This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Full analytic expression of overlap reduction function for gravitational wave background with pulsar timing arrays

Yu Hu    Pan-Pan Wang    Yu-Jie Tan    Cheng-Gang Shao cgshao@hust.edu.cn MOE Key Laboratory of Fundamental Physical Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF, and School of Physics, Huazhong University of Science and Technology - 430074, Wuhan, Hubei, China
Abstract

Pulsar timing array (PTA) is expected to detect gravitational wave background (GWB) in the nanohertz band within the next decade. This provides an opportunity to test the gravity theory and cosmology. A typical data analysis method to detect GWB is cross-correlation analysis. The overlap reduction function (ORF) plays an important role in the correlation data analysis of GWB. The present approach to dealing with the intricate integration in ORF is to use short-wave approximation to drop out the tricky terms. In this paper, we provide the full analytic expression of the ORF for PTA without any approximation for all possible polarizations allowed by modifications of general relativity. Compared with the numerical simulation and short-wave approximation, our results are more efficient and widely applicable. Especially for the scalar-longitudinal mode where the short-wave approximation is not available, our analytical expression is particularly significant.

I Introduction

A lot of gravitational waves (GWs) induced by compact binary mergers 2016prl_GW150914 ; 2017prl_GW170817 ; 2021apjl_NSBH have been detected by LIGO and Virgo, which opens a new window for astronomical observations 2019prx_GWTC-1 ; 2021prx_GWTC-2 . The GWs can not only provide information about the compact binary, but also provide an opportunity to test the gravity theory and cosmology 2019prd_test_GR_GWTC-1 . These abundant GW signals imply that there are many weak GWs that the detector cannot discern. These weak GWs are indeed recorded by the detecter, but they are just masked by noise. The combined weak signal from the population of binary black holes is an example of gravitational wave background (GWB). In addition, there are many other sources that can generate GWB, such as cosmological phase transitions 1986mnras_GWB_cosmol_pt ; 2021prd_GWB_QCD_pt , primordial gravitational waves 1992pr_cosmol_perturbation ; 1997prd_GWB_inflation , cosmic strings 2005prd_GWB_cosmic_strings ; 2007prl_GWB_cosmic_strings , etc. The detection of the GWB can provide us with information on the astronomical distribution and the early evolution of the universe, which is of great significance.

At present, the ground-based laser interferometers cannot detect the GWB, and give an upper limits of dimensional energy density ΩGW5.8×109\Omega_{\text{GW}}\leq 5.8\times 10^{-9} at Hz band 2021prd_upper_limits_GWB_LIGO_O3 . The future space-based interferometers such as LISA 2017arX_LISA and TianQin 2016cqg_TQ probe GWB at the mHz band. Pulsar timing arrays (PTA) probe GWB at much lower frequency of nHz and appears to be on the verge of detecting GWB now 2020apjl_GWB_NANOGrav ; 2021mnras_GWB_EPTA ; 2021apjl_GWB_PPTA ; 2022mnras_GWB_IPTA . The principle of the PTA is simple: the radio waves emitted by the rotating neutron star sweep through the earth at regular interval, so the time interval between the pulses arriving at the detectors on Earth is supposed to be constant. However, the GWs on the path cause the deviation from a regular pulse.

Cross-correlation is a typical method to detect the GWB. In a single detector, the GWB would be masked by noise, making it impossible to discern it from noise. However, the GWB signals in different detectors are correlated, and the noise is not, so the GWB signals can be extracted by correlating the outputs of two different detectors. To obtain the correlation signal, we need to calculate the correlation coefficient, which is the ORF. The ORF of PTA is the geometric factor of the correlation signal, which only depends on the relative orientation of the two pulsars and their distance to the Earth.

In general, one has to evaluate the integral in ORF numerically, due to the non-trivial exponential terms. With the short-wave approximation, the integral can be done analytically by dropping out the exponential terms. The results ORF for tensor mode is the Hellings and Downs curve 1983apj_HD_curve . The approximate ORF for vector mode and scalar-breathing mode can be found in a similar way 2008apj_Lee_ORF_nonGR . In the limit that the angle between two pulsars is close to 0, the short-wave expression of the ORF for the vector mode diverges, which means that the pulsar terms dropped out should be included to handle that case. Furthermore, for the scalar-longitudinal ORF, there is no analytic expression with the short-wave approximation except for some special cases 2012prd_ORF_nonGR ; 2015prd_PTA_GWB_nonGR . Because dropping out the exponential terms and integrating the remaining part will yield a divergent result. Recently, an analytic series expansion of ORF for all six polarizations was obtained without employing the short-wave approximation2021prd_ORF_PTA_series_GR ; 2022prd_ORF_PTA_series_nonGR . However, the series expansion is not satisfactory, because it is relatively complex and takes a long time to calculate. We find that the full analytic expressions of ORF for all six polarizations without employing the short-wave approximation can be obtained using a special integration method, which is used to calculate the response function of space-borne gravitational wave detectors 2019prd_analytic_response_function_TDI ; 2021prd_sensitivity_TDI ; 2021prd_sensitivity_TDI_nonGR .

The paper is organized as follows. In Sec.II, we briefly describe the correlations of PTA signal and outline the integration of the ORF. In Sec.III, we derive the analytic expansions for ORF for all polarizations and analyze their performance from different perspectives. Finally, in Sec. IV, we present a brief discussion.

II CORRELATIONS OF PTA SIGNALS

II.1 GWB statistic

The metric perturbations corresponding to GWB can be expressed as

hab(t,x)=𝑑fd2Ωn^\displaystyle h_{ab}(t,\vec{x})=\int_{-\infty}^{\infty}df\int d^{2}\Omega_{\hat{n}} AhA(f,n^)\displaystyle\sum_{A}h_{A}(f,\hat{n}) (1)
×eabA(n^)ei2πf(t+n^x/c),\displaystyle\times e^{A}_{ab}(\hat{n})e^{i2\pi f(t+\hat{n}\cdot\vec{x}/c)},

where eabA(n^)e^{A}_{ab}(\hat{n}) is the spin-2 polarization tensors. A={+,×,X,Y,B,L}A=\{+,\times,X,Y,B,L\} represent different polarization mode, where +,×{+,\times} represent tensor mode predicted by general relativity, X,Y{X,Y} and B,L{B,L} represent vector mode and scalar allowed by the general metric theory of gravity. Explicitly,

eab+(n^)=\displaystyle e^{+}_{ab}(\hat{n})= θ^aθ^bϕ^aϕ^b,eab×(n^)=θ^aϕ^b+ϕ^aθ^b,\displaystyle\hat{\theta}_{a}\hat{\theta}_{b}-\hat{\phi}_{a}\hat{\phi}_{b},\quad e^{\times}_{ab}(\hat{n})=\hat{\theta}_{a}\hat{\phi}_{b}+\hat{\phi}_{a}\hat{\theta}_{b}, (2)
eabX(n^)=\displaystyle e^{X}_{ab}(\hat{n})= θ^an^b+n^aθ^b,eabY(n^)=ϕ^an^b+n^aϕ^b,\displaystyle\hat{\theta}_{a}\hat{n}_{b}+\hat{n}_{a}\hat{\theta}_{b},\quad e^{Y}_{ab}(\hat{n})=\hat{\phi}_{a}\hat{n}_{b}+\hat{n}_{a}\hat{\phi}_{b},
eabB(n^)=\displaystyle e^{B}_{ab}(\hat{n})= θ^aθ^b+ϕ^aϕ^b,eabL(n^)=2n^an^b,\displaystyle\hat{\theta}_{a}\hat{\theta}_{b}+\hat{\phi}_{a}\hat{\phi}_{b},\quad e^{L}_{ab}(\hat{n})=\sqrt{2}\hat{n}_{a}\hat{n}_{b},

where

n^\displaystyle\hat{n} =(sinθcosϕ,sinθsinϕ,cosθ),\displaystyle=(\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta), (3)
θ^\displaystyle\hat{\theta} =(cosθcosϕ,cosθsinϕ,sinθ),\displaystyle=(\cos\theta\cos\phi,\cos\theta\sin\phi,-\sin\theta),
ϕ^\displaystyle\hat{\phi} =(sinϕ,cosϕ,0).\displaystyle=(\sin\phi,\cos\phi,0).

For the isotropic, unpolarized and stationary GWB, the quadratic expected values satisfy that

hA(f,n^)hA(f,n^)=18πShA(f)δ(ff)δAAδ2(n^,n^),\left\langle h_{A}(f,\hat{n})h_{A^{\prime}}^{*}\left(f^{\prime},\hat{n}^{\prime}\right)\right\rangle=\frac{1}{8\pi}S^{A}_{h}(f)\delta\left(f-f^{\prime}\right)\delta_{AA^{\prime}}\delta^{2}\left(\hat{n},\hat{n}^{\prime}\right), (4)

where ShA(f)S^{A}_{h}(f) can be regarded as the component corresponding to the AA polarization of one-sided gravitational-wave strain power spectral density function. For tensor mode and vector mode, it can be considered that Sh+=Sh×=ShT/2S^{+}_{h}=S^{\times}_{h}=S^{T}_{h}/2, ShX=ShY=ShV/2S^{X}_{h}=S^{Y}_{h}=S^{V}_{h}/2. However, the two scalar modes should be considered as two independent polarization modes. The strain power spectral density is simply related to the fractional energy density,

Sh(f)=3H022π2Ωgw(f)f3.S_{h}(f)=\frac{3H_{0}^{2}}{2\pi^{2}}\frac{\Omega_{\mbox{gw}}(f)}{f^{3}}. (5)

The fractional energy density is defined as

Ωgw(f)=1ρcdρgwdlnf\Omega_{\mbox{gw}}(f)=\frac{1}{\rho_{c}}\frac{d\rho_{\mbox{gw}}}{d\ln f} (6)

where ρc3c2H02/8πG\rho_{c}\equiv 3c^{2}H_{0}^{2}/8\pi G is the critical energy density required for closed universe, and H0H_{0}, GG are the Hubble constant and gravitational constant respectively.

II.2 Correlation signal

The metric perturbation is weak, so the single pulsar timing signal can be written as

h(t)=𝑑fd2Ωn^Rab(f,n^)hab(f,n^)ei2πft.h(t)=\int_{-\infty}^{\infty}df\int d^{2}\Omega_{\hat{n}}R^{ab}(f,\hat{n})h_{ab}(f,\hat{n})e^{i2\pi ft}. (7)

Here the response function for Doppler frequency measurements is 2017Review_detection_GWB

Rab(f,n^)=12uaub1+n^u^(1ei2πfLc(1+n^u^))ei2πfn^r2/c,R^{ab}(f,\hat{n})=\frac{1}{2}\frac{u^{a}u^{b}}{1+\hat{n}\cdot\hat{u}}\left(1-e^{-\frac{i2\pi fL}{c}(1+\hat{n}\cdot\hat{u})}\right)e^{i2\pi f\hat{n}\cdot\vec{r}_{2}/c}, (8)

where u^\hat{u} is the unit vector of the pulsar pointing to the earth, LL is the distance from the pulsar to the earth, and r2\vec{r}_{2} is the position vector of the earth. In the frequency domain, the signal is written in terms of polarized basis as

h~(f)=d2Ωn^ARA(f,n^)hA(f,n^),\tilde{h}(f)=\int d^{2}\Omega_{\hat{n}}\sum_{A}R^{A}(f,\hat{n})h_{A}(f,\hat{n}), (9)

where RA(f,n^)=Rab(f,n^)eabA(n^)R^{A}(f,\hat{n})=R^{ab}(f,\hat{n})e^{A}_{ab}(\hat{n}).

The cross-correlation of two pulsars signal II and JJ is

h~I(f)h~J(f)=12δ(ff)AΓIJA(f)ShA(f),\left\langle\tilde{h}_{I}(f)\tilde{h}_{J}^{*}(f^{\prime})\right\rangle=\frac{1}{2}\delta(f-f^{\prime})\sum_{A}\Gamma^{A}_{IJ}(f)S^{A}_{h}(f), (10)

where A={T,V,B,L}A=\{T,V,B,L\}. The ORF for tensor mode, vector mode, scalar-breathing mode and scalar-longitudinal is

ΓIJT(f)\displaystyle\Gamma_{IJ}^{T}(f) =18πd2Ωn^A=+,×RIA(f,n^)RJA(f,n^),\displaystyle=\frac{1}{8\pi}\int d^{2}\Omega_{\hat{n}}\sum_{A=+,\times}R^{A}_{I}(f,\hat{n})R^{A*}_{J}(f,\hat{n}), (11)
ΓIJV(f)\displaystyle\Gamma_{IJ}^{V}(f) =18πd2Ωn^A=X,YRIA(f,n^)RJA(f,n^),\displaystyle=\frac{1}{8\pi}\int d^{2}\Omega_{\hat{n}}\sum_{A=X,Y}R^{A}_{I}(f,\hat{n})R^{A*}_{J}(f,\hat{n}),
ΓIJB(f)\displaystyle\Gamma_{IJ}^{B}(f) =14πd2Ωn^RIB(f,n^)RJB(f,n^),\displaystyle=\frac{1}{4\pi}\int d^{2}\Omega_{\hat{n}}R^{B}_{I}(f,\hat{n})R^{B*}_{J}(f,\hat{n}),
ΓIJL(f)\displaystyle\Gamma_{IJ}^{L}(f) =14πd2Ωn^RIL(f,n^)RJL(f,n^).\displaystyle=\frac{1}{4\pi}\int d^{2}\Omega_{\hat{n}}R^{L}_{I}(f,\hat{n})R^{L*}_{J}(f,\hat{n}).

III Overlap reduction function

Refer to caption
Figure 1: Our convention for the coordinate.

The ORF only depends on the relative orientation of the two pulsars and their distance to the Earth. Therefore, we can choose a suitable coordinate system to simplify the integral. We choose the Earth as the coordinate origin, so that r2=0\vec{r}_{2}=0. And the direction vectors of the two pulsars are u^=(cosγ2,sinγ2,0)\hat{u}=(\cos\frac{\gamma}{2},\sin\frac{\gamma}{2},0), v^=(cosγ2,sinγ2,0)\hat{v}=(\cos\frac{\gamma}{2},-\sin\frac{\gamma}{2},0), where γ\gamma is the angle separation between two pulsars. For the convenience of calculation, we define that

x=\displaystyle x= n^u^=sinθcosϕ~,\displaystyle\hat{n}\cdot\hat{u}=\sin\theta\cos\tilde{\phi}, (12)
y=\displaystyle y= n^v^=sinθcosϕ,\displaystyle\hat{n}\cdot\hat{v}=\sin\theta\cos\underset{\sim}{\phi},

where ϕ=ϕγ2\underset{\sim}{\phi}=\phi-\frac{\gamma}{2}, ϕ~=ϕ+γ2\tilde{\phi}=\phi+\frac{\gamma}{2}.

III.1 Tensor mode

The ORF of the tensor mode is

Γ\displaystyle\Gamma (f)IJT=ΓIJT(βu,βv,γ)\displaystyle{}^{T}_{IJ}(f)=\Gamma^{T}_{IJ}(\beta_{u},\beta_{v},\gamma) (13)
=132πd2Ωn^(1eiβu(1+sinθcosϕ))(1+sinθcosϕ)\displaystyle=\frac{1}{32\pi}\int d^{2}\Omega_{\hat{n}}\frac{(1-e^{-i\beta_{u}(1+\sin\theta\cos\underset{\sim}{\phi})})}{(1+\sin\theta\cos\underset{\sim}{\phi})}
×(1eiβv(1+sinθcosϕ~))(1+sinθcosϕ~)\displaystyle\times\frac{(1-e^{i\beta_{v}(1+\sin\theta\cos\tilde{\phi})})}{(1+\sin\theta\cos\tilde{\phi})}
×((1sin2θcos2ϕ)(1sin2θcos2ϕ~)2cos2θsin2γ),\displaystyle\times((1-\sin^{2}\theta\cos^{2}\underset{\sim}{\phi})(1-\sin^{2}\theta\cos^{2}\tilde{\phi})-2\cos^{2}\theta\sin^{2}\gamma),

where βu=2πfLu/c\beta_{u}=2\pi fL_{u}/c, βv=2πfLv/c\beta_{v}=2\pi fL_{v}/c, and Lu,LvL_{u},L_{v} are the distances from the two pulsars to the Earth, respectively. Change the integral variables {θ,ϕ}\{\theta,\phi\} by {x,y}\{x,y\}, so that the integral region is transformed from the unit sphere to the elliptical area on the xyxy plane. Then,

Γ\displaystyle\Gamma (f)IJT=116π11dxylyudy(1eiβu(1+x))\displaystyle{}^{T}_{IJ}(f)=\frac{1}{16\pi}\int_{-1}^{1}dx\int_{y_{l}}^{y_{u}}dy(1-e^{-i\beta_{u}(1+x)}) (14)
×(1eiβv(1+y))((1x)(1y)η(x,y)2η(x,y)(1+x)(1+y)),\displaystyle\times(1-e^{i\beta_{v}(1+y)})\left(\frac{(1-x)(1-y)}{\eta(x,y)}-\frac{2\eta(x,y)}{(1+x)(1+y)}\right),

where yl,yu=xcosγsinγ1x2y_{l},y_{u}=x\cos\gamma\mp\sin\gamma\sqrt{1-x^{2}} and

η(x,y)=sin2γ(x2+y22xycosγ)\eta(x,y)=\sqrt{\sin^{2}\gamma-(x^{2}+y^{2}-2xy\cos\gamma)}

is the boundary of the integration area. The integral can be done analytically (the details of the calculation are provided in Appendix), and the result is

ΓIJT(f)\displaystyle\Gamma^{T}_{IJ}(f) =13γIJT(f)=116{2+2cosγ3+16sin2γ2ln(sinγ2)2i(1cosγ)(e2iβuβue2iβvβv)\displaystyle=\frac{1}{3}\gamma^{T}_{IJ}(f)=\frac{1}{16}\bigg{\{}2+\frac{2\cos\gamma}{3}+16\sin^{2}\frac{\gamma}{2}\mbox{ln}(\sin\frac{\gamma}{2})-2i(1-\cos\gamma)\left(\frac{e^{-2i\beta_{u}}}{\beta_{u}}-\frac{e^{2i\beta_{v}}}{\beta_{v}}\right) (15)
(3+e2iβu)cosγ+1e2iβuβu2(3+e2iβv)cosγ+1e2iβvβv22icosγ(1e2iβuβu31e2iβvβv3)\displaystyle-\frac{(3+e^{-2i\beta_{u}})\cos\gamma+1-e^{-2i\beta_{u}}}{\beta_{u}^{2}}-\frac{(3+e^{2i\beta_{v}})\cos\gamma+1-e^{2i\beta_{v}}}{\beta_{v}^{2}}-2i\cos\gamma\left(\frac{1-e^{-2i\beta_{u}}}{\beta_{u}^{3}}-\frac{1-e^{2i\beta_{v}}}{\beta_{v}^{3}}\right)
+8sin2γ2(Ei(2iβu)+Ei(2iβv)Ei(i(βs+βuβv))Ei(i(βsβu+βv)))\displaystyle+8\sin^{2}\frac{\gamma}{2}\left(\mbox{Ei}(-2i\beta_{u})+\mbox{Ei}(2i\beta_{v})-\mbox{Ei}(-i(\beta_{s}+\beta_{u}-\beta_{v}))-\mbox{Ei}(i(\beta_{s}-\beta_{u}+\beta_{v}))\right)
+ei(βuβv)βuβv[cosβs(123i(βuβv)β2βs2+3(βu2βv2)22βs4i(βuβv)(βu+βv)2βs2)\displaystyle+\frac{e^{-i(\beta_{u}-\beta_{v})}}{\beta_{u}\beta_{v}}\left[\cos\beta_{s}\left(-\frac{1}{2}-3i(\beta_{u}-\beta_{v})-\frac{\beta^{2}}{\beta_{s}^{2}}+\frac{3(\beta_{u}^{2}-\beta_{v}^{2})^{2}}{2\beta_{s}^{4}}-\frac{i(\beta_{u}-\beta_{v})(\beta_{u}+\beta_{v})^{2}}{\beta_{s}^{2}}\right)\right.
+sinβs(3(βu2βv2)22βs5+2β2+(βu2βv2)22βs3+1+4βuβv2i(βuβv)2βs+i(βuβv)(βu+βv)2βs3+7βs2)]},\displaystyle+\sin\beta_{s}\left(-\frac{3(\beta_{u}^{2}-\beta_{v}^{2})^{2}}{2\beta_{s}^{5}}+\frac{2\beta^{2}+(\beta_{u}^{2}-\beta_{v}^{2})^{2}}{2\beta_{s}^{3}}\right.\left.\left.+\frac{1+4\beta_{u}\beta_{v}-2i(\beta_{u}-\beta_{v})}{2\beta_{s}}+\frac{i(\beta_{u}-\beta_{v})(\beta_{u}+\beta_{v})^{2}}{\beta_{s}^{3}}+\frac{7\beta_{s}}{2}\right)\right]\bigg{\}},
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: The ORF for different polarizations in the case Lu=LvL_{u}=L_{v}. The ORF for tensor mode and scalar-breathing mode has been normalized, but not for vector mode and scalar-longitudinal mode. The short-wave approximation expansions (black curves) are also shown for comparison.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: The ORF for different polarizations in the case LuLvL_{u}\neq L_{v}.

where

β=βu2+βv2,\beta=\sqrt{\beta_{u}^{2}+\beta_{v}^{2}},
βs=βu2+βv22βuβvcosγ,\beta_{s}=\sqrt{\beta_{u}^{2}+\beta_{v}^{2}-2\beta_{u}\beta_{v}\cos\gamma},

and Ei(z)=zet/t𝑑t\text{Ei}(z)=-\int_{-z}^{\infty}e^{-t}/tdt is the exponential integral function. γIJT(f)\gamma^{T}_{IJ}(f) is the normalized ORF, so that γIJT(f)=1\gamma^{T}_{IJ}(f)=1 for a single pulsar. The normalization holds only for the short-wave approximation. Using the short-wave approximation βu,βv1\beta_{u},\beta_{v}\gg 1, Eq. (15) will reduce to the HD function 1983apj_HD_curve ,

γHD(γ)=32(1cosγ2)ln1cosγ21cosγ8+12.\gamma_{HD}(\gamma)=\frac{3}{2}\left(\frac{1-\cos\gamma}{2}\right)\ln\frac{1-\cos\gamma}{2}-\frac{1-\cos\gamma}{8}+\frac{1}{2}. (16)

In addition, it can also accurately converge to 1 when the two pulsars tend to coincide, because the exponential terms is included.

Since no approximations are used, the analytic expressions agree exactly with the values obtained by direct numerical integration. When the distances of two pulsars are the same (βu=βv\beta_{u}=\beta_{v}), the ORF is a real function. As shown in Fig. 2, our result is consistent with the HD curve as βu\beta_{u} increase, and the curve approaches 1 smoothly when the two pulsars are very close. For the long-wave wavelengths, limγ0γIJT\lim_{\gamma\rightarrow 0}\gamma^{T}_{IJ} is a value less than 0.5, which depends on βu\beta_{u}. However, the two pulsars are usually at different distances in reality, which implies that the ORF is a complex function and satisfies that ΓIJ(f)=ΓIJ(f)\Gamma_{IJ}(-f)=\Gamma^{*}_{IJ}(f). As shown in Fig. 3, for different distances of pulsars (βuβv\beta_{u}\neq\beta_{v}), the imaginary part of the ORF depends on the ratio of βu\beta_{u} and βv\beta_{v}. The greater the difference between them, the greater the value of the imaginary part. But when both βu\beta_{u} and βv\beta_{v} are very large, the imaginary part is close to 0, no matter how large their ratio is. And the real part is tend to HD function in this case.

We show the behavior in Fig. LABEL:fig3 when the angle between the two pulsars is small. If βu=βv\beta_{u}=\beta_{v}, γIJT\gamma^{T}_{IJ} decays from 1 to 0.5 faster and faster as βu\beta_{u} increases. From their similar curves, we can conclude that the ORF for two nearby pulsars depends on their distance from each other. For pulsars in the same direction γ=0\gamma=0,

limγ0\displaystyle\lim_{\gamma\rightarrow 0} γIJT(f)=1234βu234βv2+34(βuβv)2\displaystyle\gamma^{T}_{IJ}(f)=\frac{1}{2}-\frac{3}{4\beta_{u}^{2}}-\frac{3}{4\beta_{v}^{2}}+\frac{3}{4(\beta_{u}-\beta_{v})^{2}} (17)
i38(1e2iβuβu31e2iβvβv3)\displaystyle-i\frac{3}{8}\left(\frac{1-e^{-2i\beta_{u}}}{\beta_{u}^{3}}-\frac{1-e^{2i\beta_{v}}}{\beta_{v}^{3}}\right)
ei(βuβv)3sin(βuβv)4(βuβv)33i(βu2βuβv+βv2)4βuβv(βuβv).\displaystyle-e^{-i(\beta_{u}-\beta_{v})}\frac{3\sin(\beta_{u}-\beta_{v})}{4(\beta_{u}-\beta_{v})^{3}}-\frac{3i(\beta_{u}^{2}-\beta_{u}\beta_{v}+\beta_{v}^{2})}{4\beta_{u}\beta_{v}(\beta_{u}-\beta_{v})}.

In addition, we noticed that limγ0γIJT1\lim_{\gamma\rightarrow 0}\gamma^{T}_{IJ}\neq 1 when βu\beta_{u} is not very large. Actually, the auto-correlated response for the tensor mode of a single detector is

γIIT(f)=limγ0βvβuγIJT(f)=132βu2+3sin2βu4βu3.\gamma^{T}_{II}(f)=\lim_{\begin{subarray}{c}\gamma\rightarrow 0\\ \beta_{v}\rightarrow\beta_{u}\end{subarray}}\gamma^{T}_{IJ}(f)=1-\frac{3}{2\beta_{u}^{2}}+\frac{3\sin 2\beta_{u}}{4\beta_{u}^{3}}. (18)

It dose converge to 1 for βu1\beta_{u}\gg 1, but gradually decreases to 0 as βu\beta_{u} decreases. The normalization expression γIJT(f)\gamma^{T}_{IJ}(f) is only valid for short-wave approximation.

III.2 Vector mode

The ORF of the vector mode isotropic is

ΓIJV(f)=132πd2Ωn^(1eiβu(1+sinθcosϕ))(1+sinθcosϕ)(1eiβv(1+sinθcosϕ~))(1+sinθcosϕ~)4(sin2θcosϕcosϕ~(cosγsin2θcosϕcosϕ~)).\displaystyle\Gamma_{IJ}^{V}(f)=\frac{1}{32\pi}\int d^{2}\Omega_{\hat{n}}\frac{(1-e^{-i\beta_{u}(1+\sin\theta\cos\underset{\sim}{\phi})})}{(1+\sin\theta\cos\underset{\sim}{\phi})}\frac{(1-e^{i\beta_{v}(1+\sin\theta\cos\tilde{\phi})})}{(1+\sin\theta\cos\tilde{\phi})}4\left(\sin^{2}\theta\cos\underset{\sim}{\phi}\cos\tilde{\phi}(\cos\gamma-\sin^{2}\theta\cos\underset{\sim}{\phi}\cos\tilde{\phi})\right). (19)

Changing the variables, then we get

Γ\displaystyle\Gamma (f)IJV=116π11dxylyudy(1eiβu(1+x))(1eiβv(1+y))4xy(cosγxy)η(x,y)(1+x)(1+y),\displaystyle{}^{V}_{IJ}(f)=\frac{1}{16\pi}\int_{-1}^{1}dx\int_{y_{l}}^{y_{u}}dy(1-e^{-i\beta_{u}(1+x)})(1-e^{i\beta_{v}(1+y)})\frac{4xy(\cos\gamma-xy)}{\eta(x,y)(1+x)(1+y)}, (20)

Finishing the integral, and we find that

ΓIJV(f)\displaystyle\Gamma_{IJ}^{V}(f) =122cosγ3lnsinγ2+i(2cosγ+1e2iβv)4βvi(2cosγ+1e2iβu)4βu\displaystyle=-\frac{1}{2}-\frac{2\cos\gamma}{3}-\mbox{ln}\sin\frac{\gamma}{2}+\frac{i\left(2\cos\gamma+1-e^{2i\beta_{v}}\right)}{4\beta_{v}}-\frac{i\left(2\cos\gamma+1-e^{-2i\beta_{u}}\right)}{4\beta_{u}} (21)
+(3+e2iβu)cosγe2iβu+14βu2+(3+e2iβv)cosγe2iβv+14βv2+icosγ2(1e2iβuβu31e2iβvβv3)\displaystyle+\frac{\left(3+e^{-2i\beta_{u}}\right)\cos\gamma-e^{-2i\beta_{u}}+1}{4\beta_{u}^{2}}+\frac{\left(3+e^{2i{\beta_{v}}}\right)\cos\gamma-e^{2i\beta_{v}}+1}{4\beta_{v}^{2}}+\frac{i\cos\gamma}{2}\left(\frac{1-e^{-2i\beta_{u}}}{\beta_{u}^{3}}-\frac{1-e^{2i\beta_{v}}}{\beta_{v}^{3}}\right)
+12ei(βuβv){cosβs(3βuβvsin2γβs4+2cosγ+i(βuβv)(cosγ+1)βs2i(1βu1βv))\displaystyle+\frac{1}{2}e^{-i(\beta_{u}-\beta_{v})}\left\{\cos\beta_{s}\left(\frac{3\beta_{u}\beta_{v}\sin^{2}\gamma}{\beta_{s}^{4}}+\frac{-2\cos\gamma+i(\beta_{u}-\beta_{v})(\cos\gamma+1)}{\beta_{s}^{2}}-i\left(\frac{1}{\beta_{u}}-\frac{1}{\beta_{v}}\right)\right)\right.
+sinβs(3βuβvsin2γβs5+βuβvsin2γi(βuβv)(cosγ+1)+2cosγβs32cosγ+1βsβsβuβv)}\displaystyle\left.+\sin\beta_{s}\left(-\frac{3\beta_{u}\beta_{v}\sin^{2}\gamma}{\beta_{s}^{5}}+\frac{\beta_{u}\beta_{v}\sin^{2}\gamma-i(\beta_{u}-\beta_{v})(\cos\gamma+1)+2\cos\gamma}{\beta_{s}^{3}}-\frac{2\cos\gamma+1}{\beta_{s}}-\frac{\beta_{s}}{\beta_{u}\beta_{v}}\right)\right\}
+12(Ei(i(βs+βuβv))+Ei(i(βsβu+βv))Ei(2iβu)Ei(2iβv)).\displaystyle+\frac{1}{2}\left(\mbox{Ei}(-i(\beta_{s}+\beta_{u}-{\beta_{v}}))+\mbox{Ei}(i(\beta_{s}-\beta_{u}+\beta_{v}))-\mbox{Ei}(-2i\beta_{u})-\mbox{Ei}(2i\beta_{v})\right).

The ORF for vector mode cannot be normalized, because ΓIJV(γ=0)\Gamma_{IJ}^{V}(\gamma=0) increase with βu\beta_{u}. The expression with using short-wave approximation is 2008apj_Lee_ORF_nonGR

ΓswV(γ)=1223cosγln(sinγ2),\Gamma^{V}_{sw}(\gamma)=-\frac{1}{2}-\frac{2}{3}\cos\gamma-\ln(\sin\frac{\gamma}{2}), (22)

where the angular separation γ\gamma is assumed to be not small. In the limit γ0\gamma\rightarrow 0, Eq. (21) will give the exact value while the short-wave expression ΓswV\Gamma^{V}_{sw} diverges. The auto-correlated response for vector mode of a single detector is

ΓIIV(f)=\displaystyle\Gamma^{V}_{II}(f)= limγ0βvβuΓIJV(f)=73+γE+ln(2βu)Ci(2βu)\displaystyle\lim_{\begin{subarray}{c}\gamma\rightarrow 0\\ \beta_{v}\rightarrow\beta_{u}\end{subarray}}\Gamma^{V}_{IJ}(f)=-\frac{7}{3}+\gamma_{E}+\text{ln}(2\beta_{u})-\text{Ci}(2\beta_{u}) (23)
+2βu2+(βu22)cosβusinβuβu3,\displaystyle+\frac{2}{\beta^{2}_{u}}+\frac{(\beta^{2}_{u}-2)\cos\beta_{u}\sin\beta_{u}}{\beta^{3}_{u}},

where γE\gamma_{E} is the Euler constant and

Ci(z)=zcost/tdt\text{Ci}(z)=-\int_{z}^{\infty}\cos t/tdt

is the cosine-integral function. In the limit γ0\gamma\rightarrow 0, ΓV\Gamma^{V} grows logarithmically with 2βu2\beta_{u}. It is consistent with Eq.(A42) in 2008apj_Lee_ORF_nonGR .

The behaviors of ORF for vector mode are shown in Fig. 2 and Fig. 3 in the case βu=βv\beta_{u}=\beta_{v} and βuβv\beta_{u}\neq\beta_{v} respectively. For two pulsars at the same distance, the ORF for vector mode gradually approaches the short-wave expression as βu\beta_{u} increases. From the short-wave expression (22), we know that ΓswV(γ)\Gamma^{V}_{sw}(\gamma) diverges at γ=0\gamma=0. However, at γ=0\gamma=0, the full analytic expression tends to have finite values ΓIIV(βu)\Gamma^{V}_{II}(\beta_{u}), which grows logarithmically with 2βu2\beta_{u}. For two pulsars at different distances, the ORF for vector mode is complex. The real part will also gradually approaches the short-wave expression for not too small of γ\gamma. However, when γ\gamma is very small, the imaginary part is not negligible compared to the real part even βu\beta_{u} and βv\beta_{v} are pretty large. The small angle behavior of vector mode is quite different from the tensor mode. As shown in Fig. LABEL:fig3, the ORF for vector mode converges to a finite value, which depends on βu\beta_{u} and increases with βu\beta_{u} logarithmically. There is also no fast halving decay, and the transition of the curve is smooth.

III.3 Scalar-breathing mode

The ORF of scalar-breathing mode is

ΓIJB(f)=\displaystyle\Gamma_{IJ}^{B}(f)= 116πd2Ωn^(1eiβu(1+sinθcosϕ))(1+sinθcosϕ)(1eiβv(1+sinθcosϕ~))(1+sinθcosϕ~)(1sin2θcos2ϕ)(1sin2θcos2ϕ~)\displaystyle\frac{1}{16\pi}\int d^{2}\Omega_{\hat{n}}\frac{(1-e^{-i\beta_{u}(1+\sin\theta\cos\underset{\sim}{\phi})})}{(1+\sin\theta\cos\underset{\sim}{\phi})}\frac{(1-e^{i\beta_{v}(1+\sin\theta\cos\tilde{\phi})})}{(1+\sin\theta\cos\tilde{\phi})}(1-\sin^{2}\theta\cos^{2}\underset{\sim}{\phi})(1-\sin^{2}\theta\cos^{2}\tilde{\phi}) (24)
=\displaystyle= 18π11𝑑xylyu𝑑y(1eiβu(1+x))(1eiβv(1+y))(1x)(1y)η(x,y).\displaystyle\frac{1}{8\pi}\int_{-1}^{1}dx\int_{y_{l}}^{y_{u}}dy(1-e^{-i\beta_{u}(1+x)})(1-e^{i\beta_{v}(1+y)})\frac{(1-x)(1-y)}{\eta(x,y)}.

The normalized analytic expression of ORF for scalar-breathing mode is

γIJB(f)\displaystyle\gamma_{IJ}^{B}(f) =32ΓIJB(f)=316{2+2cosγ3+2i(1+cosγ)(1βu1βv)2icosγ(1e2iβuβu31e2iβvβv3)\displaystyle=\frac{3}{2}\Gamma_{IJ}^{B}(f)=\frac{3}{16}\bigg{\{}2+\frac{2\cos\gamma}{3}+2i(1+\cos\gamma)\left(\frac{1}{\beta_{u}}-\frac{1}{\beta_{v}}\right)-2i\cos\gamma\left(\frac{1-e^{-2i\beta_{u}}}{\beta_{u}^{3}}-\frac{1-e^{2i\beta_{v}}}{\beta_{v}^{3}}\right) (25)
+e2iβu1(3+e2iβu)cosγβu2+e2iβv1(3+e2iβv)cosγβv2\displaystyle+\frac{e^{-2i\beta_{u}}-1-\left(3+e^{-2i\beta_{u}}\right)\cos\gamma}{\beta_{u}^{2}}+\frac{e^{2i\beta_{v}}-1-\left(3+e^{2i\beta_{v}}\right)\cos\gamma}{\beta_{v}^{2}}
+ei(βuβv)βuβv[sinβs(2β2+(βu2βv2)22βs33(βu2βv2)22βs5\displaystyle+\frac{e^{-i(\beta_{u}-\beta_{v})}}{\beta_{u}\beta_{v}}\left[\sin\beta_{s}\left(\frac{2\beta^{2}+\left(\beta_{u}^{2}-\beta_{v}^{2}\right)^{2}}{2\beta_{s}^{3}}-\frac{3\left(\beta_{u}^{2}-\beta_{v}^{2}\right)^{2}}{2\beta_{s}^{5}}\right.\right.
+i(βuβv)(βu+βv)2βs3+2i(βuβv)+4βuβv+12βsβs2)\displaystyle\left.+\frac{i(\beta_{u}-\beta_{v})(\beta_{u}+\beta_{v})^{2}}{\beta_{s}^{3}}+\frac{-2i({\beta_{u}}-\beta_{v})+4\beta_{u}\beta_{v}+1}{2\beta_{s}}-\frac{\beta_{s}}{2}\right)
+cosβs(β2βs2+3(βu2βv2)22βs4i(βuβv)(βu+βv)2βs2+i(βuβv)12)]}.\displaystyle\left.+\cos\beta_{s}\left(-\frac{\beta^{2}}{\beta_{s}^{2}}+\frac{3\left(\beta_{u}^{2}-\beta_{v}^{2}\right)^{2}}{2\beta_{s}^{4}}-\frac{i(\beta_{u}-\beta_{v})(\beta_{u}+\beta_{v})^{2}}{\beta_{s}^{2}}+i(\beta_{u}-\beta_{v})-\frac{1}{2}\right)\right]\bigg{\}}.

The short-wave expression is 2008apj_Lee_ORF_nonGR

γswB(γ)=38+18cosγ.\gamma^{B}_{sw}(\gamma)=\frac{3}{8}+\frac{1}{8}\cos\gamma. (26)

The auto-correlated response for the scalar-breathing mode of a single detector is the same as that of the tensor mode,

γIIB(f)=limγ0βvβuγIJB(f)=132βu2+3sin2βu4βu3.\gamma^{B}_{II}(f)=\lim_{\begin{subarray}{c}\gamma\rightarrow 0\\ \beta_{v}\rightarrow\beta_{u}\end{subarray}}\gamma^{B}_{IJ}(f)=1-\frac{3}{2\beta_{u}^{2}}+\frac{3\sin 2\beta_{u}}{4\beta_{u}^{3}}. (27)

But the actual responses satisfy that ΓIIB(f)=1/2ΓIIT(f)\Gamma^{B}_{II}(f)=1/2\Gamma^{T}_{II}(f), because their normalization factors are different. Overall, the ORF for the scalar-breathing mode is very similar to that for the tensor mode, probably because they are both transverse modes. In particular, it should be noticed that ΓIJB(f)0\Gamma_{IJ}^{B}(f)\geq 0 for any configuration of pulsar pairs.

III.4 Scalar-longitudinal mode

The ORF of scalar-longitudinal mode is

ΓIJL(f)=\displaystyle\Gamma_{IJ}^{L}(f)= 116πd2Ωn^(1eiβu(1+sinθcosϕ))(1+sinθcosϕ)(1eiβv(1+sinθcosϕ~))(1+sinθcosϕ~)2(sin4θcos2ϕcos2ϕ~)\displaystyle\frac{1}{16\pi}\int d^{2}\Omega_{\hat{n}}\frac{(1-e^{-i\beta_{u}(1+\sin\theta\cos\underset{\sim}{\phi})})}{(1+\sin\theta\cos\underset{\sim}{\phi})}\frac{(1-e^{i\beta_{v}(1+\sin\theta\cos\tilde{\phi})})}{(1+\sin\theta\cos\tilde{\phi})}2(\sin^{4}\theta\cos^{2}\underset{\sim}{\phi}\cos^{2}\tilde{\phi}) (28)
=\displaystyle= 18π11𝑑xylyu𝑑y(1eiβu(1+x))(1eiβv(1+y))2x2y2η(x,y)(1+x)(1+y).\displaystyle\frac{1}{8\pi}\int_{-1}^{1}dx\int_{y_{l}}^{y_{u}}dy(1-e^{-i\beta_{u}(1+x)})(1-e^{i\beta_{v}(1+y)})\frac{2x^{2}y^{2}}{\eta(x,y)(1+x)(1+y)}.

The analytic expression of ORF for scalar-longitudinal mode is

ΓIJL(f)\displaystyle\Gamma_{IJ}^{L}(f) =18{4+28cosγ3+csc2γ2(4ln(sinγ2)+2γEcos2γ+cos2γln(4βuβv))\displaystyle=\frac{1}{8}\biggl{\{}4+\frac{28\cos\gamma}{3}+\csc^{2}\frac{\gamma}{2}\left(4\ln(\sin\frac{\gamma}{2})+2\gamma_{E}\cos^{2}\gamma+\cos^{2}\gamma\ln(4\beta_{u}\beta_{v})\right) (29)
+2i(1βu1βv)(12cosβsei(βuβv)(4csc2γ2sec2γ2)+3cosγ+1)\displaystyle+2i\left(\frac{1}{\beta_{u}}-\frac{1}{\beta_{v}}\right)\left(\frac{1}{2}\cos\beta_{s}e^{-i(\beta_{u}-\beta_{v})}\left(4-\csc^{2}\frac{\gamma}{2}-\sec^{2}\frac{\gamma}{2}\right)+3\cos\gamma+1\right)
2i(e2iβuβue2iβvβv)(cosγ+1)4icosγ(1e2iβuβu31e2iβvβv3)\displaystyle-2i\left(\frac{e^{-2i\beta_{u}}}{\beta_{u}}-\frac{e^{2i\beta_{v}}}{\beta_{v}}\right)(\cos\gamma+1)-4i\cos\gamma\left(\frac{1-e^{-2i\beta_{u}}}{\beta_{u}^{3}}-\frac{1-e^{2i\beta_{v}}}{\beta_{v}^{3}}\right)
+2(3+e2iβu)cosγ+2e2iβu2βu2+2(3+e2iβv)cosγ+2e2iβv2βv2\displaystyle+\frac{-2\left(3+e^{-2i\beta_{u}}\right)\cos\gamma+2e^{-2i\beta_{u}}-2}{\beta_{u}^{2}}+\frac{-2\left(3+e^{2i\beta_{v}}\right)\cos\gamma+2e^{2i\beta_{v}}-2}{\beta_{v}^{2}}
12(cos2γ3)csc2γ2(Ei(2iβu)+Ei(2iβv))2csc2γ2(Ei(i(βs+βuβv))+Ei(i(βsβu+βv)))\displaystyle-\frac{1}{2}(\cos 2\gamma-3)\csc^{2}\frac{\gamma}{2}\left(\mbox{Ei}(-2i\beta_{u})+\mbox{Ei}(2i\beta_{v})\right)-2\csc^{2}\frac{\gamma}{2}\left(\mbox{Ei}(-i(\beta_{s}+\beta_{u}-\beta_{v}))+\mbox{Ei}(i(\beta_{s}-\beta_{u}+\beta_{v}))\right)
cos2γcsc2γ2[e2iβusin2γ2(Ei(iβu(cosγ1))+Ei(iβu(cosγ+1))\displaystyle-\cos^{2}\gamma\csc^{2}\frac{\gamma}{2}\left[e^{-2i\beta_{u}\sin^{2}\frac{\gamma}{2}}\left(\mbox{Ei}(-i\beta_{u}(\cos\gamma-1))+\mbox{Ei}(-i\beta_{u}(\cos\gamma+1))\right.\right.
Ei(i(βs+βvβucosγ))Ei(i(βsβv+βucosγ)))\displaystyle\left.-\mbox{Ei}(i(\beta_{s}+\beta_{v}-\beta_{u}\cos\gamma))-\mbox{Ei}(-i(\beta_{s}-\beta_{v}+\beta_{u}\cos\gamma))\right)
+e2iβvsin2γ2(Ei(iβv(cosγ1))+Ei(iβv(cosγ+1))Ei(i(βs+βuβvcosγ))Ei(i(βsβu+βvcosγ)))]\displaystyle\left.+e^{2i\beta_{v}\sin^{2}\frac{\gamma}{2}}\left(\mbox{Ei}(i\beta_{v}(\cos\gamma-1))+\mbox{Ei}(i\beta_{v}(\cos\gamma+1))\right.\left.-\mbox{Ei}(-i(\beta_{s}+\beta_{u}-\beta_{v}\cos\gamma))-\mbox{Ei}(i(\beta_{s}-\beta_{u}+\beta_{v}\cos\gamma))\right)\right]
+ei(βuβv)[cosβs(12βuβvsin2γβs48cosγ+4i(βuβv)(cosγ+1)βs24i(βuβv)csc2γβuβv)\displaystyle+e^{-i(\beta_{u}-\beta_{v})}\left[\cos\beta_{s}\left(-\frac{12\beta_{u}\beta_{v}\sin^{2}\gamma}{\beta_{s}^{4}}-\frac{-8\cos\gamma+4i(\beta_{u}-\beta_{v})(\cos\gamma+1)}{\beta_{s}^{2}}-\frac{4i(\beta_{u}-\beta_{v})\csc^{2}\gamma}{\beta_{u}\beta_{v}}\right)\right.
+sinβs(12βuβvsin2γβs54βuβvsin2γ4i(βuβv)(cosγ+1)+8cosγβs3+4βsβuβv+12cosγ+4βs)]}.\displaystyle\left.+\sin\beta_{s}\left(\frac{12\beta_{u}\beta_{v}\sin^{2}\gamma}{\beta_{s}^{5}}-\frac{4\beta_{u}\beta_{v}\sin^{2}\gamma-4i(\beta_{u}-\beta_{v})(\cos\gamma+1)+8\cos\gamma}{\beta_{s}^{3}}+\frac{4\beta_{s}}{\beta_{u}\beta_{v}}+\frac{12\cos\gamma+4}{\beta_{s}}\right)\right]\biggl{\}}.

Like the vector mode, the ORF of the scalar-longitudinal mode cannot be normalized. The auto-correlated response for the scalar-longitudinal mode of a single detector is

ΓIIL(f)=\displaystyle\Gamma^{L}_{II}(f)= limγ0βvβuΓIJL(f)=37122γE2ln(2βu)\displaystyle\lim_{\begin{subarray}{c}\gamma\rightarrow 0\\ \beta_{v}\rightarrow\beta_{u}\end{subarray}}\Gamma^{L}_{IJ}(f)=\frac{37}{12}-2\gamma_{E}-2\ln(2\beta_{u}) (30)
+12βuSi(2βu)+14cos(2βu)\displaystyle+\frac{1}{2}\beta_{u}\mbox{Si}(2\beta_{u})+\frac{1}{4}\cos(2\beta_{u})
+2Ci(2βu)sin(2βu)βu2βu2+sin(2βu)βu3.\displaystyle+2\mbox{Ci}(2\beta_{u})-\frac{\sin(2\beta_{u})}{\beta_{u}}-\frac{2}{\beta^{2}_{u}}+\frac{\sin(2\beta_{u})}{\beta^{3}_{u}}.

For short wavelengths, ΓIILπ4βu\Gamma^{L}_{II}\propto\frac{\pi}{4}\beta_{u} and it grows faster than the logarithmically growing vector mode as βu\beta_{u} increases. This is consistent with Eq.(A36) in 2008apj_Lee_ORF_nonGR and Eq.(41) in 2012prd_ORF_nonGR .

For the scalar-longitudinal mode, there is no analytic expression of ORF even using the short-wave approximation. Dropping the exponential terms and directly calculating integral leads to divergence 2017Review_detection_GWB . The exponential terms must be included to overcome the divergence. However, we can obtain a short-wave expression from Eq. (29),

Γ\displaystyle\Gamma (f)swL=12+76cosγ\displaystyle{}^{L}_{sw}(f)=\frac{1}{2}+\frac{7}{6}\cos\gamma (31)
+18csc2γ2(cos2γ(2γE+ln(4βuβv))+4lnsinγ2).\displaystyle+\frac{1}{8}\csc^{2}\frac{\gamma}{2}\left(\cos^{2}\gamma\left(2\gamma_{E}+\ln(4\beta_{u}\beta_{v})\right)+4\ln\sin\frac{\gamma}{2}\right).

As shown in Fig. 2, the approximate expression works well except that γ\gamma is close to 0 and π\pi. When the distance difference between the two pulsars is large, the accuracy of the approximate expression becomes worse. The ORF for scalar-longitudinal mode of pulsars at different distances is shown in Fig. 3. When γ\gamma is small, the imaginary part is comparable to the real part for large βu\beta_{u} and βv\beta_{v}. And the short-wave expression (31) underperforms in this case. In addition, we notice that ΓIJL\Gamma^{L}_{IJ} also seems to increase with βu\beta_{u} at γ=π\gamma=\pi. In fact, it can be shown that this is indeed the case and it grows logarithmically. ΓIJL\Gamma^{L}_{IJ} increases linearity with βu\beta_{u} at γ=0\gamma=0 and logarithmically at γ=π\gamma=\pi. So what is the behavior between 0 and π\pi? ΓIJL\Gamma^{L}_{IJ} increases with βu\beta_{u} except at γ=π/2\gamma=\pi/2, where it tends to be a constant. Explicitly,

limβu,βvΓIJL(γ=π/2)=12(1ln2).\lim_{\beta_{u},\beta_{v}\rightarrow\infty}\Gamma^{L}_{IJ}(\gamma=\pi/2)=\frac{1}{2}(1-\ln 2). (32)

The small angle behavior is shown in Fig. LABEL:fig3. As γ\gamma decreases, it tends to a constant, which is consistent with Eq. (30). There is also no fast halving decay, which implies that the exponential terms accounts a non-negligible proportion of the integral.

IV Discuss and conclusions

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5: The GWB frequency dependence of the OFR for the different modes. The real and imaginary parts of the ORF for different modes are shown in different picture. The tensor mode and scalar-breathing mode are normalized. The distance between the two pulsars and the Earth are fixed as Lu=1kpcL_{u}=1kpc and Lv=4kpcL_{v}=4kpc. The different lines represent different angles between pulsars: γ=π/12\gamma=\pi/12 (brown solid), γ=π/6\gamma=\pi/6 (green dashed), γ=π/3\gamma=\pi/3 (red dotted) and γ=π/2\gamma=\pi/2 (green dotdashed).

Employing the method in 2019prd_analytic_response_function_TDI ; 2021prd_sensitivity_TDI ; 2021prd_sensitivity_TDI_nonGR , we obtained the full analytic expression of the ORF for PTA without any approximation for all possible polarizations allowed by the general metric theory of gravity. Since no approximation is used, for any two pulsars, the ORF can be obtained quickly and accurately by the expression. For example, plots of the ORF of a pair of pulsars for different modes are shown in Fig. 5, plotted as functions of frequency ff. We choose to fix the distance between the two pulsars and the Earth Lu=1kpcL_{u}=1kpc and Lv=4kpcL_{v}=4kpc, and draw different curves at different angular. In the current detection band of PTA of 10910610^{-9}-10^{-6} Hz, the ORF for tensor mode and scalar-breathing mode can be regarded as a constant that only depends on the angular separation γ\gamma between pairs of pulsars. However, the ORF for vector mode at small γ\gamma is likely to vary with frequency. And for the scalar-longitudinal mode, the ORF grows logarithmically with frequency if γ<π/2\gamma<\pi/2.

The tensor mode and scalar-breathing mode show similar behavior, since they are both transverse modes. And they are quite different from the longitudinal mode (vector and scalar-longitudinal). For co-directional pulsars (γ=0\gamma=0), the ORF of transverse modes is finite, no matter how large fLfL is. However, the ORF of longitudinal modes grows with fLfL. The vector mode grows logarithmically with fLfL, and the scalar-longitudinal mode grows linearly. In addition, the phases of the two kinds of modes are also different. In the actual detection, the distances from the two pulsars to Earth are usually not the same, and the ORF is complex in this case. As long as fLfL is large enough, the imaginary part of the ORF for transverse modes can always be ignored. For longitudinal modes, this can only be done around γ=π/2\gamma=\pi/2.

For most cases, the short-wave expressions 1983apj_HD_curve ; 2008apj_Lee_ORF_nonGR are valid and succinct, and our result will reduce to them with short-wave approximation. For the scalar-longitudinal mode, there is no short-wave expression except for the co-aligned pulsars γ=0\gamma=0. But our results hold for scalar-longitudinal modes at any angle separation. The auto-correlated response functions, which are inferred from our results, also agree with the prior literature 2008apj_Lee_ORF_nonGR ; 2012prd_ORF_nonGR for the co-aligned pulsars. Compared with the recent series expansions 2021prd_ORF_PTA_series_GR ; 2022prd_ORF_PTA_series_nonGR , the numerically calculated values of our expressions are consistent, and our computation time will be much less. The only thing to worry about is that one can’t bring that value directly into the calculation for γ=0\gamma=0, as that could lead to uncertainty. In this case, the expressions under the limit γ0\gamma\rightarrow 0 are needed, that is, the auto-correlated response functions.

Totally, for current PTA detection, our results improve slightly for transverse modes. The short-wave approximation is very precise and concise for most of the pulsars. Our results only improve for nearly co-located pulsars, such as pulsar binary systems, and pulsars close to Earth that may be discovered in the future. However, our results are very meaningful for other modes in modified gravity theory, especially the scalar-longitudinal mode. For vector mode, the short-wave approximation is not valid for small angular separation between pulsars. And the situation is even worse for scalar-longitudinal mode, where the shortwave approximation is not valid for any angle separation. Our results greatly improve this situation and provide help for future detection of the polarized GWB. The full analytic expression of ORF is very useful in GWB data analysis of PTA.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11925503 and 12175076 ) and Guangdong Major project of Basic and Applied Basic Research (Grant No. 2019B030302001).

*

Appendix A Detailed calculations for the integration of ORF

Through the variable transformation from {θ,ϕ}\{\theta,\phi\} to {x,y}\{x,y\}, the primitive function of the integral of the ORF can be found. For example, for the integral in the ORF for scalar-breathing mode,

I1=\displaystyle I_{1}= 11𝑑xylyu𝑑y(1x)(1y)η(x,y)\displaystyle\int_{-1}^{1}dx\int_{y_{l}}^{y_{u}}dy\frac{(1-x)(1-y)}{\eta(x,y)} (33)
=\displaystyle= 11𝑑x(1x)((1xcosγ)arctan(yxcosγη(x,y))+η(x,y))|ylyu\displaystyle\int_{-1}^{1}dx(1-x)\left((1-x\cos\gamma)\arctan\left(\frac{y-x\cos\gamma}{\eta(x,y)}\right)+\eta(x,y)\right)\bigg{|}_{y_{l}}^{y_{u}}
=\displaystyle= π11𝑑x(1x)(1xcosγ)\displaystyle\pi\int_{-1}^{1}dx(1-x)(1-x\cos\gamma)
=\displaystyle= 2π(1+cosγ3),\displaystyle 2\pi(1+\frac{\cos\gamma}{3}),

where

(1x)(1y)η(x,y)𝑑y\displaystyle\int\frac{(1-x)(1-y)}{\eta(x,y)}dy =(1x)(1xcosγη(x,y)yxcosγη(x,y))𝑑y\displaystyle=(1-x)\int\left(\frac{1-x\cos\gamma}{\eta(x,y)}-\frac{y-x\cos\gamma}{\eta(x,y)}\right)dy
=(1x)((1xcosγ)arctan(yxcosγη(x,y))+η(x,y)),\displaystyle=(1-x)\left((1-x\cos\gamma)\arctan\left(\frac{y-x\cos\gamma}{\eta(x,y)}\right)+\eta(x,y)\right),
η(x,yl)=η(x,yu)=0limyyl,yuarctan(yxcosγη(x,y))=±π/2,\eta(x,y_{l})=\eta(x,y_{u})=0\quad\lim_{y\rightarrow y_{l},y_{u}}\arctan\left(\frac{y-x\cos\gamma}{\eta(x,y)}\right)=\pm\pi/2,

are used to obtain the second and third line respectively. For the exponential terms, the method is also valid,

I2=\displaystyle I_{2}= 11𝑑xylyu𝑑yeiβu(1+x)(1x)(1y)η(x,y)\displaystyle-\int_{-1}^{1}dx\int_{y_{l}}^{y_{u}}dye^{-i\beta_{u}(1+x)}\frac{(1-x)(1-y)}{\eta(x,y)} (34)
=\displaystyle= 11𝑑xeiβu(1+x)(x1)((1xcosγ)arctan(yxcosγη(x,y))+η(x,y))|ylyu\displaystyle\int_{-1}^{1}dxe^{-i\beta_{u}(1+x)}(x-1)\left((1-x\cos\gamma)\arctan\left(\frac{y-x\cos\gamma}{\eta(x,y)}\right)+\eta(x,y)\right)\bigg{|}_{y_{l}}^{y_{u}}
=\displaystyle= π11𝑑xeiβu(1+x)(x1)(1xcosγ)\displaystyle\pi\int_{-1}^{1}dxe^{-i\beta_{u}(1+x)}(x-1)(1-x\cos\gamma)
=\displaystyle= 2iπ(1+cosγ)βu+π(e2iβu(1cosγ)13cosγ)βu2+2iπcosγ(e2iβu1)βu3.\displaystyle\frac{2i\pi(1+\cos\gamma)}{\beta_{u}}+\frac{\pi\left(e^{-2i\beta_{u}}(1-\cos\gamma)-1-3\cos\gamma\right)}{\beta_{u}^{2}}+\frac{2i\pi\cos\gamma(e^{-2i\beta_{u}}-1)}{\beta_{u}^{3}}.

If the exponential term contains yy, just change the integral order,

I3=\displaystyle I_{3}= 11𝑑xylyu𝑑yeiβv(1+y)(1x)(1y)η(x,y)\displaystyle-\int_{-1}^{1}dx\int_{y_{l}}^{y_{u}}dye^{i\beta_{v}(1+y)}\frac{(1-x)(1-y)}{\eta(x,y)} (35)
=\displaystyle= 11𝑑yxlxu𝑑xeiβv(1+y)(1x)(1y)η(x,y)\displaystyle-\int_{-1}^{1}dy\int_{x_{l}}^{x_{u}}dxe^{i\beta_{v}(1+y)}\frac{(1-x)(1-y)}{\eta(x,y)}
=\displaystyle= 11𝑑yeiβv(1+y)(y1)((1ycosγ)arctan(xycosγη(x,y))+η(x,y))|xlxu\displaystyle\int_{-1}^{1}dye^{i\beta_{v}(1+y)}(y-1)\left((1-y\cos\gamma)\arctan\left(\frac{x-y\cos\gamma}{\eta(x,y)}\right)+\eta(x,y)\right)\bigg{|}_{x_{l}}^{x_{u}}
=\displaystyle= π11𝑑yeiβv(1+y)(y1)(1ycosγ)\displaystyle\pi\int_{-1}^{1}dye^{i\beta_{v}(1+y)}(y-1)(1-y\cos\gamma)
=\displaystyle= 2iπ(1+cosγ)βv+π(e2iβv(1cosγ)13cosγ)βv22iπcosγ(e2iβv1)βv3,\displaystyle-\frac{2i\pi(1+\cos\gamma)}{\beta_{v}}+\frac{\pi\left(e^{2i\beta_{v}}(1-\cos\gamma)-1-3\cos\gamma\right)}{\beta_{v}^{2}}-\frac{2i\pi\cos\gamma(e^{2i\beta_{v}}-1)}{\beta_{v}^{3}},

where xl,xu=ycosγsinγ1y2x_{l},x_{u}=y\cos\gamma\mp\sin\gamma\sqrt{1-y^{2}}. The same result can be easily obtained by changing βu\beta_{u} in (34) to βv-\beta_{v}, because the integration region η(x,y)0\eta(x,y)\geq 0 is symmetric for xx and yy. To calculate the integral that includes both xx and yy in the exponential term, we change the variables {x,y}\{x,y\} to a=xsinχycosχa=x\sin\chi-y\cos\chi and b=xcosχ+ysinχb=x\cos\chi+y\sin\chi, where χ=arctan(βu/βv)\chi=\arctan(\beta_{u}/\beta_{v}). And the integration region becomes η~(a,b)0\tilde{\eta}(a,b)\geq 0. It rotates the xyxy plane by an angle χ\chi such that xβu+yβv=β(xsinχycosχ)=aβ-x\beta_{u}+y\beta_{v}=-\beta(x\sin\chi-y\cos\chi)=-a\beta, where β=βu2+βv2\beta=\sqrt{\beta_{u}^{2}+\beta_{v}^{2}}. With the new variables, the integration is

I4\displaystyle I_{4} =eiβu(1+x)+iβv(1+y)(1x)(1y)η(x,y)\displaystyle=\int e^{-i\beta_{u}(1+x)+i\beta_{v}(1+y)}\frac{(1-x)(1-y)}{\eta(x,y)} (36)
=1cosγsin2χ1cosγsin2χ𝑑abdbu𝑑beiβ(a+sinχcosχ)η~(a,b)(1asinχbcosχ)(1+acosχbsinχ).\displaystyle=\int_{-\sqrt{1-\cos\gamma\sin 2\chi}}^{\sqrt{1-\cos\gamma\sin 2\chi}}da\int_{b_{d}}^{b_{u}}db\frac{e^{-i\beta(a+\sin\chi-\cos\chi)}}{\tilde{\eta}(a,b)}(1-a\sin\chi-b\cos\chi)(1+a\cos\chi-b\sin\chi).

where

η~(a,b)=sin2γ2abcosγcos2χa2(1+cosγsin2χ)b2(1cosγsin2χ),\tilde{\eta}(a,b)=\sqrt{\sin^{2}\gamma-2ab\cos\gamma\cos 2\chi-a^{2}(1+\cos\gamma\sin 2\chi)-b^{2}(1-\cos\gamma\sin 2\chi)},

and bd,bu=acosγcos2χsinγ1cosγsin2χa21cosγsin2χb_{d},b_{u}=\frac{-a\cos\gamma\cos 2\chi\mp\sin\gamma\sqrt{1-\cos\gamma\sin 2\chi-a^{2}}}{1-\cos\gamma\sin 2\chi}, which can be obtained by solving η~(a,b)=0\tilde{\eta}(a,b)=0. The rest are similar to the previous process. η~(a,b)\tilde{\eta}(a,b) can be expressed in the form lm(bna)2l\sqrt{m-(b-na)^{2}}. In this way the integral for bb can be decomposed into three parts: (bna)2m(bna)2𝑑b\int\frac{(b-na)^{2}}{\sqrt{m-(b-na)^{2}}}db, bnam(bna)2𝑑b\int\frac{b-na}{\sqrt{m-(b-na)^{2}}}db and 1m(bna)2𝑑b\int\frac{1}{\sqrt{m-(b-na)^{2}}}db. The remaining integral with respect to aa is a product of an exponential and a polynomial. After some tedious process, the final result is

I4=\displaystyle I_{4}= πei(βuβv)βuβv[sinβs(2β2+(βu2βv2)22βs33(βu2βv2)22βs5\displaystyle\frac{\pi e^{-i(\beta_{u}-\beta_{v})}}{\beta_{u}\beta_{v}}\left[\sin\beta_{s}\left(\frac{2\beta^{2}+(\beta_{u}^{2}-\beta_{v}^{2})^{2}}{2\beta_{s}^{3}}-\frac{3(\beta_{u}^{2}-\beta_{v}^{2})^{2}}{2\beta_{s}^{5}}\right.\right. (37)
+i(βuβv)(βu+βv)2βs3+1+4βuβv2i(βuβv)2βsβs2)\displaystyle\left.+\frac{i(\beta_{u}-\beta_{v})(\beta_{u}+\beta_{v})^{2}}{\beta_{s}^{3}}+\frac{1+4\beta_{u}\beta_{v}-2i(\beta_{u}\beta_{v})}{2\beta_{s}}-\frac{\beta_{s}}{2}\right)
+cosβs(12β2βs2+3(βu2βv2)22βs4i(βuβv)(βu+βv)2βs2+i(βuβv))].\displaystyle\left.+\cos\beta_{s}\left(-\frac{1}{2}-\frac{\beta^{2}}{\beta_{s}^{2}}+\frac{3(\beta_{u}^{2}-\beta_{v}^{2})^{2}}{2\beta_{s}^{4}}-\frac{i(\beta_{u}-\beta_{v})(\beta_{u}+\beta_{v})^{2}}{\beta_{s}^{2}}+i(\beta_{u}-\beta_{v})\right)\right].

So the ORF for scalar-breathing mode is

ΓIJB(f)=18π(I1+I2+I3+I4).\Gamma^{B}_{IJ}(f)=\frac{1}{8\pi}(I_{1}+I_{2}+I_{3}+I_{4}). (38)

For the integral in the ORF for tensor mode in Eq. 14, the first term is the same as the scalar-breathing mode, and the rest term is

211𝑑xylyu𝑑y(1eiβu(1+x))(1eiβv(1+y))(1+x)(1+y)η(x,y).-2\int_{-1}^{1}dx\int_{y_{l}}^{y_{u}}dy\frac{(1-e^{-i\beta_{u}(1+x)})(1-e^{i\beta_{v}(1+y)})}{(1+x)(1+y)}\eta(x,y).

It can be divided into four parts in the previous way.

I5=\displaystyle I_{5}= 211𝑑x1(1+x)ylyu𝑑yη(x,y)(1+y)\displaystyle-2\int_{-1}^{1}dx\frac{1}{(1+x)}\int_{y_{l}}^{y_{u}}dy\frac{\eta(x,y)}{(1+y)} (39)
=\displaystyle= 211𝑑x1(1+x)ylyu𝑑y((x+cosγ)2(1+y)η(x,y)1+xcosγη(x,y)+yxcosγη(x,y))\displaystyle 2\int_{-1}^{1}dx\frac{1}{(1+x)}\int_{y_{l}}^{y_{u}}dy\left(\frac{(x+\cos\gamma)^{2}}{(1+y)\eta(x,y)}-\frac{1+x\cos\gamma}{\eta(x,y)}+\frac{y-x\cos\gamma}{\eta(x,y)}\right)
=\displaystyle= 2π(1cosγ(1+cosγ)𝑑x+2sin2γ2cosγ1(x1)1+x𝑑x)\displaystyle 2\pi\left(-\int_{-1}^{-\cos\gamma}(1+\cos\gamma)dx+2\sin^{2}\frac{\gamma}{2}\int_{-\cos\gamma}^{1}\frac{(x-1)}{1+x}dx\right)
=\displaystyle= 16πsin2γ2lnsinγ2\displaystyle 16\pi\sin^{2}\frac{\gamma}{2}\ln\sin\frac{\gamma}{2}

where the integration in second line is

(x+cosγ)2(1+y)η(x,y)𝑑y=(x+cosγ)arctan(1x2)sin2γ(1+xcosγ)(xcosγy)(x+cosγ)η(x,y),\int\frac{(x+\cos\gamma)^{2}}{(1+y)\eta(x,y)}dy=(x+\cos\gamma)\arctan\frac{(1-x^{2})\sin^{2}\gamma-(1+x\cos\gamma)(x\cos\gamma-y)}{(x+\cos\gamma)\eta(x,y)},
1+xcosγη(x,y)𝑑y=(1+xcosγ)arctanyxcosγη(x,y),\int\frac{1+x\cos\gamma}{\eta(x,y)}dy=(1+x\cos\gamma)\arctan\frac{y-x\cos\gamma}{\eta(x,y)},
yxcosγη(x,y)𝑑y=η(x,y).\int\frac{y-x\cos\gamma}{\eta(x,y)}dy=-\eta(x,y).
I6=\displaystyle I_{6}= 211𝑑xeiβu(1+x)(1+x)ylyu𝑑yη(x,y)(1+y)\displaystyle 2\int_{-1}^{1}dx\frac{e^{-i\beta_{u}(1+x)}}{(1+x)}\int_{y_{l}}^{y_{u}}dy\frac{\eta(x,y)}{(1+y)} (40)
=\displaystyle= 2π(1cosγeiβu(1+x)(1+cosγ)𝑑x2sin2γ2cosγ1eiβu(1+x)(x1)1+x𝑑x)\displaystyle 2\pi\left(\int_{-1}^{-\cos\gamma}e^{-i\beta_{u}(1+x)}(1+\cos\gamma)dx-2\sin^{2}\frac{\gamma}{2}\int_{-\cos\gamma}^{1}e^{-i\beta_{u}(1+x)}\frac{(x-1)}{1+x}dx\right)
=\displaystyle= 2iπβu(2eiβu(1cosγ)(1+cosγ)(1cosγ)e2iβu)+8πsin2γ2(Ei(2iβu)Ei(iβu(1cosγ))).\displaystyle\frac{2i\pi}{\beta_{u}}\left(2e^{-i\beta_{u}(1-\cos\gamma)}-(1+\cos\gamma)-(1-\cos\gamma)e^{-2i\beta_{u}}\right)+8\pi\sin^{2}\frac{\gamma}{2}(\text{Ei}(-2i\beta_{u})-\text{Ei}(-i\beta_{u}(1-\cos\gamma))).
I7=\displaystyle I_{7}= 211𝑑x1(1+x)ylyu𝑑yeiβv(1+y)η(x,y)(1+y)\displaystyle 2\int_{-1}^{1}dx\frac{1}{(1+x)}\int_{y_{l}}^{y_{u}}dy\frac{e^{i\beta_{v}(1+y)}\eta(x,y)}{(1+y)} (41)
=\displaystyle= 211𝑑yeiβv(1+y)(1+y)xlxu𝑑xη(x,y)(1+x)\displaystyle 2\int_{-1}^{1}dy\frac{e^{i\beta_{v}(1+y)}}{(1+y)}\int_{x_{l}}^{x_{u}}dx\frac{\eta(x,y)}{(1+x)}
=\displaystyle= 2iπβv(1+cosγ2eiβv(1cosγ)+(1cosγ)e2iβv)+8πsin2γ2(Ei(2iβv)Ei(iβv(1cosγ))).\displaystyle\frac{2i\pi}{\beta_{v}}\left(1+\cos\gamma-2e^{i\beta_{v}(1-\cos\gamma)}+(1-\cos\gamma)e^{2i\beta_{v}}\right)+8\pi\sin^{2}\frac{\gamma}{2}(\text{Ei}(2i\beta_{v})-\text{Ei}(i\beta_{v}(1-\cos\gamma))).
I8=\displaystyle I_{8}= 211𝑑xylyu𝑑yeiβu(1+x)+iβv(1+y)η(x,y)(1+x)(1+y)\displaystyle-2\int_{-1}^{1}dx\int_{y_{l}}^{y_{u}}dy\frac{e^{-i\beta_{u}(1+x)+i\beta_{v}(1+y)}\eta(x,y)}{(1+x)(1+y)} (42)
=\displaystyle= 21cosγsin2χ1cosγsin2χ𝑑abdbu𝑑beiβ(a+sinχcosχ)η~(a,b)(1+asinχ+bcosχ)(1acosχ+bsinχ).\displaystyle-2\int_{-\sqrt{1-\cos\gamma\sin 2\chi}}^{\sqrt{1-\cos\gamma\sin 2\chi}}da\int_{b_{d}}^{b_{u}}db\frac{e^{-i\beta(a+\sin\chi-\cos\chi)}\tilde{\eta}(a,b)}{(1+a\sin\chi+b\cos\chi)(1-a\cos\chi+b\sin\chi)}.

It can be simplified as the form m(bna)2pb𝑑b\int\frac{\sqrt{m-(b-na)^{2}}}{p-b}db and the rest process is trivial. The result is

I8=\displaystyle I_{8}= 4πei(βvβu)βuβv(βssinβsi(βuβv)cosβs)4iπ(eiβu(1cosγ)βueiβv(1cosγ)βv)\displaystyle\frac{4\pi e^{i(\beta_{v}-\beta_{u})}}{\beta_{u}\beta_{v}}\left(\beta_{s}\sin\beta_{s}-i(\beta_{u}-\beta_{v})\cos\beta_{s}\right)-4i\pi\left(\frac{e^{-i\beta_{u}(1-\cos\gamma)}}{\beta_{u}}-\frac{e^{i\beta_{v}(1-\cos\gamma)}}{\beta_{v}}\right) (43)
\displaystyle- 8πsin2γ2(Ei(i(βvβuβs))+Ei(i(βvβu+βs))Ei(iβu(1cosγ))Ei(iβv(1cosγ))).\displaystyle 8\pi\sin^{2}\frac{\gamma}{2}\left(\text{Ei}(i(\beta_{v}-\beta_{u}-\beta_{s}))+\text{Ei}(i(\beta_{v}-\beta_{u}+\beta_{s}))-\text{Ei}(-i\beta_{u}(1-\cos\gamma))-\text{Ei}(i\beta_{v}(1-\cos\gamma))\right).

Finally, the ORF of the tensor modulus is obtained,

ΓIJT(f)=116πi=18Ii.\Gamma^{T}_{IJ}(f)=\frac{1}{16\pi}\sum_{i=1}^{8}I_{i}. (44)

The above method can be utilized to obtain the ORF for all polarizations. It should be noted that the process for scalar-longitudinal mode is slightly different. Divide the integral into separate parts, and the separate integration of each part will get divergent results. We need to drop out the divergent parts in the integral result. And it can be proved that the divergent parts dropped out just cancel out.

References

  • (1) B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).
  • (2) B. P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017).
  • (3) R. Abbott et al., Astrophys. J. Lett. 915, L5 (2021).
  • (4) LIGO Scientific Collaboration and Virgo Collaboration, B. P. Abbott et al., Phys. Rev. X 9, 031040 (2019).
  • (5) LIGO Scientific Collaboration and Virgo Collaboration, R. Abbott et al., Phys. Rev. X 11, 021053 (2021).
  • (6) The LIGO Scientific Collaboration and the Virgo Collaboration, B. P. Abbott et al., Phys. Rev. D 100, 104036 (2019).
  • (7) C. Hogan, Mon. Not. R. Astron. Soc. 218, 629 (1986).
  • (8) C. Caprini, R. Durrer, and X. Siemens, Phys. Rev. D 82, 063511 (2010).
  • (9) V. Mukhanov, H. Feldman, and R. Brandenberger, Phys. Rep. 215, 203 (1992).
  • (10) M. S. Turner, Phys. Rev. D 55, R435 (1997).
  • (11) T. Damour and A. Vilenkin, Phys. Rev. D 71, 063510 (2005).
  • (12) X. Siemens, V. Mandic, and J. Creighton, Phys. Rev. Lett. 98, 111101 (2007).
  • (13) LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration, R. Abbott et al., Phys. Rev. D 104, 022004 (2021).
  • (14) P. Amaro-Seoane et al., arXiv:1702.00786 (2017).
  • (15) J. Luo et al., Classical Quantum Gravity 33, 035010 (2016).
  • (16) Z. Arzoumanian et al., Astrophys. J. Lett. 905, L34 (2020).
  • (17) S. Chen et al., Mon. Not. R. Astron. Soc. 508, 4970 (2021).
  • (18) B. Goncharov et al., Astrophys. J. Lett. 917, L19 (2021).
  • (19) J. Antoniadis et al., Mon. Not. R. Astron. Soc. 510, 4873 (2022).
  • (20) R. Hellings and G. Downs, Astrophys. J. 265, L39 (1983).
  • (21) K. Lee, F. A. Jenet, and R. H. Price, Astrophys. J. 685, 1304 (2008).
  • (22) S. J. Chamberlin and X. Siemens, Phys. Rev. D 85, 082001 (2012).
  • (23) J. R. Gair, J. D. Romano, and S. R. Taylor, Phys. Rev. D 92, 102003 (2015).
  • (24) A. Boîtier, S. Tiwari, and P. Jetzer, Phys. Rev. D 103, 064044 (2021).
  • (25) A. Boîtier, T. Giroud, S. Tiwari, and P. Jetzer, Phys. Rev. D 105, 084006 (2022).
  • (26) X.-Y. Lu, Y.-J. Tan, and C.-G. Shao, Phys. Rev. D 100, 044042 (2019).
  • (27) P.-P. Wang, Y.-J. Tan, W.-L. Qian, and C.-G. Shao, Phys. Rev. D 103, 063021 (2021).
  • (28) P.-P. Wang, Y.-J. Tan, W.-L. Qian, and C.-G. Shao, Phys. Rev. D 104, 023002 (2021).
  • (29) J. D. Romano et al., Living Rev. Relativity 20, 1 (2017).