This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Gaps on the intersection numbers of
sections on a rational elliptic surface

Renato Dias Costa
Abstract

Given a rational elliptic surface XX over an algebraically closed field, we investigate whether a given natural number kk can be the intersection number of two sections of XX. If not, we say that kk a gap number. We try to answer when gap numbers exist, how they are distributed and how to identify them. We use Mordell-Weil lattices as our main tool, which connects the investigation to the classical problem of representing integers by positive-definite quadratic forms.

1 Introduction

Description of the problem. Let XX be a rational elliptic surface over an algebraically closed field, i.e. a smooth, rational projective surface with a fibration π:X1\pi:X\to\mathbb{P}^{1} whose general fiber is a smooth curve of genus 11. Assume also that π\pi is relatively minimal, i.e. no fiber contains an exceptional curve in its support. We use E/KE/K to denote the generic fiber of π\pi, which is an elliptic curve over the function field K:=k(1)K:=k(\mathbb{P}^{1}). By the Mordell-Weil theorem, the set E(K)E(K) of KK-points is a finitely generated Abelian group, whose rank we denote by rr. The points on E(K)E(K) are in bijective correspondence with the sections of π\pi, as well as with the exceptional curves on XX, so we use these terms interchangeably. This paper addresses the following question: given sections P1,P2E(K)P_{1},P_{2}\in E(K), what values can the intersection number P1P2P_{1}\cdot P_{2} possibly attain?

Original motivation. The problem originates from a previous investigation of conic bundles on XX, i.e. morphisms φ:X1\varphi:X\to\mathbb{P}^{1} whose general fiber is a smooth curve of genus zero [Cos]. More specifically, one of the ways to produce a conic bundle is by finding a pair of sections P1,P2E(K)P_{1},P_{2}\in E(K) with P1P2=1P_{1}\cdot P_{2}=1, so that the linear system |P1+P2||P_{1}+P_{2}| induces a conic bundle φ|P1+P2|:X1\varphi_{|P_{1}+P_{2}|}:X\to\mathbb{P}^{1} having P1+P2P_{1}+P_{2} as a reducible fiber. We may ask under which conditions such a pair exists. An immediate necessary condition is that r1r\geq 1, for if r=0r=0 any two distinct sections must be disjoint [SS19, Cor. 8.30]. Conversely, given that r1r\geq 1, does XX admit such a pair? The first observation is that r1r\geq 1 implies an infinite number of sections, so we should expect infinitely many values for P1P2P_{1}\cdot P_{2} as P1,P2P_{1},P_{2} run through E(K)E(K). Then the question is ultimately: what values may P1P2P_{1}\cdot P_{2} assume?

Mordell-Weil lattices. The computation of intersection numbers on a surface is a difficult problem in general. However, as we are concerned with sections on an elliptic surface, the information we need is considerably more accessible. The reason for this lies in the Mordell-Weil lattice, a concept first established in [Elk90], [Shi89], [Shi90]. It involves the definition of a \mathbb{Q}-valued pairing ,\langle\cdot,\cdot\rangle on E(K)E(K), called the height pairing [SS19, Section 6.5], inducing a positive-definite lattice (E(K)/E(K)tor,,)(E(K)/E(K)_{\text{tor}},\langle\cdot,\cdot\rangle), named the Mordell-Weil lattice. A key aspect of its construction is the connection with the Néron-Severi lattice, so that the height pairing and the intersection pairing of sections are strongly intertwined. In the case of rational elliptic surfaces, the possibilities for the Mordell-Weil lattice have already been classified in [OS91], which gives us a good starting point.  

Representation of integers. The use of Mordell-Weil lattices in our investigation leads to a classical problem in number theory, which is the representation of integers by positive-definite quadratic forms. Indeed, the free part of E(K)E(K) is generated by rr terms, so the height h(P):=P,Ph(P):=\langle P,P\rangle induces a positive-definite quadratic form on rr variables with coefficients in \mathbb{Q}. If OE(K)O\in E(K) is the neutral section and RR is the set of reducible fibers of π\pi, then by the height formula (2)

h(P)=2+2(PO)vRcontrv(P),h(P)=2+2(P\cdot O)-\sum_{v\in R}\text{contr}_{v}(P),

where the sum over vv is a rational number which can be estimated. By clearing denominators, we see that the possible values of POP\cdot O depend on a certain range of integers represented by a positive-definite quadratic form with coefficients in \mathbb{Z}. This point of view is explored in some parts of the paper, where we apply results such as the classical Lagrange’s four-square theorem [HW79, §20.5], the counting of integers represented by a binary quadratic form [Ber12, p. 91] and the more recent Bhargava-Hanke’s 290-theorem on universal quadratic forms [BH, Thm. 1].

Statement of results. Given k0k\in\mathbb{Z}_{\geq 0} we investigate whether there is a pair of sections P1,P2E(K)P_{1},P_{2}\in E(K) such that P1P2=kP_{1}\cdot P_{2}=k. If such a pair does not exist, we say that XX has a kk-gap, or that kk is a gap number. Our first result is a complete identification of gap numbers in some cases:

Theorem 5.7. If E(K)E(K) is torsion-free with rank r=1r=1, we have the following characterization of gap numbers on XX according to the lattice TT associated to the reducible fibers of π\pi.

TT k is a gap numbernone ofthe following are perfect squares\begin{matrix}k\text{ is a gap number}\Leftrightarrow\text{none of}\\ \text{the following are perfect squares}\end{matrix}
E7E_{7} k+1k+1, 4k+14k+1
A7A_{7} k+14\frac{k+1}{4}, 16k,,16k+916k,...,16k+9
D7D_{7} k+12\frac{k+1}{2}, 8k+1,,8k+48k+1,...,8k+4
A6A1A_{6}\oplus A_{1} k+17\frac{k+1}{7}, 28k3,,28k+2128k-3,...,28k+21
E6A1E_{6}\oplus A_{1} k+13\frac{k+1}{3}, 12k+1,,12k+912k+1,...,12k+9
D5A2D_{5}\oplus A_{2} k+16\frac{k+1}{6}, 24k+1,,24k+1624k+1,...,24k+16
A4A3A_{4}\oplus A_{3} k+110\frac{k+1}{10}, 40k4,,40k+2540k-4,...,40k+25
A4A2A1A_{4}\oplus A_{2}\oplus A_{1} k+115\frac{k+1}{15}, 60k11,,60k+4560k-11,...,60k+45

We also explore the possibility of XX having no gap numbers. We prove that, in fact, this is always the case if the Mordell-Weil rank is big enough.

Theorem 5.2. If r5r\geq 5, then XX has no gap numbers.

On the other hand, for r2r\leq 2 we show that gap numbers occur with probability 11.

Theorem 5.4. If r2r\leq 2, then the set of gap numbers of XX, i.e. G:={kk is a gap number of X}G:=\{k\in\mathbb{N}\mid k\text{ is a gap number of }X\} has density 11 in \mathbb{N}, i.e.

limn#G{1,,n}n=1.\lim_{n\to\infty}\frac{\#G\cap\{1,...,n\}}{n}=1.

At last we answer the question from the original motivation, which consists in classifying the rational elliptic surfaces with a 11-gap:

Theorem 5.8. XX has a 11-gap if and only if r=0r=0 or r=1r=1 and π\pi has a III\text{III}^{*} fiber.

Structure of the paper. The text is organized as follows. Section 2 introduces the main objects, namely the Mordell-Weil lattice, the bounds cmax,cminc_{\text{max}},c_{\text{min}} for the contribution term, the difference Δ=cmaxcmin\Delta=c_{\text{max}}-c_{\text{min}} and the quadratic form QXQ_{X} induced by the height pairing. In Section 3 we explain the role of torsion sections in the investigation. The key technical results are gathered in Section 4, where we state necessary and sufficient conditions for having P1P2=kP_{1}\cdot P_{2}=k for a given kk. Section 5 contains the main results of the paper, namely: the description of gap numbers when E(K)E(K) is torsion-free with r=1r=1 (Subsection 5.3), the absence of gap numbers for r5r\geq 5 (Subsection 5.1), density of gap numbers when r2r\leq 2 (Subsection 5.2) and the classification of surfaces with a 11-gap (Subsection 5.4). Section 6 is an appendix containing Table LABEL:tabela_completa, which stores the relevant information about the Mordell-Weil lattices of rational elliptic surfaces with r1r\geq 1.

2 Preliminaries

Throughout the paper XX denotes a rational elliptic surface over an algebraically closed field kk of any characteristic. More precisely, XX is a smooth rational projective surface with a fibration π:X1\pi:X\to\mathbb{P}^{1}, with a section, whose general fiber is a smooth curve of genus 11. We assume moreover that π\pi is relatively minimal (i.e. each fiber has no exceptional curve in its support) [SS19, Def. 5.2]. The generic fiber of π\pi is an elliptic curve E/KE/K over K:=k(1)K:=k(\mathbb{P}^{1}). The set E(K)E(K) of KK-points is called the Mordell-Weil group of XX, whose rank is called the Mordell-Weil rank of XX, denoted by

r:=rank E(K).r:=\text{rank }E(K).

In what follows we introduce the main objects of our investigation and stablish some notation.

2.1 The Mordell-Weil Lattice

We give a brief description of the Mordell-Weil lattice, which is the central tool used in the paper. Although it can be defined on elliptic surfaces in general, we restrict ourselves to rational elliptic surfaces. For more information on Mordell-Weil lattices, we refer the reader to the comprehensive introduction by Schuett and Shioda [SS19] in addition to the original sources, namely [Elk90], [Shi89], [Shi90].

We begin by noting that points in E(K)E(K) can be regarded as curves on XX and by defining the lattice TT and the trivial lattice Triv(X)\text{Triv}(X), which are needed to define the Mordell-Weil lattice.

Sections, points on E(K)E(K) and exceptional curves. The sections of π\pi are in bijective correspondence with points on E(K)E(K). Moreover, since XX is rational and relatively minimal, points on E(K)E(K) also correspond to exceptional curves on XX [SS10, Section 8.2]. For this reason we identify sections of π\pi, points on E(K)E(K) and exceptional curves on XX.

The lattice TT and the trivial lattice Triv(X)\text{Triv}(X). Let OE(K)O\in E(K) be the neutral section and R:={v1π1(v) is reducible}R:=\{v\in\mathbb{P}^{1}\mid\pi^{-1}(v)\text{ is reducible}\} the set of reducible fibers of π\pi. The components of a fiber π1(v)\pi^{-1}(v) are denoted by Θv,i\Theta_{v,i}, where Θv,0\Theta_{v,0} is the only component intersected by OO. The Néron-Severi group NS(X)\text{NS}(X) together with the intersection pairing is called the Néron-Severi lattice.

We define the following sublattices of NS(X)\text{NS}(X), which encode the reducible fibers of π\pi:

Tv:=Θv,ii0 for vR,T_{v}:=\mathbb{Z}\langle\Theta_{v,i}\mid i\neq 0\rangle\text{ for }v\in R,
T:=vRTv.T:=\bigoplus_{v\in R}T_{v}.

By Kodaira’s classification [SS19, Thm. 5.12], each TvT_{v} with vRv\in R is represented by a Dynkin diagram Am,DmA_{m},D_{m} or EmE_{m} for some mm. We also define the trivial lattice of XX, namely

Triv(X):=O,Θv,ii0,vR.\text{Triv}(X):=\mathbb{Z}\langle O,\Theta_{v,i}\mid i\geq 0,\,v\in R\rangle.

Next we define the Mordell-Weil lattice and present the height formula.

The Mordell-Weil lattice. In order to give E(K)E(K) a lattice structure, we cannot use the intersection pairing directly, which only defines a lattice on NS(X)\text{NS}(X) but not on E(K)E(K). This is achieved by defining a \mathbb{Q}-valued pairing, called the height pairing, given by

,:E(K)×E(K)\displaystyle\langle\cdot,\cdot\rangle:E(K)\times E(K) \displaystyle\to\mathbb{Q}
P,Q\displaystyle P,Q φ(P)φ(Q),\displaystyle\mapsto-\varphi(P)\cdot\varphi(Q),

where φ:E(K)NS(X)\varphi:E(K)\to\text{NS}(X)\otimes_{\mathbb{Z}}\mathbb{Q} is defined from the orthogonal projection with respect to Triv(X)\text{Triv}(X) (for a detailed exposition, see [SS19, Section 6.5]). Moreover, dividing by torsion elements we get a positive-definite lattice (E(K)/E(K)tor,,)(E(K)/E(K)_{\text{tor}},\langle\cdot,\cdot\rangle) [SS19, Thm. 6.20], called the Mordell-Weil lattice.

The height formula. The height pairing can be explicitly computed by the height formula [SS19, Thm. 6.24]. For rational elliptic surfaces, it is given by

P,Q=1+(PO)+(QO)(PQ)vRcontrv(P,Q),\langle P,Q\rangle=1+(P\cdot O)+(Q\cdot O)-(P\cdot Q)-\sum_{v\in R}\text{contr}_{v}(P,Q), (1)
h(P):=P,P=2+2(PO)vRcontrv(P),h(P):=\langle P,P\rangle=2+2(P\cdot O)-\sum_{v\in R}\text{contr}_{v}(P), (2)

where contrv(P):=contrv(P,P)\text{contr}_{v}(P):=\text{contr}_{v}(P,P) and contrv(P,Q)\text{contr}_{v}(P,Q) are given by Table 1 [SS19, Table 6.1] assuming P,QP,Q meet π1(v)\pi^{-1}(v) at Θv,i,Θv,j\Theta_{v,i},\Theta_{v,j} resp. with 0<i<j0<i<j. If PP or QQ meets Θv,0\Theta_{v,0}, then contrv(P,Q):=0\text{contr}_{v}(P,Q):=0.

TvT_{v} A1A_{1} E7E_{7} A2A_{2} E6E_{6} An1A_{n-1} Dn+4D_{n+4}
Type of π1(v)\text{Type of }\pi^{-1}(v) III III\text{III}^{*} IV IV\text{IV}^{*} In\text{I}_{n} In\text{I}_{n}^{*}
contrv(P)\text{contr}_{v}(P) 12\frac{1}{2} 32\frac{3}{2} 23\frac{2}{3} 43\frac{4}{3} i(ni)n\frac{i(n-i)}{n} {1(i=1)1+n4(i>1)\begin{cases}1&(i=1)\\ 1+\frac{n}{4}&(i>1)\end{cases}
contrv(P,Q)\text{contr}_{v}(P,Q) - - 13\frac{1}{3} 23\frac{2}{3} i(nj)n\frac{i(n-j)}{n} {12(i=1)12+n4(i>1)\begin{cases}\frac{1}{2}&(i=1)\\ \frac{1}{2}+\frac{n}{4}&(i>1)\end{cases}
Table 1: Local contributions from reducible fibers to the height pairing.

The minimal norm. Since E(K)E(K) is finitely generated, there is a minimal positive value for h(P)h(P) as PP runs through E(K)E(K) with h(P)>0h(P)>0. It is called the minimal norm, denoted by

μ:=min{h(P)>0PE(K)}.\mu:=\min\{h(P)>0\mid P\in E(K)\}.

The narrow Mordell-Weil lattice. An important sublattice of E(K)E(K) is the narrow Mordell-Weil lattice E(K)0E(K)^{0}, defined as

E(K)0\displaystyle E(K)^{0} :={PE(K)P intersects Θv,0 for all vR}\displaystyle:=\{P\in E(K)\mid P\text{ intersects }\Theta_{v,0}\text{ for all }v\in R\}
={PE(K)contrv(P)=0 for all vR}.\displaystyle=\{P\in E(K)\mid\text{contr}_{v}(P)=0\text{ for all }v\in R\}.

As a subgroup, E(K)0E(K)^{0} is torsion-free; as a sublattice, it is a positive-definite even integral lattice with finite index in E(K)E(K) [SS19, Thm. 6.44]. The importance of the narrow lattice can be explained by its considerable size as a sublattice and by the easiness to compute the height pairing on it, since all contribution terms vanish. A complete classification of the lattices E(K)E(K) and E(K)0E(K)^{0} on rational elliptic surfaces is found in [OS91, Main Thm.].

2.2 Gap numbers

We introduce some convenient terminology to express the possibility of finding a pair of sections with a given intersection number.

Definition 2.1.

If there are no sections P1,P2E(K)P_{1},P_{2}\in E(K) such that P1P2=kP_{1}\cdot P_{2}=k, we say that XX has a kk-gap or that kk is a gap number of XX.

Definition 2.2.

We say that XX is gap-free if for every k0k\in\mathbb{Z}_{\geq 0} there are sections P1,P2E(K)P_{1},P_{2}\in E(K) such that P1P2=kP_{1}\cdot P_{2}=k.

Remark 2.3.

In case the Mordell-Weil rank is r=0r=0, we have E(K)=E(K)torE(K)=E(K)_{\text{tor}}. In particular, any two distinct sections are disjoint [SS19, Cor. 8.30], hence every k1k\geq 1 is a gap number of XX. For positive rank, the description of gap numbers is less trivial, thus our focus on r1r\geq 1.

2.3 Bounds cmax,cminc_{\text{max}},c_{\text{min}} for the contribution term

We define the estimates cmax,cminc_{\text{max}},c_{\text{min}} for the contribution term vcontrv(P)\sum_{v}\text{contr}_{v}(P) and state some simple facts about them. We also provide an example to illustrate how they are computed.

The need for these estimates comes from the following. Suppose we are given a section PE(K)P\in E(K) whose height h(P)h(P) is known and we want to determine POP\cdot O. In case PE(K)0P\in E(K)^{0} we have a direct answer, namely PO=h(P)/21P\cdot O=h(P)/2-1 by the height formula (2). However if PE(K)0P\notin E(K)^{0}, the computation of POP\cdot O depends on the contribution term cP:=vRcontrv(P)c_{P}:=\sum_{v\in R}\text{contr}_{v}(P), which by Table 1 depends on how PP intersects the reducible fibers of π\pi. Usually we do not have this intersection data at hand, which is why we need estimates for cPc_{P} not depending on PP.

Definition 2.4.

If the set RR of reducible fibers of π\pi is not empty, we define

cmax\displaystyle c_{\text{max}} :=vRmax{contrv(P)PE(K)},\displaystyle:=\sum_{v\in R}\max\{\text{contr}_{v}(P)\mid P\in E(K)\},
cmin\displaystyle c_{\text{min}} :=min{contrv(P)>0PE(K),vR}.\displaystyle:=\min\left\{\text{contr}_{v}(P)>0\mid P\in E(K),v\in R\right\}.
Remark 2.5.

The case R=R=\emptyset only occurs when XX has Mordell-Weil rank r=8r=8 (No. 1 in Table LABEL:tabela_completa). In this case E(K)0=E(K)E(K)^{0}=E(K) and vRcontrv(P)=0\sum_{v\in R}\text{contr}_{v}(P)=0 PE(K)\forall P\in E(K), hence we adopt the convention cmax=cmin=0c_{\text{max}}=c_{\text{min}}=0.

Remark 2.6.

We use cmax,cminc_{\text{max}},c_{\text{min}} as bounds for cP:=vcontrv(P)c_{P}:=\sum_{v}\text{contr}_{v}(P). For our purposes it is not necessary to know whether cPc_{P} actually attains one of these bounds for some PP, so that cmax,cminc_{\text{max}},c_{\text{min}} should be understood as hypothetical values.

We state some facts about cmax,cminc_{\text{max}},c_{\text{min}}.

Lemma 2.7.

Let XX be a rational elliptic surface with Mordell-Weil rank r1r\geq 1. If π\pi admits a reducible fiber, then:

  1. i)

    cmin>0c_{\text{min}}>0.

  2. ii)

    cmax<4c_{\text{max}}<4.

  3. iii)

    cminvRcontrv(P)cmax{c_{\text{min}}\leq\sum_{v\in R}\text{contr}_{v}(P)\leq c_{\text{max}}} PE(K)0\forall P\notin E(K)^{0}. For PE(K)0P\in E(K)^{0}, only the second inequality holds.

  4. iv)

    If vRcontrv(P)=cmin\sum_{v\in R}\text{contr}_{v}(P)=c_{\text{min}}, then contrv(P)=cmin\text{contr}_{v^{\prime}}(P)=c_{\text{min}} for some vv^{\prime} and contrv(P)=0\text{contr}_{v}(P)=0 for vvv\neq v^{\prime}.

Proof. Item i) is immediate from the definition of cminc_{\text{min}}. For ii) it is enough to check the values of cmaxc_{\text{max}} directly in Table LABEL:tabela_completa. For iii), the second inequality follows from the definition of cmaxc_{\text{max}} and clearly holds for any PE(K)P\in E(K). If PE(K)0P\notin E(K)^{0}, then cP:=vcontrv(P)>0c_{P}:=\sum_{v}\text{contr}_{v}(P)>0, so contrv0(P)>0\text{contr}_{v_{0}}(P)>0 for some v0v_{0}. Therefore cPcontrv0(P)cminc_{P}\geq\text{contr}_{v_{0}}(P)\geq c_{\text{min}}.

For iv), let vcontrv(P)=cmin\sum_{v}\text{contr}_{v}(P)=c_{\text{min}}. Assume by contradiction that there are distinct v1,v2v_{1},v_{2} such that contrvi(P)>0\text{contr}_{v_{i}}(P)>0 for i=1,2i=1,2. By definition of cminc_{\text{min}} we have cmincontrvi(P)c_{\text{min}}\leq\text{contr}_{v_{i}}(P) for i=1,2i=1,2 so

cmin=vcontrv(P)contrv1(P)+contrv2(P)2cmin,c_{\text{min}}=\sum_{v}\text{contr}_{v}(P)\geq\text{contr}_{v_{1}}(P)+\text{contr}_{v_{2}}(P)\geq 2c_{\text{min}},

which is absurd because cmin>0c_{\text{min}}>0 by i). Therefore there is only one vv^{\prime} with contrv(P)>0\text{contr}_{v^{\prime}}(P)>0, while contrv(P)=0\text{contr}_{v}(P)=0 for all vvv\neq v^{\prime}. In particular, contrv(P)=cmin\text{contr}_{v^{\prime}}(P)=c_{\text{min}}.

Explicit computation. Once we know the lattice TT associated with the reducible fibers of π\pi (Section 2.1), the computation of cmax,cminc_{\text{max}},c_{\text{min}} is simple. For a fixed vRv\in R, the extreme values of the local contribution contrv(P)\text{contr}_{v}(P) are given in Table 2, which is derived from Table 1. We provide an example to illustrate this computation.

TvT_{v} max{contrv(P)PE(K)}\max\{\text{contr}_{v}(P)\mid P\in E(K)\} min{contrv(P)>0PE(K)}\min\{\text{contr}_{v}(P)>0\mid P\in E(K)\}
An1A_{n-1} (n)n\frac{\ell(n-\ell)}{n}, where :=n2\ell:=\left\lfloor\frac{n}{2}\right\rfloor n1n\frac{n-1}{n}
Dn+4D_{n+4} 1+n41+\frac{n}{4} 11
E6E_{6} 43\frac{4}{3} 43\frac{4}{3}
E7E_{7} 32\frac{3}{2} 32\frac{3}{2}
Table 2: Extreme values of contrv(P)\text{contr}_{v}(P).

Example: Let π\pi with fiber configuration (I4,IV,III,I1)(\text{I}_{4},\text{IV},\text{III},\text{I}_{1}). The reducible fibers are I4,IV,III\text{I}_{4},\text{IV},\text{III}, so T=A3A2A1T=A_{3}\oplus A_{2}\oplus A_{1}. By Table 2, the maximal contributions for A3,A2,A1A_{3},A_{2},A_{1} are 224=1\frac{2\cdot 2}{4}=1, 23\frac{2}{3}, 12\frac{1}{2} respectively. The minimal positive contributions are 134=34\frac{1\cdot 3}{4}=\frac{3}{4}, 23\frac{2}{3}, 12\frac{1}{2} respectively. Then

cmax\displaystyle c_{\text{max}} =1+23+12=136,\displaystyle=1+\frac{2}{3}+\frac{1}{2}=\frac{13}{6},
cmin\displaystyle c_{\text{min}} =min{34,23,12}=12.\displaystyle=\min\left\{\frac{3}{4},\frac{2}{3},\frac{1}{2}\right\}=\frac{1}{2}.

2.4 The difference Δ=cmaxcmin\Delta=c_{\text{max}}-c_{\text{min}}

In this section we explain why the value of Δ:=cmaxcmin\Delta:=c_{\text{max}}-c_{\text{min}} is relevant to our discussion, specially in Subsection 4.2. We also verify that Δ<2\Delta<2 in most cases and identify the exceptional ones in Table 3 and Table 4.

As noted in Subsection 2.3, in case PE(K)0P\notin E(K)^{0} and h(P)h(P) is known, the difficulty of determining POP\cdot O lies in the contribution term cP:=vRcontrv(P)c_{P}:=\sum_{v\in R}\text{contr}_{v}(P). In particular, the range of possible values for cPc_{P} determines the possibilities for POP\cdot O. This range is measured by the difference

Δ:=cmaxcmin.\Delta:=c_{\text{max}}-c_{\text{min}}.

Hence a smaller Δ\Delta means a better control over the intersection number POP\cdot O, which is why Δ\Delta plays an important role in determining possible intersection numbers. In Subsection 4.3 we assume Δ2\Delta\leq 2 and state necessary and sufficient conditions for having a pair P1,P2P_{1},P_{2} such that P1P2=kP_{1}\cdot P_{2}=k for a given k0k\geq 0. If however Δ>2\Delta>2, the existence of such a pair is not guaranteed a priori, so a case-by-case treatment is needed. Fortunately by Lemma 2.8 the case Δ>2\Delta>2 is rare.

Lemma 2.8.

Let XX be a rational elliptic surface with Mordell-Weil rank r1r\geq 1. The only cases with Δ=2\Delta=2 and Δ>2\Delta>2 are in Table 3 and 4 respectively. In particular we have Δ<2\Delta<2 whenever E(K)E(K) is torsion-free.

No. TT E(K)E(K) cmaxc_{\text{max}} cminc_{\text{min}}
24 A15A_{1}^{\oplus 5} A13/2{A_{1}^{*}}^{\oplus 3}\oplus\mathbb{Z}/2\mathbb{Z} 52\frac{5}{2} 12\frac{1}{2}
38 A3A13A_{3}\oplus A_{1}^{\oplus 3} A11/4/2A_{1}^{*}\oplus\langle 1/4\rangle\oplus\mathbb{Z}/2\mathbb{Z} 52\frac{5}{2} 12\frac{1}{2}
53 A5A12A_{5}\oplus A_{1}^{\oplus 2} 1/6/2\langle 1/6\rangle\oplus\mathbb{Z}/2\mathbb{Z} 52\frac{5}{2} 12\frac{1}{2}
57 D4A13D_{4}\oplus A_{1}^{\oplus 3} A1(/2)2A_{1}^{*}\oplus(\mathbb{Z}/2\mathbb{Z})^{\oplus 2} 52\frac{5}{2} 12\frac{1}{2}
58 A32A1A_{3}^{\oplus 2}\oplus A_{1} A1/4A_{1}^{*}\oplus\mathbb{Z}/4\mathbb{Z} 52\frac{5}{2} 12\frac{1}{2}
61 A23A1A_{2}^{\oplus 3}\oplus A_{1} 1/6/3\langle 1/6\rangle\oplus\mathbb{Z}/3\mathbb{Z} 52\frac{5}{2} 12\frac{1}{2}
Table 3: Cases with Δ=2\Delta=2
No. TT E(K)E(K) cmaxc_{\text{max}} cminc_{\text{min}} Δ\Delta
41 A2A14A_{2}\oplus A_{1}^{\oplus 4} 16(2112)/2\frac{1}{6}\left(\begin{matrix}2&1\\ 1&2\end{matrix}\right)\oplus\mathbb{Z}/2\mathbb{Z} 83\frac{8}{3} 12\frac{1}{2} 136\frac{13}{6}
42 A16A_{1}^{\oplus 6} A12(/2)2{A_{1}^{*}}^{\oplus 2}\oplus(\mathbb{Z}/2\mathbb{Z})^{\oplus 2} 33 12\frac{1}{2} 52\frac{5}{2}
59 A3A2A12A_{3}\oplus A_{2}\oplus A_{1}^{\oplus 2} 1/12/2\langle 1/12\rangle\oplus\mathbb{Z}/2\mathbb{Z} 83\frac{8}{3} 12\frac{1}{2} 136\frac{13}{6}
60 A3A14A_{3}\oplus A_{1}^{\oplus 4} 1/4(/2)2\langle 1/4\rangle\oplus(\mathbb{Z}/2\mathbb{Z})^{\oplus 2} 33 12\frac{1}{2} 52\frac{5}{2}
Table 4: Cases with Δ>2\Delta>2

Proof. By searching Table LABEL:tabela_completa for all cases with Δ=2\Delta=2 and Δ>2\Delta>2, we obtain Table 3 and Table 4 respectively. Notice in particular that in both tables the torsion part of E(K)E(K) is always nontrivial. Consequently, if E(K)E(K) is torsion-free, then Δ<2\Delta<2.

2.5 The quadratic form QXQ_{X}

We define the positive-definite quadratic form with integer coefficients QXQ_{X} derived from the height pairing. The relevance of QXQ_{X} is due to the fact that some conditions for having P1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K) can be stated in terms of what integers can be represented by QXQ_{X} (see Corollary 4.2 and Proposition 4.12).

The definition of QXQ_{X} consists in clearing denominators of the rational quadratic form induced by the height pairing; the only question is how to find a scale factor that works in every case. More precisely, if E(K)E(K) has rank r1r\geq 1 and P1,,PrP_{1},...,P_{r} are generators of its free part, then q(x1,,xr):=h(x1P1++xrPr)q(x_{1},...,x_{r}):=h(x_{1}P_{1}+...+x_{r}P_{r}) is a quadratic form with coefficients in \mathbb{Q}; we define QXQ_{X} by multiplying qq by some integer d>0d>0 so as to produce coefficients in \mathbb{Z}. We show that dd may always be chosen as the determinant of the narrow lattice E(K)0E(K)^{0}.

Definition 2.9.

Let XX with r1r\geq 1. Let P1,,PrP_{1},...,P_{r} be generators of the free part of E(K)E(K). Define

QX(x1,,xr):=(detE(K)0)h(x1P1++xrPr).Q_{X}(x_{1},...,x_{r}):=(\det E(K)^{0})\cdot h(x_{1}P_{1}+...+x_{r}P_{r}).

We check that the matrix representing QXQ_{X} has entries in \mathbb{Z}, therefore QXQ_{X} has coefficients in \mathbb{Z}.

Lemma 2.10.

Let AA be the matrix representing the quadratic form QXQ_{X}, i.e. Q(x1,,xr)=xtAxQ(x_{1},...,x_{r})=x^{t}Ax, where x:=(x1,,xr)tx:=(x_{1},...,x_{r})^{t}. Then AA has integer entries. In particular, QXQ_{X} has integer coefficients.

Proof. Let P1,,PrP_{1},...,P_{r} be generators of the free part of E(K)E(K) and let L:=E(K)0L:=E(K)^{0}. The free part of E(K)E(K) is isomorphic to the dual lattice LL^{*} [OS91, Main Thm.], so we may find generators P10,,Pr0P_{1}^{0},...,P_{r}^{0} of LL such that the Gram matrix B0:=(Pi0,Pj0)i,jB^{0}:=(\langle P_{i}^{0},P_{j}^{0}\rangle)_{i,j} of LL is the inverse of the Gram matrix B:=(Pi,Pj)i,jB:=(\langle P_{i},P_{j}\rangle)_{i,j} of LL^{*}.

We claim that QXQ_{X} is represented by the adjugate matrix of B0B^{0}, i.e. the matrix adj(B0)\text{adj}(B^{0}) such that B0adj(B0)=(detB0)IrB^{0}\cdot\text{adj}(B^{0})=(\det B^{0})\cdot I_{r}, where IrI_{r} is the r×rr\times r identity matrix. Indeed, by construction BB represents the quadratic form h(x1P1++xrPr)h(x_{1}P_{1}+...+x_{r}P_{r}), therefore

QX(x1,,xr)\displaystyle Q_{X}(x_{1},...,x_{r}) =(detE(K)0)h(x1P1++xrPr)\displaystyle=(\det E(K)^{0})\cdot h(x_{1}P_{1}+...+x_{r}P_{r})
=(detB0)xtBx\displaystyle=(\det B^{0})\cdot x^{t}Bx
=(detB0)xt(B0)1x\displaystyle=(\det B^{0})\cdot x^{t}(B^{0})^{-1}x
=xtadj(B0)x,\displaystyle=x^{t}\text{adj}(B^{0})x,

as claimed. To prove that A:=adj(B0)A:=\text{adj}(B^{0}) has integer coefficients, notice that the Gram matrix B0B^{0} of L=E(K)0L=E(K)^{0} has integer coefficients (as E(K)0E(K)^{0} is an even lattice), then so does AA.

We close this subsection with a simple consequence of the definition of QXQ_{X}.

Lemma 2.11.

If h(P)=mh(P)=m for some PE(K)P\in E(K), then QXQ_{X} represents dmd\cdot m, where d:=detE(K)0d:=\det E(K)^{0}.

Proof. Let P1,,PrP_{1},...,P_{r} be generators for the free part of E(K)E(K). Let P=a1P1++arPr+QP=a_{1}P_{1}+...+a_{r}P_{r}+Q, where aia_{i}\in\mathbb{Z} and QQ is a torsion element (possibly zero). Since torsion sections do not contribute to the height pairing, then h(PQ)=h(P)=mh(P-Q)=h(P)=m. Hence

QX(a1,,ar)\displaystyle Q_{X}(a_{1},...,a_{r}) =dh(a1P1++arPr)\displaystyle=d\cdot h(a_{1}P_{1}+...+a_{r}P_{r})
=dh(PQ)\displaystyle=d\cdot h(P-Q)
=dm. \displaystyle=d\cdot m.\text{ ${}_{\blacksquare}$}

3 Intersection with a torsion section

Before dealing with more technical details in Section 4, we explain how torsion sections can be of help in our investigation, specially in Subsection 4.2.

We first note some general properties of torsion sections. As the height pairing is positive-definite on E(K)/E(K)torE(K)/E(K)_{\text{tor}}, torsion sections are inert in the sense that for each QE(K)torQ\in E(K)_{\text{tor}} we have Q,P=0\langle Q,P\rangle=0 for all PE(K)P\in E(K). Moreover, in the case of rational elliptic surfaces, torsion sections also happen to be mutually disjoint:

Theorem 3.1.

[MP89, Lemma 1.1] On a rational elliptic surface, Q1Q2=0Q_{1}\cdot Q_{2}=0 for any distinct Q1,Q2E(K)torQ_{1},Q_{2}\in E(K)_{\text{tor}}. In particular, if OO is the neutral section, then QO=0Q\cdot O=0 for all QE(K)tor{O}Q\in E(K)_{\text{tor}}\setminus\{O\}.

Remark 3.2.

As stated in [MP89, Lemma 1.1], Theorem 3.1 holds for elliptic surfaces over \mathbb{C} even without assuming XX is rational. However, for an arbitrary algebraically closed field the rationality hypothesis is needed, and a proof can be found in [SS19, Cor. 8.30].

By taking advantage of the properties above, we use torsion sections to help us find P1,P2E(K)P_{1},P_{2}\in E(K) such that P1P2=kP_{1}\cdot P_{2}=k for a given k0k\in\mathbb{Z}_{\geq 0}. This is particularly useful when Δ2\Delta\geq 2, in which case E(K)torE(K)_{\text{tor}} is not trivial by Lemma 2.8.

The idea is as follows. Given k0k\in\mathbb{Z}_{\geq 0}, suppose we can find PE(K)0P\in E(K)^{0} with height h(P)=2kh(P)=2k. By the height formula (2), PO=k1<kP\cdot O=k-1<k, which is not yet what we need. In the next lemma we show that replacing OO with a torsion section QOQ\neq O gives PQ=kP\cdot Q=k, as desired.

Lemma 3.3.

Let PE(K)0P\in E(K)^{0} such that h(P)=2kh(P)=2k. Then PQ=kP\cdot Q=k for all QE(K)tor{O}Q\in E(K)_{\text{tor}}\setminus\{O\}.

Proof. Assume there is some QE(K)tor{O}Q\in E(K)_{\text{tor}}\setminus\{O\}. By Theorem 3.1, QO=0Q\cdot O=0 and by the height formula (2), 2k=2+2(PO)02k=2+2(P\cdot O)-0, hence PO=k1P\cdot O=k-1. We use the height formula (1) for P,Q\langle P,Q\rangle in order to conclude that PQ=kP\cdot Q=k. Since PE(K)0P\in E(K)^{0}, it intersects the neutral component Θv,0\Theta_{v,0} of every reducible fiber π1(v)\pi^{-1}(v), so contrv(P,Q)=0\text{contr}_{v}(P,Q)=0 for all vRv\in R. Hence

0\displaystyle 0 =P,Q\displaystyle=\langle P,Q\rangle
=1+PO+QOPQvRcontrv(P,Q)\displaystyle=1+P\cdot O+Q\cdot O-P\cdot Q-\sum_{v\in R}\text{contr}_{v}(P,Q)
=1+(k1)+0PQ0\displaystyle=1+(k-1)+0-P\cdot Q-0
=kPQ. \displaystyle=k-P\cdot Q.\text{ ${}_{\blacksquare}$}

4 Existence of a pair of sections with a given intersection number

Given k0k\in\mathbb{Z}_{\geq 0}, we state necessary and (in most cases) sufficient conditions for havingP1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K). Necessary conditions are stated in generality in Subsection 4.1, while sufficient ones depend on the value of Δ\Delta and are treated separately in Subsection 4.2. In Subsection 4.4, we collect all sufficient conditions proven in this section.

4.1 Necessary Conditions

If k0k\in\mathbb{Z}_{\geq 0}, we state necessary conditions for having P1P2=kP_{1}\cdot P_{2}=k for some sections P1,P2E(K)P_{1},P_{2}\in E(K). We note that the value of Δ\Delta is not relevant in this subsection, although it plays a decisive role for sufficient conditions in Subsection 4.2.

Lemma 4.1.

Let k0k\in\mathbb{Z}_{\geq 0}. If P1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K), then one of the following holds:

  1. i)

    h(P)=2+2kh(P)=2+2k for some PE(K)0P\in E(K)^{0}.

  2. ii)

    h(P)[2+2kcmax, 2+2kcmin]h(P)\in[2+2k-c_{\text{max}},\,2+2k-c_{\text{min}}] for some PE(K)0P\notin E(K)^{0}.

Proof. Without loss of generality we may assume P2P_{2} is the neutral section, so that P1O=kP_{1}\cdot O=k. By the height formula (2), h(P1)=2+2kch(P_{1})=2+2k-c, where c:=vcontrv(P1)c:=\sum_{v}\text{contr}_{v}(P_{1}). If P1E(K)0P_{1}\in E(K)^{0}, then c=0c=0 and h(P1)=2+2kh(P_{1})=2+2k, hence i) holds. If P1E(K)0P_{1}\notin E(K)^{0}, then cminccmaxc_{\text{min}}\leq c\leq c_{\text{max}} by Lemma 2.7. But h(P1)=2+2kch(P_{1})=2+2k-c, therefore 2+2kcmaxh(P1)2+2kcmin2+2k-c_{\text{max}}\leq h(P_{1})\leq 2+2k-c_{\text{min}}, i.e. ii) holds.

Corollary 4.2.

Let k0k\in\mathbb{Z}_{\geq 0}. If P1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K), then QXQ_{X} represents some integer in [d(2+2kcmax),d(2+2k)][d\cdot(2+2k-c_{\text{max}}),d\cdot(2+2k)], where d:=detE(K)0d:=\det E(K)^{0}.

Proof. We apply Lemma 4.1 and rephrase it in terms of QXQ_{X}. If i) holds, then QXQ_{X} represents d(2+2k)d\cdot(2+2k) by Lemma 2.11. But if ii) holds, then h(P)[2+2kcmax,2+2kcmin]h(P)\in[2+2k-c_{\text{max}},2+2k-c_{\text{min}}] and by Lemma 2.11, QXQ_{X} represents dh(P)[d(2+2kcmax),d(2+2kcmin)]d\cdot h(P)\in[d\cdot(2+2k-c_{\text{max}}),d\cdot(2+2k-c_{\text{min}})]. In both i) and ii), QXQ_{X} represents some integer in [d(2+2kcmax),d(2+2k)][d\cdot(2+2k-c_{\text{max}}),d\cdot(2+2k)].

4.2 Sufficient conditions when Δ2\Delta\leq 2

In this subsection we state sufficient conditions for having P1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K) under the assumption that Δ2\Delta\leq 2. By Lemma 2.8, this covers almost all cases (more precisely, all but No. 41, 42, 59, 60 in Table LABEL:tabela_completa). We treat Δ<2\Delta<2 and Δ=2\Delta=2 separately, as the latter needs more attention.

4.2.1 The case Δ<2\Delta<2

We first prove Lemma 4.3, which gives sufficient conditions assuming Δ<2\Delta<2, then Corollary 4.5, which states sufficient conditions in terms of integers represented by QXQ_{X}. This is followed by Corollary 4.6, which is a simplified version of Corollary 4.5.

Lemma 4.3.

Assume Δ<2\Delta<2 and let k0k\in\mathbb{Z}_{\geq 0}. If h(P)[2+2kcmax,2+2kcmin]h(P)\in[2+2k-c_{\text{max}},2+2k-c_{\text{min}}] for some PE(K)0P\notin E(K)^{0}, then P1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K).

Proof. Let OE(K)O\in E(K) be the neutral section. By the height formula (2), h(P)=2+2(PO)ch(P)=2+2(P\cdot O)-c, where c:=vcontrv(P)c:=\sum_{v}\text{contr}_{v}(P). Since h(P)[2+2kcmax,2+2kcmin]h(P)\in[2+2k-c_{\text{max}},2+2k-c_{\text{min}}], then

2+2kcmax\displaystyle 2+2k-c_{\text{max}} 2+2(PO)c2+2kcmin\displaystyle\leq 2+2(P\cdot O)-c\leq 2+2k-c_{\text{min}}
ccmax2\displaystyle\Rightarrow\frac{c-c_{\text{max}}}{2} POkccmin2.\displaystyle\leq P\cdot O-k\leq\frac{c-c_{\text{min}}}{2}.

Therefore POkP\cdot O-k is an integer in I:=[ccmax2,ccmin2]I:=\left[\frac{c-c_{\text{max}}}{2},\frac{c-c_{\text{min}}}{2}\right]. We prove that 0 is the only integer in II, so that POk=0P\cdot O-k=0, i.e. PO=kP\cdot O=k. First notice that c0c\neq 0, as PE(K)0P\notin E(K)^{0}. By Lemma 2.7 iii), cminccmaxc_{\text{min}}\leq c\leq c_{\text{max}}, consequently ccmax20ccmin2\frac{c-c_{\text{max}}}{2}\leq 0\leq\frac{c-c_{\text{min}}}{2}, i.e. 0I0\in I. Moreover Δ<2\Delta<2 implies that II has length cmaxcmin2=Δ2<1\frac{c_{\text{max}}-c_{\text{min}}}{2}=\frac{\Delta}{2}<1, so II contains no integer except 0 as desired.

Remark 4.4.

Lemma 4.3 also applies when cmax=cminc_{\text{max}}=c_{\text{min}}, in which case the closed interval degenerates into a point.

The following corollary of Lemma 4.3 states a sufficient condition in terms of integers represented by the quadratic form QXQ_{X} (Section 2.5).

Corollary 4.5.

Assume Δ<2\Delta<2 and let d:=detE(K)0d:=\det E(K)^{0}. If QXQ_{X} represents an integer not divisible by dd in the interval [d(2+2kcmax),d(2+2kcmin)][d\cdot(2+2k-c_{\text{max}}),d\cdot(2+2k-c_{\text{min}})], then P1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K).

Proof. Let a1,,ara_{1},...,a_{r}\in\mathbb{Z} such that QX(a1,,ar)[d(2+2kcmax),d(2+2kcmin)]Q_{X}(a_{1},...,a_{r})\in[d\cdot(2+2k-c_{\text{max}}),d\cdot(2+2k-c_{\text{min}})] with dQX(a1,,ar)d\nmid Q_{X}(a_{1},...,a_{r}). Let P:=a1P1++arPrP:=a_{1}P_{1}+...+a_{r}P_{r}, where P1,,PrP_{1},...,P_{r} are generators of the free part of E(K)E(K). Then dQX(a1,,ar)=dh(P)d\nmid Q_{X}(a_{1},...,a_{r})=d\cdot h(P), which implies that h(P)h(P)\notin\mathbb{Z}. In particular PE(K)0P\notin E(K)^{0} since E(K)0E(K)^{0} is an integer lattice. Moreover h(P)=1dQX(a1,,ar)[2+2kcmax,2+2kcmin]h(P)=\frac{1}{d}Q_{X}(a_{1},...,a_{r})\in[2+2k-c_{\text{max}},2+2k-c_{\text{min}}] and we are done by Lemma 4.3.

The next corollary, although weaker than Corollary 4.5, is more practical for concrete examples and is frequently used in Subsection 5.4. It does not involve finding integers represented by QXQ_{X}, but only finding perfect squares in an interval depending on the minimal norm μ\mu (Subsection 2.1).

Corollary 4.6.

Assume Δ<2\Delta<2. If there is a perfect square n2[2+2kcmaxμ,2+2kcminμ]n^{2}\in\left[\frac{2+2k-c_{\text{max}}}{\mu},\frac{2+2k-c_{\text{min}}}{\mu}\right] such that n2μn^{2}\mu\notin\mathbb{Z}, then P1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K).

Proof. Take PE(K)P\in E(K) such that h(P)=μh(P)=\mu. Since h(nP)=n2μh(nP)=n^{2}\mu\notin\mathbb{Z}, we must have nPE(K)0nP\notin E(K)^{0} as E(K)0E(K)^{0} is an integer lattice. Moreover h(nP)=n2μ[2+2kcmax,2+2kcmin]h(nP)=n^{2}\mu\in[2+2k-c_{\text{max}},2+2k-c_{\text{min}}] and we are done by Lemma 4.3.

4.2.2 The case Δ=2\Delta=2

The statement of sufficient conditions for Δ=2\Delta=2 is almost identical to the one for Δ<2\Delta<2: the only difference is that the closed interval Lemma 4.3 is substituted by a right half-open interval in Lemma 4.8. This change, however, is associated with a technical difficulty in the case when a section has minimal contribution term, thus the separate treatment for Δ=2\Delta=2.

The results are presented in the following order. First we prove Lemma 4.7, which is a statement about sections whose contribution term is minimal. Next we prove Lemma 4.8, which states sufficient conditions for Δ=2\Delta=2, then Corollaries 4.9 and 4.10.

Lemma 4.7.

Assume Δ=2\Delta=2. If there is PE(K)P\in E(K) such that vRcontrv(P)=cmin\sum_{v\in R}\text{contr}_{v}(P)=c_{\text{min}}, then PQ=PO+1P\cdot Q=P\cdot O+1 for every QE(K)tor{O}Q\in E(K)_{\text{tor}}\setminus\{O\}.

Proof. If QE(K)tor{O}Q\in E(K)_{\text{tor}}\setminus\{O\}, then QO=0Q\cdot O=0 by Theorem 3.1. Moreover, by the height formula (1),

0=P,Q=1+PO+0PQvRcontrv(P,Q).()0=\langle P,Q\rangle=1+P\cdot O+0-P\cdot Q-\sum_{v\in R}\text{contr}_{v}(P,Q).\,\,(*)

Hence it suffices to show that contrv(P,Q)=0\text{contr}_{v}(P,Q)=0 vR\forall v\in R. By Lemma 2.7 iv), contrv(P)=cmin\text{contr}_{v^{\prime}}(P)=c_{\text{min}} for some vv^{\prime} and contrv(P)=0\text{contr}_{v}(P)=0 for all vvv\neq v^{\prime}. In particular PP meets Θv,0\Theta_{v,0}, hence contrv(P,Q)=0\text{contr}_{v}(P,Q)=0 for all vvv\neq v^{\prime}. Thus from ()(*) we see that contrv(P,Q)\text{contr}_{v^{\prime}}(P,Q) is an integer, which we prove is 0.

We claim that Tv=A1T_{v^{\prime}}=A_{1}, so that contrv(P,Q)=0\text{contr}_{v^{\prime}}(P,Q)=0 or 12\frac{1}{2} by Table 1. In this case, as contrv(P,Q)\text{contr}_{v^{\prime}}(P,Q) is an integer, it must be 0, and we are done. To see that Tv=A1T_{v^{\prime}}=A_{1} we analyse contrv(P)\text{contr}_{v^{\prime}}(P). Since Δ=2\Delta=2, then cmin=12c_{\text{min}}=\frac{1}{2} by Table 3 and contrv(P)=cmin=12\text{contr}_{v^{\prime}}(P)=c_{\text{min}}=\frac{1}{2}. By Table 1, this only happens if Tv=An1T_{v^{\prime}}=A_{n-1} and 12=i(ni)n\frac{1}{2}=\frac{i(n-i)}{n} for some 0i<n0\leq i<n. The only possibility is i=1,n=2i=1,n=2 and Tv=A1T_{v^{\prime}}=A_{1}.  

With the aid of Lemma 4.7 we are able to state sufficient conditions for Δ=2\Delta=2.

Lemma 4.8.

Assume Δ=2\Delta=2 and let k0k\in\mathbb{Z}_{\geq 0}. If h(P)[2+2kcmax,2+2kcmin)h(P)\in[2+2k-c_{\text{max}},2+2k-c_{\text{min}}) for some PE(K)0P\notin E(K)^{0}, then P1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K).

Proof. Let OE(K)O\in E(K) be the neutral section. By the height formula (2), h(P)=2+2(PO)ch(P)=2+2(P\cdot O)-c, where c:=vcontrv(P)c:=\sum_{v}\text{contr}_{v}(P). We repeat the arguments from Lemma 4.3, in this case with the right half-open interval, so that the hypothesis that h(P)[2+2kcmax,2+2kcmin)h(P)\in[2+2k-c_{\text{max}},2+2k-c_{\text{min}}), implies that POkP\cdot O-k is an integer in I:=[ccmax2,ccmin2)I^{\prime}:=\left[\frac{c-c_{\text{max}}}{2},\frac{c-c_{\text{min}}}{2}\right).

Since II^{\prime} is half-open with length cmaxcmin2=Δ2=1\frac{c_{\text{max}}-c_{\text{min}}}{2}=\frac{\Delta}{2}=1, then II^{\prime} contains exactly one integer. If 0I0\in I^{\prime}, then POk=0P\cdot O-k=0, i.e. PO=kP\cdot O=k and we are done. Hence we assume 0I0\notin I^{\prime}.

We claim that PO=k1P\cdot O=k-1. First, notice that if c>cminc>c_{\text{min}}, then the inequalities cmin<ccmaxc_{\text{min}}<c\leq c_{\text{max}} give ccmax20<ccmin2\frac{c-c_{\text{max}}}{2}\leq 0<\frac{c-c_{\text{min}}}{2}, i.e. 0I0\in I^{\prime}, which is a contradiction. Hence c=cminc=c_{\text{min}}. Since Δ=2\Delta=2, then I=[1,0)I^{\prime}=[-1,0), whose only integer is 1-1. Thus POk=1P\cdot O-k=-1, i.e. PO=k1P\cdot O=k-1, as claimed.

Finally, let QE(K)tor{O}Q\in E(K)_{\text{tor}}\setminus\{O\}, so that PQ=PO+1=kP\cdot Q=P\cdot O+1=k by Lemma 4.7 and we are done. We remark that E(K)torE(K)_{\text{tor}} is not trivial by Table 3, therefore such QQ exists.

The following corollaries are analogues to Corollary 4.5 and Corollary 4.6 adapted to Δ=2\Delta=2. Similarly to the case Δ<2\Delta<2, Corollary 4.9 is stronger than Corollary 4.10, although the latter is more practical for concrete examples. We remind the reader that μ\mu denotes the minimal norm (Subsection 2.1).

Corollary 4.9.

Assume Δ=2\Delta=2 and let d:=detE(K)0d:=\det E(K)^{0}. If QXQ_{X} represents an integer not divisible by dd in the interval [d(2+2kcmax),d(2+2kcmin))[d\cdot(2+2k-c_{\text{max}}),d\cdot(2+2k-c_{\text{min}})), then P1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K).

Proof. We repeat the arguments in Corollary 4.5, in this case with the half-open interval.

Corollary 4.10.

Assume Δ=2\Delta=2. If there is a perfect square n2[2+2kcmaxμ,2+2kcminμ)n^{2}\in\left[\frac{2+2k-c_{\text{max}}}{\mu},\frac{2+2k-c_{\text{min}}}{\mu}\right) such that n2μn^{2}\mu\notin\mathbb{Z}, then P1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K).

Proof. We repeat the arguments in Corollary 4.6, in this case with the half-open interval.

4.3 Necessary and sufficient conditions for Δ2\Delta\leq 2

For completeness, we present a unified statement of necessary and sufficient conditions assuming Δ2\Delta\leq 2, which follows naturally from results in Subsections 4.1 and 4.2.

Lemma 4.11.

Assume Δ2\Delta\leq 2 and let k0k\in\mathbb{Z}_{\geq 0}. Then P1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K) if and only if one of the following holds:

  1. i)

    h(P)=2+2kh(P)=2+2k for some PE(K)0P\in E(K)^{0}.

  2. ii)

    h(P)[2+2kcmax,2+2kcmin)h(P)\in[2+2k-c_{\text{max}},2+2k-c_{\text{min}}) for some PE(K)0P\notin E(K)^{0}.

  3. iii)

    h(P)=2+2kcminh(P)=2+2k-c_{\text{min}} and vRcontrv(P)=cmin\sum_{v\in R}\text{contr}_{v}(P)=c_{\text{min}} for some PE(K)P\in E(K).

Proof. If i) or iii) holds, then PO=kP\cdot O=k directly by the height formula (2). But if ii) holds, it suffices to to apply Lemma 4.3 when Δ<2\Delta<2 and by Lemma 4.8 when Δ=2\Delta=2.

Conversely, let P1P2=kP_{1}\cdot P_{2}=k. Without loss of generality, we may assume P2=OP_{2}=O, so that P1O=kP_{1}\cdot O=k. By the height formula (2), h(P1)=2+2kch(P_{1})=2+2k-c, where c:=vcontrv(P1)c:=\sum_{v}\text{contr}_{v}(P_{1}).

If c=0c=0, then P1E(K)0P_{1}\in E(K)^{0} and h(P1)=2+2kh(P_{1})=2+2k, so i) holds. Hence we let c0c\neq 0, i.e. P1E(K)0P_{1}\notin E(K)^{0}, so that cminccmaxc_{\text{min}}\leq c\leq c_{\text{max}} by Lemma 2.7. In case c=cminc=c_{\text{min}}, then h(P1)=2+2kcminh(P_{1})=2+2k-c_{\text{min}} and iii) holds. Otherwise cmin<ccmaxc_{\text{min}}<c\leq c_{\text{max}}, which implies 2+2kcmaxh(P1)<2+2kcmin2+2k-c_{\text{max}}\leq h(P_{1})<2+2k-c_{\text{min}}, so ii) holds.

4.4 Summary of sufficient conditions

For the sake of clarity, we summarize in a single proposition all sufficient conditions for having P1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K) proven in this section.

Proposition 4.12.

Let k0k\in\mathbb{Z}_{\geq 0}. If one of the following holds, then P1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K).

  1. 1)

    h(P)=2+2kh(P)=2+2k for some PE(K)0P\in E(K)^{0}.

  2. 2)

    h(P)=2kh(P)=2k for some PE(K)0P\in E(K)^{0} and E(K)torE(K)_{\text{tor}} is not trivial.

  3. 3)

    Δ<2\Delta<2 and there is a perfect square n2[2+2kcmaxμ,2+2kcminμ]n^{2}\in\left[\frac{2+2k-c_{\text{max}}}{\mu},\frac{2+2k-c_{\text{min}}}{\mu}\right] with n2μn^{2}\mu\notin\mathbb{Z}, where μ\mu is the minimal norm (Subsection 2.1). In case Δ=2\Delta=2, consider the right half-open interval.

  4. 4)

    Δ<2\Delta<2 and the quadratic form QXQ_{X} represents an integer not divisible by d:=detE(K)0d:=\det E(K)^{0} in the interval [d(2+2kcmax),d(2+2kcmin)][d\cdot(2+2k-c_{\text{max}}),d\cdot(2+2k-c_{\text{min}})]. In case Δ=2\Delta=2, consider the right half-open interval.

Proof. In 1) a height calculation gives 2+2k=h(P)=2+2(PO)02+2k=h(P)=2+2(P\cdot O)-0, so PO=kP\cdot O=k. For 2), we apply Lemma 3.3 to conclude that PQ=kP\cdot Q=k for any QE(K)tor{O}Q\in E(K)_{\text{tor}}\setminus\{O\}. In 3) we use Corollary 4.6 when Δ<2\Delta<2 and Corollary 4.10 when Δ=2\Delta=2. In 4), we apply Corollary 4.5 if Δ<2\Delta<2 and Corollary 4.9 if Δ=2\Delta=2.

5 Main Results

We prove the four main theorems of this paper, which are independent applications of the results from Section 4. The first two are general attempts to describe when and how gap numbers occur: Theorem 5.2 tells us that large Mordell-Weil groups prevent the existence of gaps numbers, more precisely for Mordell-Weil rank r5r\geq 5; in Theorem 5.4 we show that for small Mordell-Weil rank, more precisely when r2r\leq 2, then gap numbers occur with probability 11. The last two theorems, on the other hand, deal with explicit values of gap numbers: Theorem 5.7 provides a complete description of gap numbers in certain cases, while Theorem 5.8 is a classification of cases with a 11-gap.

5.1 No gap numbers in rank r5r\geq 5

We show that if E(K)E(K) has rank r5r\geq 5, then XX is gap-free. Our strategy is to prove that for every k0k\in\mathbb{Z}_{\geq 0} there is some PE(K)0P\in E(K)^{0} such that h(P)=2+2kh(P)=2+2k, and by Proposition 4.12 1) we are done. We accomplish this in two steps. First we show that this holds when there is an embedding of A1A_{1}^{\oplus} or of A4A_{4} in E(K)0E(K)^{0} (Lemma 5.1). Second, we show that if r5r\geq 5, then such embedding exists, hence XX is gap-free (Theorem 5.2).

Lemma 5.1.

Assume E(K)0E(K)^{0} has a sublattice isomorphic to A14A_{1}^{\oplus 4} or A4A_{4}. Then for every 0\ell\in\mathbb{Z}_{\geq 0} there is PE(K)0P\in E(K)^{0} such that h(P)=2h(P)=2\ell.

Proof. First assume A14E(K)0A_{1}^{\oplus 4}\subset E(K)^{0} and let P1,P2,P3,P4P_{1},P_{2},P_{3},P_{4} be generators for each factor A1A_{1} in A14A_{1}^{\oplus 4}. Then h(Pi)=2h(P_{i})=2 and Pi,Pj=0\langle P_{i},P_{j}\rangle=0 for distinct i,j=1,2,3,4i,j=1,2,3,4. By Lagrange’s four-square theorem [HW79, §20.5] there are integers a1,a2,a3,a4a_{1},a_{2},a_{3},a_{4} such that a12+a22+a32+a42=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}=\ell. Defining P:=a1P1+a2P2+a3P3+a4P4A14E(K)0P:=a_{1}P_{1}+a_{2}P_{2}+a_{3}P_{3}+a_{4}P_{4}\in A_{1}^{\oplus 4}\subset E(K)^{0}, we have

h(P)=2a12+2a22+2a32+2a42=2.h(P)=2a_{1}^{2}+2a_{2}^{2}+2a_{3}^{2}+2a_{4}^{2}=2\ell.

Now let A4E(K)0A_{4}\subset E(K)^{0} with generators P1,P2,P3,P4P_{1},P_{2},P_{3},P_{4}. Then h(Pi)=2h(P_{i})=2 for i=1,2,3,4i=1,2,3,4 and Pi,Pi+1=1\langle P_{i},P_{i+1}\rangle=-1 for i=1,2,3i=1,2,3. We need to find integers x1,,x4x_{1},...,x_{4} such that h(P)=2h(P)=2\ell, where P:=x1P1++x4P4A4E(K)0P:=x_{1}P_{1}+...+x_{4}P_{4}\in A_{4}\subset E(K)^{0}. Equivalently, we need that

=12P,P=x12+x22+x32+x42x1x2x2x3x3x4.\ell=\frac{1}{2}\langle P,P\rangle=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-x_{1}x_{2}-x_{2}x_{3}-x_{3}x_{4}.

Therefore \ell must be represented by q(x1,,x4):=x12+x22+x32+x42x1x2x2x3x3x4q(x_{1},...,x_{4}):=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-x_{1}x_{2}-x_{2}x_{3}-x_{3}x_{4}. We prove that qq represents all positive integers. Notice that qq is positive-definite, since it is induced by ,\langle\cdot,\cdot\rangle. By Bhargava-Hanke’s 290-theorem [BH][Thm. 1], qq represents all positive integers if and only if it represents the following integers:

2,3,5,6,7,10,13,14,15,17,19,21,22,23,26,2,3,5,6,7,10,13,14,15,17,19,21,22,23,26,
29,30,31,34,35,37,42,58,93,110,145,203,290.29,30,31,34,35,37,42,58,93,110,145,203,290.

The representation for each of the above is found in Table 5.

We now prove the main theorem of this section.

Theorem 5.2.

If r5r\geq 5, then XX is gap-free.

Proof. We show that for every k0k\geq 0 there is PE(K)0P\in E(K)^{0} such that h(P)=2+2kh(P)=2+2k, so that by Proposition 4.12 1) we are done. Using Lemma 5.1 it suffices to prove that E(K)0E(K)^{0} has a sublattice isomorphic to A14A_{1}^{\oplus 4} or A4A_{4}.

The cases with r5r\geq 5 are No. 1-7 (Table LABEL:tabela_completa). In No. 1-6, E(K)0=E8,E7,E6,D6,D5,A5E(K)^{0}=E_{8},E_{7},E_{6},D_{6},D_{5},A_{5} respectively. Each of these admit an A4A_{4} sublattice [Nis96, Lemmas 4.2,4.3]. In No. 7 we claim that E(K)0=D4A1E(K)^{0}=D_{4}\oplus A_{1} has an A14A_{1}^{\oplus 4} sublattice. This is the case because D4D_{4} admits an A14A_{1}^{\oplus 4} sublattice [Nis96, Lemma 4.5 (iii)].

nn x1,x2,x3,x4x_{1},x_{2},x_{3},x_{4} with x12+x22+x32+x42x1x2x2x3x3x4=nx_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-x_{1}x_{2}-x_{2}x_{3}-x_{3}x_{4}=n
11 1,0,0,01,0,0,0
22 1,0,1,01,0,1,0
33 1,1,2,01,1,2,0
55 1,0,2,01,0,2,0
66 1,1,2,11,1,-2,-1
77 1,1,2,01,1,-2,0
1010 1,0,3,01,0,3,0
1313 2,0,3,02,0,3,0
1414 1,2,5,11,2,5,1
1515 1,5,5,21,5,5,2
1717 1,0,4,01,0,4,0
1919 1,5,3,11,5,3,-1
2121 1,5,0,01,5,0,0
2222 1,5,0,11,5,0,-1
2323 1,6,6,21,6,6,2
2626 1,0,5,01,0,5,0
2929 2,0,5,02,0,5,0
3030 1,5,0,31,5,0,-3
3131 1,3,4,21,3,-4,-2
3434 3,0,5,03,0,5,0
3535 1,2,2,41,2,-2,4
3737 1,0,6,01,0,6,0
4242 1,1,4,31,1,-4,3
5858 3,0,7,03,0,7,0
9393 1,1,10,01,1,-10,0
110110 1,2,3,81,-2,3,-8
145145 1,0,12,01,0,12,0
203203 1,5,9,81,-5,-9,8
290290 1,0,17,01,0,17,0
Table 5: Representation of the critical integers in Bhargava-Hanke’s 290-theorem.

5.2 Gaps with probability 11 in rank r2r\leq 2

Fix a rational elliptic surface π:X1\pi:X\to\mathbb{P}^{1} with Mordell-Weil rank r2r\leq 2. We prove that if kk is a uniformly random natural number, then kk is a gap number with probability 11. More precisely, if G:={kk is a gap number of X}G:=\{k\in\mathbb{N}\mid k\text{ is a gap number of }X\} is the set of gap numbers, then GG\subset\mathbb{N} has density 11, i.e.

d(G):=limn#G{1,,n}n=1.d(G):=\lim_{n\to\infty}\frac{\#G\cap\{1,...,n\}}{n}=1.

We adopt the following strategy. If kGk\in\mathbb{N}\setminus G, then P1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K) and by Corollary 4.2 the quadratic form QXQ_{X} represents some integer tt depending on kk. This defines a function GT\mathbb{N}\setminus G\to T, where TT is the set of integers represented by QXQ_{X}. Since QXQ_{X} is a quadratic form on r2r\leq 2 variables, TT has density 0 in \mathbb{N} by Lemma 5.3. By analyzing the pre-images of GT\mathbb{N}\setminus G\to T, in Theorem 5.4 we conclude that d(G)=d(T)=0d(\mathbb{N}\setminus G)=d(T)=0, hence d(G)=1d(G)=1 as desired.

Lemma 5.3.

Let QQ be a positive-definite quadratic form on r=1,2r=1,2 variables with integer coefficients. Then the set of integers represented by QQ has density 0 in \mathbb{N}.

Proof. Let SS be the set of integers represented by QQ. If dd is the greatest common divisor of the coefficients of QQ, let SS^{\prime} be the set of integers representable by the primitive form Q:=1dQQ^{\prime}:=\frac{1}{d}\cdot Q. By construction SS^{\prime} is a rescaling of SS, so d(S)=0d(S)=0 if and only if d(S)=0d(S^{\prime})=0.

If r=1r=1, then Q(x1)=x12Q^{\prime}(x_{1})=x_{1}^{2} and SS^{\prime} is the set of perfect squares, so clearly d(S)=0d(S^{\prime})=0. If r=2r=2, then QQ^{\prime} is a binary quadratic form and the number of elements in SS^{\prime} bounded from above by x>0x>0 is given by Cxlogx+o(x)C\cdot\frac{x}{\sqrt{\log x}}+o(x) with C>0C>0 a constant and limxo(x)x=0\lim_{x\to\infty}\frac{o(x)}{x}=0 [Ber12, p. 91]. Thus

d(S)=limxClogx+o(x)x=0. d(S^{\prime})=\lim_{x\to\infty}\frac{C}{\sqrt{\log x}}+\frac{o(x)}{x}=0.\text{ ${}_{\blacksquare}$}

We now prove the main result of this section.

Theorem 5.4.

Let π:X1\pi:X\to\mathbb{P}^{1} be a rational elliptic surface with Mordell-Weil rank r2r\leq 2. Then the set G:={kk is a gap number of X}G:=\{k\in\mathbb{N}\mid k\text{ is a gap number of }X\} of gap numbers of XX has density 11 in \mathbb{N}.

Proof. If r=0r=0, then the claim is trivial by Remark 2.3, hence we may assume r=1,2r=1,2. We prove that S:=GS:=\mathbb{N}\setminus G has density 0. If SS is finite, there is nothing to prove. Otherwise, let k1<k2<k_{1}<k_{2}<... be the increasing sequence of all elements of SS. By Corollary 4.2, for each nn there is some tnJkn:=[d(2+2kncmax),d(2+2kn)]t_{n}\in J_{k_{n}}:=[d\cdot(2+2k_{n}-c_{\text{max}}),d\cdot(2+2k_{n})] represented by the quadratic form QXQ_{X}. Let TT be the set of integers represented by QXQ_{X} and define the function f:GTf\colon\mathbb{N}\setminus G\to T by kntnk_{n}\mapsto t_{n}. Since QXQ_{X} has r=1,2r=1,2 variables, TT has density 0 by Lemma 5.3.

For N>0N>0, let SN:=S{1,,N}S_{N}:=S\cap\{1,...,N\} and TN:=T{1,,N}T_{N}:=T\cap\{1,...,N\}. Since TT has density zero, #TN=o(N)\#T_{N}=o(N), i.e. #TNN0\frac{\#T_{N}}{N}\to 0 when NN\to\infty and we need to prove that #SN=o(N)\#S_{N}=o(N). We analyze the function ff restricted to SNS_{N}. Notice that as tnJknt_{n}\in J_{k_{n}}, then knNk_{n}\leq N implies tnd(2+2kn)d(2+2N)t_{n}\leq d\cdot(2+2k_{n})\leq d\cdot(2+2N). Hence the restriction g:=f|SNg:=f|_{S_{N}} can be regarded as a function g:SNTd(2+2k)g:S_{N}\to T_{d\cdot(2+2k)}.

We claim that #g1(t)2\#g^{-1}(t)\leq 2 for all tTd(2+2N)t\in T_{d\cdot(2+2N)}, in which case #SN2#Td(2+2N)=o(N)\#S_{N}\leq 2\cdot\#T_{d\cdot(2+2N)}=o(N) and we are done. Assume by contradiction that g1(t)g^{-1}(t) contains three distinct elements, say k1<k2<k3k_{\ell_{1}}<k_{\ell_{2}}<k_{\ell_{3}} with t=t1=t2=t3t=t_{\ell_{1}}=t_{\ell_{2}}=t_{\ell_{3}}. Since tiJkit_{\ell_{i}}\in J_{k_{\ell_{i}}} for each i=1,2,3i=1,2,3, then tJk1Jk2Jk3t\in J_{k_{\ell_{1}}}\cap J_{k_{\ell_{2}}}\cap J_{k_{\ell_{3}}}. We prove that Jk1J_{k_{\ell_{1}}} and Jk3J_{k_{\ell_{3}}} are disjoint, which yields a contradiction. Indeed, since k1<k2<k3k_{\ell_{1}}<k_{\ell_{2}}<k_{\ell_{3}}, in particular k3k12k_{\ell_{3}}-k_{\ell_{1}}\geq 2, therefore d(2+2k1)d(2+2k34)d\cdot(2+2k_{\ell_{1}})\leq d\cdot(2+2k_{\ell_{3}}-4). But cmax<4c_{\text{max}}<4 by Lemma 2.7, so d(2+2k1)<d(2+2k3cmax)d\cdot(2+2k_{\ell_{1}})<d\cdot(2+2k_{\ell_{3}}-c_{\text{max}}), i.e. maxJk1<minJk3\max J_{k_{\ell_{1}}}<\min J_{k_{\ell_{3}}}. Thus Jk1Jk3=J_{k_{\ell_{1}}}\cap J_{k_{\ell_{3}}}=\emptyset, as desired.

5.3 Identification of gaps when E(K)E(K) is torsion-free with rank r=1r=1

The results in Subsections 5.1 and 5.2 concern the existence and the distribution of gap numbers. In the following subsections we turn our attention to finding gap numbers explicitly. In this subsection we give a complete description of gap numbers assuming E(K)E(K) is torsion-free with rank r=1r=1. Such descriptions are difficult in the general case, but our assumption guarantees that each E(K),E(K)0E(K),E(K)^{0} is generated by a single element and that Δ<2\Delta<2 by Lemma 2.8, which makes the problem more accessible.

We organize this subsection as follows. First we point out some trivial facts about generators of E(K),E(K)0E(K),E(K)^{0} when r=1r=1 in Lemma 5.5. Next we state necessary and sufficient conditions for having P1P2=kP_{1}\cdot P_{2}=k when E(K)E(K) is torsion-free with r=1r=1 in Lemma 5.6. As an application of the latter, we prove Theorem 5.7, which is the main result of the subsection.

Lemma 5.5.

Let XX be a rational elliptic surface with Mordell-Weil rank r=1r=1. If PP generates the free part of E(K)E(K), then

  1. a)

    h(P)=μh(P)=\mu.

  2. b)

    1/μ1/\mu is an even integer.

  3. c)

    E(K)0E(K)^{0} is generated by P0:=(1/μ)PP_{0}:=(1/\mu)P and h(P0)=1/μh(P_{0})=1/\mu.

Proof. Item a) is clear. Items b), c) follow from the fact that E(K)0E(K)^{0} is an even lattice and that E(K)LE(K)torE(K)\simeq L^{*}\oplus E(K)_{\text{tor}}, where L:=E(K)0L:=E(K)^{0} [OS91, Main Thm.].  

In what follows we use Lemma 5.5 and results from Section 4 to state necessary and sufficient conditions for having P1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K) in case E(K)E(K) is torsion-free with r=1r=1.

Lemma 5.6.

Assume E(K)E(K) is torsion-free with rank r=1r=1. Then P1P2=kP_{1}\cdot P_{2}=k for some P1,P2E(K)P_{1},P_{2}\in E(K) if and only if one of the following holds:

  1. i)

    μ(2+2k)\mu\cdot(2+2k) is a perfect square.

  2. ii)

    There is a perfect square n2[2+2kcmaxμ,2+2kcminμ]n^{2}\in\left[\frac{2+2k-c_{\text{max}}}{\mu},\frac{2+2k-c_{\text{min}}}{\mu}\right] such that μn\mu\cdot n\notin\mathbb{Z}.

Proof. By Lemma 5.5, E(K)E(K) is generated by some PP with h(P)=μh(P)=\mu and E(K)0E(K)^{0} is generated by P0:=n0PP_{0}:=n_{0}P, where n0:=1μ2n_{0}:=\frac{1}{\mu}\in 2\mathbb{Z}.

First assume that P1P2=kP_{1}\cdot P_{2}=k for some P1,P2P_{1},P_{2}. Without loss of generality we may assume P2=OP_{2}=O. Let P1=nPP_{1}=nP for some nn\in\mathbb{Z}. We show that P1E(K)0P_{1}\in E(K)^{0} implies i) while P1E(K)0P_{1}\notin E(K)^{0} implies ii).

If P1E(K)0P_{1}\in E(K)^{0}, then n0nn_{0}\mid n, hence P1=nP=mP0P_{1}=nP=mP_{0}, where m:=nn0m:=\frac{n}{n_{0}}. By the height formula (2), 2+2k=h(P1)=h(mP0)=m21μ2+2k=h(P_{1})=h(mP_{0})=m^{2}\cdot\frac{1}{\mu}. Hence μ(2+2k)=m2\mu\cdot(2+2k)=m^{2}, i.e. i) holds.

If P1E(K)0P_{1}\notin E(K)^{0}, then n0nn_{0}\nmid n, hence μn=nn0\mu\cdot n=\frac{n}{n_{0}}\notin\mathbb{Z}. Moreover, h(P1)=n2h(P)=n2μh(P_{1})=n^{2}h(P)=n^{2}\mu and by the height formula (2), n2μ=h(P)=2+2kcn^{2}\mu=h(P)=2+2k-c, where c:=vcontrv(P1)0c:=\sum_{v}\text{contr}_{v}(P_{1})\neq 0. The inequalities cminccmaxc_{\text{min}}\leq c\leq c_{\text{max}} then give 2+2kcmaxμn22+2kcminμ\frac{2+2k-c_{\text{max}}}{\mu}\leq n^{2}\leq\frac{2+2k-c_{\text{min}}}{\mu}. Hence ii) holds.

Conversely, assume i) or ii) holds. Since E(K)E(K) is torsion-free, Δ<2\Delta<2 by Lemma 2.8, so we may apply Lemma 4.3. If i) holds, then μ(2+2k)=m2\mu\cdot(2+2k)=m^{2} for some mm\in\mathbb{Z}. Since mP0E(K)0mP_{0}\in E(K)^{0} and h(mP0)=m2μ=2+2kh(mP_{0})=\frac{m^{2}}{\mu}=2+2k, we are done by Lemma 4.3 i). If ii) holds, the condition μn\mu\cdot n\notin\mathbb{Z} is equivalent to n0nn_{0}\nmid n, hence nPE(K)0nP\notin E(K)^{0}. Moreover n2[2+2kcmaxμ,2+2kcminμ]n^{2}\in\left[\frac{2+2k-c_{\text{max}}}{\mu},\frac{2+2k-c_{\text{min}}}{\mu}\right], implies h(nP)=n2μ[2+2kcmax,2+2kcmin]h(nP)=n^{2}\mu\in[2+2k-c_{\text{max}},2+2k-c_{\text{min}}]. By Lemma 4.3 ii), we are done.

By applying Lemma 5.6 to all possible cases where E(K)E(K) is torsion-free with rank r=1r=1, we obtain the main result of this subsection.

Theorem 5.7.

If E(K)E(K) is torsion-free with rank r=1r=1, then all the gap numbers of XX are described in Table 6.

No. TT k is a gap numbernone ofthe following are perfect squares\begin{matrix}k\text{ is a gap number}\Leftrightarrow\text{none of}\\ \text{the following are perfect squares}\end{matrix} first gap numbers
43 E7E_{7} k+1k+1, 4k+14k+1 1,41,4
45 A7A_{7} k+14\frac{k+1}{4}, 16k,,16k+916k,...,16k+9 8,118,11
46 D7D_{7} k+12\frac{k+1}{2}, 8k+1,,8k+48k+1,...,8k+4 2,52,5
47 A6A1A_{6}\oplus A_{1} k+17\frac{k+1}{7}, 28k3,,28k+2128k-3,...,28k+21 12,1612,16
49 E6A1E_{6}\oplus A_{1} k+13\frac{k+1}{3}, 12k+1,,12k+912k+1,...,12k+9 3,73,7
50 D5A2D_{5}\oplus A_{2} k+16\frac{k+1}{6}, 24k+1,,24k+1624k+1,...,24k+16 6,116,11
55 A4A3A_{4}\oplus A_{3} k+110\frac{k+1}{10}, 40k4,,40k+2540k-4,...,40k+25 16,2016,20
56 A4A2A1A_{4}\oplus A_{2}\oplus A_{1} k+115\frac{k+1}{15}, 60k11,,60k+4560k-11,...,60k+45 22,2722,27
Table 6: Description of gap numbers when E(K)E(K) is torsion-free with r=1r=1.

Proof. For the sake of brevity we restrict ourselves to No. 55. The other cases are treated similarly. Here cmax=235+224=115c_{\text{max}}=\frac{2\cdot 3}{5}+\frac{2\cdot 2}{4}=\frac{11}{5}, cmin=min{45,34}=34c_{\text{min}}=\min\left\{\frac{4}{5},\frac{3}{4}\right\}=\frac{3}{4} and μ=1/20\mu=1/20.

By Lemma 5.6, kk is a gap number if and only if neither i) nor ii) occurs. Condition i) is that 2+2k20=k+110\frac{2+2k}{20}=\frac{k+1}{10} is a perfect square. Condition ii) is that [2+2kcmaxμ,2+2kcminμ]=[40k4,40k+25]\left[\frac{2+2k-c_{\text{max}}}{\mu},\frac{2+2k-c_{\text{min}}}{\mu}\right]=[40k-4,40k+25] contains some n2n^{2} with 20n20\nmid n. We check that 20n20\nmid n for every nn such that n2=40k+n^{2}=40k+\ell, with =4,,25\ell=-4,...,25. Indeed, if 20n20\mid n, then 400n2400\mid n^{2} and in particular 40n240\mid n^{2}. Then 40(n240k)=40\mid(n^{2}-40k)=\ell, which is absurd.

5.4 Surfaces with a 11-gap

In Subsection 5.3 we take each case in Table 6 and describe all its gap numbers. In this subsection we do the opposite, which is to fix a number and describe all cases having it as a gap number. We remind the reader that our motivating problem (Section 1) was to determine when there are sections P1,P2P_{1},P_{2} such that P1P2=1P_{1}\cdot P_{2}=1, which induce a conic bundle having P1+P2P_{1}+P_{2} as a reducible fiber. The answer for this question is the main theorem of this subsection:

Theorem 5.8.

Let XX be a rational elliptic surface. Then XX has a 11-gap if and only if r=0r=0 or r=1r=1 and π\pi has a III\text{III}^{*} fiber.

Our strategy for the proof is the following. We already know that a 11-gap exists whenever r=0r=0 (Theorem 3.1) or when r=1r=1 and π\pi has a III\text{III}^{*} fiber (Theorem 5.7, No. 43). Conversely, we need to find P1,P2P_{1},P_{2} with P1P2=1P_{1}\cdot P_{2}=1 in all cases with r1r\geq 1 and TE7T\neq E_{7}.

First we introduce two lemmas, which solve most cases with little computation, and leave the remaining ones for the proof of Theorem 5.8. In both Lemma 5.9 and Lemma 5.11 our goal is to analyze the narrow lattice E(K)0E(K)^{0} and apply Proposition 4.12 to detect cases without a 11-gap.

Lemma 5.9.

If one of the following holds, then h(P)=4h(P)=4 for some PE(K)0P\in E(K)^{0}.

  1. a)

    The Gram matrix of E(K)0E(K)^{0} has a 44 in its main diagonal.

  2. b)

    There is an embedding of AnAmA_{n}\oplus A_{m} in E(K)0E(K)^{0} for some n,m1n,m\geq 1.

  3. c)

    There is an embedding of An,DnA_{n},D_{n} or EnE_{n} in E(K)0E(K)^{0} for some n3n\geq 3.

Proof. Case a) is trivial. Assuming b), we take generators P1,P2P_{1},P_{2} from An,AmA_{n},A_{m} respectively with h(P1)=h(P2)=2h(P_{1})=h(P_{2})=2. Since An,AmA_{n},A_{m} are in direct sum, P1,P2=0\langle P_{1},P_{2}\rangle=0, hence h(P1+P2)=4h(P_{1}+P_{2})=4, as desired. If c) holds, then the fact that n3n\geq 3 allows us to choose two elements P1,P2P_{1},P_{2} among the generators of L1=An,DnL_{1}=A_{n},D_{n} or EnE_{n} such that h(P1)=h(P2)=2h(P_{1})=h(P_{2})=2 and P1,P2=0\langle P_{1},P_{2}\rangle=0. Thus h(P1+P2)=4h(P_{1}+P_{2})=4 as claimed.

Corollary 5.10.

In the following cases, XX does not have a 11-gap.

  • r3:r\geq 3: all cases except possibly No. 20.

  • r=1,2:r=1,2: cases No. 25, 26, 30, 32-36, 38, 41, 42, 46, 52, 54, 60.

Proof. We look at column E(K)0E(K)^{0} in Table LABEL:tabela_completa to find which cases satisfy one of the conditions a), b), c) from Lemma 5.9.

  1. a)

    Applies to No. 12, 17, 19, 22, 23, 25, 30, 32, 33, 36, 38, 41, 46, 52, 54, 60.

  2. b)

    Applies to No. 10, 11, 14, 15, 18, 24, 26, 34, 35, 42.

  3. c)

    Applies to No. 1-10, 13, 16, 21.

In particular, this covers all cases with r3r\geq 3 (No. 1-24) except No. 20. By Lemma 5.9 in each of these cases there is PE(K)0P\in E(K)^{0} with h(P)=4h(P)=4 and we are done by Proposition 4.12 1).

In the next lemma we also analyze E(K)0E(K)^{0} to detect surfaces without a 11-gap.

Lemma 5.11.

Assume E(K)0AnE(K)^{0}\simeq A_{n} for some n1n\geq 1 and that E(K)E(K) has nontrivial torsion part. Then XX does not have a 11-gap. This applies to cases No. 28, 39, 44, 48, 51, 57, 58 in Table LABEL:tabela_completa.

Proof. Take a generator PP of E(K)0E(K)^{0} with h(P)=2h(P)=2 and apply Proposition 4.12 2).

We are ready to prove the main result of this subsection.

Proof of Theorem 5.8. We need to show that in all cases where r1r\geq 1 and TE7T\neq E_{7} there are P1,P2E(K)P_{1},P_{2}\in E(K) such that P1P2=1P_{1}\cdot P_{2}=1. This corresponds to cases No. 1-61 except 43 in Table LABEL:tabela_completa.

The cases where r=1r=1 and E(K)E(K) is torsion-free can be solved by Theorem 5.10, namely No. 45-47, 49, 50, 55, 56. Adding these cases to the ones treated in Corollary 5.10 and Lemma 5.11, we have therefore solved the following:

No. 1-19, 21-26, 28, 30, 32-36, 38, 39, 41-52, 54-58, 60.\text{No. }1\text{-}19,\,21\text{-}26,\,28,\,30,\,32\text{-}36,\,38,\,39,\,41\text{-}52,\,54\text{-}58,\,60.

For the remaining cases, we apply Proposition 4.12 3), which involves finding perfect squares in the interval [4cmaxμ,4cminμ]\left[\frac{4-c_{\text{max}}}{\mu},\frac{4-c_{\text{min}}}{\mu}\right] (see Table 7), considering the half-open interval in the cases with Δ=2\Delta=2 (No. 53, 61).

No. TT E(K)E(K) μ\mu II n2In^{2}\in I
20 A22A1A_{2}^{\oplus 2}\oplus A_{1} A21/6A_{2}^{*}\oplus\langle 1/6\rangle 16\frac{1}{6} [13,23][13,23] 424^{2}
27 E6E_{6} A2A_{2}^{*} 23\frac{2}{3} [4,4][4,4] 222^{2}
29 A5A1A_{5}\oplus A_{1} A11/6A_{1}^{*}\oplus\langle 1/6\rangle 16\frac{1}{6} [12,21][12,21] 424^{2}
31 A4A2A_{4}\oplus A_{2} 115(2118)\frac{1}{15}\left(\begin{matrix}2&1\\ 1&8\end{matrix}\right) 215\frac{2}{15} [16,21][16,21] 424^{2}
37 A3A2A1A_{3}\oplus A_{2}\oplus A_{1} A11/12A_{1}^{*}\oplus\langle 1/12\rangle 112\frac{1}{12} [22,28][22,28] 525^{2}
40 A22A12A_{2}^{\oplus 2}\oplus A_{1}^{\oplus 2} 1/62\langle 1/6\rangle^{\oplus 2} 16\frac{1}{6} [10,21]\left[10,21\right] 424^{2}
53 A5A12A_{5}\oplus A_{1}^{\oplus 2} 1/6/2\langle 1/6\rangle\oplus\mathbb{Z}/2\mathbb{Z} 16\frac{1}{6} [9,12][9,12] 323^{2}
59 A3A2A12A_{3}\oplus A_{2}\oplus A_{1}^{\oplus 2} 1/12/2\langle 1/12\rangle\oplus\mathbb{Z}/2\mathbb{Z} 112\frac{1}{12} [16,42][16,42] 42,52,624^{2},5^{2},6^{2}
61 A23A1A_{2}^{\oplus 3}\oplus A_{1} 1/6/3\langle 1/6\rangle\oplus\mathbb{Z}/3\mathbb{Z} 16\frac{1}{6} [9,12][9,12] 323^{2}
Table 7: Perfect squares in the interval I:=[4cmaxμ,4cminμ]I:=\left[\frac{4-c_{\text{max}}}{\mu},\frac{4-c_{\text{min}}}{\mu}\right].

In No. 59 we have Δ>2\Delta>2, so a particular treatment is needed. Let T=Tv1Tv2Tv3Tv4=A3A2A1A1T=T_{v_{1}}\oplus T_{v_{2}}\oplus T_{v_{3}}\oplus T_{v_{4}}=A_{3}\oplus A_{2}\oplus A_{1}\oplus A_{1}. If PP generates the free part of E(K)E(K) and QQ generates its torsion part, then h(P)=112h(P)=\frac{1}{12} and 4P+Q4P+Q meets the reducible fibers at Θv1,2,Θv2,1,Θv3,1,Θv4,1\Theta_{v_{1},2},\Theta_{v_{2},1},\Theta_{v_{3},1},\Theta_{v_{4},1} [Kur14][Example 1.7]. By Table 1 and the height formula (2),

4212=h(4P+Q)=2+2(4P+Q)O2241231212,\frac{4^{2}}{12}=h(4P+Q)=2+2(4P+Q)\cdot O-\frac{2\cdot 2}{4}-\frac{1\cdot 2}{3}-\frac{1}{2}-\frac{1}{2},

hence (4P+Q)O=1(4P+Q)\cdot O=1, as desired.

6 Appendix

We reproduce part of the table in [OS91, Main Th.] with data on Mordell-Weil lattices of rational elliptic surfaces with Mordell-Weil rank r1r\geq 1. We only add columns cmax,cmin,Δc_{\text{max}},c_{\text{min}},\Delta.

Table 8: Mordell-Weil lattices of rational elliptic surfaces with Mordell-Weil rank r1r\geq 1.
No. rr TT E(K)0E(K)^{0} E(K)E(K) cmaxc_{\text{max}} cminc_{\text{min}} Δ\Delta
1 88 0 E8E_{8} E8E_{8} 0 0 0
2 77 A1A_{1} E7E_{7} E8E_{8}^{*} 12\frac{1}{2} 12\frac{1}{2} 0
3 66 A2A_{2} E6E_{6} E6E_{6}^{*} 23\frac{2}{3} 23\frac{2}{3} 0
4 A12A_{1}^{\oplus 2} D6D_{6} D6D_{6}^{*} 32\frac{3}{2} 11 12\frac{1}{2}
5 55 A3A_{3} D5D_{5} D5D_{5}^{*} 11 34\frac{3}{4} 14\frac{1}{4}
6 A2A1A_{2}\oplus A_{1} A5A_{5} A5A_{5}^{*} 76\frac{7}{6} 12\frac{1}{2} 23\frac{2}{3}
7 A13A_{1}^{\oplus 3} D4A1D_{4}\oplus A_{1} D4A1D_{4}^{*}\oplus A_{1}^{*} 32\frac{3}{2} 12\frac{1}{2} 11
8 44 A4A_{4} A4A_{4} A4A_{4}^{*} 65\frac{6}{5} 45\frac{4}{5} 25\frac{2}{5}
9 D4D_{4} D4D_{4} D4D_{4}^{*} 11 11 0
10 A3A1A_{3}\oplus A_{1} A3A1A_{3}\oplus A_{1} A3A1A_{3}^{*}\oplus A_{1}^{*} 32\frac{3}{2} 12\frac{1}{2} 11
11 A22A_{2}^{\oplus 2} A22A_{2}^{\oplus 2} A22{A_{2}^{*}}^{\oplus 2} 43\frac{4}{3} 23\frac{2}{3} 23\frac{2}{3}
12 A2A12A_{2}\oplus A_{1}^{\oplus 2} (4101121001211012)\left(\begin{matrix}4&-1&0&1\\ -1&2&-1&0\\ 0&-1&2&-1\\ 1&0&-1&2\end{matrix}\right) 16(2101153103631135)\frac{1}{6}\left(\begin{matrix}2&1&0&-1\\ 1&5&3&1\\ 0&3&6&3\\ -1&1&3&5\end{matrix}\right) 53\frac{5}{3} 12\frac{1}{2} 76\frac{7}{6}
13 A14A_{1}^{\oplus 4} D4D_{4} D4/2D_{4}^{*}\oplus\mathbb{Z}/2\mathbb{Z} 22 12\frac{1}{2} 32\frac{3}{2}
14 A14A_{1}^{\oplus 4} A14A_{1}^{\oplus 4} A14{A_{1}^{*}}^{\oplus 4} 22 12\frac{1}{2} 32\frac{3}{2}
15 33 A5A_{5} A2A1A_{2}\oplus A_{1} A2A1A_{2}^{*}\oplus A_{1}^{*} 32\frac{3}{2} 56\frac{5}{6} 23\frac{2}{3}
16 D5D_{5} A3A_{3} A3A_{3}^{*} 54\frac{5}{4} 11 14\frac{1}{4}
17 A4A1A_{4}\oplus A_{1} (411121112)\left(\begin{matrix}4&-1&1\\ -1&2&-1\\ 1&-1&2\end{matrix}\right) 110(311173137)\frac{1}{10}\left(\begin{matrix}3&1&-1\\ 1&7&3\\ -1&3&7\end{matrix}\right) 1710\frac{17}{10} 12\frac{1}{2} 65\frac{6}{5}
18 D4A1D_{4}\oplus A_{1} A13A_{1}^{\oplus 3} A13{A_{1}^{*}}^{\oplus 3} 32\frac{3}{2} 12\frac{1}{2} 11
19 A3A2A_{3}\oplus A_{2} (201021114)\left(\begin{matrix}2&0&-1\\ 0&2&-1\\ -1&-1&4\end{matrix}\right) 112(712172224)\frac{1}{12}\left(\begin{matrix}7&1&2\\ 1&7&2\\ 2&2&4\end{matrix}\right) 53\frac{5}{3} 23\frac{2}{3} 11
20 A22A1A_{2}^{\oplus 2}\oplus A_{1} A26A_{2}\oplus\langle 6\rangle A21/6A_{2}^{*}\oplus\langle 1/6\rangle 116\frac{11}{6} 12\frac{1}{2} 43\frac{4}{3}
21 A3A12A_{3}\oplus A_{1}^{\oplus 2} A3A_{3} A3/2A_{3}^{*}\oplus\mathbb{Z}/2\mathbb{Z} 22 12\frac{1}{2} 32\frac{3}{2}
22 A3A12A_{3}\oplus A_{1}^{\oplus 2} A14A_{1}\oplus\langle 4\rangle A11/4A_{1}^{*}\oplus\langle 1/4\rangle 22 12\frac{1}{2} 32\frac{3}{2}
23 A2A13A_{2}\oplus A_{1}^{\oplus 3} A1(4224)A_{1}\oplus\left(\begin{matrix}4&-2\\ -2&4\end{matrix}\right) A116(2112)A_{1}^{*}\oplus\frac{1}{6}\left(\begin{matrix}2&1\\ 1&2\end{matrix}\right) 136\frac{13}{6} 12\frac{1}{2} 53\frac{5}{3}
24 A15A_{1}^{\oplus 5} A13A_{1}^{\oplus 3} A13/2{A_{1}^{*}}^{\oplus 3}\oplus\mathbb{Z}/2\mathbb{Z} 52\frac{5}{2} 12\frac{1}{2} 22
25 22 A6A_{6} (4112)\left(\begin{matrix}4&-1\\ -1&2\end{matrix}\right) 17(2114)\frac{1}{7}\left(\begin{matrix}2&1\\ 1&4\end{matrix}\right) 127\frac{12}{7} 67\frac{6}{7} 67\frac{6}{7}
26 D6D_{6} A12A_{1}^{\oplus 2} A12{A_{1}^{*}}^{\oplus 2} 32\frac{3}{2} 11 12\frac{1}{2}
27 E6E_{6} A2A_{2} A2A_{2}^{*} 43\frac{4}{3} 43\frac{4}{3} 0
28 A5A1A_{5}\oplus A_{1} A2A_{2} A2/2A_{2}^{*}\oplus\mathbb{Z}/2\mathbb{Z} 22 12\frac{1}{2} 32\frac{3}{2}
29 A5A1A_{5}\oplus A_{1} A16A_{1}\oplus\langle 6\rangle A11/6A_{1}^{*}\oplus\langle 1/6\rangle 22 12\frac{1}{2} 32\frac{3}{2}
30 D5A1D_{5}\oplus A_{1} A14A_{1}\oplus\langle 4\rangle A11/4A_{1}^{*}\oplus\langle 1/4\rangle 74\frac{7}{4} 12\frac{1}{2} 54\frac{5}{4}
31 A4A2A_{4}\oplus A_{2} (8112)\left(\begin{matrix}8&-1\\ -1&2\end{matrix}\right) 115(2118)\frac{1}{15}\left(\begin{matrix}2&1\\ 1&8\end{matrix}\right) 2815\frac{28}{15} 23\frac{2}{3} 65\frac{6}{5}
32 D4A2D_{4}\oplus A_{2} (4224)\left(\begin{matrix}4&-2\\ -2&4\end{matrix}\right) 16(2112)\frac{1}{6}\left(\begin{matrix}2&1\\ 1&2\end{matrix}\right) 53\frac{5}{3} 23\frac{2}{3} 11
33 A4A12A_{4}\oplus A_{1}^{\oplus 2} (6224)\left(\begin{matrix}6&-2\\ -2&4\end{matrix}\right) 110(2113)\frac{1}{10}\left(\begin{matrix}2&1\\ 1&3\end{matrix}\right) 115\frac{11}{5} 12\frac{1}{2} 1710\frac{17}{10}
34 D4A12D_{4}\oplus A_{1}^{\oplus 2} A12A_{1}^{\oplus 2} A12{A_{1}^{*}}^{\oplus 2} 22 12\frac{1}{2} 32\frac{3}{2}
35 A32A_{3}^{\oplus 2} A12A_{1}^{\oplus 2} A12/2{A_{1}^{*}}^{\oplus 2}\oplus\mathbb{Z}/2\mathbb{Z} 22 34\frac{3}{4} 54\frac{5}{4}
36 A32A_{3}^{\oplus 2} 42\langle 4\rangle^{\oplus 2} 1/42\langle 1/4\rangle^{\oplus 2} 22 34\frac{3}{4} 54\frac{5}{4}
37 A3A2A1A_{3}\oplus A_{2}\oplus A_{1} A112A_{1}\oplus\langle 12\rangle A11/12A_{1}^{*}\oplus\langle 1/12\rangle 136\frac{13}{6} 12\frac{1}{2} 53\frac{5}{3}
38 A3A13A_{3}\oplus A_{1}^{\oplus 3} A14A_{1}\oplus\langle 4\rangle A11/4/2A_{1}^{*}\oplus\langle 1/4\rangle\oplus\mathbb{Z}/2\mathbb{Z} 52\frac{5}{2} 12\frac{1}{2} 22
39 A23A_{2}^{\oplus 3} A2A_{2} A2/3A_{2}^{*}\oplus\mathbb{Z}/3\mathbb{Z} 22 23\frac{2}{3} 43\frac{4}{3}
40 A22A12A_{2}^{\oplus 2}\oplus A_{1}^{\oplus 2} 62\langle 6\rangle^{\oplus 2} 1/62\langle 1/6\rangle^{\oplus 2} 73\frac{7}{3} 12\frac{1}{2} 116\frac{11}{6}
41 A2A14A_{2}\oplus A_{1}^{\oplus 4} (4224)\left(\begin{matrix}4&-2\\ -2&4\end{matrix}\right) 16(2112)\frac{1}{6}\left(\begin{matrix}2&1\\ 1&2\end{matrix}\right) 83\frac{8}{3} 12\frac{1}{2} 136\frac{13}{6}
42 A16A_{1}^{\oplus 6} A12A_{1}^{\oplus 2} A12(/2)2{A_{1}^{*}}^{\oplus 2}\oplus(\mathbb{Z}/2\mathbb{Z})^{2} 33 12\frac{1}{2} 52\frac{5}{2}
43 11 E7E_{7} A1A_{1} A1A_{1}^{*} 32\frac{3}{2} 32\frac{3}{2} 0
44 A7A_{7} A1A_{1} A1/2A_{1}^{*}\oplus\mathbb{Z}/2\mathbb{Z} 22 78\frac{7}{8} 118\frac{11}{8}
45 A7A_{7} 8\langle 8\rangle 1/8\langle 1/8\rangle 22 78\frac{7}{8} 118\frac{11}{8}
46 D7D_{7} 4\langle 4\rangle 1/4\langle 1/4\rangle 74\frac{7}{4} 11 34\frac{3}{4}
47 A6A1A_{6}\oplus A_{1} 14\langle 14\rangle 1/14\langle 1/14\rangle 3114\frac{31}{14} 12\frac{1}{2} 127\frac{12}{7}
48 D6A1D_{6}\oplus A_{1} A1A_{1} A1A_{1}^{*} 22 32\frac{3}{2} 12\frac{1}{2}
49 E6A1E_{6}\oplus A_{1} 6\langle 6\rangle 1/6\langle 1/6\rangle 116\frac{11}{6} 12\frac{1}{2} 43\frac{4}{3}
50 D5A2D_{5}\oplus A_{2} 12\langle 12\rangle 1/12\langle 1/12\rangle 2312\frac{23}{12} 23\frac{2}{3} 54\frac{5}{4}
51 A5A2A_{5}\oplus A_{2} A1A_{1} A1/3A_{1}^{*}\oplus\mathbb{Z}/3\mathbb{Z} 136\frac{13}{6} 23\frac{2}{3} 32\frac{3}{2}
52 D5A12D_{5}\oplus A_{1}^{\oplus 2} 4\langle 4\rangle 1/4/2\langle 1/4\rangle\oplus\mathbb{Z}/2\mathbb{Z} 94\frac{9}{4} 12\frac{1}{2} 74\frac{7}{4}
53 A5A12A_{5}\oplus A_{1}^{\oplus 2} 6\langle 6\rangle 1/6/2\langle 1/6\rangle\oplus\mathbb{Z}/2\mathbb{Z} 52\frac{5}{2} 12\frac{1}{2} 22
54 D4A3D_{4}\oplus A_{3} 4\langle 4\rangle 1/4/2\langle 1/4\rangle\oplus\mathbb{Z}/2\mathbb{Z} 22 34\frac{3}{4} 54\frac{5}{4}
55 A4A3A_{4}\oplus A_{3} 20\langle 20\rangle 1/20\langle 1/20\rangle 115\frac{11}{5} 34\frac{3}{4} 2920\frac{29}{20}
56 A4A2A1A_{4}\oplus A_{2}\oplus A_{1} 30\langle 30\rangle 1/30\langle 1/30\rangle 7130\frac{71}{30} 12\frac{1}{2} 2815\frac{28}{15}
57 D4A13D_{4}\oplus A_{1}^{\oplus 3} A1A_{1} A1A_{1}^{*} 52\frac{5}{2} 12\frac{1}{2} 22
58 A32A1A_{3}^{\oplus 2}\oplus A_{1} A1A_{1} A1/4A_{1}^{*}\oplus\mathbb{Z}/4\mathbb{Z} 52\frac{5}{2} 12\frac{1}{2} 22
59 A3A2A12A_{3}\oplus A_{2}\oplus A_{1}^{\oplus 2} 12\langle 12\rangle 1/12/2\langle 1/12\rangle\oplus\mathbb{Z}/2\mathbb{Z} 83\frac{8}{3} 12\frac{1}{2} 136\frac{13}{6}
60 A3A14A_{3}\oplus A_{1}^{\oplus 4} 4\langle 4\rangle 1/4/2\langle 1/4\rangle\oplus\mathbb{Z}/2\mathbb{Z} 33 12\frac{1}{2} 52\frac{5}{2}
61 A23A1A_{2}^{\oplus 3}\oplus A_{1} 6\langle 6\rangle 1/6/3\langle 1/6\rangle\oplus\mathbb{Z}/3\mathbb{Z} 52\frac{5}{2} 12\frac{1}{2} 22

References

  • [Ber12] P. Bernays. Über die Darstellung von positiven, ganzen Zahlen durch die primitive, binären quadratischen Formen einer nicht-quadratischen Diskriminante. PhD thesis, Göttingen, 1912.
  • [BH] M. Bhargava and J. Hanke. Universal quadratic forms and the 290-Theorem. Preprint at http://math.stanford.edu/~vakil/files/290-Theorem-preprint.pdf.
  • [Cos] R. D. Costa. Classification of fibers of conic bundles on rational elliptic surfaces. arXiv:2206.03549.
  • [Elk90] N. D. Elkies. The Mordell-Weil lattice of a rational elliptic surface. Arbeitstagung Bonn, 1990.
  • [HW79] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Clarendon Press, 1979.
  • [Kur14] Y. Kurumadani. Pencil of cubic curves and rational elliptic surfaces. Master’s thesis, Kyoto University, 2014.
  • [MP89] R. Miranda and U. Persson. Torsion groups of elliptic surfaces. Compositio Mathematica, 72(3):249–267, 1989.
  • [Nis96] K. Nishiyama. The Jacobian fibrations on some K3 surfaces and their Mordell-Weil groups. Japanese Journal of Mathematics, 22(2), 1996.
  • [OS91] K. Oguiso and T. Shioda. The Mordell-Weil lattice of a rational elliptic surface. Commentarii Mathematici Universitatis Sancti Pauli, 40, 1991.
  • [Shi89] T. Shioda. The Mordell-Weil lattice and Galois representation, I, II, III. Proceedings of the Japan Academy, 65(7), 1989.
  • [Shi90] T. Shioda. On the Mordell-Weil lattices. Commentarii Mathematici Universitatis Sancti Pauli, 39(7), 1990.
  • [SS10] M. Schuett and T. Shioda. Elliptic surfaces. Advanced Studies in Pure Mathematics, 60:51–160, 2010.
  • [SS19] M. Schuett and T. Shioda. Mordell-Weil Lattices, volume 70 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, 2019.