This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Fully heavy pentaquarks

Hong-Tao An1,5 anht14@lzu.edu.cn    Kan Chen3,4,1,5 chenk$˙$10@pku.edu.cn    Zhan-Wei Liu1,2,5 liuzhanwei@lzu.edu.cn    Xiang Liu1,2,5 xiangliu@lzu.edu.cn 1School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
2Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
3Center of High Energy Physics, Peking University, Beijing 100871, China
4School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
5Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000, China
Abstract

Very recently, the LHCb Collaboration reported a fully charmed tetraquark state X(6900)X(6900) in the invariant mass spectrum of J/ψJ/\psi pairs. If one J/ψJ/\psi meson is replaced with a fully charmed baryon, we obtain a fully charmed pentaquark candidate. In this work, we perform a systematic study on the mass spectra of the S-wave fully heavy pentaquark QQQQQ¯QQQQ\bar{Q} in the framework of the chromomagnetic interaction model. Based on our results in two different schemes, we further investigate the decay behaviors for them. We hope that our study will be helpful in searching for such types of exotic pentaquark states in experiments in the future.

I Introduction

At the birth of the quark model GellMann:1964nj ; Zweig:1981pd ; Zweig:1964jf , Gell-Mann and Zweig indicated that hadronic states with the qqq¯q¯qq\bar{q}\bar{q} and qqqqq¯qqqq\bar{q} quark configurations should exist in nature. Such exotic states were further investigated with some phenomenological models soon afterwards. For example, Jaffe adopted the quark-bag model to study q2q¯2q^{2}\bar{q}^{2} hadrons, where the mass spectrum and dominant decay behavior were predicted Jaffe:1976ig . In 1979, Strottman calculated the masses of q4q¯q^{4}\bar{q} and q5q¯2q^{5}\bar{q}^{2} in the framework of the MIT bag model Strottman:1979qu . The name pentaquark was firstly proposed by Gignoux et al. in 1987 Gignoux:1987cn ; Lipkin:1987sk , and they found that the states P0=c¯uudsP^{0}=\bar{c}uuds and P=c¯ddusP^{-}=\bar{c}ddus with spin 1/2 and their beauty analogs are very likely to be stable pentaquarks. Since 2003, with the accumulation of experimental data, more and more charmonium-like XYZXYZ states were reported in experiments. Especially, the observation by the LHCb Collaboration confirms the existence of pentaquark PcP_{c} states Aaij:2015tga ; Aaij:2016phn ; Aaij:2019vzc . In the past twenty years, progress has been made on studying exotic multiquarks Chen:2016qju ; Liu:2019zoy ; Guo:2017jvc ; Brambilla:2019esw .

Recently, the LHCb Collaboration studied the invariant mass spectrum of J/ψJ/\psi pairs, and they reported a narrow structure around 6.9 GeV and a broad structure in the mass range 6.2-6.8 GeV. The global significance for these two structures are larger than 5σ\sigma. Such distinct structures are expected to be with the ccc¯c¯cc\bar{c}\bar{c} configuration Aaij:2020fnh .

The ccc¯c¯cc\bar{c}\bar{c} tetraquark had been discussed a lot in the literature before its discovery by the LHCb Collaboration. In Ref. Iwasaki:1975pv , a ccc¯c¯cc\bar{c}\bar{c} tetraquark was predicted at about 6.2 GeV. The ccc¯c¯cc\bar{c}\bar{c} tetraquark system was systematically investigated based on a quark-gluon model in Ref. Chao:1980dv . In Ref. Ader:1981db Ader et al. found the lowest ccc¯c¯cc\bar{c}\bar{c} state is not bound, and there are other discussions with a similar conclusion Chiu:2005ey ; Hughes:2017xie ; SilvestreBrac:1992mv ; Vega-Morales:2017pmm ; Chen:2016jxd ; Richard:2017vry .

This important signal from the LHCb Collaboration provides us a new ground to understand the nonperturbative behavior of QCD Chao:2020dml ; Richard:2020hdw ; Maiani:2020pur . The mass of the observed signal around 6.9 GeV is consistent with a previous QCD sum rule predictions Chen:2016jxd . After the LHCb Collaboration reported their results, the strong decay properties of SS- and PP-wave tetraquark states were further studied in Ref. Chen:2020xwe , and the observed structure at around 6.9 GeV is suggested to be with JPC=0+J^{PC}=0^{-+} or 1+1^{-+}. Becchi et al. have studied that the tetraquarks ccc¯c¯cc\bar{c}\bar{c} with JPC=0++J^{PC}=0^{++}, 2++2^{++} decay into four mouns and into hidden- and open-charmed mesons and provide the decay widths of fully charmed tetraquarks Becchi:2020uvq . The inner structures of the fully charmed tetraquark state were studied Guo:2020pvt . The mass spectrum of ccc¯c¯cc\bar{c}\bar{c} tetraquarks were studied in an extended relativized quark model, QCD sum rule, chromomagnetic model and so on Lu:2020cns ; Albuquerque:2020hio ; Wang:2020dlo ; Zhang:2020xtb ; Giron:2020wpx ; Faustov:2020qfm ; Gordillo:2020sgc ; Weng:2020jao . The production mechanism of ccc¯c¯cc\bar{c}\bar{c} was also studied in various schemes Wang:2020gmd ; Wang:2020wrp ; Dong:2020nwy ; Maciula:2020wri ; Karliner:2020dta ; Feng:2020riv ; Ma:2020kwb ; Zhu:2020xni ; Zhu:2020xni .

The discoveries of fully heavy tetraquark states and PcP_{c} states make one speculate that the pentaquark state with fully heavy quarks QQQQQ¯QQQQ\bar{Q} may also exist. If the mass is above the baryon-meson thresholds, the heavy pentaquark state may allow the strong decays into the corresponding two body. The study of the masses and decay properties would help to search for the heavy pentaquark states in experiments.

The strong interaction in a fully heavy multiquark state is not clear at present. The chromomagnetic interaction (CMI) model provides us with a simple picture to quantitatively understand the spectrum of multiquark states. In the framework of the CMI model DeRujula:1975qlm , the strong interaction between quarks via gluon exchange force is parametrized into effective quark masses and quark coupling parameters. Despite its simple Hamiltonian, this model can catch the basic features of hadron spectra, since the mass splittings between hadrons reflect the basic symmetries of their inner structures SilvestreBrac:1992mv . This model has been widely adopted to study the mass spectra of multiquark systems Wu:2016vtq ; Wu:2016gas ; Chen:2016ont ; Wu:2017weo ; Luo:2017eub ; Zhou:2018pcv ; Li:2018vhp ; Wu:2018xdi ; An:2019idk ; Weng:2019ynva ; Cheng:2019obk ; Liu:2016ogz ; Hogaasen:2013nca ; Cheng:2020irt ; Cheng:2020nho ; Cheng:2020wxa ; Weng:2018mmf ; Weng:2020jao ; Zhao:2014qva ; Wu:2017weo ; Zhou:2018pcv ; Li:2018vhp ; An:2019idk . In this work, we systematically study the S-wave QQQQQ¯QQQQ\bar{Q} pentaquark system within the framework of the CMI model to calculate the mass spectra and the relative partial decay widths, and find a possible stable pentaquark state.

This paper is organized as follows. In Sec. II, we introduce the CMI model and determine the relevant parameters used in the CMI model. The flavorcolorspinflavor\otimes color\otimes spin wave functions are constructed and the CMI Hamiltonian elements are calculated for the QQQQQ¯QQQQ\bar{Q} pentaquark system in Sec. III. In Sec. IV, we present the mass spectra, the mass splittings, the possible strong decay channels, and the relative partial decay widths, and also discuss the stability for the pentaquark states. A short summary is followed in Sec. V. Finally, some useful expressions are presented in the Appendix.

II The Chromomagnetic Interaction Model

The masses of the ground hadrons can be obtained by the effective Hamiltonian at quark level

H\displaystyle H =\displaystyle= imi+HCMI\displaystyle\sum_{i}m_{i}+H_{\textrm{CMI}} (1)
=\displaystyle= imii<jCijλiλjσiσj,\displaystyle\sum_{i}m_{i}-\sum_{i<j}C_{ij}\vec{\lambda}_{i}\cdot\vec{\lambda}_{j}\vec{\sigma}_{i}\cdot\vec{\sigma}_{j},

where the HCMIH_{\textrm{CMI}} denotes the Hamiltonian of the chromomagnetic interaction DeRujula:1975qlm . σi\sigma_{i} and λi\lambda_{i} are the Pauli matrices and the Gell-Mann matrices, respectively. For the antiquark, the λi\lambda_{i} should be replaced with λi-\lambda_{i}^{*}. mim_{i} is the effective mass of the ii-th constituent quark. In the above Hamiltonian, the chromoelectric interaction and color confinement effect are also incorporated in the effective quark mass mim_{i}. CijC_{ij} is the effective coupling constant between the ii-th quark and jj-th quark. The effective quark mass mim_{i} and the coupling constant CijC_{ij} can be determined from the experimental hadron masses.

As indicated in Refs. Wu:2016vtq ; Wu:2016gas ; Chen:2016ont ; Wu:2017weo ; Luo:2017eub ; Zhou:2018pcv ; Li:2018vhp ; Wu:2018xdi ; An:2019idk ; Liu:2016ogz , the predicted hadron masses obtained from Eq. (1) are generally overestimated. The main reason is that the dynamical effects inside hadrons can not simply be absorbed into the effective quark masses. Thus, in order to take such effective interaction into account, we replace the sum of the mim_{i} term in Eq. (1) with MrefHCMIrefM_{ref}-\langle H_{\rm CMI}\rangle_{ref}, where MrefM_{ref} is a reference mass scale and HCMI\langle H_{\rm CMI}\rangle is the corresponding CMI matrix element. The mass of the ground hadron can thus be written as

M=MrefHCMIref+HCMI.\displaystyle M=M_{ref}-\langle H_{\rm CMI}\rangle_{ref}+\langle H_{\rm CMI}\rangle. (2)

Here, we choose the baryon-meson thresholds as the mass scales, where the reference baryon-meson system should have the same constituent quarks with the studied pentaquark state. In this way, the dynamical effects that are not incorporated in the original approach are somehow phenomenologically compensated for this procedure Zhou:2018pcv . We label this method as the reference mass scheme.

In addition, we introduce another scheme to estimate the masses of pentaquark states. We separate the two-body chromoelectric effects out of the effective quark masses and generalize the chromomagnetic interaction model by writing the chromoelectric term explicitly Hogaasen:2013nca ; Weng:2019ynva ; Weng:2018mmf ; Weng:2020jao i.e.,

H\displaystyle H =\displaystyle= (imi0+HCEI0)+HCMI0\displaystyle\left(\sum_{i}m_{i}^{0}+H_{\textrm{CEI}}^{0}\right)+H_{\textrm{CMI}}^{0} (3)
=\displaystyle= imi0i<jAijλiλji<jvijλiλjσiσj,\displaystyle\sum_{i}m_{i}^{0}-\sum_{i<j}A_{ij}\vec{\lambda}_{i}\cdot\vec{\lambda}_{j}-\sum_{i<j}v_{ij}\vec{\lambda}_{i}\cdot\vec{\lambda}_{j}\vec{\sigma}_{i}\cdot\vec{\sigma}_{j},
=\displaystyle= 34i<jmijλiλji<jvijλiλjσiσj+\displaystyle-\frac{3}{4}\sum_{i<j}m_{ij}\vec{\lambda}_{i}\cdot\vec{\lambda}_{j}-\sum_{i<j}v_{ij}\vec{\lambda}_{i}\cdot\vec{\lambda}_{j}\vec{\sigma}_{i}\cdot\vec{\sigma}_{j}+...

where the omitted operator nullifies the color-singlet physical states, and

mij=14(mi0+mj0)+43Aij.\displaystyle m_{ij}=\frac{1}{4}(m_{i}^{0}+m_{j}^{0})+\frac{4}{3}A_{ij}. (4)

This treatment has been successfully adopted in Refs. Karliner:2014gca ; Karliner:2016zzc ; Karliner:2017qjm ; Hogaasen:2013nca ; Weng:2019ynva ; Weng:2018mmf ; Weng:2020jao . The parameters mijm_{ij} and vijv_{ij} are also determined from the experimental hadron masses. In this work, we label this method as the modified CMI model scheme.

To estimate the masses of the QQQQQ¯QQQQ\bar{Q} pentaquark states, we need some hadron masses as input to fit the effective coupling parameters CijC_{ij}, mijm_{ij}, and vijv_{ij} Tanabashi:2018oca . These conventional hadrons are listed in Table 1. Because some of the heavy flavor baryons are not yet observed, we introduce the theoretical results in Refs. Weng:2018mmf ; Godfrey:1985xj as our input, and enclose the theoretical values of masses for these baryons with parentheses in Table 1.

Table 1: The masses of conventional hadrons used for determining parameters in units of MeV Tanabashi:2018oca . The masses of not-yet-observed baryons and BcB_{c}^{*} in parentheses are taken from Refs. Weng:2018mmf and Godfrey:1985xj , and others are from experiments.
hadrons I(JP)I(J^{P}) Mass hadrons I(JP)I(J^{P}) Mass
ηc\eta_{c} 0(0)0(0^{-}) 2983.9 Ωccc\Omega_{ccc} 0(3/2+)0(3/2^{+}) (4785.6)
J/ψJ/\psi 0(1)0(1^{-}) 3096.9 Ωccb\Omega_{ccb} 0(1/2+)0(1/2^{+}) (7990.3)
ηb\eta_{b} 0(0)0(0^{-}) 9399.0 Ωccb\Omega_{ccb}^{*} 0(3/2+)0(3/2^{+}) (8021.8)
Υ\Upsilon 0(1)0(1^{-}) 9460.3 Ωbbc\Omega_{bbc} 0(1/2+)0(1/2^{+}) (11165.0)
BcB_{c} 0(0)0(0^{-}) 6274.9 Ωbbc\Omega_{bbc}^{*} 0(3/2+)0(3/2^{+}) (11196.4)
BcB_{c}^{*} 0(1)0(1^{-}) (6338.0) Ωbbb\Omega_{bbb} 0(3/2+)0(3/2^{+}) (14309.7)
Ξcc\Xi_{cc} 1/2(1/2+)1/2(1/2^{+}) 3621.4 Ξbb\Xi_{bb} 1/2(1/2+)1/2(1/2^{+}) (10168.9)
Ξcc\Xi^{*}_{cc} 1/2(3/2+)1/2(3/2^{+}) (3696.1) Ξbb\Xi^{*}_{bb} 1/2(3/2+)1/2(3/2^{+}) (10188.8)
Ωcc\Omega_{cc} 0(1/2+)0(1/2^{+}) (3731.8) Ωbb\Omega_{bb} 0(1/2+)0(1/2^{+}) (10259.0)
Ωcc\Omega^{*}_{cc} 0(3/2+)0(3/2^{+}) (3802.4) Ωbb\Omega^{*}_{bb} 0(3/2+)0(3/2^{+}) (10267.5)
Ξcb\Xi_{cb} 1/2(1/2+)1/2(1/2^{+}) (6922.3) Ωcb\Omega_{cb} 0(1/2+)0(1/2^{+}) (7010.7)
Ξcb\Xi^{\prime}_{cb} 1/2(1/2+)1/2(1/2^{+}) (6947.9) Ωcb\Omega^{\prime}_{cb} 0(1/2+)0(1/2^{+}) (7047.0)
Ξcb\Xi^{*}_{cb} 1/2(3/2+)1/2(3/2^{+}) (6973.2) Ωcb\Omega^{*}_{cb} 0(3/2+)0(3/2^{+}) (7065.7)
Table 2: Coupling parameters for the schemes in units of MeV.
The reference mass scheme:
CccC_{cc} CbbC_{bb} CcbC_{cb} Ccc¯C_{c\bar{c}} Cbb¯C_{b\bar{b}} Ccb¯C_{c\bar{b}}
3.3 1.8 2.0 5.3 2.9 3.3
The modified CMI model scheme:
mccm_{cc} mbbm_{bb} mcbm_{cb} mcc¯m_{c\bar{c}} mbb¯m_{b\bar{b}} mcb¯m_{c\bar{b}}
792.9 2382.4 1604.0 767.1 2361.2 1580.6
vccv_{cc} vbbv_{bb} vcbv_{cb} vcc¯v_{c\bar{c}} vbb¯v_{b\bar{b}} vcb¯v_{c\bar{b}}
3.5 1.9 2.0 5.3 2.9 2.9

In principle, the values of AijA_{ij} and vijv_{ij} in the modified CMI model should be different for various systems. However, it is difficult to exactly calculate these parameters for a given system without knowing the spatial wave function. Thus, they are extracted from the masses of conventional hadrons by assuming that quark-(anti)quark interactions are the same for all the hadron systems. Of course, this assumption certainly leads to uncertainties on mass estimations for multiquark states. Since the size of a multiquark state is expected to be larger than that of a conventional hadron and the distance between quark components may be larger, the attraction between quark components should be weaker. Thus, our framework may produce a little more binding.

Now we fit the effective coupling parameters CijC_{ij}, mijm_{ij}, and vijv_{ij} in the reference mass and modified CMI model schemes by applying Eq. (2) and Eq. (3), respectively. We present the obtained effective coupling parameters of QQQQQ¯QQQQ\bar{Q} pentaquark states in Table 2. One can refer to Refs. Weng:2019ynva ; Weng:2018mmf ; Liu:2019zoy for more details.

III The QQQQQ¯QQQQ\bar{Q} pentaquark wave functions and The CMI Hamiltonian

In order to systematically study the mass spectra of the QQQQQ¯QQQQ\bar{Q} pentaquark system, we need construct the wave function of QQQQQ¯QQQQ\bar{Q} pentaquark first. We exhaust all the possible color \otimes spin wave functions of pentaquark states, and combine them with the corresponding flavor wave functions. The constructed pentaquark wave functions should be constrained appropriately by the Pauli principle. After that, we can use these pentaquark wave functions to calculate the mass spectra of the corresponding pentaquark states.

The total wave function of the S-wave QQQQQ¯QQQQ\bar{Q} pentaquark can be described by the direct product of flavor, color, and spin wave functions,

ψtot=ψflavorψcolorψspin.\displaystyle\psi_{\textrm{tot}}=\psi_{flavor}\otimes\psi_{color}\otimes\psi_{spin}. (5)

Due to the Pauli principle, this wave function should be fully antisymmetric when exchanging identical quarks.

In the flavor space, we divide the QQQQQ¯QQQQ\bar{Q} pentaquark system into three groups of subsystems according to their symmetries: (1) the first four quarks are identical: the ccccc¯cccc\bar{c}, ccccb¯cccc\bar{b}, bbbbc¯bbbb\bar{c}, and bbbbb¯bbbb\bar{b} pentaquark subsystems, (2) the first three quarks are identical: the cccbc¯cccb\bar{c}, cccbb¯cccb\bar{b}, bbbcc¯bbbc\bar{c}, and bbbcb¯bbbc\bar{b} pentaquark subsystems, (3) there are two pairs of identical quarks: the ccbbc¯ccbb\bar{c} and ccbbb¯ccbb\bar{b} pentaquark subsystems.

In the color space, the color wave functions are singlets due to the color confinement. The color wave functions can be deduced from the following direct product

[3c3c3c3c]3¯c\displaystyle\left[3_{c}\otimes 3_{c}\otimes 3_{c}\otimes 3_{c}\right]\otimes\bar{3}_{c} (6)

Based on Eq. (6), the first four quarks are in three color triplet, the corresponding Young tableau [2,1,1] can be written as

1234C1,1324C2,1423C3.\displaystyle\begin{tabular}[]{|c|c|}\hline\cr 1&2\\ \cline{1-2}\cr\vrule\lx@intercol\hfil 3\hfil\lx@intercol\vrule\lx@intercol \\ \cline{1-1}\cr\vrule\lx@intercol\hfil 4\hfil\lx@intercol\vrule\lx@intercol \\ \cline{1-1}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$C_{1}$\hfil\lx@intercol\end{tabular}},\quad\begin{tabular}[]{|c|c|}\hline\cr 1&3\\ \cline{1-2}\cr\vrule\lx@intercol\hfil 2\hfil\lx@intercol\vrule\lx@intercol \\ \cline{1-1}\cr\vrule\lx@intercol\hfil 4\hfil\lx@intercol\vrule\lx@intercol \\ \cline{1-1}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$C_{2}$\hfil\lx@intercol\end{tabular}},\quad\begin{tabular}[]{|c|c|}\hline\cr 1&4\\ \cline{1-2}\cr\vrule\lx@intercol\hfil 2\hfil\lx@intercol\vrule\lx@intercol \\ \cline{1-1}\cr\vrule\lx@intercol\hfil 3\hfil\lx@intercol\vrule\lx@intercol \\ \cline{1-1}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$C_{3}$\hfil\lx@intercol\end{tabular}}. (19)

Then, by combining the antitriplet from the antiquark with the deduced three color triplets in Eq. (19), we obtain three color singlets for the QQQQQ¯QQQQ\bar{Q} pentquark system.

In the spin space, the spin state can be represented in terms of a five-dimensional Young tableau [3,2] as

12345S1,12435S2,13425S3,12534S4,13524S5.\displaystyle\begin{tabular}[]{|c|c|c|}\hline\cr 1&2&3\\ \cline{1-3}\cr 4&5\\ \cline{1-2}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$S_{1}$\hfil\lx@intercol\end{tabular}},\begin{tabular}[]{|c|c|c|}\hline\cr 1&2&4\\ \cline{1-3}\cr 3&5\\ \cline{1-2}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$S_{2}$\hfil\lx@intercol\end{tabular}},\begin{tabular}[]{|c|c|c|}\hline\cr 1&3&4\\ \cline{1-3}\cr 2&5\\ \cline{1-2}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$S_{3}$\hfil\lx@intercol\end{tabular}},\begin{tabular}[]{|c|c|c|}\hline\cr 1&2&5\\ \cline{1-3}\cr 3&4\\ \cline{1-2}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$S_{4}$\hfil\lx@intercol\end{tabular}},\begin{tabular}[]{|c|c|c|}\hline\cr 1&3&5\\ \cline{1-3}\cr 2&4\\ \cline{1-2}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$S_{5}$\hfil\lx@intercol\end{tabular}}. (35)

for the pentaquark states with total spin J=1/2J=1/2. Since particle 5 is an antiquark, we can isolate this antiquark and discuss the symmetry property of the first four quarks: 1, 2, 3, and 4 in color \otimes spin space.

When antiquark 5 is separated from the spin wave functions, the spin states represented in Young tableaus without antiquark 5 can be directly obtained from Eq. (35) as

1234S1,1243S2,1342S3,1234S4,1324S5.\displaystyle\begin{tabular}[]{|c|c|c|}\hline\cr 1&2&3\\ \cline{1-3}\cr 4\\ \cline{1-1}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$S_{1}$\hfil\lx@intercol\end{tabular}},\begin{tabular}[]{|c|c|c|}\hline\cr 1&2&4\\ \cline{1-3}\cr 3\\ \cline{1-1}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$S_{2}$\hfil\lx@intercol\end{tabular}},\begin{tabular}[]{|c|c|c|}\hline\cr 1&3&4\\ \cline{1-3}\cr 2\\ \cline{1-1}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$S_{3}$\hfil\lx@intercol\end{tabular}},\begin{tabular}[]{|c|c|}\hline\cr 1&2\\ \cline{1-2}\cr 3&4\\ \cline{1-2}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$S_{4}$\hfil\lx@intercol\end{tabular}},\begin{tabular}[]{|c|c|}\hline\cr 1&3\\ \cline{1-2}\cr 2&4\\ \cline{1-2}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$S_{5}$\hfil\lx@intercol\end{tabular}}. (51)

We can identify the spin states in Eq. (51) with the Young-Yamanouchi bases for Young tableauss [3,1] and [2,2]. The pentaquark states with total spin J=5/2,3/2J=5/2,3/2 have similar situations.

With the above preparation, we can start to construct the flavor \otimes color \otimes spin wave functions of QQQQQ¯QQQQ\bar{Q} pentaquark states Stancu:1999qr ; Park:2017jbn ; Park:2015nha ; Park:2016mez ; Park:2016cmg ; Park:2018oib . Then, based on the possible ψflavorψcolorψspin\psi_{flavor}\otimes\psi_{color}\otimes\psi_{spin} bases of the QQQQQ¯QQQQ\bar{Q} pentaquark system, we calculate the CMI matrices for the corresponding pentaquark states. In Table 7 of the Appendix, we only present the expressions of CMI Hamiltonians for the ccccc¯cccc\bar{c}, cccbc¯cccb\bar{c}, and ccbbc¯ccbb\bar{c} pentaquark subsystems. Moreover, we also get more tractable CMI matrices under the cccbc¯ccc\otimes b\bar{c} (ccbbc¯cc\otimes bb\otimes\bar{c}) bases for the cccbc¯cccb\bar{c} (ccbbc¯ccbb\bar{c}) subsystem. One can refer to Refs. Wu:2017weo ; Zhou:2018pcv for more details. As for the expressions of CMI matrices for the ccccb¯cccc\bar{b}, bbbbc¯bbbb\bar{c}, bbbbb¯bbbb\bar{b}, cccbb¯cccb\bar{b}, bbbcc¯bbbc\bar{c}, bbbcb¯bbbc\bar{b}, and ccbbb¯ccbb\bar{b} pentaquark subsystems, we can obtain them from the expressions of the ccccc¯cccc\bar{c}, cccbc¯cccb\bar{c}, and ccbbc¯ccbb\bar{c} pentaquark subsystems according to their similar symmetry properties.

IV Mass Spectra and Decay Behaviors

The interacting Hamiltonians can be diagonalized and one can thus obtain the eigenvalues as well as eigenvectors for the corresponding pentaquark systems. According to our results, we discuss the mass gaps, decay behaviors, and stabilities of all the QQQQQ¯QQQQ\bar{Q} pentaquark states.

Based on the two schemes proposed in Sec. II, we present the mass spectra for all the QQQQQ¯QQQQ\bar{Q} pentaquark subsystems in Table 3. Take the cccbc¯cccb\bar{c} pentaquark subsystem as an example. In the reference mass scheme, we use two types of baryon-meson reference systems (Ωccc+Bc\Omega_{ccc}+B_{c} and Ωccb+ηc\Omega_{ccb}+\eta_{c}) to estimate the masses of cccbc¯cccb\bar{c} states. Some results calculated from the two reference systems differ by more than a hundred MeV for the cccbc¯cccb\bar{c} pentaquark states. However, the gaps with different reference systems are still the same. Thus, if one pentaquark state were observed, its partner states may be searched for with the relative positions presented in Table 3. Such a study can be used to test our calculation. Here, we need to emphasis that as a rough estimation, the dynamics and contributions from other terms in the interacting potential are not elaborately considered in Eq. (3) Zhou:2018pcv .

The modified CMI model scheme takes the chromoelectric interaction explicitly compared to the reference mass scheme, and therefore we use the results in this scheme for the following analysis. According to the modified CMI model scheme, we present the masses of the QQQQQ¯QQQQ\bar{Q} pentaquark states and the relevant baryon-meson thresholds in Fig. 1. In Fig. 1, we label the possible total angular momenta of the S-wave baryon-meson states. When the spin of an initial pentaquark state is equal to the total angular momentum of the channel below, it may decay into that baryon-meson channel through the S wave.

Here we define the relatively ”stable” pentaquarks as those which cannot decay into the S wave baryon-meson states. We label these stable pentaquark states with “\star” in the figure and tables.

In addition to the mass spectra, the eigenvectors of pentaquark states will also provide important information about the two-body strong decay of multiquark states Jaffe:1976ig ; Strottman:1979qu ; Weng:2019ynva ; Weng:2020jao ; Zhao:2014qva ; Wang:2015epa . Thus we calculate the overlaps of wave functions between a fully heavy pentaquark state and a particular baryon \otimes meson state, and show them in Table 4.

We can further study the decay of the fully heavy pentaquark states into the baryon \otimes meson channels. Here, we take the ccccc¯cccc\bar{c} pentaquark states as an example to describe our calculation. We transform the eigenvectors of the pentaquark states into the cccccc \otimes cc¯c\bar{c} configuration. Normally, the cccccc and cc¯c\bar{c} components inside the pentaquark can be either of color-singlet or of color-octet. The former can easily dissociate into an SS-wave baryon and meson [the so-called Okubo-Zweig-Iizuka-superallowed (OZI-superallowed] decays Jaffe:1976ig ), while the latter cannot fall apart without the gluon exchange force. For simplicity, in this work, we only focus on the OZI-superallowed pentaquark decay process. The color singlet can be described by the direct product of a meson wave function and a baryon wave function. For each decay mode, the branching fraction is proportional to the square of the coefficient of the corresponding component in the eigenvectors, and the strong decay phase space.

For the two-body decay via the LL-wave process, the expression describing partial decay width can be parametrized as Weng:2019ynva ; Weng:2020jao

Γi=γiαk2L+1m2L|ci|2,\displaystyle\Gamma_{i}=\gamma_{i}\alpha\frac{k^{2L+1}}{m^{2L}}\cdot|c_{i}|^{2}, (52)

where α\alpha is an effective coupling constant, mm is the mass of the initial state, and kk is the momentum of the final states in the rest frame. cic_{i} is the coefficient related to the corresponding baryon-meson component, which is the overlap of the wave functions shown in Table 4. For the decay processes that we are interested in, (k/m)2(k/m)^{2} is of 𝒪(102)\mathcal{O}(10^{-2}) or even smaller. Thus we only consider the SS-wave decays.

γi\gamma_{i} represents other factors that contribute to the decay widths Γi\Gamma_{i}. For each process, Γi\Gamma_{i} also depends on the spatial wave functions of the initial pentaquark state and the final meson and baryon. In the quark model in the heavy quark limit, the spatial wave functions of the ground SS-wave pseudoscalar and vector meson are the same Weng:2019ynva . As a rough estimation, we introduce the following approximations to calculate the relative partial decay widths of the pentaquark states:

γΩcccJ/ψ=γΩcccηc,γΩcccBc=γΩcccBc,\displaystyle\gamma_{\Omega_{ccc}J/\psi}=\gamma_{\Omega_{ccc}\eta_{c}},\quad\gamma_{\Omega_{ccc}B_{c}^{*}}=\gamma_{\Omega_{ccc}B_{c}},
γΩbbbBc=γΩbbbBc,γΩbbbΥ=γΩbbbηb,\displaystyle\gamma_{\Omega_{bbb}B_{c}^{*}}=\gamma_{\Omega_{bbb}B_{c}},\quad\gamma_{\Omega_{bbb}\Upsilon}=\gamma_{\Omega_{bbb}\eta_{b}},
γΩcccBc=γΩcccBc,γΩcccΥ=γΩcccηb,\displaystyle\gamma_{\Omega_{ccc}B^{*}_{c}}=\gamma_{\Omega_{ccc}B_{c}},\quad\gamma_{\Omega_{ccc}\Upsilon}=\gamma_{\Omega_{ccc}\eta_{b}},
γΩbbbJ/ψ=γΩbbbηc,γΩbbbBc=γΩbbbBc,\displaystyle\gamma_{\Omega_{bbb}J/\psi}=\gamma_{\Omega_{bbb}\eta_{c}},\quad\gamma_{\Omega_{bbb}B^{*}_{c}}=\gamma_{\Omega_{bbb}B_{c}},
γΩccbJ/ψ=γΩccbηc=γΩccbJ/ψ=γΩccbηc,\displaystyle\gamma_{\Omega^{*}_{ccb}J/\psi}=\gamma_{\Omega^{*}_{ccb}\eta_{c}}=\gamma_{\Omega_{ccb}J/\psi}=\gamma_{\Omega_{ccb}\eta_{c}},
γΩccbBc=γΩccbBc=γΩccbBc=γΩccbBc,\displaystyle\gamma_{\Omega^{*}_{ccb}B^{*}_{c}}=\gamma_{\Omega^{*}_{ccb}B_{c}}=\gamma_{\Omega_{ccb}B^{*}_{c}}=\gamma_{\Omega_{ccb}B_{c}},
γΩbbcBc=γΩbbcBc=γΩbbcBc=γΩbbcBc,\displaystyle\gamma_{\Omega^{*}_{bbc}B^{*}_{c}}=\gamma_{\Omega^{*}_{bbc}B_{c}}=\gamma_{\Omega_{bbc}B^{*}_{c}}=\gamma_{\Omega_{bbc}B_{c}},
γΩbbcΥ=γΩbbcηb=γΩbbcΥ=γΩbbcηb,\displaystyle\gamma_{\Omega^{*}_{bbc}\Upsilon}=\gamma_{\Omega^{*}_{bbc}\eta_{b}}=\gamma_{\Omega_{bbc}\Upsilon}=\gamma_{\Omega_{bbc}\eta_{b}},
γΩccbBc=γΩccbBc=γΩccbBc=γΩccbBc,\displaystyle\gamma_{\Omega^{*}_{ccb}B^{*}_{c}}=\gamma_{\Omega^{*}_{ccb}B_{c}}=\gamma_{\Omega_{ccb}B^{*}_{c}}=\gamma_{\Omega_{ccb}B_{c}},
γΩbbcJ/ψ=γΩbbcηc=γΩbbcJ/ψ=γΩbbcηc,\displaystyle\gamma_{\Omega^{*}_{bbc}J/\psi}=\gamma_{\Omega^{*}_{bbc}}\eta_{c}=\gamma_{\Omega_{bbc}J/\psi}=\gamma_{\Omega_{bbc}}\eta_{c},
γΩccbΥ=γΩccbηb=γΩccbΥ=γΩccbηb,\displaystyle\gamma_{\Omega^{*}_{ccb}\Upsilon}=\gamma_{\Omega^{*}_{ccb}\eta_{b}}=\gamma_{\Omega_{ccb}\Upsilon}=\gamma_{\Omega_{ccb}\eta_{b}},
γΩbbcBc=γΩbbcBc=γΩbbcBc=γΩbbcBc.\displaystyle\gamma_{\Omega^{*}_{bbc}B^{*}_{c}}=\gamma_{\Omega^{*}_{bbc}B_{c}}=\gamma_{\Omega_{bbc}B^{*}_{c}}=\gamma_{\Omega_{bbc}B_{c}}. (53)

We present k|ci|2k\cdot|c_{i}|^{2} for each decay process in Table 5. From Table 5, one can roughly estimate the relative decay widths between different decay processes of different initial pentaquark states if neglecting the γi\gamma_{i} differences. As a rough estimation about the ratios of the decay widths, we neglect the recoil momenta of quarks in the hadrons and thus use the approximation of Eq. (52). A complete five-body study will modify the phase space factor.

Here, we divide the QQQQQ¯QQQQ\bar{Q} pentaquark system into the following three groups:

  1. A.

    The ccccQ¯cccc\bar{Q} and bbbbQ¯bbbb\bar{Q} pentaquark subsystems;

  2. B.

    The cccbQ¯cccb\bar{Q} and bbbcQ¯bbbc\bar{Q} pentaquark subsystems;

  3. C.

    The ccbbQ¯ccbb\bar{Q} pentaquark subsystem.

We discuss the mass spectra and strong decay properties of the QQQQQ¯QQQQ\bar{Q} pentaquark system group by group. For simplicity, we use Pcontent\rm P_{content}(Mass, II, JPJ^{P}) to label a specific pentaquark state.

Table 3: The estimated masses for the QQQQQ¯QQQQ\bar{Q} (Q=c,bQ=c,b) system in units of MeV. The eigenvalues of the HCMIH_{\textrm{CMI}} matrix are listed in the second column. The corresponding masses in the reference mass scheme, also labeled as the ”1st scheme”, are listed in third and/or fourth columns. The masses with the modified CMI model scheme, also labeled as the ”2nd scheme” are presented in the last column.
1st scheme 2nd scheme 1st scheme 2nd scheme
ccccc¯cccc\bar{c} ccccb¯cccc\bar{b}
JPJ^{P} Eigenvalue (Ωcccηc\Omega_{ccc}\eta_{c}) Mass JPJ^{P} Eigenvalue (ΩcccBc)(\Omega_{ccc}B_{c}) Mass
32\frac{3}{2}^{-} 33.333.3 78617861 78647864 32\frac{3}{2}^{-} 44.044.0 1113111131 1113011130
12\frac{1}{2}^{-} 118.1118.1 79467946 79497949 12\frac{1}{2}^{-} 96.896.8 1118411184 1117711177
bbbbc¯bbbb\bar{c} bbbbb¯bbbb\bar{b}
JPJ^{P} Eigenvalue (ΩbbbBc\Omega_{bbb}B_{c}) Mass JPJ^{P} Eigenvalue (Ωbbbηb)(\Omega_{bbb}\eta_{b}) Mass
32\frac{3}{2}^{-} 16.016.0 2063920639 2065220652 32\frac{3}{2}^{-} 18.118.1 2375923759 2377523775
12\frac{1}{2}^{-} 68.868.8 2069220692 2069920699 12\frac{1}{2}^{-} 64.564.5 2380523805 2382123821
cccbc¯cccb\bar{c} cccbb¯cccb\bar{b}
JPJ^{P} Eigenvalue (ΩcccBc\Omega_{ccc}B_{c}) (Ωccbηc\Omega_{ccb}\eta_{c}) Mass JPJ^{P} Eigenvalue (Ωcccηb)(\Omega_{ccc}\eta_{b}) (ΩccbBc)(\Omega_{ccb}B_{c}) Mass
52\frac{5}{2}^{-} 59.059.0 1113111131 1091610916 1112411124 52\frac{5}{2}^{-} 41.941.9 1424714247 1417214172 1424614246
32\frac{3}{2}^{-} (59.023.645.2)\begin{pmatrix}59.0\\ 23.6\\ -45.2\end{pmatrix} (111461111111042)\begin{pmatrix}11146\\ 11111\\ 11042\end{pmatrix} (109311089510826)\begin{pmatrix}10931\\ 10895\\ 10826\end{pmatrix} (111371110111038)\begin{pmatrix}11137\\ 11101\\ 11038\end{pmatrix} 32\frac{3}{2}^{-} (47.132.130.6)\begin{pmatrix}47.1\\ 32.1\\ -30.6\end{pmatrix} (142521423714174)\begin{pmatrix}14252\\ 14237\\ 14174\end{pmatrix} (141781416314100)\begin{pmatrix}14178\\ 14163\\ 14100\end{pmatrix} (143731424614182)\begin{pmatrix}14373\\ 14246\\ 14182\end{pmatrix}
12\frac{1}{2}^{-} (101.361.226.2)\begin{pmatrix}101.3\\ 61.2\\ -26.2\end{pmatrix} (111881114811061)\begin{pmatrix}11188\\ 11148\\ 11061\end{pmatrix} (109731093310845)\begin{pmatrix}10973\\ 10933\\ 10845\end{pmatrix} (111751113711048)\begin{pmatrix}11175\\ 11137\\ 11048\end{pmatrix} 12\frac{1}{2}^{-} (83.745.58.8)\begin{pmatrix}83.7\\ 45.5\\ -8.8\end{pmatrix} (142881425014196)\begin{pmatrix}14288\\ 14250\\ 14196\end{pmatrix} (142141417614122)\begin{pmatrix}14214\\ 14176\\ 14122\end{pmatrix} (144111435714238)\begin{pmatrix}14411\\ 14357\\ 14238\end{pmatrix}
bbbcc¯bbbc\bar{c} bbbcb¯bbbc\bar{b}
JPJ^{P} Eigenvalue (Ωbbbηc\Omega_{bbb}\eta_{c}) (ΩbbcBc\Omega_{bbc}B_{c}) Mass JPJ^{P} Eigenvalue (ΩbbbBc)(\Omega_{bbb}B_{c}) (Ωbbcηb)(\Omega_{bbc}\eta_{b}) Mass
52\frac{5}{2}^{-} 42.742.7 1740717407 1755217552 1740717407 52\frac{5}{2}^{-} 32.032.0 2065520655 2065920659 2064820648
32\frac{3}{2}^{-} (44.715.077.3)\begin{pmatrix}44.7\\ 15.0\\ -77.3\end{pmatrix} (174091737917287)\begin{pmatrix}17409\\ 17379\\ 17287\end{pmatrix} (175541752417432)\begin{pmatrix}17554\\ 17524\\ 17432\end{pmatrix} (175351740617291)\begin{pmatrix}17535\\ 17406\\ 17291\end{pmatrix} 32\frac{3}{2}^{-} (34.019.447.0)\begin{pmatrix}34.0\\ 19.4\\ -47.0\end{pmatrix} (206572064220576)\begin{pmatrix}20657\\ 20642\\ 20576\end{pmatrix} (206612064620580)\begin{pmatrix}20661\\ 20646\\ 20580\end{pmatrix} (206542064420578)\begin{pmatrix}20654\\ 20644\\ 20578\end{pmatrix}
12\frac{1}{2}^{-} (76.536.218.3)\begin{pmatrix}76.5\\ 36.2\\ -18.3\end{pmatrix} (174411740017346)\begin{pmatrix}17441\\ 17400\\ 17346\end{pmatrix} (175861754517491)\begin{pmatrix}17586\\ 17545\\ 17491\end{pmatrix} (175781752317399)\begin{pmatrix}17578\\ 17523\\ 17399\end{pmatrix} 12\frac{1}{2}^{-} (67.529.618.7)\begin{pmatrix}67.5\\ 29.6\\ -18.7\end{pmatrix} (206912065320604)\begin{pmatrix}20691\\ 20653\\ 20604\end{pmatrix} (206942065720608)\begin{pmatrix}20694\\ 20657\\ 20608\end{pmatrix} (206912065320607)\begin{pmatrix}20691\\ 20653\\ 20607\end{pmatrix}
ccbbc¯ccbb\bar{c} ccbbb¯ccbb\bar{b}
JPJ^{P} Eigenvalue (ΩccbBc\Omega_{ccb}B_{c}) (Ωbbcηc\Omega_{bbc}\eta_{c}) Mass JPJ^{P} Eigenvalue (Ωccbηb)(\Omega_{ccb}\eta_{b}) (ΩbbcBc)(\Omega_{bbc}B_{c}) Mass
52\frac{5}{2}^{-} 41.941.9 1437214372 1429214292 1429514295 52\frac{5}{2}^{-} 35.535.5 1748417484 1754517545 1747717477
32\frac{3}{2}^{-} (52.220.716.963.0)\begin{pmatrix}52.2\\ 20.7\\ 16.9\\ -63.0\end{pmatrix} (14383143511434814268)\begin{pmatrix}14383\\ 14351\\ 14348\\ 14268\end{pmatrix} (14302142711426714187)\begin{pmatrix}14302\\ 14271\\ 14267\\ 14187\end{pmatrix} (14375142981427414197)\begin{pmatrix}14375\\ 14298\\ 14274\\ 14197\end{pmatrix} 32\frac{3}{2}^{-} (39.524.013.140.1)\begin{pmatrix}39.5\\ 24.0\\ 13.1\\ -40.1\end{pmatrix} (17488174721746117408)\begin{pmatrix}17488\\ 17472\\ 17461\\ 17408\end{pmatrix} (17549175331752217469)\begin{pmatrix}17549\\ 17533\\ 17522\\ 17469\end{pmatrix} (17554174791745717416)\begin{pmatrix}17554\\ 17479\\ 17457\\ 17416\end{pmatrix}
12\frac{1}{2}^{-} (87.446.519.169.6)\begin{pmatrix}87.4\\ 46.5\\ -19.1\\ -69.6\end{pmatrix} (14418143771431214261)\begin{pmatrix}14418\\ 14377\\ 14312\\ 14261\end{pmatrix} (14338142971423114181)\begin{pmatrix}14338\\ 14297\\ 14231\\ 14181\end{pmatrix} (14406143181425314185)\begin{pmatrix}14406\\ 14318\\ 14253\\ 14185\end{pmatrix} 12\frac{1}{2}^{-} (73.935.815.549.0)\begin{pmatrix}73.9\\ 35.8\\ -15.5\\ -49.0\end{pmatrix} (17522174841743317399)\begin{pmatrix}17522\\ 17484\\ 17433\\ 17399\end{pmatrix} (175831754541749417460)\begin{pmatrix}17583\\ 175454\\ 17494\\ 17460\end{pmatrix} (17576174961743717405)\begin{pmatrix}17576\\ 17496\\ 17437\\ 17405\end{pmatrix}
Refer to caption Refer to caption
(a)
ccccc¯cccc\bar{c} states
(b) ccccb¯cccc\bar{b} states
Refer to caption Refer to caption
(c)
bbbbc¯bbbb\bar{c} states
(d) bbbbb¯bbbb\bar{b} states
Refer to caption Refer to caption
(e)
cccbc¯cccb\bar{c} states
(f) cccbb¯cccb\bar{b} states
Refer to caption Refer to caption
(g)
bbbcc¯bbbc\bar{c} states
(h) bbbcb¯bbbc\bar{b} states
Refer to caption Refer to caption
(i)
ccbbc¯ccbb\bar{c} states
(j) ccbbb¯ccbb\bar{b} states
Figure 1: Relative positions (units: MeV) for the ccccc¯cccc\bar{c}, ccccb¯cccc\bar{b}, bbbbc¯bbbb\bar{c}, bbbbb¯bbbb\bar{b}, cccbc¯cccb\bar{c}, cccbb¯cccb\bar{b}, bbbcc¯bbbc\bar{c}, bbbcb¯bbbc\bar{b}, ccbbc¯ccbb\bar{c}, and ccbbb¯ccbb\bar{b} pentaquark states labeled with solid lines. The dotted lines denote various S-wave baryon-meson thresholds, and the superscripts of the labels, e.g. (ΩcccJ/ψ)5/2,3/2,1/2(\Omega_{ccc}J/\psi)^{5/2,3/2,1/2}, represent the possible total angular momenta of the channels. We mark the relatively stable pentaquarks, unable to decay into the S-wave baryon-meson states, with “\star” after their masses. We mark the pentaquark whose wave function overlaps with that of one special baryon-meson state more than 90% with “\diamond” after their masses.
Table 4: The overlaps of wave functions between a fully heavy pentaquark state and a particular baryon \otimes meson state. The masses are all in units of MeV. See the caption of Fig. 1 for meanings of “\diamond” and “\star”.
ccccc¯cccc\bar{c} ccccc¯ccc\bigotimes c\bar{c} ccccb¯cccc\bar{b} ccccb¯ccc\bigotimes c\bar{b} bbbbc¯bbbb\bar{c} bbbbc¯bbb\bigotimes b\bar{c} bbbbb¯bbbb\bar{b} bbbbb¯bbb\bigotimes b\bar{b}
JPJ^{P} Mass ΩcccJ/ψ\Omega_{ccc}J/\psi Ωcccηc\Omega_{ccc}\eta_{c} Mass ΩcccBc\Omega_{ccc}B_{c}^{*} ΩcccBc\Omega_{ccc}B_{c} Mass ΩbbbBc\Omega_{bbb}B_{c}^{*} ΩbbbBc\Omega_{bbb}B_{c} Mass ΩbbbΥ\Omega_{bbb}\Upsilon Ωbbbηb\Omega_{bbb}\eta_{b}
 
14 
32\frac{3}{2}^{-} 7864 0.456 -0.354 11130 0.456 -0.354 20652 0.456 -0.354 23775 0.456 -0.354
12\frac{1}{2}^{-} 7949 -0.577 11177 0.577 20699 -0.577 23821 0.577
cccbc¯cccb\bar{c} cccbc¯ccc\bigotimes b\bar{c} ccbcc¯ccb\bigotimes c\bar{c} cccbb¯cccb\bar{b} cccbb¯ccc\bigotimes b\bar{b} ccbcb¯ccb\bigotimes c\bar{b}
JPJ^{P} Mass ΩcccBc\Omega_{ccc}B_{c}^{*} ΩcccBc\Omega_{ccc}B_{c} ΩccbJ/ψ\Omega_{ccb}^{*}J/\psi Ωccbηc\Omega_{ccb}^{*}\eta_{c} ΩccbJ/ψ\Omega_{ccb}J/\psi Ωccbηc\Omega_{ccb}\eta_{c} Mass ΩcccΥ\Omega_{ccc}\Upsilon Ωcccηb\Omega_{ccc}\eta_{b} ΩccbBc\Omega_{ccb}^{*}B_{c}^{*} ΩccbBc\Omega_{ccb}^{*}B_{c} ΩccbBc\Omega_{ccb}B_{c}^{*} ΩccbBc\Omega_{ccb}B_{c}
52\frac{5}{2}^{-} 1112411124\diamond 1.000 0.333 1424614246\diamond 1.000 0.333
32\frac{3}{2}^{-} 11137 0.812 0.236 -0.361 -0.008 0.275 14373 -0.046 -0.120 0.521 -0.352 -0.209
1110111101 0.569 -0.524 0.396 -0.279 0.102 1424614246\diamond 0.999 -0.016 0.030 0.229 -0.242
1103811038 0.130 0.818 0.095 -0.380 -0.250 1418214182\diamond\star 0.011 0.993 0.154 0.214 0.215
12\frac{1}{2}^{-} 11175 -0.543 -0.587 0.034 -0.001 14411 0.130 -0.626 0.199 0.087
11137 -0.657 0.172 -0.519 -0.039 14357 -0.206 0.126 0.571 -0.297
11048 0.523 0.180 0.316 -0.470 1423814238\diamond\star 0.969 0.004 0.068 0.355
bbbcc¯bbbc\bar{c} bbbcc¯bbb\bigotimes c\bar{c} bbcbc¯bbc\bigotimes b\bar{c} bbbcb¯bbbc\bar{b} bbbcb¯bbb\bigotimes c\bar{b} bbcbb¯bbc\bigotimes b\bar{b}
JPJ^{P} Mass ΩbbbJ/ψ\Omega_{bbb}J/\psi Ωbbbηc\Omega_{bbb}\eta_{c} ΩbbcBc\Omega_{bbc}^{*}B_{c}^{*} ΩbbcBc\Omega_{bbc}^{*}B_{c} ΩbbcBc\Omega_{bbc}B_{c}^{*} ΩbbcBc\Omega_{bbc}B_{c} Mass ΩbbbBc\Omega_{bbb}B_{c}^{*} ΩbbbBc\Omega_{bbb}B_{c} ΩbbcΥ\Omega_{bbc}^{*}\Upsilon Ωbbcηb\Omega_{bbc}^{*}\eta_{b} ΩbbcΥ\Omega_{bbc}\Upsilon Ωbbcηb\Omega_{bbc}\eta_{b}
52\frac{5}{2}^{-} 1740717407\diamond\star 1.000 0.333 2064820648\diamond 1.000 0.333
32\frac{3}{2}^{-} 17535 -0.045 -0.093 0.517 -0.358 -0.214 20654 0.689 0.225 0.429 -0.079 -0.281
1740617406\diamond 0.999 -0.009 -0.031 -0.231 0.240 20644 0.724 -0.248 0.333 -0.362 0.084
1729117291\diamond\star 0.005 0.996 -0.168 -0.203 -0.211 2057820578\diamond\star 0.026 0.942 0.038 0.291 0.249
12\frac{1}{2}^{-} 17578 -0.133 -0.631 0.169 0.106 20691 -0.505 0.598 -0.034 -0.019
17523 -0.187 0.092 0.580 -0.296 20653 -0.662 -0.156 0.522 0.033
1739917399\diamond\star 0.973 0.010 0.073 0.351 20607 0.554 -0.158 -0.311 0.470
ccbbc¯ccbb\bar{c} bbccc¯bbc\bigotimes c\bar{c} ccbbc¯ccb\bigotimes b\bar{c}
JPJ^{P} Mass ΩbbcJ/ψ\Omega^{*}_{bbc}J/\psi Ωbbcηc\Omega^{*}_{bbc}\eta_{c} ΩbbcJ/ψ\Omega_{bbc}J/\psi Ωbbcηc\Omega_{bbc}\eta_{c} ΩccbBc\Omega^{*}_{ccb}B_{c}^{*} ΩccbBc\Omega^{*}_{ccb}B_{c} ΩccbBc\Omega_{ccb}B_{c}^{*} ΩccbBc\Omega_{ccb}B_{c}
 
52\frac{5}{2}^{-} 14295 -0.577 -0.577
32\frac{3}{2}^{-} 14375 -0.070 -0.088 -0.019 0.592 -0.316 0.450
14298 0.631 -0.057 0.370 -0.138 -0.325 0.056
14274 -0.251 0.126 0.507 -0.224 0.242 0.471
14197 -0.074 0.624 -0.225 0.229 0.390 -0.128
12\frac{1}{2}^{-} 14406 0.202 -0.074 -0.025 -0.722 -0.200 -0.242
14318 0.666 0.277 0.033 -0.008 -0.348 -0.156
14253 0.225 -0.505 0.120 -0.012 0.273 -0.522
14185 0.146 0.155 0.633 0.184 -0.354 -0.248
 
ccbbb¯ccbb\bar{b} bbccb¯bbc\bigotimes c\bar{b} ccbbb¯ccb\bigotimes b\bar{b}
JPJ^{P} Mass ΩbbcBc\Omega^{*}_{bbc}B_{c}^{*} ΩbbcBc\Omega^{*}_{bbc}B_{c} ΩbbcBc\Omega_{bbc}B_{c}^{*} ΩbbcBc\Omega_{bbc}B_{c} ΩccbΥ\Omega^{*}_{ccb}\Upsilon Ωccbηb\Omega^{*}_{ccb}\eta_{b} ΩccbΥ\Omega_{ccb}\Upsilon Ωccbηb\Omega_{ccb}\eta_{b}
 
52\frac{5}{2}^{-} 1747717477\star -0.577 -0.577
32\frac{3}{2}^{-} 17554 0.601 -0.308 0.440 -0.052 -0.117 -0.008
17479 -0.082 -0.289 -0.051 0.669 -0.166 0.315
17457 0.265 -0.123 -0.492 -0.144 0.193 0.530
1741617416\star -0.184 -0.472 0.076 0.043 0.581 -0.253
12\frac{1}{2}^{-} 17576 -0.723 -0.195 -0.226 0.219 -0.080 -0.026
17496 0.038 0.317 0.150 0.675 0.281 0.088
17437 0.069 -0.365 0.438 -0.224 0.458 -0.277
17405 -0.164 0.300 0.389 0.036 0.257 0.576
Table 5: The values of k|ci|2k\cdot|c_{i}|^{2} for the ccccc¯cccc\bar{c}, ccccb¯cccc\bar{b}, bbbbc¯bbbb\bar{c}, bbbbb¯bbbb\bar{b}, cccbc¯cccb\bar{c}, cccbb¯cccb\bar{b}, bbbcc¯bbbc\bar{c}, bbbcb¯bbbc\bar{b}, ccbbc¯ccbb\bar{c}, and ccbbb¯ccbb\bar{b} pentaquark states. The masses are all in units of MeV. The decay channel is marked with “×\times” if kinetically forbidden. See the caption of Fig. 1 for meanings of “\diamond” and “\star”. One can roughly estimate the relative decay widths between different decay processes of different initial pentaquark states with this table if neglecting the γi\gamma_{i} differences.
ccccc¯cccc\bar{c} ccccc¯ccc\bigotimes c\bar{c} ccccb¯cccc\bar{b} ccccb¯ccc\bigotimes c\bar{b} bbbbc¯bbbb\bar{c} bbbbc¯bbb\bigotimes b\bar{c} bbbbb¯bbbb\bar{b} bbbbb¯bbb\bigotimes b\bar{b}
JPJ^{P} Mass ΩcccJ/ψ\Omega_{ccc}J/\psi Ωcccηc\Omega_{ccc}\eta_{c} Mass ΩcccBc\Omega_{ccc}B_{c}^{*} ΩcccBc\Omega_{ccc}B_{c} Mass ΩbbbBc\Omega_{bbb}B_{c}^{*} ΩbbbBc\Omega_{bbb}B_{c} Mass ΩbbbΥ\Omega_{bbb}\Upsilon Ωbbbηb\Omega_{bbb}\eta_{b}
 
14 
32\frac{3}{2}^{-} 7864 ×\times 74 11130 ×\times 77 20652 39 96 23775 49 108
12\frac{1}{2}^{-} 7949 167 11177 181 20699 224 23821 254
cccbc¯cccb\bar{c} cccbc¯ccc\bigotimes b\bar{c} ccbcc¯ccb\bigotimes c\bar{c} cccbb¯cccb\bar{b} cccbb¯ccc\bigotimes b\bar{b} ccbcb¯ccb\bigotimes c\bar{b}
JPJ^{P} Mass ΩcccBc\Omega_{ccc}B_{c}^{*} ΩcccBc\Omega_{ccc}B_{c} ΩccbJ/ψ\Omega_{ccb}^{*}J/\psi Ωccbηc\Omega_{ccb}^{*}\eta_{c} ΩccbJ/ψ\Omega_{ccb}J/\psi Ωccbηc\Omega_{ccb}\eta_{c} Mass ΩcccΥ\Omega_{ccc}\Upsilon Ωcccηb\Omega_{ccc}\eta_{b} ΩccbBc\Omega_{ccb}^{*}B_{c}^{*} ΩccbBc\Omega_{ccb}^{*}B_{c} ΩccbBc\Omega_{ccb}B_{c}^{*} ΩccbBc\Omega_{ccb}B_{c}
52\frac{5}{2}^{-} 1112411124\diamond 14 ×\times 1424614246\diamond 15 ×\times
32\frac{3}{2}^{-} 11137 177 36 37 0.05 36 14373 2 16 82 91 25
1110111101 ×\times 130 ×\times 50 3 1424614246\diamond ×\times 0.2 ×\times ×\times ×\times
1103811038 ×\times ×\times ×\times 54 ×\times 1418214182\diamond\star ×\times ×\times ×\times ×\times ×\times
12\frac{1}{2}^{-} 11175 156 173 0.7 0.002 14411 18 236 30 8
11137 117 9 127 1 14357 36 ×\times 147 71
11048 ×\times ×\times ×\times 125 1423814238\diamond\star ×\times ×\times ×\times ×\times
bbbcc¯bbbc\bar{c} bbbcc¯bbb\bigotimes c\bar{c} bbcbc¯bbc\bigotimes b\bar{c} bbbcb¯bbbc\bar{b} bbbcb¯bbb\bigotimes c\bar{b} bbcbb¯bbc\bigotimes b\bar{b}
JPJ^{P} Mass ΩbbbJ/ψ\Omega_{bbb}J/\psi Ωbbbηc\Omega_{bbb}\eta_{c} ΩbbcBc\Omega_{bbc}^{*}B_{c}^{*} ΩbbcBc\Omega_{bbc}^{*}B_{c} ΩbbcBc\Omega_{bbc}B_{c}^{*} ΩbbcBc\Omega_{bbc}B_{c} Mass ΩbbbBc\Omega_{bbb}B_{c}^{*} ΩbbbBc\Omega_{bbb}B_{c} ΩbbcΥ\Omega_{bbc}^{*}\Upsilon Ωbbcηb\Omega_{bbc}^{*}\eta_{b} ΩbbcΥ\Omega_{bbc}\Upsilon Ωbbcηb\Omega_{bbc}\eta_{b}
52\frac{5}{2}^{-} 1740717407\diamond\star ×\times ×\times 2064820648\diamond 77 ×\times
32\frac{3}{2}^{-} 17535 2 10 24 92 24 20654 110 40 ×\times 5 43
1740617406\diamond ×\times 0.06 ×\times ×\times ×\times 20644 ×\times 44 ×\times 92 3
1729117291\diamond\star ×\times ×\times ×\times ×\times ×\times 2057820578\diamond\star ×\times ×\times ×\times ×\times ×\times
12\frac{1}{2}^{-} 17578 17 238 22 12 20691 158 213 0.9 0.4
17523 27 ×\times 134 72 20653 93 ×\times 145 1
1739917399\diamond\star ×\times ×\times ×\times ×\times 20607 ×\times ×\times ×\times 146
ccbbc¯ccbb\bar{c} bbccc¯bbc\bigotimes c\bar{c} ccbbc¯ccb\bigotimes b\bar{c}
JPJ^{P} Mass ΩbbcJ/ψ\Omega^{*}_{bbc}J/\psi Ωbbcηc\Omega^{*}_{bbc}\eta_{c} ΩbbcJ/ψ\Omega_{bbc}J/\psi Ωbbcηc\Omega_{bbc}\eta_{c} ΩccbBc\Omega^{*}_{ccb}B_{c}^{*} ΩccbBc\Omega^{*}_{ccb}B_{c} ΩccbBc\Omega_{ccb}B_{c}^{*} ΩccbBc\Omega_{ccb}B_{c}
 
52\frac{5}{2}^{-} 14295 29 0
32\frac{3}{2}^{-} 14375 3 8 0.3 115 74 117
14298 61 2 57 ×\times 10 ×\times
14274 ×\times 11 63 ×\times ×\times ×\times
14197 ×\times 109 ×\times ×\times ×\times ×\times
12\frac{1}{2}^{-} 14406 30 5 0.7 298 30 58
14318 153 40 1 ×\times ×\times 15
14253 ×\times ×\times 10 ×\times ×\times ×\times
14185 ×\times ×\times 166 ×\times ×\times ×\times
 
ccbbb¯ccbb\bar{b} bbccb¯bbc\bigotimes c\bar{b} ccbbb¯ccb\bigotimes b\bar{b}
JPJ^{P} Mass ΩbbcBc\Omega^{*}_{bbc}B_{c}^{*} ΩbbcBc\Omega^{*}_{bbc}B_{c} ΩbbcBc\Omega_{bbc}B_{c}^{*} ΩbbcBc\Omega_{bbc}B_{c} ΩccbΥ\Omega^{*}_{ccb}\Upsilon Ωccbηb\Omega^{*}_{ccb}\eta_{b} ΩccbΥ\Omega_{ccb}\Upsilon Ωccbηb\Omega_{ccb}\eta_{b}
 
52\frac{5}{2}^{-} 1747717477\star ×\times ×\times
32\frac{3}{2}^{-} 17554 145 78 125 2 15 0.06
17479 ×\times 21 ×\times ×\times 20 49
17457 ×\times ×\times ×\times ×\times 21 68
1741617416\star ×\times ×\times ×\times ×\times ×\times ×\times
12\frac{1}{2}^{-} 17576 303 29 54 43 7 0.9
17496 ×\times ×\times 15 160 50 7
17437 ×\times ×\times ×\times ×\times ×\times 49
17405 ×\times ×\times ×\times ×\times ×\times 122

IV.1 The ccccQ¯cccc\bar{Q} and bbbbQ¯bbbb\bar{Q} pentaquark states

We first discuss the fully heavy pentaquark states with ccccc¯cccc\bar{c}, ccccb¯cccc\bar{b}, bbbbc¯bbbb\bar{c}, and bbbbb¯bbbb\bar{b} flavor configurations. The ccccb¯cccc\bar{b} and bbbbc¯bbbb\bar{c} states are the absolute exotic states which have the different flavor quantum numbers from the conventional baryons. Because of the strong symmetrical constraint from the Pauli principle, i.e., fully antisymmetric among the first four charm quarks, we only find two ccccc¯cccc\bar{c} states: an I(JP)=0(3/2)I(J^{P})=0(3/2^{-}) state, Pc4c¯\rm P_{c^{4}\bar{c}}(7864, 0, 3/23/2^{-}), and an I(JP)=0(1/2)I(J^{P})=0(1/2^{-}) state, Pc4c¯\rm P_{c^{4}\bar{c}}(7949, 0, 1/21/2^{-}). Similarly, there are also only two pentaquark states in the ccccb¯cccc\bar{b}, bbbbc¯bbbb\bar{c}, and bbbbb¯bbbb\bar{b} subsystems.

From Fig. 1 (a)-(d), the JP=3/2J^{P}=3/2^{-} states generally have smaller masses than the JP=1/2J^{P}=1/2^{-} states in the ccccQ¯cccc\bar{Q} and bbbbQ¯bbbb\bar{Q} pentaquark subsystems. Meanwhile, also from Fig. 1 (a)-(d), the masses of all the ccccQ¯cccc\bar{Q} and bbbbQ¯bbbb\bar{Q} pentaquark states are larger than the thresholds of the lowest possible baryon-meson systems. Thus, no stable pentaquark state exists in the ccccQ¯cccc\bar{Q} and bbbbQ¯bbbb\bar{Q} pentaquark subsystems. The lowest baryon-meson channels are their dominant decay modes. In the future, searching for exotic signals in these baryon-meson strong decay channels would be an interesting topic.

The ccccc¯cccc\bar{c} subsystem has one decay mode: ccccc¯ccc\otimes c\bar{c}, which could be ΩcccJ/ψ\Omega_{ccc}J/\psi or Ωcccηc\Omega_{ccc}\eta_{c}. However, each ccccc¯cccc\bar{c} state has only one decay channel from Table 5. The JP=1/2J^{P}=1/2^{-} ccccc¯cccc\bar{c} pentaquark state cannot decay into S-wave Ωcccηc\Omega_{ccc}\eta_{c} because of the constraint of angular conservation law, while the JP=3/2J^{P}=3/2^{-} one cannot decay into ΩcccJ/ψ\Omega_{ccc}J/\psi since the mass is below the threshold.

From Table 5, the ratio of decay widths between branching channels for Pb4c¯(20652,0,3/2)\rm P_{b^{4}\bar{c}}(20652,0,3/2^{-}) with the assumptions of Eq. (IV) is

ΓΩbbbBc:ΓΩbbbBc=0.4:1,\Gamma_{\Omega_{bbb}B_{c}^{*}}:\Gamma_{\Omega_{bbb}B_{c}}=0.4:1, (54)

and for Pb4b¯(23775,0,3/2)\rm P_{b^{4}\bar{b}}(23775,0,3/2^{-}) it is

ΓΩbbbΥ:ΓΩbbbηb=0.4:1.\Gamma_{\Omega_{bbb}\Upsilon}:\Gamma_{\Omega_{bbb}\eta_{b}}=0.4:1. (55)

From the above ratios, one notices that Pb4c¯(20652,0,3/2)\rm P_{b^{4}\bar{c}}(20652,0,3/2^{-}) and Pb4b¯(23775,0,3/2)\rm P_{b^{4}\bar{b}}(23775,0,3/2^{-}) have very similar decay behaviors: the ΩbbbBc\Omega_{bbb}B_{c}^{*}, ΩbbbBc\Omega_{bbb}B_{c}, ΩbbbΥ\Omega_{bbb}\Upsilon, and Ωbbbηb\Omega_{bbb}\eta_{b} are their dominant decay channels.

IV.2 The cccbQ¯cccb\bar{Q} and bbbcQ¯bbbc\bar{Q} pentaquark states

For the cccbc¯cccb\bar{c}, cccbb¯cccb\bar{b}, bbbcc¯bbbc\bar{c}, and bbbcb¯bbbc\bar{b} pentaquark states, each has six possible strong decay channels from Fig. 1 (e)-(h). For example, the cccbc¯cccb\bar{c} subsystem may decay into ΩccbJ/ψ\Omega^{*}_{ccb}J/\psi, ΩcccBc\Omega_{ccc}B_{c}^{*}, ΩccbJ/ψ\Omega_{ccb}J/\psi, ΩcccBc\Omega_{ccc}B_{c}, Ωccbηc\Omega^{*}_{ccb}\eta_{c}, and Ωccbηc\Omega_{ccb}\eta_{c}.

According to Table 4, the I(JP)=0(5/2)I(J^{P})=0(5/2^{-}) cccbb¯cccb\bar{b} pentaquark state Pc3bb¯(14246,0,5/2)\rm P_{c^{3}b\bar{b}}(14246,0,5/2^{-}) couples completely to the ΩcccΥ\Omega_{ccc}\Upsilon system, which can be written as a direct product of a baryon Ωccc\Omega_{ccc} and a meson Υ\Upsilon. Meanwhile, the Pc3bb¯(14246,0,3/2)\rm P_{c^{3}b\bar{b}}(14246,0,3/2^{-}), Pc3bb¯(14182,0,3/2)\rm P_{c^{3}b\bar{b}}(14182,0,3/2^{-}) , and Pc3bb¯(14238,0,1/2)\rm P_{c^{3}b\bar{b}}(14238,0,1/2^{-}) states couple almost completely to the ΩcccΥ\Omega_{ccc}\Upsilon, Ωcccηb\Omega_{ccc}\eta_{b}, and ΩcccΥ\Omega_{ccc}\Upsilon baryon-meson systems, respectively. This kind of pentaquark behaves similarly to the ordinary scattering state made of a baryon and meson if the inner interaction is not strong, but could also be a resonance or bound state dynamically generated by the baryon and a meson with a strong interaction. These kinds of pentaquarks deserve a more careful study with some hadron-hadron interaction models in the future. We label these states with ``"``\diamond" in the figure and tables.

Moreover, 111\otimes 1 components in the cccbb¯cccb\bar{b} subsystem are dominant and thus the lowest two pentaquarks are closed to the corresponding thresholds Ωccc\Omega_{ccc}+Υ\Upsilon and Ωccc\Omega_{ccc}+ηb\eta_{b}, respectively. It is the attractive interaction between Ωccc\Omega_{ccc}+ηb\eta_{b} that makes the binding.

For JP=3/2J^{P}=3/2^{-}, the cccbb¯cccb\bar{b} pentaquark state Pc3bb¯(14373,0,3/2)\rm P_{c^{3}b\bar{b}}(14373,\\ 0,3/2^{-}) has two cccbb¯ccc-b\bar{b} decay channels, namely ΩcccΥ\Omega_{ccc}\Upsilon and Ωcccηb\Omega_{ccc}\eta_{b}. The corresponding relative partial decay widths from Table 5 with the assumptions of Eq. (IV) are

ΓΩcccΥ:ΓΩcccηb=0.1:1.\Gamma_{\Omega_{ccc}\Upsilon}:\Gamma_{\Omega_{ccc}\eta_{b}}=0.1:1. (56)

Our results suggest that Ωcccηb\Omega_{ccc}\eta_{b} is the dominant decay channel in the cccbb¯ccc-b\bar{b} decay mode. Moreover, the Pc3bc¯(14373,0,3/2)\rm P_{c^{3}b\bar{c}}(14373,0,3/2^{-}) state also has three decay channels in the ccbcb¯ccb-c\bar{b} decay mode. Their relative partial decay widths are

ΓΩccbBc:ΓΩccbBc:ΓΩccbBc=3.3:3.7:1,\Gamma_{\Omega^{*}_{ccb}B^{*}_{c}}:\Gamma_{\Omega^{*}_{ccb}B_{c}}:\Gamma_{\Omega_{ccb}B^{*}_{c}}=3.3:3.7:1, (57)

i.e., the partial decay widths of the ΩccbBc\Omega^{*}_{ccb}B^{*}_{c} and ΩccbBc\Omega^{*}_{ccb}B_{c} channels are larger than that of the ΩccbBc\Omega_{ccb}B^{*}_{c}.

The JP=1/2J^{P}=1/2^{-} pentaquark states Pc3bb¯(14411,0,1/2)\rm P_{c^{3}b\bar{b}}(14411,0,\\ 1/2^{-}) and Pc3bb¯(14357,0,1/2)\rm P_{c^{3}b\bar{b}}(14357,0,1/2^{-}) have different decay behaviors. The Pc3bb¯(14411,0,1/2)\rm P_{c^{3}b\bar{b}}(14411,0,1/2^{-}) can decay into the ΩccbBc\Omega^{*}_{ccb}B_{c}^{*}, while this channel is kinetically forbidden for the Pc3bb¯(14357,0,1/2)\rm P_{c^{3}b\bar{b}}(14357,0,1/2^{-}) state. Meanwhile, the partial decay widths for the Pc3bb¯(14411,0,1/2)\rm P_{c^{3}b\bar{b}}(14411,0,1/2^{-}) state has

ΓΩccbBc:ΓΩccbBc:ΓΩccbBc=31:4:1,\Gamma_{\Omega^{*}_{ccb}B_{c}^{*}}:\Gamma_{\Omega_{ccb}B^{*}_{c}}:\Gamma_{\Omega_{ccb}B_{c}}=31:4:1, (58)

and for the Pc3bb¯(14357,0,1/2)\rm P_{c^{3}b\bar{b}}(14357,0,1/2^{-}) state,

ΓΩccbBc:ΓΩccbBc:ΓΩccbBc=0:2.1:1.\Gamma_{\Omega^{*}_{ccb}B_{c}^{*}}:\Gamma_{\Omega_{ccb}B^{*}_{c}}:\Gamma_{\Omega_{ccb}B_{c}}=0:2.1:1. (59)

IV.3 The ccbbQ¯ccbb\bar{Q} pentaquark states

The ccbbc¯ccbb\bar{c} (ccbbb¯ccbb\bar{b}) subsystem has eight possible rearrangement decay channels, including ΩccbBc\Omega^{*}_{ccb}B^{*}_{c} (ΩccbΥ)(\Omega^{*}_{ccb}\Upsilon), ΩccbBc\Omega_{ccb}B^{*}_{c} (ΩccbΥ)(\Omega_{ccb}\Upsilon), ΩccbBc\Omega^{*}_{ccb}B_{c} (Ωccbηb)(\Omega^{*}_{ccb}\eta_{b}), ΩccbBc\Omega_{ccb}B_{c} (Ωccbηb)(\Omega_{ccb}\eta_{b}), ΩcbbJ/ψ\Omega^{*}_{cbb}J/\psi (ΩcbbBc)(\Omega^{*}_{cbb}B^{*}_{c}), ΩcbbJ/ψ\Omega_{cbb}J/\psi (ΩcbbBc)(\Omega_{cbb}B^{*}_{c}), Ωcbbηc\Omega^{*}_{cbb}\eta_{c} (ΩcbbBc)(\Omega^{*}_{cbb}B_{c}), and Ωcbbηc\Omega_{cbb}\eta_{c} (ΩcbbBc)(\Omega_{cbb}B_{c}).

According to Fig. 1 (j), the Pc2b2b¯(17477,0,5/2)\rm P_{c^{2}b^{2}\bar{b}}(17477,0,5/2^{-}) state does not have S-wave strong decay channels, and thus this state is expected to be narrow. It can still decay into the D-wave final states of Ωccbηb\Omega_{ccb}\eta_{b} and ΩcbbBc\Omega_{cbb}B_{c}.

Meanwhile, the lowest JP=3/2J^{P}=3/2^{-} ccbbb¯ccbb\bar{b} pentaquark state Pc2b2b¯(17416,0,3/2)\rm P_{c^{2}b^{2}\bar{b}}(17416,0,3/2^{-}) is below all allowed strong decay channels. It should decay through the electromagnetic and weak interactions rather than the strong interaction. Thus, this state is considered a good stable pentaquark.

In principle, the values of AiA_{i}j and vijv_{ij} in the modified CMI model should be different for various systems. However, it is difficult to exactly calculate these parameters for a given system without knowing the spatial wave function. Thus, they are extracted from the masses of conventional hadrons by assuming that quark-(anti)quark interactions are the same for all the hadron systems. Of course, this assumption certainly leads to uncertainties on mass estimations for multiquark states. Since the size of a multiquark state is expected to be larger than that of a conventional hadron and the distance between quark components may be larger, the attraction between quark components should be weaker. Thus, our framework may produce a little more binding.

To check such an effect from the difference of couplings between conventional hadron and multiquarks, we show the change of the JP=3/2J^{P}=3/2^{-} ccbbb¯ccbb\bar{b} mass spectra by varying the chromomagnetic couplings vijv_{ij}: vij0.5vijv_{ij}\to 0.5v_{ij} or vij2vijv_{ij}\to 2v_{ij}. The results are shown in Table 6. From the table, the bigger the vijv_{ij} are, the larger the mass gaps are and the smaller the lowest-lying states are. However, the variation of vijv_{ij} from 0.520.5\sim 2 vijv_{ij} would not change the conclusions in this manuscript.

Table 6: The change of the ccbbb¯ccbb\bar{b} mass spectrum by varying the chromomagnetic couplings.
ccbbb¯ccbb\bar{b} JP=32J^{P}=\frac{3}{2}^{-}
vijv_{ij}\to 2vij2v_{ij} vijv_{ij} 0.5vijv_{ij}
mm (17583175091747317384)\begin{pmatrix}17583\\ 17509\\ 17473\\ 17384\end{pmatrix} (17554174791745717416)\begin{pmatrix}17554\\ 17479\\ 17457\\ 17416\end{pmatrix} (17542174631744917431)\begin{pmatrix}17542\\ 17463\\ 17449\\ 17431\end{pmatrix}

The lowest JP=1/2J^{P}=1/2^{-} state, Pc2b2b¯(17405,0,1/2)\rm P_{c^{2}b^{2}\bar{b}}(17405,0,1/2^{-}), can only decay into Ωccbηb\Omega_{ccb}\eta_{b}, and its mass is slightly larger than the Ωccbηb\Omega_{ccb}\eta_{b} threshold. Thus, its width should be narrow due to the small decay phase space.

For the other three JP=1/2J^{P}=1/2^{-} pentaquark states, the Pc2b2b¯(17437,0,1/2)\rm P_{c^{2}b^{2}\bar{b}}(17437,0,1/2^{-}) state only decays into Ωccbηb\Omega_{ccb}\eta_{b} in two-body strong decay. The Pc2b2b¯(17576,0,1/2)\rm P_{c^{2}b^{2}\bar{b}}(17576,0,1/2^{-}) and Pc2b2b¯(17496,0,1/2)\rm P_{c^{2}b^{2}\bar{b}}(17496,0,1/2^{-}) states both have two different decay modes: bbccb¯bbc-c\bar{b} and ccbbb¯ccb-b\bar{b}. They can decay freely into many allowed decay channels, and therefore they both have broad widths. In particular, the Pc2b2b¯(17576,0,1/2)\rm P_{c^{2}b^{2}\bar{b}}(17576,0,1/2^{-}) state has

ΓΩcbbBc:ΓΩcbbBc:ΓΩcbbBc=5.6:0.5:1,\Gamma_{\Omega^{*}_{cbb}B^{*}_{c}}:\Gamma_{\Omega_{cbb}B^{*}_{c}}:\Gamma_{\Omega_{cbb}B_{c}}=5.6:0.5:1, (60)

and

ΓΩccbΥ:ΓΩccbΥ:ΓΩccbηb=48:7.3:1.\Gamma_{\Omega^{*}_{ccb}\Upsilon}:\Gamma_{\Omega_{ccb}\Upsilon}:\Gamma_{\Omega_{ccb}\eta_{b}}=48:7.3:1. (61)

Moreover, all the JP=1/2J^{P}=1/2^{-} ccbbb¯ccbb\bar{b} pentaquark states can decay into Ωccbηb\Omega_{ccb}\eta_{b} final states, and this decay channel is crucial to finding JP=1/2J^{P}=1/2^{-} ccbbb¯ccbb\bar{b} pentaquark states.

For three unstable JP=3/2J^{P}=3/2^{-} pentaquark states, the Pc2b2b¯(17457,0,3/2)\rm P_{c^{2}b^{2}\bar{b}}(17457,0,3/2^{-}) state has a ccbbb¯ccb-b\bar{b} decay mode and the relative decay widths are

ΓΩccbηb:ΓΩccbΥ=0.3:1.\Gamma_{\Omega^{*}_{ccb}\eta_{b}}:\Gamma_{\Omega_{ccb}\Upsilon}=0.3:1. (62)

The other two JP=3/2J^{P}=3/2^{-} pentaquark states both have two decay modes: cbbcb¯cbb-c\bar{b} and ccbbb¯ccb-b\bar{b}. The Pc2b2b¯(17479,0,3/2)\rm P_{c^{2}b^{2}\bar{b}}(17479,0,3/2^{-}) only decays into the ΩbbcBc\Omega_{bbc}^{*}B_{c} final state in bbccb¯bbc-c\bar{b} decay mode, while in the ccbbb¯ccb-b\bar{b} decay mode it has

ΓΩccbηb:ΓΩccbΥ=0.4:1.\Gamma_{\Omega^{*}_{ccb}\eta_{b}}:\Gamma_{\Omega_{ccb}\Upsilon}=0.4:1. (63)

The heaviest JP=3/2J^{P}=3/2^{-} state, Pc2b2b¯(17554,0,3/2)\rm P_{c^{2}b^{2}\bar{b}}(17554,0,3/2^{-}), can easily decay into many two-body baryon-meson channels due to its large decay phase space.

V Summary

More and more exotic multiquark candidates are lastingly discovered in experiments these past few years Chen:2016qju ; Liu:2019zoy ; Guo:2017jvc ; Brambilla:2019esw . The Pc(4312)P_{c}(4312), Pc(4440)P_{c}(4440), and Pc(4457)P_{c}(4457) states and the fully charmed tetraquark candidate X(6900)X(6900) reported from the LHCb Collaboration motivate us to discuss the possible pentaquark states with QQQQQ¯QQQQ\bar{Q} configuration in the framework of the CMI model.

In this work, we first construct the wave functions ψflavorψcolorψspin\psi_{flavor}\otimes\psi_{color}\otimes\psi_{spin} based on the SU(2) and SU(3) symmetry and the Pauli Principle. Then, we extract the effective coupling constants from the conventional hadrons. After that, we systematically calculate the CMI Hamiltonian for the QQQQQ¯QQQQ\bar{Q} pentaquark states and obtain the corresponding mass spectra in the reference system scheme. In the modified CMI scheme, the effect of chromoelectric interaction is explicitly added.

The mass spectra is studied for the QQQQQ¯QQQQ\bar{Q} pentaquark system. In addition, we also provide the eigenvectors to extract useful information about the decay properties for the QQQQQ¯QQQQ\bar{Q} pentaquark systems. The overlaps for the pentaquark state with a particular baryon \otimes meson state are obtained. Finally, we analyze the stability, possible quark rearrangement decay channels, and relative partial decay widths for all the QQQQQ¯QQQQ\bar{Q} pentaquark states.

According to our calculations and analysis, we only find two ccccc¯cccc\bar{c} states due to the constraint from Pauli principle: a JP=3/2J^{P}=3/2^{-} state, Pc4c¯\rm P_{c^{4}\bar{c}}(7864, 0, 3/23/2^{-}), and a JP=1/2J^{P}=1/2^{-} state Pc4c¯\rm P_{c^{4}\bar{c}}(7949, 0, 1/21/2^{-}), and there exists a no ground JP=5/2J^{P}=5/2^{-} ccccc¯cccc\bar{c} pentaquark state. The same situation also happens in the ccccb¯cccc\bar{b}, bbbbc¯bbbb\bar{c}, and bbbbb¯bbbb\bar{b} subsystems. From the obtained tables and figures for the QQQQQ¯QQQQ\bar{Q} pentaquark system, we find one good stable candidate: the Pc2b2b¯(17416,0,3/2)\rm P_{c^{2}b^{2}\bar{b}}(17416,0,3/2^{-}) state. It lies only below the allowable decay channel Ωccbηb\Omega_{ccb}^{*}\eta_{b} 4 MeV, and thus can only decay through electromagnetic or weak interactions. Meanwhile, the Pc2b2b¯(17477,0,5/2)\rm P_{c^{2}b^{2}\bar{b}}(17477,0,5/2^{-}) state is also a relatively stable pentaquark since it is lower than all possible S-wave strong decay channels. It can still decay into Ωccbηb\Omega_{ccb}\eta_{b} and ΩcbbBc\Omega_{cbb}B_{c} final states via the DD-wave.

Our systematic study can provide some understanding toward these pentaquark systems. We find some fully heavy pentaquark states can be very narrow and stable. If they do exist, identifying them may not be difficult from their exotic quantum numbers and masses. The X(6900)X(6900) is found in the invariant mass spectrum of J/ψJ/\psi pairs, where two pairs of cc¯c\bar{c} are produced. In our calculation, the lowest fully heavy pentaquark state is the JP=3/2J^{P}=3/2^{-} ccccc¯cccc\bar{c} state. To produce the lightest ccccc¯cccc\bar{c} pentaquark state, one needs to simultaneously produce at least four pairs of cc¯c\bar{c}, and this seems to be a difficult task in the experiment.

In Ref. SilvestreBrac:1992mv , the energies of diquonia Q2Q¯2Q^{2}\bar{Q}^{2} are systemically calculated and compared to the threshold energies with orbital angular momentum L=0L=0 within the framework including the chromomagnetic interactions. As pointed out there and in other references Leandri:1989su ; SilvestreBrac:1992yg ; SilvestreBrac:1993sb , a more detailed study is further needed to confirm the bound or resonant states obtained with the chromomagnetic interaction model. Our results should similarly be checked in the future with a more serious five-body estimate in the quark model.

In conclusion, we give a preliminary prediction about the mass spectra of fully heavy pentaquarks. More detailed dynamical investigations on the QQQQQ¯QQQQ\bar{Q} pentaquark systems are still needed. We hope that our study may inspire theorists and experimentalists to pay attention to this kind of pentaquark system.

ACKNOWLEDGMENTS

This work is supported by the China National Funds for Distinguished Young Scientists under Grant No. 11825503, the National Key Research and Development Program of China under Contract No. 2020YFA0406400, the 111 Project under Grant No. B20063, and the National Natural Science Foundation of China under Grant No. 12047501. This project is also supported by the National Natural Science Foundation of China under Grants No. 11705072 and No. 11965016, and the CAS Interdisciplinary Innovation Team.

Appendix A Some expressions in detail

Table 7: The expressions of CMI Hamiltonians for ccccc¯cccc\bar{c}, cccbc¯cccb\bar{c}, and ccbbc¯ccbb\bar{c} pentaquark subsystems. The JJ represents the spin of the pentaquark states.

JJ The expressions of CMI Hamiltonian for ccccc¯cccc\bar{c} subsystems J=3/2J=3/2 563Ccc163Ccc¯\frac{56}{3}C_{cc}-\frac{16}{3}C_{c\bar{c}} J=1/2J=1/2 563Ccc+323Ccc¯\frac{56}{3}C_{cc}+\frac{32}{3}C_{c\bar{c}} JJ The expressions of CMI Hamiltonian for cccbc¯cccb\bar{c} subsystems J=5/2J=5/2 8Ccc+163Cbc¯8C_{cc}+\frac{16}{3}C_{b\bar{c}} J=3/2J=3/2 ((283Ccc+283Ccb4Ccc¯43Cbc¯)223(Ccc+Ccb+Ccb¯Cbc¯)853(Ccc¯Cbc¯)223(Ccc+Ccb+Ccb¯Cbc¯)(263Ccc6Ccb+23Ccb¯2Cbc¯)4103(Ccc¯+2Cbc¯)853(Ccc¯Cbc¯)4103(Ccc¯+2Cbc¯)8(CccCbc¯))\begin{pmatrix}\begin{pmatrix}\frac{28}{3}C_{cc}+\frac{28}{3}C_{cb}\\ -4C_{c\bar{c}}-\frac{4}{3}C_{b\bar{c}}\end{pmatrix}&\frac{2\sqrt{2}}{3}\begin{pmatrix}-C_{cc}+C_{cb}\\ +C_{c\bar{b}}-C_{b\bar{c}}\end{pmatrix}&-\frac{8\sqrt{5}}{3}(C_{c\bar{c}}-C_{b\bar{c}})\\ \frac{2\sqrt{2}}{3}\begin{pmatrix}-C_{cc}+C_{cb}\\ +C_{c\bar{b}}-C_{b\bar{c}}\end{pmatrix}&\begin{pmatrix}\frac{26}{3}C_{cc}-6C_{cb}\\ +\frac{2}{3}C_{c\bar{b}}-2C_{b\bar{c}}\end{pmatrix}&\frac{4\sqrt{10}}{3}(C_{c\bar{c}}+2C_{b\bar{c}})\\ -\frac{8\sqrt{5}}{3}(C_{c\bar{c}}-C_{b\bar{c}})&\frac{4\sqrt{10}}{3}(C_{c\bar{c}}+2C_{b\bar{c}})&8(C_{cc}-C_{b\bar{c}})\end{pmatrix} J=1/2J=1/2 ((283Ccc+283Ccb+8Ccc¯+83Cbc¯)223(Ccc+Ccb2Ccc¯+2Cbc¯)223(Ccc¯Cbc¯)223(Ccc+Ccb2Ccc¯+2Cbc¯)(263Ccc6Ccb43Ccc¯+4Cbc¯)23(13Ccc¯Cbc¯)223(Ccc¯Cbc¯)23(13Ccc¯Cbc¯)10(CccCcb))\begin{pmatrix}\begin{pmatrix}\frac{28}{3}C_{cc}+\frac{28}{3}C_{cb}\\ +8C_{c\bar{c}}+\frac{8}{3}C_{b\bar{c}}\end{pmatrix}&\frac{2\sqrt{2}}{3}\begin{pmatrix}-C_{cc}+C_{cb}\\ -2C_{c\bar{c}}+2C_{b\bar{c}}\end{pmatrix}&\frac{2\sqrt{2}}{3}(C_{c\bar{c}}-C_{b\bar{c}})\\ \frac{2\sqrt{2}}{3}\begin{pmatrix}-C_{cc}+C_{cb}\\ -2C_{c\bar{c}}+2C_{b\bar{c}}\end{pmatrix}&\begin{pmatrix}\frac{26}{3}C_{cc}-6C_{cb}\\ -\frac{4}{3}C_{c\bar{c}}+4C_{b\bar{c}}\end{pmatrix}&-\frac{2}{3}(13C_{c\bar{c}}-C_{b\bar{c}})\\ \frac{2\sqrt{2}}{3}(C_{c\bar{c}}-C_{b\bar{c}})&-\frac{2}{3}(13C_{c\bar{c}}-C_{b\bar{c}})&10(C_{cc}-C_{cb})\end{pmatrix}   JJ The expressions of CMI Hamiltonian for ccbbc¯ccbb\bar{c} subsystems J=5/2J=5/2 83(Ccc+Cbb+Ccb+Ccb¯+Cbc¯)\frac{8}{3}(C_{cc}+C_{bb}+C_{cb}+C_{c\bar{b}}+C_{b\bar{c}}) J=3/2J=3/2 ((289Ccc+289Cbb+1129Ccb83Ccc¯83Cbc¯)2323(CccCbb2Ccc¯+2Cbc¯)229(Ccc+Cbb+2Ccb)16353(Ccc¯Cbc¯)2323(CccCbb2Ccc¯+2Cbc¯)(103Ccc+103Cbb4Ccb23Ccc¯23Cbc¯)233(CnnCbb+7Ccc¯7Cbc¯)210(Ccc¯+Cbc¯)229(Ccc+Cbb+2Ccb)233(CnnCbb+7Ccc¯7Cbc¯)(269Ccc+269Cbb1009Ccb+103Ccc¯+103Cbc¯)23103(Ccc¯Cbc¯)16353(Ccc¯Cbc¯)210(Ccc¯+Cbc¯)23103(Ccc¯Cbc¯)(83Ccc+83Cbb+83Ccb4Ccc¯4Cbc¯))\begin{pmatrix}\begin{pmatrix}\frac{28}{9}C_{cc}+\frac{28}{9}C_{bb}+\frac{112}{9}C_{cb}\\ -\frac{8}{3}C_{c\bar{c}}-\frac{8}{3}C_{b\bar{c}}\end{pmatrix}&\frac{2}{3}\sqrt{\frac{2}{3}}\begin{pmatrix}C_{cc}-C_{bb}\\ -2C_{c\bar{c}}+2C_{b\bar{c}}\end{pmatrix}&-\frac{2\sqrt{2}}{9}\begin{pmatrix}C_{cc}+C_{bb}+2C_{cb}\end{pmatrix}&\frac{16}{3}\sqrt{\frac{5}{3}}(C_{c\bar{c}}-C_{b\bar{c}})\\ \frac{2}{3}\sqrt{\frac{2}{3}}\begin{pmatrix}C_{cc}-C_{bb}\\ -2C_{c\bar{c}}+2C_{b\bar{c}}\end{pmatrix}&\begin{pmatrix}\frac{10}{3}C_{cc}+\frac{10}{3}C_{bb}-4C_{cb}\\ -\frac{2}{3}C_{c\bar{c}}-\frac{2}{3}C_{b\bar{c}}\end{pmatrix}&-\frac{2}{3\sqrt{3}}\begin{pmatrix}C_{nn}-C_{bb}+\\ 7C_{c\bar{c}}-7C_{b\bar{c}}\end{pmatrix}&2\sqrt{10}(C_{c\bar{c}}+C_{b\bar{c}})\\ -\frac{2\sqrt{2}}{9}\begin{pmatrix}C_{cc}+C_{bb}+2C_{cb}\end{pmatrix}&-\frac{2}{3\sqrt{3}}\begin{pmatrix}C_{nn}-C_{bb}+\\ 7C_{c\bar{c}}-7C_{b\bar{c}}\end{pmatrix}&\begin{pmatrix}\frac{26}{9}C_{cc}+\frac{26}{9}C_{bb}-\frac{100}{9}C_{cb}\\ +\frac{10}{3}C_{c\bar{c}}+\frac{10}{3}C_{b\bar{c}}\end{pmatrix}&-\frac{2}{3}\sqrt{\frac{10}{3}}(C_{c\bar{c}}-C_{b\bar{c}})\\ \frac{16}{3}\sqrt{\frac{5}{3}}(C_{c\bar{c}}-C_{b\bar{c}})&2\sqrt{10}(C_{c\bar{c}}+C_{b\bar{c}})&-\frac{2}{3}\sqrt{\frac{10}{3}}(C_{c\bar{c}}-C_{b\bar{c}})&\begin{pmatrix}\frac{8}{3}C_{cc}+\frac{8}{3}C_{bb}+\frac{8}{3}C_{cb}\\ -4C_{c\bar{c}}-4C_{b\bar{c}}\end{pmatrix}\end{pmatrix} J=1/2J=1/2 ((289Ccc+289Cbb+1129Ccb+163Ccc¯+163Cbc¯)2323(CccCbb+4Ccc¯4Cbc¯)229(Ccc+Cbb+2Ccb)4323(Ccc¯Cbc¯)2323(CccCbb+4Ccc¯4Cbc¯)(103Ccc+103Cbb4Ccb+43Ccc¯+43Cbc¯)233(CccCbb14Ccc¯+14Cbc¯)4(Ccc¯+Cbc¯)229(Ccc+Cbb+2Ccb)233(CccCbb14Ccc¯+14Cbc¯)(269Ccc+269Cbb1009Ccb203Ccc¯203Cbc¯)2833(Ccc¯Cbc¯)4323(Ccc¯Cbc¯)4(Ccc¯+Cbc¯)2833(Ccc¯Cbc¯)83(Ccc+Cbb2Ccb))\begin{pmatrix}\begin{pmatrix}\frac{28}{9}C_{cc}+\frac{28}{9}C_{bb}+\frac{112}{9}C_{cb}\\ +\frac{16}{3}C_{c\bar{c}}+\frac{16}{3}C_{b\bar{c}}\end{pmatrix}&\frac{2}{3}\sqrt{\frac{2}{3}}\begin{pmatrix}C_{cc}-C_{bb}\\ +4C_{c\bar{c}}-4C_{b\bar{c}}\end{pmatrix}&-\frac{2\sqrt{2}}{9}(C_{cc}+C_{bb}+2C_{cb})&-\frac{4}{3}\sqrt{\frac{2}{3}}(C_{c\bar{c}}-C_{b\bar{c}})\\ \frac{2}{3}\sqrt{\frac{2}{3}}\begin{pmatrix}C_{cc}-C_{bb}\\ +4C_{c\bar{c}}-4C_{b\bar{c}}\end{pmatrix}&\begin{pmatrix}\frac{10}{3}C_{cc}+\frac{10}{3}C_{bb}-4C_{cb}\\ +\frac{4}{3}C_{c\bar{c}}+\frac{4}{3}C_{b\bar{c}}\end{pmatrix}&-\frac{2}{3\sqrt{3}}\begin{pmatrix}C_{cc}-C_{bb}-14\\ C_{c\bar{c}}+14C_{b\bar{c}}\end{pmatrix}&-4(C_{c\bar{c}}+C_{b\bar{c}})\\ -\frac{2\sqrt{2}}{9}(C_{cc}+C_{bb}+2C_{cb})&-\frac{2}{3\sqrt{3}}\begin{pmatrix}C_{cc}-C_{bb}-14\\ C_{c\bar{c}}+14C_{b\bar{c}}\end{pmatrix}&\begin{pmatrix}\frac{26}{9}C_{cc}+\frac{26}{9}C_{bb}-\frac{100}{9}C_{cb}\\ -\frac{20}{3}C_{c\bar{c}}-\frac{20}{3}C_{b\bar{c}}\end{pmatrix}&\frac{28}{3\sqrt{3}}(C_{c\bar{c}}-C_{b\bar{c}})\\ -\frac{4}{3}\sqrt{\frac{2}{3}}(C_{c\bar{c}}-C_{b\bar{c}})&-4(C_{c\bar{c}}+C_{b\bar{c}})&\frac{28}{3\sqrt{3}}(C_{c\bar{c}}-C_{b\bar{c}})&\frac{8}{3}(C_{cc}+C_{bb}-2C_{cb})\end{pmatrix}

References

  • (1) M. Gell-Mann, “A Schematic Model of Baryons and Mesons,” Phys. Lett. 8, 214-215 (1964).
  • (2) G. Zweig, “An SU(3) model for strong interaction symmetry and its breaking. Version 1,” CERN-TH-401.
  • (3) G. Zweig, “An SU(3) model for strong interaction symmetry and its breaking. Version 2,” CERN-TH-412.
  • (4) R. L. Jaffe, “Multi-Quark Hadrons. 1. The Phenomenology of (2 Quark 2 anti-Quark) Mesons,” Phys. Rev. D 15, 267 (1977).
  • (5) D. Strottman, “Multi - Quark Baryons and the MIT Bag Model,” Phys. Rev. D 20, 748-767 (1979).
  • (6) C. Gignoux, B. Silvestre-Brac and J. M. Richard, “Possibility of Stable Multi - Quark Baryons,” Phys. Lett. B 193 (1987), 323
  • (7) H. J. Lipkin, “New Possibilities for Exotic Hadrons: Anticharmed Strange Baryons,” Phys. Lett. B 195, 484-488 (1987).
  • (8) R. Aaij et al. [LHCb Collaboration], “Observation of J/ψpJ/\psi p Resonances Consistent with Pentaquark States in Λb0J/ψKp\Lambda_{b}^{0}\to J/\psi K^{-}p Decays,” Phys. Rev. Lett.  115, 072001 (2015).
  • (9) R. Aaij et al. [LHCb Collaboration], “Model-independent evidence for J/ψpJ/\psi p contributions to Λb0J/ψpK\Lambda_{b}^{0}\to J/\psi pK^{-} decays,” Phys. Rev. Lett.  117, no. 8, 082002 (2016) [arXiv:1604.05708 [hep-ex]].
  • (10) R. Aaij et al. [LHCb Collaboration], “Observation of a narrow pentaquark state, Pc(4312)+P_{c}(4312)^{+}, and of two-peak structure of the Pc(4450)+P_{c}(4450)^{+},” Phys. Rev. Lett.  122, no. 22, 222001 (2019).
  • (11) F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao and B. S. Zou, “Hadronic molecules,” Rev. Mod. Phys. 90, no.1, 015004 (2018).
  • (12) N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, “The XYZXYZ states: experimental and theoretical status and perspectives,” Phys. Rept. 873, 1-154 (2020).
  • (13) H. X. Chen, W. Chen, X. Liu and S. L. Zhu, “The hidden-charm pentaquark and tetraquark states,” Phys. Rept. 639, 1-121 (2016).
  • (14) Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, “Pentaquark and Tetraquark states,” Prog. Part. Nucl. Phys. 107 (2019), 237-320.
  • (15) R. Aaij et al. [LHCb], “Observation of structure in the J/ψJ/\psi -pair mass spectrum,” Sci. Bull. 65 (2020) no.23, 1983-1993.
  • (16) Y. Iwasaki, “A Possible Model for New Resonances-Exotics and Hidden Charm,” Prog. Theor. Phys. 54, 492 (1975).
  • (17) K. T. Chao, “The (cccc)-(cc¯\bar{cc}) (Diquark-Anti-Diquark) States in e+ee^{+}e^{-} Annihilation,” Z. Phys. C 7, 317 (1981).
  • (18) J. P. Ader, J. M. Richard and P. Taxil, “Do nappow heavy multiquark states exist?” Phys. Rev. D 25, 2370 (1982).
  • (19) T. W. Chiu et al. [TWQCD Collaboration], “Y(4260)Y(4260) on the lattice,” Phys. Rev. D 73, 094510 (2006).
  • (20) C. Hughes, E. Eichten and C. T. H. Davies, “Searching for beauty-fully bound tetraquarks using lattice nonrelativistic QCD,” Phys. Rev. D 97 (2018) no.5, 054505.
  • (21) B. Silvestre-Brac, “Systematics of Q2Q^{2} (anti-Q2Q^{2}) systems with a chromomagnetic interaction,” Phys. Rev. D 46, 2179 (1992).
  • (22) R. Vega-Morales, “Diagnosing 2+Υ2\ell+\Upsilon resonances at the LHC,” arXiv:1710.02738 [hep-ph].
  • (23) W. Chen, H. X. Chen, X. Liu, T. G. Steele and S. L. Zhu, “Hunting for exotic doubly hidden-charm/bottom tetraquark states,” Phys. Lett. B 773, 247 (2017).
  • (24) J. M. Richard, A. Valcarce and J. Vijande, “String dynamics and metastability of all-heavy tetraquarks,” Phys. Rev. D 95, no. 5, 054019 (2017).
  • (25) K. T. Chao and S. L. Zhu, “The possible tetraquark states ccc¯c¯cc\bar{c}\bar{c} observed by the LHCb experiment,” Sci. Bull. 65 (2020) no.23, 1952-1953.
  • (26) L. Maiani, “J/\psi-pair resonances by LHCb: a new revolution?,” [arXiv:2008.01637 [hep-ph]].
  • (27) J. M. Richard, “About the J/ψJ/\psi J/ψJ/\psi peak of LHCb: fully-charmed tetraquark?,” Sci. Bull. 65 (2020), 1954-1955.
  • (28) H. X. Chen, W. Chen, X. Liu and S. L. Zhu, “Strong decays of fully-charm tetraquarks into di-charmonia,” Sci. Bull. 65 (2020), 1994-2000.
  • (29) C. Becchi, J. Ferretti, A. Giachino, L. Maiani and E. Santopinto, Phys. Lett. B 811 (2020), 135952.
  • (30) Z. H. Guo and J. A. Oller, “Insights into the inner structures of the fully charmed tetraquark state X(6900)X(6900),” [arXiv:2011.00978 [hep-ph]].
  • (31) Q. F. Lü, D. Y. Chen and Y. B. Dong, “Masses of fully heavy tetraquarks QQQ¯Q¯QQ{\bar{Q}}{\bar{Q}} in an extended relativized quark model,” Eur. Phys. J. C 80, no.9, 871 (2020).
  • (32) R. M. Albuquerque, S. Narison, A. Rabemananjara, D. Rabetiarivony and G. Randriamanatrika, “Doubly-hidden scalar heavy molecules and tetraquarks states from QCD at NLO,” Phys. Rev. D 102 (2020) no.9, 094001.
  • (33) Z. G. Wang, “Revisit the tetraquark candidates in the J/ψJ/ψJ/\psi J/\psi mass spectrum,” Int. J. Mod. Phys. A 36 (2021), 2150014.
  • (34) J. R. Zhang, “0+0^{+} fully-charmed tetraquark states,” Phys. Rev. D 103 (2021) no.1, 014018.
  • (35) R. N. Faustov, V. O. Galkin and E. M. Savchenko, “Masses of the QQQ¯Q¯QQ\bar{Q}\bar{Q} tetraquarks in the relativistic diquark–antidiquark picture,” Phys. Rev. D 102 (2020), 114030.
  • (36) J. F. Giron and R. F. Lebed, “Simple spectrum of cc¯cc¯c\bar{c}c\bar{c} states in the dynamical diquark model,” Phys. Rev. D 102 (2020) no.7, 074003.
  • (37) M. C. Gordillo, F. De Soto and J. Segovia, “Diffusion Monte Carlo calculations of fully-heavy multiquark bound states,” Phys. Rev. D 102 (2020) no.11, 114007.
  • (38) X. Z. Weng, X. L. Chen, W. Z. Deng and S. L. Zhu, “Systematics of fully heavy tetraquarks,” Phys. Rev. D 103 (2021), 034001.
  • (39) X. Y. Wang, Q. Y. Lin, H. Xu, Y. P. Xie, Y. Huang and X. Chen, “Discovery potential for the LHCb fully-charm tetraquark X(6900)X(6900) state via p¯p\bar{p}p annihilation reaction,” Phys. Rev. D 102 (2020), 116014.
  • (40) J. Z. Wang, D. Y. Chen, X. Liu and T. Matsuki, “Producing fully-charm structures in the J/ψJ/\psi-pair invariant mass spectrum,” [arXiv:2008.07430 [hep-ph]].
  • (41) X. K. Dong, V. Baru, F. K. Guo, C. Hanhart and A. Nefediev, “Coupled-channel interpretation of the LHCb double-J/ψJ/\psi spectrum and hints of a new state near J/ψJ/ψJ/\psi J/\psi threshold,” [arXiv:2009.07795 [hep-ph]].
  • (42) F. Feng, Y. Huang, Y. Jia, W. L. Sang, X. Xiong and J. Y. Zhang, “Fragmentation production of fully-charmed tetraquarks at LHC,” [arXiv:2009.08450 [hep-ph]].
  • (43) Y. Q. Ma and H. F. Zhang, “Exploring the Di-J/ψJ/\psi Resonances around 6.9 GeV\mathrm{GeV} Based on abab initioinitio Perturbative QCD,” [arXiv:2009.08376 [hep-ph]].
  • (44) R. Zhu, “Fully-heavy tetraquark spectra and production at hadron colliders,” [arXiv:2010.09082 [hep-ph]].
  • (45) M. Karliner and J. L. Rosner, “Interpretation of structure in the di- J/ψJ/\psi spectrum,” Phys. Rev. D 102 (2020) no.11, 114039.
  • (46) R. Maciuła, W. Schäfer and A. Szczurek, “On the mechanism of T4cT_{4c}(6900) tetraquark production,” Phys. Lett. B 812 (2021), 136010.
  • (47) A. De Rujula, H. Georgi and S. L. Glashow, “Hadron Masses in a Gauge Theory,” Phys. Rev. D 12 (1975), 147-162.
  • (48) S. Q. Luo, K. Chen, X. Liu, Y. R. Liu and S. L. Zhu, “Exotic tetraquark states with the qqQ¯Q¯qq\bar{Q}\bar{Q} configuration,” Eur. Phys. J. C 77, no.10, 709 (2017).
  • (49) K. Chen, X. Liu, J. Wu, Y. R. Liu and S. L. Zhu, “Triply heavy tetraquark states with the QQQ¯q¯QQ\bar{Q}\bar{q} configuration,” Eur. Phys. J. A 53, no. 1, 5 (2017).
  • (50) J. Wu, Y. R. Liu, K. Chen, X. Liu and S. L. Zhu, “Hidden-charm pentaquarks and their hidden-bottom and BcB_{c}-like partner states,” Phys. Rev. D 95, no. 3, 034002 (2017).
  • (51) Q. S. Zhou, K. Chen, X. Liu, Y. R. Liu and S. L. Zhu, “Surveying exotic pentaquarks with the typical QQqqq¯QQqq\bar{q} configuration,” Phys. Rev. C 98, no. 4, 045204 (2018).
  • (52) S. Y. Li, Y. R. Liu, Y. N. Liu, Z. G. Si and J. Wu, “Pentaquark states with the QQQqq¯QQQq\bar{q} configuration in a simple model,” Eur. Phys. J. C 79, no. 1, 87 (2019).
  • (53) H. T. An, Q. S. Zhou, Z. W. Liu, Y. R. Liu and X. Liu, “Exotic pentaquark states with the qqQQQ¯qqQQ\bar{Q} configuration,” Phys. Rev. D 100, no. 5, 056004 (2019).
  • (54) Y. R. Liu, X. Liu and S. L. Zhu, “X(5568)X(5568) and and its partner states,” Phys. Rev. D 93, no. 7, 074023 (2016).
  • (55) J. Wu, Y. R. Liu, K. Chen, X. Liu and S. L. Zhu, “Heavy-flavored tetraquark states with the QQQ¯Q¯QQ\bar{Q}\bar{Q} configuration,” Phys. Rev. D 97, no. 9, 094015 (2018).
  • (56) J. Wu, Y. R. Liu, K. Chen, X. Liu and S. L. Zhu, “X(4140)X(4140), X(4270)X(4270), X(4500)X(4500) and X(4700)X(4700) and their csc¯s¯cs\bar{c}\bar{s} tetraquark partners,” Phys. Rev. D 94 (2016) no.9, 094031.
  • (57) J. Wu, X. Liu, Y. R. Liu and S. L. Zhu, “Systematic studies of charmonium-, bottomonium-, and BcB_{c}-like tetraquark states,” Phys. Rev. D 99, no.1, 014037 (2019).
  • (58) J. B. Cheng and Y. R. Liu, “Understanding the structures of hidden-charm pentaquarks in a simple model,” Nucl. Part. Phys. Proc. 309-311, 158-161 (2020).
  • (59) J. B. Cheng and Y. R. Liu, “Pc(4457)+P_{c}(4457)^{+}, Pc(4440)+P_{c}(4440)^{+}, and Pc(4312)+P_{c}(4312)^{+}: molecules or compact pentaquarks?,” Phys. Rev. D 100, no. 5, 054002 (2019).
  • (60) J. B. Cheng, S. Y. Li, Y. R. Liu, Y. N. Liu, Z. G. Si and T. Yao, “Spectrum and rearrangement decays of tetraquark states with four different flavors,” Phys. Rev. D 101, no.11, 114017 (2020).
  • (61) J. B. Cheng, S. Y. Li, Y. R. Liu, Z. G. Si and T. Yao, “Double-heavy tetraquark states with heavy diquark-antiquark symmetry,” [arXiv:2008.00737 [hep-ph]].
  • (62) L. Zhao, W. Z. Deng and S. L. Zhu, “Hidden-Charm Tetraquarks and Charged ZcZ_{c} States,” Phys. Rev. D 90 (2014) no.9, 094031.
  • (63) H. Hgaasen, E. Kou, J. M. Richard and P. Sorba, “Isovector and hidden-beauty partners of the X(3872),” Phys. Lett. B 732, 97 (2014).
  • (64) X. Z. Weng, X. L. Chen, W. Z. Deng and S. L. Zhu, “Hidden-charm pentaquarks and PcP_{c} states,” Phys. Rev. D 100, no. 1, 016014 (2019).
  • (65) X. Z. Weng, X. L. Chen and W. Z. Deng, “Masses of doubly heavy-quark baryons in an extended chromomagnetic model,” Phys. Rev. D 97, no. 5, 054008 (2018).
  • (66) M. Karliner and J. L. Rosner, “Discovery of doubly-charmed Ξcc\Xi_{cc} baryon implies a stable (bbu¯d¯bb\bar{u}\bar{d}) tetraquark,” Phys. Rev. Lett.  119, no. 20, 202001 (2017).
  • (67) M. Karliner and J. L. Rosner, “Baryons with two heavy quarks: Masses, production, decays, and detection,” Phys. Rev. D 90, no. 9, 094007 (2014).
  • (68) M. Karliner, S. Nussinov and J. L. Rosner, “QQQ¯Q¯QQ\bar{Q}\bar{Q} states: masses, production, and decays,” Phys. Rev. D 95, no. 3, 034011 (2017).
  • (69) M. Tanabashi et al. [Particle Data Group], “Review of Particle Physics,” Phys. Rev. D 98, no. 3, 030001 (2018).
  • (70) S. Godfrey and N. Isgur, “Mesons in a Relativized Quark Model with Chromodynamics,” Phys. Rev. D 32, 189 (1985).
  • (71) F. Stancu and S. Pepin, “Isoscalar factors of the permutation group,” Few Body Syst.  26, 113 (1999).
  • (72) W. Park, A. Park, S. Cho and S. H. Lee, “Pc(4380)P_{c}(4380) in a constituent quark model,” Phys. Rev. D 95, no. 5, 054027 (2017).
  • (73) W. Park, A. Park and S. H. Lee, “Dibaryons in a constituent quark model,” Phys. Rev. D 92, no. 1, 014037 (2015).
  • (74) A. Park, W. Park and S. H. Lee, “Dibaryons with two strange quarks and one heavy flavor in a constituent quark model,” Phys. Rev. D 94, no. 5, 054027 (2016).
  • (75) W. Park, A. Park and S. H. Lee, “Dibaryons with two strange quarks and total spin zero in a constituent quark model,” Phys. Rev. D 93, no. 7, 074007 (2016).
  • (76) W. Park, S. Cho and S. H. Lee, “Where is the stable pentaquark?,” Phys. Rev. D 99 (2019) no.9, 094023.
  • (77) Z. G. Wang, “Analysis of Pc(4380)P_{c}(4380) and Pc(4450)P_{c}(4450) as pentaquark states in the diquark model with QCD sum rules,” Eur. Phys. J. C 76 (2016) no.2, 70.
  • (78) J. Leandri and B. Silvestre-Brac, “Systematics of Q¯Q\bar{Q}Q^{-}4 Systems With a Pure Chromomagnetic Interaction,” Phys. Rev. D 40 (1989), 2340-2352.
  • (79) B. Silvestre- Brac and J. Leandri, “Systematics of q-6 systems in a simple chromomagnetic model,” Phys. Rev. D 45 (1992), 4221-4239.
  • (80) B. Silvestre-Brac, “Reply to ’Test of a chromomagnetic model for hadron mass differences.’,” Phys. Rev. D 47 (1993), 4169-4170.