ blocks}\}

we can transform (2.6) into

mαn(k)=\displaystyle m_{\alpha^{n}}(k)= rν𝟏rl(ν)nπ𝟏kl(π)=rcα(π)=rπ𝟏kl(π)=rπν𝟏kl(ν)ncα(π)\displaystyle\sum_{r}\sum_{\begin{subarray}{c}\nu\leq\mathbf{1}_{r}\\ l(\nu)\leq n\end{subarray}}\sum_{\begin{subarray}{c}\pi\leq\mathbf{1}_{k}\\ l(\pi)=r\end{subarray}}c_{\alpha}(\pi)=\sum_{r}\sum_{\begin{subarray}{c}\pi\leq\mathbf{1}_{k}\\ l(\pi)=r\end{subarray}}\sum_{\begin{subarray}{c}\pi\leq\nu\leq\mathbf{1}_{k}\\ l(\nu)\leq n\end{subarray}}c_{\alpha}(\pi)
=\displaystyle= π𝟏kπν𝟏kl(ν)ncα(π)=ν𝟏kl(ν)nπνcα(π)\displaystyle\sum_{\pi\leq\mathbf{1}_{k}}\sum_{\begin{subarray}{c}\pi\leq\nu\leq\mathbf{1}_{k}\\ l(\nu)\leq n\end{subarray}}c_{\alpha}(\pi)=\sum_{\begin{subarray}{c}\nu\leq\mathbf{1}_{k}\\ l(\nu)\leq n\end{subarray}}\sum_{\pi\leq\nu}c_{\alpha}(\pi)
=\displaystyle= ν𝟏kl(ν)nmα(ν).\displaystyle\sum_{\begin{subarray}{c}\nu\leq\mathbf{1}_{k}\\ l(\nu)\leq n\end{subarray}}m_{\alpha}(\nu).

We can deduce from 2.4 the aymptotic law of χαn\chi_{\alpha^{n}} when nn goes to infinity :

Corollary 2.5.

We have the convergence in moments

χαnn𝒫(χα)\chi_{\alpha^{n}}\underset{n\to\infty}{\longrightarrow}\mathcal{P}(\chi_{\alpha})

where 𝒫(χα)\mathcal{P}(\chi_{\alpha}) is the compound Poisson law with parameter 11 and original law α\alpha.

Proof.

We have

mαn(k)\displaystyle m_{\alpha^{n}}(k) =ν𝟏k,l(ν)nmα(ν)\displaystyle=\sum_{\nu\leq\mathbf{1}_{k},l(\nu)\leq n}m_{\alpha}(\nu)
nν𝟏kmα(ν)=m𝒫(χα).\displaystyle\underset{n\to\infty}{\longrightarrow}\sum_{\nu\leq\mathbf{1}_{k}}m_{\alpha}(\nu)=m_{\mathcal{P}(\chi_{\alpha})}.

Remark 2.6.

In the next section we will determine the intertwiner spaces for a free wreath product 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}. The result and proofs can be easily adapted to get the same result in the classical case; one only need to use all partitions instead of non-crossing ones.

3. Intertwiner spaces in 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}

Let 𝔾=(C(𝔾),v)\mathbb{G}=(C(\mathbb{G}),v) be a compact matrix quantum group of Kac type, generated by a unitary vv acting on HH. In this section, the CC^{*}-algebras associated with compact quantum groups are considered in their maximal versions. We consider a generating magic unitary uu of the free quantum permutation group SN+S_{N}^{+} acting on N\mathbb{C}^{N}. We recall that the corepresentation

ω:=(ωijkl)1i,jN1k,ld𝔾=(uijvkl(i))i,j,k,l\omega:=(\omega_{ijkl})_{1\leq i,j\leq N}^{1\leq k,l\leq d_{\mathbb{G}}}=(u_{ij}v_{kl}^{(i)})_{i,j,k,l}

acting on W:=NHW:=\mathbb{C}^{N}\otimes H, is the generating matrix of the free wreath product quantum groups 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}, see [Bic04].

We set Rep(𝔾)={αI}\operatorname{Rep}(\mathbb{G})=\{\alpha\in I\} the set of equivalence classes of unitary finite dimensional (not necessarily irreducible) corepresentations of 𝔾\mathbb{G} and we denote by Hα=Y1α,,YdααH^{\alpha}=\langle Y_{1}^{\alpha},\dots,Y_{d_{\alpha}}^{\alpha}\rangle the representation space of α\alpha. We have a natural family of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}-representations, see the proof of Theorem 2.3 in [Bic04].

Definition 3.1.

A family of unitary corepresentations of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} is given by

{r(α):=(uijαkl(i)):αI}.\{r(\alpha):=\left(u_{ij}\alpha_{kl}^{(i)}\right):\alpha\in I\}.

Notice that r(α)r(\alpha) acts on the vector space NHα\mathbb{C}^{N}\otimes H^{\alpha}. These corepresentations will be called basic corepresentations for 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}.

We recall that we denote by {Tp}p\{T_{p}\}_{p} the basis of Hom(uk,ul)\operatorname{Hom}(u^{\otimes k},u^{\otimes l}) with pNC(k,l)p\in NC(k,l) for any k,lk,l\in\mathbb{N}. For any pNC(k,l)p\in NC(k,l) we make the convention that the points on top from left to right are weighted by the numbers 1,,k1,\dots,k and the points on bottom by the numbers k+1,,k+lk+1,\dots,k+l.

Notation 3.2.

Let us chose an order on the blocks of the partitions pNC(k,l)p\in NC(k,l). We write p={B1,,Br}p=\{B_{1},\dots,B_{r}\}, the block decomposition of pp with the following order: we fix B1B_{1} the block containing 11, B2B_{2} the first block, if it exists, containing the smallest 1<ik+l1<i\leq k+l with iB1i\notin B_{1}, etc.

We want to describe the intertwiner spaces between tensor products of basic corepresentations of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}. These spaces will be described by linear maps associated with certain non-crossing partitions and with 𝔾\mathbb{G}-morphisms. Indeed, let [α]:=(α1,,αk)[\alpha]:=(\alpha_{1},\dots,\alpha_{k}) and [β]:=(β1,,βl)[\beta]:=(\beta_{1},\dots,\beta_{l}) be tuples of 𝔾\mathbb{G}-representations such that the points of pp are decorated by these corepresentations. This means that in each block BiB_{i}, certain corepresentations α1i,,β1i,,\alpha^{i}_{1},\dots,\beta^{i}_{1},\dots, are attached to the upper and lower points respectively. We make the convention that if k=0k=0, then the trivial corepresentation decorates the upper part of pNC(0,l)p\in NC(0,l) and an analogue convention if l=0l=0. The non-crossing partition describing intertwiners in 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} will also be such that their blocks are decorated by 𝔾\mathbb{G}-morphisms. To be more precise, let us introduced some notation.

Notation 3.3.

Let pNC(k,l)p\in NC(k,l), pp given by its blocks denoted BB. We will simplify the notation BB into BB when the context is clear. We denote:

  1. \bullet

    B=UBLBB=U_{B}\cup L_{B} the upper and lower parts of each block BB.

  2. \bullet

    We denote HUB=iUBHαiH^{U_{B}}=\bigotimes_{i\in U_{B}}H^{\alpha_{i}} the tensor product of spaces HαiH^{\alpha_{i}}, and similarly we denote HLB=jLBHβjH^{L_{B}}=\bigotimes_{j\in L_{B}}H^{\beta_{j}}.

  3. \bullet

    We denote α(UB)=iUBαi\alpha(U_{B})=\bigotimes_{i\in U_{B}}\alpha_{i} the tensor product of corepresentations αi\alpha_{i} and similarly we denote β(LB)=jLBβj\beta(L_{B})=\bigotimes_{j\in L_{B}}\beta_{j}.

Furthermore, we assume that “attached” to each block BB there is a 𝔾\mathbb{G}-morphism

(3.1) SB=α(UB)β(LB)(HUB,HLB)\displaystyle S_{B}=\alpha(U_{B})\to\beta(L_{B})\in\mathcal{B}(H^{U_{B}},H^{L_{B}})

and we put

(3.2) S=BSB:Bα(UB)Bβ(LB)\displaystyle S=\bigotimes_{B}S_{B}:\bigotimes_{B}\alpha(U_{B})\to\bigotimes_{B}\beta(L_{B})

with the order on the blocks we gave above. We say that the blocks of pp are decorated by [S]=(S1,,Sr)[S]=(S_{1},\dots,S_{r}) where rr is the number of blocks in pp.

Definition 3.4.

We say that the partition pp decorated by representations [α],[β][\alpha],[\beta] is admissible if Bp,Hom𝔾(α(UB);α(LB))0\forall B\in p,\operatorname{Hom}_{\mathbb{G}}(\alpha(U_{B});\alpha(L_{B}))\neq 0.

Therefore, we can consider

TpS((N)kBHUB;(N)lBrHLB).\displaystyle T_{p}\otimes S\in\mathcal{B}\left((\mathbb{C}^{N})^{\otimes k}\otimes\bigotimes_{B}H^{U_{B}};(\mathbb{C}^{N})^{\otimes l}\otimes\bigotimes_{B}^{r}H^{L_{B}}\right).
Remark 3.5.

Notice that if the 𝔾\mathbb{G}-morphisms in (HUB,HLB)\mathcal{B}(H^{U_{B}},H^{L_{B}}) run over a basis of intertwiners α(UB)β(LB)\alpha(U_{B})\to\beta(L_{B}) then the family (TpS)p,S(T_{p}\otimes S)_{p,S} is free.

We shall twist this linear map to obtain a morphism

TpS~Hom𝔾SN+(r(α1)r(αk),r(β1)r(βl)).\displaystyle\widetilde{T_{p}\otimes S}\in\operatorname{Hom}_{\mathbb{G}\wr_{*}S_{N}^{+}}(r(\alpha_{1})\otimes\dots\otimes r(\alpha_{k}),r(\beta_{1})\otimes\dots\otimes r(\beta_{l})).
Notation 3.6.

Let pNC(k,l)p\in NC(k,l) decorated by 𝔾\mathbb{G}-representations [α],[β][\alpha],[\beta] and morphisms [S][S] as in the above notation. One can consider a unitary tpUt_{p}^{U} acting on vectors xiNx_{i}\in\mathbb{C}^{N}, yiHαiy_{i}\in H^{\alpha_{i}}, i=1,,ki=1,\dots,k

tpU:(NHα1)(NHαk)\displaystyle t_{p}^{U}:(\mathbb{C}^{N}\otimes H^{\alpha_{1}})\otimes\dots\otimes(\mathbb{C}^{N}\otimes H^{\alpha_{k}}) (N)kBHUB,\displaystyle\to(\mathbb{C}^{N})^{\otimes k}\otimes\bigotimes_{B}H^{U_{B}},
i=1k(xiyi)\displaystyle\bigotimes_{i=1}^{k}(x_{i}\otimes y_{i}) i=1kxiBiUByi\displaystyle\mapsto\bigotimes_{i=1}^{k}x_{i}\otimes\bigotimes_{B}\bigotimes_{i^{\prime}\in U_{B}}y_{i^{\prime}}

and a unitary tpLt_{p}^{L} acting on vectors xjNx_{j}\in\mathbb{C}^{N}, yjHβjy_{j}\in H^{\beta_{j}}, j=1,,lj=1,\dots,l

tpL:(NHβ1)(NHβl)\displaystyle t_{p}^{L}:(\mathbb{C}^{N}\otimes H^{\beta_{1}})\otimes\dots\otimes(\mathbb{C}^{N}\otimes H^{\beta_{l}}) (N)lBHLB,\displaystyle\to(\mathbb{C}^{N})^{\otimes l}\otimes\bigotimes_{B}H^{L_{B}},
j=1l(xjyj)\displaystyle\bigotimes_{j=1}^{l}(x_{j}\otimes y_{j}) j=1lxjBjLByj.\displaystyle\mapsto\bigotimes_{j=1}^{l}x_{j}\otimes\bigotimes_{B}\bigotimes_{j^{\prime}\in L_{B}}y_{j^{\prime}}.

We denote

Up,S\displaystyle U^{p,S} :=(tLp)(TpS)tUp\displaystyle:=(t_{L}^{p})^{*}\circ(T_{p}\otimes S)\circ t_{U}^{p}
((NHα1)(NHαk),(NHβ1)(NHβl)).\displaystyle\in\mathcal{B}\left((\mathbb{C}^{N}\otimes H^{\alpha_{1}})\otimes\dots\otimes(\mathbb{C}^{N}\otimes H^{\alpha_{k}}),(\mathbb{C}^{N}\otimes H^{\beta_{1}})\otimes\dots\otimes(\mathbb{C}^{N}\otimes H^{\beta_{l}})\right).

We can now prove the following result:

Theorem 3.7.

Let 𝔾=(C(𝔾),Δ)\mathbb{G}=(C(\mathbb{G}),\Delta) be a compact quantum group of Kac type. Let α1,,αk\alpha_{1},\dots,\alpha_{k} and β1,,βl\beta_{1},\dots,\beta_{l} be finite dimensional corepresentations in Rep(𝔾)\operatorname{Rep}(\mathbb{G}). We set [α]=(α1,,αk)[\alpha]=(\alpha_{1},\dots,\alpha_{k}) and [β]=(β1,,βl)[\beta]=(\beta_{1},\dots,\beta_{l}). Then

(3.3) Hom𝔾SN+(r(α1)\displaystyle\operatorname{Hom}_{\mathbb{G}\wr_{*}S_{N}^{+}}(r(\alpha_{1})\otimes\dots r(αk);r(β1)r(βl))\displaystyle\otimes r(\alpha_{k});r(\beta_{1})\otimes\dots\otimes r(\beta_{l}))
(3.4) =span{Up,S:pNC𝔾([α],[β]),S as below}\displaystyle=\emph{span}\{U^{p,S}:p\in NC_{\mathbb{G}}([\alpha],[\beta]),S\emph{ as below}\}

where Up,S=(tLp)(TpS)tUpU^{p,S}=(t_{L}^{p})^{*}\circ(T_{p}\otimes S)\circ t_{U}^{p} with

  1. \bullet

    the isomorphisms tUp,tLpt_{U}^{p},t_{L}^{p} defined in Notation 3.6,

  2. \bullet

    NC𝔾([α],[β])NC_{\mathbb{G}}([\alpha],[\beta]) consists of non-crossing partitions in NC(k,l)NC(k,l) decorated with corepresentations [α],[β][\alpha],[\beta] on the upper and lower points respectively,

  3. \bullet

    S=BSB:Bα(UB)Bβ(LB)S=\bigotimes_{B}S_{B}:\bigotimes_{B}\alpha(U_{B})\to\bigotimes_{B}\beta(L_{B}) as in (3.2), where the 𝔾\mathbb{G}-morphisms in (UB,LB)\mathcal{B}(U_{B},L_{B}) which decorate the blocks BpB\in p run over intertwiners α(UB)β(LB)\alpha(U_{B})\to\beta(L_{B}).

Proof.

We first prove that

Up,SHom𝔾SN+(r(α1)r(αk);r(β1)r(βl))U^{p,S}\in\operatorname{Hom}_{\mathbb{G}\wr_{*}S_{N}^{+}}(r(\alpha_{1})\otimes\dots\otimes r(\alpha_{k});r(\beta_{1})\otimes\dots\otimes r(\beta_{l}))

that is the inclusion of the right hand space (3.4) in the left hand space (3.3).

The Frobenius reciprocity for CC^{*}-tensor categories with conjugates provide the following isomorphisms:

Hom𝔾SN+(r(α1)r(αk)\displaystyle\operatorname{Hom}_{\mathbb{G}\wr_{*}S_{N}^{+}}(r(\alpha_{1})\otimes\dots\otimes r(\alpha_{k}) ;r(β1)r(βl))\displaystyle;r(\beta_{1})\otimes\dots\otimes r(\beta_{l}))
Hom𝔾SN+(1;r(α1)¯r(αk)¯r(β1)r(βl))\displaystyle\simeq\operatorname{Hom}_{\mathbb{G}\wr_{*}S_{N}^{+}}\left(1;\overline{r(\alpha_{1})}\otimes\dots\otimes\overline{r(\alpha_{k})}\otimes r(\beta_{1})\otimes\dots\otimes r(\beta_{l})\right)
Hom𝔾SN+(1;r(α¯1)r(α¯k)r(β1)r(βl)),\displaystyle\simeq\operatorname{Hom}_{\mathbb{G}\wr_{*}S_{N}^{+}}\left(1;r(\bar{\alpha}_{1})\otimes\dots\otimes r(\bar{\alpha}_{k})\otimes r(\beta_{1})\otimes\dots\otimes r(\beta_{l})\right),
Hom𝔾(α1αk;β1βl)Hom𝔾(1;α¯1α¯kβ1βl).\operatorname{Hom}_{\mathbb{G}}(\alpha_{1}\otimes\dots\otimes\alpha_{k};\beta_{1}\otimes\dots\otimes\beta_{l})\simeq\operatorname{Hom}_{\mathbb{G}}(1;\bar{\alpha}_{1}\otimes\dots\otimes\bar{\alpha}_{k}\otimes\beta_{1}\otimes\dots\otimes\beta_{l}).

Hence, one can restrict to prove that

(3.5) tLp(Tpξ)Hom𝔾SN+(1;r(α1)r(αk))\displaystyle t_{L}^{p}(T_{p}\otimes\xi)\in\operatorname{Hom}_{\mathbb{G}\wr_{*}S_{N}^{+}}(1;r(\alpha_{1})\otimes\dots\otimes r(\alpha_{k}))

for all kk\in\mathbb{N}, pNC(k)p\in NC(k) and all fixed vectors

ξ=Bξ(LB):BHLB.\xi=\bigotimes_{B}\xi(L_{B}):\mathbb{C}\to\bigotimes_{B}H^{L_{B}}.

It is enough to prove (3.5) for the one block partition 1k1_{k} since one can recover any pNCp\in NC by tensor products and compositions of partitions 1k1_{k} and id\operatorname{id}.

We now fix (ei)i=1N(e_{i})_{i=1}^{N} a basis of N\mathbb{C}^{N} and (Yjα)j=1dα(Y_{j}^{\alpha})_{j=1}^{d_{\alpha}} a basis of HαH^{\alpha}, for any αRep(𝔾)\alpha\in\operatorname{Rep}(\mathbb{G}). Proving tL1k(Tpξ)Hom𝔾SN+(1;r(α1)r(αk))t_{L}^{1_{k}}(T_{p}\otimes\xi)\in\operatorname{Hom}_{\mathbb{G}\wr_{*}S_{N}^{+}}(1;r(\alpha_{1})\otimes\dots\otimes r(\alpha_{k})) for some

ξ=[j]λ[j]kYj1α1YjkαkHom𝔾(1;α1αk)\xi=\sum_{[j]}\lambda^{k}_{[j]}Y_{j_{1}}^{\alpha_{1}}\otimes\dots\otimes Y_{j_{k}}^{\alpha_{k}}\in\operatorname{Hom}_{\mathbb{G}}(1;\alpha_{1}\otimes\dots\otimes\alpha_{k})

then follows from the following computation. We put Tξ1k:=tL1k(Tpξ)T_{\xi}^{1_{k}}:=t_{L}^{1_{k}}(T_{p}\otimes\xi) and we then have

Tξ1ki,[j]λ[j]k(eiYj1α1)(eiYjkαk)T_{\xi}^{1_{k}}\equiv\sum_{i,[j]}\lambda_{[j]}^{k}(e_{i}\otimes Y_{j_{1}}^{\alpha_{1}})\otimes\dots\otimes(e_{i}\otimes Y_{j_{k}}^{\alpha_{k}})

so that

rα1rαk(Tξ1k1)=i,[j]λ[j]k[r],[s](es1Yr1α1)(eskYrkαk)(us1i(α1)r1j1(s1)uski(αk)rkjk(sk)).r_{\alpha_{1}}\otimes\dots\otimes r_{\alpha_{k}}(T_{\xi}^{1_{k}}\otimes 1)=\sum_{i,[j]}\lambda_{[j]}^{k}\sum_{[r],[s]}(e_{s_{1}}\otimes Y_{r_{1}}^{\alpha_{1}})\otimes\dots\otimes(e_{s_{k}}\otimes Y_{r_{k}}^{\alpha_{k}})\otimes\left(u_{s_{1}i}(\alpha_{1})_{r_{1}j_{1}}^{(s_{1})}\dots u_{s_{k}i}(\alpha_{k})_{r_{k}j_{k}}^{(s_{k})}\right).

But the magic unitary uu satisfies for all s,t,s,t, usiuti=δstusi,iusi=1u_{si}u_{ti}=\delta_{st}u_{si},\sum_{i}u_{si}=1 and then combining this with the commuting relations in the free wreath product C(𝔾)wC(SN+)C(\mathbb{G})*_{w}C(S_{N}^{+}), we get

rα1rαk(Tξ1k1)\displaystyle r_{\alpha_{1}}\otimes\dots\otimes r_{\alpha_{k}}(T_{\xi}^{1_{k}}\otimes 1) =[j]λ[j]k[r],s1(es1Yr1α1)(es1Yrkαk)((α1)r1j1(s1)(αk)rkjk(s1)1)\displaystyle=\sum_{[j]}\lambda_{[j]}^{k}\sum_{[r],s_{1}}(e_{s_{1}}\otimes Y_{r_{1}}^{\alpha_{1}})\otimes\dots\otimes(e_{s_{1}}\otimes Y_{r_{k}}^{\alpha_{k}})\otimes\left((\alpha_{1})_{r_{1}j_{1}}^{(s_{1})}\dots(\alpha_{k})_{r_{k}j_{k}}^{(s_{1})}1\right)
(3.6) =s1[j]λ[j]k[r](es1Yr1α1)(es1Yrkαk)((α1)r1j1(s1)(αk)rkjk(s1)).\displaystyle=\sum_{s_{1}}\sum_{[j]}\lambda_{[j]}^{k}\sum_{[r]}(e_{s_{1}}\otimes Y_{r_{1}}^{\alpha_{1}})\otimes\dots\otimes(e_{s_{1}}\otimes Y_{r_{k}}^{\alpha_{k}})\otimes\left((\alpha_{1})_{r_{1}j_{1}}^{(s_{1})}\dots(\alpha_{k})_{r_{k}j_{k}}^{(s_{1})}\right).

Now, since

(3.7) ξ=[j]λ[j]kYj1α1YjkαkHom𝔾(1;α1αk),\displaystyle\xi=\sum_{[j]}\lambda^{k}_{[j]}Y_{j_{1}}^{\alpha_{1}}\otimes\dots\otimes Y_{j_{k}}^{\alpha_{k}}\in\operatorname{Hom}_{\mathbb{G}}(1;\alpha_{1}\otimes\dots\otimes\alpha_{k}),

we get applying (tL1k)1(t_{L}^{1_{k}})^{-1} in (3), using (3.7) and applying once more tL1kt_{L}^{1_{k}},

rα1rαk(Tξ1k1k1)\displaystyle r_{\alpha_{1}}\otimes\dots\otimes r_{\alpha_{k}}(T_{\xi_{1_{k}}}^{1_{k}}\otimes 1) =[r],s1λ[r]k(es1Yr1α1)(es1Yrkαk)1\displaystyle=\sum_{[r],s_{1}}\lambda_{[r]}^{k}(e_{s_{1}}\otimes Y_{r_{1}}^{\alpha_{1}})\otimes\dots\otimes(e_{s_{1}}\otimes Y_{r_{k}}^{\alpha_{k}})\otimes 1
=Tξ1k1.\displaystyle=T_{\xi}^{1_{k}}\otimes 1.

We now define 𝒯\mathcal{T} as the rigid monoidal CC^{*}-tensor category generated by the collection of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}-intertwiners spaces span{Up,S:p,S as in (3.4)}\text{span}\left\{U^{p,S}:p,S\text{ as in }(\ref{ncint2})\right\} between objects indexed by families [α][\alpha] of 𝔾\mathbb{G}-representations, If one applies Woronowicz’s Tannaka-Krein duality to this category 𝒯\mathcal{T}, we get a compact matrix quantum group (,Ω)(\mathbb{H},\Omega) generated by a unitary Ω\Omega corresponding to r(v)(NH)C()r(v)\in\mathcal{B}(\mathbb{C}^{N}\otimes H)\otimes C(\mathbb{H}) and a family of corepresentations (Rαi)iI(R_{\alpha_{i}})_{i\in I} such that

Hom(Rα1\displaystyle\operatorname{Hom}_{\mathbb{H}}(R_{\alpha_{1}}\otimes\dots Rαk;Rβ1Rβl)\displaystyle\otimes R_{\alpha_{k}};R_{\beta_{1}}\otimes\dots\otimes R_{\beta_{l}})
=span{Up,S:p,S as in (3.4)},\displaystyle=\text{span}\left\{U^{p,S}:p,S\text{ as in }(\ref{ncint2})\right\},

with pNC(k,l)p\in NC(k,l), S:Bα(UB)Bβ(LB)S:\bigotimes_{B}\alpha(U_{B})\to\bigotimes_{B}\beta(L_{B}), [α]=(α1,,αk)[\alpha]=(\alpha_{1},\dots,\alpha_{k}), β=(β1,,βl)\beta=(\beta_{1},\dots,\beta_{l}).

We proved above that

Up,SHom𝔾SN+(r(α1)r(αk);r(β1)r(βl)).U^{p,S}\in\operatorname{Hom}_{\mathbb{G}\wr_{*}S_{N}^{+}}(r(\alpha_{1})\otimes\dots\otimes r(\alpha_{k});r(\beta_{1})\otimes\dots\otimes r(\beta_{l})).

In particular, there is by universality a (surjective) morphism

π1:C()C(𝔾SN+),Ωijklωijkl.\pi_{1}:C(\mathbb{H})\to C(\mathbb{G}\wr_{*}S_{N}^{+}),\ \ \Omega_{ijkl}\mapsto\omega_{ijkl}.

To prove the theorem we shall construct a surjective morphism π2:C(𝔾SN+)C()\pi_{2}:C(\mathbb{G}\wr_{*}S_{N}^{+})\to C(\mathbb{H}) such that

π1π2=id=π2π1.\pi_{1}\circ\pi_{2}=\operatorname{id}=\pi_{2}\circ\pi_{1}.

We define the following elements in C()C(\mathbb{H})

(3.8) Vkl(i):=jΩijkl and Uijk=lΩijklΩijkl.\displaystyle V_{kl}^{(i)}:=\sum_{j}\Omega_{ijkl}\ \ \text{ and }\ \ U_{ijk}=\sum_{l}\Omega_{ijkl}\Omega_{ijkl}^{*}.

We shall prove that the generating relations in C(𝔾SN+)C(\mathbb{G}\wr_{*}S_{N}^{+}) are also satisfied by the elements Vkl(i)V_{kl}^{(i)} and UijkU_{ijk} in C()C(\mathbb{H}).

Since the generating matrix vv of 𝔾\mathbb{G} is unitary, we get that ξ=bYbY¯b\xi=\sum_{b}Y_{b}\otimes\bar{Y}_{b} is a fixed vector of vv¯v\otimes\bar{v} and thus ξξHom(1;vv¯vv¯)Hom(v;vv¯v)\xi\otimes\xi\in\operatorname{Hom}(1;v\otimes\bar{v}\otimes v\otimes\bar{v})\simeq\operatorname{Hom}(v;v\otimes\bar{v}\otimes v). Via this isomorphism, we identify ξξ\xi\otimes\xi with YcYcYc¯YY\mapsto\sum_{c}Y_{c}\otimes\overline{Y_{c}}\otimes Y.

We then have an intertwiner T:=tLp(Tpξξ)Hom(Ω;ΩΩ¯Ω)𝒯T:=t_{L}^{p}(T_{p}\otimes\xi\otimes\xi)\in\operatorname{Hom}(\Omega;\Omega\otimes\bar{\Omega}\otimes\Omega)\subset\mathcal{T} with

p={}p=\left\{\ \begin{picture}(2.1,2.0)\put(1.0,0.3){\line(0,1){1.3}} \put(0.0,0.3){\line(1,0){2.028}} \put(0.029,-1.0){\line(0,1){1.3}} \put(1.0,-1.0){\line(0,1){1.3}} \put(2.0,-1.0){\line(0,1){1.3}} \end{picture}\ \right\}

i.e. with Notation 3.3 and making plain the 𝔾\mathbb{G}-morphisms on the block pp

P={vv¯vv}P=\left\{\ \begin{picture}(1.8,2.0)\put(1.0,0.3){\line(0,1){1.3}} \put(0.7,1.7){$v$} \put(0.7,0.1){\line(0,1){1.5}} \put(0.7,0.126){\line(1,0){1.0}} \put(0.0,0.3){\line(1,0){2.028}} \put(-0.3,-0.1){\line(1,0){1.0}} \put(0.029,-1.0){\line(0,1){1.3}} \put(-0.3,-1.5){$v$} \put(-0.3,-1.0){\line(0,1){0.926}} \put(1.0,-1.0){\line(0,1){1.3}} \put(0.7,-1.5){$\bar{v}$} \put(0.7,-1.0){\line(0,1){0.926}} \put(2.0,-1.0){\line(0,1){1.3}} \put(1.7,-1.5){$v$} \put(1.7,-1.0){\line(0,1){1.155}} \end{picture}\ \right\}

that is

T(Yea)=c(eaYc)(eaYc)¯(eaY).T(Y\otimes e_{a})=\sum_{c}(e_{a}\otimes Y_{c})\otimes\overline{(e_{a}\otimes Y_{c})}\otimes(e_{a}\otimes Y).

We obtain for all a=1,,Na=1,\dots,N and b=1,,d𝔾b=1,\dots,d_{\mathbb{G}}:

[i],[k],c(ei1Yk1)(ei2Yk2)(ei3Yk3)Ωi1ak1cΩi2ak2cΩi3ak3b\displaystyle\sum_{[i],[k],c}(e_{i_{1}}\otimes Y_{k_{1}})\otimes(e_{i_{2}}\otimes Y_{k_{2}})\otimes(e_{i_{3}}\otimes Y_{k_{3}})\otimes\Omega_{i_{1}ak_{1}c}\ \Omega_{i_{2}ak_{2}c}^{*}\ \Omega_{i_{3}ak_{3}b}
=i,k,r(eiYr)(eiYr)(eiYk)Ωiakb\displaystyle=\sum_{i,k,r}(e_{i}\otimes Y_{r})\otimes(e_{i}\otimes Y_{r})\otimes(e_{i}\otimes Y_{k})\otimes\Omega_{iakb}

so that for all [i]{1,,N}3[i]\in\{1,\dots,N\}^{3}, [k]{1,,d𝔾}2[k]\in\{1,\dots,d_{\mathbb{G}}\}^{2}, a{1,,N}a\in\{1,\dots,N\} and b{1,,d𝔾}b\in\{1,\dots,d_{\mathbb{G}}\}:

(3.9) (cΩi1ak1cΩi2ak2c)Ωi3ak3b\displaystyle\left(\sum_{c}\Omega_{i_{1}ak_{1}c}\ \Omega_{i_{2}ak_{2}c}^{*}\right)\Omega_{i_{3}ak_{3}b} =δi1,i2,i3δk1,k2Ωi3ak3b.\displaystyle=\delta_{i_{1},i_{2},i_{3}}\delta_{k_{1},k_{2}}\Omega_{i_{3}ak_{3}b}.

and taking adjoints:

(3.10) Ωi3ak3b(cΩi2ak2cΩi1ak1c)\displaystyle\Omega_{i_{3}ak_{3}b}^{*}\left(\sum_{c}\Omega_{i_{2}ak_{2}c}\ \Omega_{i_{1}ak_{1}c}^{*}\right) =δi1,i2,i3δk1,k2Ωi3ak3b.\displaystyle=\delta_{i_{1},i_{2},i_{3}}\delta_{k_{1},k_{2}}\Omega_{i_{3}ak_{3}b}^{*}.

Considering now

P={vvv¯v},P^{\prime}=\left\{\ \begin{picture}(2.1,2.0)\put(1.0,0.3){\line(0,1){1.3}} \put(0.7,1.75){$v$} \put(0.7,0.1){\line(0,1){1.5}} \put(-0.3,0.126){\line(1,0){1.0}} \put(0.0,0.3){\line(1,0){2.028}} \put(0.7,-0.1){\line(1,0){1.0}} \put(0.029,-1.0){\line(0,1){1.3}} \put(-0.35,-1.5){$v$} \put(0.7,-1.0){\line(0,1){0.926}} \put(0.7,-1.5){$v$} \put(1.0,-1.0){\line(0,1){1.3}} \put(1.7,-1.0){\line(0,1){0.926}} \put(1.7,-1.5){$\bar{v}$} \put(2.0,-1.0){\line(0,1){1.3}} \put(-0.3,-1.0){\line(0,1){1.155}} \end{picture}\ \right\},

we can get the same way, for all [i]{1,,N}3[i]\in\{1,\dots,N\}^{3}, [k]{1,,d𝔾}2[k]\in\{1,\dots,d_{\mathbb{G}}\}^{2}, a{1,,N}a\in\{1,\dots,N\} and b{1,,d𝔾}b\in\{1,\dots,d_{\mathbb{G}}\}, using tLp(Tpξξ)Hom(Ω;ΩΩΩ¯)𝒯t_{L}^{p}(T_{p^{\prime}}\otimes\xi\otimes\xi)\in\operatorname{Hom}(\Omega;\Omega\otimes\Omega\otimes\bar{\Omega})\subset\mathcal{T},

(3.11) Ωi3ak3b(cΩi1ak1cΩi2ak2c)\displaystyle\Omega_{i_{3}ak_{3}b}\left(\sum_{c}\Omega_{i_{1}ak_{1}c}\ \Omega_{i_{2}ak_{2}c}^{*}\right) =δi1,i2,i3δk1,k2Ωi3ak3b,\displaystyle=\delta_{i_{1},i_{2},i_{3}}\delta_{k_{1},k_{2}}\Omega_{i_{3}ak_{3}b},

and taking adjoints:

(3.12) (cΩi2ak2cΩi1ak1c)Ωi3ak3b\displaystyle\left(\sum_{c}\Omega_{i_{2}ak_{2}c}\ \Omega_{i_{1}ak_{1}c}^{*}\right)\Omega_{i_{3}ak_{3}b}^{*} =δi1,i2,i3δk1,k2Ωi3ak3b.\displaystyle=\delta_{i_{1},i_{2},i_{3}}\delta_{k_{1},k_{2}}\Omega_{i_{3}ak_{3}b}^{*}.

We shall obtain from (3.9), (3.10), (3.11), (3.12) all the necessary relations in C()C(\mathbb{H}) to build back the free wreath product 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}.

From these relations, we see in particular that the elements Uijk=cΩijkcΩijkcU_{ijk}=\sum_{c}\Omega_{ijkc}\Omega_{ijkc}^{*} do not depend on kk since

UijkUijk\displaystyle U_{ijk}U_{ijk^{\prime}} =c,dΩijkcΩijkcΩijkdΩijkd\displaystyle=\sum_{c,d}\Omega_{ijkc}\Omega_{ijkc}^{*}\Omega_{ijk^{\prime}d}\Omega_{ijk^{\prime}d}^{*}
=d(cΩijkcΩijkcΩijkd)Ωijkd\displaystyle=\sum_{d}\left(\sum_{c}\Omega_{ijkc}\Omega_{ijkc}^{*}\Omega_{ijk^{\prime}d}\right)\Omega_{ijk^{\prime}d}^{*}
=dΩijkdΩijkd=Uijk\displaystyle=\sum_{d}\Omega_{ijk^{\prime}d}\Omega_{ijk^{\prime}d}^{*}=U_{ijk^{\prime}} (by (3.9)),\displaystyle\text{ (by (\ref{projt}))},

and similarly UijkUijk=UijkU_{ijk}U_{ijk^{\prime}}=U_{ijk}, using (3.11). We then obtain Uijk=UijkU_{ijk}=U_{ijk^{\prime}}. We fix kk and set Uij:=UijkU_{ij}:=U_{ijk}. Notice that the case k=kk=k^{\prime} above shows that UijU_{ij} is an orthogonal projection (the relation Uij=UijU_{ij}^{*}=U_{ij} is clear). In fact, the matrix (Uij)(U_{ij}) is a magic unitary, since it is a unitary whose entries are orthogonal projections. We now prove that for all i=1,,Ni=1,\dots,N and all ϵj,ϵk{1,},\epsilon_{j},\epsilon_{k}^{\prime}\in\{1,*\},

Hom𝔾(vϵ1vϵk;vϵ1vϵl)Homi(V(i)ϵ1V(i)ϵk;V(i)ϵ1V(i)ϵl),\operatorname{Hom}_{\mathbb{G}}\left(v^{\epsilon_{1}}\otimes\dots\otimes v^{\epsilon_{k}};v^{\epsilon^{\prime}_{1}}\otimes\dots\otimes v^{\epsilon^{\prime}_{l}})\subset\operatorname{Hom}_{\mathbb{H}_{i}}(V^{(i)\epsilon_{1}}\otimes\dots\otimes V^{(i)\epsilon_{k}};V^{(i)\epsilon^{\prime}_{1}}\otimes\dots\otimes V^{(i)\epsilon^{\prime}_{l}}\right),

where i\mathbb{H}_{i} is the compact matrix quantum groups whose underlying Woronowicz-CC^{*}-algebra is generated by the coefficients of V(i)V^{(i)}. By Frobenius reciprocity, it is enough to prove that any fixed vector in 𝔾\mathbb{G} is fixed in i\mathbb{H}_{i}.

If ξk=[j]λ[j]Yj1YjkHom(1;vϵ1vϵk)\xi_{k}=\sum_{[j]}\lambda_{[j]}Y_{j_{1}}\otimes\dots\otimes Y_{j_{k}}\in\operatorname{Hom}(1;v^{\epsilon_{1}}\otimes\dots\otimes v^{\epsilon_{k}}), we have:

[r][j]λ[j]Yr1Yrkvr1j1ϵ1vrkjkϵk=[r]λ[r]Yr1Yrk1,\displaystyle\sum_{[r][j]}\lambda_{[j]}Y_{r_{1}}\otimes\dots\otimes Y_{r_{k}}\otimes v_{r_{1}j_{1}}^{\epsilon_{1}}\dots v_{r_{k}j_{k}}^{\epsilon_{k}}=\sum_{[r]}\lambda_{[r]}Y_{r_{1}}\otimes\dots\otimes Y_{r_{k}}\otimes 1,

i.e. [r]{1,,d𝔾}k\forall[r]\in\{1,\dots,d_{\mathbb{G}}\}^{k}, we have the relations in C(𝔾)C(\mathbb{G}):

(3.13) [j]λ[j]vr1j1ϵ1vrkjkϵk=λ[r].\displaystyle\sum_{[j]}\lambda_{[j]}v_{r_{1}j_{1}}^{\epsilon_{1}}\dots v_{r_{k}j_{k}}^{\epsilon_{k}}=\lambda_{[r]}.

Now, we use the morphism (tLp)(Tpξk)𝒯(t_{L}^{p})^{*}\circ(T_{p}\otimes\xi_{k})\in\mathcal{T}, with p=1kNC(k)p=1_{k}\in NC(k) i.e.

(tLp)(ξkTp)\displaystyle(t_{L}^{p})^{*}\circ(\xi_{k}\otimes T_{p}) =i[j]λ[j](eiYj1)(eiYjk)\displaystyle=\sum_{i[j]}\lambda_{[j]}(e_{i}\otimes Y_{j_{1}})\otimes\dots\otimes(e_{i}\otimes Y_{j_{k}})
Hom(1;Ωϵ1Ωϵk)𝒯.\displaystyle\in\operatorname{Hom}(1;\Omega^{\epsilon_{1}}\otimes\dots\otimes\Omega^{\epsilon_{k}})\subset\mathcal{T}.

We get

(3.14) [r][t](er1Yt1)\displaystyle\sum_{[r][t]}(e_{r_{1}}\otimes Y_{t_{1}}) (erkYtk)i[j]λ[j]Ωr1it1j1ϵ1Ωrkitkjkϵk\displaystyle\otimes\dots\otimes(e_{r_{k}}\otimes Y_{t_{k}})\otimes\sum_{i[j]}\lambda_{[j]}\Omega_{r_{1}it_{1}j_{1}}^{\epsilon_{1}}\dots\Omega_{r_{k}it_{k}j_{k}}^{\epsilon_{k}}
(3.15) =\displaystyle= r[t]λ[t](erYt1)(erYtk)1.\displaystyle\sum_{r[t]}\lambda_{[t]}(e_{r}\otimes Y_{t_{1}})\otimes\dots\otimes(e_{r}\otimes Y_{t_{k}})\otimes 1.

Notice that the relations (3.9), (3.10), (3.11), (3.12) yield for ϵ=1,\epsilon=1,* and all i,j,k,li,j,k,l:

(3.16) UijΩijklϵ=Ωijklϵ=ΩijklϵUij.\displaystyle U_{ij}\Omega_{ijkl}^{\epsilon}=\Omega_{ijkl}^{\epsilon}=\Omega_{ijkl}^{\epsilon}U_{ij}.

Then using these commuting relations and the fact that (Uij)(U_{ij}) is a magic unitary, we get from (3.14):

[r][t](er1Yt1)\displaystyle\sum_{[r][t]}(e_{r_{1}}\otimes Y_{t_{1}}) (erkYtk)i[j]λ[j]Ωr1it1j1ϵ1Ωrkitkjkϵk\displaystyle\otimes\dots\otimes(e_{r_{k}}\otimes Y_{t_{k}})\otimes\sum_{i[j]}\lambda_{[j]}\Omega_{r_{1}it_{1}j_{1}}^{\epsilon_{1}}\dots\Omega_{r_{k}it_{k}j_{k}}^{\epsilon_{k}}
=[r][t](er1Yt1)(erkYtk)i[j]λ[j](Ωr1it1j1ϵ1Ur1i)(ΩrkitkjkϵkUrki)\displaystyle=\sum_{[r][t]}(e_{r_{1}}\otimes Y_{t_{1}})\otimes\dots\otimes(e_{r_{k}}\otimes Y_{t_{k}})\otimes\sum_{i[j]}\lambda_{[j]}(\Omega_{r_{1}it_{1}j_{1}}^{\epsilon_{1}}U_{r_{1}i})\dots(\Omega_{r_{k}it_{k}j_{k}}^{\epsilon_{k}}U_{r_{k}i})
=r1[t](er1Yt1)(er1Ytk)i[j]λ[j](Ωr1it1j1ϵ1Ωr1itkjkϵk)(Ur1iUr1i)\displaystyle=\sum_{r_{1}[t]}(e_{r_{1}}\otimes Y_{t_{1}})\otimes\dots\otimes(e_{r_{1}}\otimes Y_{t_{k}})\otimes\sum_{i[j]}\lambda_{[j]}(\Omega_{r_{1}it_{1}j_{1}}^{\epsilon_{1}}\dots\Omega_{r_{1}it_{k}j_{k}}^{\epsilon_{k}})(U_{r_{1}i}\dots U_{r_{1}i})
=r1[t](er1Yt1)(er1Ytk)[i][j]λ[j](Ωr1it1j1ϵ1Ωr1itkjkϵk)(Ur1i1Ur1ik)\displaystyle=\sum_{r_{1}[t]}(e_{r_{1}}\otimes Y_{t_{1}})\otimes\dots\otimes(e_{r_{1}}\otimes Y_{t_{k}})\otimes\sum_{[i][j]}\lambda_{[j]}(\Omega_{r_{1}it_{1}j_{1}}^{\epsilon_{1}}\dots\Omega_{r_{1}it_{k}j_{k}}^{\epsilon_{k}})(U_{r_{1}i_{1}}\dots U_{r_{1}i_{k}})
=r1[t](er1Yt1)(er1Ytk)[i][j]λ[j](Ωr1i1t1j1ϵ1Ur1i1)(Ωr1iktkjkϵkUr1ik)\displaystyle=\sum_{r_{1}[t]}(e_{r_{1}}\otimes Y_{t_{1}})\otimes\dots\otimes(e_{r_{1}}\otimes Y_{t_{k}})\otimes\sum_{[i][j]}\lambda_{[j]}(\Omega_{r_{1}i_{1}t_{1}j_{1}}^{\epsilon_{1}}U_{r_{1}i_{1}})\dots(\Omega_{r_{1}i_{k}t_{k}j_{k}}^{\epsilon_{k}}U_{r_{1}i_{k}})
=r1[t](er1Yt1)(er1Ytk)[j]λ[j]Vt1j1(r1)ϵ1Vtkjk(r1)ϵk.\displaystyle=\sum_{r_{1}[t]}(e_{r_{1}}\otimes Y_{t_{1}})\otimes\dots\otimes(e_{r_{1}}\otimes Y_{t_{k}})\otimes\sum_{[j]}\lambda_{[j]}V^{(r_{1})\epsilon_{1}}_{t_{1}j_{1}}\dots V^{(r_{1})\epsilon_{k}}_{t_{k}j_{k}}.

Hence with (3.15), we obtain [t]{1,,d𝔾}k\forall[t]\in\{1,\dots,d_{\mathbb{G}}\}^{k}

[j]λ[j]Vt1j1(r1)ϵ1Vtkjk(r1)ϵk=λ[t],\sum_{[j]}\lambda_{[j]}V_{t_{1}j_{1}}^{(r_{1})\epsilon_{1}}\dots V_{t_{k}j_{k}}^{(r_{1})\epsilon_{k}}=\lambda_{[t]},

so that ξk=[j]λ[j]Yj1YjkHomr(1;V(r)ϵ1V(r)ϵk)\xi_{k}=\sum_{[j]}\lambda_{[j]}Y_{j_{1}}\otimes\dots\otimes Y_{j_{k}}\in\operatorname{Hom}_{\mathbb{H}_{r}}\left(1;V^{(r)\epsilon_{1}}\otimes\dots\otimes V^{(r)\epsilon_{k}}\right) for all r=1,,Nr=1,\dots,N.

Then, we obtain that Rep(𝔾)Rep(i)Rep()\operatorname{Rep}(\mathbb{G})\subset\operatorname{Rep}(\mathbb{H}_{i})\subset\operatorname{Rep}(\mathbb{H}) as full sub-categories. Woronowicz’s Tannaka-Krein duality theorem then implies that for all i=1,,Ni=1,\dots,N there exists a morphism

πi:C(𝔾)C(i)C()\pi_{i}:C(\mathbb{G})\to C(\mathbb{H}_{i})\subset C(\mathbb{H})

sending vv to V(i)V^{(i)}.

Now, we prove that Vkl(i)Uij=Ωijkl=UijVkl(i)V_{kl}^{(i)}U_{ij}=\Omega_{ijkl}=U_{ij}V_{kl}^{(i)}. This follows from (3.16):

Vkl(i)Uij=JΩiJklUij=ΩijklUij=Ωijkl\displaystyle V_{kl}^{(i)}U_{ij}=\sum_{J}\Omega_{iJkl}U_{ij}=\Omega_{ijkl}U_{ij}=\Omega_{ijkl}

and similarly

UijVkl(i)=Ωijkl.\displaystyle U_{ij}V_{kl}^{(i)}=\Omega_{ijkl}.

It follows from what we have proved above that there exist morphisms

  1. \bullet

    πi:C(𝔾)C(i)\pi_{i}:C(\mathbb{G})\to C(\mathbb{H}_{i}) such that πi(vkl(i))=Vkl(i)\pi_{i}\left(v_{kl}^{(i)}\right)=V_{kl}^{(i)}, for all i=1,,Ni=1,\dots,N,

  2. \bullet

    πN+1:C(SN+)C()\pi_{N+1}:C(S_{N}^{+})\to C(\mathbb{H}) such that πN+1(uij)=Uij\pi_{N+1}(u_{ij})=U_{ij}.

Thanks to the commuting relations we obtained above, these morphisms induce a morphism π2:C(𝔾SN+)C()\pi_{2}:C(\mathbb{G}\wr_{*}S_{N}^{+})\to C(\mathbb{H}), such that π2(vkl(i)uij)=Vkl(i)Uij\pi_{2}\left(v_{kl}^{(i)}u_{ij}\right)=V_{kl}^{(i)}U_{ij}. By construction, we then get π1π2=id=π2π1\pi_{1}\circ\pi_{2}=\operatorname{id}=\pi_{2}\circ\pi_{1} and the proof is complete.

Remark 3.8.

In the case where 𝔾\mathbb{G} is the dual of a discrete (classical) group 𝔾=Γ^\mathbb{G}=\widehat{\Gamma}, we recover the results of [BV09] and [Lem13a]. Indeed, in this case, the irreducible corepresentations of 𝔾=(C(Γ),Δ)\mathbb{G}=(C^{*}(\Gamma),\Delta) are the one-dimensional group like corepresentations Δ(g)=gg,gΓ\Delta(g)=g\otimes g,g\in\Gamma, the trivial one is the neutral element ee and the tensor product of two irreducible corepresentations is their product in Γ\Gamma. Any morphism

S[g],[h]:kl,g1gkh1hlS_{[g],[h]}:\mathbb{C}\simeq\mathbb{C}^{\otimes k}\to\mathbb{C}^{\otimes l}\simeq\mathbb{C},g_{1}\dots g_{k}\to h_{1}\dots h_{l}

is determined by the image of 11\in\mathbb{C} and the tensor products S[g],[h]TpS_{[g],[h]}\otimes T_{p} are scalar multiplication of the linear maps TpT_{p}. The space

HomΓ^SN+(r(g1)r(gk);r(h1)r(hl))Hom_{\widehat{\Gamma}\wr_{*}S_{N}^{+}}(r(g_{1})\otimes\dots\otimes r(g_{k});r(h_{1})\otimes\dots\otimes r(h_{l}))

is generated by the maps TpT_{p} where pNC(k,l)p\in NC(k,l) is an admissible diagram in NCΓ^NC_{\widehat{\Gamma}} as in Definition 3.4. In this setting, pp is admissible if pNC(k,l)p\in NC(k,l) has the additional rules that if one decorates the points of pp by the elements gi,hjg_{i},h_{j} then in each block, the product on top is equal to the product on bottom in Γ\Gamma.

In the sequel, we denote by 1𝔾1_{\mathbb{G}} the trivial 𝔾\mathbb{G}-representation and simply by 11 the one of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}.

Corollary 3.9.

Let N4N\geq 4, then:

  1. (1)

    For all α1,,αk,β1,,βlRep(𝔾)\alpha_{1},\dots,\alpha_{k},\beta_{1},\dots,\beta_{l}\in\text{Rep}(\mathbb{G}), we have

    dimHom𝔾SN+\displaystyle\dim\operatorname{Hom}_{\mathbb{G}\wr_{*}S_{N}^{+}} (r(α1)r(αk);r(β1)r(βl))\displaystyle(r(\alpha_{1})\otimes\dots\otimes r(\alpha_{k});r(\beta_{1})\otimes\dots\otimes r(\beta_{l}))
    =pNC𝔾([α],[β])BpdimHom𝔾(α(UB),β(LB)).\displaystyle=\sum_{p\in NC_{\mathbb{G}}([\alpha],[\beta])}\prod_{B\in p}\dim\operatorname{Hom}_{\mathbb{G}}(\alpha(U_{B}),\beta(L_{B})).
  2. (2)

    If αIrr(𝔾)\alpha\in\operatorname{Irr}(\mathbb{G}) is non-equivalent to 1𝔾1_{\mathbb{G}} then r(α)r(\alpha) is an irreducible 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}-representation.

  3. (3)

    r(1𝔾)=(uij)=1ω(1𝔾)r(1_{\mathbb{G}})=(u_{ij})=1\oplus\omega(1_{\mathbb{G}}) for some ω(1𝔾)Irr(𝔾SN+)\omega(1_{\mathbb{G}})\in\operatorname{Irr}(\mathbb{G}\wr_{*}S_{N}^{+}).

  4. (4)

    Denoting ω(α):=r(α)δα,1𝔾1\omega(\alpha):=r(\alpha)\ominus\delta_{\alpha,1_{\mathbb{G}}}1 then (ω(α))αIrr(𝔾)(\omega(\alpha))_{\alpha\in\operatorname{Irr}(\mathbb{G})} is a family of pairwise non-equivalent 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}-irreducible corepresentations.

Proof.

We use Theorem 3.7 and the independence of the linear maps

Tp((N)k,(N)l),pNC(k,l)T_{p}\in\mathcal{B}((\mathbb{C}^{N})^{\otimes k},(\mathbb{C}^{N})^{\otimes l}),\ p\in NC(k,l)

for all N4N\geq 4. The first assertion follows from this linear independence of the maps TpT_{p}. Indeed, we have

Hom𝔾SN+\displaystyle\operatorname{Hom}_{\mathbb{G}\wr_{*}S_{N}^{+}} (r(α1)r(αk);r(β1)r(βl))\displaystyle(r(\alpha_{1})\otimes\dots\otimes r(\alpha_{k});r(\beta_{1})\otimes\dots\otimes r(\beta_{l}))
=pNC𝔾([α],[β])span{Up,S:B,SBHom𝔾(α(UB),β(LB))}\displaystyle=\bigoplus_{p\in NC_{\mathbb{G}}([\alpha],[\beta])}\text{span}\left\{U^{p,S}:\forall B,S_{B}\in\operatorname{Hom}_{\mathbb{G}}(\alpha(U_{B}),\beta(L_{B}))\right\}

and the first assertion follows by computing the dimension of the spaces of each side.

Now we prove simultaneously the last three relations. For α,βIrr(𝔾)\alpha,\beta\in\operatorname{Irr}(\mathbb{G}), the intertwiner space

Hom𝔾SN+(r(α),r(β))\operatorname{Hom}_{\mathscr{\mathbb{G}}\wr_{*}S_{N}^{+}}(r(\alpha),r(\beta))

is encoded by the following candidate diagrams:

p1={αβ} and p2={αβ}.p_{1}=\left\{\ \begin{picture}(0.2,1.5)\put(0.1,-0.25){\line(0,1){0.9}} \put(-0.1,0.9){$\alpha$} \put(-0.1,-0.9){$\beta$} \end{picture}\ \right\}\text{ and }\ p_{2}=\left\{\ \begin{picture}(0.2,1.5)\put(0.15,-0.25){\line(0,1){0.3}} \put(0.15,0.35){\line(0,1){0.3}} \put(-0.1,0.9){$\alpha$} \put(-0.1,-0.9){$\beta$} \end{picture}\ \right\}.

Since α\alpha and β\beta are irreducible, we see that p1p_{1} is an admissible diagram if and only if αβ\alpha\simeq\beta and p2p_{2} is admissible if and only if αβ1𝔾\alpha\simeq\beta\simeq 1_{\mathbb{G}}.

Therefore, if α\alpha is not equivalent to β\beta:

dim Hom𝔾SN+(r(α),r(β))=0.\text{dim }\operatorname{Hom}_{\mathscr{\mathbb{G}}\wr_{*}S_{N}^{+}}(r(\alpha),r(\beta))=0.

If αβ\alpha\simeq\beta are not the trivial corepresentation 1𝔾1_{\mathbb{G}} then the only intertwiner r(α)r(β)r(\alpha)\to r(\beta) arises from p1p_{1}:

dim Hom𝔾SN+(r(α),r(α))=1.\text{dim }\operatorname{Hom}_{\mathscr{\mathbb{G}}\wr_{*}S_{N}^{+}}(r(\alpha),r(\alpha))=1.

If αβ1𝔾\alpha\simeq\beta\simeq 1_{\mathbb{G}}, then the diagram p2p_{2} also gives rise to an intertwiner U(1𝔾),(1𝔾)p2,SU_{(1_{\mathbb{G}}),(1_{\mathbb{G}})}^{p_{2},S} with S:1𝔾1𝔾S:1_{\mathbb{G}}\to 1_{\mathbb{G}} the trivial inclusion. The independence of T{|}=idNT_{\{|\}}=\operatorname{id}_{\mathbb{C}^{N}} and T{}T_{{\left\{\ \begin{picture}(0.2,0.3)\put(0.1,-0.45){\line(0,1){0.5}} \put(0.1,0.45){\line(0,1){0.5}} \end{picture}\ \right\}}} allows to conclude

dim Hom𝔾SN+(r(1𝔾),r(1𝔾))=2.\text{dim }\operatorname{Hom}_{\mathscr{\mathbb{G}}\wr_{*}S_{N}^{+}}(r(1_{\mathbb{G}}),r(1_{\mathbb{G}}))=2.

4. The free probability of free wreath product quantum groups

We provide here some probabilistic consequences of the description of the intertwiner spaces of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}. In this section we are mainly interested in the non-commutative probability space arising from the Haar state on C(𝔾SN+)C(\mathbb{G}\wr_{*}S_{N}^{+}) and the behavior of the coefficients of a corepresentation as random variables in this setting. Since most of the results involve the law of free compound poisson laws, we shall recall its definition. We refer to [NS06] for an introductory course on non-commutative variables.

4.1. Laws of characters

Notation 4.1.

In the sequel ϵ=ϵ(1)ϵ(r)\epsilon=\epsilon(1)\dots\epsilon(r) denotes a word in {1,}\{1,*\} and NC(ϵ)NC(\epsilon) is the set of noncrossing partitions with each endpoint ii colored with ϵ(i)\epsilon(i). For pNC(ϵ)p\in NC(\epsilon) and BB a block of pp, ϵ(B)\epsilon(B) denotes the subword of ϵ\epsilon coming from the points in the block BB (with the same order as in pp).

Let (A,ϕ)(A,\phi) be a noncommutative probability space, XX an element of AA with *-distribution μX\mu_{X} depicted by all of its moments

mX(ϵ)=ϕ(Xϵ(1)Xϵ(r)).m_{X}(\epsilon)=\phi(X^{\epsilon(1)}\dots X^{\epsilon(r)}).

Similarly as in (2.4), the free cumulants of XX, {kX(ϵ)}ϵ\{k_{X}(\epsilon)\}_{\epsilon} is the unique collection of complex numbers such that the following moment-cumulant formula holds for all ϵ\epsilon :

mX(ϵ)=pNC(ϵ)BkX(ϵ(B)).m_{X}(\epsilon)=\sum_{p\in NC(\epsilon)}\prod_{B}k_{X}(\epsilon(B)).

The existence and unicity of such a collection is easily proven by recurrence on the length of ϵ\epsilon [NS06].

Definition 4.2.

The free compound poisson distribution 𝒫λ(μX)\mathcal{P}_{\lambda}(\mu_{X}) with initial law μX\mu_{X} and parameter λ>0\lambda>0 is the \star-distribution defined by its free cumulants

(4.1) k𝒫λ(μX)(ϵ)=λmX(ϵ).k_{\mathcal{P}_{\lambda}(\mu_{X})}(\epsilon)=\lambda m_{X}(\epsilon).

In particular, if YY is a random variable following a free compound poisson distribution with initial law μX\mu_{X} and parameter 11, then we have the following moment formula :

mY(ϵ)=pNC(ϵ)BmX(ϵ(B)).m_{Y}(\epsilon)=\sum_{p\in NC(\epsilon)}\prod_{B}m_{X}(\epsilon({B})).

We refer to [NS06] for the proof that there exists actually a propability space and a random variable on it with such a distribution.
The first result is a direct application of the Corollary 3.9. We refer to Definition 3.1 for the definition of the corepresentation r(α)r(\alpha).

Proposition 4.3.

Let 𝔾\mathbb{G} be a compact quantum group of Kac type, αRep(𝔾)\alpha\in\operatorname{Rep}(\mathbb{G}), n4n\geq 4. Then the law of the character χ(r(α))\chi(r(\alpha)), with respect to the Haar state hh, is a free compound poisson with initial law χ(α)\chi(\alpha) and parameter 11.

Proof.

Let ϵ\epsilon be a word in {1,}\{1,\star\}. Then the law of a free compound poisson with initial law χ(α)\chi(\alpha) and parameter 11, 𝒫(χ(α))\mathcal{P}(\chi(\alpha)) is described by its free cumulants, with the formula (4.1):

k𝒫(χ(α))(ϵ(1)ϵ(r))=mχ(α)(ϵ(1)ϵ(r).k_{\mathcal{P}(\chi(\alpha))}(\epsilon(1)\dots\epsilon(r))=m_{\chi(\alpha)}(\epsilon(1)\dots\epsilon(r).

With the moment-cumulant formula, this is equivalent to the following expression for the moments of 𝒫(χ(α))\mathcal{P}(\chi(\alpha)):

m𝒫(χ(α))=pNCϵBmχ(α)(ϵ(B)).m_{\mathcal{P}(\chi(\alpha))}=\sum_{p\in NC_{\epsilon}}\prod_{B}m_{\chi(\alpha)}(\epsilon(B)).

By the Corollary 3.9 we have

h(χ(r(α)ϵ(1)χn(r(α))ϵ(r))=\displaystyle h\left(\chi(r(\alpha)^{\epsilon(1)}\dots\chi_{n}(r(\alpha))^{\epsilon(r)}\right)= dimHom𝔾SN+(1;r(α)ϵ(1)r(α)ϵ(r))\displaystyle\dim\operatorname{Hom}_{\mathbb{G}\wr_{*}S_{N}^{+}}(1;r(\alpha)^{\epsilon(1)}\otimes\dots\otimes r(\alpha)^{\epsilon(r)})
=\displaystyle= pNCϵBdimHom𝔾(1,α(LB))\displaystyle\sum_{p\in NC_{\epsilon}}\prod_{B}\dim\operatorname{Hom}_{\mathbb{G}}(1,\alpha(L_{B}))
=\displaystyle= pNCϵBmχ(α)(ϵ(B)).\displaystyle\sum_{p\in NC_{\epsilon}}\prod_{B}m_{\chi(\alpha)}(\epsilon(B)).

The second equality is given by Corollay 3.9, and the third one by the definition of α(LB)\alpha(L_{B}) and the tensor product structure. ∎

A consequence of this result is a partial answer to the free product conjecture stated by Banica and Bichon (see [BB+07]) : for each compact matrix quantum group (A,v)(A,v) we denote by μ(A,v)\mu(A,v) the law of the character of the fundamental representation with respect to the Haar measure. A quantum permutation group is a quantum subgroup of SN+S_{N}^{+} for some N0N\geq 0, in the following sense : that is a compact matrix quantum group (A,v)(A,v) such that there exists a surjective CC^{*}-morphism Φ:C(SN+)A\Phi:C(S_{N}^{+})\rightarrow A sending the elements uiju_{ij} of C(SN+)C(S_{N}^{+}) to vijv_{ij} (see [BBC] for a survey on the subject).

Corollary 4.4.

Let (A,v)(A,v) be a quantum permutation group, and SN+=(C(SN+,u)S_{N}^{+}=(C(S_{N}^{+},u), n4n\geq 4. Then

μ(AB,w)=μ(A,v)μ(C(SN+,u).\mu(A\wr_{*}B,w)=\mu(A,v)\boxtimes\mu(C(S_{N}^{+},u).
Proof.

It is a direct consequence of the last proposition and the fact that in the orthogonal case the law of a free compound poisson with initial law μ\mu is the same as the free multiplicative convolution of μ\mu with the free poisson distribution. ∎

The conjecture asserts that this formula still holds when replacing SN+S_{N}^{+} with certain quantum subgroups of SN+S_{N}^{+}. See [BB+07] for more details.

4.2. Weingarten calculus

We can also elaborate a Weingarten calculus for a free wreath product. It was mainly developped in the framework of compact quantum groups and permutation quantum groups by Banica and Collins (see [BC05],[BC07]). This tool has mainly two advantages : on one hand it allows us sometimes to get some interesting formulae for the Haar state on the matrix entries of a corepresentation, and on the other hand it yields some asymptotic results on the joint law of a finite set of elements when the dimension of the quantum group goes to infinity.

Let us first sum up the pattern of this method coming from [BC05]: let 𝔾=(A,(uij)1i,jn)\mathbb{G}=(A,(u_{ij})_{1\leq i,j\leq n}) be a matrix compact quantum group acting on Vk=Xi1inkV^{\otimes k}=\langle X_{i}\rangle_{1\leq i\leq n}^{\otimes k} with the corepresentation αk\alpha_{k}, and hh the associated Haar measure. We will assume that 𝔾\mathbb{G} is orthogonal to simplify the notations, although it could be easily generalized to the general Kac type case : that means that the elements uiju_{ij} are all self-adjoint in AA (see [Wor87]). By the property of the Haar state,

(Idh)αk(Xi1Xik)=P(Xi1Xik),(Id\otimes h)\circ\alpha_{k}(X_{i_{1}}\otimes\dots\otimes X_{i_{k}})=P(X_{i_{1}}\otimes\dots\otimes X_{i_{k}}),

with PP the orthogonal projection of VkV^{\otimes k} on the invariant subspace of αk\alpha_{k}. On the other hand,

(Idh)αk(Xi1Xik)=h(uj1i1ujkik)(Xj1Xjk).(Id\otimes h)\circ\alpha_{k}(X_{i_{1}}\otimes\dots\otimes X_{i_{k}})=\sum h(u_{j_{1}i_{1}}\dots u_{j_{k}i_{k}})(X_{j_{1}}\otimes\dots\otimes X_{j_{k}}).

We get thus the following expression for the Haar state on uj1i1ujkiku_{j_{1}i_{1}}\dots u_{j_{k}i_{k}}:

h(uj1i1ujkik)=P(Xi1Xik),Xj1Xjk.h(u_{j_{1}i_{1}}\dots u_{j_{k}i_{k}})=\langle P(X_{i_{1}}\otimes\dots\otimes X_{i_{k}}),X_{j_{1}}\otimes\dots\otimes X_{j_{k}}\rangle.

The right-hand side may be hard to compute. Hopefully the Gram-Schmidt orthogonalisation process yields a nicer expression if we already know a basis of the invariant subspace SkS_{k} of αk\alpha_{k}. Let {Sk(i)}\{S_{k}(i)\} be a basis of this subspace, GkG_{k} being the Gram-Schmidt matrix of {Sk(i)}\{S_{k}(i)\} defined by Gk(i,j)=Sk(i),Sk(j)G_{k}(i,j)=\langle S_{k}(i),S_{k}(j)\rangle and Wk=Gk1W_{k}=G_{k}^{-1}. A standard computation yields:

h(uj1i1ujkik)=i,jXi1Xik,Sk(i)Wk(i,j)Sk(j),Xj1Xjk.h(u_{j_{1}i_{1}}\dots u_{j_{k}i_{k}})=\sum_{i,j}\langle X_{i_{1}}\otimes\dots\otimes X_{i_{k}},S_{k}(i)\rangle W_{k}(i,j)\langle S_{k}(j),X_{j_{1}}\otimes\dots\otimes X_{j_{k}}\rangle.

Of course the matrix Wk(i,j)W_{k}(i,j) is hard to compute.

Let us see nonetheless what it gives in the case of a free wreath product (𝔾SN+,(wij,kl))(\mathbb{G}\wr_{*}S_{N}^{+},(w_{ij,kl})), with 𝔾\mathbb{G} an orthogonal matrix quantum group. A basis of SkS_{k} is given by the vectors Up,S,pNC(k)U^{p,S},p\in NC(k), as defined in (3.4). The first task is to compute the matrix Wk(i,j)W_{k}(i,j). Consider the following map

tk:(NV)(NV)\displaystyle t_{k}:(\mathbb{C}^{N}\otimes V)\otimes\dots\otimes(\mathbb{C}^{N}\otimes V) (N)kVV\displaystyle\to(\mathbb{C}^{N})^{\otimes k}\otimes V\otimes\dots\otimes V
i=1k(xiyi)\displaystyle\bigotimes_{i=1}^{k}(x_{i}\otimes y_{i}) i=1kxii=1kyi.\displaystyle\mapsto\bigotimes_{i=1}^{k}x_{i}\otimes\bigotimes_{i=1}^{k}y_{i}.

tkt_{k} is unitary and and by definition of Up,SU^{p,S},

tk(Up,S)=TpS.t_{k}(U^{p,S})=T_{p}\otimes S.

Recall that SS depends implicitly on pp through the definition (3.4): the latter is an invariant vector of the kk-tensor product representation of 𝔾\mathbb{G} that respects the block structure of pp. Nevertheless SS is independant of NN and in particular we have the expression

Up,S,Uq,S=\displaystyle\langle U^{p,S},U^{q,S^{\prime}}\rangle= tk(Up,S),tk(Uq,S)\displaystyle\langle t_{k}(U^{p,S}),t_{k}(U^{q,S^{\prime}})\rangle
=\displaystyle= Tp,TqS,S=Nb(pq)S,S.\displaystyle\langle T_{p},T_{q}\rangle\langle S,S^{\prime}\rangle=N^{b(p\vee q)}\langle S,S^{\prime}\rangle.
Remark 4.5.

Easy quantum groups form a particular family of compact quantum groups whose associated intertwiners spaces can be combinatorically described. Namely if 𝔾\mathbb{G} is an easy quantum group, the invariant subspace of the kk-tensor-product representation is spanned by the vectors TpT_{p}, as defined in Definition1.5, with pp belonging to a subcategory of 𝒫(k)\mathcal{P}(k). See [BS09], [RW13] for more informations on the subject, and [KS09], [FW] and [Bra12a] for some applications. In this case, the scalar product matrix has a simpler form. Indeed if 𝔾\mathbb{G} is an easy quantum group of dimension ss and with category of partition 𝒞\mathcal{C}, then a direct computation yields for αp,βq\alpha\leq p,\beta\leq q two partitions in 𝒞\mathcal{C}:

Up,α,Uq,β=Nb(pq)sb(αβ).\langle U^{p,\alpha},U^{q,\beta}\rangle=N^{b(p\vee q)}s^{b(\alpha\vee\beta)}.

The Weingarten formula has also a more combinatorial form since we can write:

h(wi1j1,k1l1wirjr,krlr)=αker(i),βker(j)αpker(k),βqker(l)Gk1((p,α),(q,β)),h(w_{i_{1}j_{1},k_{1}l_{1}}\dots w_{i_{r}j_{r},k_{r}l_{r}})=\sum_{\begin{subarray}{c}\alpha\leq\ker(\vec{i}),\beta\leq\ker(\vec{j})\\ \alpha\leq p\leq\ker(\vec{k}),\beta\leq q\leq\ker(\vec{l})\end{subarray}}G_{k}^{-1}((p,\alpha),(q,\beta)),

where ker(i)\ker(\vec{i}) is the partition whose blocks are the set of indices on which ii has the same value.

The scalar product matrix Gk=(Up,S,Uq,S)(p,S),(q,S)G_{k}=(\langle U^{p,S},U^{q,S^{\prime}}\rangle)_{(p,S),(q,S^{\prime})} is a block matrix, the blocks GkpqG_{k}^{pq} being indexed by p,qNC(k)p,q\in NC(k). Note that as in [BC05], one can factorize this matrix as following:

Gk=Δnk1/2G~Δnk1/2,G_{k}=\Delta_{nk}^{1/2}\tilde{G}\Delta_{nk}^{1/2},

where Δnk\Delta_{nk} is the diagonal matrix with diagonal coefficients

Δnk((p,S),(p,S))=Nb(p)\Delta_{nk}((p,S),(p,S))=N^{b(p)}

and

G~k((p,S),(q,S)=Nb(pq)b(p)+b(q)2S,S.\tilde{G}_{k}((p,S),(q,S^{\prime})=N^{b(p\vee q)-\frac{b(p)+b(q)}{2}}\langle S,S^{\prime}\rangle.

Asymptotically with nn going to infitiny, G~k=Dk(1+o(1n))\tilde{G}_{k}=D_{k}(1+o(\frac{1}{\sqrt{n}})), DkD_{k} being the block diagonal matrix

Dk((p,S),(q,S))=δp,qS,S.D_{k}((p,S),(q,S^{\prime}))=\delta_{p,q}\langle S,S^{\prime}\rangle.

Finally we can remark that restricted on the subspace Vp0=Vect((Up0,S)S)V_{p_{0}}=Vect((U_{p_{0},S})_{S}), the matrix (S,S)S,S(\langle S,S^{\prime}\rangle)_{S,S^{\prime}} is the tensor product of the Gram-Schmidt matrices of 𝔾\mathbb{G} G𝔾,|Bi|G_{\mathbb{G},|B_{i}|}, for each block |Bi||B_{i}| of p0p_{0}. If we put all these considerations together, we get that

Wn((p,S),(q,S))=δp,qNb(p)(BpW𝔾1)(S,S)(1+o(1n)).W_{n}((p,S),(q,S^{\prime}))=\delta_{p,q}N^{-b(p)}\left(\bigotimes_{B\in p}W_{\mathbb{G}}^{-1}\right)(S,S^{\prime})(1+o(\frac{1}{\sqrt{n}})).

This formula allows to generalize the results in [BC05] to the free wreath product case. Define the following partial trace:

Definition 4.6.

Let 0sn0\leq s\leq n the partial trace of order ss of the matrix w=(wij,kl)1i,jr,1k,lnw=(w_{ij,kl})_{1\leq i,j\leq r,1\leq k,l\leq n} is

χw(s)=i=1rk=1swii,kk.\chi^{w}(s)=\sum_{i=1}^{r}\sum_{k=1}^{s}w_{ii,kk}.

The following result holds for a free wreath product with SN+S_{N}^{+}:

Theorem 4.7.

Let 𝔾\mathbb{G} be a matrix compact quantum group of Kac type and dimension rr, χ𝔾\chi_{\mathbb{G}} the law of the character of its fundamental representation. Let (Wn,(wij,kl)1i,jr,1k,ln)(W^{n},(w_{ij,kl})_{1\leq i,j\leq r,1\leq k,l\leq n}) be the matrix quantum group 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} with its fundamental representation ww. Then with respect to the haar measure, if stns\sim tn for t(0,1]t\in(0,1], nn going to infinity,

χw(s)𝒫t(χ𝔾).\chi^{w}(s)\rightarrow\mathcal{P}_{t}(\chi_{\mathbb{G}}).
Proof.

A similar computation as in [BC05], Theorem 5.1 gives

(χw(s))k=Tr(Gk,n1Gk,s)\int(\chi^{w}(s))^{k}=Tr(G_{k,n}^{-1}G_{k,s})

and with the asymptotic form of Gk,nG_{k,n} this gives us:

Gk,n1Gk,s=Δnk1/2Dk1Δnk1/2(Id+o(1n))Δsk1/2DkΔsk1/2(Id+o(1n)).G_{k,n}^{-1}G_{k,s}=\Delta_{nk}^{-1/2}D_{k}^{-1}\Delta_{nk}^{-1/2}(Id+o(\frac{1}{\sqrt{n}}))\Delta_{sk}^{1/2}D_{k}\Delta_{sk}^{1/2}(Id+o(\frac{1}{\sqrt{n}})).

Since DkD_{k} is block diagonal and Δnk,Δsk\Delta_{nk},\Delta_{sk} are diagonal, and equal to the identity on each block, these three matrices commute, and

Tr(Gk,n1Gk,s)=Tr(Δs/n,k(Id+o(1n)))Tr(Δt,k).Tr(G_{k,n}^{-1}G_{k,s})=Tr(\Delta_{s/n,k}(Id+o(\frac{1}{\sqrt{n}})))\rightarrow Tr(\Delta_{t,k}).

Since

Tr(Δt,k)=pNC(k)tb(p)dimVp=pNC(k)tb(p)Bpm|B|(χ𝔾).Tr(\Delta_{t,k})=\sum_{p\in NC(k)}t^{b(p)}\dim V_{p}=\sum_{p\in NC(k)}t^{b(p)}\prod_{B\in p}m_{|B|}(\chi_{\mathbb{G}}).

The latter expression is exactly the kk-th moment of the law 𝒫t(χ𝔾)\mathcal{P}_{t}(\chi_{\mathbb{G}}). ∎

Remark 4.8.

All the results of this section can be transposed to the classical case. One just has to substitute classical compound poisson laws for free compound poisson laws, and use crossing partitions instead of non-crossing ones.

5. The monoidal category of free wreath products by quantum permutation groups

Let 𝔾\mathbb{G} be a compact matrix quantum group of Kac type, N4N\geq 4. In this section, we prove that 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} is monoidally equivalent to a compact quantum group \mathbb{H} with C()C(𝔾SUq(2))C(\mathbb{H})\subset C(\mathbb{G}*SU_{q}(2)) and q+q1=Nq+q^{-1}=\sqrt{N}, 0<q10<q\leq 1. In other words, we shall construct ^\widehat{\mathbb{H}} as a discrete quantum subgroup of 𝔾SUq(2)^\widehat{\mathbb{G}*SU_{q}(2)}.

We denote by b:=(bij)1i,j2b:=(b_{ij})_{1\leq i,j\leq 2} the generating matrix of SUq(2)SU_{q}(2). Let =(C(),Δ)\mathbb{H}=(C(\mathbb{H}),\Delta) be the compact matrix quantum group with

C():=Cbijabkl| 1i,j,k,l2,aC(𝔾)C(𝔾)C(SUq(2)),C(\mathbb{H}):=C^{*}-\langle b_{ij}ab_{kl}\ |\ 1\leq i,j,k,l\leq 2,a\in C(\mathbb{G})\rangle\subset C(\mathbb{G})*C(SU_{q}(2)),
Δ(bijabkl)\displaystyle\Delta(b_{ij}ab_{kl}) =ΔSUq(2)(bij)Δ𝔾(a)ΔSUq(2)(bkl)\displaystyle=\Delta_{SU_{q}(2)}(b_{ij})\Delta_{\mathbb{G}}(a)\Delta_{SU_{q}(2)}(b_{kl})
=r,s(birbrj)(a(1)a(2))t(bktbtl)\displaystyle=\sum_{r,s}(b_{ir}\otimes b_{rj})\sum(a_{(1)}\otimes a_{(2)})\sum_{t}(b_{kt}\otimes b_{tl})
=r,s,tbira(1)bktbrja(2)btlC()C().\displaystyle=\sum_{r,s,t}b_{ir}a_{(1)}b_{kt}\otimes b_{rj}a_{(2)}b_{tl}\in C(\mathbb{H})\otimes C(\mathbb{H}).
Notation 5.1.

For any αIrr(𝔾)\alpha\in\operatorname{Irr}(\mathbb{G}), we denote s(α)=bαbs(\alpha)=b\otimes\alpha\otimes b.

We need to recall some notions on Temperley-Lieb diagrams and fix some notation.

Recall that the intertwiner spaces between tensor powers of bb in SUq(2)SU_{q}(2) are given by Temperley-Lieb diagrams as follows:

HomSUq(2)(bk,bl)=span{TD:(2)k(2)l:DTL(k,l)},\operatorname{Hom}_{SU_{q}(2)}(b^{\otimes k},b^{\otimes l})=\text{span}\{T_{D}:(\mathbb{C}^{2})^{\otimes k}\to(\mathbb{C}^{2})^{\otimes l}:D\in TL(k,l)\},

where TLq(k,l)TL_{q}(k,l) consists of Temperley-Lieb diagrams (non-crossing pairings) between kk upper points and ll lower points linked by (k+l)/2(k+l)/2 strings (this set is empty if k+lk+l is odd).

We define TLq(k,l),k,lTL_{q}(k,l),k,l\in\mathbb{N} as the vector space with basis TL(k,l)TL(k,l) and the collection of spaces TLq(k,l),k,lTL_{q}(k,l),k,l\in\mathbb{N} forms a rigid monoidal CC^{*} category: when performing a composition DED\circ E of two such diagrams, closed loops {O}\{\text{O}\} might appear. They correspond to a multiplication by a factor q+q1(=Nq+q^{-1}(=\sqrt{N}, here) in the final vertical concatenation denoted DEDE. We will denote by b(D,E)b(D,E) the number of closed blocks (closed loops in this case) appearing while performing such operations and we then have

DE=Nb(D,E)/2DE.D\circ E=N^{b(D,E)/2}DE.

The collection of spaces HomSUq(2)(bk,bl),k,l\operatorname{Hom}_{SU_{q}(2)}(b^{\otimes k},b^{\otimes l}),k,l\in\mathbb{N} form a rigid monoidal CC^{*}-tensor category 𝒞SUq(2)\mathscr{C}SU_{q}(2) which is generated by (TD)D𝒟SUq(2)(T_{D})_{D\in\langle\mathcal{D}SU_{q}(2)\rangle} with

(5.1) 𝒟SUq(2)={{},{|}}\mathcal{D}SU_{q}(2)=\{\left\{\cap\},\{|\}\right\}

where {}TL(0;2),{|}TL(1;1)\{\cap\}\in TL(0;2),\{|\}\in TL(1;1). The set 𝒟SUq(2)\langle\mathcal{D}SU_{q}(2)\rangle is composed of all the diagrams obtained by usual composition, tensor product and conjugation of diagrams in 𝒟SUq(2)\mathcal{D}SU_{q}(2).

We denote by τ\tau the non-normalized Markov trace on TLq(k,k)TL_{q}(k,k) defined as

τ(D)=(q+q1)CD=(N)CD\tau(D)=(q+q^{-1})^{C_{D}}=(\sqrt{N})^{C_{D}}

where CDC_{D}\in\mathbb{N} is the numbers of “closed curves” appearing when closing a diagram DTL(k,k)D\in TL(k,k) by strings on top and bottom as follows:

[Uncaptioned image]DD

In addition to this pictorial representation, one can define CD,DTLq(k,k)C_{D},D\in TL_{q}(k,k) (and then the Markov trace on TLq(k,k)TL_{q}(k,k)) by an algebraic formula as follows: consider the conditional expectation

pk:TLq(k+1,k+1)TLq(k,k)p_{k}:TL_{q}(k+1,k+1)\to TL_{q}(k,k)

obtained by only closing up the last strand:

pk:DTLq(k+1,k+1)(idk)(Did)(idk)TLq(k,k).p_{k}:D\in TL_{q}(k+1,k+1)\mapsto(id^{\otimes k}\otimes\cup)\circ(D\otimes id)\circ(id^{\otimes k}\otimes\cap)\in TL_{q}(k,k).

Then

CD=p0p1pk1(D).C_{D}=p_{0}\circ p_{1}\circ\dots\circ p_{k-1}(D).

We recall that the map DTDD\mapsto T_{D} is the GNS map associated with τ\tau on TLqTL_{q} and that for all diagrams D,ETL(k,k)D,E\in TL(k,k), Tr(TDTE)=τ(DE)\text{Tr}(T_{D}^{*}T_{E})=\tau(D^{*}E).

We will need the following well known result: the category of representations of SN2+S_{N^{2}}^{+} is the one of the so-called even part of ON+O_{N}^{+}. We shall provide a “diagrammatic” proof of this result based on a result in [KS08]: we refer to [KS08, Proposition 3.1] for more details. We denote by NCNNC_{N} the category of non-crossing partitions in NCNC with the rule that a closed block corresponds to a factor N=(N)2=(q+q1)2N=(\sqrt{N})^{2}=(q+q^{-1})^{2}. As for diagrams in TLTL, we denote by b(p,p)b(p,p^{\prime}) the number of closed blocks appearing when performing a vertical concatenation of composable non-crossing partitions p,pp,p^{\prime}.

We will also use the notion of “black region(s)” for DTL(2k,2k)D\in TL(2k,2k), denoted br(D)br(D). This is defined as follows: we enclose the diagram DD in a box, called external box. The lines of the diagram then produce regions in this external box. The first region on the left of the box is shaded white. Then, going away from the left side of the external box, regions having a common line as a boundary are shaded by different colors. One can refer again to [KS08]. Let us give an example of diagram DTL(4,4)D\in TL(4,4) with br(D)=2br(D)=2:

[Uncaptioned image]
Proposition 5.2.

Let N4N\geq 4 and 0<q10<q\leq 1 such that q+q1=Nq+q^{-1}=\sqrt{N}. Then there exist isomorphisms

ϕ:TLq(2k,2l)NCN(k,l)\phi:TL_{q}(2k,2l)\to NC_{N}(k,l)

for all k,lk,l\in\mathbb{N}, all denoted ϕ\phi and such that

  1. (1)

    ϕ(id)=id\phi(\operatorname{id})=\operatorname{id}^{\prime}, with id={||}TLq(2,2)\operatorname{id}=\{|\ |\}\in TL_{q}(2,2) and id={|}NCN(1,1)\operatorname{id}^{\prime}=\{|\}\in NC_{N}(1,1),

  2. (2)

    ϕ(DE)=ϕ(D)ϕ(E)\phi(D\otimes E)=\phi(D)\otimes\phi(E), D,ETLq\forall D,E\in TL_{q},

  3. (3)

    ϕ(D)=ϕ(D)\phi(D^{*})=\phi(D)^{*}, DTLq\forall D\in TL_{q},

  4. (4)

    ϕ(DE)=ϕ(D)ϕ(E)\phi(D\circ E)=\phi(D)\circ\phi(E), (D,E)TLq(2l,2m)×TLq(2k,2l)\forall(D,E)\in TL_{q}(2l,2m)\times TL_{q}(2k,2l).

Proof.

The idea is to use the so-called “collapsing” operation c:TLNCc:TL\to NC which associates to any Temperley-Lieb diagram, the non-crossing partition obtained by collapsing consecutive neighbors. The converse application is called “fattening” operation of non-crossing partitions. This latter operation consists in drawing boundary lines around the blocks of pNC(k,l)p\in NC(k,l) and erasing the original non-crossing partition to obtain a Temperley-Lieb diagram PTL(2k,2l)P\in TL(2k,2l), see e.g. [KS08]:

p={}{}P:={}.p=\left\{\ \begin{picture}(1.8,2.0)\put(1.0,0.3){\line(0,1){1.3}} \put(0.0,0.3){\line(1,0){2.028}} \put(0.029,-1.0){\line(0,1){1.3}} \put(2.0,-1.0){\line(0,1){1.3}} \end{picture}\ \ \right\}\mapsto\left\{\ \begin{picture}(1.8,2.0)\put(1.0,0.3){\line(0,1){1.3}} \put(0.7,0.5){\line(0,1){1.1}} \put(1.3,0.5){\line(0,1){1.1}} \put(-0.32,0.5){\line(1,0){1.05}} \put(1.27,0.5){\line(1,0){1.05}} \put(0.27,0.1){\line(1,0){1.4}} \put(0.0,0.3){\line(1,0){2.028}} \put(0.029,-1.0){\line(0,1){1.3}} \put(-0.3,-1.0){\line(0,1){1.5}} \put(2.3,-1.0){\line(0,1){1.5}} \put(0.3,-1.0){\line(0,1){1.1}} \put(2.0,-1.0){\line(0,1){1.3}} \put(1.68,-1.0){\line(0,1){1.13}} \end{picture}\ \ \right\}\mapsto\ P:=\left\{\ \begin{picture}(1.8,2.0)\put(0.7,0.5){\line(0,1){1.1}} \put(1.3,0.5){\line(0,1){1.1}} \put(-0.32,0.5){\line(1,0){1.05}} \put(1.27,0.5){\line(1,0){1.05}} \put(0.27,0.1){\line(1,0){1.4}} \put(-0.3,-1.0){\line(0,1){1.5}} \put(2.3,-1.0){\line(0,1){1.5}} \put(0.3,-1.0){\line(0,1){1.1}} \put(1.68,-1.0){\line(0,1){1.13}} \end{picture}\ \ \right\}.

It is proved in [KS08, Theorem 4.2] that the collapsing operation Dc(D)D\mapsto c(D) provides, for all kk, an isomorphism

ψ:DTLq(2k,2k)τ(D)τ~(c(D))c(D)NCN(k,k)\psi:D\in TL_{q}(2k,2k)\mapsto\frac{\tau(D)}{\widetilde{\tau}(c(D))}c(D)\in NC_{N}(k,k)

with τ\tau, τ~\widetilde{\tau} are non-normalized Markov traces on TLqTL_{q}, NCNNC_{N}. In particular following [KS08], we have

(5.2) τ(id)=(q+q1)2=N=τ~(id) i.e. ϕ(id)=id.\displaystyle\tau(\operatorname{id})=(q+q^{-1})^{2}=N=\widetilde{\tau}(\operatorname{id}^{\prime})\text{ i.e. }\phi(\operatorname{id})=\operatorname{id}^{\prime}.

It is also proved in [KS08] that the map ψ\psi satisfies all four relations (1),(2),(3),(4)(1),(2),(3),(4) in the statement. To prove this, they use in particular an alternative definition of ψ\psi : DTLq(2k,2k),ψ(D)=Nkbr(D)c(D)D\in TL_{q}(2k,2k),\psi(D)=\sqrt{N}^{k-br(D)}c(D) where br(D)br(D) is the number of black regions in DD.

The notion of black region for diagrams DTLq(2k,2l)D\in TL_{q}(2k,2l) can be defined the same way as in the case k=lk=l. In particular, notice that if DTL(2k,2l)D\in TL(2k,2l) then for all mm\in\mathbb{N}:

(5.3) br(Dm)=br(D)+m=br(Dm).\displaystyle br(D\otimes\cap^{\otimes m})=br(D)+m=br(D\otimes\cup^{\otimes m}).

We now define ϕ:TLq(2k,2l)NCN(k,l)\phi:TL_{q}(2k,2l)\to NC_{N}(k,l) for all k,lk,l by

DNk+l4br(D)2c(D).D\mapsto N^{\frac{k+l}{4}-\frac{br(D)}{2}}c(D).

One can easily see that ψ\psi satisfies relations (1)(1) and (3)(3). For (2)(2) and (4)(4) we use the fact that ϕ|TLq(2k,2k)=φ\phi|_{TL_{q}(2k,2k)}=\varphi:

(2):(2): Let DTLq(2k,2l)D\in TL_{q}(2k,2l) and ETLq(2k,2l)E\in TL_{q}(2k^{\prime},2l^{\prime}). Consider DTLq(2max(k,l),2max(k,l))D^{\prime}\in TL_{q}(2\max(k,l),2\max(k,l)) defined by :

  1. \bullet

    D=DklTLq(2k,2k)D^{\prime}=D\otimes\cap^{k-l}\in TL_{q}(2k,2k) if klk\geq l,

  2. \bullet

    D=DlkTLq(2l,2l)D^{\prime}=D\otimes\cup^{l-k}\in TL_{q}(2l,2l) if lkl\geq k,

and the analogue construction for EE. Then from the case k+k=l+lk+k^{\prime}=l+l^{\prime}, we get :

ϕ(DE)=ϕ(D)ϕ(E),\phi(D^{\prime}\otimes E^{\prime})=\phi(D^{\prime})\otimes\phi(E^{\prime}),

with

DETLq(2(max(k,l)+max(k,l)),2(max(k,l)+max(k,l))).D^{\prime}\otimes E^{\prime}\in TL_{q}(2(\max(k,l)+\max(k^{\prime},l^{\prime})),2(\max(k,l)+\max(k^{\prime},l^{\prime}))).

We have:

  1. \bullet

    ϕ(DE)=Nmax(k,l)+max(k,l)4br(DE)2c(D)c(E)\phi(D^{\prime}\otimes E^{\prime})=N^{\frac{\max(k,l)+\max(k^{\prime},l^{\prime})}{4}-\frac{br(D^{\prime}\otimes E^{\prime})}{2}}c(D^{\prime})\otimes c(E^{\prime}). The exponent of NN appearing in this expression is then :

    max(k,l)4+max(k,l)4br(DE)2\displaystyle\frac{\max(k,l)}{4}+\frac{\max(k^{\prime},l^{\prime})}{4}-\frac{br(D^{\prime}\otimes E^{\prime})}{2}
    =(5.3)max(k,l)4+max(k,l)4br(DE)2|kl|+|kl|2\displaystyle\overset{(\ref{capcup})}{=}\frac{\max(k,l)}{4}+\frac{\max(k^{\prime},l^{\prime})}{4}-\frac{br(D\otimes E)}{2}-\frac{|k-l|+|k^{\prime}-l^{\prime}|}{2}
    =min(k,l)+min(k,l)4br(DE)2.\displaystyle=\frac{\min(k,l)+\min(k^{\prime},l^{\prime})}{4}-\frac{br(D\otimes E)}{2}.
  2. \bullet

    ϕ(D)ϕ(E)=Nmax(k,l)4br(D)2c(D)Nmax(k,l)4br(E)2c(E)\phi(D^{\prime})\otimes\phi(E^{\prime})=N^{\frac{\max(k,l)}{4}-\frac{br(D^{\prime})}{2}}c(D^{\prime})\otimes N^{\frac{\max(k^{\prime},l^{\prime})}{4}-\frac{br(E^{\prime})}{2}}c(E^{\prime}). The exponent of NN appearing in this expression is then

    max(k,l)4br(D)2+max(k,l)4br(E)2\displaystyle\frac{\max(k,l)}{4}-\frac{br(D^{\prime})}{2}+\frac{\max(k^{\prime},l^{\prime})}{4}-\frac{br(E^{\prime})}{2}
    =(5.3)max(k,l)4br(D)2|kl]2+max(k,l)4br(E)2|kl]2\displaystyle\overset{(\ref{capcup})}{=}\frac{\max(k,l)}{4}-\frac{br(D)}{2}-\frac{|k-l]}{2}+\frac{\max(k^{\prime},l^{\prime})}{4}-\frac{br(E)}{2}-\frac{|k^{\prime}-l^{\prime}]}{2}
    =min(k,l)+min(k,l)4br(D)+br(E)2.\displaystyle=\frac{\min(k,l)+\min(k^{\prime},l^{\prime})}{4}-\frac{br(D)+br(E)}{2}.

We deduce from this, that br(DE)=br(D)+br(E)br(D\otimes E)=br(D)+br(E) and thus ϕ(DE)=ϕ(D)ϕ(E)\phi(D\otimes E)=\phi(D)\otimes\phi(E).

(4):(4): Consider DTLq(2l,2m)D\in TL_{q}(2l,2m) and ETLq(2k,2l)E\in TL_{q}(2k,2l). There is nothing to do in the case k=l=mk=l=m since then ϕ=ψ\phi=\psi.

Now, we first suppose that l>k,ml>k,m. In this case, consider

E=E{}lk,D=Dlm.E^{\prime}=E\otimes\{\cup\}^{\otimes{l-k}},\ \ D^{\prime}=D\otimes\cap^{\otimes{l-m}}.

From the case k=l=mk=l=m, we get

ϕ(DE)=ϕ(D)ϕ(E).\phi(D^{\prime}\circ E^{\prime})=\phi(D^{\prime})\circ\phi(E^{\prime}).

Hence by compatibility of ϕ\phi with tensor product of diagrams, we have:

ϕ(DE)ϕ()lmϕ()lk=(ϕ(D)ϕ(E))ϕ()lmϕ()lk\displaystyle\phi(D\circ E)\otimes\phi(\cap)^{\otimes{l-m}}\otimes\phi(\cup)^{\otimes{l-k}}=\left(\phi(D)\circ\phi(E)\right)\otimes\phi(\cap)^{\otimes{l-m}}\otimes\phi(\cup)^{\otimes{l-k}}

and this implies ϕ(DE)=ϕ(D)ϕ(E)\phi(D\circ E)=\phi(D)\circ\phi(E).

Now, we suppose that ml<km\leq l<k. We consider

E=E{}kl,D=D{}lm{||}kl.E^{\prime}=E\otimes\{\cap\}^{\otimes{k-l}},\ \ D^{\prime}=D\otimes\{\cap\}^{{l-m}}\otimes\{|\ |\}^{\otimes{k-l}}.

Then again, ϕ(DE)=ϕ(D)ϕ(E)\phi(D^{\prime}\circ E^{\prime})=\phi(D^{\prime})\circ\phi(E^{\prime}) and we get

ϕ(DE)ϕ()km=(ϕ(D)ϕ(E))ϕ()km\displaystyle\phi(D\circ E)\otimes\phi(\cap)^{\otimes{k-m}}=\left(\phi(D)\circ\phi(E)\right)\otimes\phi(\cap)^{\otimes{k-m}}

which implies ϕ(DE)=ϕ(D)ϕ(E)\phi(D\circ E)=\phi(D)\circ\phi(E). One can proceed similarly if kl<mk\leq l<m.

To conclude, consider the case l<kml<k\leq m (or the analogue l<mkl<m\leq k). We get the desired relation considering

D=D{}ml,E=E{}kl{||}mk.D^{\prime}=D\otimes\{\cup\}^{\otimes{m-l}},\ \ E^{\prime}=E\otimes\{\cap\}^{\otimes{k-l}}\otimes\{|\ |\}^{\otimes{m-k}}.

Indeed,

ϕ(DE)\displaystyle\phi(D^{\prime}\circ E^{\prime}) =ϕ(DE)ϕ()klϕ()mk,\displaystyle=\phi(D\circ E)\otimes\phi(\cup\circ\cap)^{\otimes{k-l}}\otimes\phi(\cup)^{\otimes{m-k}},
ϕ(D)ϕ(E)\displaystyle\phi(D^{\prime})\circ\phi(E^{\prime}) =(ϕ(D)ϕ(E))(ϕ()ϕ())kl(ϕ()ϕ(||))mkϕ()mk)\displaystyle=(\phi(D)\circ\phi(E))\otimes(\phi(\cup)\circ\phi(\cap))^{\otimes{k-l}}\otimes\left(\underbrace{\phi(\cup)\circ\phi(|\ |))^{\otimes m-k}}_{\phi(\cup)^{\otimes m-k}}\right)

and

  1. \bullet

    ϕ()=ϕ(N)=N\phi(\cup\circ\cap)=\phi(\sqrt{N})=\sqrt{N},

  2. \bullet

    ϕ()ϕ()=N1412c()N1412c()=1N14N14N=N\phi(\cup)\circ\phi(\cap)=N^{\frac{1}{4}-\frac{1}{2}}c(\cup)\circ N^{\frac{1}{4}-\frac{1}{2}}c(\cap)=\frac{1}{N^{\frac{1}{4}}N^{\frac{1}{4}}}N=\sqrt{N} by the facts that c()c()=Nb(),b()c(\cup)\circ c(\cap)=N^{b(\cup),b(\cap)} and b(c(),c())=1b(c(\cup),c(\cap))=1.

We obtain as a corollary that the map ϕ:TLq(2k,2l)NCN(k,l)\phi:TL_{q}(2k,2l)\to NC_{N}(k,l) is isometric. We denote (|)q(\cdot|\cdot)_{q} (respectively (|)N(\cdot|\cdot)_{N}) the scalar product on TLqTL_{q} (respectively NCNNC_{N}) implemented by the non-normalized Markov trace τ\tau (respectively τ~\widetilde{\tau}).

Corollary 5.3.

For all D,ETLq(2k,2l)D,E\in TL_{q}(2k,2l), we have (D|E)q=(ϕ(D)|ϕ(E))N(D|E)_{q}=(\phi(D)|\phi(E))_{N}.

Proof.

The result follows from the following computation:

τ~(ϕ(D)ϕ(E))\displaystyle\widetilde{\tau}(\phi(D)^{*}\circ\phi(E)) =τ~(ϕ(DE))\displaystyle=\widetilde{\tau}(\phi(D^{*}\circ E))
=τ~(τ(DE)τ~(c(DE))c(DE))\displaystyle=\widetilde{\tau}\left(\frac{\tau(D^{*}\circ E)}{\widetilde{\tau}(c(D^{*}\circ E))}c(D^{*}\circ E)\right)
=τ(DE).\displaystyle=\tau(D^{*}\circ E).

We shall apply [Lem13a, Proposition 2.15] to the special case of the free product 𝔾SUq(2)\mathbb{G}*SU_{q}(2), for any compact matrix quantum groups of Kac type 𝔾\mathbb{G} and to the objects s(α)=bαbs(\alpha)=b\otimes\alpha\otimes b, αIrr(𝔾)\alpha\in\operatorname{Irr}(\mathbb{G}). We need to introduce several notation.

Notation 5.4.

Let k,lk,l\in\mathbb{N} and α1,,αk,β1,,βlIrr(𝔾)\alpha_{1},\dots,\alpha_{k},\beta_{1},\dots,\beta_{l}\in\operatorname{Irr}(\mathbb{G}). We put [α]={b,α1,b,,b,αk,b}[\alpha]=\{b,\alpha_{1},b,\dots,b,\alpha_{k},b\}, [β]={b,β1,b,,b,βl,b}[\beta]=\{b,\beta_{1},b,\dots,b,\beta_{l},b\}. We denote by

NC𝔾SUq(2)([α],[β])NC(3k,3l)NC_{\mathbb{G}*SU_{q}(2)}([\alpha],[\beta])\subset NC(3k,3l)

the set of non-crossing partitions DNC(3k,3l)D\in NC(3k,3l) of {1,,3(k+l)}\{1,\dots,3(k+l)\} such that one can write D=PpD=P\cup p as a disjoint union of partitions where:

  1. \bullet

    PP is a non-crossing partition on the points i{1,,3(k+l)}i\in\{1,\dots,3(k+l)\} with i0,2mod3i\equiv 0,2\mod 3. The points of PP are decorated by the fundamental corepresentation bb of SUq(2)SU_{q}(2). We denote TPT_{P} the natural linear map arising from PP as in Definition 1.5.

  2. \bullet

    pp is a non-crossing partition on the points i{1,,3(k+l)}i\in\{1,\dots,3(k+l)\} with i1mod3i\equiv 1\mod 3. The points of pp are decorated by the 𝔾\mathbb{G}-representations αi,βj\alpha_{i},\beta_{j} on top and bottom,

  3. \bullet

    The blocks BpB\in p, B=UBLBB=U_{B}\cup L_{B} of pp are decorated by 𝔾\mathbb{G}-morphisms SBS_{B}.

We denote S=BSBS=\bigotimes_{B}S_{B} with the order on the blocks of pp as in Notation 3.2 and

VD,S=(σDL)(TPS)σDU:i=1k2Hαi2j=1l2Hβj2,V^{D,S}=(\sigma_{D}^{L})^{*}\circ(T_{P}\otimes S)\circ\sigma_{D}^{U}:\bigotimes_{i=1}^{k}\mathbb{C}^{2}\otimes H^{\alpha_{i}}\otimes\mathbb{C}^{2}\to\bigotimes_{j=1}^{l}\mathbb{C}^{2}\otimes H^{\beta_{j}}\otimes\mathbb{C}^{2},

where σDU=(idρDU)λDU\sigma_{D}^{U}=(\operatorname{id}\otimes\rho_{D}^{U})\lambda_{D}^{U} and σDL=(idρDL)λDL\sigma_{D}^{L}=(\operatorname{id}\otimes\rho_{D}^{L})\lambda_{D}^{L} with:

  1. \bullet

    λDU:i=1k2Hαi2(2)2ki=1kHαi\lambda_{D}^{U}:\bigotimes_{i=1}^{k}\mathbb{C}^{2}\otimes H^{\alpha_{i}}\otimes\mathbb{C}^{2}\to(\mathbb{C}^{2})^{\otimes 2k}\otimes\bigotimes_{i=1}^{k}H^{\alpha_{i}}, i(xiyixi)i(xixi)iyi\bigotimes_{i}(x_{i}\otimes y_{i}\otimes x^{\prime}_{i})\mapsto\bigotimes_{i}(x_{i}\otimes x_{i}^{\prime})\otimes\bigotimes_{i^{\prime}}y_{i^{\prime}},

  2. \bullet

    ρDU:i=1kHαiBpHUB\rho_{D}^{U}:\bigotimes_{i=1}^{k}H^{\alpha_{i}}\to\bigotimes_{B\in p}H^{U_{B}}, iyiBpiUByi\bigotimes_{i}y_{i}\mapsto\bigotimes_{B\in p}\bigotimes_{i\in U_{B}}y_{i},

  3. \bullet

    λDL:j=1l2Hβj2(2)2lj=1lHαj\lambda_{D}^{L}:\bigotimes_{j=1}^{l}\mathbb{C}^{2}\otimes H^{\beta_{j}}\otimes\mathbb{C}^{2}\to(\mathbb{C}^{2})^{\otimes 2l}\otimes\bigotimes_{j=1}^{l}H^{\alpha_{j}}, j(xjyjxj)j(xjxj)jyj\bigotimes_{j}(x_{j}\otimes y_{j}\otimes x^{\prime}_{j})\mapsto\bigotimes_{j}(x_{j}\otimes x_{j}^{\prime})\otimes\bigotimes_{j^{\prime}}y_{j^{\prime}},

  4. \bullet

    ρDL:j=1lHβiBpHLB\rho_{D}^{L}:\bigotimes_{j=1}^{l}H^{\beta_{i}}\to\bigotimes_{B\in p}H^{L_{B}}, jyjBpjLByj\bigotimes_{j}y_{j}\mapsto\bigotimes_{B\in p}\bigotimes_{j\in L_{B}}y_{j}

Lemma 5.5.

Let α1,,αk,β1,,βlIrr(𝔾)\alpha_{1},\dots,\alpha_{k},\beta_{1},\dots,\beta_{l}\in\operatorname{Irr}(\mathbb{G}). Then with the above notation

(5.4) Hom\displaystyle\operatorname{Hom}_{\mathbb{H}} (i=1ks(αi);j=1ls(βj))\displaystyle\left(\bigotimes_{i=1}^{k}s(\alpha_{i});\bigotimes_{j=1}^{l}s(\beta_{j})\right)
(5.5) =span{VD,S:DNC𝔾SUq(2)([α],[β]),S as in Notation 5.4}.\displaystyle=\emph{span}\left\{V^{D,S}:D\in NC_{\mathbb{G}*SU_{q}(2)}([\alpha],[\beta]),\ S\emph{ as in Notation \ref{Pp}}\right\}.
Proof.

The Lemma follows from [Lem13a, Proposition 2.15] in the case of the free product of two compact matrix groups and form the description of the generating set 𝒟SUq(2)\mathcal{D}SU_{q}(2), we recalled above (5.1).

By [Lem13a, Proposition 2.15], intertwiners in 𝔾SUq(2)\mathbb{G}*SU_{q}(2) are linear combinations of compositions and tensor products of maps idRid\operatorname{id}\otimes R\otimes id where RR is:

  1. \bullet

    either an intertwiner R:αi1αimβj1βjnR:\alpha_{i_{1}}\otimes\dots\otimes\alpha_{i_{m}}\to\beta_{j_{1}}\otimes\dots\otimes\beta_{j_{n}} in 𝔾\mathbb{G}

  2. \bullet

    or id:bb\operatorname{id}:b\to b, :1bb\cap:1\to b\otimes b, :bb1\cup:b\otimes b\to 1.

The inclusion of the space (5.4) in the space (5.5) then follows since we restrict to intertwiners of the type: (bα1b)(bαkb)(bβ1b)(bβlb)(b\otimes\alpha_{1}\otimes b)\otimes\dots\otimes(b\otimes\alpha_{k}\otimes b)\to(b\otimes\beta_{1}\otimes b)\otimes\dots\otimes(b\otimes\beta_{l}\otimes b).

The inclusion \supset holds because any diagram in NC𝔾SUq(2)NC_{\mathbb{G}*SU_{q}(2)} decomposes as a vertical concatenation of diagrams {|}\{|\}, {}\{\cap\}, {}\{\cup\} and non-crossing partitions pp whose points are decorated by 𝔾\mathbb{G}-representations and blocks by 𝔾\mathbb{G}-morphisms. ∎

Thanks to the previous result, we shall construct isomorphisms between certain 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}-Hom spaces and \mathbb{H}-Hom spaces and proceed towards proving the monoidal equivalence result we announced in the beginning of this section.

From a non-crossing partition DNC𝔾SUq(2)([α],[β])D\in NC_{\mathbb{G}*SU_{q}(2)}([\alpha],[\beta]), we can construct a new non-crossing partition D~\widetilde{D} decorated by 𝔾\mathbb{G}-representations and by 𝔾\mathbb{G}-morphisms on its blocks. These diagrams will allow us to construct the monoidal equivalence we mentioned in the introduction of this section. We use the notations of Section 3 and Notation 5.4. In particular, we use the twisting isomorphisms

tpU(i=1k(NHαi),(N)kB(p)HUB(p))t_{p}^{U}\in\mathcal{B}\left(\bigotimes_{i=1}^{k}(\mathbb{C}^{N}\otimes H^{\alpha_{i}}),(\mathbb{C}^{N})^{\otimes k}\otimes\bigotimes_{B(p)}H^{U_{B(p)}}\right)

and

tpL(j=1l(NHβj),(N)lB(p)HLB(p))t_{p}^{L}\in\mathcal{B}\left(\bigotimes_{j=1}^{l}(\mathbb{C}^{N}\otimes H^{\beta_{j}}),(\mathbb{C}^{N})^{\otimes l}\otimes\bigotimes_{B(p)}H^{L_{B(p)}}\right)

defined in Notation 3.6. They can be decomposed as follows:

Notation 5.6.

We put tpU=(idgpU)fpUt_{p}^{U}=(\operatorname{id}\otimes g_{p}^{U})f_{p}^{U}, tpL=(idgpL)fpLt_{p}^{L}=(\operatorname{id}\otimes g_{p}^{L})f_{p}^{L} with

  1. \bullet

    fpU:i=1kNHαi(N)ki=1kHαif_{p}^{U}:\bigotimes_{i=1}^{k}\mathbb{C}^{N}\otimes H^{\alpha_{i}}\to(\mathbb{C}^{N})^{\otimes k}\otimes\bigotimes_{i=1}^{k}H^{\alpha_{i}}, i(xiyi)ixiiyi\bigotimes_{i}(x_{i}\otimes y_{i})\mapsto\bigotimes_{i}x_{i}\otimes\bigotimes_{i^{\prime}}y_{i^{\prime}},

  2. \bullet

    gpU:i=1kHαipBHUBg_{p}^{U}:\bigotimes_{i=1}^{k}H^{\alpha_{i}}\to\bigotimes_{p\in B}H^{U_{B}}, iyipBiUByi\bigotimes_{i}y_{i}\mapsto\bigotimes_{p\in B}\bigotimes_{i\in U_{B}}y_{i},

  3. \bullet

    fpL:j=1lNHβj(N)lj=1lHβjf_{p}^{L}:\bigotimes_{j=1}^{l}\mathbb{C}^{N}\otimes H^{\beta_{j}}\to(\mathbb{C}^{N})^{\otimes l}\otimes\bigotimes_{j=1}^{l}H^{\beta_{j}}, j(xjyj)jxjjyj\bigotimes_{j}(x_{j}\otimes y_{j})\mapsto\bigotimes_{j}x_{j}\otimes\bigotimes_{j^{\prime}}y_{j^{\prime}},

  4. \bullet

    gpL:j=1lHβjpBHLBg_{p}^{L}:\bigotimes_{j=1}^{l}H^{\beta_{j}}\to\bigotimes_{p\in B}H^{L_{B}}, jyjpBjUByj\bigotimes_{j}y_{j}\mapsto\bigotimes_{p\in B}\bigotimes_{j\in U_{B}}y_{j}.

Remark 5.7.

Let DNC𝔾SUq(2)([α],[β]),D=PpD\in NC_{\mathbb{G}*SU_{q}(2)}([\alpha],[\beta]),\ D=P\cup p. From the definitions, it follows immediately that gpL=ρDLg_{p}^{L}=\rho_{D}^{L} and gpU=ρDUg_{p}^{U}=\rho_{D}^{U}.

Definition 5.8.

Let k,lk,l\in\mathbb{N} and α1,,αk,β1,,βlIrr(𝔾)\alpha_{1},\dots,\alpha_{k},\beta_{1},\dots,\beta_{l}\in\operatorname{Irr}(\mathbb{G}). Let

DNC𝔾SUq(2)([α],[β]),D=PpD\in NC_{\mathbb{G}*SU_{q}(2)}([\alpha],[\beta]),\ D=P\cup p

with a decoration of the blocks by a morphism SS as above in Notation 5.4.

We define D~\widetilde{D} as follows: we identify each point decorated by a 𝔾\mathbb{G}-representation with the 22 adjacent points decorated by the fundamental representation bb of SUq(2)SU_{q}(2) and we keep the same decoration by the 𝔾\mathbb{G}-representations. D~\widetilde{D} is then the quotient non-crossing partition generated by DD. In other words, D~\widetilde{D} is the coarsest non-crossing partition such the image B¯\bar{B} under the identification above of any block BDB\in D, B{1,,3(k+l)}B\subset\{1,\dots,3(k+l)\}, is included in a block B~\widetilde{B} of D~\widetilde{D}. Notice that with our notation, D~=c(P)\widetilde{D}=c(P).

A block B~\widetilde{B} of D~\widetilde{D} is decorated by the tensor product of the maps SBS_{B} decorating the blocks BpB\in p such that B¯B~\bar{B}\subset\widetilde{B}. The resulting map S~\widetilde{S} is:

S~=gD~L(gpL)B(p)SB(p)gpU(gD~U)\widetilde{S}=g_{\widetilde{D}}^{L}\circ(g_{p}^{L})^{*}\circ\bigotimes_{B(p)}S_{B(p)}\circ g_{p}^{U}\circ(g_{\widetilde{D}}^{U})^{*}

Now, we can prove:

Proposition 5.9.

Let N4N\geq 4 and k,lk,l\in\mathbb{N}. For all α1,,αk,β1,,βlIrr(𝔾)\alpha_{1},\dots,\alpha_{k},\beta_{1},\dots,\beta_{l}\in\operatorname{Irr}(\mathbb{G}), there exists a linear isomorphism

φ:Hom\displaystyle\varphi:\operatorname{Hom}_{\mathbb{H}} (s(α1)s(αk);s(β1)s(βl))\displaystyle(s(\alpha_{1})\otimes\dots\otimes s(\alpha_{k});s(\beta_{1})\otimes\dots\otimes s(\beta_{l}))
Hom𝔾SN+(r(α1)r(αk);r(β1)r(βl))\displaystyle\overset{\sim}{\longrightarrow}\operatorname{Hom}_{\mathbb{G}\wr_{*}S_{N}^{+}}(r(\alpha_{1})\otimes\dots\otimes r(\alpha_{k});r(\beta_{1})\otimes\dots\otimes r(\beta_{l}))

such that

  1. \bullet

    φ(id)=id\varphi(\operatorname{id})=\operatorname{id},

  2. \bullet

    φ(QR)=φ(Q)φ(R)\varphi(Q\otimes R)=\varphi(Q)\otimes\varphi(R) for all \mathbb{H}-morphisms Q,RQ,R,

  3. \bullet

    φ(Q)=φ(Q)\varphi(Q^{*})=\varphi(Q)^{*} for all \mathbb{H}-morphisms QQ,

  4. \bullet

    φ(QR)=φ(Q)φ(R)\varphi(Q\circ R)=\varphi(Q)\circ\varphi(R) for all composable \mathbb{H}-morphisms Q,RQ,R.

Proof.

With the above notation and the one of Theorem 3.7, we define φ\varphi by φ(VD,S)=UD~,S~.\varphi\left(V^{D,S}\right)=U^{\widetilde{D},\widetilde{S}}. The fact that this map is well defined will follow from the following lemma:

Lemma 5.10.

For all D=Pp,D=PpNC𝔾SUq(2)([α],[β])D=P\cup p,D^{\prime}=P\cup p^{\prime}\in NC_{\mathbb{G}*SU_{q}(2)}([\alpha],[\beta]) and any decoration S,SS,S^{\prime} of the blocks of D,DD,D^{\prime} we have

Tr((VD,S)VD,S)=Tr((UD~,S~)UD~,S~).\operatorname{Tr}\left(\left(V^{D,S}\right)^{*}V^{D^{\prime},S^{\prime}}\right)={\operatorname{Tr}}\left(\left(U^{\widetilde{D},\widetilde{S}}\right)^{*}U^{\widetilde{D^{\prime}},\widetilde{S^{\prime}}}\right).
Proof.

We first compute

Tr((VD,S)VD,S)=Tr((σDU)(TPS)σDL(σDL)(TPS)σDU)\displaystyle\operatorname{Tr}\left((V^{D,S})^{*}V^{D^{\prime},S^{\prime}}\right)=\operatorname{Tr}\left((\sigma_{D}^{U})^{*}(T_{P}^{*}\otimes S^{*})\sigma_{D}^{L}(\sigma_{D^{\prime}}^{L})^{*}(T_{P^{\prime}}\otimes S^{\prime})\sigma_{D^{\prime}}^{U}\right)
=Tr((λDU)(idρDU)(TPS)(idρDL)λDL(λDL)(idρDL)(TPS)(idρDU)λDU).\displaystyle=\operatorname{Tr}\left((\lambda_{D}^{U})^{*}(\operatorname{id}\otimes\rho_{D}^{U})^{*}(T_{P}^{*}\otimes S^{*})(\operatorname{id}\otimes\rho_{D}^{L})\lambda_{D}^{L}(\lambda_{D^{\prime}}^{L})^{*}(\operatorname{id}\otimes\rho_{D^{\prime}}^{L})^{*}(T_{P^{\prime}}\otimes S^{\prime})(\operatorname{id}\otimes\rho_{D^{\prime}}^{U})\lambda_{D^{\prime}}^{U}\right).

Using the facts that λDU(λDU)=id\lambda_{D^{\prime}}^{U}(\lambda_{D}^{U})^{*}=\operatorname{id}, λDL(λDL)=id\lambda_{D}^{L}(\lambda_{D^{\prime}}^{L})^{*}=\operatorname{id} and that Tr\operatorname{Tr} is a trace, we obtain

Tr((VD,S)VD,S)=Tr((idρDU)(TPS)(idρDL)(idρDL)(TPS)(idρDU))\displaystyle\operatorname{Tr}\left((V^{D,S})^{*}V^{D^{\prime},S^{\prime}}\right)=\operatorname{Tr}\left((\operatorname{id}\otimes\rho_{D}^{U})^{*}(T_{P}^{*}\otimes S^{*})(\operatorname{id}\otimes\rho_{D}^{L})(\operatorname{id}\otimes\rho_{D^{\prime}}^{L})^{*}(T_{P^{\prime}}\otimes S^{\prime})(\operatorname{id}\otimes\rho_{D^{\prime}}^{U})\right)
=Tr((TPTP)(ρDU)SρDL(ρDL)SρDU)=Tr(TPTP)Tr((ρDU)SρDL(ρDL)SρDU).\displaystyle=\operatorname{Tr}\left((T_{P}^{*}T_{P^{\prime}})\otimes(\rho_{D}^{U})^{*}S^{*}\rho_{D}^{L}(\rho_{D^{\prime}}^{L})^{*}S^{\prime}\rho_{D^{\prime}}^{U}\right)=\operatorname{Tr}\left(T_{P}^{*}T_{P^{\prime}}\right)\operatorname{Tr}\left((\rho_{D}^{U})^{*}S^{*}\rho_{D}^{L}(\rho_{D^{\prime}}^{L})^{*}S^{\prime}\rho_{D^{\prime}}^{U}\right).

We get similarly

Tr((UD~,S~)UD~,S~)\displaystyle{\operatorname{Tr}}\left(\left(U^{\widetilde{D},\widetilde{S}}\right)^{*}U^{\widetilde{D^{\prime}},\widetilde{S^{\prime}}}\right) =Tr(TD~TD~)Tr((gD~U)S~gD~L(gD~L)S~gD~U).\displaystyle={\operatorname{Tr}}\left(T_{\widetilde{D}}^{*}T_{\widetilde{D}^{\prime}}\right){\operatorname{Tr}}\left((g_{\widetilde{D}}^{U})^{*}\widetilde{S}^{*}g_{\widetilde{D}}^{L}(g_{\widetilde{D}^{\prime}}^{L})^{*}\widetilde{S}^{\prime}g_{\widetilde{D}^{\prime}}^{U}\right).

Now, since D~=c(P)\widetilde{D}=c(P), we obtain

Tr(TPTP)=τ(PP)=τ~(D~D~)=Tr(TD~TD~)\operatorname{Tr}\left(T_{P}^{*}T_{P^{\prime}}\right)=\tau(P^{*}P^{\prime})=\widetilde{\tau}(\widetilde{D}^{*}\widetilde{D}^{\prime})={\operatorname{Tr}}\left(T_{\widetilde{D}}^{*}T_{\widetilde{D}^{\prime}}\right)

by Corollary 5.3. On the other hand, we have

(ρDU)SρDL(ρDL)SρDU\displaystyle(\rho_{D}^{U})^{*}S^{*}\rho_{D}^{L}(\rho_{D^{\prime}}^{L})^{*}S^{\prime}\rho_{D^{\prime}}^{U} =(ρDU)B(p)SB(p)ρDL(ρDL)B(p)SB(p)ρDU\displaystyle=(\rho_{D}^{U})^{*}\circ\bigotimes_{B(p)}S_{B(p)}^{*}\circ\rho_{D}^{L}(\rho_{D^{\prime}}^{L})^{*}\circ\bigotimes_{B(p^{\prime})}S^{\prime}_{B(p^{\prime})}\circ\rho_{D^{\prime}}^{U}

and

(gD~U)S~gD~L(gD~L)S~gD~U\displaystyle(g_{\widetilde{D}}^{U})^{*}\widetilde{S}^{*}g_{\widetilde{D}}^{L}(g_{\widetilde{D}^{\prime}}^{L})^{*}\widetilde{S}^{\prime}g_{\widetilde{D}^{\prime}}^{U}
=(gD~U)(gD~L(gpL)B(p)SB(p)gpU(gD~U))gD~L(gD~L)(gD~L(gpL)B(p)SB(p)gpU(gD~U))gD~U\displaystyle=(g_{\widetilde{D}}^{U})^{*}\left(g_{\widetilde{D}}^{L}\circ(g_{p}^{L})^{*}\circ\bigotimes_{B(p)}S_{B(p)}\circ g_{p}^{U}\circ(g_{\widetilde{D}}^{U})^{*}\right)^{*}g_{\widetilde{D}}^{L}(g_{\widetilde{D}^{\prime}}^{L})^{*}\left(g_{\widetilde{D}^{\prime}}^{L}(g_{p^{\prime}}^{L})^{*}\circ\bigotimes_{B(p^{\prime})}S^{\prime}_{B(p^{\prime})}\circ g_{p^{\prime}}^{U}(g_{\widetilde{D}^{\prime}}^{U})^{*}\right)g_{\widetilde{D}^{\prime}}^{U}
=(gpU)B(p)SB(p)gpL(gpL)B(p)SB(p)gpU.\displaystyle=(g_{p}^{U})^{*}\circ\bigotimes_{B(p)}S_{B(p)}^{*}\circ g_{p}^{L}(g_{p^{\prime}}^{L})^{*}\circ\bigotimes_{B(p^{\prime})}S^{\prime}_{B(p^{\prime})}\circ g_{p^{\prime}}^{U}.

The lemma follows from these calculations and Remark 5.7. ∎

Now, since the trace on TLqTL_{q} (and NCNNC_{N}) is faithful, we deduce from the above lemma that the map φ\varphi map is well defined. Indeed, the map (D,S)VD,S(D,S)\mapsto V^{D,S} factorizes through the quotient map (D,S)(D~,S~)(D,S)\mapsto(\widetilde{D},\widetilde{S}), for all DNC𝔾SUq(2)([α],[β])D\in NC_{\mathbb{G}*SU_{q}(2)}([\alpha],[\beta]) and all decorations [S][S] of the blocks of DD since it is isometric. Notice that it proves also that φ\varphi is injective.

Let Up,SU^{p,S} be an element of the basis of the vector space Hom𝔾SN+(r(α1)r(αk);r(β1)r(βl))\operatorname{Hom}_{\mathbb{G}\wr_{*}S_{N}^{+}}(r(\alpha_{1})\otimes\dots\otimes r(\alpha_{k});r(\beta_{1})\otimes\dots\otimes r(\beta_{l})) obtained in Theorem 3.7. Consider PP the Temperley-Lieb diagram obtained by the fattening operation on pp and put D=PpD=P\cup p. Notice that in this case, we have D~=p\widetilde{D}=p, S~=S\widetilde{S}=S. It is then clear that φ(VD,S)=UD~,S~=UD~,S\varphi(V^{D,S})=U^{\widetilde{D},\widetilde{S}}=U^{\widetilde{D},S} and the φ\varphi is surjective.

In particular, we have proved that the morphisms VD,SHomV^{D,S}\in\operatorname{Hom}_{\mathbb{H}} such that D~=p\widetilde{D}=p generate a basis of the Hom-spaces in \mathbb{H}.

Now notice at the level of diagrams describing the categories of morphisms, that φ\varphi satisfies all first three relations of the statement. The relation φ(DE)=φ(D)φ(E)\varphi(D\circ E)=\varphi(D)\circ\varphi(E) for all D,EDNC𝔾SUq(2)D,E\in D\in NC_{\mathbb{G}*SU_{q}(2)} follows from Proposition 5.2.

Indeed, let D=PpD=P\cup p and E=PpE=P^{\prime}\cup p^{\prime} as in Notation 5.4. We may assume that D~=p\widetilde{D}=p and E~=p\widetilde{E}=p^{\prime}. When we compose diagrams D=PpD=P\cup p and E=PpE=P^{\prime}\cup p^{\prime}, we compose on the one hand Temperley-Lieb diagrams PPP\circ P^{\prime} and on the other hand non-crossing partitions ppp\circ p^{\prime}. Hence closed loops in PPP\circ P^{\prime} and closed blocks in ppp\circ p^{\prime} might appear:

  1. \bullet

    We know with notation of Proposition 5.2 that ϕ(PP)=ϕ(P)ϕ(P)\phi(P\circ P^{\prime})=\phi(P)\circ\phi(P^{\prime}),

  2. \bullet

    Closed blocks in ppφ(DE)p\circ p^{\prime}\subset\varphi(D\circ E) correspond to scalars coefficients

    αtpαt+mpβrpβr+np,\mathbb{C}\to\alpha_{t}^{p}\otimes\dots\otimes\alpha_{t+m}^{p}\to\beta_{r}^{p^{\prime}}\otimes\dots\otimes\beta_{r+n}^{p^{\prime}}\to\mathbb{C},

    for some 𝔾\mathbb{G}-representations αtp,,αt+mpB\alpha_{t}^{p},\dots,\alpha_{t+m}^{p}\in B, (BpB\in p) and βrp,,βr+npB\beta_{r}^{p^{\prime}},\dots,\beta_{r+n}^{p^{\prime}}\in B^{\prime}, (BpB^{\prime}\in p^{\prime}). These scalars also appear precisely in D~E~\widetilde{D}\circ\widetilde{E}.

Altogether,

φ(DE)=φ(D)φ(E).\varphi(D\circ E)=\varphi(D)\circ\varphi(E).

We can now prove the main result of this section.

Theorem 5.11.

Let N4N\geq 4 and 0<q10<q\leq 1 such that q+q1=Nq+q^{-1}=\sqrt{N}. Let 𝔾\mathbb{G} be a compact matrix quantum group of Kac type. Then

𝔾SN+mon\mathbb{G}\wr_{*}S_{N}^{+}\simeq_{mon}\mathbb{H}

where ^\widehat{\mathbb{H}} is the subgroup of 𝔾^SUq(2)^\widehat{\mathbb{G}}*\widehat{SU_{q}(2)} with

C():=Cbijabkl| 1i,j,k,l2,aC(𝔾)C(𝔾)C(SUq(2)),C(\mathbb{H}):=C^{*}-\langle b_{ij}ab_{kl}\ |\ 1\leq i,j,k,l\leq 2,a\in C(\mathbb{G})\rangle\subset C(\mathbb{G})*C(SU_{q}(2)),
Δ(bijabkl)=r,s,tbirabktbrjabtlC()C()\displaystyle\Delta(b_{ij}ab_{kl})=\sum_{r,s,t}b_{ir}ab_{kt}\otimes b_{rj}ab_{tl}\in C(\mathbb{H})\otimes C(\mathbb{H})

and B=(bij)ijB=(b_{ij})_{ij} is the generating matrix of SUq(2)SU_{q}(2).

Proof.

With the notation of this section and the one of Section 3, the representation categories of \mathbb{H} and 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} are respectively given by the completions (in the sense of Woronowicz [Wor88]) of

R0={s(α1)s(αk):kαiIrr(𝔾)i=1,,k},{VD,S:k,lαi,βjIrr(𝔾)DNC𝔾SUq(2)([α],[β])S decorates the blocks of D}R_{0}=\left\{s(\alpha_{1})\otimes\dots\otimes s(\alpha_{k}):\begin{array}[]{lll}k\in\mathbb{N}\\ \alpha_{i}\in\operatorname{Irr}(\mathbb{G})\\ i=1,\dots,k\end{array}\right\},\left\{V^{D,S}:\begin{array}[]{llll}k,l\in\mathbb{N}\\ \alpha_{i},\beta_{j}\in\operatorname{Irr}(\mathbb{G})\\ D\in NC_{\mathbb{G}*SU_{q}(2)}([\alpha],[\beta])\\ S\text{ decorates the blocks of }D\end{array}\right\}

and

S0={r(α1)r(αk):kαiIrr(𝔾)},{Up,S:k,lαi,βjIrr(𝔾)pNC𝔾([α],[β])S decorates the blocks of p}.S_{0}=\left\{r(\alpha_{1})\otimes\dots\otimes r(\alpha_{k}):\begin{array}[]{ll}k\in\mathbb{N}\\ \alpha_{i}\in\operatorname{Irr}(\mathbb{G})\end{array}\right\},\left\{U^{p,S}:\begin{array}[]{llll}k,l\in\mathbb{N}\\ \alpha_{i},\beta_{j}\in\operatorname{Irr}(\mathbb{G})\\ p\in NC_{\mathbb{G}}([\alpha],[\beta])\\ S\text{ decorates the blocks of }p\end{array}\right\}.

We have already constructed in Proposition 5.9 an equivalence φ\varphi between the monoidal rigid CC^{*}-tensor categories R0,S0R_{0},S_{0}. Thanks to Lemma 1.16, one can extend it to the completions R,SR,S.

To conclude, notice that φ:R0S0\varphi:R_{0}\to S_{0} is an equivalence of categories in such a way that the generators s(α)s(\alpha) of C()C(\mathbb{H}) and r(α)r(\alpha) of C(𝔾SN+)C(\mathbb{G}\wr_{*}S_{N}^{+}) are in correspondence. We deduce easily that φ\varphi induces a bijection

Irr()Irr(𝔾SN+),ωω\operatorname{Irr}(\mathbb{H})\to\operatorname{Irr}(\mathbb{G}\wr_{*}S_{N}^{+}),\ \omega^{\prime}\mapsto\omega

where ω\omega is constructed as in the proof of Lemma 1.16 by

ω=φ(v)φ(v)r(α1)r(αk)\omega={\varphi}(v){\varphi}(v^{*})r(\alpha_{1})\otimes\dots\otimes r(\alpha_{k})

for all Irr()ωα1αk\text{Irr}(\mathbb{H})\ni\omega^{\prime}\subset\alpha_{1}\otimes\dots\otimes\alpha_{k} and with vv the isometry

v:ωs(α1)s(αk).v:\omega^{\prime}\to s(\alpha_{1})\otimes\dots\otimes s(\alpha_{k}).

The fact that φ\varphi is a monoidal equivalence between \mathbb{H} and 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} then follows. ∎

We get as an immediate corollary the description of the fusion rules of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}. Even if this result can be formulated as Proposition 5.14, we give a closer formulation as [BV09, Theorem 7.3] and [Lem13a, Theorem 2.25].

Definition 5.12.

Let M=Irr(𝔾)M=\langle\operatorname{Irr}(\mathbb{G})\rangle be the monoid formed by the words over Irr(𝔾)\operatorname{Irr}(\mathbb{G}). We endow MM with the following operations:

  1. (1)

    Involution: (α1,,αk)¯=(α¯k,,α¯1)\overline{(\alpha_{1},\dots,\alpha_{k})}=(\bar{\alpha}_{k},\dots,\bar{\alpha}_{1}),

  2. (2)

    concatenation: for any two words, we set

    (α1,,αk),(β1,,βl)=(α1,,αk1,αk,β1,β2,,βl),(\alpha_{1},\dots,\alpha_{k}),(\beta_{1},\dots,\beta_{l})=(\alpha_{1},\dots,\alpha_{{k-1}},\alpha_{k},\beta_{1},\beta_{2},\dots,\beta_{l}),
  3. (3)

    Fusion: for two non-empty words, we set

    (α1,,αk).(β1,,βl)\displaystyle(\alpha_{1},\dots,\alpha_{k}).(\beta_{1},\dots,\beta_{l}) =(β1,,αk1,αkβ1,β2,,βl)\displaystyle=(\beta_{1},\dots,\alpha_{{k-1}},\alpha_{k}\otimes\beta_{1},\beta_{2},\dots,\beta_{l})
    =(β1,,αk1,γαkβ1γ,β2,,βl)\displaystyle=\left(\beta_{1},\dots,\alpha_{{k-1}},\bigoplus_{\gamma\subset\alpha_{k}\otimes\beta_{1}}\gamma,\beta_{2},\dots,\beta_{l}\right)
    =γαkβ1(β1,,αk1,γ,β2,,βl),\displaystyle=\bigoplus_{\gamma\subset\alpha_{k}\otimes\beta_{1}}\left(\beta_{1},\dots,\alpha_{{k-1}},\gamma,\beta_{2},\dots,\beta_{l}\right),

    where each γ\gamma appears in the direct sum with its multiplicity γαkβ1\gamma\subset\alpha_{k}\otimes\beta_{1}.

Theorem 5.13.

The irreducible corepresentations of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} can be labelled ω(x)\omega(x) with xMx\in M, with involution ω(x)¯=ω(x¯)\overline{\omega(x)}=\omega({\overline{x}}) and the fusion rules:

ω(x)ω(y)=x=u,t;y=t¯,vω(u,v)x=u,t;y=t¯,vu,vω(u.v)\omega(x)\otimes\omega(y)=\sum_{x=u,t\ ;\ y=\overline{t},v}\omega({u,v})\ \oplus\displaystyle\sum_{\begin{subarray}{c}x=u,t\ ;\ y=\overline{t},v\\ u\neq\emptyset,v\neq\emptyset\end{subarray}}\omega({u.v})

and we have for all αIrr(𝔾)\alpha\in\operatorname{Irr}(\mathbb{G}), ω(α)=r(α)δα,1𝔾1\omega(\alpha)=r(\alpha)\ominus\delta_{\alpha,1_{\mathbb{G}}}1.

Proof.

To prove this theorem, we shall describe the irreducible corepresentations and fusion rules in \mathbb{H}. This follows from Theorem 1.11 used in the following lemma:

Lemma 5.14.

The irreducible representations of \mathbb{H} can be labelled ω(α1,,αk)\omega^{\prime}(\alpha_{1},\dots,\alpha_{k}), (α1,,αk)Irr(𝔾)(\alpha_{1},\dots,\alpha_{k})\in\langle\operatorname{Irr}(\mathbb{G})\rangle, with involution ω¯(α1,,αk)=ω(α¯k,,α¯1)\overline{\omega^{\prime}}(\alpha_{1},\dots,\alpha_{k})=\omega^{\prime}(\bar{\alpha}_{k},\dots,\bar{\alpha}_{1}) and fusion rules:

ω(α1,,αk)ω(β1,,βl)=ω(α1,,αk,\displaystyle\omega^{\prime}(\alpha_{1},\dots,\alpha_{k})\otimes\omega^{\prime}(\beta_{1},\dots,\beta_{l})=\omega^{\prime}(\alpha_{1},\dots,\alpha_{k}, β1,,βl)γαkβ1ω(α1,,γ,,βl)\displaystyle\beta_{1},\dots,\beta_{l})\oplus\bigoplus_{\gamma\subset\alpha_{k}\otimes\beta_{1}}\omega^{\prime}(\alpha_{1},\dots,\gamma,\dots,\beta_{l})
δβ¯1,αkω(α1,,αk1)ω(β2,,βl)\displaystyle\oplus\delta_{\bar{\beta}_{1},\alpha_{k}}\omega^{\prime}(\alpha_{1},\dots,\alpha_{k-1})\otimes\omega^{\prime}(\beta_{2},\dots,\beta_{l})

where for all αIrr(𝔾)\alpha\in\operatorname{Irr}(\mathbb{G}), ω(α)=bαbδα,1𝔾1\omega^{\prime}(\alpha)=b\otimes\alpha\otimes b\ominus\delta_{\alpha,1_{\mathbb{G}}}1.

Proof.

By Theorem 1.11, the irreducible representations of 𝔾SUq(2)\mathbb{G}*SU_{q}(2) can be indexed by M=Irr(𝔾)Irr(SUq(2))M^{\prime}=\operatorname{Irr}(\mathbb{G})*\operatorname{Irr}(SU_{q}(2)). The words b0b^{0} and 1𝔾1_{\mathbb{G}} are identified to the neutral element M\emptyset\in M^{\prime}. The elements of this free product can be written as “reduced” words w=bl1γ1bl2γk1blkw=b^{l_{1}}\gamma_{1}b^{l_{2}}\dots\gamma_{{k-1}}b^{l_{k}} with

  1. \bullet

    l1,lk0l_{1},l_{k}\geq 0, i{2,,k1}\forall i\in\{2,\dots,k-1\} li1l_{i}\geq 1, γiIrr(𝔾){1𝔾}\gamma_{i}\in\operatorname{Irr}(\mathbb{G})\setminus\{1_{\mathbb{G}}\} in the case k>1k>1,

  2. \bullet

    w=blw=b^{l} in the case k=1k=1 for some l0l\geq 0.

The involution on MM^{\prime} is given by bl1γ1bl2γlk1blk¯=blkγ¯k1blk1γ¯1bl1\overline{b^{l_{1}}\gamma_{1}b^{l_{2}}\dots\gamma_{l_{k-1}}b^{l_{k}}}=b^{l_{k}}\bar{\gamma}_{k-1}b^{l_{k-1}}\dots\bar{\gamma}_{{1}}b^{l_{1}}. The definition of \mathbb{H} implies that the irreducible representations of \mathbb{H} are sub-representations of the tensor products

(bα1b)(bαKb),K,αiIrr(𝔾)(b\otimes\alpha_{1}\otimes b)\otimes\dots\otimes(b\otimes\alpha_{K}\otimes b),K\in\mathbb{N},\alpha_{i}\in\operatorname{Irr}(\mathbb{G})

which decomposes as a direct sum of irreducible representations bl1γ1bl2γlk1blkMb^{l_{1}}\gamma_{1}b^{l_{2}}\dots\gamma_{l_{k-1}}b^{l_{k}}\in M^{\prime} with

  1. \bullet

    l1,lkl_{1},l_{k} odd integers and li2l_{i}\geq 2 even integers for all 1<i<k1<i<k,

  2. \bullet

    For all ii, γiαi1αit\gamma_{i}\subset\alpha_{i_{1}}\otimes\dots\otimes\alpha_{i_{t}} for some i1,,it{1,,k}i_{1},\dots,i_{t}\in\{1,\dots,k\},

  3. \bullet

    w=b2Kw=b^{2K} obtained in the case 1α1αK1\subset\alpha_{1}\otimes\dots\otimes\alpha_{K}.

We denote NMN^{\prime}\subset M^{\prime} the set of all such words. Note that Irr()=N\operatorname{Irr}(\mathbb{H})=N^{\prime} is generated by the words bαbb\alpha b, αIrr(𝔾)\alpha\in\operatorname{Irr}(\mathbb{G}). The description of the fusion rules binding irreducible representations in NN^{\prime} follows from Theorem 1.11:

(5.6) vbαβbw=1tαβvbtbw+δα,β¯(vw),vb\alpha\otimes\beta bw=\sum_{1\neq t\subset\alpha\otimes\beta}vbtbw+\delta_{\alpha,\bar{\beta}}(v\otimes w),

for all v,wNv,w\in N^{\prime}. We then have a bijection

ψ:Irr(𝔾)N=Irr(),ω(α1,,αk)[bα1b2b2αkb]\psi:\langle\operatorname{Irr}(\mathbb{G})\rangle\to N^{\prime}=\operatorname{Irr}(\mathbb{H}),\omega^{\prime}(\alpha_{1},\dots,\alpha_{k})\mapsto[b\alpha_{1}b^{2}\dots b^{2}\alpha_{k}b]

where [bα1b2b2αkb][b\alpha_{1}b^{2}\dots b^{2}\alpha_{k}b] denotes the “reduced” word obtained by deleting the letters αi=1𝔾\alpha_{i}=1_{\mathbb{G}}. For any p,qNp,q\in N and α,βIrr(𝔾)\alpha,\beta\in\operatorname{Irr}(\mathbb{G}), we have by (5.6):

pbαbbβbq\displaystyle pb\alpha b\otimes b\beta bq =pbαb2βbq1tαβpbtbqδβ¯,αpq\displaystyle=pb\alpha b^{2}\beta bq\oplus\sum_{1\neq t\subset\alpha\otimes\beta}pbtbq\oplus\delta_{\bar{\beta},\alpha}p\otimes q
=ψ(ω(p,α,β,q))1tαβψ(ω(p,t,q))δβ¯,αψ(ω(p))ψ(ω(q)).\displaystyle=\psi(\omega^{\prime}(p,\alpha,\beta,q))\oplus\sum_{1\neq t\subset\alpha\otimes\beta}\psi(\omega^{\prime}(p,t,q))\oplus\delta_{\bar{\beta},\alpha}\psi(\omega^{\prime}(p))\otimes\psi(\omega^{\prime}(q)).

Hence, the fusion rules for \mathbb{H} can indeed be described as in the statement. The statement on the involution follows from the following calculation:

ψ(ω(α1,,αk))¯\displaystyle\overline{\psi\left(\omega^{\prime}(\alpha_{1},\dots,\alpha_{k})\right)} =bl1α1bl2αlk1blk¯\displaystyle=\overline{b^{l_{1}}\alpha_{1}b^{l_{2}}\dots\alpha_{l_{k-1}}b^{l_{k}}}
=blkα¯k1blk1α¯1bl1\displaystyle=b^{l_{k}}\bar{\alpha}_{k-1}b^{l_{k-1}}\dots\bar{\alpha}_{1}b^{l_{1}}
=ψ(ω(αk,,α1))\displaystyle=\psi\left(\omega^{\prime}(\alpha_{k},\dots,\alpha_{1})\right)
=ψ(ω¯(α1,,αk)).\displaystyle=\psi\left(\overline{\omega^{\prime}}(\alpha_{1},\dots,\alpha_{k})\right).

The description of the irreducible representations of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} then follows from the monoidal equivalence 𝔾SN+mon\mathbb{G}\wr_{*}S_{N}^{+}\simeq_{mon}\mathbb{H}. ∎

The dimension of the irreducible representations of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} are computed in the appendix of this paper.

6. Operator algebraic properties for free wreath product quantum groups

In this section, we collect several corollaries that we can deduce from the monoidal equivalence we proved in the previous section. In particular, we study approximation properties and certain stability results under free wreath product of compact quantum groups. One can refer to [Bra12b], [Fre13], [DFSW13] for definitions and several results in the cases of free compact quantum groups. We will use the following definition form [DCFY13]:

Definition 6.1.

A discrete quantum group 𝔾^\widehat{\mathbb{G}} is said to have the central almost completely positive approximation property (central ACPAP) if there is a net of central functionals ϕi\phi_{i} on Pol(𝔾)\text{Pol}(\mathbb{G}) such that:

  1. (1)

    for all ii, the convolution operator Tϕi=(ϕiid)ΔT_{\phi_{i}}=(\phi_{i}\otimes\operatorname{id})\circ\Delta induces a unital completely positive map on Cr(𝔾)C_{r}(\mathbb{G}),

  2. (2)

    for all ii, the operator TϕiT_{\phi_{i}} is approximated by finitely supported central multipliers with respect to the cbcb-norm,

  3. (3)

    for any representation α𝔾\alpha\in\mathbb{G}, limiϕi(χα)/dα\lim_{i}\phi_{i}(\chi_{\alpha})/d_{\alpha}=1.

It is proved in [DCFY13] that this property both implies the Haagerup property and the WCCAPW^{*}CCAP for L(𝔾)L^{\infty}(\mathbb{G}) with respect to the Haar state. Notice that in our case, 𝔾\mathbb{G} is of Kac type, and the central ACPAP is equivalent to the the ACPAP without assuming the central property of the states. This follows from an averaging method from [Bra12b].

Recall that we denote by u=(uij)iju=(u_{ij})_{ij} the generating magic unitary of C(SN+)C(S_{N}^{+}) of dimension NN. In this section, we use the results of [DCFY13], including:

Theorem 6.2.

([DCFY13, Theorem 22]) The dual of SUq(2)SU_{q}(2) has the central ACPAP for all q[1,1]{0}q\in[-1,1]\setminus\{0\}.

The following result concerns exactness.

Theorem 6.3.

Let 𝔾\mathbb{G} be a matrix compact quantum group of Kac type and N4N\geq 4 and 0<q10<q\leq 1 such that q+q1=Nq+q^{-1}=\sqrt{N}. Then the following are equivalent:

  1. (1)

    Cr(𝔾)C_{r}(\mathbb{G}) is exact.

  2. (2)

    Cr(𝔾SN+)C_{r}(\mathbb{G}\wr_{*}S_{N}^{+}) is exact.

Proof.

Recall that exactness for the reduced CC^{*}-algebras of compact quantum groups is stable under monoidal equivalence [VV07, Theorem 6.1]. Since SUq(2)SU_{q}(2) is co-amenable, we have that Cr(SUq(2))=Cu(SUq(2))C_{r}(SU_{q}(2))=C_{u}(SU_{q}(2)) is nuclear and thus exact. We then obtain the result by Theorem 5.11. ∎

Theorem 6.4.

Let 𝔾\mathbb{G} be a matrix compact quantum group and N4N\geq 4. Then the following are equivalent:

  1. (1)

    The dual of 𝔾\mathbb{G} has the central ACPAP.

  2. (2)

    The dual of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} has the central ACPAP.

Proof.

We first prove that (1)\Rightarrow(2). By Theorem 5.11, we have 𝔾SN+mon\mathbb{G}\wr_{*}S_{N}^{+}\simeq_{mon}\mathbb{H} with C()C(𝔾)C(SUq(2))C(\mathbb{H})\subset C(\mathbb{G})*C(SU_{q}(2)) for some 0<q10<q\leq 1 such that q+q1=Nq+q^{-1}=\sqrt{N}. We know by [DCFY13, Lemma 20, Proposition 21] that the central ACPAP is stable by taking free products and discrete quantum subgroups. The first implication then follows.

We now prove (2)\Rightarrow(1). If the dual of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} has the central ACPAP then there exists a sequence of central multipliers Tϕi:Pol(𝔾SN+)Pol(𝔾SN+)T_{\phi_{i}}:\text{Pol}(\mathbb{G}\wr_{*}S_{N}^{+})\to\text{Pol}(\mathbb{G}\wr_{*}S_{N}^{+})

Tϕi=(ϕiid)Δ=wIrr(𝔾SN+)ϕi(χw)dwpwT_{\phi_{i}}=(\phi_{i}\otimes\operatorname{id})\circ\Delta=\sum_{w\in\operatorname{Irr}(\mathbb{G}\wr_{*}S_{N}^{+})}\frac{\phi_{i}(\chi_{w})}{d_{w}}p_{w}

such that

  1. \bullet

    for all ii, TϕiT_{\phi_{i}} induces a unital, completely positive map on Cr(𝔾SN+)C_{r}(\mathbb{G}\wr_{*}S_{N}^{+}),

  2. \bullet

    for all ii, TϕiT_{\phi_{i}} is approximated by finitely supported central multipliers with respect to the cbcb-norm,

  3. \bullet

    for any wIrr(𝔾SN+)w\in\operatorname{Irr}(\mathbb{G}\wr_{*}S_{N}^{+}), limiϕi(χw)/dw=1\lim_{i}\phi_{i}(\chi_{w})/d_{w}=1.

Consider Si:Pol(𝔾)Pol(𝔾SN+)S_{i}:\text{Pol}(\mathbb{G})\to\text{Pol}(\mathbb{G}\wr_{*}S_{N}^{+})

Si:=Tϕiν¯1S_{i}:=T_{\phi_{i}}\circ\bar{\nu}_{1}

where ν¯1:C(𝔾)C(𝔾SN+)\bar{\nu}_{1}:C(\mathbb{G})\to C(\mathbb{G}\wr_{*}S_{N}^{+}) is the injective morphism of inclusion of (the first copy of) C(𝔾)C(\mathbb{G}) in C(𝔾SN+)C(\mathbb{G}\wr_{*}S_{N}^{+}), see Remark 1.14. We simply denote ν¯1=ν1\bar{\nu}_{1}=\nu_{1}. Let aPol(𝔾)a\in\text{Pol}(\mathbb{G}): it is a linear combination of coefficients αjk\alpha_{jk}, with αIrr(𝔾)\alpha\in\operatorname{Irr}(\mathbb{G}). On such coefficients αjk1\alpha_{jk}\neq 1, SiS_{i} acts as follows:

Si(αjk)\displaystyle S_{i}(\alpha_{jk}) =Tϕi(ν1(αjk))=(ϕiid)(t,sν1(αjs)u1tνt(αsk))\displaystyle=T_{\phi_{i}}(\nu_{1}(\alpha_{jk}))=(\phi_{i}\otimes\operatorname{id})(\sum_{t,s}\nu_{1}(\alpha_{js})u_{1t}\otimes\nu_{t}(\alpha_{sk}))
=t,sϕi(ν1(αjs)u1t)νt(αsk)\displaystyle=\sum_{t,s}\phi_{i}(\nu_{1}(\alpha_{js})u_{1t})\nu_{t}(\alpha_{sk})
=ϕi(ν1(jαjj)rurr)dαNν1(αjk),\displaystyle=\frac{\phi_{i}\left(\nu_{1}\left(\sum_{j}\alpha_{jj}\right)\sum_{r}u_{rr}\right)}{d_{\alpha}N}\nu_{1}(\alpha_{jk}),

where the last equality holds since ϕi\phi_{i} is central. Then, ν1(Pol(𝔾))\nu_{1}(\text{Pol}(\mathbb{G})) is stable under the action of TϕiT_{\phi_{i}}. We deduce that Si:Cr(𝔾)Cr(𝔾)S_{i}:C_{r}(\mathbb{G})\to C_{r}(\mathbb{G}) is a sequence of unital completely positive maps (by composition of u.c.p. maps TϕiT_{\phi_{i}}, ν1\nu_{1}),

Si=αIrr(𝔾)ϕi(ν1(χα)χu)dαNpαS_{i}=\sum_{\alpha\in\operatorname{Irr}(\mathbb{G})}\frac{\phi_{i}(\nu_{1}(\chi_{\alpha})\chi_{u})}{d_{\alpha}N}p_{\alpha}

where χu\chi_{u} is the character of the fundamental representation of SN+S_{N}^{+}. Notice that

ϕi(ν1(χα)χu)dαNi1.\frac{\phi_{i}(\nu_{1}(\chi_{\alpha})\chi_{u})}{d_{\alpha}N}\to_{i}1.

To conclude, recall that each TϕiT_{\phi_{i}} can be approximated in cbcb-norm by central multipliers tjit^{i}_{j} with finite supports on Irr(𝔾SN+)\operatorname{Irr}(\mathbb{G}\wr_{*}S_{N}^{+}). Then tjit_{j}^{i} is zero except on the coefficients of a finite set of words (α1,,αk)Irr(𝔾SN+)(\alpha_{1},\dots,\alpha_{k})\in\operatorname{Irr}(\mathbb{G}\wr_{*}S_{N}^{+}) and then except on a finite number of letters αIrr(𝔾)\alpha\in\operatorname{Irr}(\mathbb{G}). The converse implication then follows from these observations. ∎

We end this paper by some concluding remarks and open questions:

Remark 6.5.

In particular, the dual of 𝔾\mathbb{G} has the Haagerup property if and only if the dual of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} has the Haagerup property.

Remark 6.6.

If the dual of 𝔾\mathbb{G} has the central ACPAP then L(𝔾SN+)L^{\infty}(\mathbb{G}\wr_{*}S_{N}^{+}) has the WCCAPW^{*}CCAP. Combined with exactness, one could try and prove that L(𝔾SN+)L^{\infty}(\mathbb{G}\wr_{*}S_{N}^{+}) has the Akemann-Ostrand property to conclude that it has no Cartan subalgebras. We indeed already know that L(𝔾SN+)L^{\infty}(\mathbb{G}\wr_{*}S_{N}^{+}) is non injective since 𝔾\mathbb{G} (and then 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}) is of Kac type and non coamenable.

Remark 6.7.

One could try to find the fusion rules of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} for non-Kac type compact quantum groups. Similar argument as in the case where 𝔾\mathbb{G} is the dual of a discrete group, [Lem13a], should apply to prove that in most cases Cr(𝔾SN+)C_{r}(\mathbb{G}\wr_{*}S_{N}^{+}) is simple with unique trace and that L(𝔾)L^{\infty}(\mathbb{G}) is a full type II1II_{1}-factor. In particular, fullness for L(𝔾SN+)L^{\infty}(\mathbb{G}\wr_{*}S_{N}^{+}) would imply the non injective of this von Neumann algebra. Hence, the Akemann-Ostrand property could also be investigated in this setting in order to prove the absence of Cartan subalgebras for L(𝔾SN+)L^{\infty}(\mathbb{G}\wr_{*}S_{N}^{+}).

Appendix - Dimension formula

In this section we obtain a dimension formula for the irreducible corepresentations of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}. This is an analogue formula as in the cases 𝔾=Γ^\mathbb{G}=\widehat{\Gamma} see [BV09, Theorem 9.3], [Lem13b, Corollary 2.2]. In this subsection 𝔾\mathbb{G} is any compact matrix quantum group of Kac type, N4N\geq 4.

By universality, there is a morphism

π:C(𝔾SN+)C(SN+),ωijkl=vkl(i)uijuij\pi:C(\mathbb{G}\wr_{*}S_{N}^{+})\to C(S_{N}^{+}),\ \omega_{ijkl}=v_{kl}^{(i)}u_{ij}\mapsto u_{ij}

induced by the morphisms on each factor of the free product C(𝔾)NC(SN+)C(\mathbb{G})^{*N}*C(S_{N}^{+}),

π(i)=(ϵ𝔾(i))id\pi^{(i)}=\left(\epsilon_{\mathbb{G}}^{(i)}\right)*\operatorname{id}

and which passes to the quotient C(𝔾)wC(SN+)C(\mathbb{G})*_{w}C(S_{N}^{+}) since the image of ϵ𝔾\epsilon_{\mathbb{G}} lies in \mathbb{C}. It corresponds a functor π:Irr(𝔾SN+)Irr(SN+)\pi:\operatorname{Irr}(\mathbb{G}\wr_{*}S_{N}^{+})\to\operatorname{Irr}(S_{N}^{+}), sending r(α),αIrr(𝔾)r(\alpha),\alpha\in\operatorname{Irr}(\mathbb{G}) to udαu^{\oplus d_{\alpha}} where dαd_{\alpha} denotes the dimension of the 𝔾\mathbb{G}-representation α\alpha

We denote by χρ=(idTr)(ρ)\chi_{\rho}=(\operatorname{id}\otimes\text{Tr})(\rho) character associated to ρIrr(𝔾SN+)\rho\in\operatorname{Irr}(\mathbb{G}\wr_{*}S_{N}^{+}). It is proved in [Bra12b, Proposition 4.8] that the central algebra C(SN+)0=Cχk:kC(S_{N}^{+})_{0}=C^{*}-\langle\chi_{k}:k\in\mathbb{N}\rangle is isomorphic with C([0,N])C([0,N]) via χkA2k(X)\chi_{k}\mapsto A_{2k}(\sqrt{X}) where (Ak)k(A_{k})_{k\in\mathbb{N}} is the family of dilated Tchebyshev polynomials defined inductively by A0=1,A1=XA_{0}=1,A_{1}=X and A1Ak=Ak+1+Ak1A_{1}A_{k}=A_{k+1}+A_{k-1}.

We use an alternative description of the fusion rules in 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} which can be readily obtained from the proof of Proposition 5.14 where this description is obtained for the compact quantum group \mathbb{H} monoidally equivalent to 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+}. We can write any ρIrr(𝔾SN+)Irr(𝔾)Irr(SUq(2))\rho\in\operatorname{Irr}(\mathbb{G}\wr_{*}S_{N}^{+})\subset\operatorname{Irr}(\mathbb{G})*\operatorname{Irr}(SU_{q}(2)) as follows ρ=bl1α1bl2blk1αk1blk\rho=b^{l_{1}}\alpha_{1}b^{l_{2}}\dots b^{l_{k-1}}\alpha_{k-1}b^{l_{k}} with

  1. \bullet

    l1,lkl_{1},l_{k} odd integers and li2l_{i}\geq 2 even integers for all 1<i<k1<i<k,

  2. \bullet

    For all ii, αi1𝔾\alpha_{i}\neq 1_{\mathbb{G}},

  3. \bullet

    w=a2lw=a^{2l} for some l0l\geq 0 in the case k=1k=1.

and with the fusion rules recursively obtained by

vbαβbw=vb(αβ)bw+δα,β¯(vw),vb\alpha\otimes\beta bw=vb(\alpha\otimes\beta)bw+\delta_{\alpha,\bar{\beta}}(v\otimes w),

for all words v,wIrr(𝔾SN+)v,w\in\operatorname{Irr}(\mathbb{G}\wr_{*}S_{N}^{+}). We also use the notation of Theorem 5.13.

Proposition 6.8.

Let χρ\chi_{\rho} be the character of an irreducible corepresentation ρIrr(𝔾SN+)\rho\in\operatorname{Irr}(\mathbb{G}\wr_{*}S_{N}^{+}). Write ρ=bl1α1blk\rho=b^{l_{1}}\alpha_{1}\dots b^{l_{k}}. Then, identifying C(SN+)0C(S_{N}^{+})_{0} with C([0,N])C([0,N]), the image of χρ\chi_{\rho} by π\pi, say PρP_{\rho}, satisfies

Pρ(X)=π(χρ)(X)=i=1k1dαii=1kAli(X).P_{\rho}(X)=\pi(\chi_{\rho})(X)=\prod_{i=1}^{k-1}d_{\alpha_{i}}\prod_{i=1}^{k}A_{l_{i}}(\sqrt{X}).
Proof.

We shall prove this proposition by induction on the even integer i=1kli\sum_{i=1}^{k}l_{i} using the description of the fusion rules above and a recursion formula satisfied by the Tchebyshev polynomials, see [Lem13b].

Let HR(λ\lambda) be the following statement: π(χρ)(X)=i=1kAli(X)\pi(\chi_{\rho})(X)=\prod_{i=1}^{k}A_{l_{i}}(\sqrt{X}) for any ρ=bl1α1αk1blk\rho=b^{l_{1}}\alpha_{1}\dots\alpha_{k-1}b^{l_{k}} such that 2iliλ2\leq\sum_{i}l_{i}\leq\lambda.

To initialize the induction let us consider the irreducible corepresentations bαbr(α)b\alpha b\equiv r(\alpha), αIrr(𝔾){1𝔾}\alpha\in\operatorname{Irr}(\mathbb{G})\setminus\{1_{\mathbb{G}}\}. It is sent via π\pi onto udα=dα1u(1)dαu^{\oplus d_{\alpha}}=d_{\alpha}1\oplus u^{(1)\oplus d_{\alpha}}. Thus, in term of characters, we have

π(χbαb)(X)=dα(1+(X1))=dαX=dαA1(X)A1(X).\pi(\chi_{b\alpha b})(X)=d_{\alpha}(1+(X-1))=d_{\alpha}X=d_{\alpha}A_{1}(\sqrt{X})A_{1}(\sqrt{X}).

Consider now b2ω(1𝔾)=r(1𝔾)1b^{2}\equiv\omega(1_{\mathbb{G}})=r(1_{\mathbb{G}})\ominus 1. It is sent by π\pi onto v(1)v^{(1)}. Thus Pb2(X)=π(χb2)(X)=X1=A2(X)P_{b^{2}}(X)=\pi(\chi_{b^{2}})(X)=X-1=A_{2}(\sqrt{X}). HR(2)HR(2) is then proved.

Now assume HR(λ\lambda) holds:

π(χρ)(X)=i=1k1dβii=1kAli(X)\pi(\chi_{\rho})(X)=\prod_{i=1}^{k-1}d_{\beta_{i}}\prod_{i=1}^{k}A_{l_{i}}(\sqrt{X})

for any ρ=bl1β1βk1alk\rho=b^{l_{1}}\beta_{1}\dots\beta_{k-1}a^{l_{k}} such that 2iliλ2\leq\sum_{i}l_{i}\leq\lambda. We now show HR(λ+2\lambda+2).

Let ρ=bL1α1bLK\rho=b^{L_{1}}\alpha_{1}\dots b^{L_{K}}, with iLi=λ+2\sum_{i}L_{i}=\lambda+2. In order to use HR(λ\lambda), we must “break” ρ\rho using the fusion rules as in the examples above. Then, essentially, one has to distinguish the cases LK=1,LK=3L_{K}=1,L_{K}=3 and LK5L_{K}\geq 5 (in the case LK5L_{K}\geq 5 we can “break ρ\rho at bLKb^{L_{K}}” but in the other cases we must use bLK1b^{L_{K-1}} or bLK2b^{L_{K-2}} if they exist, that is if there are enough factors bLib^{L_{i}}). So first, we deal with two special cases below, in order to have “enough” factors bLb^{L} in ρ\rho in the sequel.

  1. -

    If K=1K=1 i.e. LK=λ+2L_{K}=\lambda+2, write:

    ρ=bλ+2=(bλb2)(bλ1b)=(bλb2)bλbλ2.\rho=b^{\lambda+2}=(b^{\lambda}\otimes b^{2})\ominus(b^{\lambda-1}\otimes b)=(b^{\lambda}\otimes b^{2})\ominus b^{\lambda}\ominus b^{\lambda-2}.

    Then using the hypothesis of induction and [Lem13b, Proposition 1.7], we get

    π(χρ)(X)\displaystyle\pi(\chi_{\rho})(X) =AλA2(X)Aλ(X)Aλ2(X)\displaystyle=A_{\lambda}A_{2}(\sqrt{X})-A_{\lambda}(\sqrt{X})-A_{\lambda-2}(\sqrt{X})
    =AλA2(X)(Aλ(X)+Aλ2(X))\displaystyle=A_{\lambda}A_{2}(\sqrt{X})-(A_{\lambda}(\sqrt{X})+A_{\lambda-2}(\sqrt{X}))
    =AλA2(X)Aλ1A1(X)\displaystyle=A_{\lambda}A_{2}(\sqrt{X})-A_{\lambda-1}A_{1}(\sqrt{X})
    =Aλ+2(X).\displaystyle=A_{\lambda+2}(\sqrt{X}).

    (Notice that if λ=2\lambda=2 one has λ2=0\lambda-2=0 and b4=(b2b2)(bb)=(b2b2)b21b^{4}=(b^{2}\otimes b^{2})\ominus(b\otimes b)=(b^{2}\otimes b^{2})\ominus b^{2}\ominus 1 so that the result we want to prove then is still true.)

  2. -

    If K=2,α1≄1𝔾K=2,\alpha_{1}\not\simeq 1_{\mathbb{G}}, write ρ=bL1αbL2\rho=b^{L_{1}}\alpha b^{L_{2}}. We have L1+L2=λ+24L_{1}+L_{2}=\lambda+2\geq 4 and L1,L2L_{1},L_{2} are odd hence L1L_{1} or L23L_{2}\geq 3, say L13L_{1}\geq 3. Write

    bL1αbL2=(b2bL12αbL2)(bbL13αbL2).b^{L_{1}}\alpha b^{L_{2}}=(b^{2}\otimes b^{L_{1}-2}\alpha b^{L_{2}})\ominus(b\otimes b^{L_{1}-3}\alpha b^{L_{2}}).

    If L1=3L_{1}=3 then the tensor product bbL13zJbL2b\otimes b^{L_{1}-3}z^{J}b^{L_{2}} is equal to bαbL2b\alpha b^{L_{2}} hence ρ=b3αbL2\rho=b^{3}\alpha b^{L_{2}} satisfies

    π(χρ)(X)\displaystyle\pi(\chi_{\rho})(X) =dαA2A1AL2(X)dαA1AL2(X)\displaystyle=d_{\alpha}A_{2}A_{1}A_{L_{2}}(\sqrt{X})-d_{\alpha}A_{1}A_{L_{2}}(\sqrt{X})
    =dαA3(X)AL2(X).\displaystyle=d_{\alpha}A_{3}(\sqrt{X})A_{L_{2}}(\sqrt{X}).

    If L1>3L_{1}>3 (i.e. L15L_{1}\geq 5), then the tensor product bbL13αbL2b\otimes b^{L_{1}-3}\alpha b^{L_{2}} is equal to bL12αbL2bL14αbL2b^{L_{1}-2}\alpha b^{L_{2}}\oplus b^{L_{1}-4}\alpha b^{L_{2}}. We get

    π(χρ)(X)\displaystyle\pi(\chi_{\rho})(X) =dαA2AL12AL2(X)dαAL12AL2(X)dαAL14AL2(X)\displaystyle=d_{\alpha}A_{2}A_{L_{1}-2}A_{L_{2}}(\sqrt{X})-d_{\alpha}A_{L_{1}-2}A_{L_{2}}(\sqrt{X})-d_{\alpha}A_{L_{1}-4}A_{L_{2}}(\sqrt{X})
    =dαAL1(X)AL2(X).\displaystyle=d_{\alpha}A_{L_{1}}(\sqrt{X})A_{L_{2}}(\sqrt{X}).
  3. -

    From now on, we suppose that there are more than three factors bLib^{L_{i}} in ρ\rho i.e. K3K\geq 3. We will have to distinguish three cases: LK=1,LK=3L_{K}=1,L_{K}=3 and LK5L_{K}\geq 5.

    If 5LK<iLi5\leq L_{K}<\sum_{i}L_{i}, write LK=mK+2L_{K}=m_{K}+2. Then we have mK3m_{K}\geq 3, so

    bL1α1bLK\displaystyle b^{L_{1}}\alpha_{1}\dots b^{L_{K}} =bL1α1bmK+2\displaystyle=b^{L_{1}}\alpha_{1}\dots b^{m_{K}+2}
    =(bL1α1bmKb2)(bL1α1bmK1b)\displaystyle=(b^{L_{1}}\alpha_{1}\dots b^{m_{K}}\otimes b^{2})\ominus(b^{L_{1}}\alpha_{1}\dots b^{m_{K}-1}\otimes b)
    =(bL1α1bmKb2)bL1α1bmKbL1α1bmK2.\displaystyle=(b^{L_{1}}\alpha_{1}\dots b^{m_{K}}\otimes b^{2})\ominus b^{L_{1}}\alpha_{1}\dots b^{m_{K}}\ominus b^{L_{1}}\alpha_{1}\dots b^{m_{K}-2}.

    Then

    π(χρ)(X2)\displaystyle\pi(\chi_{\rho})(X^{2}) =i=1k1dαi(AL1ALK1AmkA2(X)AL1AmK(X)AL1AmK2(X))\displaystyle=\prod_{i=1}^{k-1}d_{\alpha_{i}}\left(A_{L_{1}}\dots A_{L_{K-1}}A_{m_{k}}A_{2}(X)-A_{L_{1}}\dots A_{m_{K}}(X)-A_{L_{1}}\dots A_{m_{K}-2}(X)\right)
    =i=1k1dαiAL1ALK1ALK(X).\displaystyle=\prod_{i=1}^{k-1}d_{\alpha_{i}}A_{L_{1}}\dots A_{L_{K-1}}A_{L_{K}}(X).

    If mK=1m_{K}=1, i.e. LK=3L_{K}=3, we proceed in the same way using

    bL1α1αK1b3=(bL1α1bb2)bL1α1αK1b.\displaystyle b^{L_{1}}\alpha_{1}\dots\alpha_{K-1}b^{3}=(b^{L_{1}}\alpha_{1}\dots b\otimes b^{2})\ominus b^{L_{1}}\alpha_{1}\dots\alpha_{K-1}b.

    To conclude the induction, one has to deal with the case LK=1L_{K}=1. We have to distinguish the following cases:

    If LK14L_{K-1}\geq 4. We have

    bL1α1bLK1αK1b\displaystyle b^{L_{1}}\alpha_{1}\dots b^{L_{K-1}}\alpha_{K-1}b =(bL1α1bLK11bαK1b)(bL1α1bLK12αK1b)\displaystyle=(b^{L_{1}}\alpha_{1}\dots b^{L_{K-1}-1}\otimes b\alpha_{K-1}b)\ominus(b^{L_{1}}\alpha_{1}\dots b^{L_{K-1}-2}\otimes\alpha_{K-1}b)
    =(bL1α1bLK11bαK1b)bL1α1bLK12αK1b.\displaystyle=(b^{L_{1}}\alpha_{1}\dots b^{L_{K-1}-1}\otimes b\alpha_{K-1}b)\ominus b^{L_{1}}\alpha_{1}\dots b^{L_{K-1}-2}\alpha_{K-1}b.

    Then

    π(χρ)(X)\displaystyle\pi(\chi_{\rho})(X) =i=1k1dαi(AL1ALK11A1A1(X)AL1ALK12A1(X))\displaystyle=\prod_{i=1}^{k-1}d_{\alpha_{i}}\left(A_{L_{1}}\dots A_{L_{K-1}-1}A_{1}A_{1}(\sqrt{X})-A_{L_{1}}\dots A_{L_{K-1}-2}A_{1}(\sqrt{X})\right)
    =i=1k1dαiAL1ALK1A1(X).\displaystyle=\prod_{i=1}^{k-1}d_{\alpha_{i}}A_{L_{1}}\dots A_{L_{K-1}}A_{1}(\sqrt{X}).

    If LK1=2L_{K-1}=2 and αK1α¯K2\alpha_{K-1}\simeq\bar{\alpha}_{K-2}, we use

    bL1α1\displaystyle b^{L_{1}}\alpha_{1}\dots bLK2αK2b2αK1b\displaystyle b^{L_{K-2}}\alpha_{K-2}b^{2}\alpha_{K-1}b
    =(bL1α1bLK2αK2bbαK1b)bL1α1bLK2(αK2αK1)bbL1zJ1bLK21.\displaystyle=(b^{L_{1}}\alpha_{1}\dots b^{L_{K-2}}\alpha_{K-2}b\otimes b\alpha_{K-1}b)\ominus b^{L_{1}}\alpha_{1}\dots b^{L_{K-2}}(\alpha_{K-2}\otimes\alpha_{K-1})b\ominus b^{L_{1}}z^{J_{1}}\dots b^{L_{K-2}-1}.

    We write:

    αK2αK1=1γ≄1𝔾γ,\displaystyle\alpha_{K-2}\otimes\alpha_{K-1}=1\oplus\bigoplus_{\gamma\not\simeq 1_{\mathbb{G}}}\gamma,

    and we get

    π(χρ)(X)=i=1K3dαiALi(X)[dαK2dαK1ALK2A13(X)\displaystyle\pi(\chi_{\rho})(X)=\prod_{i=1}^{K-3}d_{\alpha_{i}}A_{L_{i}}(\sqrt{X})[d_{\alpha_{K-2}}d_{\alpha_{K-1}}A_{L_{K-2}}A_{1}^{3}(\sqrt{X})-
    γ≄1dγALK2A1(X)ALK2+1ALK21(X)]\displaystyle\ \ \ \ \ -\sum_{\gamma\not\simeq 1}d_{\gamma}A_{L_{K-2}}A_{1}(\sqrt{X})-A_{L_{K-2}+1}-A_{L_{K-2}-1}(\sqrt{X})]
    =i=1K3dαiALi(X)[dαK2dαK1ALK2A13(X)\displaystyle=\prod_{i=1}^{K-3}d_{\alpha_{i}}A_{L_{i}}(\sqrt{X})[d_{\alpha_{K-2}}d_{\alpha_{K-1}}A_{L_{K-2}}A_{1}^{3}(\sqrt{X})-
    γ≄1dγALK2A1(X)A1ALK2(X)]\displaystyle\ \ \ \ \ -\sum_{\gamma\not\simeq 1}d_{\gamma}A_{L_{K-2}}A_{1}(\sqrt{X})-A_{1}A_{L_{K-2}}(\sqrt{X})]
    =i=1K3dαiALi(X)[dαK2dαK1ALK2A13(X)\displaystyle=\prod_{i=1}^{K-3}d_{\alpha_{i}}A_{L_{i}}(\sqrt{X})[d_{\alpha_{K-2}}d_{\alpha_{K-1}}A_{L_{K-2}}A_{1}^{3}(\sqrt{X})-
    dαK2dαK1ALK2A1(X)]\displaystyle\ \ \ \ \ -d_{\alpha_{K-2}}d_{\alpha_{K-1}}A_{L_{K-2}}A_{1}(\sqrt{X})]
    =i=1K3dαiALi(X)dαK2dαK1ALK2A2A1(X).\displaystyle=\prod_{i=1}^{K-3}d_{\alpha_{i}}A_{L_{i}}(\sqrt{X})d_{\alpha_{K-2}}d_{\alpha_{K-1}}A_{L_{K-2}}A_{2}A_{1}(\sqrt{X}).

    The last case to deal with is LK1=2L_{K-1}=2 and αK1≄α¯K2\alpha_{K-1}\not\simeq\bar{\alpha}_{K-2}, and again we can conclude thanks to

    bL1α1αK2b2αK1b\displaystyle b^{L_{1}}\alpha_{1}\dots\alpha_{K-2}b^{2}\alpha_{K-1}b =(bL1bLK2αK1bbαK1b)bL1α1bLK2(αK2αK1)b.\displaystyle=(b^{L_{1}}\dots b^{L_{K-2}}\alpha_{K-1}b\otimes b\alpha_{K-1}b)\ominus b^{L_{1}}\alpha_{1}\dots b^{L_{K-2}}(\alpha_{K-2}\otimes\alpha_{K-1})b.

Corollary 6.9.

([Lem13b, Corollary 2.2]) Let ρ\rho be an irreducible corepresentation of 𝔾SN+\mathbb{G}\wr_{*}S_{N}^{+} with ρ=bl1α1blk\rho=b^{l_{1}}\alpha_{1}\dots b^{l_{k}}. Then

dim(ρ)=i=1k1dαii=1kAli(N).\emph{dim}(\rho)=\prod_{i=1}^{k-1}d_{\alpha_{i}}\prod_{i=1}^{k}A_{l_{i}}(\sqrt{N}).

Acknowledgements

We are grateful to Pierre Fima for suggesting to us the monoidal equivalence argument, fundamental in this article. We want to thank Roland Vergnioux for the time he spent discussing the arguments of this article. The second author wishes to thank Philippe Biane for his suggestions on the present article. We wish to thank Roland Speicher and his team as well as Uwe Franz and Campus France (Egide) who made the joint work of the authors possible.

References

  • [Ban96] Teodor Banica. Théorie des représentations du groupe quantique compact libre O(n){\rm O}(n). C. R. Acad. Sci. Paris Sér. I Math., 322(3):241–244, 1996.
  • [Ban97] Teodor Banica. Le groupe quantique compact libre U(n){\rm U}(n). Comm. Math. Phys., 190(1):143–172, 1997.
  • [Ban99] Teodor Banica. Symmetries of a generic coaction. Math. Ann., 314(4):763–780, 1999.
  • [Ban05] Teodor Banica. Quantum automorphism groups of small metric spaces. Pacific J. Math., 219(1):27–51, 2005.
  • [BB+07] Teodor Banica, Julien Bichon, et al. Free product formulae for quantum permutation groups. JOURNAL-INSTITUTE OF MATHEMATICS OF JUSSIEU, 6(3):381, 2007.
  • [BBC] T Banica, J Bichon, and B Collins. Quantum permutation groups: a survey. noncommutative harmonic analysis with applications to probability, 13–34. Banach Center Publ, 78.
  • [BBC07] Teodor Banica, Julien Bichon, and Benoît Collins. The hyperoctahedral quantum group. J. Ramanujan Math. Soc., 22(4):345–384, 2007.
  • [BBCC11] Teodor Banica, Serban Teodor Belinschi, Mireille Capitaine, and Benoit Collins. Free Bessel laws. Canad. J. Math., 63(1):3–37, 2011.
  • [BC05] Teodor Banica and Benoît Collins. Integration over compact quantum groups. arXiv preprint math/0511253, 2005.
  • [BC07] Teodor Banica and Benoît Collins. Integration over quantum permutation groups. Journal of Functional Analysis, 242(2):641–657, 2007.
  • [BCS11] Teodor Banica, Stephen Curran, and Roland Speicher. Stochastic aspects of easy quantum groups. Probability theory and related fields, 149(3-4):435–462, 2011.
  • [BDRV06] Julien Bichon, An De Rijdt, and Stefaan Vaes. Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups. Communications in mathematical physics, 262(3):703–728, 2006.
  • [Bic04] Julien Bichon. Free wreath product by the quantum permutation group. Algebr. Represent. Theory, 7(4):343–362, 2004.
  • [Bra12a] Michael Brannan. Approximation properties for free orthogonal and free unitary quantum groups. Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2012:223–251, 2012.
  • [Bra12b] Michael Brannan. Reduced operator algebras of trace-preserving quantum automorphism groups. preprint arXiv:1202.5020, 2012.
  • [BS09] Teodor Banica and Roland Speicher. Liberation of orthogonal Lie groups. Adv. Math., 222(4):1461–1501, 2009.
  • [BV09] Teodor Banica and Roland Vergnioux. Fusion rules for quantum reflection groups. J. Noncommut. Geom., 3(3):327–359, 2009.
  • [CS11] Stephen Curran and Roland Speicher. Asymptotic infinitesimal freeness with amalgamation for Haar quantum unitary random matrices. Comm. Math. Phys., 301(3):627–659, 2011.
  • [DCFY13] Kenny De Commer, Amaury Freslon, and Makoto Yamashita. CCAP for the discrete quantum groups 𝔽OF\mathbb{F}{O}_{F}. arXiv preprint arXiv:1306.6064, 2013.
  • [DFSW13] Matthew Daws, Pierre Fima, Adam Skalski, and Stuart White. The Haagerup property for locally compact quantum groups. arXiv preprint arXiv:1303.3261, 2013.
  • [Dri86] Vladimir Gershonovich Drinfeld. Quantum groups. Zapiski Nauchnykh Seminarov POMI, 155:18–49, 1986.
  • [Fre13] Amaury Freslon. Examples of weakly amenable discrete quantum groups. Journal of Functional Analysis, 265(9):2164–2187, 2013.
  • [FW] Amaury Freslon and Moritz Weber. On the representation theory of partition (easy) quantum groups. Journal für die reine und angewandte Mathematik (Crelles Journal).
  • [KS08] Vijay Kodiyalam and VS Sunder. Temperley-lieb and non-crossing partition planar algebras. Contemporary Mathematics, 456:61, 2008.
  • [KS09] Claus Köstler and Roland Speicher. A noncommutative de finetti theorem: invariance under quantum permutations is equivalent to freeness with amalgamation. Communications in Mathematical Physics, 291(2):473–490, 2009.
  • [Lem13a] François Lemeux. The fusion rules of some free wreath product quantum groups and applications. preprint arXiv:1311.6115, 2013.
  • [Lem13b] François Lemeux. Haagerup property for quantum reflection groups. preprint arXiv:1303.2151, 2013.
  • [Mac98] Ian G Macdonald. Symmetric functions and Hall polynomials. Oxford University Press on Demand, 1998.
  • [ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer verlag, 1998.
  • [NS06] Alexandru Nica and Roland Speicher. Lectures on the combinatorics of free probability, volume 13. Cambridge University Press, 2006.
  • [NT] Sergey Neshveyev and Lars Tuset. Compact quantum groups and their representation categories. http://folk.uio.no/sergeyn/papers/CQGRC.pdf.
  • [Rob96] Derek JS Robinson. A course in the theory of groups, volume 80 of graduate texts in mathematics, 1996.
  • [RS06] Mercedes Rosas and Bruce Sagan. Symmetric functions in noncommuting variables. Transactions of the American Mathematical Society, 358(1):215–232, 2006.
  • [RW13] Sven Raum and Moritz Weber. The full classification of orthogonal easy quantum groups. arXiv preprint arXiv:1312.3857, 2013.
  • [Ver05] Roland Vergnioux. Orientation of quantum Cayley trees and applications. Journal für die reine und angewandte Mathematik (Crelles Journal), 580:101–138, 2005.
  • [VK74] Leonid Vaĭnerman and Georgiĭ Isaakovic Kac. Nonunimodular ring groups and Hopf-von Neumann algebras. Mathematics of the USSR-Sbornik, 23(2):185, 1974.
  • [VV07] Stefaan Vaes and Roland Vergnioux. The boundary of universal discrete quantum groups, exactness, and factoriality. Duke Math. J., 140(1):35–84, 2007.
  • [Wah] Jonas Wahl. A note on reduced and von neumann algebraic free wreath products. arXiv preprint.
  • [Wan95] Shuzhou Wang. Free products of compact quantum groups,. Comm. Math. Phys., 167(3):671–692, 1995.
  • [Wan98] Shuzhou Wang. Quantum symmetry groups of finite spaces. Comm. Math. Phys., 195(1):195–211, 1998.
  • [Wor87] Stanisław L Woronowicz. Compact matrix pseudogroups. Communications in Mathematical Physics, 111(4):613–665, 1987.
  • [Wor88] S. L. Woronowicz. Tannaka-Kreĭn duality for compact matrix pseudogroups. Twisted SU(N){\rm SU}(N) groups. Invent. Math., 93(1):35–76, 1988.