This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Fundamental Limits of Non-Centered Non-Separable Channels and Their Application in Holographic MIMO Communications

Xin Zhang, Graduate Student Member, IEEE, Shenghui Song, , and Khaled B. Letaief The authors are with the Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong (e-mail: xzhangfe@connect.ust.hk; {eeshsong, eekhaled}@ust.hk).
Abstract

The classical Rician Weichselberger channel and the emerging holographic multiple-input multiple-output (MIMO) channel share a common characteristic of non-separable correlation, which captures the interdependence between transmit and receiver antennas. However, this correlation structure makes it very challenging to characterize the fundamental limits of non-centered (Rician), non-separable MIMO channels. In fact, there is a dearth of existing literature that addresses this specific aspect, underscoring the need for further research in this area. In this paper, we investigate the mutual information (MI) of non-centered non-separable MIMO channels, where both the line-of-sight and non-line-of-sight components are considered. By utilizing random matrix theory (RMT), we set up a central limit theorem for the MI and give the closed-form expressions for its mean and variance. The derived results are then utilized to approximate the ergodic MI and outage probability of holographic MIMO channels. Numerical simulations validate the accuracy of the theoretical results.

Index Terms:
Mutual information (MI), Holographic MIMO, Weichselberger correlation, Random matrix theory (RMT).

I Introduction

Multiple-input multiple-output (MIMO) technology has attracted tremendous interests due to its capability to improve the spectral efficiency and reliability of wireless communications. The fundamental limits of wireless communication systems, i.e., the ergodic mutual information (EMI) and outage probability, indicate the best performance that can be achieved and play a very important role in system design. To characterize the fundamental limits, we need proper channel models to describe the statistical behavior of the propagation environment. In particular, the EMI and outage probability are determined by various channel parameters, e.g., spatial correlation, line-of-sight (LoS) components, noise, interference, Doppler effects, etc [1].

The spatial correlation between antennas reduces the capacity of MIMO systems [2] and tremendous efforts have been put in describing the correlated MIMO channels. The most famous one is the correlated Rayleigh model with the Kronecker correlation structure [3], which models the correlation at the transmitter and the receiver separately and is mathematically represented by the separable variance profile [4]. However, the Kronecker structure fails to capture the dependence between the transceivers and is not sufficient to describe some realistic indoor MIMO channels [5]. To this end, the Weichselberger model was proposed and validated for both indoor office and suburban outdoor areas [6]. Compared with the Kronecker model, the Weichselberger model provides a more general structure in representing a variety of channel scenarios [7, 1]. Specifically, it introduces the non-separable structure to allow for arbitrary coupling between the transmit and receive antennas, which takes the separable structure as a special case [8, 7]. This general model was later utilized to model intelligent reflecting surface-aided channels [9].

Recently, the non-separable model was also utilized in modeling holographic MIMO systems, which were proposed to fully exploit the propagation characteristics of the electromagnetic channel [10, 11, 12, 13, 14]. In the electromagnetically large regime, the holographic MIMO channel is approximated by the Fourier plane-wave series expansion obtained by the uniform discretization of the Fourier spectral representation for the stationary electromagnetic random field [15]. The corresponding channel in the angular domain is represented by a random matrix with zero mean and non-separable variance profile. Furthermore, as the LoS component becomes more dominating in the millimeter wave and terahertz bands while the small-scale fading is able to characterize the environments with common propagation properties [16, 17, 18], it is necessary to consider both the LoS and non-line-of-sight (NLoS) components in holographic MIMO channels. However, the fundamental limits of non-centered (with both LoS and NLoS components) and non-separable MIMO channel are not yet available in the literature.

I-A Existing Works

There have been many engaging results regarding the first order and second order analysis for centered/non-centered, separable/non-separable MIMO channels, as shown in Table I. In the following, we briefly introduce these related works.

TABLE I: Summary of Related Works.
Centered and separable Non-centered and separable Centered and non-separable Non-centered and non-separable
First-order analysis  [19, 10, 18]  [20, 21]  [22, 7, 23]
Second-order analysis  [4, 24, 25]  [26]  [27] This work

First-order analysis: The first order analysis has covered several scenarios. For the centered and separable case, Tulino et al. performed the EMI analysis for point-to-point MIMO channels in [19]. For the non-centered and separable case, Dumont et al. derived the closed-form evaluation for the EMI over Rician Kronecker point-to-point MIMO channels and showed that the convergence rate for the deterministic approximation is 𝒪(M1){\mathcal{O}}(M^{-1}), where MM is the number of transmit antennas [20]. In [21], Zhang et al. investigated the EMI of non-centered non-Gaussian MIMO fading channels with separable structure. For the non-centered and non-separable case, Hachem et al. derived the deterministic equivalent for the MI over point-to-point MIMO channels in [22]. Considering the non-centered non-separable (Rician Weichselberger) channels, Wen et al. derived the uplink EMI for multi-user MIMO systems in [7] and Lu et al. evaluated the EMI for multiple access channels with distributed sets of correlated antennas in [23]. Although the recent holographic MIMO channels have the general non-separable correlation [18], existing works only focused on the simple separable correlation case. In [18], Pizzo et al. analyzed the EMI with the separable correlation structure. In [10], Wei et al. extended the Fourier model in [18] to a multi-user scenario and derived the lower bound for the spectral efficiency of the system with the separable correlation structure.

Second-order analysis: The MI distribution for centered and separable (including uncorrelated) MIMO channels was investigated by Hachem et al. [4], Bao et al. [25], Hu et al. [24], through setting up a central limit theorem (CLT) for the MI. For the non-centered and separable case, Hachem et al. set up a CLT for point-to-point MIMO channels with separable variance profile in [26]. For the centered and non-separable case, Hachem et al. investigated the asymptotic distribution of MI for MIMO channels with a non-separable variance profile in [27]. However, the MI distribution and the CLT for the MI over non-centered and non-separable MIMO channels is not available in the literature. In particular, the MI distribution for holographic MIMO channels has not been investigated in the literature.

In this paper, we will characterize the fundamental limits of non-centered and non-separable MIMO channels by utilizing the asymptotic random matrix theory (RMT). With the increasing size of MIMO antenna arrays, especially for holographic MIMO channels, RMT becomes a very promising method for the related performance evaluation. In fact, RMT has been widely used in the performance evaluation of large-dimension MIMO systems and shown to be accurate even for small-dimension systems [4, 14, 28]. Specifically, we will utilize RMT to investigate the distribution of the MI for non-centered and non-separable MIMO channels by setting up a CLT for the MI and the results will be applied to characterize the outage probability of Rician Weichselberger and holographic MIMO channels.

I-B Challenges

Due to the non-centered and non-separable channel structure, the evaluation of the asymptotic variance of the MI and proof of the Gaussianity are much involved. Specifically, different from the separable case that requires only a system of two equations to characterize the MI, the non-separable correlation requires a system of M+NM+N equations, where MM and NN denote the number of antennas at the transmitter and receiver, respectively. Such a large number of parameters makes the EMI and variance evaluation challenging. To show the Gaussianity, we employ the martingale method [29] by decomposing the centered MI into the summation of martingales so that the variance evaluation resorts to the sum of squares of martingales. However, due to the existence of both the LoS component and non-separable variance profile, the evaluation for the sum of squares of martingales is very challenging.

I-C Contribution

The contributions of this paper are summarized as follows.

  • By utilizing RMT, we set up the CLT for the MI of non-centered and non-separable MIMO channels. The result generalizes the CLT for the MI of centered separable channels in [27] by adding the LoS component. Meanwhile, the derived results generalizes the CLT for the MI with non-centered separable channels in [26] by considering the non-separable variance profile. The theoretical results can be utilized to evaluate the outage probability over both the Rician Weichselberger MIMO channels [6] and holographic MIMO channels [18].

  • In the proof of the CLT, we show that the evaluation for the square of martingales resorts to the evaluation for the second-order resolvents terms, which can be characterized by a system of M+NM+N equations. Then, we solve for the terms using Cramer’s rule and show that the sum can be approximated by a logdet\log\det term. The evaluation for the second-order resolvents can also be utilized for the finite-blocklength analysis over holographic MIMO channels [30, 31].

I-D Paper Organization

The rest of this paper is organized as follows. Section II presents the system model and problem formulation. Section III introduces the preliminary results including the approximation for the ergodic MI and gives the main results of this paper including the CLT for the MI, which is also used for the approximation of the outage probability. Section IV presents the proof of the main results. The theoretical results are validated by numerical simulations in Section V. Finally, Section VI concludes the paper.

Notations: The bold upper case letters and bold lower case letters denote the matrix and vector, respectively, and Re{}\mathrm{Re}\left\{\cdot\right\} represents the real part of a complex number. The probability measure is represented by ()\mathbb{P}(\cdot). The space of NN-dimensional vectors and MM-by-NN matrices are represented by N\mathbb{C}^{N} and M×N\mathbb{C}^{M\times N}, respectively. The conjugate transpose and the element-wise square root of matrix 𝔸{\mathbb{A}} are given by 𝔸H\mathbb{A}^{H} and 𝔸12{\mathbb{A}}^{\circ\frac{1}{2}}, respectively. The (i,j)(i,j)-th entry of 𝔸\mathbb{A} and element-wise product of matrices are denoted by [𝔸]i,j[\mathbb{A}]_{i,j} and \odot, respectively. The trace and the spectral norm of 𝔸\mathbb{A} are denoted by Tr𝔸\operatorname{Tr}\mathbb{A} and 𝔸\|\mathbb{A}\|, respectively. The expectation operator and the cumulative distribution function (CDF) of standard Gaussian distribution are denoted by 𝔼\mathbb{E} and Φ(x)\Phi(x), respectively. The circularly complex Gaussian and real Gaussian distribution are represented by 𝒞𝒩\mathcal{CN} and 𝒩\mathcal{N}, respectively. The indicator function is denoted by 𝟙()\mathbbm{1}_{(\cdot)}. The the almost sure convergence, the convergence in distribution, and the convergence in probability are denoted by Na.s.\xrightarrow[N\rightarrow\infty]{{a.s.}}, N𝒟\xrightarrow[N\rightarrow\infty]{\mathcal{D}}, and N𝒫\xrightarrow[N\rightarrow\infty]{\mathcal{P}} respectively. The Big-O, the Little-o are denoted by O()O(\cdot) and o()o(\cdot), respectively. Specifically, f(n)O(g(n))f(n)\in O(g(n)) if and only if there exists a positive constant cc and a nonnegative integer n0n_{0} such that f(n)cg(n)f(n)\leq cg(n) for all nn0n\geq n_{0}. f(n)o(g(n))f(n)\in o(g(n)) if and only if there exists a nonnegative integer n0n_{0} such that f(n)cg(n)f(n)\leq cg(n) for all nn0n\geq n_{0} for all positive cc [32]. Here [N][N] denotes the set {1,2,,N}\{1,2,...,N\}.

II System Model and Problem Formulation

II-A MIMO Communications

Consider a point-to-point MIMO system with NRN_{R} receive antennas and NTN_{T} transmit antennas and assume that perfect channel information (CSI) is available at the receiver. The receive signal 𝕪NR\mathbb{y}\in\mathbb{C}^{N_{R}} is given by

𝕪=s𝕩+𝕟,\mathbb{y}={\mathbb{H}}_{s}\mathbb{x}+\mathbb{n}, (1)

where 𝕩NS𝒞𝒩(0,𝕀NS)\mathbb{x}\in\mathbb{C}^{N_{S}}\sim\mathcal{CN}(0,{\mathbb{I}}_{N_{S}}) and 𝕟NR𝒞𝒩(0,𝕀NR)\mathbb{n}\in\mathbb{C}^{N_{R}}\sim\mathcal{CN}(0,\mathbb{I}_{N_{R}}) represent the transmit signal and the additive white Gaussian noise (AWGN), respectively. Here sNR×NT{\mathbb{H}}_{s}\in\mathbb{C}^{N_{R}\times N_{T}} denotes the channel matrix and the subscript ss is utilized to represent different channel models.

II-B Non-Separable Correlation

In this part, we introduce two non-separable correlated models, i.e., Rician Weichselberger and holographic MIMO channels, to illustrate the non-separable correlation. Despite the common non-separable correlation structure, these two channel models were proposed with different motivations. The details are given below.

II-B1 Rician Weichselberger Channels

The Rician Weichselberger was proposed to compensate for the Rician Kronecker model by considering the joint correlation between the transmit antennas and receive antennas. Hence, we start by introducing the Rician Kronecker model. The Rician channel with Kronecker correlation model can be represented by [20]

K=𝔸K+12𝕐K𝕋12,{\mathbb{H}}_{K}={\mathbb{A}}_{K}+{\mathbb{R}^{\frac{1}{2}}}{\mathbb{Y}}_{K}{\mathbb{T}^{\frac{1}{2}}}, (2)

where NR×NR{\mathbb{R}}\in\mathbb{C}^{N_{R}\times N_{R}}, 𝕋NT×NT{\mathbb{T}}\in\mathbb{C}^{N_{T}\times N_{T}}, and 𝔸KNR×NT{\mathbb{A}}_{K}\in\mathbb{C}^{N_{R}\times N_{T}} denote the correlation matrices at the receiver and transmitter, and the LoS component, respectively. 𝕐KNR×NT{\mathbb{Y}}_{K}\in\mathbb{C}^{N_{R}\times N_{T}} is a random matrix consisting of independent and identically distributed (i.i.d.) entries with zero mean and variance NT1N_{T}^{-1}. The channel model in (2) can be equivalently represented by [6]

K=𝔸K+𝕌K(𝔻12𝕐K𝔻~12)𝕍KH=𝔸K+𝕌K((𝕕K𝕕~KT)12𝕏K)𝕍KH,{\mathbb{H}}_{K}={\mathbb{A}}_{K}+{\mathbb{U}}_{K}(\mathbb{D}^{\frac{1}{2}}{\mathbb{Y}}_{K}\widetilde{\mathbb{D}}^{\frac{1}{2}})\mathbb{V}^{H}_{K}={\mathbb{A}}_{K}+{\mathbb{U}}_{K}((\mathbb{d}_{K}\widetilde{\mathbb{d}}^{T}_{K})^{\circ\frac{1}{2}}\odot{\mathbb{X}}_{K})\mathbb{V}^{H}_{K}, (3)

where the correlation matrices have the eigen-decomposition =𝕌K𝔻K𝕌KH{\mathbb{R}}={\mathbb{U}}_{K}{\mathbb{D}}_{K}{\mathbb{U}}^{H}_{K} and 𝕋=𝕍K𝔻~K𝕍KH{\mathbb{T}}=\mathbb{V}_{K}\widetilde{{\mathbb{D}}}_{K}\mathbb{V}^{H}_{K} with 𝕕K=diag(𝔻K)\mathbb{d}_{K}=\mathrm{diag}({\mathbb{D}}_{K}) and 𝕕~K=diag(𝔻~K)\widetilde{\mathbb{d}}_{K}=\mathrm{diag}(\widetilde{{\mathbb{D}}}_{K}). Here 𝕏K=𝕌KH𝕐K𝕍K{\mathbb{X}}_{K}={\mathbb{U}}^{H}_{K}{\mathbb{Y}}_{K}\mathbb{V}_{K} has the same distribution as 𝕐K{\mathbb{Y}}_{K} due to the unitary invariant attribute of Gaussian matrices. It can be observed from (3) that the correlation at the transmitter does not have impact on the receiver side.

The Weichselberger model was proposed to alleviate the restriction in (3) and describe the joint spatial structure of the channel. The Rician Weichselberger Model can be represented by

W=𝔸W+𝕌W(ΣW12𝕏W)𝕍WH=𝕌W(𝔸¯W+ΣW12𝕏W)𝕍WH=𝕌W¯W𝕍WH,{\mathbb{H}}_{W}={\mathbb{A}}_{W}+\mathbb{U}_{W}\left(\mathbb{\Sigma}^{\circ\frac{1}{2}}_{W}\odot{\mathbb{X}}_{W}\right)\mathbb{V}^{H}_{W}=\mathbb{U}_{W}\left(\overline{{\mathbb{A}}}_{W}+\mathbb{\Sigma}^{\circ\frac{1}{2}}_{W}\odot{\mathbb{X}}_{W}\right)\mathbb{V}^{H}_{W}=\mathbb{U}_{W}\overline{{\mathbb{H}}}_{W}\mathbb{V}^{H}_{W}, (4)

where ¯W=𝔸¯W+ΣW12𝕏W\overline{{\mathbb{H}}}_{W}=\overline{{\mathbb{A}}}_{W}+\mathbb{\Sigma}^{\circ\frac{1}{2}}_{W}\odot{\mathbb{X}}_{W}, 𝔸¯W=𝕌WH𝔸W𝕍W\overline{{\mathbb{A}}}_{W}={\mathbb{U}}^{H}_{W}{{\mathbb{A}}}_{W}\mathbb{V}_{W}, 𝕌WNR×NR\mathbb{U}_{W}\in\mathbb{C}^{N_{R}\times N_{R}} and 𝕍WNT×NT\mathbb{V}_{W}\in\mathbb{C}^{N_{T}\times N_{T}} are deterministic unitary matrices and 𝔸WNR{\mathbb{A}}_{W}\in\mathbb{R}^{N_{R}} is the LoS component. Matrix 𝕏WNR×NT{\mathbb{X}}_{W}\in\mathbb{C}^{N_{R}\times N_{T}} is a random matrix consisting of i.i.d. entries with zero mean and variance NT1N_{T}^{-1}. The variance profile matrix ΣW12NR×NT\mathbb{\Sigma}^{\circ\frac{1}{2}}_{W}\in\mathbb{R}^{N_{R}\times N_{T}}, consisting of non-negative entries, is called the “coupling matrix” since [ΣW12]i,j[\mathbb{\Sigma}^{\circ\frac{1}{2}}_{W}]_{i,j} characterizes the energy coupled between the ii-th eigenvector of 𝕌W{\mathbb{U}}_{W} and the jj-th eigenvector of 𝕍W\mathbb{V}_{W} [3].

Non-separable correlation in Weichselberger model: Mathematically, the separability is determined by whether the “coupling matrix” ΣW\mathbb{\Sigma}_{W} can be written as ΣW=𝕕𝕕~T\mathbb{\Sigma}_{W}=\mathbb{d}\widetilde{\mathbb{d}}^{T}, where 𝕕NR\mathbb{d}\in\mathbb{R}^{N_{R}} and 𝕕~NT\widetilde{\mathbb{d}}\in\mathbb{R}^{N_{T}}. In fact, ΣW\mathbb{\Sigma}_{W} is generally non-separable and the Kronecker correlation model in (3) is a special case of (4) when ΣW=𝕕𝕕~T\mathbb{\Sigma}_{W}=\mathbb{d}\widetilde{\mathbb{d}}^{T}.

II-B2 Holographic Channels

Inspired by the very high energy and spectral efficiency of massive MIMO systems [33, 34], the dense and electromagnetically large (compared with the wavelength) antenna array, referred to as the “Holographic array”, was proposed as a promising technology to further boost the performance limits of wireless communications [16]. “Holographic”, which literately means “describe everything” in the ancient Greek, refers to the regime where the MIMO system is designed to fully exploit the propagation characteristics of the electromagnetic channel [35].

Fig. 1 shows the holographic MIMO channel consisting of two parallel planar arrays that are perpendicular to the zz-axis, where 𝕤j=[sxj,syj,szj]T\mathbb{s}_{j}=[s_{x_{j}},s_{y_{j}},s_{z_{j}}]^{T} and 𝕣i=[rxi,ryi,rzi]T\mathbb{r}_{i}=[r_{x_{i}},r_{y_{i}},r_{z_{i}}]^{T} represent the coordinates of the jj-th transmit antenna and ii-th receive antenna, respectively. The two planar arrays span the rectangular areas in the xyxy-plane with the size LS,x×LS,yL_{S,x}\times L_{S,y} at the transmit array and LR,x×LR,yL_{R,x}\times L_{R,y} at the receive array. There are NSN_{S} transmit and NRN_{R} receive antennas and they are deployed uniformly with spacing ΔS\Delta_{S} and ΔR\Delta_{R} at the transmit and receive array, respectively, which refer to the distance between centers of adjacent antennas. The wave with wavelength λ\lambda propagates in a homogeneous and infinite medium without polarization. In the following, we will use s{\mathbb{H}}_{s} and a{\mathbb{H}}_{a} to represent the channel matrix in the spatial and angular domain, respectively, and use h{\mathbb{H}}_{h} to denote the discretized version of a{\mathbb{H}}_{a}.

Refer to caption
Figure 1: Holographic MIMO System with Planar Arrays.
Refer to caption
Figure 2: Plane-wave representations.
Refer to caption
Figure 3: Propagating and evanescent waves.

We focus on the Fourier plane-wave representation of holographic MIMO channels [18, 36]. As shown by Fig. 2, for each pair of receive and transmit antennas (𝕣i,𝕤j)(\mathbb{r}_{i},\mathbb{s}_{j}), by using Fourier expansion, both the transmit field J(𝕤j)J(\mathbb{s}_{j}) and receive field E(𝕣i)E(\mathbb{r}_{i}) passing through the channel h(𝕣i,𝕤j)h(\mathbb{r}_{i},\mathbb{s}_{j}) can be represented by plane-waves and parameterized by the horizontal wavenumbers (2πmxLS,x,2πmyLS,y)(\frac{2\pi m_{x}}{L_{S,x}},\frac{2\pi m_{y}}{L_{S,y}}) and (2πlxLR,x,2πlyLR,y)(\frac{2\pi l_{x}}{L_{R,x}},\frac{2\pi l_{y}}{L_{R,y}}), respectively. The receive plane-wave coefficients WR(lx,ly,γR(lx,ly))W_{R}(l_{x},l_{y},\gamma_{R}(l_{x},l_{y})) can be obtained by taking a four-variable scattering kernel H(lx,ly,mx,my)H(l_{x},l_{y},m_{x},m_{y}) to the transmit plane-wave coefficients WS(mx,my,γS(mx,my))W_{S}(m_{x},m_{y},\gamma_{S}(m_{x},m_{y})). As shown in Fig. 3, the plane-waves for the transmit field include the propagating waves and evanescent waves, which are parameterized by pairs (mx,my)(m_{x},m_{y}) inside and outside the elliptical area, respectively. Here we assume that the evanescent waves are negligible since they decay exponentially with zz111Some researchers think that the evanescent waves can alway be neglected [37] but some think it is not yet settled [11].. For LoS and non-LoS channels, the kernel H(lx,ly,mx,my)H(l_{x},l_{y},m_{x},m_{y}) is modeled as deterministic and random matrices, respectively [18, 36], and the associated field is stationary horizontally. The mathematical formulation of the channel model is omitted here and given in Appendix A for interested readers.

According to [18, Theorem 2], in the electromagnetically large regime, i.e.,

min{LS,xλ,LS,yλ,LR,xλ,LR,xλ}1,\min\{\frac{L_{S,x}}{\lambda},\frac{L_{S,y}}{\lambda},\frac{L_{R,x}}{\lambda},\frac{L_{R,x}}{\lambda}\}\gg 1, (5)

s{\mathbb{H}}_{s} can be approximated by the discretized Fourier spectral representation through uniformly sampling (κx,κy)(\kappa_{x},\kappa_{y}) at the direction (2πmxLS,x,2πmyLS,y)(\frac{2\pi m_{x}}{L_{S,x}},\frac{2\pi m_{y}}{L_{S,y}}) and (kx,ky)(k_{x},k_{y}) at the direction (2πlxLR,x,2πlyLR,y)(\frac{2\pi l_{x}}{L_{R,x}},\frac{2\pi l_{y}}{L_{R,y}}), respectively. It is given by

[s]ij=hs(𝕣i,𝕤j)=(lx,ly)R(mx,my)SH(lx,ly,mx,my)ar(lx,ly,𝕣i)as(mx,my,𝕤j),\displaystyle[{\mathbb{H}}_{s}]_{ij}=h_{s}(\mathbb{r}_{i},\mathbb{s}_{j})=\sum_{(l_{x},l_{y})\in\mathcal{E}_{R}}\sum_{(m_{x},m_{y})\in\mathcal{E}_{S}}{H}(l_{x},l_{y},m_{x},m_{y})a_{r}(l_{x},l_{y},\mathbb{r}_{i})a_{s}^{*}(m_{x},m_{y},\mathbb{s}_{j}), (6)

where the discretized Fourier coefficient H(lx,ly,mx,my){H}(l_{x},l_{y},m_{x},m_{y}), named as coupling coefficients [38], is the angular response and only related to the xyxy-coordinates since kz,κzk_{z},\kappa_{z} can be determined by γ(kx,ky)\gamma(k_{x},k_{y}) and γ(κx,κy)\gamma(\kappa_{x},\kappa_{y}), respectively. In this case, the region in Fig. 3 can be represented by the lattice ellipse S={(mx,my)2|(mxLS,x)2+(myLS,y)21}\mathcal{E}_{S}=\{(m_{x},m_{y})\in\mathbb{Z}^{2}|(\frac{m_{x}}{L_{S,x}})^{2}+(\frac{m_{y}}{L_{S,y}})^{2}\leq 1\} and R={(lx,ly)2|(lxLR,x)2+(lyLR,y)21}\mathcal{E}_{R}=\{(l_{x},l_{y})\in\mathbb{Z}^{2}|(\frac{l_{x}}{L_{R,x}})^{2}+(\frac{l_{y}}{L_{R,y}})^{2}\leq 1\}. The cardinality of R\mathcal{E}_{R} and S\mathcal{E}_{S} can be evaluated by

nR\displaystyle n_{R} =πLR,xLR,yλ2+o(LR,xLR,yλ2),\displaystyle=\lceil\frac{\pi L_{R,x}L_{R,y}}{\lambda^{2}}\rceil+o(\frac{L_{R,x}L_{R,y}}{\lambda^{2}}), (7)
nS\displaystyle n_{S} =πLS,xLS,yλ2+o(LS,xLS,yλ2),\displaystyle=\lceil\frac{\pi L_{S,x}L_{S,y}}{\lambda^{2}}\rceil+o(\frac{L_{S,x}L_{S,y}}{\lambda^{2}}),

such that (lx,ly)(l_{x},l_{y}) and (mx,my)(m_{x},m_{y}) can be indexed by [nR][n_{R}] and [nS][n_{S}], respectively. Different from [18, 36], both the LoS and NLoS components are considered in this paper such that the channel matrix in the spatial domain can be represented by

s=𝔸s+𝕐s=GRGSNRNSΦRhΦSH,{\mathbb{H}}_{s}={{\mathbb{A}}}_{s}+{\mathbb{Y}}_{s}=\sqrt{G_{R}G_{S}N_{R}N_{S}}\mathbb{\Phi}_{R}{{\mathbb{H}}}_{h}\mathbb{\Phi}_{S}^{H}, (8)

where

h=𝔸h+𝕐h=𝔸h+Σh12𝕏h.{\mathbb{H}}_{h}={\mathbb{A}}_{h}+{\mathbb{Y}}_{h}={\mathbb{A}}_{h}+\mathbb{\Sigma}^{\circ\frac{1}{2}}_{h}\odot{\mathbb{X}}_{h}. (9)

Here, 𝔸sNR×NS{{\mathbb{A}}}_{s}\in\mathbb{C}^{N_{R}\times N_{S}} and 𝕐sNR×NS{\mathbb{Y}}_{s}\in\mathbb{C}^{N_{R}\times N_{S}} denote the LoS and NLoS components, respectively, and 𝔸hnR×nS{{\mathbb{A}}_{h}}\in\mathbb{C}^{n_{R}\times n_{S}} and 𝕐hnR×nS{\mathbb{Y}}_{h}\in\mathbb{C}^{n_{R}\times n_{S}} are the corresponding representations in the wave number domain. The coefficient of the LoS component can be obtained by [36, Eq. (12)] and the coefficient of the NLoS component is given by [𝕐h]i,j=Y(lx,ly,mx,my)𝒞𝒩(0,σ2(lx,ly,mx,my)nS)[{\mathbb{Y}}_{h}]_{i,j}=Y(l_{x},l_{y},m_{x},m_{y})\sim\mathcal{CN}(0,\frac{\sigma^{2}(l_{x},l_{y},m_{x},m_{y})}{n_{S}}) such that the coefficient matrix of the small-scale fading can be written as 𝕐h=Σh12𝕏h{{\mathbb{Y}}_{h}}=\mathbb{\Sigma}^{\circ\frac{1}{2}}_{h}\odot{\mathbb{X}}_{h} with [Σh]i,j=σ2(lx,ly,mx,my)[\mathbb{\Sigma}_{h}]_{i,j}=\sigma^{2}(l_{x},l_{y},m_{x},m_{y}) denoting the variance profile of the coupling coefficients. Matrix 𝕏hnR×nS{\mathbb{X}}_{h}\in\mathbb{C}^{n_{R}\times n_{S}} is an i.i.d. random matrix with circularly-symmetric complex-Gaussian random entries whose variance is 1nS\frac{1}{n_{S}}. ΦR\mathbb{\Phi}_{R} and ΦS\mathbb{\Phi}_{S} are semi-unitary matrices consisting of the Fourier orthogonal bases. The coefficient NRNS\sqrt{N_{R}N_{S}} rises from the normalization of the basis. GSG_{S} and GRG_{R} represent the patch antenna gain at the transmitter and receiver, respectively, with

G=4πτSλ2,G=\frac{4\pi\tau S}{\lambda^{2}}, (10)

where SS is the antenna area and τ<1\tau<1 denotes the antenna efficiency [39].

Non-separable correlation in holographic MIMO channels: In the holographic MIMO systems, the small-scale fading can be also divided into non-separable and separable cases according to the structure of Σ\mathbb{\Sigma}. The variance of the small-scale fading is given by

σ2(lx,ly,mx,my)=ΩS(mx,my)×ΩR(lx,ly)S2(θR,ϕR,θS,ϕS)dΩRdΩS,\displaystyle\sigma^{2}(l_{x},l_{y},m_{x},m_{y})=\iiiint\limits_{\Omega_{S}(m_{x},m_{y})\times\Omega_{R}(l_{x},l_{y})}S^{2}(\theta_{R},\phi_{R},\theta_{S},\phi_{S})\mathrm{d}\Omega_{R}\mathrm{d}\Omega_{S}, (11)

where (θR,ϕR,θS,ϕS)(\theta_{R},\phi_{R},\theta_{S},\phi_{S}) represents the spherical coordinates of (lx,ly,mx,my)(l_{x},l_{y},m_{x},m_{y}), and ΩS(mx,my)\Omega_{S}(m_{x},m_{y}) and ΩR(lx,ly)\Omega_{R}(l_{x},l_{y}) denote the corresponding areas of mx,my\mathcal{E}_{m_{x},m_{y}} and lx,ly\mathcal{E}_{l_{x},l_{y}} in spherical coordinates, respectively. S2(θR,ϕR,θS,ϕS)S^{2}(\theta_{R},\phi_{R},\theta_{S},\phi_{S}) represents the bandlimited 4D power spectral density of hs(𝕣,𝕤)h_{s}(\mathbb{r},\mathbb{s}). In general, σ2(lx,ly,mx,my)\sigma^{2}(l_{x},l_{y},m_{x},m_{y}) can not be decomposed as a product of the functions of receive wavenumbers (lx,ly)(l_{x},l_{y}) and transmit wavenumbers (mx,my)(m_{x},m_{y}), i.e., σ2(lx,ly,mx,my)σS2(mx,my)σR2(lx,ly)\sigma^{2}(l_{x},l_{y},m_{x},m_{y})\neq\sigma^{2}_{S}(m_{x},m_{y})\sigma^{2}_{R}(l_{x},l_{y}). This model is referred to as the non-separable profile. The separable profile refers to the case with

σ2(lx,ly,mx,my)=σS2(mx,my)σR2(lx,ly),\sigma^{2}(l_{x},l_{y},m_{x},m_{y})=\sigma^{2}_{S}(m_{x},m_{y})\sigma^{2}_{R}(l_{x},l_{y}), (12)

where σS2(mx,my)\sigma^{2}_{S}(m_{x},m_{y}) and σR2(lx,ly)\sigma^{2}_{R}(l_{x},l_{y}) represent the channel power transfer at the transmitter and receiver, respectively. The separable model can be obtained from the non-separable case by taking S2(θR,ϕR,θS,ϕS)=1S^{2}(\theta_{R},\phi_{R},\theta_{S},\phi_{S})=1. Under such circumstances, Σh\mathbb{\Sigma}_{h} can be represented by Σh=𝕕𝕕~T\mathbb{\Sigma}_{h}=\mathbb{d}\widetilde{\mathbb{d}}^{T}, where 𝕕nR=[σR2(lx,1,ly,1),,σR2(lx,nR,ly,nR)]T\mathbb{d}\in\mathbb{R}^{n_{R}}=[\sigma^{2}_{R}(l_{x,1},l_{y,1}),...,\sigma^{2}_{R}(l_{x,n_{R}},l_{y,n_{R}})]^{T} and 𝕕~nS=[σS2(mx,1,my,1),,σS2(mx,nS,my,nS)]T\widetilde{\mathbb{d}}\in\mathbb{R}^{n_{S}}=[\sigma^{2}_{S}(m_{x,1},m_{y,1}),...,\sigma^{2}_{S}(m_{x,n_{S}},m_{y,n_{S}})]^{T}. This indicates that Σh12𝕏h=𝔻12𝕏h𝔻~12\mathbb{\Sigma}^{\circ\frac{1}{2}}_{h}\odot{\mathbb{X}}_{h}=\mathbb{D}^{\frac{1}{2}}{\mathbb{X}}_{h}\widetilde{\mathbb{D}}^{\frac{1}{2}}, where 𝔻=diag(𝕕)\mathbb{D}=\mathrm{diag}(\mathbb{d}) and 𝔻~=diag(𝕕~)\widetilde{\mathbb{D}}=\mathrm{diag}(\widetilde{\mathbb{d}}). It can be observed that the separable structure is a special case of the non-separable structure and the performance of non-LoS MIMO channels with separable profile has been evaluated in [18]. However, the fundamental limits of holographic MIMO systems with non-separable correlation structure is not yet available in the literature and will be the focus of this paper.

II-C Problem Formulation

In this section, we show that the MI for both the Rician Weichselberger model and holographic MIMO channels resorts to the MI with general non-centered non-separable channels. The MI of the MIMO system is given by

C(σ2)=logdet(𝕀NR+1σ2ssH),C(\sigma^{2})=\log\det(\mathbb{I}_{N_{R}}+\frac{1}{\sigma^{2}}{\mathbb{H}}_{s}{\mathbb{H}}_{s}^{H}), (13)

where 1σ2\frac{1}{\sigma^{2}} denotes the signal-to-noise ratio (SNR). For the Rician Weichselberger model in (4), the MI in (13) can be rewritten as

C(σ2)=logdet(𝕀NR+1σ2¯W¯WH),C(\sigma^{2})=\log\det(\mathbb{I}_{N_{R}}+\frac{1}{\sigma^{2}}\overline{{\mathbb{H}}}_{W}\overline{{\mathbb{H}}}^{H}_{W}), (14)

where we have utilized the identity det(𝕀+𝔸𝔹)=det(𝕀+𝔹𝔸)\det(\mathbb{I}+{\mathbb{A}}{\mathbb{B}})=\det(\mathbb{I}+{\mathbb{B}}{\mathbb{A}}). For holographic MIMO channels in (8), (1) can be rewritten as

𝕪a=GRGSNRNSh𝕩a+𝕟a,\mathbb{y}_{a}=\sqrt{G_{R}G_{S}N_{R}N_{S}}{\mathbb{H}}_{h}\mathbb{x}_{a}+\mathbb{n}_{a}, (15)

where 𝕪anR=ΦRH𝕪\mathbb{y}_{a}\in\mathbb{C}^{n_{R}}=\mathbb{\Phi}_{R}^{H}\mathbb{y} and 𝕩anS=ΦSH𝕩\mathbb{x}_{a}\in\mathbb{C}^{n_{S}}=\mathbb{\Phi}_{S}^{H}\mathbb{x} represent the receive and transmit signal in the angular domain. By the unitary-invariant attribute of the Gaussian random vector, we have 𝕟anR𝒞𝒩(0,σ2𝕀nR)\mathbb{n}_{a}\in\mathbb{C}^{n_{R}}\sim\mathcal{CN}(0,\sigma^{2}\mathbb{I}_{n_{R}}). By the identity det(𝕀+𝔸𝔹)=det(𝕀+𝔹𝔸)\det(\mathbb{I}+{\mathbb{A}}{\mathbb{B}})=\det(\mathbb{I}+{\mathbb{B}}{\mathbb{A}}), the MI in (13) can be rewritten as

C(σ2GRGSNRNS)=logdet(𝕀nR+GRGSNRNSσ2hhH),C(\frac{\sigma^{2}}{G_{R}G_{S}N_{R}N_{S}})=\log\det(\mathbb{I}_{n_{R}}+\frac{G_{R}G_{S}N_{R}N_{S}}{\sigma^{2}}{{\mathbb{H}}}_{h}{{\mathbb{H}}}^{H}_{h}), (16)

where hnR×nS{\mathbb{H}}_{h}\in\mathbb{C}^{n_{R}\times n_{S}} is given in (9).

According to (14) and (16), the MI for both Rician Weichselberger and holographic MIMO models can be generally formulated as

CM(ζ)=logdet(𝕀M+ζ1H),C_{M}(\zeta)=\log\det(\mathbb{I}_{M}+\zeta^{-1}{{\mathbb{H}}}{{\mathbb{H}}}^{H}), (17)

where N×M=𝔸+Σ12𝕏{\mathbb{H}}\in\mathbb{C}^{N\times M}={\mathbb{A}}+\mathbb{\Sigma}^{\circ\frac{1}{2}}\odot{\mathbb{X}}. We have N=NRN=N_{R}, M=NTM=N_{T}, ζ=σ2\zeta=\sigma^{2} and N=nRN=n_{R}, M=nSM=n_{S}, ζ=σ2GRGSNRNS\zeta=\frac{\sigma^{2}}{G_{R}G_{S}N_{R}N_{S}} for Rician Weichselberger and holographic MIMO models, respectively, such that the MI for both cases resort to the investigation of CM(ζ)C_{M}(\zeta) in (17). Here {{\mathbb{H}}} is the sum of a deterministic matrix and a random matrix whose entries have heterogeneous variances, and is referred to as the non-centered non-separable channel. Due to the complex structure, the characterization of the MI is a difficult problem. In the following, we will investigate the distribution of CM(ζ)C_{M}(\zeta) by RMT in the asymptotic regime where the dimensions of {\mathbb{H}} go to infinity with the same pace.

III Main Results

In this section, we will first present the assumptions and existing first-order result that will be utilized to derive the asymptotic distribution of the MI. Then, we will give the main results of this paper, which are based on the following assumptions:

A.1: 0<liminfM1MNMNlimsupM1MN<0<\lim\inf\limits_{M\geq 1}\frac{M}{N}\leq\frac{M}{N}\leq\lim\sup\limits_{M\geq 1}\frac{M}{N}<\infty.

A.2: 0<mini,jσi,j2σi,j2maxi,jσi,j2<σmax2<0<\min\limits_{i,j}\sigma^{2}_{i,j}\leq\sigma^{2}_{i,j}\leq\max\limits_{i,j}\sigma^{2}_{i,j}<\sigma^{2}_{max}<\infty, infM1i=1Nσi,j2M>0\inf\limits_{M\geq 1}\frac{\sum_{i=1}^{N}\sigma^{2}_{i,j}}{M}>0, infM1j=1Mσi,j2M>0\inf\limits_{M\geq 1}\frac{\sum_{j=1}^{M}\sigma^{2}_{i,j}}{M}>0.

A.3: 𝔸<amax<\|{\mathbb{A}}\|<a_{max}<\infty.

Here amaxa_{max} and σmax2\sigma^{2}_{max} represent the upper bound of 𝔸\|{\mathbb{A}}\| and Σi,j\mathbb{\Sigma}_{i,j}, which do not go to infinity with MM and we use σmin2\sigma^{2}_{min} to represent the lower bound of Σi,j\mathbb{\Sigma}_{i,j}. A.1 indicates the asymptotic regime that the dimensions MM and NN go to infinity with the same pace. For holographic MIMO systems, by the definition in (5), we know MM and NN are large and A.1 holds true for the case when the physical size of the planar array of one side (transmit or receive) is not overwhelmingly larger than that of the other side. A.2 is used to guarantee that the asymptotic variance is well defined, which is justified by the boundness of the variance for coefficients [18]A.3 implies that 𝕒i2\|\mathbb{a}_{i}\|_{2} is uniformly bounded. A.3 also indicates that the rank of the LoS component 𝔸{\mathbb{A}} increases with MM and NN at the same pace [21]. We denote the limit MM\rightarrow\infty and NN\rightarrow\infty with NM=d\frac{N}{M}=d by M\xlongrightarrowd{M\xlongrightarrow{d}\infty} .

III-A First-order Analysis

III-A1 Deterministic Equivalent of the Normalized MI

The first order analysis of the MI over non-centered non-separable MIMO channels can be obtained by utilizing the deterministic equivalent (DE) [22]. The DE provides an accurate large system approximation and is widely used in the analysis of large MIMO systems [22, 40]. The parameters in the DE are determined by a system of equations. Denote Σ(i)\mathbb{\Sigma}^{(i)} and Σ[j]\mathbb{\Sigma}^{[j]} as the ii-th row and jj-th column of Σ\mathbb{\Sigma} and define matrices 𝔻jM×M=diag(Σ[j])\mathbb{D}_{j}\in\mathbb{R}^{M\times M}=\mathrm{diag}(\mathbb{\Sigma}^{[j]}) and 𝔻~iN×N=diag(Σ(i))\widetilde{\mathbb{D}}_{i}\in\mathbb{R}^{N\times N}=\mathrm{diag}(\mathbb{\Sigma}^{(i)}). For the model in (9), we consider the following system of N+MN+M equations

{δj=Tr𝔻j𝕋(z)M,j=1,2,,M,δ~i=Tr𝔻~i𝕋~(z)M,i=1,2,,N.\begin{cases}&\delta_{j}=\frac{\operatorname{Tr}{\mathbb{D}}_{j}{\mathbb{T}}(z)}{M},~{}j=1,2,...,M,\\ &\widetilde{\delta}_{i}=\frac{\operatorname{Tr}\widetilde{{\mathbb{D}}}_{i}\widetilde{{\mathbb{T}}}(z)}{M},~{}i=1,2,...,N.\end{cases} (18)

with

𝕋(z)\displaystyle{\mathbb{T}}(z) =(𝝍1(z)z𝔸𝝍~(z)𝔸H)1,\displaystyle=\left(\boldsymbol{\psi}^{-1}(z)-z{\mathbb{A}}\widetilde{\boldsymbol{\psi}}(z){\mathbb{A}}^{H}\right)^{-1}, (19)
𝕋~(z)\displaystyle\widetilde{{\mathbb{T}}}(z) =(𝝍~1(z)z𝔸H𝝍(z)𝔸)1,\displaystyle=\left(\widetilde{\boldsymbol{\psi}}^{-1}(z)-z{\mathbb{A}}^{H}{\boldsymbol{\psi}}(z){\mathbb{A}}\right)^{-1},
𝝍(z)\displaystyle\boldsymbol{\psi}(z) =diag(ψi(z),1iN),\displaystyle=\mathrm{diag}(\psi_{i}(z),~{}1\leq i\leq N),
𝝍~(z)\displaystyle\widetilde{\boldsymbol{\psi}}(z) =diag(ψ~j(z),1jM),\displaystyle=\mathrm{diag}(\widetilde{\psi}_{j}(z),~{}1\leq j\leq M),

and

ψi(z)\displaystyle\psi_{i}(z) =z1(1+δ~i)1\displaystyle=-z^{-1}(1+\widetilde{\delta}_{i})^{-1} (20)
=z1(1+1MTr𝔻~i𝕋~(z))1,1iN,\displaystyle=-z^{-1}(1+\frac{1}{M}\operatorname{Tr}\widetilde{{\mathbb{D}}}_{i}\widetilde{{\mathbb{T}}}(z))^{-1},~{}1\leq i\leq N,
ψ~j(z)\displaystyle\widetilde{\psi}_{j}(z) =z1(1+δj)1\displaystyle=-z^{-1}(1+{\delta}_{j})^{-1}
=z1(1+1MTr𝔻j𝕋(z))1,1jM.\displaystyle=-z^{-1}(1+\frac{1}{M}\operatorname{Tr}{{\mathbb{D}}}_{j}{{\mathbb{T}}}(z))^{-1},1\leq j\leq M.

The existence and uniqueness of the solution for (18) have been shown in [22, Theorem 2.4] and the system of equations can be solved by the fixed-point algorithm shown in Algorithm 1.

Algorithm 1 Fixed-point algorithm for δj,δ~i\delta_{j},\widetilde{\delta}_{i}
0:  zz, 𝔸\mathbb{A}, Σ\mathbb{\Sigma}, δj(0)>0\delta^{(0)}_{j}>0, j=1,2,,Mj=1,2,...,M, δ~i(0)>0\widetilde{\delta}^{(0)}_{i}>0, i=1,2,,Ni=1,2,...,N, and set t=1t=1.
1:  repeat
2:     δj(t)\delta^{(t)}_{j} \leftarrow Tr𝔻j𝕋(t1)(z)M\frac{\operatorname{Tr}{\mathbb{D}}_{j}{\mathbb{T}}^{(t-1)}(z)}{M}, j=1,2,,Mj=1,2,...,M.
3:     δ~i(t)\widetilde{\delta}^{(t)}_{i} \leftarrow Tr𝔻~i𝕋~(t)(z)M\frac{\operatorname{Tr}\widetilde{{\mathbb{D}}}_{i}\widetilde{{\mathbb{T}}}^{(t)}(z)}{M}, i=1,2,,Ni=1,2,...,N.
4:     tt+1t\leftarrow t+1.
5:  until Convergence.
5:  δj,δ~i\delta_{j},\widetilde{\delta}_{i}.

The first-order analysis of the MI can be investigated by the method in [22] and is given by the following lemma.

Lemma 1.

([22, Theorem 4.1]) Given assumptions A.1-A.3, the following convergence holds true

1NCM(ζ)N\xlongrightarrowda.s.1NC¯M(ζ),\displaystyle\frac{1}{N}C_{M}(\zeta)\xrightarrow[N\xlongrightarrow{d}\infty]{a.s.}\frac{1}{N}\overline{C}_{M}(\zeta), (21)

where

C¯M(ζ)\displaystyle\overline{C}_{M}(\zeta) =logdet[ζ1𝕋1(ζ)]logdet[ζ𝝍~(ζ)]ζMi,jσij2[𝕋(ζ)]i,i[𝕋~(ζ)]j,j.\displaystyle=\log\det[\zeta^{-1}{\mathbb{T}}^{-1}(-\zeta)]-\log\det[\zeta\widetilde{\boldsymbol{\psi}}(-\zeta)]-\frac{\zeta}{M}\sum_{i,j}\sigma^{2}_{ij}[{\mathbb{T}}(-\zeta)]_{i,i}[\widetilde{{\mathbb{T}}}(-\zeta)]_{j,j}. (22)

Lemma 1 gives the DE for the normalized MI with a non-separable variance profile. When σi,j2=did~j\sigma_{i,j}^{2}=d_{i}\widetilde{d}_{j} and 𝔸=𝟘{\mathbb{A}}=\mathbb{0}, (22) degenerates to [18, Eq. (58)] for the centered, separable case. Although Lemma 1 does not prove that 𝔼CM(ζ)M\xlongrightarrowdC¯M(ζ)\mathbb{E}C_{M}(\zeta)\xrightarrow{M\xlongrightarrow{d}\infty}\overline{C}_{M}(\zeta), it indicates that C¯M(ζ)\overline{C}_{M}(\zeta) is a good approximation. In the following, we will focus on characterizing the distribution of the MI.

III-B Second-order Analysis

In this section, we will set up the CLT for non-centered non-separable correlation MIMO channels, which is the main contribution of this paper. The result will then be utilized to derive a closed-form approximation for the outage probability. For that purpose, we first introduce some notations that will be used for deriving the asymptotic variance of the MI.

III-B1 Notations

In the following, we will omit (z)(z) in 𝕋(z){\mathbb{T}}(z) and 𝕋~(z)\widetilde{{\mathbb{T}}}(z) for simplicity. We first introduce four matrices Πi,Ξi,Γi,Λ~i×i\mathbb{\Pi}_{i},\mathbb{\Xi}_{i},\mathbb{\Gamma}_{i},\widetilde{\mathbb{\Lambda}}\in\mathbb{R}^{i\times i}, iMi\leq M, j,k=1,2,,ij,k=1,2,...,i, with

j,k =Πj,k=𝕒kH𝕋𝔻j𝕋𝕒kM(1+δk)2,\displaystyle=\Pi_{j,k}=\frac{{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{D}}_{j}{\mathbb{T}}{\mathbb{a}}_{k}}{M(1+\delta_{k})^{2}}, (23)
[Ξi]j,k\displaystyle[\mathbb{\Xi}_{i}]_{j,k} =Ξj,k=𝕒kH𝕋𝕒j𝕒jH𝕋𝕒k(1+δj)2(1+δk)2𝟙kj,\displaystyle=\Xi_{j,k}=\frac{{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{j}{\mathbb{a}}_{j}^{H}{\mathbb{T}}{\mathbb{a}}_{k}}{(1+\delta_{j})^{2}(1+\delta_{k})^{2}}\mathbbm{1}_{k\neq j},
[Γi]j,k\displaystyle[\mathbb{\Gamma}_{i}]_{j,k} =Γj,k=Tr𝔻j𝕋𝔻k𝕋M2,\displaystyle=\Gamma_{j,k}=\frac{\operatorname{Tr}{\mathbb{D}}_{j}{\mathbb{T}}{\mathbb{D}}_{k}{\mathbb{T}}}{M^{2}},
Λ~i\displaystyle\widetilde{\mathbb{\Lambda}}_{i} =ρ2diag(t~1,12,t~2,22,,t~i,i2),\displaystyle=\rho^{2}\mathrm{diag}(\widetilde{t}_{1,1}^{2},\widetilde{t}_{2,2}^{2},...,\widetilde{t}_{i,i}^{2}),

where δi\delta_{i} and 𝕋{\mathbb{T}} are given in (18) and (19), respectively, t~i,i\widetilde{t}_{i,i} is the diagonal entry of 𝕋~\widetilde{\mathbb{T}}, and 𝕒i\mathbb{a}_{i} denotes the ii-th column of 𝔸{\mathbb{A}}. Further define matrix 𝔹i2i×2i\mathbb{B}_{i}\in\mathbb{R}^{2i\times 2i} as

𝔹i=[ΠiΓiΞi+Λ~iΠiT],\mathbb{B}_{i}=\begin{bmatrix}\mathbb{\Pi}_{i}&\mathbb{\Gamma}_{i}\\ \mathbb{\Xi}_{i}+\widetilde{\mathbb{\Lambda}}_{i}&\mathbb{\Pi}_{i}^{T}\end{bmatrix}, (24)

which will be used in the derivation of the asymptotic variance.

III-B2 Asymptotic Distribution of the MI

The following theorem characterizes the asymptotic distribution of the MI for non-centered non-separable MIMO systems.

Theorem 1.

(The CLT for CM(ζ){C}_{M}(\zeta)) If assumptions A.1-A.3 hold true, the MI CM(ζ){C}_{M}(\zeta) satisfies

CM(ζ)𝔼CM(ζ)VM(ζ)M\xlongrightarrowd𝒟𝒩(0,1),\frac{{C}_{M}(\zeta)-\mathbb{E}{C}_{M}(\zeta)}{\sqrt{V_{M}(\zeta)}}\xrightarrow[M\xlongrightarrow{d}\infty]{\mathcal{D}}\mathcal{N}(0,1), (25)

where

VM(ζ)=logdet(𝕀M𝔹M),V_{M}(\zeta)=-\log\det(\mathbb{I}_{M}-\mathbb{B}_{M}), (26)

with 𝔹M\mathbb{B}_{M} defined in (24).

Proof.

The proof of Theorem 1 is given in Appendix IV. ∎

Theorem 1 indicates that the asymptotic distribution of the MI is a Gaussian distribution, whose mean and variance are given by the parameters determined from (18). With Lemma 1 and Theorem 1, and ζ=σ2GRGSNRNS\zeta=\frac{\sigma^{2}}{G_{R}G_{S}N_{R}N_{S}}, we can obtain the large system approximation for the outage probability of holographic MIMO systems.

Proposition 1.

(Outage probability of holographic MIMO systems) Given a rate threshold RR, the outage probability Pout(R)P_{out}(R) of the holographic system can be approximated by

Pout(R)ϕ(RC¯M(σ2GRGSNRNS)VM(σ2GRGSNRNS)).P_{out}(R)\approx\phi\left(\frac{R-\overline{C}_{M}(\frac{\sigma^{2}}{G_{R}G_{S}N_{R}N_{S}})}{\sqrt{V_{M}(\frac{\sigma^{2}}{G_{R}G_{S}N_{R}N_{S}})}}\right). (27)

III-B3 Comparison with Existing Works

1. Separable Correlation with LoS. The CLT of the MI over channels with separable NLoS and LoS components can be obtained by the method from [26, Theorem 2.2], which is a special case of Theorem 1. In fact, when Σ\mathbb{\Sigma} is separable, (18) will become a system of two equations with respect to the parameters δ\delta and δ~\widetilde{\delta}, with δi=djδ\delta_{i}={d}_{j}\delta and δ~i=d~iδ~\widetilde{\delta}_{i}=\widetilde{d}_{i}\widetilde{\delta} such that 𝔹M\mathbb{B}_{M} in (24) degenerates to a matrix in 2×2\mathbb{R}^{2\times 2}. Then, the result in Theorem 1 will degenerate to [26, Theorem 2.2].

2. Non-separable Correlation without LoS. The CLT of the MI over channels with non-separable profile but without LoS components can be obtained by the method from [27, Theorem 3.2], which is also a special case of Theorem 1. Without LoS, i.e., 𝔸=𝟘\mathbb{A}=\mathbb{0}, 𝔹M\mathbb{B}_{M} in (24) degenerates to an MM-by-MM matrix and Theorem 1 will degenerate to [27, Theorem 3.2].

3. Deterministic Model. When 𝕐=𝟘{\mathbb{Y}}=\mathbb{0}, {\mathbb{H}} degenerates to the deterministic model in [36, Eq. (12)] and there is no fluctuation for the MI. In this case, the MI in (16) is an approximation of the MI in [12, Eq. (18)] by using the Fourier expansion and can be obtained by computing the logarithm of the deterministic determinant.

IV Proof of Theorem 1

In this section, we will utilize the martingale approach to show the asymptotic Gaussianity of CM(ρ)𝔼CM(ρ)C_{M}(\rho)-\mathbb{E}C_{M}(\rho). The martingale method can be traced back to Girko’s REFORM (REsolvent, FORmula and Martingale) method [41] and is widely used [27, 26, 40]. Specifically, we first decompose CM(ρ)𝔼CM(ρ)C_{M}(\rho)-\mathbb{E}C_{M}(\rho) into a sum of martingale differences. Based on the CLT for the martingale (Lemma 2), we verify the CLT conditions (Section IV-A). Then, in the process of deriving the closed-form asymptotic variance, we set up a system of equations to compute the intermediate quantities based on the resolvent evaluation (Section IV-B1). To approximate the random quantities, a large amount of involved computation relies on the quadratic form of random vectors (Lemma 4).

The key steps of proving Theorem 1 follow from the CLT for the martingales given in Lemma 2.

Lemma 2.

(CLT for the martingale [42, Theorem 35.12]) Let γ1(n)\gamma_{1}^{(n)}, γ2(n)\gamma_{2}^{(n)}, …, γn(n)\gamma_{n}^{(n)} be a sequence of martingale differences with respect to the increasing filtration 1(n)\mathcal{F}_{1}^{(n)}, 2(n)\mathcal{F}_{2}^{(n)}, …, n(n)\mathcal{F}_{n}^{(n)}. Assume that there exists a sequence of real positive numbers sn2s_{n}^{2} with liminfnsn2>0\lim\inf\limits_{n}s_{n}^{2}>0 such that the Lyapunov’s condition holds true

δ>0,i=1n𝔼|γi(n)|2+δn0,\exists\delta>0,~{}\sum_{i=1}^{n}\mathbb{E}|\gamma_{i}^{(n)}|^{2+\delta}\xrightarrow{n\rightarrow\infty}0, (28)

and

i=1n𝔼j1[γj(n)]2sn2n0.\sum_{i=1}^{n}\mathbb{E}_{j-1}[\gamma_{j}^{(n)}]^{2}-s_{n}^{2}\xrightarrow{n\rightarrow\infty}0. (29)

Then, j=1nγj(n)sn\sum_{j=1}^{n}\frac{\gamma_{j}^{(n)}}{s_{n}} converges to 𝒩(0,1)\mathcal{N}(0,1).

In fact, sn2s_{n}^{2} is the asymptotic variance of j=1nγj(n)\sum_{j=1}^{n}\gamma_{j}^{(n)}, which can be computed by evaluating the sum of martingale differences in (29). Lemma 2 indicates that there are three main steps to prove Theorem 1:

1. Validate the Lyapunov’s condition in (28).

2. Compute the asymptotic variance by (29).

3. Validate liminfnsn2>0\lim\inf\limits_{n}s_{n}^{2}>0.

Before we proceed, we first introduce the resolvent matrices of H{\mathbb{H}}{\mathbb{H}}^{H} and H{\mathbb{H}}^{H}{\mathbb{H}}, given by

(z)\displaystyle{\mathbb{Q}}(z) =(z𝕀N+H)1,\displaystyle=\left(-z\mathbb{I}_{N}+{\mathbb{H}}{\mathbb{H}}^{H}\right)^{-1}, (30)
~(z)\displaystyle\widetilde{{\mathbb{Q}}}(z) =(z𝕀M+H)1.\displaystyle=\left(-z\mathbb{I}_{M}+{\mathbb{H}}^{H}{\mathbb{H}}\right)^{-1}.

j(z){\mathbb{Q}}_{j}(z) represents the rank-one perturbations of (z){\mathbb{Q}}(z), given by

j(z)\displaystyle{\mathbb{Q}}_{j}(z) =(z𝕀N+jjH)1,\displaystyle=\left(-z\mathbb{I}_{N}+{\mathbb{H}}_{j}{\mathbb{H}}_{j}^{H}\right)^{-1}, (31)

where j{\mathbb{H}}_{j} is obtained by removing the jj-th column from {\mathbb{H}}. The diagonal entry of Q~(z)\widetilde{Q}(z) can be obtained as

q~i,i=1z(1+𝕙iHi𝕙i).\widetilde{q}_{i,i}=\frac{1}{-z(1+{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}{\mathbb{h}}_{i})}. (32)

In the following, we will omit (z)(z) in (z){\mathbb{Q}}(z) and use the notation ρ=z\rho=-z.

Define the σ\sigma-filed j=σ(𝕪l,jlM)\mathcal{F}_{j}=\sigma(\mathbb{y}_{l},j\leq l\leq M) generated by 𝕪j\mathbb{y}_{j}, 𝕪j+1\mathbb{y}_{j+1},…, 𝕪M\mathbb{y}_{M} and denote the conditional expectation with respect to j\mathcal{F}_{j} by 𝔼j=𝔼(|j)\mathbb{E}_{j}=\mathbb{E}(\cdot|\mathcal{F}_{j}). CM(ρ)𝔼CM(ρ)C_{M}(\rho)-\mathbb{E}C_{M}(\rho) can be decomposed into a sum of martingale differences as follows

logdet(H+ρ𝕀N)𝔼logdet(H+ρ𝕀N)\displaystyle\log\det({\mathbb{H}}{\mathbb{H}}^{H}+\rho\mathbb{I}_{N})-\mathbb{E}\log\det({\mathbb{H}}{\mathbb{H}}^{H}+\rho\mathbb{I}_{N}) (33)
=(a)j=1M(𝔼j𝔼j+1)log(det(jjH+ρ𝕀N)det(H+ρ𝕀N))\displaystyle\overset{(a)}{=}-\sum_{j=1}^{M}(\mathbb{E}_{j}-\mathbb{E}_{j+1})\log\left(\frac{\det({\mathbb{H}}_{j}{\mathbb{H}}_{j}^{H}+\rho\mathbb{I}_{N})}{\det({\mathbb{H}}{\mathbb{H}}^{H}+\rho\mathbb{I}_{N})}\right)
=(b)j=1M(𝔼j𝔼j+1)log(det(jHj+ρ𝕀M1)det(H+ρ𝕀M1))\displaystyle\overset{(b)}{=}-\sum_{j=1}^{M}(\mathbb{E}_{j}-\mathbb{E}_{j+1})\log\left(\frac{\det({\mathbb{H}}_{j}^{H}{\mathbb{H}}_{j}+\rho\mathbb{I}_{M-1})}{\det({\mathbb{H}}^{H}{\mathbb{H}}+\rho\mathbb{I}_{M-1})}\right)
=(c)j=1M(𝔼j𝔼j+1)log[~]j,j\displaystyle\overset{(c)}{=}-\sum_{j=1}^{M}(\mathbb{E}_{j}-\mathbb{E}_{j+1})\log[\widetilde{\mathbb{Q}}]_{j,j}
=(d)j=1M(𝔼j𝔼j+1)log(1+𝕙jj𝕙j)\displaystyle\overset{(d)}{=}-\sum_{j=1}^{M}(\mathbb{E}_{j}-\mathbb{E}_{j+1})\log(1+{\mathbb{h}}_{j}{\mathbb{Q}}_{j}{\mathbb{h}}_{j})
=(e)j=1M(𝔼j𝔼j+1)log(1+ζj)\displaystyle\overset{(e)}{=}-\sum_{j=1}^{M}(\mathbb{E}_{j}-\mathbb{E}_{j+1})\log(1+\zeta_{j})
=j=1Mγj,\displaystyle=-\sum_{j=1}^{M}\gamma_{j},

where ζj=𝕙jj𝕙j1MTr𝔻jj𝕒jHj𝕒j1+1MTr𝔻jj+𝕒jHj𝕒j\zeta_{j}=\frac{{\mathbb{h}}_{j}{\mathbb{Q}}_{j}{\mathbb{h}}_{j}-\frac{1}{M}\operatorname{Tr}{\mathbb{D}}_{j}{\mathbb{Q}}_{j}-{\mathbb{a}}_{j}^{H}{\mathbb{Q}}_{j}{\mathbb{a}}_{j}}{1+\frac{1}{M}\operatorname{Tr}{\mathbb{D}}_{j}{\mathbb{Q}}_{j}+{\mathbb{a}}_{j}^{H}{\mathbb{Q}}_{j}{\mathbb{a}}_{j}} and γj=(𝔼j𝔼j+1)log(1+ζj)\gamma_{j}=(\mathbb{E}_{j}-\mathbb{E}_{j+1})\log(1+\zeta_{j}). Step (a)(a) in (33) follows from 𝔼jlogdet(jjH+ρ𝕀N)=𝔼j+1logdet(jjH+ρ𝕀N)\mathbb{E}_{j}\log\det({\mathbb{H}}_{j}{\mathbb{H}}_{j}^{H}+\rho\mathbb{I}_{N})=\mathbb{E}_{j+1}\log\det({\mathbb{H}}_{j}{\mathbb{H}}_{j}^{H}+\rho\mathbb{I}_{N}), step (b)(b) follows from the identity logdet(𝕀+𝔸𝔹)=logdet(𝕀+𝔹𝔸)\log\det(\mathbb{I}+\mathbb{A}\mathbb{B})=\log\det(\mathbb{I}+\mathbb{B}\mathbb{A}), steps (c)(c) and (d)(d) can be obtained by using the matrix inversion formula and (32), respectively, and step (e)(e) is derived by adding log(1+1MTr𝔻jj+𝕒jHj𝕒j)-\log(1+\frac{1}{M}\operatorname{Tr}{\mathbb{D}}_{j}{\mathbb{Q}}_{j}+{\mathbb{a}}_{j}^{H}{\mathbb{Q}}_{j}{\mathbb{a}}_{j}) to 𝔼j\mathbb{E}_{j} and 𝔼j+1\mathbb{E}_{j+1}. By far, we have decomposed CM(ρ)𝔼CM(ρ)C_{M}(\rho)-\mathbb{E}C_{M}(\rho) into the summation of the sequence γM\gamma_{M}, γM1\gamma_{M-1}, …, γ1\gamma_{1}, which is a martingale difference with respect to the increasing filtration M\mathcal{F}_{M}, M1\mathcal{F}_{M-1},…, 1\mathcal{F}_{1}. Next, we will finish the three steps of the proof.

IV-A Step 1: Validation of Lyapunov’s condition

By (33), we need to validate j=1M𝔼|γj|2+δM0\sum_{j=1}^{M}\mathbb{E}|\gamma_{j}|^{2+\delta}\xrightarrow{M\rightarrow\infty}0, where the left hand side can be evaluated as,

(𝔼|γj|2+δ)12+δ(𝔼|𝔼jlog(1+ζj)|2+δ)12+δ+(𝔼|𝔼j+1log(1+ζj)|2+δ)12+δ\displaystyle(\mathbb{E}|\gamma_{j}|^{2+\delta})^{\frac{1}{2+\delta}}\leq(\mathbb{E}|\mathbb{E}_{j}\log(1+\zeta_{j})|^{2+\delta})^{\frac{1}{2+\delta}}+(\mathbb{E}|\mathbb{E}_{j+1}\log(1+\zeta_{j})|^{2+\delta})^{\frac{1}{2+\delta}} (34)
(a)2(𝔼|log(1+ζj)|2+δ)12+δ.\displaystyle\overset{(a)}{\leq}2(\mathbb{E}|\log(1+\zeta_{j})|^{2+\delta})^{\frac{1}{2+\delta}}.

The inequality (a)(a) in (LABEL:lyn_bnd) follows from (|𝔼jlog(1+ζj)|)2+δ(𝔼j|log(1+ζj)|)2+δ𝔼j(|log(1+ζj)|)2+δ(|\mathbb{E}_{j}\log(1+\zeta_{j})|)^{2+\delta}\leq(\mathbb{E}_{j}|\log(1+\zeta_{j})|)^{2+\delta}\leq\mathbb{E}_{j}(|\log(1+\zeta_{j})|)^{2+\delta} according to Jensen’s inequality. By Assumptions A.1-A.3 and the trace inequality in (136), it follows

1MTr𝔻jj+𝕒jHj𝕒jρ1(cσmax2+amax2):=U1.\frac{1}{M}\operatorname{Tr}{\mathbb{D}}_{j}{\mathbb{Q}}_{j}+{\mathbb{a}}_{j}^{H}{\mathbb{Q}}_{j}{\mathbb{a}}_{j}\leq\rho^{-1}(c\sigma^{2}_{max}+a_{max}^{2}):=U_{1}. (35)

By the non-decreasing attribute of f(x)=x1+xf(x)=\frac{x}{1+x}, we have

ζj1MTr𝔻jj+𝕒jHj𝕒j1+1MTr𝔻jj+𝕒jHj𝕒jU11+U1:=U2>1.\displaystyle\zeta_{j}\geq-\frac{\frac{1}{M}\operatorname{Tr}{\mathbb{D}}_{j}{\mathbb{Q}}_{j}+{\mathbb{a}}_{j}^{H}{\mathbb{Q}}_{j}{\mathbb{a}}_{j}}{1+\frac{1}{M}\operatorname{Tr}{\mathbb{D}}_{j}{\mathbb{Q}}_{j}+{\mathbb{a}}_{j}^{H}{\mathbb{Q}}_{j}{\mathbb{a}}_{j}}\geq-\frac{U_{1}}{1+U_{1}}:=-U_{2}>-1. (36)

By the non-decreasing attribute of g(x)=log(1+x)x,x(1,)g(x)=\frac{\log(1+x)}{x},~{}x\in(-1,\infty), we have

γjζjlog(1U2)U2:=U3.\frac{\gamma_{j}}{\zeta_{j}}\leq\frac{\log(1-U_{2})}{U_{2}}:=U_{3}. (37)

Therefore, according to (LABEL:lyn_bnd), (36), and (37), if δ(0,6]\delta\in(0,6] and 𝔼|Xi,j|2+δ\mathbb{E}|X_{i,j}|^{2+\delta}\leq\infty, we have

𝔼|γj|2+δ(2U3)2+δ𝔼|ζj|2+δ(2U3)2+δ𝔼|𝕙jHj𝕙j1MTr𝔻j𝕒jHj𝕒j|2+δ(a)UM2+δ2,\displaystyle\mathbb{E}|\gamma_{j}|^{2+\delta}\leq(2U_{3})^{2+\delta}\mathbb{E}|\zeta_{j}|^{2+\delta}\leq(2U_{3})^{2+\delta}\mathbb{E}|{\mathbb{h}}_{j}^{H}{\mathbb{Q}}_{j}{\mathbb{h}}_{j}-\frac{1}{M}\operatorname{Tr}{\mathbb{D}}{\mathbb{Q}}_{j}-{\mathbb{a}}_{j}^{H}{\mathbb{Q}}_{j}{\mathbb{a}}_{j}|^{2+\delta}\overset{(a)}{\leq}\frac{U}{M^{\frac{2+\delta}{2}}}, (38)

where (a)(a) in (38) follows from Lemma 4 in Appendix C. Therefore, j=1M𝔼|γj|2+δM0\sum_{j=1}^{M}\mathbb{E}|\gamma_{j}|^{2+\delta}\xrightarrow{M\rightarrow\infty}0 and the Lyapunov’s condition is validated.

IV-B Step 2: Evaluation of the asymptotic variance

In this step, we will first derive the asymptotic variance by evaluating the sum of the mean square for the martingale difference.

IV-B1 Evaluation of the sum of conditional variances

In the following, we will show the following convergence

j=1M𝔼j+1γj2M𝒫j=1M𝔼j+1(𝔼jζj)2.\sum_{j=1}^{M}\mathbb{E}_{j+1}\gamma_{j}^{2}\xrightarrow[M\rightarrow\infty]{\mathcal{P}}\sum_{j=1}^{M}\mathbb{E}_{j+1}(\mathbb{E}_{j}\zeta_{j})^{2}. (39)

This convergence intuitively follows from the first-order Taylor expansion

𝔼jlog(1+ζj)=𝔼jζj+[𝔼jlog(1+ζj)𝟙|ζj|U2𝔼jζj]+𝔼jlog(1+ζj)=𝔼jζj+εj,1+εj,2,\displaystyle\mathbb{E}_{j}\log(1+\zeta_{j})=\mathbb{E}_{j}\zeta_{j}+[\mathbb{E}_{j}\log(1+\zeta_{j})\mathbbm{1}_{|\zeta_{j}|\leq U_{2}}-\mathbb{E}_{j}\zeta_{j}]+\mathbb{E}_{j}\log(1+\zeta_{j})=\mathbb{E}_{j}\zeta_{j}+\varepsilon_{j,1}+\varepsilon_{j,2}, (40)

where U2U_{2} is given in (36). Now we will show that j=1Mεj,1\sum_{j=1}^{M}\varepsilon_{j,1} and j=1Mεj,2\sum_{j=1}^{M}\varepsilon_{j,2} vanish as MM approaches infinity. By the Taylor expansion of log(1+x)\log(1+x), we have

|εj,1|=|𝔼j(m=1ζj𝟙|ζj|<U2mζj)|𝔼jζj𝟙ζj>U2+m=2𝔼j|ζj|m𝟙|ζj|U2𝔼jζj𝟙ζj>U2+𝔼jζj2𝟙|ζj|U21U2.\displaystyle|\varepsilon_{j,1}|=|\mathbb{E}_{j}(\sum_{m=1}^{\infty}\frac{\zeta_{j}\mathbbm{1}_{|\zeta_{j}|<U_{2}}}{m}-\zeta_{j})|\leq\mathbb{E}_{j}\zeta_{j}\mathbbm{1}_{\zeta_{j}>U_{2}}+\sum_{m=2}^{\infty}\mathbb{E}_{j}|\zeta_{j}|^{m}\mathbbm{1}_{|\zeta_{j}|\leq U_{2}}\leq\mathbb{E}_{j}\zeta_{j}\mathbbm{1}_{\zeta_{j}>U_{2}}+\frac{\mathbb{E}_{j}\zeta_{j}^{2}\mathbbm{1}_{|\zeta_{j}|\leq U_{2}}}{1-U_{2}}. (41)

By the inequality (a+b)22(a2+b2)(a+b)^{2}\leq 2(a^{2}+b^{2}), we can obtain

𝔼εj,12\displaystyle\mathbb{E}\varepsilon_{j,1}^{2} 2(𝔼ζj2𝟙ζj>U2+𝔼ζj4𝟙|ζj|U21U2)\displaystyle\leq 2\left(\mathbb{E}\zeta_{j}^{2}\mathbbm{1}_{\zeta_{j}>U_{2}}+\frac{\mathbb{E}\zeta_{j}^{4}\mathbbm{1}_{|\zeta_{j}|\leq U_{2}}}{1-U_{2}}\right) (42)
(a)2(𝔼ζj4U22+𝔼ζj4(1U2)2)2(1U22+1(1U2)2)𝔼(𝕙iHj𝕙i1MTr𝔻jj𝕒iHj𝕒i)4(b)KM2,\displaystyle\overset{(a)}{\leq}2(\frac{\mathbb{E}\zeta_{j}^{4}}{U_{2}^{2}}+\frac{\mathbb{E}\zeta_{j}^{4}}{(1-U_{2})^{2}})\leq 2(\frac{1}{U_{2}^{2}}+\frac{1}{(1-U_{2})^{2}})\mathbb{E}({\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{j}{\mathbb{h}}_{i}-\frac{1}{M}\operatorname{Tr}{\mathbb{D}}_{j}{\mathbb{Q}}_{j}-{\mathbb{a}}_{i}^{H}{\mathbb{Q}}_{j}{\mathbb{a}}_{i})^{4}\overset{(b)}{\leq}KM^{-2},

where the inequality (a)(a) in (42) follows from ζj2𝟙ζj>U2ζj2ζj2U2𝟙ζj>U2\zeta_{j}^{2}\mathbbm{1}_{\zeta_{j}>U_{2}}\leq\zeta_{j}^{2}\frac{\zeta_{j}^{2}}{U_{2}}\mathbbm{1}_{\zeta_{j}>U_{2}} and step (b) in (42) follows from (131) in Lemma 4 when 𝔼|Xi,j|8\mathbb{E}|X_{i,j}|^{8}\leq\infty, which holds true for Gaussian entries. 𝔼εj,22\mathbb{E}\varepsilon_{j,2}^{2} can be handled similarly as

𝔼εj,22𝔼ζj2𝟙ζj>U2U22𝔼ζj4𝟙ζj>U2KM2.\mathbb{E}\varepsilon_{j,2}^{2}\leq\mathbb{E}\zeta_{j}^{2}\mathbbm{1}_{\zeta_{j}>U_{2}}\leq U_{2}^{-2}\mathbb{E}\zeta_{j}^{4}\mathbbm{1}_{\zeta_{j}>U_{2}}\leq K^{\prime}M^{-2}. (43)

By far, we have obtained 𝔼jlog(1+ζj)=𝔼jζj+𝒪(M2)\mathbb{E}_{j}\log(1+\zeta_{j})=\mathbb{E}_{j}\zeta_{j}+{\mathcal{O}}(M^{-2}) and we can similarly obtain 𝔼j+1log(1+ζj)=𝔼j+1ζj+𝒪(M2)\mathbb{E}_{j+1}\log(1+\zeta_{j})=\mathbb{E}_{j}+1\zeta_{j}+{\mathcal{O}}(M^{-2}). Since 𝔼j+1ζj=0\mathbb{E}_{j+1}\zeta_{j}=0, we have γj=𝔼jζj+εz,j\gamma_{j}=\mathbb{E}_{j}\zeta_{j}+\varepsilon_{z,j} and 𝔼εz,j2=𝒪(M2)\mathbb{E}\varepsilon_{z,j}^{2}={\mathcal{O}}(M^{-2}) to further obtain

𝔼|𝔼j+1(γj)2𝔼j+1(𝔼jζj)2|=𝔼|𝔼j+1εz,j2+2𝔼j+1|εz,j𝔼jζj||\displaystyle\mathbb{E}|\mathbb{E}_{j+1}(\gamma_{j})^{2}-\mathbb{E}_{j+1}(\mathbb{E}_{j}\zeta_{j})^{2}|=\mathbb{E}|\mathbb{E}_{j+1}\varepsilon_{z,j}^{2}+2\mathbb{E}_{j+1}|\varepsilon_{z,j}\mathbb{E}_{j}\zeta_{j}|| (44)
𝔼εz,j2+2𝔼12εz,j2𝔼12|𝔼jζj|2𝔼εz,j2+2𝔼12εz,j2𝔼12ζj4=𝒪(M32).\displaystyle\leq\mathbb{E}\varepsilon_{z,j}^{2}+2\mathbb{E}^{\frac{1}{2}}\varepsilon_{z,j}^{2}\mathbb{E}^{\frac{1}{2}}|\mathbb{E}_{j}\zeta_{j}|^{2}\leq\mathbb{E}\varepsilon_{z,j}^{2}+2\mathbb{E}^{\frac{1}{2}}\varepsilon_{z,j}^{2}\mathbb{E}^{\frac{1}{2}}\zeta_{j}^{4}={\mathcal{O}}(M^{-\frac{3}{2}}).

Therefore, we have

j=1M𝔼|𝔼j+1γj2𝔼j+1(𝔼jζj)2|KcM12.\sum_{j=1}^{M}\mathbb{E}|\mathbb{E}_{j+1}\gamma_{j}^{2}-\mathbb{E}_{j+1}(\mathbb{E}_{j}\zeta_{j})^{2}|\leq K_{c}M^{-\frac{1}{2}}. (45)

By the Markov’s inequality, we can conclude (39). Therefore, the variance evaluation turns to be the evaluation of j=1M𝔼j+1(𝔼jζj)2\sum_{j=1}^{M}\mathbb{E}_{j+1}(\mathbb{E}_{j}\zeta_{j})^{2}, which will be handled in the following.

IV-B2 Evaluation of j=1M𝔼j+1(𝔼jζj)2\sum_{j=1}^{M}\mathbb{E}_{j+1}(\mathbb{E}_{j}\zeta_{j})^{2}

Before we proceed, we introduce

b~i=ρ1(1+𝕒iHi𝕒i+1MTr𝔻ii)1,\widetilde{b}_{i}=\rho^{-1}\left(1+{\mathbb{a}}_{i}^{H}{\mathbb{Q}}_{i}{\mathbb{a}}_{i}+\frac{1}{M}\operatorname{Tr}{\mathbb{D}}_{i}{\mathbb{Q}}_{i}\right)^{-1}, (46)

which can be regarded as an intermediate approximation for q~i,i\widetilde{q}_{i,i}. Then, we have 𝔼jζj=𝔼ρb~jej\mathbb{E}_{j}\zeta_{j}=\mathbb{E}\rho\widetilde{b}_{j}e_{j}, where

ej=𝕙jHj𝕙j𝕒jHj𝕒j1MTr𝔻jj.e_{j}={\mathbb{h}}_{j}^{H}{\mathbb{Q}}_{j}{\mathbb{h}}_{j}-{\mathbb{a}}_{j}^{H}{\mathbb{Q}}_{j}{\mathbb{a}}_{j}-\frac{1}{M}\operatorname{Tr}{\mathbb{D}}_{j}{\mathbb{Q}}_{j}. (47)

According to (133) in Lemma 5 and (131) in Lemma (4), we can obtain 𝔼|b~jt~j,j|2(𝔼|b~jq~j,j|2+𝔼|t~j,jq~j,j|2)=o(1)\mathbb{E}|\widetilde{b}_{j}-\widetilde{t}_{j,j}|\leq 2(\mathbb{E}|\widetilde{b}_{j}-\widetilde{q}_{j,j}|^{2}+\mathbb{E}|\widetilde{t}_{j,j}-\widetilde{q}_{j,j}|^{2})=o(1) so that

𝔼|𝔼j1(𝔼jρb~jej)2𝔼j1ρ2t~j,j2(𝔼j1ej)2|\displaystyle\mathbb{E}|\mathbb{E}_{j-1}(\mathbb{E}_{j}\rho\widetilde{b}_{j}e_{j})^{2}-\mathbb{E}_{j-1}\rho^{2}\widetilde{t}_{j,j}^{2}(\mathbb{E}_{j-1}e_{j})^{2}| 𝔼ρ2|𝔼j(b~jt~j,j)ej(𝔼j(b~j+t~j,j)ej)|\displaystyle\leq\mathbb{E}\rho^{2}|\mathbb{E}_{j}(\widetilde{b}_{j}-\widetilde{t}_{j,j})e_{j}(\mathbb{E}_{j}(\widetilde{b}_{j}+\widetilde{t}_{j,j})e_{j})| (48)
K𝔼12|b~jt~j,j|2𝔼12ej4=o(M1).\displaystyle\leq K\mathbb{E}^{\frac{1}{2}}|\widetilde{b}_{j}-\widetilde{t}_{j,j}|^{2}\mathbb{E}^{\frac{1}{2}}e_{j}^{4}=o(M^{-1}).

Therefore, we can obtain 𝔼j=1M𝔼j1(𝔼jρb~jej)2𝔼j=1M𝔼j1(𝔼jρt~,jjej)2M0\mathbb{E}\sum_{j=1}^{M}\mathbb{E}_{j-1}(\mathbb{E}_{j}\rho\widetilde{b}_{j}e_{j})^{2}-\mathbb{E}\sum_{j=1}^{M}\mathbb{E}_{j-1}(\mathbb{E}_{j}\rho\widetilde{t}_{,jj}e_{j})^{2}\xrightarrow{M\rightarrow\infty}0 and conclude

j=1M𝔼j1(𝔼jρb~jej)2M𝒫j=1M𝔼j1(𝔼jρt~j,jej)2,\sum_{j=1}^{M}\mathbb{E}_{j-1}(\mathbb{E}_{j}\rho\widetilde{b}_{j}e_{j})^{2}\xrightarrow[M\rightarrow\infty]{\mathcal{P}}\sum_{j=1}^{M}\mathbb{E}_{j-1}(\mathbb{E}_{j}\rho\widetilde{t}_{j,j}e_{j})^{2}, (49)

by the Markov’s inequality. Then, the evaluation of the asymptotic variance resorts to the evaluation of j=1Mρ2t~j,j2𝔼j1(𝔼jej)2\sum_{j=1}^{M}\rho^{2}\widetilde{t}_{j,j}^{2}\mathbb{E}_{j-1}(\mathbb{E}_{j}e_{j})^{2}.

j=1Mρ2t~j,j2𝔼j1(𝔼jej)2=j=1Mρ2t~j,j2(Tr𝔻j(𝔼jj)𝔻j(𝔼jj)M2+2𝕒jH(𝔼jj)𝔻j𝕒jH(𝔼jj)M):=T.\displaystyle\sum_{j=1}^{M}\rho^{2}\widetilde{t}_{j,j}^{2}\mathbb{E}_{j-1}(\mathbb{E}_{j}e_{j})^{2}=\sum_{j=1}^{M}\rho^{2}\widetilde{t}_{j,j}^{2}\left(\frac{\operatorname{Tr}{\mathbb{D}}_{j}(\mathbb{E}_{j}{\mathbb{Q}}_{j}){\mathbb{D}}_{j}(\mathbb{E}_{j}{\mathbb{Q}}_{j})}{M^{2}}+\frac{2{\mathbb{a}}_{j}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{j}){\mathbb{D}}_{j}{\mathbb{a}}_{j}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{j})}{M}\right):=T. (50)

By similar lines as in [26], it can be proved that Var(Tr𝔻j(𝔼jj)𝔻j(𝔼jj))=𝒪(1)\mathrm{Var}(\operatorname{Tr}{\mathbb{D}}_{j}(\mathbb{E}_{j}{\mathbb{Q}}_{j}){\mathbb{D}}_{j}(\mathbb{E}_{j}{\mathbb{Q}}_{j}))={\mathcal{O}}(1) and Var(𝕒jH(𝔼jj)𝔻j𝕒jH(𝔼jj))=𝒪(M1)\mathrm{Var}({\mathbb{a}}_{j}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{j}){\mathbb{D}}_{j}{\mathbb{a}}_{j}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{j}))={\mathcal{O}}(M^{-1}). Therefore, by the Chebyshev’s inequality, we have the following approximation

T\xlongrightarrow[M]𝒫j=1M(ρ2t~j,j2ψj,jM+2Θj,jM):=KM,T\xlongrightarrow[M\rightarrow\infty]{\mathcal{P}}\sum_{j=1}^{M}(\frac{\rho^{2}\widetilde{t}_{j,j}^{2}\psi_{j,j}}{M}+\frac{2\Theta_{j,j}}{M}):=K_{M}, (51)

where ψj,j=𝔼Tr𝔻j(𝔼jj)𝔻jjM\psi_{j,j}=\frac{\mathbb{E}\operatorname{Tr}{\mathbb{D}}_{j}(\mathbb{E}_{j}{\mathbb{Q}}_{j}){\mathbb{D}}_{j}{\mathbb{Q}}_{j}}{M} and Θj,j=ρ2t~j,j2𝔼𝕒jH(𝔼jj)𝔻j𝕒jHjM\Theta_{j,j}=\frac{\rho^{2}\widetilde{t}_{j,j}^{2}\mathbb{E}{\mathbb{a}}_{j}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{j}){\mathbb{D}}_{j}{\mathbb{a}}_{j}^{H}{\mathbb{Q}}_{j}}{M}. KMK_{M} can be evaluated by the following lemma.

Lemma 3.

Given Assumptions A.1-A.3, the following evaluation holds true,

j=1M(ρ2t~j,j2ψj,jM+2Θj,jM)\xlongrightarrow[]Mlogdet(𝕀2M𝔹M),\sum_{j=1}^{M}(\frac{\rho^{2}\widetilde{t}_{j,j}^{2}\psi_{j,j}}{M}+\frac{2\Theta_{j,j}}{M})\xlongrightarrow[]{M\xrightarrow{}\infty}-\log\det(\mathbb{I}_{2M}-{\mathbb{B}}_{M}), (52)

where 𝔹M{\mathbb{B}}_{M} is defined in (24).

Proof.

The proof of Lemma 3 is given in Appendix B. ∎

By (50) and Lemma 3, we have

j=1Mρ2t~j,j2𝔼j1(𝔼jej)2\xlongrightarrow[M]𝒫logdet(𝕀2M𝔹M),\sum_{j=1}^{M}\rho^{2}\widetilde{t}_{j,j}^{2}\mathbb{E}_{j-1}(\mathbb{E}_{j}e_{j})^{2}\xlongrightarrow[M\rightarrow\infty]{\mathcal{P}}-\log\det(\mathbb{I}_{2M}-{\mathbb{B}}_{M}), (53)

which indicates that the asymptotic variance is VM(σ2)=logdet(𝕀2M𝔹M)V_{M}(\sigma^{2})=-\log\det(\mathbb{I}_{2M}-{\mathbb{B}}_{M}). By far, we have finished Step 2.

IV-C Step 3: The lower bound of the asymptotic variance

In this section, we will verify infMVM(σ2)>0\inf\limits_{M}V_{M}(\sigma^{2})>0. By Lemma 3, we can obtain that for large MM, there holds true

VM(σ2)j=1Mρ2t~j,j2i=1Nσij2ti2M2\displaystyle V_{M}(\sigma^{2})-\sum_{j=1}^{M}\frac{\rho^{2}\widetilde{t}_{j,j}^{2}\sum_{i=1}^{N}\sigma_{ij}^{2}t_{i}^{2}}{M^{2}} (54)
j=1M(ρ2t~j,j2Tr𝔻j(𝔼jj)𝔻jjM2ρ2t~j,j2i=1Nσij2ti,i2M2)\displaystyle\geq\sum_{j=1}^{M}\left(\frac{\rho^{2}\widetilde{t}_{j,j}^{2}\operatorname{Tr}{\mathbb{D}}_{j}(\mathbb{E}_{j}{\mathbb{Q}}_{j}){\mathbb{D}}_{j}{\mathbb{Q}}_{j}}{M^{2}}-\frac{\rho^{2}\widetilde{t}_{j,j}^{2}\sum_{i=1}^{N}\sigma_{ij}^{2}t_{i,i}^{2}}{M^{2}}\right)
ρ2t~j,j2Tr𝔻j(𝔼jj)𝔻jjM2ρ2t~j,j2MTr𝔻j𝕋𝔻j𝕋M\xlongrightarrow[]M\xlongrightarrowdi=1Mρ2t~j,j2M[[(𝕀𝔹j)1𝕀2j]Γj[j]]j\displaystyle\geq\frac{\rho^{2}\widetilde{t}_{j,j}^{2}\operatorname{Tr}{\mathbb{D}}_{j}(\mathbb{E}_{j}{\mathbb{Q}}_{j}){\mathbb{D}}_{j}{\mathbb{Q}}_{j}}{M^{2}}-\frac{\rho^{2}\widetilde{t}_{j,j}^{2}}{M}\frac{\operatorname{Tr}{\mathbb{D}}_{j}{\mathbb{T}}{\mathbb{D}}_{j}{\mathbb{T}}}{M}\xlongrightarrow[]{M\xlongrightarrow{d}\infty}\sum_{i=1}^{M}\frac{\rho^{2}\widetilde{t}_{j,j}^{2}}{M}[[\left(\mathbb{I}-\mathbb{B}_{j}\right)^{-1}-\mathbb{I}_{2j}]\mathbb{\Gamma}_{j}^{[j]}]_{j}
=j=1Mρ2t~j,j2M[(𝕀𝔹j)1𝔹jΓj[j]]j>(a)0,\displaystyle=\sum_{j=1}^{M}\frac{\rho^{2}\widetilde{t}_{j,j}^{2}}{M}[\left(\mathbb{I}-\mathbb{B}_{j}\right)^{-1}\mathbb{B}_{j}\mathbb{\Gamma}_{j}^{[j]}]_{j}\overset{(a)}{>}0,

where Step (a) in (54) follows from the fact that entries of (𝕀𝔹i)1\left(\mathbb{I}-\mathbb{B}_{i}\right)^{-1} and 𝔹i\mathbb{B}_{i} are positive, which is given in the analysis above (LABEL:G_other) in Appendix B.

By the trace inequality in (136), we can obtain δi<cσmax2ρ1\delta_{i}<c\sigma^{2}_{max}\rho^{-1} and δ~j<σmax2ρ1\widetilde{\delta}_{j}<\sigma^{2}_{max}\rho^{-1} so that

t~j,j>1ρ(1+cσmax2ρ1+amax2ρ1)\widetilde{t}_{j,j}>\frac{1}{\rho(1+c\sigma^{2}_{max}\rho^{-1}+a_{max}^{2}\rho^{-1})} (55)

is bounded away from 0, which also holds true for ti,it_{i,i}. Therefore, we have

VM(ρ)>j=1Mρ2t~j,j2i=1Nσij2ti2M2>Ki,jσi,j2M2.V_{M}(\rho)>\sum_{j=1}^{M}\frac{\rho^{2}\widetilde{t}_{j,j}^{2}\sum_{i=1}^{N}\sigma_{ij}^{2}t_{i}^{2}}{M^{2}}>\frac{K\sum_{i,j}\sigma_{i,j}^{2}}{M^{2}}. (56)

By A.2, we can obtain that the right hand side of (56) is bounded away from 0 to conclude step 3. According to Lemma 2, we conclude Theorem 1.

V Numerical Results

In this section, we will validate the theoretical results by numerical simulations. Given the equivalence of the Weichselberger and Holographic MIMO channels, we only focus on the latter. In particular, we consider the Fourier based holographic channel [18].

V-A Simulation Settings

Given the equivalence of the MI in the spatial (13) and angular domain (16), we only consider the channel in the angular domain, i.e., a{\mathbb{H}}_{a}. For the NLoS component with separable model, we consider the isotropic model, i.e., S(kx,ky,κx,κy)=1S(k_{x},k_{y},\kappa_{x},\kappa_{y})=1. The variance profile for the separable case can be computed by [16, Eq. (70)] and generated by the code in [43]. Since there is no existing models for S(kx,ky,κx,κy)S(k_{x},k_{y},\kappa_{x},\kappa_{y}) of the non-separable case, we construct one based on the product of the Gaussian kernel and the separable variance profile. The non-separable variance profile is given by

σ2(lx,ly,mx,my)=σR2(lx,ly)σS2(mx,my)exp((lxmx)2+(lymy)2a),\displaystyle\sigma^{2}(l_{x},l_{y},m_{x},m_{y})=\sigma^{2}_{R}(l_{x},l_{y})\sigma^{2}_{S}(m_{x},m_{y})\exp(-\frac{(l_{x}-m_{x})^{2}+(l_{y}-m_{y})^{2}}{a}), (57)

where aa is a scaling factor and set as a=1a=1. σR2(lx,ly)\sigma^{2}_{R}(l_{x},l_{y}) and σS2(mx,my)\sigma^{2}_{S}(m_{x},m_{y}) can be computed by [17, Eq. (70)]222The code is available at: https://github.com/lucasanguinetti/Holographic-MIMO-Small-Scale-Fading.. The holographic MIMO channel is generated by

h=kns𝔸h+Σh12𝕏h,{\mathbb{H}}_{h}=\sqrt{\frac{k}{n_{s}}}{\mathbb{A}}_{h}+\mathbb{\Sigma}^{\circ\frac{1}{2}}_{h}\odot\mathbb{X}_{h}, (58)

where 𝕏hnR×nS{\mathbb{X}}_{h}\in\mathbb{C}^{n_{R}\times n_{S}} is an i.i.d. random matrix with entries [𝕏h]i,j𝒞𝒩(0,1nS)[{\mathbb{X}}_{h}]_{i,j}\sim\mathcal{CN}(0,\frac{1}{n_{S}}). The LoS component 𝔸h{\mathbb{A}}_{h} is obtained by [36, Eq. (12)] and we introduce a factor kk to indicate the power ratio of the LoS and non-LoS component and set k=10k=10 by default. The frequency is 3×10103\times 10^{10} Hz with wavelength λ=0.01\lambda=0.01 m. The SNR 1σ2\frac{1}{\sigma^{2}} is set as 1010 dB and spacing is set to be λ4\frac{\lambda}{4}. The antenna efficiency is set to be τ=0.6\tau=0.6 and the antenna area is la×la=λ264l_{a}\times l_{a}=\frac{\lambda^{2}}{64} with la=λ8l_{a}=\frac{\lambda}{8}.

V-B Gaussianity

In Fig. 4, the normal quantile-quantile-plots (QQ-plots) for the normalized MI, CM(ζ)C¯M(ζ)VM(ζ)\frac{{C}_{M}(\zeta)-\overline{{C}}_{M}(\zeta)}{\sqrt{V_{M}(\zeta)}} with ζ=σ2GRGSNRNS\zeta=\frac{\sigma^{2}}{G_{R}G_{S}N_{R}N_{S}}, are plotted by blue plus sign with settings nR=nS={4,16,36,60}n_{R}=n_{S}=\{4,16,36,60\}. The number of samples of the MI is 10510^{5} and the red line is the quantile of the Gaussian distribution. It can be observed that the QQ plot of the normalized MI is closer to that of the QQ plot of the normalized MI as nRn_{R} increases, which validates the Gaussianity of the MI.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 4: Validation of Gaussianity for the normalized MI CM(ζ)C¯M(ζ)VM(ζ)\frac{{C}_{M}(\zeta)-\overline{{C}}_{M}(\zeta)}{\sqrt{V_{M}(\zeta)}}.

V-C Accuracy of the Theoretical Analysis

The mean and variance of CM(ζ)C_{M}(\zeta) are plotted in Figs. 5 and 6, respectively, where the analytical values (Ana.) of the mean and variance are obtained by (22) in Lemma 1 and (26) in Theorem 1, respectively. The simulation values (Sim.) are obtained by 10410^{4} samples of CM(ζ)C_{M}(\zeta) with 1σ2=30\frac{1}{\sigma^{2}}=30 dB. It can be observed from Figs. 5 and 6 that the results for the mean and variance are accurate for different SNRs.

The outage probability for Δ=λ4\Delta=\frac{\lambda}{4}, Lx=Ly=10λL_{x}=L_{y}=10\lambda with 1σ2={30,31}\frac{1}{\sigma^{2}}=\{30,31\} dB is plotted in Figs. 7, where the analytical values are computed by (27) in Proposition 1 and the simulation values are generated by 5×1065\times 10^{6} realizations. It can be observed from Figs. 7 that the analytical results match the simulation values well, which validates the accuracy of the proposed outage probability approximation.

Refer to caption
Figure 5: EMI
Refer to caption
Figure 6: Variance
Refer to caption
Figure 7: Outage probability with Δ=λ4\Delta=\frac{\lambda}{4}

V-D Impact of Non-Separable Correlation

Now we compare the EMI with the non-separable correlation structure in (57) and that with the separable correlation structure

σsep2(lx,ly,mx,my)=mσR2(lx,ly)σS2(mx,my),\displaystyle\sigma^{2}_{sep}(l_{x},l_{y},m_{x},m_{y})=m\sigma^{2}_{R}(l_{x},l_{y})\sigma^{2}_{S}(m_{x},m_{y}), (59)

where mm is a scaling factor. For the sake of fairness, we keep 𝔼TrhhH\mathbb{E}\operatorname{Tr}{\mathbb{H}}_{h}{\mathbb{H}}_{h}^{H} the same for both cases, which is implemented by sharing the common 𝔸h{\mathbb{A}}_{h} and guaranteeing Tr(Σnonsep)=Tr(Σsep)\operatorname{Tr}(\mathbb{\Sigma}_{non-sep})=\operatorname{Tr}(\mathbb{\Sigma}_{sep}) with appropriate mm. The settings are k=0.2k=0.2, a=0.5a=0.5, and Lx=5λL_{x}=5\lambda. Fig. 8 and 9 depict the EMI and outage probability with separable and non-separable correlation structure, respectively. It can be observed from Fig. 8 that the EMI of separable case is smaller than that of non-separable case, which coincides with that in [6, 9]. It can be observed from Fig. 9 the outage probability with separable correlation is greater than that with non-separable correlation.

Refer to caption
Figure 8: Comparison of EMI with separable and non-separable correlations
Refer to caption
Figure 9: Comparison of outage probability with separable and non-separable correlations

VI Conclusion and Future Works

In this paper, we investigated the MI over non-centered and non-separable MIMO channels. Specifically, we set up a CLT for the MI and gave the closed-form expressions for the mean and variance. The results can be utilized for evaluating the outage probability of the Rician Weichselberger [3] and holographic MIMO channels [18]. As far as the authors know, these theoretical results are the first closed-form performance evaluation in the literature for holographic MIMO systems with the non-separable correlation structure. Numerical results validated the accuracy of the evaluation.

The theoretical results in this paper set up a framework for the analysis of electromagnetically large holographic MIMO channels. The results and approach can be used to perform the finite-blocklength analysis [31] and secrecy analysis [44] for holographic MIMO systems. It is worth mentioning that the analysis in this paper was performed based on the assumption that perfect CSI is available at the receiver and there is no noise among the coupling antennas. It is of practical interest to investigate the impact of the imperfect CSI [45] and noise in the coupling antennas [46] on the holographic MIMO systems, which will be considered in future works.

Appendix A Fourier Plane-wave Representation of Electromagnetic Channels

The authors of [15] showed that when the reactive propagation in the proximity (i.e., at a distance of few wavelengths) of the source and scatterers are excluded, the channel response between the transmit antenna at 𝕤\mathbb{s} and the receive antenna at 𝕣\mathbb{r}, i.e., hs(𝕣,𝕤)h_{s}(\mathbb{r},\mathbb{s}), of two infinitely large arrays can be modeled as a spatially-stationary electromagnetic random field

hs(𝕣,𝕤)=14π2𝒟k×𝒟κaR(kx,ky,𝕣)Ha(kx,ky,κx,κy)aS(κx,κy,𝕣)dkxdkydκxdκy,\displaystyle h_{s}(\mathbb{r},\mathbb{s})=\frac{1}{4\pi^{2}}\iiiint_{\mathcal{D}_{k}\times\mathcal{D}_{\kappa}}a_{R}(k_{x},k_{y},\mathbb{r})H_{a}(k_{x},k_{y},\kappa_{x},\kappa_{y})a_{S}^{*}(\kappa_{x},\kappa_{y},\mathbb{r})\mathrm{d}k_{x}\mathrm{d}k_{y}\mathrm{d}\kappa_{x}\mathrm{d}\kappa_{y}, (60)

where aS(κx,κy,𝕤)=eȷ𝜿T𝕤=eȷ(κxsx+κysy+κzsz)a_{S}(\kappa_{x},\kappa_{y},\mathbb{s})=e^{\jmath\boldsymbol{\kappa}^{T}\mathbb{s}}=e^{-\jmath(\kappa_{x}s_{x}+\kappa_{y}s_{y}+\kappa_{z}s_{z})} and aR(kx,ky,𝕣)=eȷ𝕜T𝕣=eȷ(kxrx+kyry+kzrz)a_{R}(k_{x},k_{y},\mathbb{r})=e^{\jmath\mathbb{k}^{T}\mathbb{r}}=e^{\jmath(k_{x}r_{x}+k_{y}r_{y}+k_{z}r_{z})} represent the source response at 𝕤\mathbb{s} and the receive response at 𝕣\mathbb{r}, respectively. Here, 𝜿=[κx,κy,κz]T\boldsymbol{\kappa}=[\kappa_{x},\kappa_{y},\kappa_{z}]^{T} with κz=γ(κx,κy)=(κ2κx2κy2)12\kappa_{z}=\gamma(\kappa_{x},\kappa_{y})=(\kappa^{2}-\kappa_{x}^{2}-\kappa_{y}^{2})^{\frac{1}{2}} and the wave number κ\kappa is given by κ=2πλ\kappa=\frac{2\pi}{\lambda} and 𝜿/𝜿\boldsymbol{\kappa}/\|\boldsymbol{\kappa}\| represents the propagation direction of the transmit field. Similarly, 𝒌=[kx,ky,kz]T\boldsymbol{k}=[k_{x},k_{y},k_{z}]^{T} with kz=γ(kx,ky)=(κ2kx2ky2)12k_{z}=\gamma(k_{x},k_{y})=(\kappa^{2}-k_{x}^{2}-k_{y}^{2})^{\frac{1}{2}} and 𝒌/𝒌\boldsymbol{k}/\|\boldsymbol{k}\| represents the propagation direction of the receive field. The integration region 𝒟k\mathcal{D}_{k} is given by the circular area with radius κ\kappa,

𝒟k={(kx,ky)2|kx2+ky2κ2}.\mathcal{D}_{k}=\left\{(k_{x},k_{y})\in\mathbb{R}^{2}|k_{x}^{2}+k_{y}^{2}\leq\kappa^{2}\right\}. (61)

This is because only the propagating waves are considered and the evanescent waves are neglected [15, 18]. Ha(kx,ky,κx,κy)H_{a}(k_{x},k_{y},\kappa_{x},\kappa_{y}) represents the angular response from the transmit direction 𝜿/𝜿\boldsymbol{\kappa}/\|\boldsymbol{\kappa}\| to the receive direction 𝕜/𝕜\mathbb{k}/\|\mathbb{k}\|, which is determined by the scattering environment and the array geometry. In (60), [s]i,j=hs(𝕣i,𝕤j)[{\mathbb{H}}_{s}]_{i,j}=h_{s}(\mathbb{r}_{i},\mathbb{s}_{j}) is obtained by the continuous Fourier spectral representation. When both the LoS and non-LoS components are considered, the Fourier coefficient H(lx,ly,mx,my){H}(l_{x},l_{y},m_{x},m_{y}) can be written as

H(lx,ly,mx,my)\displaystyle H(l_{x},l_{y},m_{x},m_{y}) =A(lx,ly,mx,my)+Y(lx,ly,mx,my),\displaystyle={A}(l_{x},l_{y},m_{x},m_{y})+{Y}(l_{x},l_{y},m_{x},m_{y}), (62)

where A(lx,ly,mx,my){A}(l_{x},l_{y},m_{x},m_{y}) and Y(lx,ly,mx,my){Y}(l_{x},l_{y},m_{x},m_{y}) denote the coefficients of the LoS and NLoS component, respectively. Under such circumstances, the channel matrix in spatial domain s{\mathbb{H}}_{s} can be represented by (6).

Appendix B Proof of Lemma 3

The proof of Lemma 3 relies on a system of equations, which can be derived by resolvent computations. The proof idea can be summarized as:

1. We first evaluate each term at the left hand side of (52), which consists of Θj,i\Theta_{j,i} and ψj,i\psi_{j,i}. Specifically, we set up two groups of system of equations to solve Θj,i\Theta_{j,i} and ψj,i\psi_{j,i}. The first group of equations is obtained by 𝔼𝕒kH(𝔼j)𝔻j𝕒k\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k} using two approaches and which are given in Appendix B-A.

2. The second group of equations is obtained by evaluating 1M𝔼Tr(𝔼j)𝔻j𝔻i\frac{1}{M}\mathbb{E}\operatorname{Tr}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i} with rank-one perturbations, which is given in Appendix B-B.

3. By combining the two groups of equations in 1 and 2, we can obtain the closed-form approximation for Θj,j\Theta_{j,j} and ψj,j\psi_{j,j} based on the Crammer’s rule so that we can compute j=1M(ρ2t~j,j2ψj,jM+2Θj,jM)\sum_{j=1}^{M}(\frac{\rho^{2}\widetilde{t}_{j,j}^{2}\psi_{j,j}}{M}+\frac{2\Theta_{j,j}}{M}). The details are given in Appendix B-C.

Before we proceed, we first introduce some useful results that will be used in the following derivation. The resolvent related results are given below

=ii𝕙i𝕙iHi1+𝕙iHi𝕙i{\mathbb{Q}}={\mathbb{Q}}_{i}-\frac{{\mathbb{Q}}_{i}{\mathbb{h}}_{i}{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}}{1+{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}{\mathbb{h}}_{i}} (63)
𝕙iH=ρq~i,ii=𝕙iHi1+𝕙iHi𝕙i,\mathbb{h}_{i}^{H}{\mathbb{Q}}=\rho\widetilde{q}_{i,i}{\mathbb{Q}}_{i}=\frac{{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}}{1+{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}{\mathbb{h}}_{i}}, (64)

where q~i,i\widetilde{q}_{i,i} is the ii-th diagonal entry of ~\widetilde{{\mathbb{Q}}} and can be computed by (32). Define

𝕋i=(𝝍(z)z𝔸i𝝍~i(z)𝔸iH)1,{\mathbb{T}}_{i}=\left(\boldsymbol{\psi}(z)-z\mathbb{A}_{i}\widetilde{\boldsymbol{\psi}}_{i}(z)\mathbb{A}_{i}^{H}\right)^{-1}, (65)

where 𝝍~i(z)\widetilde{\boldsymbol{\psi}}_{i}(z) is obtained by removing the ii-th row and the ii-th column from 𝝍~(z)\widetilde{\boldsymbol{\psi}}(z) and 𝔸i{\mathbb{A}}_{i} is obtained by removing the ii-th column from 𝔸{\mathbb{A}}. There holds true

ρt~i,i𝕒iH𝕋i𝕓=𝕒iH𝕋𝕓1+δi,\rho\widetilde{t}_{i,i}{\mathbb{a}}_{i}^{H}\mathbb{T}_{i}\mathbb{b}=\frac{{\mathbb{a}}_{i}^{H}{\mathbb{T}}\mathbb{b}}{1+\delta_{i}}, (66)
t~i,i=ρ1(1+δi+𝕒iH𝕋i𝕒i)1,\widetilde{t}_{i,i}=\rho^{-1}\left(1+\delta_{i}+{\mathbb{a}}_{i}^{H}{\mathbb{T}}_{i}{\mathbb{a}}_{i}\right)^{-1}, (67)
ρt~i,i𝕒iH𝕋i𝕒i=1ρ(1+δi)t~i,i.\rho\widetilde{t}_{i,i}{\mathbb{a}}_{i}^{H}{\mathbb{T}}_{i}{\mathbb{a}}_{i}=1-\rho(1+\delta_{i})\widetilde{t}_{i,i}. (68)

(66) can be obtained by similar steps in [26, Appendix A].

B-A The First Group of Equations

In this part, we will utilize two approaches to evaluate 𝔼𝕒kH(𝔼j)𝔻j𝕒k\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k} to set up the first group of equations by resolvent computations.

B-A1 First evaluation of 𝔼𝕒kH(𝔼j)𝔻j𝕒k\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}

By applying (63) for both {\mathbb{Q}} in 𝔼𝕒kH(𝔼j)𝔻j𝕒k\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}, 𝔼𝕒kH(𝔼j)𝔻j𝕒k\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k} can be rewritten as

𝔼𝕒kH(𝔼j)𝔻j𝕒k\displaystyle\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k} =𝔼𝕒kH(𝔼jk)𝔻jk𝕒kρ𝔼𝕒kH(𝔼jq~k,kk𝕙k𝕙kHk)𝔻jj𝕒k\displaystyle=\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{a}}_{k}-\rho\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}\widetilde{q}_{k,k}{\mathbb{Q}}_{k}{\mathbb{h}}_{k}{\mathbb{h}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{j}{\mathbb{a}}_{k} (69)
ρ𝔼q~k,k𝕒kH(𝔼jk)𝔻jk𝕙k𝕙kHk𝕒k+ρ2𝔼q~k,k2𝕒kH(𝔼jk𝕙k𝕙kHk)𝔻jk𝕙k𝕙kHk𝕒k\displaystyle-\rho\mathbb{E}\widetilde{q}_{k,k}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{h}}_{k}{\mathbb{h}}_{k}^{H}{\mathbb{Q}}_{k}{\mathbb{a}}_{k}+\rho^{2}\mathbb{E}\widetilde{q}_{k,k}^{2}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}_{k}{\mathbb{h}}_{k}{\mathbb{h}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{h}}_{k}{\mathbb{h}}_{k}^{H}{\mathbb{Q}}_{k}{\mathbb{a}}_{k}
=θj,k+U1+U2+U3,\displaystyle=\theta_{j,k}+U_{1}+U_{2}+U_{3},

where θj,k=𝔼𝕒kH(𝔼jk)𝔻jk𝕒k\theta_{j,k}=\mathbb{E}{\mathbb{a}}_{k}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{a}}_{k}. We can safely replace q~k,k\widetilde{q}_{k,k} by t~k,k\widetilde{t}_{k,k} in U1U_{1} based on the following fact

|ρ𝔼𝕒kH(𝔼j(q~k,kt~k,k)k𝕙k𝕙kHk)𝔻jk𝕒k|(a)𝔼ρK𝔼j12(q~k,kt~k,k)2𝔼j12(𝕙kH𝕙k)2\displaystyle|\rho\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}(\widetilde{q}_{k,k}-\widetilde{t}_{k,k}){\mathbb{Q}}_{k}{\mathbb{h}}_{k}{\mathbb{h}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{a}}_{k}|\overset{(a)}{\leq}\mathbb{E}\rho K\mathbb{E}^{\frac{1}{2}}_{j}(\widetilde{q}_{k,k}-\widetilde{t}_{k,k})^{2}\mathbb{E}^{\frac{1}{2}}_{j}({\mathbb{h}}_{k}^{H}{\mathbb{h}}_{k})^{2} (70)
ρK𝔼12(q~k,kt~k,k)2𝔼12(𝕙kH𝕙k)2=(b)o(1),\displaystyle\leq\rho K^{\prime}\mathbb{E}^{\frac{1}{2}}(\widetilde{q}_{k,k}-\widetilde{t}_{k,k})^{2}\mathbb{E}^{\frac{1}{2}}({\mathbb{h}}_{k}^{H}{\mathbb{h}}_{k})^{2}\overset{(b)}{=}o(1),

where step (a)(a) in (70) follows from the Cauchy-Schwarz inequality and

𝕙kHk𝔻jk𝕒k𝕒kHk𝔻jk𝕙k𝕙kH𝕙kk𝔻jk𝕒k𝕒kHk𝔻jkρ4σmax4amax2𝕙kH𝕙k.\displaystyle{\mathbb{h}}_{k}^{H}{\mathbb{Q}}_{k}{\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{a}}_{k}{\mathbb{a}}_{k}^{H}{\mathbb{Q}}_{k}{\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{h}}_{k}\leq{\mathbb{h}}_{k}^{H}{\mathbb{h}}_{k}\|{\mathbb{Q}}_{k}{\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{a}}_{k}{\mathbb{a}}_{k}^{H}{\mathbb{Q}}_{k}{\mathbb{D}}_{j}{\mathbb{Q}}_{k}\|\leq\rho^{-4}\sigma^{4}_{max}a_{max}^{2}{\mathbb{h}}_{k}^{H}{\mathbb{h}}_{k}. (71)

Step (b)(b) in (70) follows from the approximation of t~k,k\widetilde{t}_{k,k} in (133) of Lemma 5. Therefore, we have

U1\displaystyle U_{1} =ρt~k,k𝔼𝕒kH(𝔼jk𝕙k𝕙kHk)𝔻jj𝕒k=(a)ρt~k,k𝕒kH𝕋k𝕒k𝕒kH(𝔼k)𝔻jk𝕒k+o(1)\displaystyle=-\rho\widetilde{t}_{k,k}\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}_{k}{\mathbb{h}}_{k}{\mathbb{h}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{j}{\mathbb{a}}_{k}\overset{(a)}{=}-\rho\widetilde{t}_{k,k}{\mathbb{a}}^{H}_{k}{\mathbb{T}}_{k}{\mathbb{a}}_{k}{\mathbb{a}}_{k}^{H}(\mathbb{E}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{a}}_{k}+o(1) (72)
=ρt~k,k𝕒kH𝕋k𝕒kθk,j+o(1),\displaystyle=-\rho\widetilde{t}_{k,k}{\mathbb{a}}^{H}_{k}{\mathbb{T}}_{k}{\mathbb{a}}_{k}\theta_{k,j}+o(1),

where step (a)(a) in (72) follows from 𝔼|𝕒kk𝕒k𝕒k𝕋k𝕒k|2=o(1)\mathbb{E}|{\mathbb{a}}_{k}{\mathbb{Q}}_{k}{\mathbb{a}}_{k}-{\mathbb{a}}_{k}{\mathbb{T}}_{k}{\mathbb{a}}_{k}|^{2}=o(1), which is obtained by (132b) in Lemma 5. Similarly, we can replace q~k,k\widetilde{q}_{k,k} by t~k,k\widetilde{t}_{k,k} in U2U_{2} and U3U_{3} to obtain

U2\displaystyle U_{2} =ρ𝔼q~k,k𝕒kH(𝔼jk)𝔻jk𝕙k𝕙kHk𝕒k\displaystyle=-\rho\mathbb{E}\widetilde{q}_{k,k}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{h}}_{k}{\mathbb{h}}_{k}^{H}{\mathbb{Q}}_{k}{\mathbb{a}}_{k} (73)
=ρt~k,k𝕒kH𝕋k𝕒k𝔼𝕒kH(𝔼k)𝔻jk𝕒k+o(1)\displaystyle=-\rho\widetilde{t}_{k,k}{\mathbb{a}}^{H}_{k}{\mathbb{T}}_{k}{\mathbb{a}}_{k}\mathbb{E}{\mathbb{a}}_{k}^{H}(\mathbb{E}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{a}}_{k}+o(1)
=ρt~k,k𝕒kH𝕋k𝕒kθj,k+o(1)\displaystyle=-\rho\widetilde{t}_{k,k}{\mathbb{a}}^{H}_{k}{\mathbb{T}}_{k}{\mathbb{a}}_{k}\theta_{j,k}+o(1)

and

U3\displaystyle U_{3} =ρ2t~k,k2(𝕒kH𝕋k𝕒k)2(𝔼Tr(𝔼jk)𝔻jk𝔻kM+𝔼𝕒kH(𝔼jk)𝔻jk𝕒k),kj,\displaystyle=\rho^{2}\widetilde{t}_{k,k}^{2}({\mathbb{a}}^{H}_{k}{\mathbb{T}}_{k}{\mathbb{a}}_{k})^{2}(\frac{\mathbb{E}\operatorname{Tr}(\mathbb{E}_{j}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{D}}_{k}}{M}+\mathbb{E}{\mathbb{a}}_{k}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{a}}_{k}),~{}k\leq j, (74)

Therefore, by 1ρt~k,k𝕒k𝕋k𝕒k=ρt~k,k(1+δk)1-\rho\widetilde{t}_{k,k}{\mathbb{a}}_{k}{\mathbb{T}}_{k}{\mathbb{a}}_{k}=\rho\widetilde{t}_{k,k}(1+\delta_{k}), we have

𝔼𝕒kH(𝔼j)𝔻j𝕒k=(1+δk)2ρ2t~k,k2θj,k+(𝕒kH𝕋𝕒k)2(1+δk)2ψj,k+o(1),kj.\displaystyle\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}=(1+\delta_{k})^{2}\rho^{2}\widetilde{t}_{k,k}^{2}\theta_{j,k}+\frac{({\mathbb{a}}_{k}^{H}{\mathbb{T}}{\mathbb{a}}_{k})^{2}}{(1+\delta_{k})^{2}}\psi_{j,k}+o(1),~{}k\leq j. (75)

By far, we have obtained the first evaluation for 𝔼𝕒kH(𝔼j)𝔻j𝕒k\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}.

B-A2 Second evaluation of 𝔼𝕒kH(𝔼j)𝔻j𝕒k\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}

In this part, we will 𝔼𝕒kH(𝔼j)𝔻j𝕒k\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k} by another approach. First, by the identity 𝔸𝔹=𝔹(𝔹1𝔸1)𝔸{\mathbb{A}}-{\mathbb{B}}={\mathbb{B}}({\mathbb{B}}^{-1}-{\mathbb{A}}^{-1}){\mathbb{A}}, we can obtain

𝔼𝕒kH(𝔼j)𝔻j𝕒k\displaystyle\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k} =𝔼𝕒kH𝕋𝔻j𝕒k+ρ𝔼𝕒kH𝕋Υ(𝔼j)𝔻j𝕒k+𝔼𝕒kH𝕋𝔸Ψ~𝔸H(𝔼j)𝔻j𝕒k\displaystyle=\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}+\rho\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}\mathbb{\Upsilon}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}+\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{A}}\widetilde{\mathbb{\Psi}}{\mathbb{A}}^{H}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k} (76)
𝔼𝕒kH𝕋(𝔼jH)𝔻j𝕒k\displaystyle-\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}(\mathbb{E}_{j}{\mathbb{H}}{\mathbb{H}}^{H}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}
=W1+W2+W3+W4,\displaystyle=W_{1}+W_{2}+W_{3}+W_{4},

where Υ=diag(δ~1,δ~2,,δ~N)\mathbb{\Upsilon}=\mathrm{diag}(\widetilde{\delta}_{1},\widetilde{\delta}_{2},...,\widetilde{\delta}_{N}). By applying (63) to (𝔼j)(\mathbb{E}_{j}{\mathbb{Q}}), W3W_{3} can be rewritten as

W3\displaystyle W_{3} =i=1M𝔼𝕒kH𝕋𝕒i𝕒iH(𝔼ji)𝔻j𝕒k1+δiρ𝕒kH𝕋𝕒i𝔼𝕒iH(𝔼jq~i,ii𝕙i𝕙iHi)𝔻j𝕒k1+δi\displaystyle=\sum_{i=1}^{M}\frac{\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}}{1+\delta_{i}}-\frac{\rho{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}\mathbb{E}{\mathbb{a}}_{i}^{H}(\mathbb{E}_{j}\widetilde{q}_{i,i}{\mathbb{Q}}_{i}{\mathbb{h}}_{i}{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}}{1+\delta_{i}} (77)
=i=1M𝕒kH𝕋𝕒i𝔼𝕒iH(𝔼ji)𝔻j𝕒k1+δiρt~i,i𝕒kH𝕋𝕒i𝔼𝕒iH(𝔼ji𝕙i𝕙iHi)𝔻j𝕒k1+δi+ε3,1\displaystyle=\sum_{i=1}^{M}\frac{{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}\mathbb{E}{\mathbb{a}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}}{1+\delta_{i}}-\frac{\rho\widetilde{t}_{i,i}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}\mathbb{E}{\mathbb{a}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}{\mathbb{h}}_{i}{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}}{1+\delta_{i}}+\varepsilon_{3,1}

where

ε3,1=𝔼i=1Mρ𝕒i(𝔼j(t~i,iq~i,i)i𝕙i𝕙iHi)𝔻j𝕒k1+δi𝕒kH𝕋𝕒i=ρ𝕒kH𝕋𝔸ΥΛt,qH𝔻j𝕒k,\displaystyle\varepsilon_{3,1}=\mathbb{E}\sum_{i=1}^{M}\frac{\rho{\mathbb{a}}_{i}(\mathbb{E}_{j}(\widetilde{t}_{i,i}-\widetilde{q}_{i,i}){\mathbb{Q}}_{i}{\mathbb{h}}_{i}{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}}{1+\delta_{i}}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}=\rho{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{A}}\mathbb{\Upsilon}\mathbb{\Lambda}_{t,q}{\mathbb{H}}^{H}{\mathbb{Q}}{\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}, (78)

and Λt,q=diag((t~i,iq~i,i)(1+𝕙iHi𝕙i)i𝕙i)\mathbb{\Lambda}_{t,q}=\mathrm{diag}((\widetilde{t}_{i,i}-\widetilde{q}_{i,i})(1+{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}{\mathbb{h}}_{i}){\mathbb{Q}}_{i}{\mathbb{h}}_{i}), i=1,2,,Mi=1,2,...,M. By (133) in Lemma 5 and the definition of the matrix norm 𝔸𝕒2𝔸𝕒2\|{\mathbb{A}}\mathbb{a}\|_{2}\leq\|{\mathbb{A}}\|\|\mathbb{a}\|_{2}, we can obtain

|ε3,1|\displaystyle|\varepsilon_{3,1}| ρ𝔼(𝔼j𝕒kH𝕋𝔸ΥΛt,qH)𝔻j𝕒k2\displaystyle\leq\rho\mathbb{E}(\mathbb{E}_{j}\|{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{A}}\mathbb{\Upsilon}\mathbb{\Lambda}_{t,q}{\mathbb{H}}^{H}{\mathbb{Q}}\|)\|{\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}\|_{2} (79)
(a)L𝔼𝕒kH𝕋𝔸ΥΛt,qH\displaystyle\overset{(a)}{\leq}L\mathbb{E}\|{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{A}}\mathbb{\Upsilon}\mathbb{\Lambda}_{t,q}{\mathbb{H}}^{H}{\mathbb{Q}}\|
(b)L(l=1M|𝕒kH𝕋𝕒l|2𝔼(t~i,iq~i,i)2)12\displaystyle\overset{(b)}{\leq}L\left(\sum_{l=1}^{M}|{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{l}|^{2}\mathbb{E}(\widetilde{t}_{i,i}-\widetilde{q}_{i,i})^{2}\right)^{\frac{1}{2}}
(c)L(𝕒kH𝕋𝔸𝔸H𝕋𝕒k)12×o(1),\displaystyle\overset{(c)}{\leq}L({\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{A}}{\mathbb{A}}^{H}{\mathbb{T}}{\mathbb{a}}_{k})^{\frac{1}{2}}\times o(1),

where step (a)(a) follows from the evaluation 𝔻j𝕒k2𝔻j𝕒k2σmax2amaxρ:=L\|{\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}\|_{2}\leq\|{\mathbb{D}}_{j}{\mathbb{Q}}\|\|{\mathbb{a}}_{k}\|_{2}\leq\frac{\sigma_{max}^{2}a_{max}}{\rho}:=L and H<1\|{\mathbb{H}}^{H}{\mathbb{Q}}\|<1. Steps (b)(b) and (c)(c) follow from the Cauchy-Schwarz inequality and (133) in Lemma 5. X3X_{3} can be further rewritten as

W3\displaystyle W_{3} =i=1M𝔼𝕒kH𝕋𝕒i𝕒i(𝔼ji)𝔻j𝕒k1+δi𝔼ρt~i,i𝕒kH𝕋𝕒i𝕒i(𝔼ji𝕒i𝕙iHi)𝔻j𝕒k1+δi+ε3,2+o(1)\displaystyle=\sum_{i=1}^{M}\frac{\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{a}}_{i}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}}{1+\delta_{i}}-\frac{\mathbb{E}\rho\widetilde{t}_{i,i}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{a}}_{i}(\mathbb{E}_{j}{\mathbb{Q}}_{i}{\mathbb{a}}_{i}{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}}{1+\delta_{i}}+\varepsilon_{3,2}+o(1) (80)
=i=1M𝕒kH𝕋𝕒i𝔼𝕒iH(𝔼ji)𝔻j𝕒k1+δi𝔼ρt~i,i𝕒kH𝕋𝕒i𝕒i𝕋i𝕒i(𝔼j𝕙iHi)𝔻j𝕒k1+δi+ε3,2+ε3,3+o(1)\displaystyle=\sum_{i=1}^{M}\frac{{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}\mathbb{E}{\mathbb{a}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}}{1+\delta_{i}}-\frac{\mathbb{E}\rho\widetilde{t}_{i,i}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{a}}_{i}{\mathbb{T}}_{i}{\mathbb{a}}_{i}(\mathbb{E}_{j}{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}}{1+\delta_{i}}+\varepsilon_{3,2}+\varepsilon_{3,3}+o(1)
=W3,1+W3,2+ε3,2+ε3,3+o(1),\displaystyle=W_{3,1}+W_{3,2}+\varepsilon_{3,2}+\varepsilon_{3,3}+o(1),

where

ε3,3\displaystyle\varepsilon_{3,3} =i=1Mρ(1+δi)1t~i,i𝔼𝕒kH𝕋𝕒i𝕒iH(𝔼ji𝕪i𝕙iHi)𝔻j𝕒k\displaystyle=-\sum_{i=1}^{M}\rho(1+\delta_{i})^{-1}\widetilde{t}_{i,i}\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}{\mathbb{y}}_{i}{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k} (81)
ε3,2\displaystyle\varepsilon_{3,2} =i=1Mρ(1+δi)1t~i,i𝕒kH𝕋𝕒i𝕒iH(𝔼j(𝕋ii)𝕒i𝕙iHi)𝔻j𝕒k,\displaystyle=-\sum_{i=1}^{M}\rho(1+\delta_{i})^{-1}\widetilde{t}_{i,i}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}(\mathbb{E}_{j}({\mathbb{T}}_{i}-{\mathbb{Q}}_{i}){\mathbb{a}}_{i}{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k},

which can be shown to be o(1)o(1) by a similar approach for ε3,1\varepsilon_{3,1} shown in (79). Now we turn to evaluate W3,2W_{3,2} as

W3,2\displaystyle W_{3,2} =(a)i=1Mρt~i,i𝕒kH𝕋𝕒i𝕒iH𝕋i𝕒i𝔼𝕒iH(𝔼ji)𝔻j𝕒k1+δii=1jρt~i,i𝕒kH𝕋𝕒i𝕒iH𝕋i𝕒i𝔼𝕪iH(𝔼ji)𝔻j𝕒k1+δi\displaystyle\overset{(a)}{=}-\sum_{i=1}^{M}\frac{\rho\widetilde{t}_{i,i}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}{\mathbb{T}}_{i}{\mathbb{a}}_{i}\mathbb{E}{\mathbb{a}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}}{1+\delta_{i}}-\sum_{i=1}^{j}\frac{\rho\widetilde{t}_{i,i}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}{\mathbb{T}}_{i}{\mathbb{a}}_{i}\mathbb{E}{\mathbb{y}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}}{1+\delta_{i}} (82)
=W3,2,1+W3,2,2\displaystyle=W_{3,2,1}+W_{3,2,2}

where step (a)(a) follows from the fact that for i=j+1,,Mi=j+1,...,M,

t~i,i𝕒kH𝕋𝕒i𝕒i𝕋i𝕒i(𝔼j𝕪iHi)𝔻j𝕒k=0.\widetilde{t}_{i,i}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{a}}_{i}{\mathbb{T}}_{i}{\mathbb{a}}_{i}(\mathbb{E}_{j}{\mathbb{y}}_{i}^{H}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}=0. (83)

By applying (63) to {\mathbb{Q}}, we have

W3,2,2\displaystyle W_{3,2,2} =i=1j𝔼[ρt~i,i𝕒kH𝕋𝕒i𝕒i𝕋i𝕒i1+δi𝕪iH(𝔼ji)𝔻j(iρq~i,ii𝕙i𝕙iHi)𝕒k]\displaystyle=-\sum_{i=1}^{j}\mathbb{E}[\frac{\rho\widetilde{t}_{i,i}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{a}}_{i}{\mathbb{T}}_{i}{\mathbb{a}}_{i}}{1+\delta_{i}}{\mathbb{y}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}({\mathbb{Q}}_{i}-\rho\widetilde{q}_{i,i}{\mathbb{Q}}_{i}{\mathbb{h}}_{i}{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}){\mathbb{a}}_{k}] (84)
=i=1jρ2t~i,i2𝕒kH𝕋𝕒i𝕒iH𝕋i𝕒i𝕒iH𝕋i𝕒k(1+δi)ψj,i+o(1)\displaystyle=\sum_{i=1}^{j}\frac{\rho^{2}\widetilde{t}_{i,i}^{2}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}{\mathbb{T}}_{i}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}{\mathbb{T}}_{i}{\mathbb{a}}_{k}}{(1+\delta_{i})}\psi_{j,i}+o(1)
=(a)i=1jρ2t~i,i2𝕒kH𝕋i𝕒i𝕒iH𝕋i𝕒i𝕒iH𝕋𝕒k(1+δi)2ψj,i+o(1),\displaystyle\overset{(a)}{=}\sum_{i=1}^{j}\frac{\rho^{2}\widetilde{t}_{i,i}^{2}{\mathbb{a}}^{H}_{k}{\mathbb{T}}_{i}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}{\mathbb{T}}_{i}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}{\mathbb{T}}{\mathbb{a}}_{k}}{(1+\delta_{i})^{2}}\psi_{j,i}+o(1),

where step (a)(a) in (84) follows from the adaptation of [26, Lemma 5.2]. By (64) and (𝔼j𝕙i𝕙iHi)=(𝔼j𝕒i𝕒iHi+1M𝔻ji),j<iM(\mathbb{E}_{j}{\mathbb{h}}_{i}{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i})=(\mathbb{E}_{j}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}{\mathbb{Q}}_{i}+\frac{1}{M}{\mathbb{D}}_{j}{\mathbb{Q}}_{i}),~{}j<i\leq M, we have the evaluation for W4W_{4} as

W4\displaystyle W_{4} =i=1M𝔼ρ𝕒kH𝕋(𝔼jq~i,i𝕙i𝕙iHi)𝔻j𝕒k=i=1M𝔼ρt~i,i𝕒kH𝕋(𝔼j𝕙i𝕙iHi)𝔻j𝕒k+o(1)\displaystyle=-\sum_{i=1}^{M}\mathbb{E}\rho{\mathbb{a}}^{H}_{k}{\mathbb{T}}(\mathbb{E}_{j}\widetilde{q}_{i,i}{\mathbb{h}}_{i}{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}=-\sum_{i=1}^{M}\mathbb{E}\rho\widetilde{t}_{i,i}{\mathbb{a}}^{H}_{k}{\mathbb{T}}(\mathbb{E}_{j}{\mathbb{h}}_{i}{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}+o(1) (85)
=i=1M𝔼ρt~i,i𝕒kH𝕋𝕒i𝕒iH(𝔼ji)𝔻j𝕒k(i=1jρt~i,i𝔼𝕒kH𝕋𝕪i𝕪iH(𝔼ji)𝔻j𝕒k\displaystyle=-\sum_{i=1}^{M}\mathbb{E}\rho\widetilde{t}_{i,i}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}-(\sum_{i=1}^{j}\rho\widetilde{t}_{i,i}\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{y}}_{i}{\mathbb{y}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}
+i=j+1Mρt~i,i𝔼𝕒kH𝕋𝔻i(𝔼ji)𝔻j𝕒kM)i=1jρt~i,i𝔼𝕒Hk𝕋𝕪i𝕒iH(𝔼ji)𝔻j𝕒k\displaystyle+\sum_{i=j+1}^{M}\frac{\rho\widetilde{t}_{i,i}\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{D}}_{i}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}}{M})-\sum_{i=1}^{j}\rho\widetilde{t}_{i,i}\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{y}}_{i}{\mathbb{a}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}
i=1jρt~i,i𝔼𝕒kH𝕋𝕒i𝕪iH(𝔼ji)𝔻j𝕒k+o(1)\displaystyle-\sum_{i=1}^{j}\rho\widetilde{t}_{i,i}\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{y}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}+o(1)
=W4,1+W4,2+W4,3+W4,4+o(1).\displaystyle=W_{4,1}+W_{4,2}+W_{4,3}+W_{4,4}+o(1).

By (64), we have

W4,2\displaystyle W_{4,2} =i=1jρt~i,i𝔼𝕒kH𝕋𝕪i𝕪iH(𝔼ji)𝔻ji𝕒k+i=1jρ2t~i,i2𝔼𝕒kH𝕋𝕪i𝕪iH(𝔼ji)𝔻ji𝕙i𝕙iHi𝕒k\displaystyle=-\sum_{i=1}^{j}\rho\widetilde{t}_{i,i}\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{y}}_{i}{\mathbb{y}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}_{i}{\mathbb{a}}_{k}+\sum_{i=1}^{j}\rho^{2}\widetilde{t}_{i,i}^{2}\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{y}}_{i}{\mathbb{y}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}_{i}{\mathbb{h}}_{i}{\mathbb{h}}_{i}^{H}{\mathbb{Q}}_{i}{\mathbb{a}}_{k} (86)
i=j+1Mρt~i,i𝔼𝕒kH𝕋𝔻i(𝔼ji)𝔻j𝕒kM+o(1)\displaystyle-\sum_{i=j+1}^{M}\frac{\rho\widetilde{t}_{i,i}\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{D}}_{i}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}}{M}+o(1)
=(a)i=1jρ2t~i,i2𝔼𝕒kH𝕋𝔻i𝕋𝕒kTr𝔻i(𝔼ji)𝔻jiM2i=1Mρ𝔼𝕒kH𝕋Υ(𝔼ji)𝔻j𝕒kM+ε4,2+o(1)\displaystyle\overset{(a)}{=}\sum_{i=1}^{j}\frac{\rho^{2}\widetilde{t}_{i,i}^{2}\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}\operatorname{Tr}{\mathbb{D}}_{i}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}_{i}}{M^{2}}-\sum_{i=1}^{M}\frac{\rho\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{\Upsilon}}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}}{M}+\varepsilon_{4,2}+o(1)
=i=1jρ2t~i,i2𝕒kH𝕋𝔻i𝕋𝕒kMψj,iW4,2,1+W4,2,2+ε4,2+o(1),\displaystyle=\underbrace{\sum_{i=1}^{j}\frac{\rho^{2}\widetilde{t}_{i,i}^{2}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}}{M}\psi_{j,i}}_{W_{4,2,1}}+W_{4,2,2}+\varepsilon_{4,2}+o(1),

where step (a)(a) in (86) is obtained by 1MiMt~i,i[𝔻i]k,k=1MTr𝔻~k𝕋~\frac{1}{M}\sum_{i}^{M}\widetilde{t}_{i,i}[{\mathbb{D}}_{i}]_{k,k}=\frac{1}{M}\operatorname{Tr}\widetilde{{\mathbb{D}}}_{k}\widetilde{{\mathbb{T}}}. We can observed W4,2,2=ρ𝕒kH𝕋Υ(𝔼j)𝔻j𝕒k=W2W_{4,2,2}=-\rho{\mathbb{a}}^{H}_{k}{\mathbb{T}}\mathbb{\Upsilon}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}=-W_{2}. Here, ε4,2\varepsilon_{4,2} can be bounded by the Cauchy-Schwarz inequality as

|ε4,2|\displaystyle|\varepsilon_{4,2}| =|i=1jρt~i,iM𝔼𝕒kH𝕋𝔻i(𝔼ji)𝔻j(i)𝕒k|KMi=1j𝔼12(1+𝕙ii𝕙i)2𝔼12|𝕒iH𝕙i|2\displaystyle=|\sum_{i=1}^{j}\frac{\rho\widetilde{t}_{i,i}}{M}\mathbb{E}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{D}}_{i}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}({\mathbb{Q}}-{\mathbb{Q}}_{i}){\mathbb{a}}_{k}|\leq\frac{K}{M}\sum_{i=1}^{j}\mathbb{E}^{\frac{1}{2}}(1+{\mathbb{h}}_{i}{\mathbb{Q}}_{i}{\mathbb{h}}_{i})^{2}\mathbb{E}^{\frac{1}{2}}|{\mathbb{a}}_{i}^{H}{\mathbb{Q}}{\mathbb{h}}_{i}|^{2} (87)
(a)KjM𝔼12𝕒iH[1:j][1:j]H𝕒i=𝒪(M12),\displaystyle\overset{(a)}{\leq}\frac{K^{\prime}\sqrt{j}}{M}\mathbb{E}^{\frac{1}{2}}{\mathbb{a}}_{i}^{H}{\mathbb{Q}}{\mathbb{H}}_{[1:j]}{\mathbb{H}}_{[1:j]}^{H}{\mathbb{Q}}{\mathbb{a}}_{i}={\mathcal{O}}(M^{-\frac{1}{2}}),

with [1:j]{\mathbb{H}}_{[1:j]} being the matrix consisting of the first jj columns of {\mathbb{H}}. By similar analysis of (87), we can evaluate W4,3W_{4,3} as

W4,3\displaystyle W_{4,3} =i=1jρ2t~i,i2𝕒kH𝕋𝔻i𝕋𝕒kM𝔼𝕒iH(𝔼ji)𝔻ji𝕒i+o(1)\displaystyle=\sum_{i=1}^{j}\frac{\rho^{2}\widetilde{t}_{i,i}^{2}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}}{M}\mathbb{E}{\mathbb{a}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}_{i}{\mathbb{a}}_{i}+o(1) (88)
=i=1jρ2t~i,i2𝕒kH𝕋𝔻i𝕋𝕒kMθj,i+o(1).\displaystyle=\sum_{i=1}^{j}\frac{\rho^{2}\widetilde{t}_{i,i}^{2}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}}{M}\theta_{j,i}+o(1).

By (63), W4,4W_{4,4} can be evaluated as

W4,4\displaystyle W_{4,4} =i=1jρt~i,i𝕒kH𝕋𝕒i𝕒iH𝕋i𝕒kM𝔼Tr(𝔼ji)𝔻ji𝔻i+o(1)\displaystyle=\sum_{i=1}^{j}\frac{\rho\widetilde{t}_{i,i}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{a}}^{H}_{i}{\mathbb{T}}_{i}{\mathbb{a}}_{k}}{M}\mathbb{E}\operatorname{Tr}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}_{i}{\mathbb{D}}_{i}+o(1) (89)
=i=1jρt~i,i𝕒kH𝕋𝕒i𝕒iH𝕋i𝕒k(1+δi)ψj,i+o(1).\displaystyle=\sum_{i=1}^{j}\frac{\rho\widetilde{t}_{i,i}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{a}}^{H}_{i}{\mathbb{T}}_{i}{\mathbb{a}}_{k}}{(1+\delta_{i})}\psi_{j,i}+o(1).

By (68), we can obtain

W3,2,1+W4,1\displaystyle W_{3,2,1}+W_{4,1} =i=1M𝔼ρt~i,i(𝕒iH𝕋i𝕒i1+δi+1)𝕒kH𝕋𝕒i𝕒iH(𝔼ji)𝔻j𝕒k\displaystyle=-\sum_{i=1}^{M}\mathbb{E}\rho\widetilde{t}_{i,i}(\frac{{\mathbb{a}}_{i}^{H}{\mathbb{T}}_{i}{\mathbb{a}}_{i}}{1+\delta_{i}}+1){\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k} (90)
=i=1M𝔼ρt~i,i(1+δi)1𝕒kH𝕋𝕒i𝕒iH(𝔼ji)𝔻j𝕒k\displaystyle=\sum_{i=1}^{M}\mathbb{E}\rho\widetilde{t}_{i,i}(1+\delta_{i})^{-1}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k}
=W3,1.\displaystyle=-W_{3,1}.

According to the evaluation from (76) to (85), 𝔼𝕒kH(𝔼j)𝔻j𝕒k\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k} can be represented by

𝔼𝕒kH(𝔼j)𝔻j𝕒k\displaystyle\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k} =W4,3+(W4,2,1+W3,2,2+W1+W4,4)+o(1)\displaystyle=W_{4,3}+(W_{4,2,1}+W_{3,2,2}+W_{1}+W_{4,4})+o(1) (91)
=i=1jρ2t~i,i2𝕒kH𝕋𝔻i𝕋𝕒kMθj,i+i=1j[ρ2t~i,i2𝕒kH𝕋𝔻i𝕋𝕒kM+𝕒kH𝕋i𝕒i𝕒iH𝕋i𝕒k(1+δi)2]ψj,i+𝕒kH𝕋𝔻j𝕋𝕒k+o(1).\displaystyle=\sum_{i=1}^{j}\frac{\rho^{2}\widetilde{t}_{i,i}^{2}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}}{M}\theta_{j,i}+\sum_{i=1}^{j}[\frac{\rho^{2}\widetilde{t}_{i,i}^{2}{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}}{M}+\frac{{\mathbb{a}}^{H}_{k}{\mathbb{T}}_{i}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}{\mathbb{T}}_{i}{\mathbb{a}}_{k}}{(1+\delta_{i})^{2}}]\psi_{j,i}+{\mathbb{a}}^{H}_{k}{\mathbb{T}}{\mathbb{D}}_{j}{\mathbb{T}}{\mathbb{a}}_{k}+o(1).

By the evaluation for 𝔼𝕒kH(𝔼j)𝔻j𝕒k\mathbb{E}{\mathbb{a}}^{H}_{k}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{a}}_{k} in (75) and (91), we can set up the first group equations

i=1j(ρ2t~i,i2Πi,k𝟙kiΞi,k)ψj,i+i=1j(𝟙k=iΠi,k)ρ2t~i,i2θj,i=MΠj,k.\displaystyle\sum_{i=1}^{j}(-\rho^{2}\widetilde{t}_{i,i}^{2}\Pi_{i,k}-\mathbbm{1}_{k\neq i}\Xi_{i,k})\psi_{j,i}+\sum_{i=1}^{j}(\mathbbm{1}_{k=i}-\Pi_{i,k})\rho^{2}\widetilde{t}_{i,i}^{2}\theta_{j,i}=M\Pi_{j,k}. (92)

Next, we will set up the second group of equations by evaluating 1M𝔼Tr(𝔼j)𝔻j𝔻i\frac{1}{M}\mathbb{E}\operatorname{Tr}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}.

B-B The Second Group of Equations

To set up the second group of equations, we first evaluate 1M𝔼Tr(𝔼j)𝔻j𝔻i\frac{1}{M}\mathbb{E}\operatorname{Tr}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i} by resolvent computations, which can be approximated by a linear combination of Θj,k\Theta_{j,k} and ψj,k\psi_{j,k}. Then we approximate 1M𝔼Tr(𝔼j)𝔻j𝔻i\frac{1}{M}\mathbb{E}\operatorname{Tr}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i} by ψj,i\psi_{j,i} to obtain the system of equations.

By applying the identity 𝔸𝔹=𝔹(𝔹1𝔸1)𝔸{\mathbb{A}}-{\mathbb{B}}={\mathbb{B}}({\mathbb{B}}^{-1}-{\mathbb{A}}^{-1}){\mathbb{A}}, we can obtain

1M𝔼Tr(𝔼j)𝔻j𝔻i\displaystyle\frac{1}{M}\mathbb{E}\operatorname{Tr}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i} =𝔼Tr𝕋𝔻j𝔻iM+ρ𝔼Tr𝕋Υ(𝔼j)𝔻j𝔻iM\displaystyle=\frac{\mathbb{E}\operatorname{Tr}{\mathbb{T}}{\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}}{M}+\frac{\rho\mathbb{E}\operatorname{Tr}{\mathbb{T}}\mathbb{\Upsilon}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}}{M} (93)
+𝔼Tr𝕋𝔸Ψ~𝔸H(𝔼j)𝔻j𝔻iM𝔼Tr𝕋(𝔼jH)𝔻j𝔻iM\displaystyle+\frac{\mathbb{E}\operatorname{Tr}{\mathbb{T}}{\mathbb{A}}\widetilde{\mathbb{\Psi}}{\mathbb{A}}^{H}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}}{M}-\frac{\mathbb{E}\operatorname{Tr}{\mathbb{T}}(\mathbb{E}_{j}{\mathbb{H}}{\mathbb{H}}^{H}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}}{M}
=X1+X2+X3+X4.\displaystyle=X_{1}+X_{2}+X_{3}+X_{4}.

First we can obtain X1=MΓi,j+o(1)X_{1}=M\Gamma_{i,j}+o(1) from (132a) in Lemma 5. Then we will evaluate X3X_{3}. By (63) and (133) in Lemma 5, we can obtain

X3\displaystyle X_{3} =i=1M𝔼𝕒kH(𝔼j)𝔻j𝔻i𝕋𝕒kM(1+δk)\displaystyle=\sum_{i=1}^{M}\frac{\mathbb{E}{\mathbb{a}}_{k}^{H}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}}{M(1+\delta_{k})} (94)
=𝔼i=1M𝕒kH(𝔼ji)𝔻j𝔻i𝕋𝕒kM(1+δk)i=1Mρt~k,k𝕒kH(𝔼jk𝕙k𝕙kHk)𝔻j𝔻i𝕋𝕒kM(1+δk)+o(1)\displaystyle=\mathbb{E}\sum_{i=1}^{M}\frac{{\mathbb{a}}_{k}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{i}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}}{M(1+\delta_{k})}-\sum_{i=1}^{M}\frac{\rho\widetilde{t}_{k,k}{\mathbb{a}}_{k}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{k}{\mathbb{h}}_{k}{\mathbb{h}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}}{M(1+\delta_{k})}+o(1)
=X3,0+X3,1+X3,2+X3,3+X3,4+o(1),\displaystyle=X_{3,0}+X_{3,1}+X_{3,2}+X_{3,3}+X_{3,4}+o(1),

where X3,1X_{3,1}, X3,2X_{3,2}, X3,3X_{3,3}, and X3,4X_{3,4} are obtained by the expansion of 𝕙i𝕙iH=𝕒i𝕒iH+𝕪i𝕒iH+𝕒i𝕪iH+𝕪i𝕪iH{\mathbb{h}}_{i}{\mathbb{h}}_{i}^{H}={\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}+{\mathbb{y}}_{i}{\mathbb{a}}_{i}^{H}+{\mathbb{a}}_{i}{\mathbb{y}}_{i}^{H}+{\mathbb{y}}_{i}{\mathbb{y}}_{i}^{H}. By applying (63) to {\mathbb{Q}}, X3,1X_{3,1} can be evaluated by

X3,1\displaystyle X_{3,1} =i=1M𝔼ρt~k,k𝕒kH(𝔼jk𝕒k𝕒kHk)𝔻j𝔻i𝕋𝕒kM(1+δk)\displaystyle=\sum_{i=1}^{M}\frac{-\mathbb{E}\rho\widetilde{t}_{k,k}{\mathbb{a}}_{k}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{k}{\mathbb{a}}_{k}{\mathbb{a}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}}{M(1+\delta_{k})} (95)
=i=1Mρt~k,k𝕒kH𝕋k𝕒i𝔼𝕒kH(𝔼jk)𝔻j𝔻i𝕋𝕒kM(1+δk)+o(1).\displaystyle=-\sum_{i=1}^{M}\!\frac{\rho\widetilde{t}_{k,k}{\mathbb{a}}_{k}^{H}{\mathbb{T}}_{k}{\mathbb{a}}_{i}\mathbb{E}{\mathbb{a}}_{k}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}}{M(1+\delta_{k})}\!+\!o(1).

By the Cauchy-Schwarz inequality, ρ1\|{\mathbb{Q}}\|\leq\rho^{-1}, and 𝕒k2<amax\|\mathbb{a}_{k}\|_{2}<a_{max}, we can show X3,2X_{3,2} is o(1)o(1) with

|X3,2|\displaystyle|X_{3,2}| =|i=1Mρt~k,k𝔼𝕒kH(𝔼jk𝕪k𝕒kHk)𝔻j𝔻i𝕋𝕒k|M(1+δk)\displaystyle=|\sum_{i=1}^{M}\frac{\rho\widetilde{t}_{k,k}\mathbb{E}{\mathbb{a}}_{k}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{k}{\mathbb{y}}_{k}{\mathbb{a}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}|}{M(1+\delta_{k})} (96)
|𝔼i=1MKt~k,k𝔼j12(𝕪kHk𝕒k𝕒kHk𝕪k)|M(1+δk)=𝒪(M1),\displaystyle\leq|\mathbb{E}\sum_{i=1}^{M}\frac{K\widetilde{t}_{k,k}\mathbb{E}_{j}^{\frac{1}{2}}({\mathbb{y}}_{k}^{H}{\mathbb{Q}}_{k}{\mathbb{a}}_{k}{\mathbb{a}}_{k}^{H}{\mathbb{Q}}_{k}{\mathbb{y}}_{k})|}{M(1+\delta_{k})}={\mathcal{O}}(M^{-1}),

where KK is a constant independent of MM and NN. By (63) and the definition of 𝔼j\mathbb{E}_{j}, X3,3X_{3,3} can be evaluated by

X3,3\displaystyle X_{3,3} =𝔼k=1Mρt~k,k𝕒kH(𝔼jk𝕒k𝕪kHk)𝔻j𝔻i𝕋𝕒kM(1+δk)\displaystyle=-\mathbb{E}\sum_{k=1}^{M}\frac{\rho\widetilde{t}_{k,k}{\mathbb{a}}_{k}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{k}{\mathbb{a}}_{k}{\mathbb{y}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}}{M(1+\delta_{k})} (97)
=𝔼k=1jρt~k,k𝕒kH𝕋k𝕒k(𝔼j𝕪kHk)𝔻ji𝔻i𝕋𝕒kM(1+δk)+k=1j𝔼ρ2t~k,k2𝕒kH𝕋k𝕒k(𝔼j𝕪kHk)𝔻jk𝕙k𝕙kHk𝔻i𝕋𝕒kM(1+δk)+o(1)\displaystyle=-\mathbb{E}\sum_{k=1}^{j}\frac{\rho\widetilde{t}_{k,k}{\mathbb{a}}_{k}^{H}{\mathbb{T}}_{k}{\mathbb{a}}_{k}(\mathbb{E}_{j}{\mathbb{y}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{i}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}}{M(1+\delta_{k})}+\sum_{k=1}^{j}\frac{\mathbb{E}\rho^{2}\widetilde{t}_{k,k}^{2}{\mathbb{a}}_{k}^{H}{\mathbb{T}}_{k}{\mathbb{a}}_{k}(\mathbb{E}_{j}{\mathbb{y}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{h}}_{k}{\mathbb{h}}_{k}^{H}{\mathbb{Q}}_{k}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}}{M(1+\delta_{k})}+o(1)
=k=1jρ2t~k,k2𝕒kH𝕋k𝕒k𝕒kH𝕋k𝔻i𝕋𝕒kψj,kM(1+δk)+o(1)\displaystyle=\sum_{k=1}^{j}\frac{\rho^{2}\widetilde{t}_{k,k}^{2}{\mathbb{a}}_{k}^{H}{\mathbb{T}}_{k}{\mathbb{a}}_{k}{\mathbb{a}}_{k}^{H}{\mathbb{T}}_{k}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}\psi_{j,k}}{M(1+\delta_{k})}+o(1)
=(a)i=1j𝕒kH𝕋𝕒k𝕒kH𝕋𝔻i𝕋𝕒kψj,kM(1+δk)3+o(1),\displaystyle\overset{(a)}{=}\sum_{i=1}^{j}\frac{{\mathbb{a}}_{k}^{H}{\mathbb{T}}{\mathbb{a}}_{k}{\mathbb{a}}_{k}^{H}{\mathbb{T}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}\psi_{j,k}}{M(1+\delta_{k})^{3}}+o(1),

where step (a)(a) in (97) follows by (66). By similar steps in (96), we can also show X3,4=o(1)X_{3,4}=o(1) as follows

|X3,4|\displaystyle|X_{3,4}| =|𝔼k=1Mt~k,k𝕒iH(𝔼jk𝕪k𝕪kHk)𝔻j𝔻i𝕋𝕒kM(1+δk)|\displaystyle=|\mathbb{E}\sum_{k=1}^{M}\frac{\widetilde{t}_{k,k}{\mathbb{a}}_{i}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{k}{\mathbb{y}}_{k}{\mathbb{y}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}}{M(1+\delta_{k})}| (98)
𝔼KM1𝔼j12(|𝕒kHk𝕪k|2𝕪kH𝕪k)\displaystyle\leq\mathbb{E}KM^{-1}\mathbb{E}_{j}^{\frac{1}{2}}(|{\mathbb{a}}_{k}^{H}{\mathbb{Q}}_{k}{\mathbb{y}}_{k}|^{2}{\mathbb{y}}_{k}^{H}{\mathbb{y}}_{k})
KM1i=1M(𝔼(𝕪kH𝕪k)2)12=𝒪(M12).\displaystyle\leq K^{\prime}M^{-1}\sum_{i=1}^{M}(\mathbb{E}({\mathbb{y}}_{k}^{H}{\mathbb{y}}_{k})^{2})^{\frac{1}{2}}={\mathcal{O}}(M^{-\frac{1}{2}}).

Next, we turn to evaluate X4X_{4}. By using (64), X4X_{4} can be evaluated by

X4\displaystyle X_{4} =k=1MTr𝕋(𝔼j𝕙k𝕙kH)𝔻j𝔻iM=k=1Mρt~k,kM𝔼Tr𝕋(𝔼j𝕙k𝕙kHk)𝔻j𝔻i+o(1)\displaystyle=-\sum_{k=1}^{M}\frac{\operatorname{Tr}{\mathbb{T}}(\mathbb{E}_{j}{\mathbb{h}}_{k}{\mathbb{h}}_{k}^{H}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}}{M}=-\sum_{k=1}^{M}\frac{\rho\widetilde{t}_{k,k}}{M}\mathbb{E}\operatorname{Tr}{\mathbb{T}}(\mathbb{E}_{j}{\mathbb{h}}_{k}{\mathbb{h}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}+o(1) (99)
=(k=1Mρt~k,kM𝔼Tr𝕋(𝔼j𝕒k𝕒kH)𝔻j𝔻i)+(k=1Mρt~k,kM𝔼Tr𝕋(𝔼j𝕪k𝕪kHk)𝔻j𝔻i)\displaystyle=(-\sum_{k=1}^{M}\frac{\rho\widetilde{t}_{k,k}}{M}\mathbb{E}\operatorname{Tr}{\mathbb{T}}(\mathbb{E}_{j}{\mathbb{a}}_{k}{\mathbb{a}}_{k}^{H}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i})+(-\sum_{k=1}^{M}\frac{\rho\widetilde{t}_{k,k}}{M}\mathbb{E}\operatorname{Tr}{\mathbb{T}}(\mathbb{E}_{j}{\mathbb{y}}_{k}{\mathbb{y}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i})
+(k=1Mρt~k,kM𝔼Tr𝕋(𝔼j𝕒k𝕪kHk)𝔻j𝔻i)+(k=1Mρt~k,kM𝔼Tr𝕋(𝔼j𝕪k𝕒kHk)𝔻j𝔻i)+o(1)\displaystyle+(-\sum_{k=1}^{M}\frac{\rho\widetilde{t}_{k,k}}{M}\mathbb{E}\operatorname{Tr}{\mathbb{T}}(\mathbb{E}_{j}{\mathbb{a}}_{k}{\mathbb{y}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i})+(-\sum_{k=1}^{M}\frac{\rho\widetilde{t}_{k,k}}{M}\mathbb{E}\operatorname{Tr}{\mathbb{T}}(\mathbb{E}_{j}{\mathbb{y}}_{k}{\mathbb{a}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i})+o(1)
=X4,1+X4,2+X4,3+X4,4+o(1).\displaystyle=X_{4,1}+X_{4,2}+X_{4,3}+X_{4,4}+o(1).

By (68), we can obtain the evaluation for X4,1X_{4,1}, which can be cancelled by X3,0+X3,1X_{3,0}+X_{3,1} with

X4,1\displaystyle X_{4,1} =k=1Mρt~k,k𝔼Tr𝕋(𝔼j𝕒k𝕒kH)𝔻j𝔻iM=k=1Mρt~k,kM𝔼𝕒kH(𝔼j)𝔻j𝔻i𝕋𝕒k\displaystyle=-\sum_{k=1}^{M}\frac{\rho\widetilde{t}_{k,k}\mathbb{E}\operatorname{Tr}{\mathbb{T}}(\mathbb{E}_{j}{\mathbb{a}}_{k}{\mathbb{a}}_{k}^{H}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}}{M}=-\sum_{k=1}^{M}\frac{\rho\widetilde{t}_{k,k}}{M}\mathbb{E}{\mathbb{a}}_{k}^{H}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k} (100)
=(a)(X3,0+X3,1)+o(1),\displaystyle\overset{(a)}{=}-(X_{3,0}+X_{3,1})+o(1),

where step (a)(a) in (100) is obtained by (68). By (63), we can obtain the evaluation for X4,2X_{4,2} as

X4,2\displaystyle X_{4,2} =k=1jρt~k,k𝔼𝕪kH(𝔼jk)𝔻j𝔻i𝕋𝕪kMk=j+1M𝔼ρt~k,kTr(𝔼j)𝔻j𝔻i𝕋𝔻kM2\displaystyle=-\sum_{k=1}^{j}\frac{\rho\widetilde{t}_{k,k}\mathbb{E}{\mathbb{y}}_{k}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{y}}_{k}}{M}-\sum_{k=j+1}^{M}\frac{\mathbb{E}\rho\widetilde{t}_{k,k}\operatorname{Tr}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{D}}_{k}}{M^{2}} (101)
=k=1j𝔼ρt~k,k𝕪kH(𝔼jk)𝔻jk𝔻i𝕋𝕪kM+(k=1j𝔼ρ2t~k,k2𝕪kH(𝔼jk)𝔻jk𝕙k𝕙kHk𝔻i𝕋𝕪kM\displaystyle=-\sum_{k=1}^{j}\frac{\mathbb{E}\rho\widetilde{t}_{k,k}{\mathbb{y}}_{k}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{y}}_{k}}{M}+(\sum_{k=1}^{j}\frac{\mathbb{E}\rho^{2}\widetilde{t}_{k,k}^{2}{\mathbb{y}}_{k}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{h}}_{k}{\mathbb{h}}_{k}^{H}{\mathbb{Q}}_{k}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{y}}_{k}}{M}
k=j+1M𝔼ρt~k,kTr(𝔼j)𝔻j𝔻i𝕋𝔻kM2)+o(1)\displaystyle-\sum_{k=j+1}^{M}\frac{\mathbb{E}\rho\widetilde{t}_{k,k}\operatorname{Tr}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{D}}_{k}}{M^{2}})+o(1)
=k=1M𝔼ρt~k,kTr(𝔼jk)𝔻jk𝔻i𝕋𝔻kM2+k=1jρ2t~k,k2𝔼Tr𝕋𝔻i𝕋𝔻k𝔼Tr(𝔼jk)𝔻jk𝔻kM3+o(1)\displaystyle=-\sum_{k=1}^{M}\frac{\mathbb{E}\rho\widetilde{t}_{k,k}\operatorname{Tr}(\mathbb{E}_{j}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{D}}_{k}}{M^{2}}+\sum_{k=1}^{j}\frac{\rho^{2}\widetilde{t}_{k,k}^{2}\mathbb{E}\operatorname{Tr}{\mathbb{T}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{D}}_{k}\mathbb{E}\operatorname{Tr}(\mathbb{E}_{j}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{D}}_{k}}{M^{3}}+o(1)
=(a)k=1Mρ𝔼Tr𝕋Υ(𝔼jk)𝔻jk𝔻iM+k=1jρ2t~k,k2Γi,kψj,k+o(1)=X4,2,1+X4,2,2+o(1),\displaystyle\overset{(a)}{=}-\sum_{k=1}^{M}\frac{\rho\mathbb{E}\operatorname{Tr}{\mathbb{T}}\mathbb{\Upsilon}(\mathbb{E}_{j}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{D}}_{i}}{M}+\sum_{k=1}^{j}\rho^{2}\widetilde{t}_{k,k}^{2}\Gamma_{i,k}\psi_{j,k}+o(1)=X_{4,2,1}+X_{4,2,2}+o(1),

where step (a)(a) in (101) follows by 1Mk=1Mσi,k2t~k,k=Tr𝔻~i𝕋~M=δ~i\frac{1}{M}\sum_{k=1}^{M}\sigma^{2}_{i,k}\widetilde{t}_{k,k}=\frac{\operatorname{Tr}\widetilde{{\mathbb{D}}}_{i}\widetilde{{\mathbb{T}}}}{M}=\widetilde{\delta}_{i}. By applying (63) to {\mathbb{Q}}, we have the following evaluate for X4,3X_{4,3} and X4,4X_{4,4}.

X4,3\displaystyle X_{4,3} =k=1Mρ2t~k,k2𝔼Tr𝕋(𝔼j𝕒k𝕪kHk)𝔻jk𝕙k𝕙kHk𝔻iM+o(1)\displaystyle=\sum_{k=1}^{M}\frac{\rho^{2}\widetilde{t}_{k,k}^{2}\mathbb{E}\operatorname{Tr}{\mathbb{T}}(\mathbb{E}_{j}{\mathbb{a}}_{k}{\mathbb{y}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{h}}_{k}{\mathbb{h}}_{k}^{H}{\mathbb{Q}}_{k}{\mathbb{D}}_{i}}{M}+o(1) (102)
=k=1jρ2t~k,k2𝕒kH𝕋k𝔻i𝕋𝕒kTr(𝔼jk)𝔻jk𝔻kM2+o(1)\displaystyle=\sum_{k=1}^{j}\frac{\rho^{2}\widetilde{t}_{k,k}^{2}{\mathbb{a}}_{k}^{H}{\mathbb{T}}_{k}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}\operatorname{Tr}(\mathbb{E}_{j}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{D}}_{k}}{M^{2}}+o(1)
=(a)k=1jρt~k,k𝕒kH𝕋k𝔻i𝕋𝕒kψj,kM(1+δk)+o(1),\displaystyle\overset{(a)}{=}\sum_{k=1}^{j}\frac{\rho\widetilde{t}_{k,k}{\mathbb{a}}_{k}^{H}{\mathbb{T}}_{k}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}\psi_{j,k}}{M(1+\delta_{k})}+o(1),

where step (a)(a) in (102) follows from (66) and

X4,4\displaystyle X_{4,4} =k=1Mρ2t~k,k2M𝔼Tr𝕋(𝔼j𝕪k𝕒kHk)𝔻jk𝕙k𝕙kHk𝔻i+o(1)\displaystyle=\sum_{k=1}^{M}\frac{\rho^{2}\widetilde{t}_{k,k}^{2}}{M}\mathbb{E}\operatorname{Tr}{\mathbb{T}}(\mathbb{E}_{j}{\mathbb{y}}_{k}{\mathbb{a}}_{k}^{H}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{h}}_{k}{\mathbb{h}}_{k}^{H}{\mathbb{Q}}_{k}{\mathbb{D}}_{i}+o(1) (103)
=k=1jρ2t~k,k2M2Tr𝕋𝔻i𝕋𝔻k𝔼𝕒kH(𝔼jk)𝔻jk𝕒k+o(1)\displaystyle=\sum_{k=1}^{j}\frac{\rho^{2}\widetilde{t}_{k,k}^{2}}{M^{2}}\operatorname{Tr}{\mathbb{T}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{D}}_{k}\mathbb{E}{\mathbb{a}}_{k}^{H}(\mathbb{E}_{j}{\mathbb{Q}}_{k}){\mathbb{D}}_{j}{\mathbb{Q}}_{k}{\mathbb{a}}_{k}+o(1)
=k=1jρ2t~k,k2Γk,iθj,k+o(1).\displaystyle=\sum_{k=1}^{j}\rho^{2}\widetilde{t}_{k,k}^{2}\Gamma_{k,i}\theta_{j,k}+o(1).

Noticing that X4,2,1+X2=0X_{4,2,1}+X_{2}=0 and X4,1+X3,0+X3,1=0X_{4,1}+X_{3,0}+X_{3,1}=0, (93) can be rewritten as

ψj,i\displaystyle\psi_{j,i} =X1+(X3,3+X4,3+X4,2,2)+X4,4\displaystyle=X_{1}+(X_{3,3}+X_{4,3}+X_{4,2,2})+X_{4,4} (104)
=MΓi,j+i=1j[𝕒kH𝕋𝕒k𝕒kH𝕋𝔻i𝕋𝕒kM(1+δk)3+ρt~k,k𝕒kH𝕋k𝔻i𝕋𝕒k(1+δk)+ρ2t~k,k2Γi,k]ψj,k+k=1jρ2t~k,k2Γk,iθj,k\displaystyle=M\Gamma_{i,j}+\sum_{i=1}^{j}[\frac{{\mathbb{a}}_{k}^{H}{\mathbb{T}}{\mathbb{a}}_{k}{\mathbb{a}}_{k}^{H}{\mathbb{T}}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}}{M(1+\delta_{k})^{3}}+\frac{\rho\widetilde{t}_{k,k}{\mathbb{a}}_{k}^{H}{\mathbb{T}}_{k}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{a}}_{k}}{(1+\delta_{k})}+\rho^{2}\widetilde{t}_{k,k}^{2}\Gamma_{i,k}]\psi_{j,k}+\sum_{k=1}^{j}\rho^{2}\widetilde{t}_{k,k}^{2}\Gamma_{k,i}\theta_{j,k}
=Γi,j+k=1j(Πi,k+ρ2t~k,k2Γi,k)ψj,k+k=1jρ2t~k,k2Γk,iθj,k+o(1).\displaystyle=\Gamma_{i,j}+\sum_{k=1}^{j}(\Pi_{i,k}+\rho^{2}\widetilde{t}_{k,k}^{2}\Gamma_{i,k})\psi_{j,k}+\sum_{k=1}^{j}\rho^{2}\widetilde{t}_{k,k}^{2}\Gamma_{k,i}\theta_{j,k}+o(1).

By the bound for the rank-one perturbation in (134), we can obtain 𝔼Tr(𝔼j)𝔻j𝔻iM=ψj,i+𝒪(M1)\frac{\mathbb{E}\operatorname{Tr}(\mathbb{E}_{j}{\mathbb{Q}}){\mathbb{D}}_{j}{\mathbb{Q}}{\mathbb{D}}_{i}}{M}=\psi_{j,i}+{\mathcal{O}}(M^{-1}) and rewrite (104) as

k=1j[𝟙k=i(Πi,k+ρ2t~k,k2Γi,k)]ψj,kk=1jρ2t~k,k2Γk,iθj,k=MΓi,j+o(1).\displaystyle\sum_{k=1}^{j}[\mathbbm{1}_{k=i}-(\Pi_{i,k}+\rho^{2}\widetilde{t}_{k,k}^{2}\Gamma_{i,k})]\psi_{j,k}-\sum_{k=1}^{j}\rho^{2}\widetilde{t}_{k,k}^{2}\Gamma_{k,i}\theta_{j,k}=M\Gamma_{i,j}+o(1). (105)

Recall Θj,k=ρ2t~k,k2θj,k\Theta_{j,k}=\rho^{2}\widetilde{t}_{k,k}^{2}\theta_{j,k} and define 𝕡j2j\mathbb{p}_{j}\in\mathbb{R}^{2j}, 𝕢j2j\mathbb{q}_{j}\in\mathbb{R}^{2j} as

𝕡j\displaystyle\mathbb{p}_{j} =[ψj,1,ψj,2,,ψj,j,ρ2t~1,12ψj,1+Θj,1,ρ2t~2,22ψj,2+Θj,2,,ρ2t~j,j2ψj,j+Θj,j]T,\displaystyle=[\psi_{j,1},\psi_{j,2},...,\psi_{j,j},\rho^{2}\widetilde{t}_{1,1}^{2}\psi_{j,1}+\Theta_{j,1},\rho^{2}\widetilde{t}_{2,2}^{2}\psi_{j,2}+\Theta_{j,2},...,\rho^{2}\widetilde{t}_{j,j}^{2}\psi_{j,j}+\Theta_{j,j}]^{T}, (106)
𝕢j\displaystyle\mathbb{q}_{j} =M[Γj,1,Γj,2,,Γj,j,Πj,1,Πj,2,,Πj,j]T.\displaystyle=M[\Gamma_{j,1},\Gamma_{j,2},...,\Gamma_{j,j},\Pi_{j,1},\Pi_{j,2},...,\Pi_{j,j}]^{T}.

By (LABEL:eq_first) and (LABEL:eq_second), we can set up a system of equations with respect to Θj,i\Theta_{j,i} and ψj,i\psi_{j,i} as follows

𝕡j=𝔹j𝕡j+𝕢j+𝕧j,\mathbb{p}_{j}=\mathbb{B}_{j}\mathbb{p}_{j}+\mathbb{q}_{j}+\mathbb{v}_{j}, (107)

where 𝔹j\mathbb{B}_{j} is given in (24) and |[vj]i|=o(1)|[v_{j}]_{i}|=o(1), i=1,2,,2ji=1,2,...,2j. Therefore, we have

𝕡j=(𝕊j)1(𝕢j+𝕧j),\mathbb{p}_{j}=({\mathbb{S}}_{j})^{-1}(\mathbb{q}_{j}+\mathbb{v}_{j}), (108)

with 𝕊j=𝕀2j𝔹j{\mathbb{S}}_{j}=\mathbb{I}_{2j}-{\mathbb{B}}_{j}. We define Ωj=Ξj+Λ~j\mathbb{\Omega}_{j}=\mathbb{\Xi}_{j}+\widetilde{\mathbb{\Lambda}}_{j} for the following derivations.

B-C Evaluation of 1M(j=1Mρ2t~j,j2pj,(j)+2pj,(2j))\frac{1}{M}(\sum_{j=1}^{M}-\rho^{2}\widetilde{t}_{j,j}^{2}p_{j,(j)}+2p_{j,(2j)}).

By Cramer’s rule, pj,(j)p_{j,(j)} and pj,(2j)p_{j,(2j)} can be represented by

pj,(j)\displaystyle p_{j,(j)} =ψj,j=det(𝕊j,(j))det(𝕊j)+[𝕊j1𝕧j](j),\displaystyle=\psi_{j,j}=\frac{\det({\mathbb{S}}_{j,(j)})}{\det({\mathbb{S}}_{j})}+[{\mathbb{S}}_{j}^{-1}\mathbb{v}_{j}]_{(j)}, (109)
p(j),2j\displaystyle p_{(j),2j} =ρ2t~j,jψj,j+Θj,j=det(𝕊j,(2j))det(𝕊j)+[𝕊j1𝕧j](2j),\displaystyle=\rho^{2}\widetilde{t}_{j,j}\psi_{j,j}+\Theta_{j,j}=\frac{\det({\mathbb{S}}_{j,(2j)})}{\det({\mathbb{S}}_{j})}+[{\mathbb{S}}_{j}^{-1}\mathbb{v}_{j}]_{(2j)},

where 𝕊j,(j){\mathbb{S}}_{j,(j)} and 𝕊j,(2j){\mathbb{S}}_{j,(2j)} are obtained by replacing the jj-th and 2j2j-th columns of 𝕊j{\mathbb{S}}_{j} with 𝕢j\mathbb{q}_{j}, respectively. Now we will show that

ρ2t~j,j2pj,(j)+2pj,(2j)=det(𝕊j1)det(𝕊j)det(𝕊j)+o(1).-\rho^{2}\widetilde{t}_{j,j}^{2}p_{j,(j)}+2p_{j,(2j)}=\frac{\det({\mathbb{S}}_{j-1})-\det({\mathbb{S}}_{j})}{\det({\mathbb{S}}_{j})}+o(1). (110)

First, by adding ρ2t~j,j2\rho^{2}\widetilde{t}_{j,j}^{2} times of the 2j2j-th column to the jj-th column 𝕊j,(j){\mathbb{S}}_{j,(j)}, we can obtain

ρ2t~j,j2Mdet(𝕊j,(j))=det([𝕀j1Πj1𝟘Γj(1:j1)Πj(j)0Γj(j)Ωj1𝟘𝕀j(1:j1)Π(j)[1:1j],TΞj(j)ρ2t~j,j2𝕖jTΠ(j)[j],T]),\displaystyle\frac{\rho^{2}\widetilde{t}_{j,j}^{2}}{M}\det({\mathbb{S}}_{j,(j)})=-\det(\begin{bmatrix}\mathbb{I}_{j-1}-\mathbb{\Pi}_{j-1}&\mathbb{0}&-\mathbb{\Gamma}_{j}^{(1:j-1)}\\ -\mathbb{\Pi}_{j}^{(j)}&0&-\mathbb{\Gamma}_{j}^{(j)}\\ -\mathbb{\Omega}_{j-1}&\mathbb{0}&\mathbb{I}_{j}^{(1:j-1)}-\mathbb{\Pi}_{(j)}^{[1:1-j],T}\\ -\mathbb{\Xi}_{j}^{(j)}&-\rho^{2}\widetilde{t}_{j,j}^{2}&\mathbb{e}_{j}^{T}-\mathbb{\Pi}_{(j)}^{[j],T}\end{bmatrix}), (111)

without changing det(𝕊j,(j))\det({\mathbb{S}}_{j,(j)}), where 𝕖jj=𝕀j[j]=(0,0,,1)T\mathbb{e}_{j}\in\mathbb{R}^{j}=\mathbb{I}_{j}^{[j]}=(0,0,...,1)^{T}.

det(𝕊j,(2j))M=\displaystyle\frac{\det({\mathbb{S}}_{j,(2j)})}{M}=
det([𝕀j1Πj1Πj[j]Γj(1:j1)Πj(j)1Πj,jΓj(j)Ξj1Λ~j1Ξj[j]𝕀j(1:j1)Π(j)[1:1j],TΞj(j)ρ2t~j,j2Πj[j],T])=det([𝕀j1Πj1Πj[j]Γj(1:j1)Πj(j)1Πj,jΓj(j)Ξj1Λ~j1Ξj[j]𝕀j(1:j1)Π(j)[1:1j],TΞj(j)ρ2t~j,j2𝕖jTΠj[j],T])\displaystyle-\det(\begin{bmatrix}\mathbb{I}_{j-1}-\mathbb{\Pi}_{j-1}&-\mathbb{\Pi}_{j}^{[j]}&-\mathbb{\Gamma}_{j}^{(1:j-1)}\\ -\mathbb{\Pi}_{j}^{(j)}&1-\Pi_{j,j}&-\mathbb{\Gamma}_{j}^{(j)}\\ -\mathbb{\Xi}_{j-1}-\widetilde{\mathbb{\Lambda}}_{j-1}&-\mathbb{\Xi}_{j}^{[j]}&\mathbb{I}_{j}^{(1:j-1)}-\mathbb{\Pi}_{(j)}^{[1:1-j],T}\\ -\mathbb{\Xi}_{j}^{(j)}&-\rho^{2}\widetilde{t}_{j,j}^{2}&-\mathbb{\Pi}_{j}^{[j],T}\end{bmatrix})\!=\!-\det(\begin{bmatrix}\mathbb{I}_{j-1}-\mathbb{\Pi}_{j-1}&-\mathbb{\Pi}_{j}^{[j]}&-\mathbb{\Gamma}_{j}^{(1:j-1)}\\ -\mathbb{\Pi}_{j}^{(j)}&1-\Pi_{j,j}&-\mathbb{\Gamma}_{j}^{(j)}\\ -\mathbb{\Xi}_{j-1}-\widetilde{\mathbb{\Lambda}}_{j-1}&-\mathbb{\Xi}_{j}^{[j]}&\mathbb{I}_{j}^{(1:j-1)}-\mathbb{\Pi}_{(j)}^{[1:1-j],T}\\ -\mathbb{\Xi}_{j}^{(j)}&-\rho^{2}\widetilde{t}_{j,j}^{2}&\mathbb{e}_{j}^{T}-\mathbb{\Pi}_{j}^{[j],T}\end{bmatrix})
+det([𝕀j1Πj1Πj[j]Γj(1:j1)Πj(j)1Πj,jΓj(j)Ξj1Λ~j1Ξj[j]𝕀j(1:j1)Πj[1:1j],T𝟘0𝕖jT])=(a)det([𝕀j1Πj1Πj[j]Γj(1:j1)Πj(j)1Πj,jΓj(j)Ξj1Λ~jΞj[j]𝕀j(1:j1)Πj[1:1j],TΞj(j)ρ2t~j,j2𝕖jTΠj[j],T])\displaystyle+\det(\begin{bmatrix}\mathbb{I}_{j-1}-\mathbb{\Pi}_{j-1}&-\mathbb{\Pi}_{j}^{[j]}&-\mathbb{\Gamma}_{j}^{(1:j-1)}\\ -\mathbb{\Pi}_{j}^{(j)}&1-\Pi_{j,j}&-\mathbb{\Gamma}_{j}^{(j)}\\ -\mathbb{\Xi}_{j-1}-\widetilde{\mathbb{\Lambda}}_{j-1}&-\mathbb{\Xi}_{j}^{[j]}&\mathbb{I}_{j}^{(1:j-1)}-\mathbb{\Pi}_{j}^{[1:1-j],T}\\ \mathbb{0}&0&\mathbb{e}_{j}^{T}\end{bmatrix})\overset{(a)}{=}-\det(\begin{bmatrix}\mathbb{I}_{j-1}-\mathbb{\Pi}_{j-1}&-\mathbb{\Pi}_{j}^{[j]}&-\mathbb{\Gamma}_{j}^{(1:j-1)}\\ -\mathbb{\Pi}_{j}^{(j)}&1-\Pi_{j,j}&-\mathbb{\Gamma}_{j}^{(j)}\\ -\mathbb{\Xi}_{j-1}-\widetilde{\mathbb{\Lambda}}_{j}&-\mathbb{\Xi}_{j}^{[j]}&\mathbb{I}_{j}^{(1:j-1)}-\mathbb{\Pi}_{j}^{[1:1-j],T}\\ -\mathbb{\Xi}_{j}^{(j)}&-\rho^{2}\widetilde{t}_{j,j}^{2}&\mathbb{e}_{j}^{T}-\mathbb{\Pi}_{j}^{[j],T}\end{bmatrix}) (112)
+det([𝕀j1Πj1𝟘Γj(1:j1)Πj(j)1Γj(j)Ξj1Λ~j1𝟘𝕀j(1:j1)Πj[1:1j],T𝟘0𝕖jT])+det([𝕀j1Πj1Πj[j]Γj(1:j1)Πj(j)Πj,jΓj(j)Ξj1Λ~j1Ξj[j]𝕀j(1:j1)Πj[1:1j],T𝟘0𝕖jT])\displaystyle+\det(\begin{bmatrix}\mathbb{I}_{j-1}-\mathbb{\Pi}_{j-1}&\mathbb{0}&-\mathbb{\Gamma}_{j}^{(1:j-1)}\\ -\mathbb{\Pi}_{j}^{(j)}&1&-\mathbb{\Gamma}_{j}^{(j)}\\ -\mathbb{\Xi}_{j-1}-\widetilde{\mathbb{\Lambda}}_{j-1}&\mathbb{0}&\mathbb{I}_{j}^{(1:j-1)}-\mathbb{\Pi}_{j}^{[1:1-j],T}\\ \mathbb{0}&0&\mathbb{e}_{j}^{T}\end{bmatrix})+\det(\begin{bmatrix}\mathbb{I}_{j-1}-\mathbb{\Pi}_{j-1}&-\mathbb{\Pi}_{j}^{[j]}&-\mathbb{\Gamma}_{j}^{(1:j-1)}\\ -\mathbb{\Pi}_{j}^{(j)}&-\Pi_{j,j}&-\mathbb{\Gamma}_{j}^{(j)}\\ -\mathbb{\Xi}_{j-1}-\widetilde{\mathbb{\Lambda}}_{j-1}&-\mathbb{\Xi}_{j}^{[j]}&\mathbb{I}_{j}^{(1:j-1)}-\mathbb{\Pi}_{j}^{[1:1-j],T}\\ \mathbb{0}&0&\mathbb{e}_{j}^{T}\end{bmatrix})
=det(𝕊j)+det(𝕊j1)+C1.\displaystyle=-\det({\mathbb{S}}_{j})+\det({\mathbb{S}}_{j-1})+C_{1}.

On one hand, we can decompose det(𝕊j,(2j))M\frac{\det({\mathbb{S}}_{j,(2j)})}{M} as det(𝕊j,(2j))M=det(𝕊j)+det(𝕊j1)+C1\frac{\det({\mathbb{S}}_{j,(2j)})}{M}=-\det({\mathbb{S}}_{j})+\det({\mathbb{S}}_{j-1})+C_{1} in (LABEL:BA_2j_first) at the top of the next page, where step (a)(a) in (LABEL:BA_2j_first) is obtained by decomposing the jj-the column of the second term in the previous step. On the other hand, we can decompose det(𝕊j,(2j))M\frac{\det({\mathbb{S}}_{j,(2j)})}{M} as det(𝕊j,(2j))M=ρ2t~j,j2Mdet(𝕊j,(j))C1C2\frac{\det({\mathbb{S}}_{j,(2j)})}{M}=\frac{\rho^{2}\widetilde{t}_{j,j}^{2}}{M}\det({\mathbb{S}}_{j,(j)})-C_{1}-C_{2} in (113) on next page,

det(𝕊j,(2j))M\displaystyle\frac{\det({\mathbb{S}}_{j,(2j)})}{M} =(a)(1)jdet([Γj(1:j1)𝕀j1Πj1Πj[j]Γj(j)Πj(j)1Πj,j𝕀j(1:j1)Πj[1:1j],TΞj1Λ~jΞj[j]Πj[j],TΞj(j)ρ2t~j,j2])\displaystyle\overset{(a)}{=}-(-1)^{j}\det(\begin{bmatrix}-\mathbb{\Gamma}_{j}^{(1:j-1)}&\mathbb{I}_{j-1}\!-\!\mathbb{\Pi}_{j-1}&-\mathbb{\Pi}_{j}^{[j]}\\ -\mathbb{\Gamma}_{j}^{(j)}&-\mathbb{\Pi}_{j}^{(j)}&1-\Pi_{j,j}\\ \mathbb{I}_{j}^{(1:j-1)}\!-\!\mathbb{\Pi}_{j}^{[1:1-j],T}&-\mathbb{\Xi}_{j-1}-\widetilde{\mathbb{\Lambda}}_{j}&-\mathbb{\Xi}_{j}^{[j]}\\ -\mathbb{\Pi}_{j}^{[j],T}&-\mathbb{\Xi}_{j}^{(j)}&-\rho^{2}\widetilde{t}_{j,j}^{2}\end{bmatrix}) (113)
=(b)(1)jdet([Γj[1:j1]Γj[j]𝕀j(1:j1)Πj[1:1j]Πj[j]𝕀j1Πj1TΠj(j),TΞj1Λ~jΞj(1:j1),[j]Πj[j],T1Πj,jΞj(j),[1:j1]ρ2t~j,j2])\displaystyle\overset{(b)}{=}-(-1)^{j}\det(\begin{bmatrix}-\mathbb{\Gamma}_{j}^{[1:j-1]}&-\mathbb{\Gamma}_{j}^{[j]}&\mathbb{I}_{j}^{(1:j-1)}\!-\!\mathbb{\Pi}_{j}^{[1:1-j]}&-\mathbb{\Pi}_{j}^{[j]}\\ \mathbb{I}_{j-1}\!-\!\mathbb{\Pi}_{j-1}^{T}&-\mathbb{\Pi}_{j}^{(j),T}&-\mathbb{\Xi}_{j-1}-\widetilde{\mathbb{\Lambda}}_{j}&-\mathbb{\Xi}_{j}^{(1:j-1),[j]}\\ -\mathbb{\Pi}_{j}^{[j],T}&1-\Pi_{j,j}&-\mathbb{\Xi}_{j}^{(j),[1:j-1]}&-\rho^{2}\widetilde{t}_{j,j}^{2}\end{bmatrix})
=(c)det([𝕀j(1:j1)Πj[1:1j]Πj[j]Γj[1:j1]Γj[j]Ξj1Λ~jΞj[j]𝕀j1Πj1TΠj(j),TΞj(j)ρ2t~j,j2Πj[j],T1Πj,j])=ρ2t~j,j2Mdet(𝕊j,(j))C1C2.\displaystyle\overset{(c)}{=}-\det(\begin{bmatrix}\mathbb{I}_{j}^{(1:j-1)}\!-\!\mathbb{\Pi}_{j}^{[1:1-j]}&-\mathbb{\Pi}_{j}^{[j]}&-\mathbb{\Gamma}_{j}^{[1:j-1]}&-\mathbb{\Gamma}_{j}^{[j]}\\ -\mathbb{\Xi}_{j-1}-\widetilde{\mathbb{\Lambda}}_{j}&-\mathbb{\Xi}_{j}^{[j]}&\mathbb{I}_{j-1}\!-\!\mathbb{\Pi}_{j-1}^{T}&-\mathbb{\Pi}_{j}^{(j),T}\\ -\mathbb{\Xi}_{j}^{(j)}&-\rho^{2}\widetilde{t}_{j,j}^{2}&-\mathbb{\Pi}_{j}^{[j],T}&1-\Pi_{j,j}\end{bmatrix})=\frac{\rho^{2}\widetilde{t}_{j,j}^{2}}{M}\det({\mathbb{S}}_{j,(j)})-C_{1}-C_{2}.

where

C2=det([𝕀j[1:j1]Πj[1:1j]Πj[j]Γj[1:j1]Γj[j]Ξj1Λ~j1Ξj[j]𝕀j1Πj1TΠj(j),TΞj(j)0Πj[j],TΠj,j]).\displaystyle C_{2}=\det(\begin{bmatrix}\mathbb{I}_{j}^{[1:j-1]}\!-\!\mathbb{\Pi}_{j}^{[1:1-j]}&-\mathbb{\Pi}_{j}^{[j]}&-\mathbb{\Gamma}_{j}^{[1:j-1]}&-\mathbb{\Gamma}_{j}^{[j]}\\ -\mathbb{\Xi}_{j-1}-\widetilde{\mathbb{\Lambda}}_{j-1}&-\mathbb{\Xi}_{j}^{[j]}&\mathbb{I}_{j-1}\!-\!\mathbb{\Pi}_{j-1}^{T}&-\mathbb{\Pi}_{j}^{(j),T}\\ -\mathbb{\Xi}_{j}^{(j)}&0&-\mathbb{\Pi}_{j}^{[j],T}&-\Pi_{j,j}\end{bmatrix}). (114)

Step (a)(a) in (113) is obtained by exchanging the ii-th column with j+ij+i-th column of the determinant in the first line of (LABEL:BA_2j_first), step (b) follows from the identity |𝕄|=|𝕄T||\mathbb{M}|=|\mathbb{M}^{T}|, and step (c)(c) follows by exchanging ii-th column with (j+i)(j+i)-th column. By (111),  (LABEL:BA_2j_first), and (113), we can obtain

ρ2t~j,j2det(𝕊j,(j))M+2det(𝕊j,(2j))M=det(𝕊j1)det(𝕊j)C2.\frac{\rho^{2}\widetilde{t}_{j,j}^{2}\det({\mathbb{S}}_{j,(j)})}{M}+\frac{2\det({\mathbb{S}}_{j,(2j)})}{M}=\det({\mathbb{S}}_{j-1})-\det({\mathbb{S}}_{j})-C_{2}. (115)

Next, we will show that

C2=𝒪(M2).C_{2}={\mathcal{O}}(M^{-2}). (116)

By moving the jj-th column to the (2j1)(2j-1)-th column and the jj-th row to the (2j1)(2j-1)-th row, C2C_{2} can be rewritten as

C2=det([𝕊j1𝔾j𝔾~j𝔼j]),\displaystyle C_{2}=\det(\begin{bmatrix}{\mathbb{S}}_{j-1}&\mathbb{G}_{j}\\ \widetilde{\mathbb{G}}_{j}&\mathbb{E}_{j}\end{bmatrix}), (117)

where

𝔾j\displaystyle\mathbb{G}_{j} =[Πj(1:j1),[j]Γj(1:j1),[j]Ξj(1:j1),[j]Πj(1:j1),[j]],𝔼j=[Πj,jΓj,j0Πj,j]\displaystyle=-\!\!\begin{bmatrix}\mathbb{\Pi}_{j}^{(1:j-1),[j]}&\mathbb{\Gamma}_{j}^{(1:j-1),[j]}\\ \mathbb{\Xi}_{j}^{(1:j-1),[j]}&\mathbb{\Pi}_{j}^{(1:j-1),[j]}\end{bmatrix},\mathbb{E}_{j}\!\!=\!\!-\begin{bmatrix}\Pi_{j,j}&\Gamma_{j,j}\\ 0&\Pi_{j,j}\end{bmatrix} (118)
𝔾~j\displaystyle\widetilde{\mathbb{G}}_{j} =[Πj(j),[1:j1]Γj(j),[1:j1]Ξj(j),[1:j1]Πj(j),[1:j1]].\displaystyle=-\!\!\begin{bmatrix}\mathbb{\Pi}_{j}^{(j),[1:j-1]}&\mathbb{\Gamma}_{j}^{(j),[1:j-1]}\\ \mathbb{\Xi}_{j}^{(j),[1:j-1]}&\mathbb{\Pi}_{j}^{(j),[1:j-1]}\end{bmatrix}.

By the trace inequality (136), we have

Tr𝔻iσmin2MTr𝔻i𝔻jM=Tr𝔻i𝕋𝕋1𝔻jMTr𝕋12𝔻j𝔻i𝕋12M𝕋1Tr𝔻i𝕋𝔻j𝕋M𝕋12.\displaystyle\frac{\operatorname{Tr}{\mathbb{D}}_{i}\sigma_{min}^{2}}{M}\leq\frac{\operatorname{Tr}{\mathbb{D}}_{i}{\mathbb{D}}_{j}}{M}=\frac{\operatorname{Tr}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{T}}^{-1}{\mathbb{D}}_{j}}{M}\leq\frac{\operatorname{Tr}{\mathbb{T}}^{\frac{1}{2}}{\mathbb{D}}_{j}{\mathbb{D}}_{i}{\mathbb{T}}^{\frac{1}{2}}}{M}\|{\mathbb{T}}^{-1}\|\leq\frac{\operatorname{Tr}{\mathbb{D}}_{i}{\mathbb{T}}{\mathbb{D}}_{j}{\mathbb{T}}}{M}\|{\mathbb{T}}^{-1}\|^{2}. (119)

According to (119) and A.2, we can obtain infi,jMΓi,j>0\inf\limits_{i,j}M\Gamma_{i,j}>0. Similarly, we have

σmin2𝕒iH𝕒i=σmin2Tr𝕒i𝕒iH𝕋𝕋1σmin2Tr𝕒i𝕒iH𝕋𝕋1σmin2Tr𝕒i𝕒iH𝕋𝕋12𝕒iH𝕋𝔻j𝕋𝕒i𝕋12,\displaystyle\sigma^{2}_{min}{\mathbb{a}}_{i}^{H}{\mathbb{a}}_{i}=\sigma^{2}_{min}\operatorname{Tr}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}{\mathbb{T}}{\mathbb{T}}^{-1}\leq\sigma^{2}_{min}\operatorname{Tr}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}{\mathbb{T}}\|{\mathbb{T}}^{-1}\|\leq\sigma^{2}_{min}\operatorname{Tr}{\mathbb{a}}_{i}{\mathbb{a}}_{i}^{H}{\mathbb{T}}\|{\mathbb{T}}^{-1}\|^{2}\leq{\mathbb{a}}_{i}^{H}{\mathbb{T}}{\mathbb{D}}_{j}{\mathbb{T}}{\mathbb{a}}_{i}\|{\mathbb{T}}^{-1}\|^{2}, (120)

such that infi,jMΠi,j>0\inf\limits_{i,j}M\Pi_{i,j}>0. Therefore, we can obtain infij[𝕢j]i>0\inf\limits_{i\leq j}[\mathbb{q}_{j}]_{i}>0. By [27, Proposition 5.5, Lemma 5.1], we have: (i). 𝕊j\mathbb{S}_{j} is invertible; (ii). det(𝕊j)\det({\mathbb{S}}_{j}) is bounded; (iii). the 11-norm for the rows of 𝕊j1{\mathbb{S}}_{j}^{-1} and [𝕊j(p:j),[p:j])]1[{\mathbb{S}}_{j}^{(p:j),[p:j]})]^{-1} are bounded, i.e., maxij[𝕊j1](i)1<Ks\max_{i\leq j}\|[\mathbb{S}_{j}^{-1}]^{(i)}\|_{1}<K_{s} and maxpj[𝕊j(p:j),[p:j])]11<Ks\max_{p\leq j}\|[{\mathbb{S}}_{j}^{(p:j),[p:j]})]^{-1}\|_{1}<K_{s}, where KsK_{s} is independent of MM, NN, and jj; and (iv) [𝕊j1]m,n>0[\mathbb{S}_{j}^{-1}]_{m,n}>0. We also have |[𝔼]i,j|KeM1|[{\mathbb{E}}]_{i,j}|\leq K_{e}M^{-1}. Therefore, for m=1m=1 or n=2n=2, |[𝔾]i,j|KgM1|[{\mathbb{G}}]_{i,j}|\leq K_{g}M^{-1}, there holds

[𝔾~j𝕊j11𝔾j]m,n𝔾~j(m)1maxij[𝕊j1](i)1𝔾j[n]0Kg2KeM1.\displaystyle[\widetilde{\mathbb{G}}_{j}{\mathbb{S}}_{j-1}^{-1}\mathbb{G}_{j}]_{m,n}\leq\|\widetilde{{\mathbb{G}}}_{j}^{(m)}\|_{1}\max_{i\leq j}\|[\mathbb{S}_{j}^{-1}]^{(i)}\|_{1}\|\mathbb{G}_{j}^{[n]}\|_{0}\leq K_{g}^{2}K_{e}M^{-1}. (121)

By (118), [𝔾~j𝕊j11𝔾j]2,1[\widetilde{\mathbb{G}}_{j}{\mathbb{S}}_{j-1}^{-1}\mathbb{G}_{j}]_{2,1} can be evaluated by

[𝔾~j𝕊j11𝔾j]2,1=Ξj(j),[1:j1][𝕊j11](1,2)Ξj(1:j1),[j]+Πj(j),[1:j1][𝕊j11](2,1)Πj(1:j1),[j]\displaystyle[\widetilde{\mathbb{G}}_{j}{\mathbb{S}}_{j-1}^{-1}\mathbb{G}_{j}]_{2,1}=\mathbb{\Xi}_{j}^{(j),[1:j-1]}[{\mathbb{S}}_{j-1}^{-1}]^{(1,2)}\mathbb{\Xi}_{j}^{(1:j-1),[j]}+\mathbb{\Pi}_{j}^{(j),[1:j-1]}[{\mathbb{S}}_{j-1}^{-1}]^{(2,1)}\mathbb{\Pi}_{j}^{(1:j-1),[j]} (122)
+Ξj(j),[1:j1][𝕊j11](1,1)Πj(1:j1),[j].+Πj(j),[1:j1][𝕊j11](1,1)Ξj(1:j1),[j]\displaystyle+\mathbb{\Xi}_{j}^{(j),[1:j-1]}[{\mathbb{S}}_{j-1}^{-1}]^{(1,1)}\mathbb{\Pi}_{j}^{(1:j-1),[j]}.+\mathbb{\Pi}_{j}^{(j),[1:j-1]}[{\mathbb{S}}_{j-1}^{-1}]^{(1,1)}\mathbb{\Xi}_{j}^{(1:j-1),[j]}
=E1+E2+E3+E4,\displaystyle=E_{1}+E_{2}+E_{3}+E_{4},

where [𝕊j11](m,n)[\mathbb{S}_{j-1}^{-1}]^{(m,n)} represents the (m,n)(m,n)-th (j1)×(j1)(j-1)\times(j-1) block of [𝕊j11][\mathbb{S}_{j-1}^{-1}], m,n=1,2m,n=1,2. By similar analysis as (LABEL:G_other), we can show that E2E_{2}, E3E_{3}, and E4E_{4} are 𝒪(M1){\mathcal{O}}(M^{-1}). Next we show that E1E_{1} is also 𝒪(M1){\mathcal{O}}(M^{-1}). By the block matrix inversion formula (135) in Appendix C, E1E_{1} can be computed by

[𝕊j11](1,2)=[𝕀j1Πj1Γj1(𝕀j1Πj1T)1Ξj1]1Γj1(𝕀j1Πj1T)1,\displaystyle[\mathbb{S}_{j-1}^{-1}]^{(1,2)}=[\mathbb{I}_{j-1}-\mathbb{\Pi}_{j-1}-\mathbb{\Gamma}_{j-1}(\mathbb{I}_{j-1}-\mathbb{\Pi}_{j-1}^{T})^{-1}\mathbb{\Xi}_{j-1}]^{-1}\mathbb{\Gamma}_{j-1}(\mathbb{I}_{j-1}-\mathbb{\Pi}_{j-1}^{T})^{-1}, (123)

so that the (m,n)(m,n)-th entry of [𝕊j11](1,2)[\mathbb{S}_{j-1}^{-1}]^{(1,2)} is bounded by

|[𝕊j11]m,n(1,2)|maxa,b|[Γj1]a,b|(𝕀j1Πj1)(n)11(𝕀j1Πj1Ξj1(𝕀j1Πj1T)1Γj1)(m)11KM,\displaystyle|[\mathbb{S}_{j-1}^{-1}]^{(1,2)}_{m,n}|\leq\max_{a,b}|[\mathbb{\Gamma}_{j-1}]_{a,b}|\|(\mathbb{I}_{j-1}-\mathbb{\Pi}_{j-1})^{-1}_{(n)}\|_{1}\|(\mathbb{I}_{j-1}-\mathbb{\Pi}_{j-1}-\mathbb{\Xi}_{j-1}(\mathbb{I}_{j-1}-\mathbb{\Pi}_{j-1}^{T})^{-1}\mathbb{\Gamma}_{j-1})^{-1}_{(m)}\|_{1}\leq\frac{K}{M}, (124)

where the boundness of the two 11-norms in (LABEL:S_j_1_bnd) follows from boundness in (iii) above (LABEL:G_other) as

(𝕀j1Πj1Ξj1(𝕀j1Πj1T)1Γj1)(m)11[𝕊j1](m)(1,1)1[𝕊j1](m)1<.\displaystyle\|(\mathbb{I}_{j-1}-\mathbb{\Pi}_{j-1}-\mathbb{\Xi}_{j-1}(\mathbb{I}_{j-1}-\mathbb{\Pi}_{j-1}^{T})^{-1}\mathbb{\Gamma}_{j-1})^{-1}_{(m)}\|_{1}\|[\mathbb{S}_{j}^{-1}]^{(1,1)}_{(m)}\|_{1}\leq\|[\mathbb{S}_{j}^{-1}]^{(m)}\|_{1}<\infty. (125)

According to the boundness of Ξj,(j)1\|\mathbb{\Xi}_{j,(j)}\|_{1} in

Ξj(j)1KTr𝔸𝕋𝕒j𝕒jH𝔸Kamax4ρ2,\|\mathbb{\Xi}_{j}^{(j)}\|_{1}\leq K\operatorname{Tr}{\mathbb{A}}{\mathbb{T}}{\mathbb{a}}_{j}{\mathbb{a}}_{j}^{H}{\mathbb{A}}\leq Ka_{max}^{4}\rho^{-2}, (126)

we can obtain

|Πj(j),T[𝕊j11](1,2)Πj(j)|Πj(j)12maxa,b|[𝕊j11]a,b(1,2)|=𝒪(M1).\displaystyle|\mathbb{\Pi}_{j}^{(j),T}[\mathbb{S}_{j-1}^{-1}]_{(1,2)}\mathbb{\Pi}_{j}^{(j)}|\leq\|\mathbb{\Pi}_{j}^{(j)}\|_{1}^{2}\max_{a,b}|[\mathbb{S}_{j-1}^{-1}]^{(1,2)}_{a,b}|={\mathcal{O}}(M^{-1}). (127)

By the determinant formula for block-matrix with invertible 𝔸{\mathbb{A}}, i.e.,

det([𝔸𝔹𝔻])=det(𝔸)det(𝔻𝔹𝔸1𝔻),\displaystyle\det(\begin{bmatrix}{\mathbb{A}}&{\mathbb{B}}\\ {\mathbb{C}}&{\mathbb{D}}\end{bmatrix})=\det({\mathbb{A}})\det({\mathbb{D}}-{\mathbb{B}}{\mathbb{A}}^{-1}{\mathbb{D}}), (128)

we can obtain the following evaluation for |C2||C_{2}|

|C2|=|det(𝕊j1)||det(𝔼j𝔾~j𝕊j11𝔾j)|K(KgM1+KeKg2M1)2=𝒪(M2),\displaystyle|C_{2}|=|\det({\mathbb{S}}_{j-1})||\det(\mathbb{E}_{j}-\widetilde{\mathbb{G}}_{j}{\mathbb{S}}_{j-1}^{-1}\mathbb{G}_{j})|\leq K(K_{g}M^{-1}+K_{e}K_{g}^{2}M^{-1})^{2}={\mathcal{O}}(M^{-2}), (129)

which proves (117). By maxij[𝕊j1](i)1<Ks\max_{i\leq j}\|[\mathbb{S}_{j}^{-1}]^{(i)}\|_{1}<K_{s}, there holds true that 𝕊j1𝕧(j)0=o(1)\|{\mathbb{S}}_{j}^{-1}\mathbb{v}_{(j)}\|_{0}=o(1). Therefore, we have

1M(j=1Mρ2t~j,j2pj,(j)+2pj,(2j))\displaystyle\frac{1}{M}(\sum_{j=1}^{M}\rho^{2}\widetilde{t}_{j,j}^{2}p_{j,(j)}+2p_{j,(2j)}) =j=1Mdet(𝕊j1)det(𝕊j)det(𝕊j)+o(1)\displaystyle=\sum_{j=1}^{M}\frac{\det({\mathbb{S}}_{j-1})-\det({\mathbb{S}}_{j})}{\det({\mathbb{S}}_{j})}+o(1) (130)
=j=1Mlog(1+det(𝕊j1)det(𝕊j)det(𝕊j))+o(1)\displaystyle=\sum_{j=1}^{M}\log\left(1+\frac{\det({\mathbb{S}}_{j-1})-\det({\mathbb{S}}_{j})}{\det({\mathbb{S}}_{j})}\right)+o(1)
=logdet(𝕊M)+o(1)\displaystyle=-\log\det({\mathbb{S}}_{M})+o(1)
=logdet(𝕀2j𝔹j)+o(1),\displaystyle=-\log\det(\mathbb{I}_{2j}-\mathbb{B}_{j})+o(1),

which concludes (52).

Appendix C Useful Results

1. Expansion of the covariance of two quadratic forms, Eq. (3.20) in [26].

Lemma 4.

Define 𝕫=𝕒+1N𝔻12𝕩\mathbb{z}=\mathbb{a}+\frac{1}{\sqrt{N}}\mathbb{D}^{\frac{1}{2}}\mathbb{x}, where 𝕩=(X1,X2,,XN)T\mathbb{x}=(X_{1},X_{2},...,X_{N})^{T}, which is a random vector with i.i.d circularly Gaussian entries with unit variance, 𝔻\mathbb{D} is a diagonal non-negative matrix and 𝕒N\mathbb{a}\in\mathbb{C}^{N} is a deterministic vector. Assuming that Γ\mathbb{\Gamma} and Λ\mathbb{\Lambda} are two N×NN\times N deterministic matrices, the covariance of the quadratic forms 𝕫HΓ𝕫\mathbb{z}^{H}\mathbb{\Gamma}\mathbb{z} and 𝕫HΛ𝕫\mathbb{z}^{H}\mathbb{\Lambda}\mathbb{z} is given by

𝔼(𝕫HΓ𝕫𝔼𝕫HΓ𝕫)(𝕫HΛ𝕫𝔼𝕫HΛ𝕫)\displaystyle\mathbb{E}(\mathbb{z}^{H}\mathbb{\Gamma}\mathbb{z}-\mathbb{E}\mathbb{z}^{H}\mathbb{\Gamma}\mathbb{z})(\mathbb{z}^{H}\mathbb{\Lambda}\mathbb{z}-\mathbb{E}\mathbb{z}^{H}\mathbb{\Lambda}\mathbb{z}) (131)
=1N2TrΓ𝔻Λ𝔻+1N𝕒HΓ𝔻Λ𝕒+1N𝕒HΛ𝔻Γ𝕒.\displaystyle=\frac{1}{N^{2}}\operatorname{Tr}\mathbb{\Gamma}\mathbb{D}\mathbb{\Lambda}\mathbb{D}+\frac{1}{N}\mathbb{a}^{H}\mathbb{\Gamma}\mathbb{D}\mathbb{\Lambda}\mathbb{a}+\frac{1}{N}\mathbb{a}^{H}\mathbb{\Lambda}\mathbb{D}\mathbb{\Gamma}\mathbb{a}.

2. Approximations for the bilinear form of resolvents.

Lemma 5.

Given assumptions A.1-A.3, p[1,2]p\in[1,2], and 𝕌,𝕦2,𝕧2<\|\mathbb{U}\|,\|\mathbb{u}\|_{2},\|\mathbb{v}\|_{2}<\infty, there holds true that

𝔼Tr𝕌MTr𝕌𝕋M=ε1,M,\displaystyle\frac{\mathbb{E}\operatorname{Tr}\mathbb{U}{\mathbb{Q}}}{M}-\frac{\operatorname{Tr}\mathbb{U}{\mathbb{T}}}{M}=\varepsilon_{1,M}, (132a)
𝔼|𝕦H(𝕋)𝕧|2p=ε2,M,\displaystyle\mathbb{E}|\mathbb{u}^{H}({\mathbb{Q}}-{\mathbb{T}})\mathbb{v}|^{2p}=\varepsilon_{2,M}, (132b)
𝔼|𝕦H(i𝕋i)𝕧|2p=ε3,M,\displaystyle\mathbb{E}|\mathbb{u}^{H}({\mathbb{Q}}_{i}-{\mathbb{T}}_{i})\mathbb{v}|^{2p}=\varepsilon_{3,M}, (132c)

where ε1,nM0\varepsilon_{1,n}\xrightarrow{M\rightarrow\infty}0, ε2,nM0\varepsilon_{2,n}\xrightarrow{M\rightarrow\infty}0, and ε3,nM0\varepsilon_{3,n}\xrightarrow{M\rightarrow\infty}0. In particular,

𝔼|q~j,jt~j,j|2p=o(1).\mathbb{E}|\widetilde{q}_{j,j}-\widetilde{t}_{j,j}|^{2p}=o(1). (133)

(132a), (132b), and (132b) can be obtained by a similar approach as [22, 47].

3. Rank-one perturbation [26, Lemma 3.1]. For any matrix 𝔸{\mathbb{A}}, the resolvent {\mathbb{Q}} and the rank-one perturbation resolvent i{\mathbb{Q}}_{i} satisfy

|Tr𝔸(i)|𝔸z.|\operatorname{Tr}{\mathbb{A}}({\mathbb{Q}}-{\mathbb{Q}}_{i})|\leq\frac{\|{\mathbb{A}}\|}{-z}. (134)

4. Block matrix inverse formula. For square matrices 𝔸{\mathbb{A}} and 𝔹{\mathbb{B}}, the inversion of the block matrix [𝔸𝔹𝔻]\begin{bmatrix}{\mathbb{A}}&{\mathbb{B}}\\ {\mathbb{C}}&{\mathbb{D}}\end{bmatrix} is given by (135) at the top of the next page.

[𝔸𝔹𝔻]1=[(𝔸𝔹𝔻1)1(𝔸𝔹𝔻1)1𝔹𝔻1𝔻1(𝔸𝔹𝔻1)1𝔻1+𝔻1(𝔸𝔹𝔻1)1𝔹𝔻1].\begin{bmatrix}{\mathbb{A}}&{\mathbb{B}}\\ {\mathbb{C}}&{\mathbb{D}}\end{bmatrix}^{-1}=\begin{bmatrix}\left({\mathbb{A}}-{\mathbb{B}}{\mathbb{D}}^{-1}{\mathbb{C}}\right)^{-1}&-\left({\mathbb{A}}-{\mathbb{B}}{\mathbb{D}}^{-1}{\mathbb{C}}\right)^{-1}{\mathbb{B}}{\mathbb{D}}^{-1}\\ -{\mathbb{D}}^{-1}{\mathbb{C}}\left({\mathbb{A}}-{\mathbb{B}}{\mathbb{D}}^{-1}{\mathbb{C}}\right)^{-1}&{\mathbb{D}}^{-1}+{\mathbb{D}}^{-1}{\mathbb{C}}\left({\mathbb{A}}-{\mathbb{B}}{\mathbb{D}}^{-1}{\mathbb{C}}\right)^{-1}{\mathbb{B}}{\mathbb{D}}^{-1}\end{bmatrix}. (135)

5. Trace inequality. If 𝔸{\mathbb{A}} is a non-negative matrix, we have

|Tr𝔸𝔹|𝔹Tr𝔸.|\operatorname{Tr}{\mathbb{A}}{\mathbb{B}}|\leq\|{\mathbb{B}}\|\operatorname{Tr}{\mathbb{A}}. (136)

References

  • [1] X. Gao, B. Jiang, X. Li, A. B. Gershman, and M. R. McKay, “Statistical eigenmode transmission over jointly correlated MIMO channels,” IEEE Trans. Inf. Theory, vol. 55, no. 8, pp. 3735–3750, Jul. 2009.
  • [2] C.-N. Chuah, D. N. C. Tse, J. M. Kahn, and R. A. Valenzuela, “Capacity scaling in MIMO wireless systems under correlated fading,” IEEE Trans. Inf. Theory, vol. 48, no. 3, pp. 637–650, Mar. 2002.
  • [3] J.-P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen, “A stochastic MIMO radio channel model with experimental validation,” IEEE J. Sel. Areas Commun., vol. 20, no. 6, pp. 1211–1226, Aug. 2002.
  • [4] W. Hachem, O. Khorunzhiy, P. Loubaton, J. Najim, and L. Pastur, “A new approach for mutual information analysis of large dimensional multi-antenna channels,” IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 3987–4004, Sep. 2008.
  • [5] H. Özcelik, M. Herdin, W. Weichselberger, J. Wallace, and E. Bonek, “Deficiencies of’kronecker’MIMO radio channel model,” Electron. Lett, vol. 39, no. 16, p. 1, Aug. 2003.
  • [6] W. Weichselberger, M. Herdin, H. Ozcelik, and E. Bonek, “A stochastic MIMO channel model with joint correlation of both link ends,” IEEE Trans. Wireless Commun., vol. 5, no. 1, pp. 90–100, Jan. 2006.
  • [7] C.-K. Wen, S. Jin, and K.-K. Wong, “On the sum-rate of multiuser MIMO uplink channels with jointly-correlated Rician fading,” IEEE Trans. Commun., vol. 59, no. 10, pp. 2883–2895, Oct. 2011.
  • [8] M. Ozcelik, N. Czink, and E. Bonek, “What makes a good MIMO channel model?” in Proc. IEEE Veh. Technol. Conf. (VTC), vol. 1, Stockholm, Sweden, May. 2005, pp. 156–160.
  • [9] Z. Zheng, S. Wang, Z. Fei, Z. Sun, and J. Yuan, “On the mutual information of multi-RIS assisted MIMO: From operator-valued free probability aspect,” IEEE Trans. Commun., vol. 71, no. 12, pp. 6952–6966, Dec. 2023.
  • [10] L. Wei, C. Huang, G. C. Alexandropoulos, E. Wei, Z. Zhang, M. Debbah, and C. Yuen, “Multi-user holographic MIMO surfaces: Channel modeling and spectral efficiency analysis,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 5, pp. 1112–1124, Aug. 2022.
  • [11] R. Ji, S. Chen, C. Huang, J. Yang, E. Wei, Z. Zhang, C. Yuen, and M. Debbah, “Extra DoF of near-field holographic MIMO communications leveraging evanescent waves,” IEEE Wireless Commun. Lett., vol. 12, no. 4, pp. 580–584, Apr. 2023.
  • [12] Z. Wan, J. Zhu, and L. Dai, “Can continuous aperture MIMO achieve much better performance than discrete MIMO?” arXiv preprint arXiv:2301.08411, 2023.
  • [13] Z. Wan, J. Zhu, Z. Zhang, L. Dai, and C.-B. Chae, “Mutual information for electromagnetic information theory based on random fields,” IEEE Trans. Commun., vol. 71, no. 4, pp. 1982–1996, Apr. 2023.
  • [14] A. L. Moustakas, G. C. Alexandropoulos, and M. Debbah, “Reconfigurable intelligent surfaces and capacity optimization: A large system analysis,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 8736–8750, Dec. 2023.
  • [15] A. Pizzo, L. Sanguinetti, and T. L. Marzetta, “Spatial characterization of electromagnetic random channels,” IEEE Open J. Commun. Soc., vol. 3, pp. 847–866, April. 2022.
  • [16] T. L. Marzetta, “Spatially-stationary propagating random field model for massive MIMO small-scale fading,” in Proc. IEEE Int. Symp. Inf. Theory. (ISIT), Vail, CO, USA, Jun. 2018, pp. 391–395.
  • [17] A. Pizzo, T. L. Marzetta, and L. Sanguinetti, “Spatially-stationary model for holographic MIMO small-scale fading,” IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 1964–1979, Sep. 2020.
  • [18] A. Pizzo, L. Sanguinetti, and T. L. Marzetta, “Fourier plane-wave series expansion for holographic MIMO communications,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 6890–6905, Sep. 2022.
  • [19] A. M. Tulino, A. Lozano, and S. Verdú, “Impact of antenna correlation on the capacity of multiantenna channels,” IEEE Trans. Inf. Theory, vol. 51, no. 7, pp. 2491–2509, Jul. 2005.
  • [20] J. Dumont, W. Hachem, S. Lasaulce, P. Loubaton, and J. Najim, “On the capacity achieving covariance matrix for Rician MIMO channels: an asymptotic approach,” IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 1048–1069, Mar. 2010.
  • [21] X. Zhang and S. Song, “Bias for the trace of the resolvent and its application on non-Gaussian and non-centered MIMO channels,” IEEE Trans. Inf. Theory, vol. 68, no. 5, pp. 2857–2876, May. 2022.
  • [22] W. Hachem, P. Loubaton, J. Najim et al., “Deterministic equivalents for certain functionals of large random matrices,” Ann. App. Probab., vol. 17, no. 3, pp. 875–930, Jun. 2007.
  • [23] A.-A. Lu, X. Gao, and C. Xiao, “Free deterministic equivalents for the analysis of MIMO multiple access channel,” IEEE Trans. Inf. Theory, vol. 62, no. 8, pp. 4604–4629, May. 2016.
  • [24] J. Hu, W. Li, and W. Zhou, “Central limit theorem for mutual information of large MIMO systems with elliptically correlated channels,” IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7168–7180, Nov. 2019.
  • [25] Z. Bao, G. Pan, and W. Zhou, “Asymptotic mutual information statistics of MIMO channels and CLT of sample covariance matrices,” IEEE Trans. Inf. Theory, vol. 61, no. 6, pp. 3413–3426, Jun. 2015.
  • [26] W. Hachem, M. Kharouf, J. Najim, and J. W. Silverstein, “A CLT for information-theoretic statistics of non-centered Gram random matrices,” Random Matrices: Theory. Appl., vol. 1, no. 2, p. 1150010, Apr. 2012.
  • [27] W. Hachem, P. Loubaton, and J. Najim, “A CLT for information-theoretic statistics of gram random matrices with a given variance profile,” Ann. App. Probab., vol. 18, no. 6, pp. 2071–2130, Dec. 2008.
  • [28] X. Zhang, S. Song, and Y. C. Eldar, “Secrecy analysis for MISO broadcast systems with regularized zero-forcing precoding,” arXiv preprint arXiv:2301.11515, 2023.
  • [29] Z. Bai and J. W. Silverstein, “CLT for linear spectral statistics of large-dimensional sample covariance matrices,” Ann. Probab., vol. 32, no. 1, pp. 553–605, Jan. 2004.
  • [30] J. Hoydis, R. Couillet, and P. Piantanida, “The second-order coding rate of the MIMO quasi-static Rayleigh fading channel,” IEEE Trans. Inf. Theory, vol. 61, no. 12, pp. 6591–6622, Dec. 2015.
  • [31] X. Zhang and S. Song, “Mutual information density of massive MIMO systems over Rayleigh-product channels,” arXiv preprint arXiv:2210.08832, 2023.
  • [32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms.   MIT press, 2009.
  • [33] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Trans. Commun., vol. 61, no. 4, pp. 1436–1449, April. 2013.
  • [34] E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO has unlimited capacity,” IEEE Trans. Wireless Commun., vol. 17, no. 1, pp. 574–590, Jan. 2017.
  • [35] D. Dardari and N. Decarli, “Holographic communication using intelligent surfaces,” IEEE Commun. Mag., vol. 59, no. 6, pp. 35–41, Jun. 2021.
  • [36] A. Pizzo, T. Marzetta, and L. Sanguinetti, “Holographic MIMO communications under spatially-stationary scattering,” in Proc. Conf. 54th Asilomar Conf. Signals, Syst. Comput. (ASILOMAR), Pacific Grove, CA, USA, Nov. 2020, pp. 702–706.
  • [37] M. Franceschetti, Wave Theory of Information.   Cambridge University Press, 2017.
  • [38] D. A. Miller, “Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths,” Applied Optics, vol. 39, no. 11, pp. 1681–1699, 2000.
  • [39] C. A. Balanis, Antenna theory: analysis and design.   John wiley & sons, 2016.
  • [40] X. Zhang, X. Yu, and S. Song, “Outage probability and finite-SNR DMT analysis for IRS-aided MIMO systems: How large IRSs need to be?” IEEE J. Sel. Topics Signal Process., vol. 16, no. 5, pp. 1070–1085, Aug. 2022.
  • [41] V. Girko, Thirty years of the central resolvent law and three laws on the 1/n expansion for resolvent of random matrices.   Walter de Gruyter Genthiner Strasse 13 10875 Berlin Germany, 2003.
  • [42] P. Billingsley, Probability and Measure.   John Wiley & Sons, 2008.
  • [43] L. Sanguinetti, “Holographic-mimo-small-scale-fading,” https://github.com/lucasanguinetti/Holographic-MIMO-Small-Scale-Fading, Nov. 2021.
  • [44] X. Zhang and S. Song, “Secrecy analysis for IRS-aided wiretap MIMO communications: Fundamental limits and system design,” IEEE Trans. Inf. Theory, early access, Nov. 2023, doi: 10.1109/TIT.2023.3336648.
  • [45] J. An, C. Yuen, C. Huang, M. Debbah, H. V. Poor, and L. Hanzo, “A tutorial on holographic MIMO communications—part II: Performance analysis and holographic beamforming,” IEEE Commun. Lett., vol. 27, no. 7, pp. 1669–1673, Jul. 2023.
  • [46] M. L. Morris and M. A. Jensen, “Network model for MIMO systems with coupled antennas and noisy amplifiers,” IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 545–552, Jan. 2005.
  • [47] W. Hachem, P. Loubaton, J. Najim, and P. Vallet, “On bilinear forms based on the resolvent of large random matrices,” Annales de l’IHP Probabilités et statistiques, vol. 49, no. 1, pp. 36–63, Feb. 2013.