This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Gelfand-Tsetlin modules over 𝔀​𝔩​(n)\mathfrak{gl}(n) with arbitrary characters

L.E. RamΓ­rez111Universidade Federal do ABC, Santo AndrΓ©-SP, Brasil email: luis.enrique@ufabc.edu.br , P. Zadunaisky222Instituto de MatemΓ‘tica e EstatΓ­stica, Universidade de SΓ£o Paulo, SΓ£o Paulo SP, Brasil. email: pzadun@ime.usp.br. The author is a FAPESP PostDoc Fellow, grant: 2016-25984-1 SΓ£o Paulo Research Foundation (FAPESP).
Abstract

A Gelfand-Tsetlin tableau T​(v)T(v) induces a character Ο‡v\chi_{v} of the Gelfand-Tsetlin subalgebra Ξ“\Gamma of U=U​(𝔀​𝔩​(n,β„‚))U=U(\mathfrak{gl}(n,\mathbb{C})). By a theorem due to Ovsienko, for each tableau T​(v)T(v) there exists a finite number of nonisomorphic irreducible Gelfand-Tsetlin modules with Ο‡v\chi_{v} in its support, though explicit examples of such modules are only known for special families of characters. In this article we build a family of Gelfand-Tsetlin modules parametrized by characters, such that each character appears in its corresponding module. We also find the support of these modules, with multiplicities.

MSC 2010 Classification: 17B10.
Keywords: Gelfand-Tsetlin modules, Gelfand-Tsetlin bases, tableaux realization.

1 Introduction

The notion of a Gelfand-Tsetlin module (see Definition LABEL:D:gt-module) has its origin in the classical article [GT-modules], where I. Gelfand and M. Tsetlin gave an explicit presentation of all finite dimensional irreducible representations of 𝔀=𝔀​𝔩​(n,β„‚)\mathfrak{g}=\mathfrak{gl}(n,\mathbb{C}) in terms of certain combinatorial objects, which have come to be known as Gelfand-Tsetlin tableaux, or GT tableaux for short. A GT tableau is a triangular array of n​(n+1)2\frac{n(n+1)}{2} complex numbers, with kk entries in the kk-th row; given a point vβˆˆβ„‚n​(n+1)2v\in\mathbb{C}^{\frac{n(n+1)}{2}} we denote the corresponding array by T​(v)T(v). The group G=S1Γ—S2Γ—β‹―Γ—SnG=S_{1}\times S_{2}\times\cdots\times S_{n} acts on the set of all tableaux, with SkS_{k} permuting the elements in the kk-th row. Gelfand and Tsetlin’s theorem establishes that any finite dimensional irreducible representation of 𝔀\mathfrak{g} has a basis parameterized by GT tableaux with integer entries satisfying certain betweenness relations. Identifying the elements of the basis with the corresponding GT tableaux, the action of an element of 𝔀\mathfrak{g} over a tableau is given by rational functions in its entries. These rational functions are known as the Gelfand-Tsetlin formulas; their poles form an infinite hyperplane array in β„‚n​(n+1)2\mathbb{C}^{\frac{n(n+1)}{2}}.

The enveloping algebra U=U​(𝔀)U=U(\mathfrak{g}) contains a large (indeed, maximal) commutative subalgebra Ξ“\Gamma called the Gelfand-Tsetlin subalgebra of UU. A Gelfand-Tsetlin module is a UU-module that can be decomposed as the direct sum of generalized eigenspaces for Ξ“\Gamma. The characters of Ξ“\Gamma are in one-to-one correspondence with GT tableaux modulo the action of GG (see [Zh-compact-book]), and in the original construction of Gelfand and Tsetlin each tableau T​(v)T(v) is an eigenvector of Ξ“\Gamma whose eigenvalue is precisely the character Ο‡v:Ξ“βŸΆβ„‚\chi_{v}:\Gamma\longrightarrow\mathbb{C} corresponding to vv. Since no two tableaux in this construction are in the same GG-orbit, the multiplicity of this character (i.e. the number of eigenvectors of eigenvalue Ο‡v\chi_{v}) is one.

Ovsienko proved in [Ovs-finiteness, Ovs-strongly-nilpotent] that for each character Ο‡:Ξ“βŸΆβ„‚\chi:\Gamma\longrightarrow\mathbb{C} there exists a nonzero finite number of Gelfand-Tsetlin UU-modules with Ο‡\chi in its character support. Many such modules have been constructed for different classes of characters, such as standard [GT-modules], generic [DFO-GT-modules], 11-singular [FGR-1-singular], index 22 [FGR-2-index], etc. However, no explicit construction of such modules is known for arbitrary characters.

The first work in this direction is due to Y. Drozd, S. Ovsienko and V. Futorny, who introduced a large family of infinite dimensional 𝔀\mathfrak{g}-modules in [DFO-GT-modules]. These GT modules have a basis parameterized by Gelfand-Tsetlin tableaux with complex coefficients such that no pattern is a pole for the rational functions appearing in the GT formulae (such tableaux are called generic, hence the name β€œgeneric Gelfand-Tsetlin module”). While each character in the decomposition of a generic Gelfand-Tsetlin module appears with multiplicity one, there are examples of non-generic GT modules with higher multiplicities. These examples were first encountered in [Fut-generalization-Verma, Fut-semiprimitive] for 𝔰​𝔩​(3)\mathfrak{sl}(3).

In [FGR-1-singular] V. Futorny, D. Grantcharov and the first named author constructed a GT module with 11-singular characters, i.e. characters associated to tableaux over which the Gelfand-Tsetlin formulas may have singularities of order at most 11. These modules have a basis in terms of so-called derived tableaux, new objects which, according to the authors β€œare not new combinatorial objects” but rather formal objects in a large vector-space that contains classical GT tableaux. This construction was expanded and refined in the articles [FGR-2-index, Zad-1-sing, V-geometric-singular-GT] for characters with more general singularities. The aim of this article is to extend this construction to arbitrary characters and calculate the mutliplicity of the corresponding characters. This is achieved in section 5; in the process we disprove the statement above and give a combinatorial interpretation of derived tableaux.

The general idea of our construction is the following. Let KK be the field of rational functions over the space of GT tableaux, and denote by VV the KK vector-space of arbitrary integral GT tableaux. This is a UU-module, which we call the big GT module, with the action of 𝔀\mathfrak{g} given by the Gelfand-Tsetlin formulas. These rational functions lie in the algebra AA of regular functions over generic tableaux, and hence the AA-lattice LAL_{A} whose AA-basis is the set of all integral tableaux is a UU-submodule of VV; now given a generic tableau T​(v)T(v), we can recover the corresponding generic module by specializing VAV_{A} at vv. This idea breaks down if T​(v)T(v) is a singular tableau, and in that case we replace AA with an algebra BβŠ‚KB\subset K such that (1)(1) evaluation at vv makes sense and (2)(2) there exists a BB-lattice LBβŠ‚VL_{B}\subset V which is also a UU-submodule. Once this is done, the rest of the construction follows as in the generic case.

Denote by ΞΌ\mu the composition of n​(n+1)2\frac{n(n+1)}{2} given by (1,2,…,n)(1,2,\ldots,n). Each point vβˆˆβ„‚n​(n+1)2v\in\mathbb{C}^{\frac{n(n+1)}{2}}, or rather its class modulo GG, defines a refinement η​(v)\eta(v) of ΞΌ\mu, and it turns out that the structure of the associated GT module V​(T​(v))V(T(v)) depends heavily on η​(v)\eta(v). While it is possible in principle to choose an algebra BB and a lattice LBL_{B} that works for all vv simultaneously, we get more information by fixing a refinement Ξ·\eta and focusing on characters with η​(v)=Ξ·\eta(v)=\eta, thus obtaining an algebra BΞ·B_{\eta} and a BΞ·B_{\eta}-lattice LΞ·L_{\eta}. Each LΞ·L_{\eta} has a basis of derived tableaux, and changing Ξ·\eta changes this basis in an essential way.

As shown in [FGR-generic-irreducible], the generic GT modules from [DFO-GT-modules] are universal, in the sense that any irreducible GT module with a generic character in its support is isomorphic to a subquotient of the corresponding generic GT module. The 11-singular GT modules built in [FGR-1-singular] are also universal with respect to 11-singular characters, see [FGR-drinfeld]. Since these modules are special cases of our construction, we expect the singular GT modules built in this article to be universal with respect to the characters in their support.

While finishing this paper the article [V-geometric-singular-GT] by E. Vishnyakova was uploaded to the ArXiv, containing a similar construction of pp-singular GT modules, where pβˆˆβ„•β‰₯2p\in\mathbb{N}_{\geq 2}. This is a special class of singular modules, associated to classes vβˆˆβ„‚n​(n+1)2/Gv\in\mathbb{C}^{\frac{n(n+1)}{2}}/G where the composition η​(v)\eta(v) has only one nontrivial part, which is equal to pp.


The article is organized as follows. In section 2 we set the notation used for the combinatorial invariants associated to tableaux. In section 3 we review some basic facts on GT modules, including the construction of generic and 11-singular GT modules in terms of the big GT module. In section 4 we study certain operators related to divided differences which play a central role in the construction of the lattices LΞ·L_{\eta}. Finally in section 5 we present the lattices LΞ·L_{\eta}, build the GT modules associated to a character Ο‡v\chi_{v} and find its character support with the corresponding multiplicites.


2 Preeliminaries

L

et n,mβˆˆβ„•n,m\in\mathbb{N}. We write ⟦n,m⟧={kβˆˆβ„•βˆ£n≀k≀m}\llbracket n,m\rrbracket=\{k\in\mathbb{N}\mid n\leq k\leq m\} and ⟦n⟧=⟦1,n⟧\llbracket n\rrbracket=\llbracket 1,n\rrbracket. We denote by SnS_{n} the symmetric group on nn elements. Recall that for each ΟƒβˆˆSn\sigma\in S_{n} the length of Οƒ\sigma, denoted by ℓ​(Οƒ)\ell(\sigma), is the number of inversions of Οƒ\sigma, i.e. the number of pairs (i,j)∈⟦n⟧2(i,j)\in\llbracket n\rrbracket^{2} such that i<ji<j but σ​(i)>σ​(j)\sigma(i)>\sigma(j). There exists a unique longest word w0∈Snw_{0}\in S_{n} such that ℓ​(w0)=n​(nβˆ’1)2\ell(w_{0})=\frac{n(n-1)}{2}. Also ℓ​(Οƒ)=ℓ​(Οƒβˆ’1)\ell(\sigma)=\ell(\sigma^{-1}), and ℓ​(Οƒβˆ’1​w0)=ℓ​(w0)βˆ’β„“β€‹(Οƒ)\ell(\sigma^{-1}w_{0})=\ell(w_{0})-\ell(\sigma). For each i∈⟦nβˆ’1⟧i\in\llbracket n-1\rrbracket the ii-th simple transposition is si=(i,i+1)∈Sns_{i}=(i,i+1)\in S_{n}. Simple transpositions generate SnS_{n}, and the length of ΟƒβˆˆSn\sigma\in S_{n} is the minimal ll such that Οƒ\sigma can be written as si1​si2​⋯​sils_{i_{1}}s_{i_{2}}\cdots s_{i_{l}}. Any such writing is called a reduced decomposition of Οƒ\sigma.

Compositions. Recall that a composition of nn is a sequence ΞΌ=(ΞΌ1,…,ΞΌr)\mu=(\mu_{1},\ldots,\mu_{r}) of positive integers such that βˆ‘i=1rΞΌi=n\sum_{i=1}^{r}\mu_{i}=n. The ΞΌk\mu_{k} are called the parts of ΞΌ\mu. Now let ΞΌ=(ΞΌ1,…,ΞΌr)\mu=(\mu_{1},\ldots,\mu_{r}) be a composition of nn. For each k∈⟦r⟧k\in\llbracket r\rrbracket set Ξ±k=Ξ±k​(ΞΌ)=βˆ‘j=1kβˆ’1ΞΌj+1\alpha_{k}=\alpha_{k}(\mu)=\sum_{j=1}^{k-1}\mu_{j}+1 and Ξ²k=Ξ²k​(ΞΌ)=βˆ‘j=1kΞΌj\beta_{k}=\beta_{k}(\mu)=\sum_{j=1}^{k}\mu_{j}, so the interval ⟦αk,Ξ²k⟧\llbracket\alpha_{k},\beta_{k}\rrbracket has ΞΌk\mu_{k} elements; we refer to this interval as the kk-th block of ΞΌ\mu.

Denote by SΞΌβŠ‚SnS_{\mu}\subset S_{n} the subgroup of bijections Οƒ\sigma such that σ​(⟦αk,Ξ²k⟧)=⟦αk,Ξ²k⟧\sigma(\llbracket\alpha_{k},\beta_{k}\rrbracket)=\llbracket\alpha_{k},\beta_{k}\rrbracket for each k∈⟦r⟧k\in\llbracket r\rrbracket. This is a parabolic subgroup of SnS_{n} in the sense of [BB-coxeter-book]*section 2.4, and we review some of the properties discussed there. By definition each ΟƒβˆˆSΞΌ\sigma\in S_{\mu} is a product of the form Οƒ=Οƒ(1)​σ(2)​⋯​σ(r)\sigma=\sigma^{(1)}\sigma^{(2)}\cdots\sigma^{(r)} with each Οƒ(j)\sigma^{(j)} the identity on each ΞΌ\mu-block except the jj-th. The length of an element on SΞΌS_{\mu} is ℓ​(Οƒ)=ℓ​(Οƒ(1))+β‹―+ℓ​(Οƒ(r))\ell(\sigma)=\ell(\sigma^{(1)})+\cdots+\ell(\sigma^{(r)}), and SΞΌS_{\mu} has a unique longest word wΞΌw_{\mu} with wΞΌ(k)w_{\mu}^{(k)} the longest word of the permutation group of ⟦αk,Ξ²k⟧\llbracket\alpha_{k},\beta_{k}\rrbracket. We set ΞΌ!=#​SΞΌ=ΞΌ1!​μ2!​⋯​μr!\mu!=\#S_{\mu}=\mu_{1}!\mu_{2}!\cdots\mu_{r}!.

Put Ξ£(ΞΌ)={(k,i)∣k∈⟦r⟧,i∈⟦μk⟧}\Sigma(\mu)=\{(k,i)\mid k\in\llbracket r\rrbracket,i\in\llbracket\mu_{k}\rrbracket\} and let Ξ³ΞΌ:Ξ£(ΞΌ)⟢⟦n⟧\gamma_{\mu}:\Sigma(\mu)\longrightarrow\llbracket n\rrbracket given by γμ​(k,i)=i+βˆ‘j=1kβˆ’1ΞΌj\gamma_{\mu}(k,i)=i+\sum_{j=1}^{k-1}\mu_{j}. This map is a bijection, and through it SΞΌS_{\mu} acts on Σ​(ΞΌ)\Sigma(\mu). We will often identify a permutation ΟƒβˆˆSΞΌ\sigma\in S_{\mu} by its action on Σ​(ΞΌ)\Sigma(\mu); for example, we denote by si(k)s_{i}^{(k)} the simple transposition in SΞΌS_{\mu} which acts on Σ​(ΞΌ)\Sigma(\mu) by interchanging (k,i)(k,i) and (k,i+1)(k,i+1), leaving all other elements fixed. With this notation, Οƒ(k)\sigma^{(k)} leaves all elements of the form (j,l)(j,l) with jβ‰ kj\neq k fixed.

Set

symΞΌ\displaystyle\operatorname{sym}_{\mu} =1ΞΌ!β€‹βˆ‘ΟƒβˆˆSΞΌΟƒ;\displaystyle=\frac{1}{\mu!}\sum_{\sigma\in S_{\mu}}\sigma; asymΞΌ\displaystyle\operatorname{asym}_{\mu} =1ΞΌ!β€‹βˆ‘ΟƒβˆˆSΞΌsg⁑(Οƒ)​σ.\displaystyle=\frac{1}{\mu!}\sum_{\sigma\in S_{\mu}}\operatorname{sg}(\sigma)\sigma.

These are idempotent elements of the group algebra ℂ​[SΞΌ]\mathbb{C}[S_{\mu}] and given a ℂ​[SΞΌ]\mathbb{C}[S_{\mu}]-module VV, multiplication by symΞΌ\operatorname{sym}_{\mu}, resp. asymΞΌ\operatorname{asym}_{\mu}, is the projection onto the symmetric, resp. antisymmetric, component of VV.

Refinements. A refinement of ΞΌ\mu is a collection of compositions Ξ·=(Ξ·(1),…,Ξ·(r))\eta=(\eta^{(1)},\ldots,\eta^{(r)}) with each Ξ·(k)\eta^{(k)} a composition of ΞΌk\mu_{k}. If Ξ·\eta is a refinement of ΞΌ\mu then the concatenation of the Ξ·(k)\eta^{(k)}’s is also a composition of nn, which by abuse of notation we will also denote by Ξ·\eta.

If Ξ·\eta refines ΞΌ\mu then SΞ·βŠ‚SΞΌS_{\eta}\subset S_{\mu}. We say that ΟƒβˆˆSΞΌ\sigma\in S_{\mu} is a Ξ·\eta-shuffle if it is increasing in each Ξ·\eta-block. Among the elements of a coclass σ​Sμ∈SΞΌ/SΞ·\sigma S_{\mu}\in S_{\mu}/S_{\eta} there is exactly one Ξ·\eta-shuffle, and this is the unique element of minimal length in the coclass. We denote the set of all Ξ·\eta-shuffles in SΞΌS_{\mu} by π–²π—π—Žπ–Ώπ–Ώπ—…π–ΎΞ·ΞΌ\mathsf{Shuffle}^{\mu}_{\eta}. The group SΞ·S_{\eta} acts on Σ​(ΞΌ)\Sigma(\mu) by restriction, and the orbits of this action are also called the Ξ·\eta-blocks of ΞΌ\mu.

mu-points We write β„‚ΞΌ=β„‚ΞΌ1βŠ•β„‚ΞΌ2βŠ•β‹―βŠ•β„‚ΞΌr\mathbb{C}^{\mu}=\mathbb{C}^{\mu_{1}}\oplus\mathbb{C}^{\mu_{2}}\oplus\cdots\oplus\mathbb{C}^{\mu_{r}}; thus vβˆˆβ„‚ΞΌv\in\mathbb{C}^{\mu} is an rr-uple of vectors (v1,…,vr)(v_{1},\ldots,v_{r}) with vkβˆˆβ„‚ΞΌkv_{k}\in\mathbb{C}^{\mu_{k}}. We refer to the elements of β„‚ΞΌ\mathbb{C}^{\mu} as ΞΌ\mu-points, or simply points if the composition ΞΌ\mu is fixed. For each (k,i)βˆˆΞ£β€‹(ΞΌ)(k,i)\in\Sigma(\mu) we write vk,iv_{k,i} for the ii-th coordinate of vkv_{k}. We refer to the vkv_{k}’s as the ΞΌ\mu-blocks of vv, and to the vk,iv_{k,i}’s as the entries of vv. We say that a ΞΌ\mu-point vv is integral if all its entries lie in β„€\mathbb{Z}. Clearly β„‚ΞΌ\mathbb{C}^{\mu} is an affine variety, and we denote by ℂ​[XΞΌ]\mathbb{C}[X_{\mu}] the polynomial algebra generated by xk,ix_{k,i} with (k,i)βˆˆΞ£β€‹(ΞΌ)(k,i)\in\Sigma(\mu), which is the coordinate ring of β„‚ΞΌ\mathbb{C}^{\mu}. We also denote by ℂ​(XΞΌ)\mathbb{C}(X_{\mu}) the field of fractions of ℂ​[XΞΌ]\mathbb{C}[X_{\mu}]. The group SΞΌS_{\mu} acts on β„‚ΞΌ\mathbb{C}^{\mu} in an obvious way, and this induces actions on ℂ​[XΞΌ]\mathbb{C}[X_{\mu}] and ℂ​(XΞΌ)\mathbb{C}(X_{\mu}).

If Ξ·\eta is a refinement of ΞΌ\mu then there exists an isomorphism β„‚Ξ·β‰…β„‚ΞΌ\mathbb{C}^{\eta}\cong\mathbb{C}^{\mu}, so we can talk of the Ξ·\eta-blocks of vβˆˆβ„‚ΞΌv\in\mathbb{C}^{\mu}. Since Ξ·\eta refines ΞΌ\mu we get an inclusion SΞ·βŠ‚SΞΌS_{\eta}\subset S_{\mu}, and so SΞ·S_{\eta} acts on β„‚ΞΌ\mathbb{C}^{\mu} by restriction. The isomorphism β„‚Ξ·β‰…β„‚ΞΌ\mathbb{C}^{\eta}\cong\mathbb{C}^{\mu} is SΞ·S_{\eta}-equivariant.

3 Gelfand-Tsetlin modules

For the rest of this article we fix nβˆˆβ„•n\in\mathbb{N} and set N=n​(n+1)2N=\frac{n(n+1)}{2}.

D:gt-module For each k∈⟦n⟧k\in\llbracket n\rrbracket we denote by UkU_{k} the enveloping algebra of 𝔀​𝔩​(k,β„‚)\mathfrak{gl}(k,\mathbb{C}), and set U=UnU=U_{n}. Inclusion of matrices in the top left corner induces a chain

𝔀​𝔩​(1,β„‚)βŠ‚π”€β€‹π”©β€‹(2,β„‚)βŠ‚β‹―βŠ‚π”€β€‹π”©β€‹(n,β„‚),\displaystyle\mathfrak{gl}(1,\mathbb{C})\subset\mathfrak{gl}(2,\mathbb{C})\subset\cdots\subset\mathfrak{gl}(n,\mathbb{C}),

which in turn induces a chain U1βŠ‚U2βŠ‚β‹―βŠ‚UnU_{1}\subset U_{2}\subset\cdots\subset U_{n}. Denote by ZkZ_{k} the center of UkU_{k} and by Ξ“\Gamma the subalgebra of UU generated by ⋃k=1nZk\bigcup_{k=1}^{n}Z_{k}. This algebra is the Gelfand-Tsetlin subalgebra of UU, and it is generated by the elements

ck,i\displaystyle c_{k,i} =βˆ‘(r1,…,ri)∈⟦k⟧iEr1,r2​Er2,r3​⋯​Eri,r1,\displaystyle=\sum_{(r_{1},\ldots,r_{i})\in\llbracket k\rrbracket^{i}}E_{r_{1},r_{2}}E_{r_{2},r_{3}}\cdots E_{r_{i},r_{1}}, (k,i)βˆˆΞ£β€‹(ΞΌ).\displaystyle(k,i)\in\Sigma(\mu).

By work of Zhelobenko there exists an isomorphism ΞΉ:Ξ“βŸΆβ„‚β€‹[XΞΌ]SΞΌ\iota:\Gamma\longrightarrow\mathbb{C}[X_{\mu}]^{S_{\mu}}, given by ι​(ck,i)=Ξ³k,i\iota(c_{k,i})=\gamma_{k,i} where

Ξ³k,i\displaystyle\gamma_{k,i} =βˆ‘j=1k(xk,j+kβˆ’1)iβ€‹βˆmβ‰ j(1βˆ’1xk,jβˆ’xk,m),\displaystyle=\sum_{j=1}^{k}(x_{k,j}+k-1)^{i}\prod_{m\neq j}\left(1-\frac{1}{x_{k,j}-x_{k,m}}\right),

see [FGR-1-singular]*subsection 3.1 for details. It follows that Specm⁑Γ≅ℂμ/SΞΌ\operatorname{Specm}\Gamma\cong\mathbb{C}^{\mu}/S_{\mu}, and so every ΞΌ\mu-point vv induces a character Ο‡v:Ξ“βŸΆβ„‚\chi_{v}:\Gamma\longrightarrow\mathbb{C} by setting cβˆˆΞ“β†¦ΞΉβ€‹(c)​(v)c\in\Gamma\mapsto\iota(c)(v), and two ΞΌ\mu-points induce the same character if and only if they lie in the same SΞΌS_{\mu}-orbit.

Definition 1.

A finitely generated UU-module MM is called a Gelfand-Tsetlin module if

M=⨁π”ͺ∈Specm⁑ΓM​[π”ͺ],M=\bigoplus_{\mathfrak{m}\in\operatorname{Specm}\Gamma}M[\mathfrak{m}],

where M​[π”ͺ]={x∈M∣π”ͺk​v=0​ for some ​kβ‰₯0}M[\mathfrak{m}]=\{x\in M\mid\mathfrak{m}^{k}v=0\mbox{ for some }k\geq 0\}.

Let MM be a Gelfand-Tsetlin module. Identifying π”ͺ\mathfrak{m} with the character Ο‡:Ξ“βŸΆΞ“/π”ͺβ‰…β„‚\chi:\Gamma\longrightarrow\Gamma/\mathfrak{m}\cong\mathbb{C}, we also write M​[Ο‡]M[\chi] for M​[π”ͺ]M[\mathfrak{m}]. We say that Ο‡\chi is a Gelfand-Tsetlin character of MM if M​[Ο‡]β‰ 0M[\chi]\neq 0 and define the multiplicity of Ο‡\chi in MM as dimβ„‚M​[Ο‡]\dim_{\mathbb{C}}M[\chi]. The Gelfand-Tsetlin support of MM is the set of all of its Gelfand-Tsetlin characters. We will often abreviate Gelfand-Tsetlin for GT, or ommit it completely when it is clear from the context.

T:gt-tableaux Gelfand-Tsetlin tableaux. For the rest of this document we denote by ΞΌ\mu the composition (1,2,…,n)(1,2,\ldots,n) of NN. To each ΞΌ\mu-point we assign a triangular array

T​(v)=T(v)=vn,1v_{n,1}vn,2v_{n,2}β‹―\cdotsvn,nβˆ’1v_{n,n-1}vn,nv_{n,n}vnβˆ’1,1v_{n-1,1}β‹―\cdotsvnβˆ’1,nβˆ’1v_{n-1,n-1}β‹±\ddotsβ‹―\cdotsβ‹°\iddotsv2,1v_{2,1}v2,2v_{2,2}v1,1v_{1,1}

Such an array is known as a Gelfand-Tsetlin tableau. With this identification the group SΞΌS_{\mu} acts on the space of all tableaux. The main difference between the space of ΞΌ\mu-points and the space of all tableaux is that the first is obviously a β„‚\mathbb{C}-vector-space, while the second one is not. In particular T​(v+w)β‰ T​(v)+T​(w)T(v+w)\neq T(v)+T(w), since the second expression does not make sense (though we will eventually consider a vector-space generated by tableaux).

A standard ΞΌ\mu-point is one in which vk,iβˆ’vkβˆ’1,iβˆˆβ„€β‰₯0v_{k,i}-v_{k-1,i}\in\mathbb{Z}_{\geq 0} and vkβˆ’1,iβˆ’vk,i+1βˆˆβ„€>0v_{k-1,i}-v_{k,i+1}\in\mathbb{Z}_{>0} for all 1≀i<k≀n1\leq i<k\leq n. We denote by β„‚π—Œπ—π–½ΞΌ\mathbb{C}^{\mu}_{\mathsf{std}} the set of all standard ΞΌ\mu-points. Notice that given Ξ»=(Ξ»1,…,Ξ»n)\lambda=(\lambda_{1},\ldots,\lambda_{n}), there exists finitely many standard tableaux with top row equal to Ξ»βˆ’(0,1,2,…,nβˆ’1)\lambda-(0,1,2,\ldots,n-1), and that this number is nonzero if and only if Ξ»iβˆ’Ξ»i+1βˆˆβ„€β‰₯0\lambda_{i}-\lambda_{i+1}\in\mathbb{Z}_{\geq 0}, i.e. Ξ»\lambda must be a dominant integral weight of 𝔀​𝔩​(n,β„‚)\mathfrak{gl}(n,\mathbb{C}). This definition was introduced by Gelfand and Tsetlin in their article [GT-modules] in order to give an explicit presentation of irreducible 𝔀​𝔩​(n,β„‚)\mathfrak{gl}(n,\mathbb{C})-modules.

Theorem 1 ([GT-modules, Zh-compact-book]).

Let Ξ»=(Ξ»1,…,Ξ»n)\lambda=(\lambda_{1},\ldots,\lambda_{n}) be a dominant integral weight of 𝔀​𝔩​(n,β„‚)\mathfrak{gl}(n,\mathbb{C}), and let V​(Ξ»)V(\lambda) be the complex vector-space freely generated by the set

{T​(v)∣vβˆˆβ„‚π—Œπ—π–½ΞΌβ€‹Β and ​vn,1=Ξ»1,vn,2=Ξ»2βˆ’1,…,vn,n=Ξ»nβˆ’n+1}\displaystyle\left\{T(v)\mid v\in\mathbb{C}^{\mu}_{\mathsf{std}}\mbox{ and }v_{n,1}=\lambda_{1},v_{n,2}=\lambda_{2}-1,\ldots,v_{n,n}=\lambda_{n}-n+1\right\}

(by convention, if vv is non-standard then T​(v)=0T(v)=0 in V​(Ξ»)V(\lambda)). The vector-space V​(Ξ»)V(\lambda) can be endowed with a 𝔀​𝔩​(n,β„‚)\mathfrak{gl}(n,\mathbb{C})-module structure, with the action of the canonical generators given by

Ek,k+1​T​(v)\displaystyle E_{k,k+1}T(v) =βˆ’βˆ‘i=1k∏j=1k+1(vk,iβˆ’vk+1,j)∏jβ‰ i(vk,iβˆ’vk,j)​T​(v+Ξ΄k,i),\displaystyle=-\sum_{i=1}^{k}\frac{\prod_{j=1}^{k+1}(v_{k,i}-v_{k+1,j})}{\prod_{j\neq i}(v_{k,i}-v_{k,j})}T(v+\delta^{k,i}),
Ek+1,k​T​(v)\displaystyle E_{k+1,k}T(v) =βˆ‘i=1k∏j=1kβˆ’1(vk,iβˆ’vkβˆ’1,j)∏jβ‰ i(vk,iβˆ’vk,j)​T​(vβˆ’Ξ΄k,i),\displaystyle=\sum_{i=1}^{k}\frac{\prod_{j=1}^{k-1}(v_{k,i}-v_{k-1,j})}{\prod_{j\neq i}(v_{k,i}-v_{k,j})}T(v-\delta^{k,i}),
Ek,k​T​(v)\displaystyle E_{k,k}T(v) =(βˆ‘j=1kvk,jβˆ’βˆ‘j=1kβˆ’1vkβˆ’1,1+kβˆ’1)​T​(v),\displaystyle=\left(\sum_{j=1}^{k}v_{k,j}-\sum_{j=1}^{k-1}v_{k-1,1}+k-1\right)T(v),

where Ξ΄k,i\delta^{k,i} is the element of β„€ΞΌ\mathbb{Z}^{\mu} with a 11 in position (k,i)(k,i) and 0’s elsewhere. Furthermore, for each cβˆˆΞ“c\in\Gamma we have ck,i​T​(v)=Ξ³k,i​(v)​T​(v)c_{k,i}T(v)=\gamma_{k,i}(v)T(v).

The UU-module V​(Ξ»)V(\lambda) is an irreducible finite dimensional representation of maximal weight Ξ»\lambda, so this theorem provides an explicit presentation of all finite dimensional simple 𝔀​𝔩​(n,β„‚)\mathfrak{gl}(n,\mathbb{C})-modules. The last statement of the theorem, giving the action of the generators of Ξ“\Gamma on V​(Ξ»)V(\lambda), is due to Zhelobenko.

G

iven 1≀i≀k<n1\leq i\leq k<n we set

ek,i+\displaystyle e_{k,i}^{+} =∏j=1k+1(xk,iβˆ’xk+1,j)∏jβ‰ i(xk,iβˆ’xk,j),\displaystyle=\frac{\prod_{j=1}^{k+1}(x_{k,i}-x_{k+1,j})}{\prod_{j\neq i}(x_{k,i}-x_{k,j})}, ek,iβˆ’\displaystyle e_{k,i}^{-} =∏j=1kβˆ’1(xk,iβˆ’xkβˆ’1,j)∏jβ‰ i(xk,iβˆ’xk,j),\displaystyle=\frac{\prod_{j=1}^{k-1}(x_{k,i}-x_{k-1,j})}{\prod_{j\neq i}(x_{k,i}-x_{k,j})},

which are elements of ℂ​(XΞΌ)\mathbb{C}(X_{\mu}). These are the rational functions that appear in Gelfand and Tsetlin’s presentation of finite dimensional irreducible UU-modules, and we refer to them as the Gelfand-Tsetlin functions.

A ΞΌ\mu-point vv, or equivalently the corresponding GT tableaux, is called generic if vk,iβˆ’vk,jβˆ‰β„€v_{k,i}-v_{k,j}\notin\mathbb{Z} for all 1≀i<j≀k<n1\leq i<j\leq k<n, otherwise it is called singular. Notice that a generic tableau may have entries in the top row whose difference is an integer.

Let β„€0ΞΌ\mathbb{Z}^{\mu}_{0} be the set of all integral ΞΌ\mu-points with zn,i=0z_{n,i}=0 for all 1≀i≀n1\leq i\leq n (i.e., the corresponding GT tableau has its top row filled with zeros). If vv is generic then the set {v+z∣zβˆˆβ„€0ΞΌ}\{v+z\mid z\in\mathbb{Z}^{\mu}_{0}\} contains no poles of the Gelfand-Tsetlin functions. This idea was used by Drozd, Futorny and Ovsienko in [DFO-GT-modules] to give a UU-module structure to the vector-space

V​(T​(v))\displaystyle V(T(v)) =⟨T​(v+z)∣zβˆˆβ„€0ΞΌβŸ©β„‚.\displaystyle=\langle T(v+z)\mid z\in\mathbb{Z}^{\mu}_{0}\rangle_{\mathbb{C}}.

Since the action of UU is given by the Gelfand-Tsetlin functions, each tableau T​(v)T(v) is an eigenvector of Ξ“\Gamma and hence V​(T​(v))V(T(v)) is a GT module with support {Ο‡v+z∣zβˆˆβ„€0ΞΌ}\{\chi_{v+z}\mid z\in\mathbb{Z}^{\mu}_{0}\} and all multiplicities equal to 11.

big-module The main goal of this article is to give a nontrivial UU-module structure to the space V​(T​(v))V(T(v)) for an arbitrary ΞΌ\mu-point vv. The approach from [DFO-GT-modules] breaks down if vv is not generic, but Futorny, Grantcharov and the first named author extended this construction to a subset of singular characters in [FGR-1-singular, FGR-2-index], and in this article we extend their work to arbitrary ΞΌ\mu-points. In order to do this, we introduce a large UU-module which serves as a formal model of a GT module.

Set K=ℂ​(XΞΌ)K=\mathbb{C}(X_{\mu}) to be the field of rational functions over ΞΌ\mu-points. As mentioned above ek,i±∈Ke_{k,i}^{\pm}\in K for all 1≀i≀k<n1\leq i\leq k<n. We set Vβ„‚V_{\mathbb{C}} to be the β„‚\mathbb{C}-vector-space with basis {T​(z)∣zβˆˆβ„€0ΞΌ}\left\{T(z)\mid z\in\mathbb{Z}^{\mu}_{0}\right\}, and VK=KβŠ—β„‚Vβ„‚V_{K}=K\otimes_{\mathbb{C}}V_{\mathbb{C}}. Since SΞΌS_{\mu} acts naturally on both KK and Vβ„‚V_{\mathbb{C}}, it acts on VKV_{K} by the diagonal action, i.e. given ΟƒβˆˆSΞΌ,f∈K\sigma\in S_{\mu},f\in K and zβˆˆβ„€0ΞΌz\in\mathbb{Z}^{\mu}_{0} the action is the linear extension of Οƒβ‹…fβŠ—T​(z)=σ​(f)βŠ—T​(σ​(z))\sigma\cdot f\otimes T(z)=\sigma(f)\otimes T(\sigma(z)). The group β„€0ΞΌ\mathbb{Z}^{\mu}_{0} also acts on ℂ​[XΞΌ]\mathbb{C}[X_{\mu}], with Ξ΄k,iβ‹…xl,j=xl,j+Ξ΄k,l​δi,j\delta^{k,i}\cdot x_{l,j}=x_{l,j}+\delta_{k,l}\delta_{i,j}. This action extends to KK, and given f∈K,zβˆˆβ„€0ΞΌf\in K,z\in\mathbb{Z}^{\mu}_{0} we sometimes write f​(x+z)f(x+z) instead of zβ‹…fz\cdot f. The actions of SΞΌS_{\mu} and β„€0ΞΌ\mathbb{Z}^{\mu}_{0} do not commute, since σ​(zβ‹…f)=σ​(z)⋅σ​(f)\sigma(z\cdot f)=\sigma(z)\cdot\sigma(f).

Proposition 1.

The vector-space VKV_{K} has an SΞΌS_{\mu}-equivariant UU-module structure, with the action of the generators given by

Ek,k+1​T​(z)\displaystyle E_{k,k+1}T(z) =βˆ’βˆ‘i=1kek,i+​(x+z)​T​(z+Ξ΄k,i);\displaystyle=-\sum_{i=1}^{k}e^{+}_{k,i}(x+z)T(z+\delta^{k,i});
Ek+1,k​T​(z)\displaystyle E_{k+1,k}T(z) =βˆ‘i=1kek,iβˆ’β€‹(x+z)​T​(zβˆ’Ξ΄k,i);\displaystyle=\sum_{i=1}^{k}e^{-}_{k,i}(x+z)T(z-\delta^{k,i});
Ek,k​T​(z)\displaystyle E_{k,k}T(z) =(βˆ‘j=1k(xk,j+zk,j)βˆ’βˆ‘j=1kβˆ’1(xkβˆ’1,j+zkβˆ’1,j)+kβˆ’1)​T​(z).\displaystyle=\left(\sum_{j=1}^{k}(x_{k,j}+z_{k,j})-\sum_{j=1}^{k-1}(x_{k-1,j}+z_{k-1,j})+k-1\right)T(z).

Furthermore, for each cβˆˆΞ“c\in\Gamma we have c​T​(z)=ι​(c)​(x+z)​T​(z)cT(z)=\iota(c)(x+z)T(z).

  • Proof.

    The proof that VKV_{K} is a UU-module is identical to the proof of [Zad-1-sing]*Proposition 1. It follows from the definitions that Οƒβ‹…ek,iΒ±=ek,Οƒ(k)​(i)Β±\sigma\cdot e^{\pm}_{k,i}=e^{\pm}_{k,\sigma^{(k)}(i)}, and using this it is easy to check that the canonical generators of UU act by SΞΌS_{\mu}-equivariant operators. ∎

We will refer to the UU-module VKV_{K} as the β€œbig GT module”. The big GT modulewas introduced in [Zad-1-sing], where it was proved that certain sublattices can serve as universal models for modules with generic or 11-singular characters (11-singular here means that there is at most one pair of entries in the same ΞΌ\mu-block differing by an integer). In the following sections of this article we will extend this argument to arbitrary characters without any restriction.

4 Symmetrized divided difference operators

In this section we recall some results on divided difference operators, and introduce a symmetrized version of them. These operators will play a central role in the construction of the sublattices of the big GT module.

sdd-intro Throughout this section we fix mβˆˆβ„•m\in\mathbb{N} and Ξ·=(Ξ·1,…,Ξ·r)\eta=(\eta_{1},\ldots,\eta_{r}) a composition of mm. Recall that ℂ​[XΞ·]=ℂ​[xk,i∣(k,i)βˆˆΞ£β€‹(Ξ·)]\mathbb{C}[X_{\eta}]=\mathbb{C}[x_{k,i}\mid(k,i)\in\Sigma(\eta)], on which SΞ·S_{\eta} acts by σ​(xk,i)=xΟƒβ‹…(k,i)\sigma(x_{k,i})=x_{\sigma\cdot(k,i)}. We set F=ℂ​(XΞ·)F=\mathbb{C}(X_{\eta}), the fraction field of ℂ​[XΞ·]\mathbb{C}[X_{\eta}], with its obvious SΞ·S_{\eta}-action.

Set

Ξ”k\displaystyle\Delta_{k} =∏1≀i<j≀ηk(xk,iβˆ’xk,j),\displaystyle=\prod_{1\leq i<j\leq\eta_{k}}(x_{k,i}-x_{k,j}), Δη\displaystyle\Delta_{\eta} =∏k=1rΞ”k.\displaystyle=\prod_{k=1}^{r}\Delta_{k}.

If fβˆˆβ„‚β€‹[XΞ·]f\in\mathbb{C}[X_{\eta}] is a polynomial such that σ​(f)=sg⁑(Οƒ)​f\sigma(f)=\operatorname{sg}(\sigma)f for all ΟƒβˆˆSΞ·\sigma\in S_{\eta} then f=g​Δηf=g\Delta_{\eta}, with gg an SΞ·S_{\eta}-invariant polynomial.

ddoperators Divided difference operators. Since the action of SΞ·S_{\eta} extends to FF we can form the smash product F​#​SΞ·F\#S_{\eta}, which is the β„‚\mathbb{C}-algebra whose underlying vector-space is FβŠ—β„‚β€‹[SΞ·]F\otimes\mathbb{C}[S_{\eta}] and product given by (fβŠ—Οƒ)β‹…(gβŠ—Ο„)=f​σ​(g)βŠ—Οƒβ€‹Ο„(f\otimes\sigma)\cdot(g\otimes\tau)=f\sigma(g)\otimes\sigma\tau for all f,g∈Ff,g\in F and all Οƒ,Ο„βˆˆSΞ·\sigma,\tau\in S_{\eta}. We will usually ommit the tensor product symbol when writing elements in F​#​SΞ·F\#S_{\eta}, so f​σf\sigma stands for fβŠ—Οƒf\otimes\sigma. We must be careful to distinguish the action of ΟƒβˆˆSΞ·\sigma\in S_{\eta} on a rational function f∈Ff\in F, denoted by σ​(f)\sigma(f), from their product in F​#​SΞ·F\#S_{\eta}, which is Οƒβ‹…f=σ​(f)​σ\sigma\cdot f=\sigma(f)\sigma.

Recall that for each (k,i)βˆˆΞ£β€‹(Ξ·)(k,i)\in\Sigma(\eta) we denote by si(k)s_{i}^{(k)} the unique simple transposition in SΞ·S_{\eta} which acts on Σ​(Ξ·)\Sigma(\eta) by interchaging (k,i)(k,i) and (k,i+1)(k,i+1), while leaving the other elements fixed. The divided difference associated to si(k)s_{i}^{(k)} is βˆ‚i(k)=1xk,iβˆ’xk,i+1​(π—‚π–½βˆ’si(k))∈F​#​SΞ·\partial_{i}^{(k)}=\frac{1}{x_{k,i}-x_{k,i+1}}(\mathsf{id}-s_{i}^{(k)})\in F\#S_{\eta}. These elements satisfy the relations

(βˆ‚i(k))2\displaystyle(\partial_{i}^{(k)})^{2} =0\displaystyle=0
βˆ‚i(k)βˆ‚j(l)\displaystyle\partial_{i}^{(k)}\partial_{j}^{(l)} =βˆ‚j(l)βˆ‚i(k)\displaystyle=\partial_{j}^{(l)}\partial_{i}^{(k)} if ​lβ‰ k​ or ​|iβˆ’j|>1;\displaystyle\mbox{ if }l\neq k\mbox{ or }|i-j|>1;
βˆ‚i(k)βˆ‚i+1(k)βˆ‚i(k)\displaystyle\partial_{i}^{(k)}\partial_{i+1}^{(k)}\partial_{i}^{(k)} =βˆ‚i+1(k)βˆ‚i(k)βˆ‚i+1(k)\displaystyle=\partial_{i+1}^{(k)}\partial_{i}^{(k)}\partial_{i+1}^{(k)} for ​1≀i≀kβˆ’2.\displaystyle\mbox{ for }1\leq i\leq k-2.

Let Οƒ=Οƒ(1)​⋯​σ(n)∈SΞ·\sigma=\sigma^{(1)}\cdots\sigma^{(n)}\in S_{\eta}. For each k∈⟦n⟧k\in\llbracket n\rrbracket we can write Οƒ(k)\sigma^{(k)} as a reduced composition si1(k)​si2(k)​⋯​sil(k)s_{i_{1}}^{(k)}s_{i_{2}}^{(k)}\cdots s_{i_{l}}^{(k)}, with ℓ​(Οƒ(k))=l\ell(\sigma^{(k)})=l. We set βˆ‚Οƒ(k)=βˆ‚i1(k)β‹…βˆ‚i2(k)β‹―β€‹βˆ‚il(k)\partial_{\sigma}^{(k)}=\partial_{i_{1}}^{(k)}\cdot\partial_{i_{2}}^{(k)}\cdots\partial_{i_{l}}^{(k)}, and βˆ‚Οƒ=βˆ‚Οƒ(1)β‹…βˆ‚Οƒ(2)β‹―β€‹βˆ‚Οƒ(n)\partial_{\sigma}=\partial_{\sigma}^{(1)}\cdot\partial_{\sigma}^{(2)}\cdots\partial_{\sigma}^{(n)}; the relations among the divided difference operators imply that βˆ‚Οƒ(k)\partial_{\sigma}^{(k)}, and hence βˆ‚Οƒ\partial_{\sigma}, is independent of the reduced composition we choose for Οƒ(k)\sigma^{(k)}.

The equality ℓ​(Οƒ)+ℓ​(Ο„)=ℓ​(σ​τ)\ell(\sigma)+\ell(\tau)=\ell(\sigma\tau) holds if and only if the concatenation of a reduced composition of Οƒ\sigma with a reduced composition of Ο„\tau is a reduced composition of σ​τ\sigma\tau, and this implies that βˆ‚Οƒβ‹…βˆ‚Ο„=βˆ‚Οƒβ€‹Ο„\partial_{\sigma}\cdot\partial_{\tau}=\partial_{\sigma\tau}. If equality does not hold then the concatenation is not reduced, which implies that in the product βˆ‚Οƒβ‹…βˆ‚Ο„\partial_{\sigma}\cdot\partial_{\tau} there must be a term of the form βˆ‚i(k)β‹…βˆ‚i(k)=0\partial_{i}^{(k)}\cdot\partial_{i}^{(k)}=0. Thus for all Οƒ,Ο„βˆˆSΞ·\sigma,\tau\in S_{\eta} we get.

βˆ‚Οƒβ‹…βˆ‚Ο„\displaystyle\partial_{\sigma}\cdot\partial_{\tau} ={βˆ‚Οƒβ€‹Ο„Β if ​ℓ​(Οƒ)+ℓ​(Ο„)=ℓ​(σ​τ);0otherwise.\displaystyle=\begin{cases}\partial_{\sigma\tau}&\mbox{ if }\ell(\sigma)+\ell(\tau)=\ell(\sigma\tau);\\ 0&\mbox{otherwise.}\end{cases}

L:dd-algebra Divided differences are usually defined as operators on the polynomial algebra ℂ​[XΞ·]\mathbb{C}[X_{\eta}], although they make sense over any FF-vector-space with an equivariant SΞ·S_{\eta}-action. Since these operators play an important role in the sequel, we gather some of their basic properties in the following lemma.

Lemma 1.

Let wΞ·w_{\eta} be the longest word in SΞ·S_{\eta}. The following equalities hold in F​#​SΞ·F\#S_{\eta}.

  1. 1.

    βˆ‚i(k)β‹…f=si(k)​(f)β€‹βˆ‚i(k)+βˆ‚i(k)(f)\partial_{i}^{(k)}\cdot f=s_{i}^{(k)}(f)\partial_{i}^{(k)}+\partial_{i}^{(k)}(f) for all (k,i)βˆˆΞ£β€‹(Ξ·),f∈F(k,i)\in\Sigma(\eta),f\in F.

  2. 2.

    βˆ‚wΞ·β‹…fβ€‹βˆ‚Οƒ=βˆ‚wΞ·β‹…βˆ‚Οƒβˆ’1(f)\partial_{w_{\eta}}\cdot f\partial_{\sigma}=\partial_{w_{\eta}}\cdot\partial_{\sigma^{-1}}(f) for all ΟƒβˆˆSΞ·,f∈F\sigma\in S_{\eta},f\in F.

  3. 3.

    1Ξ·!β€‹βˆ‚wΞ·=1Δη​asymΞ·=symΞ·β‹…1Δη\frac{1}{\eta!}\partial_{w_{\eta}}=\frac{1}{\Delta_{\eta}}\operatorname{asym}_{\eta}=\operatorname{sym}_{\eta}\cdot\frac{1}{\Delta_{\eta}}.

  • Proof.

    Item 1 is an easy computation following from the definition. Now set s=si(k)s=s_{i}^{(k)} and βˆ‚s=βˆ‚i(k)\partial_{s}=\partial_{i}^{(k)}. By definition βˆ‚sβ‹…s=βˆ’βˆ‚s\partial_{s}\cdot s=-\partial_{s} and sβ‹…βˆ‚s=βˆ‚ss\cdot\partial_{s}=\partial_{s}, and since wΞ·=(wη​s)​sw_{\eta}=(w_{\eta}s)s with ℓ​(wη​s)=ℓ​(wΞ·)βˆ’1\ell(w_{\eta}s)=\ell(w_{\eta})-1 we get

    βˆ‚wΞ·β‹…s\displaystyle\partial_{w_{\eta}}\cdot s =βˆ‚wη​sβ‹…βˆ‚sβ‹…s=βˆ’βˆ‚wη​sβ‹…βˆ‚s=βˆ’βˆ‚wΞ·.\displaystyle=\partial_{w_{\eta}s}\cdot\partial_{s}\cdot s=-\partial_{w_{\eta}s}\cdot\partial_{s}=-\partial_{w_{\eta}}.

    This along with the previous item gives

    0\displaystyle 0 =βˆ‚wΞ·β‹…(βˆ‚sβ‹…f)=βˆ‚wΞ·β‹…s​(f)β€‹βˆ‚s+βˆ‚wΞ·β‹…βˆ‚s(f)\displaystyle=\partial_{w_{\eta}}\cdot(\partial_{s}\cdot f)=\partial_{w_{\eta}}\cdot s(f)\partial_{s}+\partial_{w_{\eta}}\cdot\partial_{s}(f)
    =βˆ‚wΞ·β‹…(sβ‹…f​s)β‹…βˆ‚s+βˆ‚wΞ·β‹…βˆ‚s(f)=βˆ’βˆ‚wΞ·β‹…fβ€‹βˆ‚s+βˆ‚wΞ·β‹…βˆ‚s(f)\displaystyle=\partial_{w_{\eta}}\cdot(s\cdot fs)\cdot\partial_{s}+\partial_{w_{\eta}}\cdot\partial_{s}(f)=-\partial_{w_{\eta}}\cdot f\partial_{s}+\partial_{w_{\eta}}\cdot\partial_{s}(f)

    which proves that item 2 holds for Οƒ=s\sigma=s. Since kk and ii are arbitrary, the general case follows by induction on the length of Οƒ\sigma.

    A similar argument as above shows that Οƒβ‹…βˆ‚wΞ·=βˆ‚wΞ·\sigma\cdot\partial_{w_{\eta}}=\partial_{w_{\eta}} for all ΟƒβˆˆSΞ·\sigma\in S_{\eta}. Induction on the length of Οƒ\sigma shows that βˆ‚Οƒ=βˆ‘Ο„βˆˆSΞ·1fΟ„,σ​τ\partial_{\sigma}=\sum_{\tau\in S_{\eta}}\frac{1}{f_{\tau,\sigma}}\tau with fΟ„,Οƒβˆˆβ„‚β€‹[XΞ·]f_{\tau,\sigma}\in\mathbb{C}[X_{\eta}] homogeneous of degree ℓ​(Οƒ)\ell(\sigma). If we put fΟ„=fΟ„,wΞ·f_{\tau}=f_{\tau,w_{\eta}}, the equalities Οƒβ‹…βˆ‚wΞ·=βˆ‚wΞ·\sigma\cdot\partial_{w_{\eta}}=\partial_{w_{\eta}} and βˆ‚wΞ·β‹…Οƒ=sg⁑(Οƒ)β€‹βˆ‚wΞ·\partial_{w_{\eta}}\cdot\sigma=\operatorname{sg}(\sigma)\partial_{w_{\eta}} imply that fΟƒ=σ​(fe)=sg⁑(Οƒ)​fef_{\sigma}=\sigma(f_{e})=\operatorname{sg}(\sigma)f_{e}, so fef_{e} is an SΞ·S_{\eta}-antisymmetric polynomial of degree ℓ​(wΞ·)\ell(w_{\eta}), i.e. a scalar multiple of Δη\Delta_{\eta}. Now βˆ‚wΞ·(Δη)=Ξ·!\partial_{w_{\eta}}(\Delta_{\eta})=\eta!, so fe=Ξ·!Δηf_{e}=\frac{\eta!}{\Delta_{\eta}} and

    βˆ‚wΞ·\displaystyle\partial_{w_{\eta}} =Ξ·!Ξ”Ξ·β€‹βˆ‘ΟƒβˆˆSΞ·sg⁑(Οƒ)​σ=Ξ·!β€‹βˆ‘ΟƒβˆˆSΞ·Οƒβ‹…1Δη.\displaystyle=\frac{\eta!}{\Delta_{\eta}}\sum_{\sigma\in S_{\eta}}\operatorname{sg}(\sigma)\sigma=\eta!\sum_{\sigma\in S_{\eta}}\sigma\cdot\frac{1}{\Delta_{\eta}}.

    This completes the proof of item 3. ∎

Many subalgebras of FF are stable by the action of divided differences. It is a well-known fact that this is the case for ℂ​[XΞ·]\mathbb{C}[X_{\eta}]. Assume ℂ​[XΞ·]βŠ‚AβŠ‚F\mathbb{C}[X_{\eta}]\subset A\subset F is closed under the action of SΞ·S_{\eta}. Then any rational function in AA can be written as a quotient p/qp/q with p,qβˆˆβ„‚β€‹[XΞ·]p,q\in\mathbb{C}[X_{\eta}] and qq SΞ·S_{\eta}-invariant, so βˆ‚Οƒ(f)=βˆ‚Οƒ(p/q)=βˆ‚Οƒ(p)/q∈A\partial_{\sigma}(f)=\partial_{\sigma}(p/q)=\partial_{\sigma}(p)/q\in A for each ΟƒβˆˆSΞ·\sigma\in S_{\eta} and AA is also closed under divided differences.

polynomial-dd We focus now on the action of divided differences over the polynomial ring ℂ​[XΞ·]\mathbb{C}[X_{\eta}]. First, for every ΟƒβˆˆSΞ·\sigma\in S_{\eta} the operator βˆ‚Οƒ:ℂ​[XΞ·]βŸΆβ„‚β€‹[XΞ·]\partial_{\sigma}:\mathbb{C}[X_{\eta}]\longrightarrow\mathbb{C}[X_{\eta}] is homogeneous of degree βˆ’β„“β€‹(Οƒ)-\ell(\sigma). Now let 𝔭η\mathfrak{p}_{\eta} be the ideal generated by {xk,iβˆ’xk,j∣(k,i),(k,j)βˆˆΞ£β€‹(Ξ·)}\{x_{k,i}-x_{k,j}\mid(k,i),(k,j)\in\Sigma(\eta)\}, and let ℂ​[𝔭η]βŠ‚β„‚β€‹[XΞ·]\mathbb{C}[\mathfrak{p}_{\eta}]\subset\mathbb{C}[X_{\eta}] be the algebra generated by 𝔭η\mathfrak{p}_{\eta}; clearly Ξ”Ξ·βˆˆπ”­Ξ·\Delta_{\eta}\in\mathfrak{p}_{\eta}. Since βˆ‚i(k)(xl,jβˆ’xl,t)βˆˆβ„€\partial_{i}^{(k)}(x_{l,j}-x_{l,t})\in\mathbb{Z}, the algebra ℂ​[𝔭η]\mathbb{C}[\mathfrak{p}_{\eta}] is stable by the action of divided differences. It follows that βˆ‚ΟƒΞ”Ξ·βˆˆπ”­Ξ·\partial_{\sigma}\Delta_{\eta}\in\mathfrak{p}_{\eta} if ℓ​(Οƒ)<deg⁑Δη=Ξ·!\ell(\sigma)<\deg\Delta_{\eta}=\eta!, while βˆ‚wηΔη=Ξ·!\partial_{w_{\eta}}\Delta_{\eta}=\eta!.

Let Οƒ,Ο„βˆˆSΞ·\sigma,\tau\in S_{\eta}. By item 2 of Lemma LABEL:L:dd-algebra we have

1Ξ·!β€‹βˆ‚wΞ·((βˆ‚Ο„Ξ”Ξ·)​(βˆ‚ΟƒΞ”Ξ·))\displaystyle\frac{1}{\eta!}\partial_{w_{\eta}}((\partial_{\tau}\Delta_{\eta})(\partial_{\sigma}\Delta_{\eta})) =1Ξ·!β€‹βˆ‚wΞ·(Δ​(βˆ‚Ο„βˆ’1βˆ‚ΟƒΞ”Ξ·))=symη⁑(βˆ‚Ο„βˆ’1βˆ‚ΟƒΞ”Ξ·).\displaystyle=\frac{1}{\eta!}\partial_{w_{\eta}}(\Delta(\partial_{\tau^{-1}}\partial_{\sigma}\Delta_{\eta}))=\operatorname{sym}_{\eta}(\partial_{\tau^{-1}}\partial_{\sigma}\Delta_{\eta}).

Now if ℓ​(Ο„βˆ’1)+ℓ​(Οƒ)β‰₯ℓ​(wΞ·)\ell(\tau^{-1})+\ell(\sigma)\geq\ell(w_{\eta}) this is 0 unless Ο„βˆ’1​σ=wΞ·\tau^{-1}\sigma=w_{\eta}, in which case it equals Ξ·!\eta!. If ℓ​(Ο„βˆ’1)+ℓ​(Οƒ)<ℓ​(wΞ·)\ell(\tau^{-1})+\ell(\sigma)<\ell(w_{\eta}) then the best we can say is that this element lies in 𝔭ηSΞ·\mathfrak{p}_{\eta}^{S_{\eta}}.

Consider a total order << on SΞ·S_{\eta} such that ℓ​(Οƒ)<ℓ​(Ο„)\ell(\sigma)<\ell(\tau) implies Οƒ<Ο„\sigma<\tau, and use this to index the rows and columns of matrices in MΞ·!​(F)M_{\eta!}(F) by elements in SΞ·S_{\eta}. For each X∈MΞ·!​(F)X\in M_{\eta!}(F) write XτσX^{\sigma}_{\tau} for the entry in the Οƒ\sigma-th row and the Ο„\tau-th column, so if YY is another matrix then (X​Y)τσ=βˆ‘ΟβˆˆSΞ·Xρσ​Yτρ(XY)^{\sigma}_{\tau}=\sum_{\rho\in S_{\eta}}X^{\sigma}_{\rho}Y^{\rho}_{\tau}. Consider the matrices X,Y∈MΞ·!​(F)X,Y\in M_{\eta!}(F) defined by Xτσ=τ​(βˆ‚ΟƒΞ”Ξ·Ξ·!​Δη)X^{\sigma}_{\tau}=\tau\left(\frac{\partial_{\sigma}\Delta_{\eta}}{\eta!\Delta_{\eta}}\right) and Yνρ=1Ξ·!​ρ​(βˆ‚Ξ½β€‹wηΔη)Y^{\rho}_{\nu}=\frac{1}{\eta!}\rho(\partial_{\nu w_{\eta}}\Delta_{\eta}). Then

(X​Y)Ξ½Οƒ\displaystyle(XY)^{\sigma}_{\nu} =1Ξ·!2β€‹βˆ‘Ο„βˆˆSητ​((βˆ‚ΟƒΞ”Ξ·)​(βˆ‚Ξ½β€‹wηΔη)Δη)=1Ξ·!2β€‹βˆ‚wΞ·((βˆ‚ΟƒΞ”Ξ·)​(βˆ‚Ξ½β€‹wηΔη)).\displaystyle=\frac{1}{\eta!^{2}}\sum_{\tau\in S_{\eta}}\tau\left(\frac{(\partial_{\sigma}\Delta_{\eta})(\partial_{\nu w_{\eta}}\Delta_{\eta})}{\Delta_{\eta}}\right)=\frac{1}{\eta!^{2}}\partial_{w_{\eta}}((\partial_{\sigma}\Delta_{\eta})(\partial_{\nu w_{\eta}}\Delta_{\eta})).

By the previous discussion X​YXY is an upper triangular matrix with ones in the diagonal, and the nonzero elements in the upper-triangular part lie in 𝔭SΞ·\mathfrak{p}^{S_{\eta}}. From this we deduce that XX is invertible, and its inverse is of the form Y+CY+C with CC a matrix with entries in the ideal generated by 𝔭SΞ·\mathfrak{p}^{S_{\eta}}.

The rational function XτσX^{\sigma}_{\tau} is homogeneous of degree βˆ’β„“β€‹(Οƒ)-\ell(\sigma), hence its determinant is also homogeneous of degree βˆ’βˆ‘ΟƒβˆˆSηℓ​(Οƒ)=βˆ’Ξ·!-\sum_{\sigma\in S_{\eta}}\ell(\sigma)=-\eta!. This implies that deg(Y+C)νρ=Ξ·!+β„“(Ξ½)βˆ’Ξ·!=β„“(Ξ½)=degYνρ\deg(Y+C)^{\rho}_{\nu}=\eta!+\ell(\nu)-\eta!=\ell(\nu)=\deg Y^{\rho}_{\nu}, so the entries of CC are also homogeneous polynomials. Also since Xτσ=τ​(X𝗂𝖽σ)X^{\sigma}_{\tau}=\tau(X_{\mathsf{id}}^{\sigma}) and Yνρ=ρ​(Yν𝗂𝖽)Y^{\rho}_{\nu}=\rho(Y^{\mathsf{id}}_{\nu}), we must have Cνρ=ρ​(Cν𝗂𝖽)C^{\rho}_{\nu}=\rho(C^{\mathsf{id}}_{\nu}). We summarize these results in the following lemma.

Lemma 2.

For each ΟƒβˆˆSΞ·\sigma\in S_{\eta} set (βˆ‚ΟƒΞ”)βˆ—=(Y+C)Οƒβˆ’1𝗂𝖽(\partial_{\sigma}\Delta)^{*}=(Y+C)^{\mathsf{id}}_{\sigma^{-1}}, and let II be the ideal generated by 𝔭ηSΞ·\mathfrak{p}_{\eta}^{S_{\eta}} in ℂ​[XΞ·]\mathbb{C}[X_{\eta}]. Then (βˆ‚ΟƒΞ”)βˆ—(\partial_{\sigma}\Delta)^{*} is a homogeneous polynomial of degree ℓ​(Οƒ)\ell(\sigma), and (βˆ‚ΟƒΞ”)βˆ—β‰‘1Ξ·!β€‹βˆ‚Οƒβˆ’1​wηΔηmodI(\partial_{\sigma}\Delta)^{*}\equiv\frac{1}{\eta!}\partial_{\sigma^{-1}w_{\eta}}\Delta_{\eta}\mod I. Furthermore (Y+C)Οƒβˆ’1Ο„=τ​((βˆ‚ΟƒΞ”)βˆ—)(Y+C)^{\tau}_{\sigma^{-1}}=\tau((\partial_{\sigma}\Delta)^{*}) for each Ο„βˆˆSΞ·\tau\in S_{\eta}.

P:sdd There is a second family of elements in F​#​SΞ·F\#S_{\eta} that we need to distinguish before going on. For each ΟƒβˆˆSΞ·\sigma\in S_{\eta} we define the symmetrized divided difference operator Dση=symΞ·β‹…βˆ‚ΟƒD_{\sigma}^{\eta}=\operatorname{sym}_{\eta}\cdot\partial_{\sigma}. It follows from the discussion at the end of LABEL:L:dd-algebra that if AβŠ‚FA\subset F is a ℂ​[XΞ·]\mathbb{C}[X_{\eta}]-algebra stable by the action of SΞ·S_{\eta} then Dση​(A)βŠ‚AD_{\sigma}^{\eta}(A)\subset A.

Proposition 2.

For each ΟƒβˆˆSΞ·\sigma\in S_{\eta} we have

Dση\displaystyle D_{\sigma}^{\eta} =DwΞ·Ξ·β‹…βˆ‚Οƒβˆ’1Δη=1Ξ·!β€‹βˆ‘Ο„βˆˆSητ​(βˆ‚Οƒβˆ’1ΔηΔη)​τ,\displaystyle=D_{w_{\eta}}^{\eta}\cdot\partial_{\sigma^{-1}}\Delta_{\eta}=\frac{1}{\eta!}\sum_{\tau\in S_{\eta}}\tau\left(\frac{\partial_{\sigma^{-1}}\Delta_{\eta}}{\Delta_{\eta}}\right)\tau,
Οƒ\displaystyle\sigma =βˆ‘Ο„βˆˆSησ​((βˆ‚Ο„Ξ”Ξ·)βˆ—)​Dτη.\displaystyle=\sum_{\tau\in S_{\eta}}\sigma((\partial_{\tau}\Delta_{\eta})^{*})D_{\tau}^{\eta}.
  • Proof.

    By item 3 of Lemma LABEL:L:dd-algebra DwΞ·Ξ·=1Ξ·!β€‹βˆ‚wμ⋅ΔηD^{\eta}_{w_{\eta}}=\frac{1}{\eta!}\partial_{w_{\mu}}\cdot\Delta_{\eta}, so by item 2 of the same lemma

    Dση\displaystyle D_{\sigma}^{\eta} =1Ξ·!β€‹βˆ‚wΞ·β‹…Ξ”Ξ·β€‹βˆ‚Οƒ=1Ξ·!β€‹βˆ‚wΞ·β‹…βˆ‚Οƒβˆ’1Δη=symΞ·β‹…βˆ‚ΟƒΞ”Ξ·Ξ”Ξ·.\displaystyle=\frac{1}{\eta!}\partial_{w_{\eta}}\cdot\Delta_{\eta}\partial_{\sigma}=\frac{1}{\eta!}\partial_{w_{\eta}}\cdot\partial_{\sigma^{-1}}\Delta_{\eta}=\operatorname{sym}_{\eta}\cdot\frac{\partial_{\sigma}\Delta_{\eta}}{\Delta_{\eta}}.

    Using the fact that Ο„β‹…f=τ​(f)​τ\tau\cdot f=\tau(f)\tau the first equality follows. In terms of the matrices X,YX,Y from the previous paragraph, this says that Dση=βˆ‘Ο„βˆˆSΞ·XΟ„Οƒβˆ’1​τD_{\sigma}^{\eta}=\sum_{\tau\in S_{\eta}}X_{\tau}^{\sigma^{-1}}\tau. Since XX is invertible with inverse Y+CY+C, we get that

    Οƒ\displaystyle\sigma =βˆ‘Ο„βˆˆSΞ·(Y+C)Ο„βˆ’1σ​Dτη\displaystyle=\sum_{\tau\in S_{\eta}}(Y+C)_{\tau^{-1}}^{\sigma}D_{\tau}^{\eta}

    which is the second equality. ∎

As a nice application of this proposition notice that for each f∈Ff\in F

f\displaystyle f =βˆ‘ΟƒβˆˆSΞ·Dση​(f)​(βˆ‚ΟƒΞ”Ξ·)βˆ—.\displaystyle=\sum_{\sigma\in S_{\eta}}D_{\sigma}^{\eta}(f)(\partial_{\sigma}\Delta_{\eta})^{*}.

In particular, if AA is a ℂ​[XΞΌ]\mathbb{C}[X_{\mu}]-subalgebra of FF and it is stable by the action of SΞ·S_{\eta} then the set {(βˆ‚ΟƒΞ”Ξ·)βˆ—βˆ£ΟƒβˆˆSΞ·}\{(\partial_{\sigma}\Delta_{\eta})^{*}\mid\sigma\in S_{\eta}\} is a basis of AA over ASΞ·A^{S_{\eta}}, and symmetrized divided differences give the coefficients of each element in this basis.

5 Singular GT modules

Recall that we have fixed nβˆˆβ„•n\in\mathbb{N} and U=U​(𝔀​𝔩​(n,β„‚))U=U(\mathfrak{gl}(n,\mathbb{C})). Also, we set N=n​(n+1)2N=\frac{n(n+1)}{2} and we put ΞΌ=(1,2,…,n)\mu=(1,2,\ldots,n) and we denote by β„€0ΞΌ\mathbb{Z}^{\mu}_{0} the set of all integral ΞΌ\mu-points with zn,i=0z_{n,i}=0 for all 1≀i≀n1\leq i\leq n. Recall that if Ξ·\eta is a refinement of ΞΌ\mu then every ΞΌ\mu-point can be seen as an Ξ·\eta-point, and we may speak freely of the Ξ·\eta-blocks of a ΞΌ\mu-point. Finally, recall K=ℂ​(XΞΌ)K=\mathbb{C}(X_{\mu})

singularity To each ΞΌ\mu-point vv, or to its corresponding tableau T​(v)T(v), we associate a refinement of ΞΌ\mu which we denote by η​(v)\eta(v) which will act as a measure of how far is a tableau from being generic. For any k∈⟦nβˆ’1⟧k\in\llbracket n-1\rrbracket form a graph with vertices ⟦k⟧\llbracket k\rrbracket, and put an edge between ii and jj if and only if vk,iβˆ’vk,jβˆˆβ„€v_{k,i}-v_{k,j}\in\mathbb{Z}; the resulting graph is the disjoint union of complete graphs, and we set Ξ·(k)\eta^{(k)} to be the cardinalities of each connected component arranged in descending order. Finally we set η​(v)=(Ξ·(1),…,Ξ·(nβˆ’1),1n)\eta(v)=(\eta^{(1)},\ldots,\eta^{(n-1)},1^{n}), where 1n1^{n} denotes the composition of nn consisting of nn ones. Thus if vv is generic then Ξ·(k)​(v)=1k\eta^{(k)}(v)=1^{k}, and if it is a singular tableaux then η​(v)\eta(v) will have at least one part larger than 11.

Definition 2.

Given vβˆˆβ„‚ΞΌv\in\mathbb{C}^{\mu} the composition η​(v)\eta(v) is called the singularity of vv. Given ΞΈ\theta a refinement of ΞΌ\mu, we will say that vv is ΞΈ\theta-singular if η​(v)=ΞΈ\eta(v)=\theta.

Recall that characters of the GT subalgebra Ξ“\Gamma are in one to one correspondence with SΞΌS_{\mu}-orbits of β„‚ΞΌ\mathbb{C}^{\mu}. Now if vβˆˆβ„‚ΞΌv\in\mathbb{C}^{\mu} and ΟƒβˆˆSΞΌ\sigma\in S_{\mu} then η​(v)=η​(σ​(v))\eta(v)=\eta(\sigma(v)), so the singularity of a character is well-defined. We say that vv is in normal form if vk,iβˆ’vk,jβˆˆβ„€β‰₯0v_{k,i}-v_{k,j}\in\mathbb{Z}_{\geq 0} implies that vk,iv_{k,i} and vk,jv_{k,j} lie in the same η​(v)\eta(v)-block of vv and that i>ji>j.

We denote by π—Œπ—β‘(v)\operatorname{\mathsf{st}}(v) the stabilizer of vv in SΞ·S_{\eta}. We say that vv is fully critical if it is in normal form and π—Œπ—β‘(v)=SΞ·\operatorname{\mathsf{st}}(v)=S_{\eta}, or in other words if vk,iβˆ’vk,jβˆˆβ„€v_{k,i}-v_{k,j}\in\mathbb{Z} implies vk,i=vk,jv_{k,i}=v_{k,j}. We will say that vv is fully Ξ·\eta-critical if it is both Ξ·\eta-singular and fully critical. By definition every character has at least one representative in normal form (though it may have many), and if vβˆˆβ„‚ΞΌv\in\mathbb{C}^{\mu} is in normal form then there exists zβˆˆβ„€0ΞΌz\in\mathbb{Z}^{\mu}_{0} such that v+zv+z is fully critical.

Example 1.

Suppose n=5n=5 and let vβˆˆβ„‚ΞΌv\in\mathbb{C}^{\mu} be the point whose corresponding tableau is

T​(v)=T(v)=βˆ—*βˆ—*βˆ—*βˆ—*βˆ—*aabβˆ’1b-1bba+1a+1ccc+1c+1ddeeeeff

where a,b,c,d,e,fβˆˆβ„‚a,b,c,d,e,f\in\mathbb{C} are β„€\mathbb{Z}-linearly independent. Its singularity is given by the refinement η​(v)=((1),(2),(2,1),(2,2),(1,1,1,1,1))\eta(v)=((1),(2),(2,1),(2,2),(1,1,1,1,1)). It is not in normal form, since for example in the third row cc is to the left of c+1c+1, and in the fourth row the entries differing by integers are not organazied in η​(v)\eta(v)-blocks. The ΞΌ\mu-points vβ€²,vβ€²β€²v^{\prime},v^{\prime\prime} whose tableaux are

T​(vβ€²)=T(v^{\prime})=βˆ—*βˆ—*βˆ—*βˆ—*βˆ—*a+1a+1aabbbβˆ’1b-1c+1c+1ccddeeeeffT​(vβ€²β€²)=T(v^{\prime\prime})=βˆ—*βˆ—*βˆ—*βˆ—*βˆ—*bbbβˆ’1b-1a+1a+1aac+1c+1ccddeeeeff

are in normal form, and since both are in the SΞΌS_{\mu}-orbit of vv they define the same character of Ξ“\Gamma. None of these ΞΌ\mu-points is fully critical, but it is clear that we may obtain a fully critical ΞΌ\mu-point by adding a suitable zβˆˆβ„€0ΞΌz\in\mathbb{Z}^{\mu}_{0} to either vβ€²v^{\prime} or vβ€²β€²v^{\prime\prime}. Notice that in all these cases the entries in the top row are irrelevant.

L:derived-tableaux Let C={xk,iβˆ’xk,jβˆ’z∣1≀i<j≀k<n,zβˆˆβ„€βˆ–{0}}βŠ‚β„‚β€‹[XΞΌ]C=\{x_{k,i}-x_{k,j}-z\mid 1\leq i<j\leq k<n,z\in\mathbb{Z}\setminus\{0\}\}\subset\mathbb{C}[X_{\mu}]. We put B=Cβˆ’1​ℂ​[XΞΌ]B=C^{-1}\mathbb{C}[X_{\mu}]. Let vβˆˆβ„‚ΞΌv\in\mathbb{C}^{\mu} be fully critical, and fix Ξ·=η​(v)\eta=\eta(v). We denote by BΞ·B_{\eta} the localization of BB at the set of all xk,iβˆ’xk,jx_{k,i}-x_{k,j} such that (k,i)(k,i) and (k,j)(k,j) lie in different orbits of SΞ·S_{\eta}. The algebra BΞ·B_{\eta} is closed under the action of SΞ·S_{\eta}, and hence by the discussion at the end of paragraph LABEL:L:dd-algebra, if f∈BΞ·f\in B_{\eta} then Dση​(f)∈BΞ·D_{\sigma}^{\eta}(f)\in B_{\eta}.

Definition 3.

We set LΞ·βŠ‚VKL_{\eta}\subset V_{K} to be the BΞ·B_{\eta}-span of {Dση​T​(z)βˆ£ΟƒβˆˆSΞ·,zβˆˆβ„€0ΞΌ}\{D_{\sigma}^{\eta}T(z)\mid\sigma\in S_{\eta},z\in\mathbb{Z}^{\mu}_{0}\}.

We will now prove that LΞ·L_{\eta} is a UU-submdule of VKV_{K}, but in order to do this we first need to show that it is a free BΞ·B_{\eta}-module.

Notice that if zβˆˆβ„€0ΞΌz\in\mathbb{Z}^{\mu}_{0} then ΞΌ\mu-point v+zv+z is in normal form if and only if each Ξ·\eta-block of zz is a descending sequence, so the set 𝒩η={zβˆˆβ„€0μ∣v+z​ is in normal formΒ }\mathcal{N}_{\eta}=\{z\in\mathbb{Z}^{\mu}_{0}\mid v+z\mbox{ is in normal form }\}. depends only of Ξ·\eta and not of vv. Also, there is exactly one element in the orbit of zz which lies in 𝒩η\mathcal{N}_{\eta}, so this set is a family of representatives of β„€0ΞΌ/SΞ·\mathbb{Z}^{\mu}_{0}/S_{\eta}. We denote by π—Œπ—β‘(z)\operatorname{\mathsf{st}}(z) the stabilizer of zz in SΞ·S_{\eta}. If zβˆˆπ’©Ξ·z\in\mathcal{N}_{\eta} then π—Œπ—β‘(z)=Sϡ​(z)\operatorname{\mathsf{st}}(z)=S_{\epsilon(z)} with ϡ​(z)\epsilon(z) a refinement of Ξ·\eta.

Lemma 3.

The set ℬ={Dση​T​(z)∣zβˆˆπ’©Ξ·,Οƒβˆˆπ–²π—π—Žπ–Ώπ–Ώπ—…π–ΎΟ΅β€‹(z)Ξ·}\mathcal{B}=\left\{D_{\sigma}^{\eta}T(z)\mid z\in\mathcal{N}_{\eta},\sigma\in\mathsf{Shuffle}_{\epsilon(z)}^{\eta}\right\} is a basis of LΞ·L_{\eta} as BΞ·B_{\eta}-module.

  • Proof.

    For each zβˆˆβ„€0ΞΌz\in\mathbb{Z}^{\mu}_{0} we denote by π’ͺ​(z)\mathcal{O}(z) the KK-vector-space generated by {T​(σ​(z))βˆ£ΟƒβˆˆSΞ·}\{T(\sigma(z))\mid\sigma\in S_{\eta}\}, and by π’Ÿβ€‹(z)\mathcal{D}(z) the BΞ·B_{\eta}-module generated by {Dση​T​(z)βˆ£ΟƒβˆˆSΞ·}\{D_{\sigma}^{\eta}T(z)\mid\sigma\in S_{\eta}\}. Clearly LΞ·=βˆ‘zβˆˆβ„€0ΞΌπ’Ÿβ€‹(z)L_{\eta}=\sum_{z\in\mathbb{Z}_{0}^{\mu}}\mathcal{D}(z). By Proposition LABEL:P:sdd

    Dση​T​(z)\displaystyle D_{\sigma}^{\eta}T(z) =1Ξ·!β€‹βˆ‘Ο„βˆˆSητ​(βˆ‚Οƒβˆ’1ΔηΔη)​T​(τ​(z))\displaystyle=\frac{1}{\eta!}\sum_{\tau\in S_{\eta}}\tau\left(\frac{\partial_{\sigma^{-1}}\Delta_{\eta}}{\Delta_{\eta}}\right)T(\tau(z))
    T​(σ​(z))\displaystyle T(\sigma(z)) =βˆ‘Ο„βˆˆSησ​((βˆ‚Ο„Ξ”Ξ·)βˆ—)​Dτη​T​(z),\displaystyle=\sum_{\tau\in S_{\eta}}\sigma((\partial_{\tau}\Delta_{\eta})^{*})D_{\tau}^{\eta}T(z),

    so π’Ÿβ€‹(z)βŠ‚π’ͺ​(z)\mathcal{D}(z)\subset\mathcal{O}(z) and π’ͺ​(z)βŠ‚KβŠ—BΞ·π’Ÿβ€‹(z)\mathcal{O}(z)\subset K\otimes_{B_{\eta}}\mathcal{D}(z).

    Let v∈VKv\in V_{K} be SΞ·S_{\eta}-invariant and let s∈SΞ·s\in S_{\eta} be a simple transposition. Then for each f∈Kf\in K we have βˆ‚s(f​v)=βˆ‚s(f)​s​(v)+fβ€‹βˆ‚s(v)=βˆ‚s(f)​v\partial_{s}(fv)=\partial_{s}(f)s(v)+f\partial_{s}(v)=\partial_{s}(f)v. A simple induction shows that βˆ‚Οƒ(f​v)=βˆ‚Οƒ(f)​v\partial_{\sigma}(fv)=\partial_{\sigma}(f)v, and hence Dση​(f​v)=Dση​(f)​vD_{\sigma}^{\eta}(fv)=D_{\sigma}^{\eta}(f)v for all ΟƒβˆˆSΞ·\sigma\in S_{\eta}. Thus for each ν∈SΞ·\nu\in S_{\eta}

    Dνη​T​(σ​(z))\displaystyle D_{\nu}^{\eta}T(\sigma(z)) =Dνη​(βˆ‘Ο„βˆˆSησ​((βˆ‚Ο„Ξ”Ξ·)βˆ—)​Dτη​T​(z))=βˆ‘Ο„βˆˆSΞ·Dνη​(σ​(βˆ‚Ο„Ξ”Ξ·)βˆ—)​Dτη​T​(z),\displaystyle=D_{\nu}^{\eta}\left(\sum_{\tau\in S_{\eta}}\sigma((\partial_{\tau}\Delta_{\eta})^{*})D_{\tau}^{\eta}T(z)\right)=\sum_{\tau\in S_{\eta}}D_{\nu}^{\eta}(\sigma(\partial_{\tau}\Delta_{\eta})^{*})D_{\tau}^{\eta}T(z),

    which shows that π’Ÿβ€‹(z)=π’Ÿβ€‹(τ​(z))\mathcal{D}(z)=\mathcal{D}(\tau(z)), and hence LΞ·=βˆ‘zβˆˆπ’©Ξ·π’Ÿβ€‹(z)L_{\eta}=\sum_{z\in\mathcal{N}_{\eta}}\mathcal{D}(z). Since π’Ÿβ€‹(z)βŠ‚π’ͺ​(z)\mathcal{D}(z)\subset\mathcal{O}(z), the sum is direct and LΞ·=⨁zβˆˆπ’©Ξ·π’Ÿβ€‹(z)L_{\eta}=\bigoplus_{z\in\mathcal{N}_{\eta}}\mathcal{D}(z). Hence to prove the statement it is enough to show that for each zβˆˆπ’©Ξ·z\in\mathcal{N}_{\eta} the BΞ·B_{\eta}-module π’Ÿβ€‹(z)\mathcal{D}(z) is free with basis ℬ​(z)=β„¬βˆ©π’Ÿβ€‹(z)\mathcal{B}(z)=\mathcal{B}\cap\mathcal{D}(z).

    Let zβˆˆπ’©Ξ·z\in\mathcal{N}_{\eta} and put Ο΅=ϡ​(z)\epsilon=\epsilon(z). If ΟƒβˆˆSΞ·\sigma\in S_{\eta} is not an Ο΅\epsilon-shuffle then Οƒ\sigma can be written as Οƒ~​s\tilde{\sigma}s with s∈SΟ΅s\in S_{\epsilon} a simple transposition. Since s​T​(z)=T​(z)sT(z)=T(z) we get

    Dση​T​(z)\displaystyle D_{\sigma}^{\eta}T(z) =symη⁑(βˆ‚Οƒ~(βˆ‚sT​(z)))=0.\displaystyle=\operatorname{sym}_{\eta}(\partial_{\tilde{\sigma}}(\partial_{s}T(z)))=0.

    This implies that ℬ​(z)\mathcal{B}(z) generates π’Ÿβ€‹(z)\mathcal{D}(z) over BΞ·B_{\eta}, and since π’ͺ​(z)=KβŠ—BΞ·π’Ÿβ€‹(z)\mathcal{O}(z)=K\otimes_{B_{\eta}}\mathcal{D}(z) it also generates π’ͺ​(z)\mathcal{O}(z) over KK. The set π–²π—π—Žπ–Ώπ–Ώπ—…π–ΎΟ΅Ξ·\mathsf{Shuffle}_{\epsilon}^{\eta} is a complete set of representatives of SΞ·/SΟ΅S_{\eta}/S_{\epsilon}, so #​ℬ​(z)=#β€‹π–²π—π—Žπ–Ώπ–Ώπ—…π–ΎΟ΅Ξ·=Ξ·!/Ο΅!\#\mathcal{B}(z)=\#\mathsf{Shuffle}_{\epsilon}^{\eta}=\eta!/\epsilon!. On the other hand dimKπ’ͺ​(z)=#​(SΞ·/SΟ΅)=Ξ·!/Ο΅!\dim_{K}\mathcal{O}(z)=\#(S_{\eta}/S_{\epsilon})=\eta!/\epsilon!, so ℬ​(z)\mathcal{B}(z) is a basis of π’ͺ​(z)\mathcal{O}(z), and in particular it is linearly independent over BΞ·B_{\eta}. ∎

We refer to the elements of ℬ\mathcal{B} as derived tableaux, and the elements in ℬ​(z)\mathcal{B}(z) as the derived tableaux of T​(z)T(z).

Theorem 5.1.

The BΞ·B_{\eta}-lattice LΞ·L_{\eta} is a UU-submodule of VKV_{K}.

  • Proof.

    Let zβˆˆπ’©Ξ·z\in\mathcal{N}_{\eta} and let Ο΅\epsilon be the unique refinement of Ξ·\eta such that SΟ΅βŠ‚SΞ·S_{\epsilon}\subset S_{\eta} is the stabilizer of zz in SΞ·S_{\eta}. For each k∈⟦n⟧k\in\llbracket n\rrbracket the KK-vector-space π’ͺ​(z)\mathcal{O}(z) consists of eigenvectors of Ek,kE_{k,k} with the same eigenvalue; since every derived tableaux of T​(z)T(z) lies in π’ͺ​(z)\mathcal{O}(z), we get that Ek,k​LΞ·βŠ‚LΞ·E_{k,k}L_{\eta}\subset L_{\eta}. Hence we only need to show that E​LΞ·βŠ‚LΞ·EL_{\eta}\subset L_{\eta} for E∈{Ek,k+1,Ek+1,k∣1≀k≀nβˆ’1}E\in\{E_{k,k+1},E_{k+1,k}\mid 1\leq k\leq n-1\}

    It follows from the definitions that Δϡ​ek,i±​(x+z)∈BΞ·\Delta_{\epsilon}e_{k,i}^{\pm}(x+z)\in B_{\eta} for each k∈⟦nβˆ’1⟧k\in\llbracket n-1\rrbracket, so Δϡ​E​T​(z)\Delta_{\epsilon}ET(z) is a linear combination of tableaux T​(w)T(w). Now since T​(w)∈LΞ·T(w)\in L_{\eta} for all wβˆˆβ„€0ΞΌw\in\mathbb{Z}^{\mu}_{0} and ℬ\mathcal{B} is a basis of LΞ·L_{\eta}, we can write

    E​T​(z)\displaystyle ET(z) =βˆ‘Dση​T​(w)βˆˆβ„¬fΟƒ,wΔϡ​Dση​T​(w)\displaystyle=\sum_{D_{\sigma}^{\eta}T(w)\in\mathcal{B}}\frac{f_{\sigma,w}}{\Delta_{\epsilon}}D_{\sigma}^{\eta}T(w)

    with fΟƒ,w∈BΞ·f_{\sigma,w}\in B_{\eta} unique.

    Since the action of UU is SΞ·S_{\eta}-equivariant and T​(z)T(z) is stable by SΟ΅S_{\epsilon}, the same is true for E​T​(z)ET(z), and hence the right hand side of the equation is also SΟ΅S_{\epsilon}-invariant. Since derived tableaux are SΞ·S_{\eta}-invariant we see that fΟƒ,wΔϡ\frac{f_{\sigma,w}}{\Delta_{\epsilon}} is an SΟ΅S_{\epsilon}-invariant element of KK, and hence τ​(fΟƒ,w)=sg⁑(Ο„)​fΟƒ,w\tau(f_{\sigma,w})=\operatorname{sg}(\tau)f_{\sigma,w} for each Ο„βˆˆSΟ΅\tau\in S_{\epsilon}. This implies that fΟƒ,w=gΟƒ,w​Δϡf_{\sigma,w}=g_{\sigma,w}\Delta_{\epsilon} with gΟƒ,w∈BΞ·SΟ΅g_{\sigma,w}\in B_{\eta}^{S_{\epsilon}}, and hence E​T​(z)∈LΞ·ET(z)\in L_{\eta}. Finally, since the action of UU is both KK-linear and SΞ·S_{\eta}-equivariant we obtain

    E​Dνη​T​(z)\displaystyle ED_{\nu}^{\eta}T(z) =Dνη​(E​T​(z))=βˆ‘Dση​T​(w)βˆˆβ„¬Dνη​(gΟƒ,w)​Dση​T​(w).\displaystyle=D_{\nu}^{\eta}(ET(z))=\sum_{D_{\sigma}^{\eta}T(w)\in\mathcal{B}}D_{\nu}^{\eta}(g_{\sigma,w})D_{\sigma}^{\eta}T(w).

    Now BΞ·B_{\eta} is stable by the action of SΞ·S_{\eta} and closed under divided differences, so Dνη​(gΟƒ,w)∈BΞ·D_{\nu}^{\eta}(g_{\sigma,w})\in B_{\eta} and E​Dνη​T​(z)∈LΞ·ED_{\nu}^{\eta}T(z)\in L_{\eta}. ∎

L:pre-gt Let vβˆˆβ„‚ΞΌv\in\mathbb{C}^{\mu} be an Ξ·\eta-critical point. Then there is a well-defined map Ο€v:BΞ·βŸΆβ„‚\pi_{v}:B_{\eta}\longrightarrow\mathbb{C} given by Ο€v​(f)=f​(v)\pi_{v}(f)=f(v), and it is clear by definition that π”­Ξ·βŠ‚ker⁑πv\mathfrak{p}_{\eta}\subset\ker\pi_{v}. From this we obtain a one-dimensional representation of BΞ·B_{\eta}, which we denote by β„‚v\mathbb{C}_{v}. We fix a nonzero element 1vβˆˆβ„‚v1_{v}\in\mathbb{C}_{v}.

Definition 4.

Let vβˆˆβ„‚ΞΌv\in\mathbb{C}^{\mu} be an Ξ·\eta-critical point. We define V​(T​(v))V(T(v)) to be the complex vector-space β„‚vβŠ—BΞ·LΞ·\mathbb{C}_{v}\otimes_{B_{\eta}}L_{\eta}, with the UU-module structure given by the action of UU on LΞ·L_{\eta}.

Given zβˆˆπ’©z\in\mathcal{N} and Οƒβˆˆπ–²π—π—Žπ–Ώπ–Ώπ—…π–ΎΟ΅β€‹(z)Ξ·\sigma\in\mathsf{Shuffle}_{\epsilon(z)}^{\eta}, we write D¯ση​(v+z)=1vβŠ—Dση​(z)\overline{D}_{\sigma}^{\eta}(v+z)=1_{v}\otimes D_{\sigma}^{\eta}(z). It follows from Lemma LABEL:L:derived-tableaux that the set {D¯ση​(v+z)∣zβˆˆπ’©Ξ·,Οƒβˆˆπ–²π—π—Žπ–Ώπ–Ώπ—…π–ΎΟ΅β€‹(z)Ξ·}\{\overline{D}_{\sigma}^{\eta}(v+z)\mid z\in\mathcal{N}_{\eta},\sigma\in\mathsf{Shuffle}_{\epsilon(z)}^{\eta}\} is a basis of V​(T​(v))V(T(v)) as a complex vector-space.

Example 2.

Fix n=4n=4, let Ξ·=(1,12,3,14)\eta=(1,1^{2},3,1^{4}) and let vv be any Ξ·\eta-singular ΞΌ\mu-point. The following table shows the nonzero derived tableaux of T​(v+z)T(v+z), classified according to the composition ϡ​(z)\epsilon(z); we always assume a>b>ca>b>c.

z3z_{3} ϡ​(z)(3)\epsilon(z)^{(3)} Nonzero derived tableaux
(a,b,c)(a,b,c) (1,1,1)(1,1,1) D¯𝗂𝖽η​(v+z),DΒ―(12)η​(v+z),DΒ―(23)η​(v+z),\overline{D}^{\eta}_{\mathsf{id}}(v+z),\overline{D}^{\eta}_{(12)}(v+z),\overline{D}^{\eta}_{(23)}(v+z), DΒ―(123)η​(v+z),DΒ―(132)η​(v+z),DΒ―(13)η​(v+z)\overline{D}^{\eta}_{(123)}(v+z),\overline{D}^{\eta}_{(132)}(v+z),\overline{D}^{\eta}_{(13)}(v+z)
(a,a,b)(a,a,b) (2,1)(2,1) D¯𝗂𝖽η​(v+z),DΒ―(23)η​(v+z),DΒ―(123)η​(v+z)\overline{D}^{\eta}_{\mathsf{id}}(v+z),\overline{D}^{\eta}_{(23)}(v+z),\overline{D}^{\eta}_{(123)}(v+z)
(a,b,b)(a,b,b) (1,2)(1,2) D¯𝗂𝖽η​(v+z),DΒ―(12)η​(v+z),DΒ―(132)η​(v+z)\overline{D}^{\eta}_{\mathsf{id}}(v+z),\overline{D}^{\eta}_{(12)}(v+z),\overline{D}^{\eta}_{(132)}(v+z)
(a,a,a)(a,a,a) (3)(3) D¯𝗂𝖽η​(v+z)\overline{D}^{\eta}_{\mathsf{id}}(v+z)

W

e finish with the proof that V​(T​(v))V(T(v)) is always a Gelfand-Tsetlin module, and we find its support along with the multiplicity of each character. We need the following preeliminary result.

Lemma 4.

Let Οƒ,Ξ½,Ο„βˆˆSΞ·\sigma,\nu,\tau\in S_{\eta}. Then dΟƒ,τν=Dνη​((βˆ‚ΟƒΞ”Ξ·)βˆ—β€‹(βˆ‚Ο„Ξ”Ξ·)βˆ—)≑0mod𝔭ηd_{\sigma,\tau}^{\nu}=D_{\nu}^{\eta}((\partial_{\sigma}\Delta_{\eta})^{*}(\partial_{\tau}\Delta_{\eta})^{*})\equiv 0\mod\mathfrak{p}_{\eta} unless ℓ​(Οƒ)+ℓ​(Ο„)=ℓ​(Ξ½)\ell(\sigma)+\ell(\tau)=\ell(\nu). Furthermore dΞ½,𝗂𝖽ν=d𝗂𝖽,Ξ½Ξ½=1d_{\nu,\mathsf{id}}^{\nu}=d_{\mathsf{id},\nu}^{\nu}=1.

  • Proof.

    Recall that (βˆ‚ΟƒΞ”Ξ·)βˆ—=1Ξ·!β€‹βˆ‚Οƒβˆ’1​wμΔη+cΟƒβˆ’1​wΞ·(\partial_{\sigma}\Delta_{\eta})^{*}=\frac{1}{\eta!}\partial_{\sigma^{-1}w_{\mu}}\Delta_{\eta}+c_{\sigma^{-1}w_{\eta}} with cΟƒβˆ’1​wΞ·c_{\sigma^{-1}w_{\eta}} lying in the ideal generated by 𝔭ηSΞ·\mathfrak{p}_{\eta}^{S_{\eta}}, and that this is a homogeneous polynomial of degree ℓ​(Οƒ)\ell(\sigma). Recall also that the algebra ℂ​[𝔭η]\mathbb{C}[\mathfrak{p}_{\eta}] generated by 𝔭η\mathfrak{p}_{\eta} is closed by the action of the symmetrized divided difference operators, and that a polynomial in ℂ​[𝔭η]\mathbb{C}[\mathfrak{p}_{\eta}] lies in 𝔭η\mathfrak{p}_{\eta} if and only if it is of strictly positive degree.

    By definition deg(βˆ‚ΟƒΞ”Ξ·)βˆ—(βˆ‚Ο„Ξ”Ξ·)βˆ—=β„“(Οƒ)+β„“(Ο„)\deg(\partial_{\sigma}\Delta_{\eta})^{*}(\partial_{\tau}\Delta_{\eta})^{*}=\ell(\sigma)+\ell(\tau). This implies that if ℓ​(Ξ½)>ℓ​(Οƒ)+ℓ​(Ο„)\ell(\nu)>\ell(\sigma)+\ell(\tau) then dΟƒ,τν=0d_{\sigma,\tau}^{\nu}=0, so we may assume from now on that ℓ​(Ξ½)≀ℓ​(Οƒ)+ℓ​(Ο„)\ell(\nu)\leq\ell(\sigma)+\ell(\tau). Now if fβˆˆπ”­Ξ·SΞ·f\in\mathfrak{p}_{\eta}^{S_{\eta}} then Dνη​(f​g)=f​Dνη​(g)D_{\nu}^{\eta}(fg)=fD_{\nu}^{\eta}(g) for any gβˆˆβ„‚β€‹[XΞΌ]g\in\mathbb{C}[X_{\mu}], so

    dΟƒ,τν\displaystyle d^{\nu}_{\sigma,\tau} ≑1Ξ·!2​Dνη​((βˆ‚Οƒβˆ’1​wμΔη)​(βˆ‚Ο„βˆ’1​wμΔη))mod𝔭η.\displaystyle\equiv\frac{1}{\eta!^{2}}D_{\nu}^{\eta}((\partial_{\sigma^{-1}w_{\mu}}\Delta_{\eta})(\partial_{\tau^{-1}w_{\mu}}\Delta_{\eta}))\mod\mathfrak{p}_{\eta}.

    The polynomial in the right hand side of this congruence lies in ℂ​[𝔭η]\mathbb{C}[\mathfrak{p}_{\eta}], and if ℓ​(Ξ½)<ℓ​(Ο„)+ℓ​(Οƒ)\ell(\nu)<\ell(\tau)+\ell(\sigma) then its degree is positive and hence it lies in 𝔭η\mathfrak{p}_{\eta}. On the other hand

    dΞ½,𝗂𝖽ν\displaystyle d^{\nu}_{\nu,\mathsf{id}} =d𝗂𝖽,Ξ½Ξ½=1Ξ·!2symΞ·βˆ‚Ξ½((βˆ‚Ξ½βˆ’1​wηΔη)(βˆ‚wμΔη))=1Ξ·!2symΞ·(βˆ‚wηΔη)2=1.\displaystyle=d^{\nu}_{\mathsf{id},\nu}=\frac{1}{\eta!^{2}}\operatorname{sym}_{\eta}\partial_{\nu}((\partial_{\nu^{-1}w_{\eta}}\Delta_{\eta})(\partial_{w_{\mu}}\Delta_{\eta}))=\frac{1}{\eta!^{2}}\operatorname{sym}_{\eta}(\partial_{w_{\eta}}\Delta_{\eta})^{2}=1.

    ∎

Theorem 5.2.

Let vβˆˆβ„‚ΞΌv\in\mathbb{C}^{\mu} be a critical ΞΌ\mu-point, and set Ξ·=η​(v)\eta=\eta(v). The UU-module V​(T​(v))V(T(v)) is a Gelfand-Tsetlin module whose support is the set {Ο‡v+z∣zβˆˆπ’©Ξ·}\{\chi_{v+z}\mid z\in\mathcal{N}_{\eta}\}. Furthermore the multiplicity of Ο‡v+z\chi_{v+z} in V​(T​(v))V(T(v)) is Ξ·!/ϡ​(z)!\eta!/\epsilon(z)!.

  • Proof.

    Fix cβˆˆΞ“c\in\Gamma and let Ξ³=ι​(c)\gamma=\iota(c). Since c​T​(z)=γ​(x+z)​T​(z)cT(z)=\gamma(x+z)T(z) for each zβˆˆβ„€0ΞΌz\in\mathbb{Z}^{\mu}_{0}, we see that

    c​Dνη​T​(z)\displaystyle cD_{\nu}^{\eta}T(z) =Dνη​(γ​(x+z)​T​(z)).\displaystyle=D_{\nu}^{\eta}(\gamma(x+z)T(z)).

    Now using Proposition LABEL:P:sdd

    γ​(x+z)\displaystyle\gamma(x+z) =βˆ‘ΟƒβˆˆSΞ·(βˆ‚ΟƒΞ”Ξ·)βˆ—β€‹Dσ​(γ​(x+z)),\displaystyle=\sum_{\sigma\in S_{\eta}}(\partial_{\sigma}\Delta_{\eta})^{*}D_{\sigma}(\gamma(x+z)),
    T​(z)\displaystyle T(z) =βˆ‘Ο„βˆˆSΞ·(βˆ‚Ο„Ξ”Ξ·)βˆ—β€‹Dτ​T​(z),\displaystyle=\sum_{\tau\in S_{\eta}}(\partial_{\tau}\Delta_{\eta})^{*}D_{\tau}T(z),

    and plugging this in Dνη​(γ​(x+z)​T​(z))D_{\nu}^{\eta}(\gamma(x+z)T(z)) we get

    c​Dνη​T​(z)\displaystyle cD_{\nu}^{\eta}T(z) =βˆ‘Οƒ,Ο„βˆˆSΞ·Dνη​((βˆ‚ΟƒΞ”Ξ·)βˆ—β€‹(βˆ‚Ο„Ξ”Ξ·)βˆ—)​Dση​(γ​(x+z))​Dτη​T​(z).\displaystyle=\sum_{\sigma,\tau\in S_{\eta}}D_{\nu}^{\eta}((\partial_{\sigma}\Delta_{\eta})^{*}(\partial_{\tau}\Delta_{\eta})^{*})D_{\sigma}^{\eta}(\gamma(x+z))D_{\tau}^{\eta}T(z).

    By Lemma LABEL:L:pre-gt we get

    c​Dνη​T​(z)\displaystyle cD_{\nu}^{\eta}T(z) ≑symη⁑(γ​(x+z))​Dνη​T​(z)\displaystyle\equiv\operatorname{sym}_{\eta}(\gamma(x+z))D_{\nu}^{\eta}T(z)
    +βˆ‘β„“β€‹(Οƒ)+ℓ​(Ο„)=ℓ​(Ξ½)ℓ​(Οƒ)>0dΟƒ,τν​Dση​(γ​(x+z))​Dτη​T​(z)mod𝔭η​LΞ·.\displaystyle+\sum_{\begin{subarray}{c}\ell(\sigma)+\ell(\tau)=\ell(\nu)\\ \ell(\sigma)>0\end{subarray}}d^{\nu}_{\sigma,\tau}D_{\sigma}^{\eta}(\gamma(x+z))D_{\tau}^{\eta}T(z)\mod\mathfrak{p}_{\eta}L_{\eta}.

    and using the fact that π”­Ξ·βŠ‚ker⁑πv\mathfrak{p}_{\eta}\subset\ker\pi_{v} and that Ο€v​(symη⁑f)=f​(v)\pi_{v}(\operatorname{sym}_{\eta}f)=f(v) for each fβˆˆβ„‚β€‹[XΞ·]f\in\mathbb{C}[X_{\eta}],

    c​D¯νη​(v+z)\displaystyle c\overline{D}_{\nu}^{\eta}(v+z) =γ​(v+z)​D¯νη​(v+z)\displaystyle=\gamma(v+z)\overline{D}_{\nu}^{\eta}(v+z)
    +βˆ‘β„“β€‹(Οƒ)+ℓ​(Ο„)=ℓ​(Ξ½)ℓ​(Ο„)<ℓ​(Ξ½)dΟƒ,τν​πv​(Dση​(γ​(x+z)))​D¯τη​(v+z).\displaystyle+\sum_{\begin{subarray}{c}\ell(\sigma)+\ell(\tau)=\ell(\nu)\\ \ell(\tau)<\ell(\nu)\end{subarray}}d^{\nu}_{\sigma,\tau}\pi_{v}(D_{\sigma}^{\eta}(\gamma(x+z)))\overline{D}_{\tau}^{\eta}(v+z).

    This shows that (cβˆ’Ξ³β€‹(v+z))ℓ​(Ξ½)​D¯νη​(v+z)=0(c-\gamma(v+z))^{\ell(\nu)}\overline{D}_{\nu}^{\eta}(v+z)=0 and hence D¯νη​(v+z)∈V​(T​(v))​[Ο‡v+z]\overline{D}_{\nu}^{\eta}(v+z)\in V(T(v))[\chi_{v+z}]. It follows that

    V​(T​(v))​[Ο‡v+z]\displaystyle V(T(v))[\chi_{v+z}] =⟨D¯νη​(v+z)βˆ£Ξ½βˆˆπ–²π—π—Žπ–Ώπ–Ώπ—…π–ΎΟ΅β€‹(z)Ξ·βŸ©β„‚\displaystyle=\langle\overline{D}_{\nu}^{\eta}(v+z)\mid\nu\in\mathsf{Shuffle}_{\epsilon(z)}^{\eta}\rangle_{\mathbb{C}}

    so the multiplicity of Ο‡v+z\chi_{v+z} in V​(T​(v))V(T(v)) is Ξ·!/ϡ​(z)!\eta!/\epsilon(z)!. ∎

Remark 5.3.

Let ΞΈ\theta be a refinement of (1,2,…,nβˆ’1,1n)(1,2,\ldots,n-1,1^{n}). Let vβˆˆβ„‚ΞΌv\in\mathbb{C}^{\mu} be fully critical and suppose Ξ·=η​(v)\eta=\eta(v) is a refinement of ΞΈ\theta. Then BΞΈβŠ‚BΞ·B_{\theta}\subset B_{\eta} and β„‚v\mathbb{C}_{v} is a BΞΈB_{\theta}-module by restriction, so we get a UU-module by setting W​(T​(v))=β„‚vβŠ—BΞΈLΞΈW(T(v))=\mathbb{C}_{v}\otimes_{B_{\theta}}L_{\theta}. It is natural to ask whether W​(T​(v))W(T(v)) is equal to V​(T​(v))V(T(v)).

The answer to this question is yes. Since SΞ·βŠ‚SΞΈS_{\eta}\subset S_{\theta} the elements Dτθ​T​(z)D^{\theta}_{\tau}T(z) are SΞ·S_{\eta}-invariant for each Ο„βˆˆSΞΈ\tau\in S_{\theta}, and hence

Dση​T​(z)\displaystyle D_{\sigma}^{\eta}T(z) =βˆ‘Ο„βˆˆSθℓ​(Ο„)β‰₯ℓ​(Οƒ)Dση​((βˆ‚Ο„Ξ”ΞΈ)βˆ—)​Dτθ​T​(z)∈LΞΈ.\displaystyle=\sum_{\begin{subarray}{c}\tau\in S_{\theta}\\ \ell(\tau)\geq\ell(\sigma)\end{subarray}}D_{\sigma}^{\eta}((\partial_{\tau}\Delta_{\theta})^{*})D_{\tau}^{\theta}T(z)\in L_{\theta}.

This implies that LΞ·βŠ‚BΞ·βŠ—BΞΈLΞΈL_{\eta}\subset B_{\eta}\otimes_{B_{\theta}}L_{\theta}.

Now if f∈BΞ·f\in B_{\eta} then there exist fΟƒβˆˆBΞ·SΞ·f_{\sigma}\in B_{\eta}^{S_{\eta}} such that f=βˆ‘ΟƒβˆˆSΞ·fΟƒβ€‹βˆ‚Οƒβˆ’1Δηf=\sum_{\sigma\in S_{\eta}}f_{\sigma}\partial_{\sigma^{-1}}\Delta_{\eta}, and so

symη⁑(fΔη​T​(z))\displaystyle\operatorname{sym}_{\eta}\left(\frac{f}{\Delta_{\eta}}T(z)\right) =βˆ‘ΟƒβˆˆSΞ·fσ​symη⁑(βˆ‚Οƒβˆ’1ΔηΔη​T​(z))=βˆ‘ΟƒβˆˆSΞ·fσ​Dση​T​(z)∈LΞ·.\displaystyle=\sum_{\sigma\in S_{\eta}}f_{\sigma}\operatorname{sym}_{\eta}\left(\frac{\partial_{\sigma^{-1}}\Delta_{\eta}}{\Delta_{\eta}}T(z)\right)=\sum_{\sigma\in S_{\eta}}f_{\sigma}D_{\sigma}^{\eta}T(z)\in L_{\eta}.

for each zβˆˆβ„€0ΞΌz\in\mathbb{Z}^{\mu}_{0}. Now let RβŠ‚SΞΈR\subset S_{\theta} be a set of representatives of left SΞ·S_{\eta}-coclasses of SΞΈS_{\theta}, so SΞΈ=β¨†ΟƒβˆˆRSη​σS_{\theta}=\bigsqcup_{\sigma\in R}S_{\eta}\sigma. Then

Dτθ​T​(z)\displaystyle D_{\tau}^{\theta}T(z) =βˆ‘ΟƒβˆˆRsymη⁑(sg⁑(Οƒ)​σ​(βˆ‚Ο„βˆ’1Δθ)​(Δη/Δθ)Δη​T​(σ​(z))).\displaystyle=\sum_{\sigma\in R}\operatorname{sym}_{\eta}\left(\frac{\operatorname{sg}(\sigma)\sigma(\partial_{\tau^{-1}}\Delta_{\theta})(\Delta_{\eta}/\Delta_{\theta})}{\Delta_{\eta}}T(\sigma(z))\right).

Since sg⁑(Οƒ)​σ​(βˆ‚Ο„βˆ’1Δθ)βˆˆβ„‚β€‹[XΞ·]\operatorname{sg}(\sigma)\sigma(\partial_{\tau^{-1}}\Delta_{\theta})\in\mathbb{C}[X_{\eta}] and Δη/Ξ”ΞΈβˆˆBΞ·\Delta_{\eta}/\Delta_{\theta}\in B_{\eta} we get that Dτθ​T​(z)∈LΞ·D_{\tau}^{\theta}T(z)\in L_{\eta} and hence LΞ·=BΞ·βŠ—BΞΈLΞΈL_{\eta}=B_{\eta}\otimes_{B_{\theta}}L_{\theta}, so

V​(T​(v))=β„‚vβŠ—BΞ·LΞ·=β„‚vβŠ—BΞ·(BΞ·βŠ—BΞΈLΞΈ)=β„‚vβŠ—BΞΈLΞΈ=W​(T​(v)).\displaystyle V(T(v))=\mathbb{C}_{v}\otimes_{B_{\eta}}L_{\eta}=\mathbb{C}_{v}\otimes_{B_{\eta}}(B_{\eta}\otimes_{B_{\theta}}L_{\theta})=\mathbb{C}_{v}\otimes_{B_{\theta}}L_{\theta}=W(T(v)).

References

  • \bibselectbiblio