This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Gelfand–Cetlin abelianizations of symplectic quotients

Peter Crooks  and  Jonathan Weitsman Department of Mathematics and Statistics
Utah State University
3900 Old Main Hill
Logan, UT 84322, USA
peter.crooks@usu.edu Department of Mathematics
Northeastern University
360 Huntington Avenue
Boston, MA 02115, USA
j.weitsman@northeastern.edu
Abstract.

We show that generic symplectic quotients of a Hamiltonian GG-space MM by the action of a compact connected Lie group GG are also symplectic quotients of the same manifold MM by a compact torus. The torus action in question arises from certain integrable systems on 𝔤\mathfrak{g}^{*}, the dual of the Lie algebra of GG. Examples of such integrable systems include the Gelfand–Cetlin systems of Guillemin–Sternberg in the case of unitary and special orthogonal groups, and certain integrable systems constructed for all compact connected Lie groups by Hoffman–Lane. Our abelianization result holds for smooth quotients, and more generally for quotients which are stratified symplectic spaces in the sense of Sjamaar–Lerman.

Key words and phrases:
symplectic quotient, Gelfand–Cetlin system, stratified symplectic space
1991 Mathematics Subject Classification:
53D20 (primary); 17B80 (secondary)

1. Introduction

Let GG be a compact connected Lie group with Lie algebra 𝔤\mathfrak{g}. Suppose that MM is a Hamiltonian GG-space, i.e. a symplectic manifold equipped with a symplectic action of GG and equivariant moment map μ:M𝔤.\mu:M\longrightarrow\mathfrak{g}^{*}. The symplectic or Marsden–Weinstein [9] quotient of MM by GG at level ξ𝔤\xi\in\mathfrak{g}^{*} is the topological space

M//ξGμ1(ξ)/Gξ,M\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G\coloneqq\mu^{-1}(\xi)/G_{\xi},

where GξGG_{\xi}\subset G is the GG-stabilizer of ξ.\xi. If GG acts freely on μ1(ξ),\mu^{-1}(\xi), then M//ξGM\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G is a smooth symplectic manifold. In the absence of this freeness assumption, M//ξGM\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G is a stratified symplectic space in the sense of Sjamaar-Lerman [10].

The purpose of this paper is to show that certain integrable systems on 𝔤\mathfrak{g}^{*} allow us to express generic symplectic quotients of a Hamiltonian GG-space MM as symplectic quotients of the same manifold MM by the action of a compact torus. Such integrable systems include the Gelfand–Cetlin systems constructed by Guillemin–Sternberg [4, 5] for unitary and special orthogonal groups, as well Hoffman–Lane’s more recent generalizations of Gelfand–Cetlin systems [8] to arbitrary Lie type.

An example of our main result arises in classical mechanics [3]. Suppose that we are given a Hamiltonian SO(3)\operatorname{SO}(3)-space MM with an invariant Hamiltonian function H:MH:M\longrightarrow\mathbb{R}. The SO(3)\operatorname{SO}(3)-action gives rise to two Poisson-commuting conserved quantities: the total angular momentum, and the angular momentum in some fixed direction in the Lie algebra of SO(3)\operatorname{SO}(3) corresponding to a choice of maximal torus. These quantities give the components of a moment map for a densely defined 2-torus action on M,M, coming from the Gelfand–Cetlin system of Guillemin–Sternberg for the case of SO(3)\operatorname{SO}(3).111The square of the total angular momentum is a smooth function, but the orbits of its Hamiltonian flow do not have constant period, and so it does not generate a circle action. Taking the square root gives a function whose Hamiltonian flow generates a circle action, but which is only continuous, not differentiable, at zero. It therefore does not define a Hamiltonian flow at zero. Our main result shows that for a non-zero value ξ\xi of the angular momentum, the symplectic quotient M//ξSO(3)M\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}\operatorname{SO}(3) coincides with an appropriate symplectic quotient of MM under the densely defined torus action. See [3] for more examples of these techniques.

1.1. Main result

We introduce the notion of a Gelfand–Cetlin datum (λbig,𝔤s-reg)(\lambda_{\text{big}},\mathfrak{g}^{*}_{\text{s-reg}}) in Definition 1. This amounts to λbig\lambda_{\text{big}} being a continuous map on 𝔤\mathfrak{g}^{*} that restricts to a Poisson moment map for a Hamiltonian action of a compact torus 𝕋big\mathbb{T}_{\text{big}} on an open dense subset 𝔤s-reg𝔤\mathfrak{g}^{*}_{\text{s-reg}}\subset\mathfrak{g}^{*}, along with some extra conditions that capture salient properties of the classical Gelfand–Cetlin systems. One of these conditions is that the open, symplectic submanifold Ms-regμ1(𝔤s-reg)MM_{\text{s-reg}}\coloneqq\mu^{-1}(\mathfrak{g}^{*}_{\text{s-reg}})\subset M be a Hamiltonian 𝕋big\mathbb{T}_{\text{big}}-space with moment map λM(λbigμ)|Ms-reg\lambda_{M}\coloneqq(\lambda_{\text{big}}\circ\mu)\big{|}_{M_{\text{s-reg}}} for any Hamiltonian GG-space MM with moment map μ:M𝔤\mu:M\longrightarrow\mathfrak{g}^{*}. The results of Guillemin–Sternberg [4, 5] imply that Gelfand–Cetlin data exist for all unitary and special orthogonal groups, while more recent results of Hoffman–Lane [8] imply that such data exist in all Lie types.

The following is the main result of our paper.

Theorem.

Let GG be a compact connected Lie group, and MM a Hamiltonian GG-space with moment map μ:M𝔤\mu:M\longrightarrow\mathfrak{g}^{*}. Suppose that (λbig,𝔤s-reg)(\lambda_{\emph{big}},\mathfrak{g}^{*}_{\emph{s-reg}}) is a Gelfand–Cetlin datum, and consider a point ξ𝔤s-reg\xi\in\mathfrak{g}^{*}_{\emph{s-reg}}.

  • (i)

    The torus 𝕋big\mathbb{T}_{\emph{big}} acts freely on λM1(λbig(ξ))\lambda_{M}^{-1}(\lambda_{\emph{big}}(\xi)) if and only if GξG_{\xi} acts freely on μ1(ξ)\mu^{-1}(\xi). In this case, there is a canonical symplectomorphism M//ξGMs-reg//λbig(ξ)𝕋bigM\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G\cong M_{\emph{s-reg}}\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\lambda_{\emph{big}}(\xi)}}\mathbb{T}_{\emph{big}}.

  • (ii)

    There is a canonical isomorphism M//ξGMs-reg//λbig(ξ)𝕋bigM\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G\cong M_{\emph{s-reg}}\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\lambda_{\emph{big}}(\xi)}}\mathbb{T}_{\emph{big}} of stratified symplectic spaces.

Part (ii) is strictly more general than (i). Part (i) is included for the sake of exposition and accessibility.

One may regard this theorem as an approach to abelianizing the generic symplectic quotients of a Hamiltonian GG-space MM, i.e. to presenting such quotients as symplectic quotients by a compact torus. An alternative approach to abelianization is pursued in the work of Guillemin–Jeffrey–Sjamaar [2].

1.2. Organization

Section 2 briefly establishes some of our conventions concerning Lie theory and Hamiltonian geometry. Section 3 subsequently motivates and contextualizes the notion of a Gelfand–Cetlin datum. Our main result is then proved in Section 4 for smooth quotients. A generalization to stratified symplectic spaces is formulated and proved in Section 5.

Acknowledgements

The authors would like to thank Megumi Harada and Jeremy Lane for exceedingly useful conversations. P.C. acknowledges support from a Utah State University startup grant, while J.W. acknowledges support from Simons Collaboration Grant # 579801.

2. Background and conventions

This section establishes some of our notation and conventions regarding Lie theory and Hamiltonian geometry.

2.1. Tori

The Lie algebra of the unitary group U(1)\operatorname{U}(1) is the real vector space ii\mathbb{R}\subset\mathbb{C} of purely imaginary numbers. We will identify this vector space with \mathbb{R} in the obvious way. It follows that k\mathbb{R}^{k} is the Lie algebra of U(1)k\operatorname{U}(1)^{k} for all non-negative integers kk, and that

kU(1)k,(x1,,xk)(eix1,,eixk)\mathbb{R}^{k}\longrightarrow\operatorname{U}(1)^{k},\quad(x_{1},\ldots,x_{k})\mapsto(e^{ix_{1}},\ldots,e^{ix_{k}})

is the exponential map for U(1)k\operatorname{U}(1)^{k}. In certain contexts, we will implicitly use the dot product to regard k\mathbb{R}^{k} as the dual of the Lie algebra of U(1)k\operatorname{U}(1)^{k}.

2.2. General compact connected Lie groups

Let GG be a compact connected Lie group with Lie algebra 𝔤\mathfrak{g} and rank \ell. One has the adjoint representations Ad:GGL(𝔤)\mathrm{Ad}:G\longrightarrow\operatorname{GL}(\mathfrak{g}) and ad:𝔤𝔤𝔩(𝔤)\mathrm{ad}:\mathfrak{g}\longrightarrow\mathfrak{gl}(\mathfrak{g}), as well as the coadjoint representations Ad:GGL(𝔤)\mathrm{Ad}^{*}:G\longrightarrow\operatorname{GL}(\mathfrak{g}^{*}) and ad:𝔤𝔤𝔩(𝔤)\mathrm{ad}^{*}:\mathfrak{g}\longrightarrow\mathfrak{gl}(\mathfrak{g}^{*}). The GG-representations induce GG-actions on 𝔤\mathfrak{g} and 𝔤\mathfrak{g}^{*}, and thereby give rise to stabilizer subgroups

Gx{gG:Adg(x)=x}andGξ{gG:Adg(ξ)=ξ}G_{x}\coloneqq\{g\in G:\mathrm{Ad}_{g}(x)=x\}\quad\text{and}\quad G_{\xi}\coloneqq\{g\in G:\mathrm{Ad}_{g}^{*}(\xi)=\xi\}

of GG for all x𝔤x\in\mathfrak{g} and ξ𝔤\xi\in\mathfrak{g}^{*}. On the other hand, the 𝔤\mathfrak{g}-representations allow us to define centralizers

𝔤x{y𝔤:ady(x)=0}and𝔤ξ{y𝔤:ady(ξ)=0}\mathfrak{g}_{x}\coloneqq\{y\in\mathfrak{g}:\mathrm{ad}_{y}(x)=0\}\quad\text{and}\quad\mathfrak{g}_{\xi}\coloneqq\{y\in\mathfrak{g}:\mathrm{ad}^{*}_{y}(\xi)=0\}

for all x𝔤x\in\mathfrak{g} and ξ𝔤\xi\in\mathfrak{g}^{*}. It follows that 𝔤x\mathfrak{g}_{x} (resp. 𝔤ξ\mathfrak{g}_{\xi}) is the Lie algebra of GxG_{x} (resp. GξG_{\xi}). Let us also note that dim𝔤x\dim\mathfrak{g}_{x}\geq\ell and dim𝔤ξ\dim\mathfrak{g}_{\xi}\geq\ell for all x𝔤x\in\mathfrak{g} and ξ𝔤\xi\in\mathfrak{g}^{*}. The regular loci

𝔤reg{x𝔤:dim𝔤x=}and𝔤reg{ξ𝔤:dim𝔤ξ=}\mathfrak{g}_{\text{reg}}\coloneqq\{x\in\mathfrak{g}:\dim\mathfrak{g}_{x}=\ell\}\quad\text{and}\quad\mathfrak{g}^{*}_{\text{reg}}\coloneqq\{\xi\in\mathfrak{g}^{*}:\dim\mathfrak{g}_{\xi}=\ell\}

are open, dense, GG-invariant subsets of 𝔤\mathfrak{g} and 𝔤\mathfrak{g}^{*}, respectively. An element x𝔤x\in\mathfrak{g} (resp. ξ𝔤\xi\in\mathfrak{g}^{*}) then belongs to 𝔤reg\mathfrak{g}_{\text{reg}} (resp. 𝔤reg\mathfrak{g}_{\text{reg}}^{*}) if and only if 𝔤x\mathfrak{g}_{x} (resp. 𝔤ξ\mathfrak{g}_{\xi}) is a Cartan subalgebra of 𝔤\mathfrak{g}. This is equivalent to GxG_{x} (resp. GξG_{\xi}) being a maximal torus of GG.

A few remarks on maximal tori and and Cartan subalgebras are warranted. Let 𝔱𝔤\mathfrak{t}\subset\mathfrak{g} be a Cartan subalgebra, and write TGT\subset G for the maximal torus with Lie algebra 𝔱\mathfrak{t}. The exponential map exp:𝔤G\mathrm{exp}:\mathfrak{g}\longrightarrow G then restricts to a surjective homomorphism exp|𝔱:𝔱T\mathrm{exp}\big{|}_{\mathfrak{t}}:\mathfrak{t}\longrightarrow T of abelian groups. The kernel of the latter is a free \mathbb{Z}-submodule of 𝔱\mathfrak{t} with rank equal to \ell. It follows that the same is true of

Λ𝔱12πker(exp|𝔱)𝔱.\Lambda_{\mathfrak{t}}\coloneqq\frac{1}{2\pi}\mathrm{ker}\left(\mathrm{exp}\big{|}_{\mathfrak{t}}\right)\subset\mathfrak{t}.

2.3. Hamiltonian geometry

Let (M,σ)(M,\sigma) be a Poisson manifold, i.e. σH0(M,Λ2TM)\sigma\in H^{0}(M,\Lambda^{2}TM) is a Poisson bivector field on the manifold MM. Note that σ\sigma may be regarded as a skew-symmetric bilnear map from two copies of TMT^{*}M to the trivial rank-11 vector bundle over MM. Contracting σ\sigma with cotangent vectors in the first argument then determines a vector bundle morphism σ:TMTM\sigma^{\vee}:T^{*}M\longrightarrow TM. One calls (M,σ)(M,\sigma) non-degenerate if σ\sigma^{\vee} is an isomorphism. In this case, (σ)1=ω(\sigma^{\vee})^{-1}=\omega^{\vee} for a unique symplectic form ωH0(M,Λ2TM)\omega\in H^{0}(M,\Lambda^{2}T^{*}M), where ω:TMTM\omega^{\vee}:TM\longrightarrow T^{*}M is the vector bundle morphism obtained by contracting ω\omega with tangent vectors in the first argument. This process gives rise to a bijective correspondence between symplectic structures on MM and non-degenerate Poisson structures on MM. We will thereby make no distinction between symplectic manifolds and non-degenerate Poisson manifolds.

If (M,σ)(M,\sigma) is a Poisson manifold, then σ\sigma can be recovered from the Poisson bracket {,}\{\cdot,\cdot\} that it induces. This bracket associates to smooth functions f1,f2:Mf_{1},f_{2}:M\longrightarrow\mathbb{R} the smooth function

{f1,f2}σ(df1df2):M.\{f_{1},f_{2}\}\coloneqq\sigma(\mathrm{d}f_{1}\wedge\mathrm{d}f_{2}):M\longrightarrow\mathbb{R}.

At the same time, one defines the Hamiltonian vector field of a smooth function f:Mf:M\longrightarrow\mathbb{R} by Xfσ(df)H0(M,TM)X_{f}\coloneqq-\sigma^{\vee}(\mathrm{d}f)\in H^{0}(M,TM). It follows that

{f1,f2}=Xf1(f2)=Xf2(f1)\{f_{1},f_{2}\}=-X_{f_{1}}(f_{2})=X_{f_{2}}(f_{1})

for all smooth functions f1,f2:Mf_{1},f_{2}:M\longrightarrow\mathbb{R}.

Now let GG be a compact connected Lie group with Lie algebra 𝔤\mathfrak{g} and exponential map exp:𝔤G\mathrm{exp}:\mathfrak{g}\longrightarrow G. If GG acts smoothly on a manifold MM, then each η𝔤\eta\in\mathfrak{g} determines a generating vector field ηMH0(M,TM)\eta_{M}\in H^{0}(M,TM) by

(ηM)mddt|t=0exp(tη)m(\eta_{M})_{m}\coloneqq\frac{d}{dt}\bigg{|}_{t=0}\mathrm{exp}(-t\eta)\cdot m

for all mMm\in M. A Poisson manifold (M,σ)(M,\sigma) with a smooth GG-action will be called a Poisson Hamiltonian GG-space if σ\sigma is GG-invariant and MM comes equipped with a moment map. This last term refers to GG-equivariant smooth map μ:M𝔤\mu:M\longrightarrow\mathfrak{g}^{*} satisfying Xμη=ηMX_{\mu^{\eta}}=\eta_{M} for all η𝔤\eta\in\mathfrak{g}, where μη:M\mu^{\eta}:M\longrightarrow\mathbb{R} is the result of pairing μ\mu with η\eta pointwise. We will reserve the term Hamiltonian GG-space for a Poisson Hamiltonian GG-space whose underlying Poisson structure is symplectic.

It will be advantageous to recall the Poisson Hamiltonian GG-space structure on 𝔤\mathfrak{g}^{*}. The Poisson bracket on 𝔤\mathfrak{g}^{*} is given by

{f1,f2}(ξ)=ξ([dξf1,dξf2])\{f_{1},f_{2}\}(\xi)=\xi([\mathrm{d}_{\xi}f_{1},\mathrm{d}_{\xi}f_{2}])

for all smooth functions f1,f2:Mf_{1},f_{2}:M\longrightarrow\mathbb{R} and points ξ𝔤\xi\in\mathfrak{g}^{*}, where dξf1,dξf2(𝔤)=𝔤\mathrm{d}_{\xi}f_{1},\mathrm{d}_{\xi}f_{2}\in(\mathfrak{g}^{*})^{*}=\mathfrak{g} denote the differentials of f1,f2f_{1},f_{2} at ξ\xi, respectively. One finds that 𝔤\mathfrak{g}^{*} is a Poisson Hamiltonian GG-space with respect to the coadjoint action, and with the identity 𝔤𝔤\mathfrak{g}^{*}\longrightarrow\mathfrak{g}^{*} serving as the Poisson moment map.

3. Gelfand–Cetlin data

In this section, we define Gelfand–Cetlin data and introduce their main properties. This begins with the definition itself in 3.1. The existence of Gelfand–Cetlin data is addressed in 3.2, while concrete techniques for constructing such data are discussed in 3.3 and 3.4. In 3.5, we describe concrete Gelfand–Cetlin data for unitary groups.

3.1. Definition and relation to integrable systems

Let GG be a compact connected Lie group with Lie algebra 𝔤\mathfrak{g} and rank \ell. Consider the quantities

u12(dim𝔤)andb12(dim𝔤+),\mathrm{u}\coloneqq\frac{1}{2}(\dim\mathfrak{g}-\ell)\quad\text{and}\quad\mathrm{b}\coloneqq\frac{1}{2}(\dim\mathfrak{g}+\ell),

and introduce the following tori of small, intermediate, and big ranks:

𝕋smallU(1),𝕋intU(1)u,and𝕋big𝕋small×𝕋intU(1)b.\mathbb{T}_{\text{small}}\coloneqq\operatorname{U}(1)^{\ell},\quad\mathbb{T}_{\text{int}}\coloneqq\operatorname{U}(1)^{\mathrm{u}},\quad\text{and}\quad\mathbb{T}_{\text{big}}\coloneqq\mathbb{T}_{\text{small}}\times\mathbb{T}_{\text{int}}\cong\operatorname{U}(1)^{\mathrm{b}}.

The respective Lie algebras of these tori are

small,intu,andbigsmall×intb.\mathbb{R}_{\text{small}}\coloneqq\mathbb{R}^{\ell},\quad\mathbb{R}_{\text{int}}\coloneqq\mathbb{R}^{\mathrm{u}},\quad\text{and}\quad\mathbb{R}_{\text{big}}\coloneqq\mathbb{R}_{\text{small}}\times\mathbb{R}_{\text{int}}\cong\mathbb{R}^{\mathrm{b}}.
Definition 1.

A Gelfand–Cetlin datum is a pair (λbig,𝔤s-reg)(\lambda_{\text{big}},\mathfrak{g}^{*}_{\text{s-reg}}), consisting of a continuous map λbig=(λ1,,λb):𝔤big\lambda_{\text{big}}=(\lambda_{1},\ldots,\lambda_{\mathrm{b}}):\mathfrak{g}^{*}\longrightarrow\mathbb{R}_{\text{big}} and open dense subset 𝔤s-reg𝔤\mathfrak{g}^{*}_{\text{s-reg}}\subset\mathfrak{g}^{*} that satisfy the following conditions:

  • (i)

    λ1,,λ\lambda_{1},\ldots,\lambda_{\ell} are GG-invariant on 𝔤\mathfrak{g}^{*} and smooth on 𝔤reg\mathfrak{g}^{*}_{\text{reg}};

  • (ii)

    {dξλ1,,dξλ}\{\mathrm{d}_{\xi}\lambda_{1},\ldots,\mathrm{d}_{\xi}\lambda_{\ell}\} is a \mathbb{Z}-basis of the lattice Λ𝔤ξ𝔤ξ\Lambda_{\mathfrak{g}_{\xi}}\subset\mathfrak{g}_{\xi} for all ξ𝔤reg\xi\in\mathfrak{g}^{*}_{\text{reg}};

  • (iii)

    𝔤s-reg𝔤reg\mathfrak{g}^{*}_{\text{s-reg}}\subset\mathfrak{g}^{*}_{\text{reg}};

  • (iv)

    λbig|𝔤s-reg:𝔤s-regbig\lambda_{\text{big}}\big{|}_{\mathfrak{g}^{*}_{\text{s-reg}}}:\mathfrak{g}^{*}_{\text{s-reg}}\longrightarrow\mathbb{R}_{\text{big}} is a smooth submersion and moment map for a Poisson Hamiltonian 𝕋big\mathbb{T}_{\text{big}}-space structure on 𝔤s-reg\mathfrak{g}^{*}_{\text{s-reg}};

  • (v)

    λbig|𝔤s-reg:𝔤s-regλbig(𝔤s-reg)\lambda_{\text{big}}\big{|}_{\mathfrak{g}^{*}_{\text{s-reg}}}:\mathfrak{g}^{*}_{\text{s-reg}}\longrightarrow\lambda_{\text{big}}(\mathfrak{g}^{*}_{\text{s-reg}}) is a principal 𝕋int\mathbb{T}_{\text{int}}-bundle;

  • (vi)

    if MM is a Hamiltonian GG-space with moment map μ:M𝔤\mu:M\longrightarrow\mathfrak{g}^{*}, then

    (λbigμ)|μ1(𝔤s-reg):μ1(𝔤s-reg)big(\lambda_{\text{big}}\circ\mu)\big{|}_{\mu^{-1}(\mathfrak{g}^{*}_{\text{s-reg}})}:\mu^{-1}(\mathfrak{g}^{*}_{\text{s-reg}})\longrightarrow\mathbb{R}_{\text{big}}

    is a moment map for a Hamiltonian 𝕋big\mathbb{T}_{\text{big}}-space structure on μ1(𝔤s-reg)\mu^{-1}(\mathfrak{g}_{\text{s-reg}}).

In this case, we adopt the notation

λsmall(λ1,,λ):𝔤small,λint(λ+1,,λb):𝔤int,\lambda_{\text{small}}\coloneqq(\lambda_{1},\ldots,\lambda_{\ell}):\mathfrak{g}^{*}\longrightarrow\mathbb{R}_{\text{small}},\quad\lambda_{\text{int}}\coloneqq(\lambda_{\ell+1},\ldots,\lambda_{\mathrm{b}}):\mathfrak{g}^{*}\longrightarrow\mathbb{R}_{\text{int}},
Ms-regμ1(𝔤s-reg),andλM(λbigμ)|Ms-reg:Ms-regbig.M_{\text{s-reg}}\coloneqq\mu^{-1}(\mathfrak{g}^{*}_{\text{s-reg}}),\quad\text{and}\quad\lambda_{M}\coloneqq(\lambda_{\text{big}}\circ\mu)\big{|}_{M_{\text{s-reg}}}:M_{\text{s-reg}}\longrightarrow\mathbb{R}_{\text{big}}.

We also refer to the elements of 𝔤s-reg\mathfrak{g}^{*}_{\text{s-reg}} as the strongly regular elements of 𝔤\mathfrak{g}^{*}.

Remark 2.

Condition (v) in Definition 1 is only slightly weaker than the existence of global action-angle coordinates on 𝔤s-reg\mathfrak{g}^{*}_{\text{s-reg}}. This existence question features prominently in [1, 8].

It is instructive to consider this definition in relation to the theory of completely integrable systems. One is thereby led to the following result.

Proposition 3.

Let (λbig,𝔤s-reg)(\lambda_{\emph{big}},\mathfrak{g}^{*}_{\emph{s-reg}}) be a Gelfand–Cetlin datum. If 𝒪𝔤\mathcal{O}\subset\mathfrak{g}^{*} is a coadjoint orbit and 𝒪s-reg𝒪𝔤s-reg\mathcal{O}_{\emph{s-reg}}\coloneqq\mathcal{O}\cap\mathfrak{g}^{*}_{\emph{s-reg}}, then

λint|𝒪s-reg:𝒪s-regλint(𝒪s-reg)int\lambda_{\emph{int}}\big{|}_{\mathcal{O}_{\emph{s-reg}}}:\mathcal{O}_{\emph{s-reg}}\longrightarrow\lambda_{\emph{int}}(\mathcal{O}_{\emph{s-reg}})\subset\mathbb{R}_{\emph{int}}

is a completely integrable system, principal 𝕋int\mathbb{T}_{\emph{int}}-bundle, and moment map for a Hamiltonian action of 𝕋int\mathbb{T}_{\emph{int}} on 𝒪s-reg\mathcal{O}_{\emph{s-reg}}.

Proof.

Note that the Hamiltonian vector field of any smooth function 𝔤\mathfrak{g}^{*}\longrightarrow\mathbb{R} is tangent to 𝒪\mathcal{O}. It follows that 𝒪s-reg\mathcal{O}_{\text{s-reg}} is stable under the action of 𝕋big\mathbb{T}_{\text{big}} on 𝔤s-reg\mathfrak{g}^{*}_{\text{s-reg}}. Definition 1(iv) now implies that 𝒪s-reg\mathcal{O}_{\text{s-reg}} is a Hamiltonian 𝕋big\mathbb{T}_{\text{big}}-space with moment map λbig|𝒪s-reg\lambda_{\text{big}}\big{|}_{\mathcal{O}_{\text{s-reg}}}. We conclude that λint|𝒪s-reg\lambda_{\text{int}}\big{|}_{\mathcal{O}_{\text{s-reg}}} is a moment map for the Hamiltonian action of 𝕋int𝕋big\mathbb{T}_{\text{int}}\subset\mathbb{T}_{\text{big}} on 𝒪s-reg\mathcal{O}_{\text{s-reg}}.

Since λsmall\lambda_{\text{small}} is constant-valued on 𝒪\mathcal{O}, Definition 1(v) tells us that λint|𝒪s-reg:𝒪s-regλint(𝒪s-reg)\lambda_{\text{int}}\big{|}_{\mathcal{O}_{\text{s-reg}}}:\mathcal{O}_{\text{s-reg}}\longrightarrow\lambda_{\text{int}}(\mathcal{O}_{\text{s-reg}}) is a principal 𝕋int\mathbb{T}_{\text{int}}-bundle. It therefore remains only to prove that dim𝕋int=12dim𝒪s-reg\dim\mathbb{T}_{\text{int}}=\frac{1}{2}\dim\mathcal{O}_{\text{s-reg}}. This follows immediately from the fact that dim𝕋int=u=12(dim𝔤)\dim\mathbb{T}_{\text{int}}=\mathrm{u}=\frac{1}{2}(\dim\mathfrak{g}-\ell). ∎

3.2. Existence of Gelfand–Cetlin data

It is natural to wonder about the generality in which Gelfand–Cetlin data exist. The earliest constructions are due to Guillemin–Sternberg [4, 5], and apply to all unitary groups U(n)\operatorname{U}(n) and special orthogonal groups SO(n)\operatorname{SO}(n). The underlying techniques are based on Thimm’s method, as described in [5]. Further details are outlined in Sections 3.33.5 of this paper. The case of symplectic groups is considerably more subtle and addressed in Harada’s paper [6].

Some recent work of Hoffman–Lane [8] implies the existence of Gelfand–Cetlin data for an arbitrary compact connected Lie group GG; the reader is referred to [8, Section 6.2] for the relevant details. This Hoffman–Lane paper is part of a broader program aimed at generalizing the results of Harada–Kaveh [7].

3.3. Construction of Gelfand–Cetlin data: integrality

We now discuss the construction of functions λ1,,λ:𝔤\lambda_{1},\ldots,\lambda_{\ell}:\mathfrak{g}^{*}\longrightarrow\mathbb{R} satisfying Conditions (i) and (ii) in Definition 1. Let GG be a compact connected Lie group with Lie algebra 𝔤\mathfrak{g} and rank \ell. Choose a GG-invariant inner product on 𝔤\mathfrak{g}, a Cartan subalgebra 𝔱𝔤\mathfrak{t}\subset\mathfrak{g}, and a closed, fundamental Weyl chamber 𝔱+𝔱\mathfrak{t}_{+}\subset\mathfrak{t}. The chamber 𝔱+\mathfrak{t}_{+} is known to be a fundamental domain for the adjoint action of GG on 𝔤\mathfrak{g}. Our inner product thereby identifies 𝔱+\mathfrak{t}_{+} with a fundamental domain 𝔱+𝔤\mathfrak{t}_{+}^{*}\subset\mathfrak{g}^{*} for the GG-action on 𝔤\mathfrak{g}^{*}. We may therefore define a continuous surjection π:𝔤𝔱+\pi:\mathfrak{g}^{*}\longrightarrow\mathfrak{t}_{+}^{*} by the property that (Gξ)𝔱+={π(ξ)}(G\cdot\xi)\cap\mathfrak{t}_{+}^{*}=\{\pi(\xi)\} for all ξ𝔤\xi\in\mathfrak{g}^{*}, where Gξ𝔤G\cdot\xi\subset\mathfrak{g}^{*} is the coadjoint orbit of ξ\xi. One sometimes calls π\pi the sweeping map on 𝔤\mathfrak{g}^{*} with respect to 𝔱\mathfrak{t}; its fibers are exactly the coadjoint orbits of GG, and π(𝔤reg)\pi(\mathfrak{g}^{*}_{\text{reg}}) is the interior (𝔱+)(\mathfrak{t}_{+}^{*})^{\circ} of 𝔱+\mathfrak{t}_{+}^{*}. One also finds that the commutative diagram

𝔤reg{\mathfrak{g}^{*}_{\text{reg}}}𝔤{\mathfrak{g}^{*}}(𝔱+){(\mathfrak{t}_{+}^{*})^{\circ}}𝔱+{\mathfrak{t}_{+}^{*}}π|𝔤reg\scriptstyle{\pi\big{|}_{\mathfrak{g}^{*}_{\text{reg}}}}π\scriptstyle{\pi}

is Cartesian. The left vertical map

π|𝔤reg:𝔤reg(𝔱+)\pi\big{|}_{\mathfrak{g}^{*}_{\text{reg}}}:\mathfrak{g}^{*}_{\text{reg}}\longrightarrow(\mathfrak{t}_{+}^{*})^{\circ}

is a easily seen to be a smooth, surjective submersion.

Now choose a \mathbb{Z}-basis {ϕ1,,ϕ}\{\phi_{1},\ldots,\phi_{\ell}\} of the \mathbb{Z}-submodule Λ𝔱𝔱\Lambda_{\mathfrak{t}}\subset\mathfrak{t}. Note that the pairing between 𝔱\mathfrak{t} and 𝔱\mathfrak{t}^{*} allows one to regard ϕ1,,ϕ\phi_{1},\ldots,\phi_{\ell} as functions on 𝔱+\mathfrak{t}_{+}^{*}. With this in mind, each k{1,,}k\in\{1,\ldots,\ell\} determines a function

λkϕkπ:𝔤.\lambda_{k}\coloneqq\phi_{k}\circ\pi:\mathfrak{g}^{*}\longrightarrow\mathbb{R}.

The previous paragraph implies that λ1,,λ\lambda_{1},\ldots,\lambda_{\ell} are smooth on 𝔤reg\mathfrak{g}^{*}_{\text{reg}}, while being GG-invariant and continuous as functions on 𝔤\mathfrak{g}^{*}. Given any ξ𝔤reg\xi\in\mathfrak{g}^{*}_{\text{reg}}, the differentials dξλ1,,dξλ(𝔤)=𝔤\mathrm{d}_{\xi}\lambda_{1},\ldots,\mathrm{d}_{\xi}\lambda_{\ell}\in(\mathfrak{g}^{*})^{*}=\mathfrak{g} may be described as follows.

Proposition 4.

If ξ𝔤reg\xi\in\mathfrak{g}_{\emph{reg}}^{*}, then {dξλ1,,dξλ}\{\mathrm{d}_{\xi}\lambda_{1},\ldots,\mathrm{d}_{\xi}\lambda_{\ell}\} is a \mathbb{Z}-basis of the lattice Λ𝔤ξ𝔤ξ\Lambda_{\mathfrak{g}_{\xi}}\subset\mathfrak{g}_{\xi}.

Proof.

Choose gGg\in G for which Adg(ξ)(𝔱+)\mathrm{Ad}_{g}^{*}(\xi)\in(\mathfrak{t}_{+}^{*})^{\circ}. Since each function λk\lambda_{k} is GG-invariant, one has

dξλk=dAdg(ξ)λkAdg=Adg1(dAdg(ξ)λk)\mathrm{d}_{\xi}\lambda_{k}=\mathrm{d}_{\mathrm{Ad}_{g}^{*}(\xi)}\lambda_{k}\circ\mathrm{Ad}^{*}_{g}=\mathrm{Ad}_{g^{-1}}(\mathrm{d}_{\mathrm{Ad}_{g}^{*}(\xi)}\lambda_{k})

for all k{1,,}k\in\{1,\ldots,\ell\}. We also observe that Adg1:𝔤𝔤\mathrm{Ad}_{g^{-1}}:\mathfrak{g}\longrightarrow\mathfrak{g} restricts to a \mathbb{Z}-module isomorphism λ𝔱λ𝔤ξ\lambda_{\mathfrak{t}}\overset{\cong}{\longrightarrow}\lambda_{\mathfrak{g}_{\xi}}. It therefore suffices to take ξ(𝔱+)\xi\in(\mathfrak{t}_{+}^{*})^{\circ} and prove that dξλk=ϕk\mathrm{d}_{\xi}\lambda_{k}=\phi_{k} for all k{1,,}k\in\{1,\ldots,\ell\}.

Assume that ξ(𝔱+)\xi\in(\mathfrak{t}_{+}^{*})^{\circ}, and fix k{1,,}k\in\{1,\ldots,\ell\}. Our invariant inner product allows us to regard 𝔱\mathfrak{t}^{*} as a subspace of 𝔤\mathfrak{g}^{*}. We then note that 𝔤=𝔱Tξ(Gξ)\mathfrak{g}^{*}=\mathfrak{t}^{*}\oplus T_{\xi}(G\cdot\xi), and that Tξ(Gξ)T_{\xi}(G\cdot\xi) is contained in the kernel of dξλk\mathrm{d}_{\xi}\lambda_{k}. Let us also note that Tξ(Gξ)T_{\xi}(G\cdot\xi) is the annihilator of 𝔱\mathfrak{t} in 𝔤\mathfrak{g}^{*}, and as such is contained in the kernel of ϕk\phi_{k}. These last two sentences reduce us to proving that dξλk(η)=ϕk(η)\mathrm{d}_{\xi}\lambda_{k}(\eta)=\phi_{k}(\eta) for all η𝔱\eta\in\mathfrak{t}^{*}. On the other hand, we have dξλk=ϕkdξπ\mathrm{d}_{\xi}\lambda_{k}=\phi_{k}\circ\mathrm{d}_{\xi}\pi. It therefore suffices to prove that dξπ(η)=η\mathrm{d}_{\xi}\pi(\eta)=\eta for all η𝔱\eta\in\mathfrak{t}^{*}. But this is an immediate consequence of the following two observations: (𝔱+)(\mathfrak{t}_{+}^{*})^{\circ} is an open subset of 𝔱\mathfrak{t}^{*}, and π(η)=η\pi(\eta)=\eta for all η(𝔱+)\eta\in(\mathfrak{t}_{+}^{*})^{\circ}. ∎

3.4. Construction of Gelfand–Cetlin data: Thimm’s method

Retain the objects and notation discussed in Section 3.3. Let G=G0G1GmG=G_{0}\supset G_{1}\supset\cdots\supset G_{m} be a descending filtration of GG by connected closed subgroups with respective Lie algebras 𝔤=𝔤0𝔤1𝔤m\mathfrak{g}=\mathfrak{g}_{0}\supset\mathfrak{g}_{1}\supset\cdots\supset\mathfrak{g}_{m}. Let us also choose a Cartan subalgebra 𝔱j𝔤j\mathfrak{t}_{j}\subset\mathfrak{g}_{j} and closed, fundamental Weyl chamber (𝔱j)+𝔱j(\mathfrak{t}_{j})_{+}\subset\mathfrak{t}_{j} for each j{0,,m}j\in\{0,\ldots,m\}. Our GG-invariant inner product on 𝔤\mathfrak{g} gives rise to a GjG_{j}-module isomorphism 𝔤j𝔤j\mathfrak{g}_{j}\cong\mathfrak{g}_{j}^{*}, by means of which 𝔱j\mathfrak{t}_{j} and (𝔱j)+(\mathfrak{t}_{j})_{+} correspond to subsets 𝔱j\mathfrak{t}_{j}^{*} and (𝔱j)+(\mathfrak{t}_{j}^{*})_{+} of 𝔤j\mathfrak{g}_{j}^{*}. As in Section 3.3, one may define a continuous surjection πj:𝔤j(𝔱j)+\pi_{j}:\mathfrak{g}_{j}^{*}\longrightarrow(\mathfrak{t}_{j}^{*})_{+} by the condition that (Gjξ)(𝔱j)+={πj(ξ)}(G_{j}\cdot\xi)\cap(\mathfrak{t}_{j}^{*})_{+}=\{\pi_{j}(\xi)\} for all ξ𝔤j\xi\in\mathfrak{g}_{j}^{*}.

Let =01m\ell=\ell_{0}\geq\ell_{1}\geq\cdots\geq\ell_{m} be the ranks of G=G0G1GmG=G_{0}\supset G_{1}\supset\cdots\supset G_{m}, respectively. Let us also choose a \mathbb{Z}-basis {ϕj1,,ϕjj}\{\phi_{j1},\ldots,\phi_{j\ell_{j}}\} of the lattice Λ𝔱j𝔱j\Lambda_{\mathfrak{t}_{j}}\subset\mathfrak{t}_{j} for each j{0,,m}j\in\{0,\ldots,m\}. As in Section 3.3, we define the functions

νjkϕjkπj:𝔤j\nu_{jk}\coloneqq\phi_{jk}\circ\pi_{j}:\mathfrak{g}_{j}^{*}\longrightarrow\mathbb{R}

for k{1,,j}k\in\{1,\ldots,\ell_{j}\}. The same section implies that νj1,,νjj\nu_{j1},\ldots,\nu_{j\ell_{j}} are GjG_{j}-invariant and continuous on 𝔤j\mathfrak{g}_{j}^{*}, as well as smooth on (𝔤j)reg(\mathfrak{g}_{j}^{*})_{\text{reg}}. We also have the following equivalent version of Proposition 4.

Proposition 5.

If j{0,,m}j\in\{0,\ldots,m\} and ξ(𝔤j)reg\xi\in(\mathfrak{g}_{j}^{*})_{\emph{reg}}, then {dξνj1,,dξνjj}\{\mathrm{d}_{\xi}\nu_{j1},\ldots,\mathrm{d}_{\xi}\nu_{j\ell_{j}}\} is a \mathbb{Z}-basis of the lattice Λ(𝔤j)ξ(𝔤j)ξ\Lambda_{(\mathfrak{g}_{j})_{\xi}}\subset(\mathfrak{g}_{j})_{\xi}.

Let σj:𝔤𝔤j\sigma_{j}:\mathfrak{g}^{*}\longrightarrow\mathfrak{g}_{j}^{*} denote the transpose of the inclusion 𝔤j𝔤\mathfrak{g}_{j}\hookrightarrow\mathfrak{g} for each j{0,,m}j\in\{0,\ldots,m\}. Consider the functions on 𝔤\mathfrak{g}^{*} defined by

λjkνjkσj:𝔤\lambda_{jk}\coloneqq\nu_{jk}\circ\sigma_{j}:\mathfrak{g}^{*}\longrightarrow\mathbb{R}

for j{0,,m}j\in\{0,\ldots,m\} and k{1,,j}k\in\{1,\ldots,\ell_{j}\}. It will be convenient to enumerate these functions as

(3.1) λbig(λ1,,λc)(λ01,,λ0,λ11,,λ11,λm1,,λmm):𝔤c,\lambda_{\text{big}}\coloneqq(\lambda_{1},\ldots,\lambda_{\mathrm{c}})\coloneqq(\lambda_{01},\ldots,\lambda_{0\ell},\lambda_{11},\ldots,\lambda_{1\ell_{1}}\ldots,\lambda_{m1},\ldots,\lambda_{m\ell_{m}}):\mathfrak{g}^{*}\longrightarrow\mathbb{R}^{\mathrm{c}},

where c0++m\mathrm{c}\coloneqq\ell_{0}+\cdots+\ell_{m}.

The discussion preceding Proposition 5 implies that λbig\lambda_{\text{big}} is smooth on the open subset

𝒰j=0mσj1((𝔤j)reg)𝔤\mathcal{U}\coloneqq\bigcap_{j=0}^{m}\sigma_{j}^{-1}((\mathfrak{g}_{j}^{*})_{\text{reg}})\subset\mathfrak{g}^{*}

Let us also define

𝔤s-reg{ξ𝒰:dξλbig is surjective}.\mathfrak{g}^{*}_{\text{s-reg}}\coloneqq\{\xi\in\mathcal{U}:\mathrm{d}_{\xi}\lambda_{\text{big}}\text{ is surjective}\}.

These last few sentences give context for the following consequence of [4, Theorem 3.4].

Proposition 6.

Let λbig\lambda_{\emph{big}} and 𝔤s-reg\mathfrak{g}^{*}_{\emph{s-reg}} be as defined above.

  • (i)

    The restriction λbig|𝔤s-reg:𝔤s-regc\lambda_{\emph{big}}\big{|}_{\mathfrak{g}^{*}_{\emph{s-reg}}}:\mathfrak{g}^{*}_{\emph{s-reg}}\longrightarrow\mathbb{R}^{\mathrm{c}} is a moment map for a Poisson Hamiltonian U(1)c\operatorname{U}(1)^{\mathrm{c}}-space structure on 𝔤s-reg\mathfrak{g}^{*}_{\emph{s-reg}}.

  • (ii)

    If MM is a Hamiltonian GG-space with moment map μ:M𝔤\mu:M\longrightarrow\mathfrak{g}^{*}, then

    (λbigμ)|μ1(𝔤s-reg):μ1(𝔤s-reg)c(\lambda_{\emph{big}}\circ\mu)\big{|}_{\mu^{-1}(\mathfrak{g}^{*}_{\emph{s-reg}})}:\mu^{-1}(\mathfrak{g}^{*}_{\emph{s-reg}})\longrightarrow\mathbb{R}^{\mathrm{c}}

    is a moment map for a Hamiltonian U(1)c\operatorname{U}(1)^{\mathrm{c}}-space structure on μ1(𝔤s-reg)\mu^{-1}(\mathfrak{g}^{*}_{\emph{s-reg}}).

This result has the following immediate connection to Definition 1: the pair (λbig,𝔤s-reg)(\lambda_{\text{big}},\mathfrak{g}^{*}_{\text{s-reg}}) is a Gelfand–Cetlin datum if and only if c=b\mathrm{c}=\mathrm{b}, 𝔤s-reg\mathfrak{g}^{*}_{\text{s-reg}} is dense in 𝔤\mathfrak{g}^{*}, and λbig|𝔤s-reg:𝔤s-regλbig(𝔤s-reg)\lambda_{\text{big}}\big{|}_{\mathfrak{g}^{*}_{\text{s-reg}}}:\mathfrak{g}^{*}_{\text{s-reg}}\longrightarrow\lambda_{\text{big}}(\mathfrak{g}^{*}_{\text{s-reg}}) is a principal 𝕋int\mathbb{T}_{\text{int}}-bundle. Guillemin–Sternberg [4, 5] explicitly show these conditions to be achievable for G=U(n)G=\operatorname{U}(n) and G=SO(n)G=\operatorname{SO}(n). Our next section outlines the details of the Guillemin–Sternberg construction for G=U(n)G=\operatorname{U}(n).

3.5. Example of Gelfand–Cetlin datum: the Gelfand-Cetlin system on 𝔲(n)\mathfrak{u}(n)^{*}

Fix a positive integer nn. Consider the Lie group GU(n)G\coloneqq\mathrm{U}(n) of unitary n×nn\times n matrices, and its Lie algebra 𝔤𝔲(n)\mathfrak{g}\coloneqq\mathfrak{u}(n) of skew-Hermitian n×nn\times n matrices. Let us also consider the real U(n)\operatorname{U}(n)-module (n)\mathcal{H}(n) of Hermitian n×nn\times n matrices. In what follows, we will freely identify 𝔲(n)\mathfrak{u}(n)^{*} with (n)\mathcal{H}(n) by means of the non-degenerate, GG-invariant bilinear form

(3.2) 𝔲(n)(n),ηξitr(ηξ).\mathfrak{u}(n)\otimes_{\mathbb{R}}\mathcal{H}(n)\longrightarrow\mathbb{R},\quad\eta\otimes\xi\mapsto-i\mathrm{tr}(\eta\xi).

Given an integer j{0,,n1}j\in\{0,\ldots,n-1\}, define the subgroup

Gj{[Ij00A]:AU(nj)}G=U(n).G_{j}\coloneqq\left\{\left[\begin{array}[]{ c | c }I_{j}&0\\ \hline\cr 0&A\end{array}\right]:A\in\operatorname{U}(n-j)\right\}\subset G=\operatorname{U}(n).

The descending chain U(n)=G=G0G1Gn1\operatorname{U}(n)=G=G_{0}\supset G_{1}\supset\cdots\supset G_{n-1} then induces such a chain 𝔲(n)=𝔤=𝔤0𝔤1𝔤n1\mathfrak{u}(n)=\mathfrak{g}=\mathfrak{g}_{0}\supset\mathfrak{g}_{1}\supset\cdots\supset\mathfrak{g}_{n-1} on the level of Lie algebras. We have

𝔤j={[000x]:x𝔲(nj)}𝔲(n)and𝔤j={[000ξ]:ξ(nj)}(n)\mathfrak{g}_{j}=\left\{\left[\begin{array}[]{ c | c }0&0\\ \hline\cr 0&x\end{array}\right]:x\in\mathfrak{u}(n-j)\right\}\subset\mathfrak{u}(n)\quad\text{and}\quad\mathfrak{g}_{j}^{*}=\left\{\left[\begin{array}[]{ c | c }0&0\\ \hline\cr 0&\xi\end{array}\right]:\xi\in\mathcal{H}(n-j)\right\}\subset\mathcal{H}(n)

for all j{0,,n1}j\in\{0,\ldots,n-1\}, where the second equation implicitly uses (3.2). The transpose σj:𝔤𝔤j\sigma_{j}:\mathfrak{g}^{*}\longrightarrow\mathfrak{g}_{j}^{*} of 𝔤j𝔤\mathfrak{g}_{j}\subset\mathfrak{g} then sends ξ𝔤=(n)\xi\in\mathfrak{g}^{*}=\mathcal{H}(n) to the (nj)×(nj)(n-j)\times(n-j) submatrix in the bottom right-hand corner of ξ\xi.

Now note that

𝔱j{[00ia10ianj]:a1,,anj}𝔤j\mathfrak{t}_{j}\coloneqq\left\{\left[\begin{array}[]{ c | ccc }0&&0&\\ \hline\cr&ia_{1}&&\\ 0&&\ddots&\\ &&&ia_{n-j}\end{array}\right]:a_{1},\ldots,a_{n-j}\in\mathbb{R}\right\}\subset\mathfrak{g}_{j}

is a Cartan subalgebra for each j{0,,n1}j\in\{0,\ldots,n-1\}. Let ϕjk𝔱j\phi_{jk}\in\mathfrak{t}_{j} be the result of setting ak=1a_{k}=1 and ap=0a_{p}=0 for pkp\neq k, noting that {ϕj1,,ϕj(nj)}\{\phi_{j1},\ldots,\phi_{j(n-j)}\} is a \mathbb{Z}-basis of Λ𝔱j𝔱j\Lambda_{\mathfrak{t}_{j}}\subset\mathfrak{t}_{j}. At the same time, consider the fundamental Weyl chamber

(𝔱j)+{[00ia10ianj]:a1,,anja1anj}𝔱j(\mathfrak{t}_{j})_{+}\coloneqq\left\{\left[\begin{array}[]{ c | ccc }0&&0&\\ \hline\cr&ia_{1}&&\\ 0&&\ddots&\\ &&&ia_{n-j}\end{array}\right]:\begin{subarray}{c}a_{1},\ldots,a_{n-j}\in\mathbb{R}\\ a_{1}\geq\cdots\geq a_{n-j}\end{subarray}\right\}\subset\mathfrak{t}_{j}

for each j{0,,n1}j\in\{0,\ldots,n-1\}. Under the pairing (3.2), (𝔱j)+(\mathfrak{t}_{j})_{+} corresponds to the cone

(𝔱j)+{[00a10anj]:a1,,anja1anj}(n).(\mathfrak{t}^{*}_{j})_{+}\coloneqq\left\{\left[\begin{array}[]{ c | ccc }0&&0&\\ \hline\cr&a_{1}&&\\ 0&&\ddots&\\ &&&a_{n-j}\end{array}\right]:\begin{subarray}{c}a_{1},\ldots,a_{n-j}\in\mathbb{R}\\ a_{1}\geq\cdots\geq a_{n-j}\end{subarray}\right\}\subset\mathcal{H}(n).

We then have sweeping maps πj:𝔤j(𝔱j)+\pi_{j}:\mathfrak{g}_{j}^{*}\longrightarrow(\mathfrak{t}^{*}_{j})_{+} and compositions νjkϕjkπj:𝔤j\nu_{jk}\coloneqq\phi_{jk}\circ\pi_{j}:\mathfrak{g}_{j}^{*}\longrightarrow\mathbb{R} for j{0,,n1}j\in\{0,\ldots,n-1\} and k{1,,nj}k\in\{1,\ldots,n-j\}, as in Section 3.4. The functions

λjkνjkσj:(n)\lambda_{jk}\coloneqq\nu_{jk}\circ\sigma_{j}:\mathcal{H}(n)\longrightarrow\mathbb{R}

from Section 3.4 are therefore given by the following condition: if ξ(n)\xi\in\mathcal{H}(n) and j{0,,n1}j\in\{0,\ldots,n-1\}, then λj1(ξ)λj2(ξ)λj(nj)(ξ)\lambda_{j1}(\xi)\geq\lambda_{j2}(\xi)\geq\cdots\geq\lambda_{j(n-j)}(\xi) are the eigenvalues of the (nj)×(nj)(n-j)\times(n-j) submatrix in the bottom right-hand corner of ξ\xi.

Observe that the number of maps λjk\lambda_{jk} is

n+(n1)++1=n(n+1)2=12(dim𝔲(n)+n).n+(n-1)+\cdots+1=\frac{n(n+1)}{2}=\frac{1}{2}(\dim\mathfrak{u}(n)+n).

Our enumeration (3.1) therefore takes the form

λbig\displaystyle\lambda_{\text{big}} (λ1,,λn(n+1)2)\displaystyle\coloneqq(\lambda_{1},\ldots,\lambda_{\mathrm{\frac{n(n+1)}{2}}})
(λ01,,λ0n,λ11,,λ1(n1),,λ(n2)1,λ(n2)2,λ(n1)1):(n)n(n+1)2.\displaystyle\coloneqq(\lambda_{01},\ldots,\lambda_{0n},\lambda_{11},\ldots,\lambda_{1(n-1)},\ldots,\lambda_{(n-2)1},\lambda_{(n-2)2},\lambda_{(n-1)1}):\mathcal{H}(n)\longrightarrow\mathbb{R}^{\frac{n(n+1)}{2}}.

Let us also consider the open dense subset

(n)s-reg{ξ(n):λj1(ξ)>>λj(nj)(ξ) for all j{0,,n1}λ0k(ξ)>>λ(nk)k(ξ) for all k{1,,n}}\mathcal{H}(n)_{\text{s-reg}}\coloneqq\left\{\xi\in\mathcal{H}(n):\begin{subarray}{c}\lambda_{j1}(\xi)>\cdots>\lambda_{j(n-j)}(\xi)\text{ for all }j\in\{0,\ldots,n-1\}\\ \lambda_{0k}(\xi)>\cdots>\lambda_{(n-k)k}(\xi)\text{ for all }k\in\{1,\ldots,n\}\end{subarray}\right\}

of 𝔤=(n)\mathfrak{g}^{*}=\mathcal{H}(n). By the paragraph following the proof of Proposition 6, (λbig,(n)s-reg)(\lambda_{\text{big}},\mathcal{H}(n)_{\text{s-reg}}) is a Gelfand–Cetlin datum if and only if λbig|(n)s-reg:(n)s-regλbig((n)s-reg)\lambda_{\text{big}}\big{|}_{\mathcal{H}(n)_{\text{s-reg}}}:\mathcal{H}(n)_{\text{s-reg}}\longrightarrow\lambda_{\text{big}}(\mathcal{H}(n)_{\text{s-reg}}) is a principal bundle for 𝕋int=U(1)n(n1)2\mathbb{T}_{\text{int}}=\operatorname{U}(1)^{\frac{n(n-1)}{2}}. This later condition is verified in [4, Section 5].

4. The abelianization theorem

This section is devoted to the proof of our abelianization theorem for smooth quotients. Some preliminary results are established in 4.1 and 4.2, while the main proof appears in 4.3.

4.1. The universal maximal torus

Adopt the notation and conventions in Section 3.1, and let (λbig,𝔤s-reg)(\lambda_{\text{big}},\mathfrak{g}^{*}_{\text{s-reg}}) be a Gelfand–Cetlin datum. Given any ξ𝔤reg\xi\in\mathfrak{g}^{*}_{\text{reg}}, Definition 1(ii) tells us that {dξλ1,,dξλ}\{\mathrm{d}_{\xi}\lambda_{1},\ldots,\mathrm{d}_{\xi}\lambda_{\ell}\} is a basis of 𝔤ξ\mathfrak{g}_{\xi}. This basis determines a vector space isomorphism

κξ:𝔤ξ,x1dξλ1++xdξλ(x1,,x).\kappa_{\xi}:\mathfrak{g}_{\xi}\overset{\cong}{\longrightarrow}\mathbb{R}^{\ell},\quad x_{1}\mathrm{d}_{\xi}\lambda_{1}+\cdots+x_{\ell}\mathrm{d}_{\xi}\lambda_{\ell}\mapsto(x_{1},\ldots,x_{\ell}).

The torus 𝕋small\mathbb{T}_{\text{small}} is then a universal maximal torus in the following sense.

Proposition 7.

If ξ𝔤reg\xi\in\mathfrak{g}^{*}_{\emph{reg}}, then κξ\kappa_{\xi} integrates to a Lie group isomorphism τξ:Gξ𝕋small\tau_{\xi}:G_{\xi}\overset{\cong}{\longrightarrow}\mathbb{T}_{\emph{small}}.

Proof.

It suffices to prove that κξ\kappa_{\xi} restricts to a \mathbb{Z}-module isomorphism from the kernel of exp|𝔤ξ:𝔤ξGξ\mathrm{exp}\big{|}_{\mathfrak{g}_{\xi}}:\mathfrak{g}_{\xi}\longrightarrow G_{\xi} to (2π)(2\pi\mathbb{Z})^{\ell}\subset\mathbb{R}^{\ell}. This is an immediate consequence of Proposition 4. ∎

Proposition 8.

Let MM be a Hamiltonian GG-space with moment map μ:M𝔤\mu:M\longrightarrow\mathfrak{g}^{*}. Suppose that ξ𝔤s-reg\xi\in\mathfrak{g}^{*}_{\emph{s-reg}}. We then have gm=τξ(g)mg\cdot m=\tau_{\xi}(g)\cdot m for all gGξg\in G_{\xi} and mμ1(ξ)m\in\mu^{-1}(\xi), where the left and right-hand sides denote the actions of GξGG_{\xi}\subset G on MM and 𝕋small𝕋big\mathbb{T}_{\emph{small}}\subset\mathbb{T}_{\emph{big}} on Ms-regM_{\emph{s-reg}}, respectively.

Proof.

Let XζX_{\zeta} be the generating vector field on Ms-regM_{\text{s-reg}} determined by ζsmall\zeta\in\mathbb{R}_{\text{small}} via the action of 𝕋small\mathbb{T}_{\text{small}} on Ms-regM_{\text{s-reg}}. Write YηY_{\eta} for the generating vector field on MM determined by η𝔤ξ\eta\in\mathfrak{g}_{\xi} through the action of GξGG_{\xi}\subset G on MM. It suffices to prove that (Xκξ(η))m=(Yη)m(X_{\kappa_{\xi}(\eta)})_{m}=(Y_{\eta})_{m} for all η𝔤ξ\eta\in\mathfrak{g}_{\xi} and mμ1(ξ)m\in\mu^{-1}(\xi). Setting γjdξλj\gamma_{j}\coloneqq d_{\xi}\lambda_{j} and letting ej=smalle_{j}\in\mathbb{R}^{\ell}=\mathbb{R}_{\text{small}} denote the jthj^{\text{th}} standard basis vector, this is equivalent to establishing that (Xej)m=(Yγj)m(X_{e_{j}})_{m}=(Y_{\gamma_{j}})_{m} for all j{1,,}j\in\{1,\ldots,\ell\} and mμ1(ξ)m\in\mu^{-1}(\xi). On the other hand, YγjY_{\gamma_{j}} (resp. XejX_{e_{j}}) is the Hamiltonian vector field on MM (resp. Ms-regM_{\text{s-reg}}) associated to μγj\mu^{\gamma_{j}} (resp. the jthj^{\text{th}} component μλj\mu^{*}\lambda_{j} of λμ\lambda\circ\mu). This further reduces us to proving that dmμγj=dmμλj\mathrm{d}_{m}\mu^{\gamma_{j}}=\mathrm{d}_{m}\mu^{*}\lambda_{j}. But it is clear that

dmμλj=dξλjdmμ=dmμγj\mathrm{d}_{m}\mu^{*}\lambda_{j}=\mathrm{d}_{\xi}\lambda_{j}\circ\mathrm{d}_{m}\mu=\mathrm{d}_{m}\mu^{\gamma_{j}}

for all mμ1(ξ)m\in\mu^{-1}(\xi) and j{1,,}j\in\{1,\ldots,\ell\}. ∎

4.2. Some supplementary results

We now prove two supplementary facts needed to establish the main result of this paper. We continue with the notation and conventions of Sections 3.1 and 4.1.

Proposition 9.

Let MM be a Hamiltonian GG-space with moment map μ:M𝔤\mu:M\longrightarrow\mathfrak{g}^{*}. Suppose that ξ𝔤s-reg\xi\in\mathfrak{g}^{*}_{\emph{s-reg}}.

  • (i)

    If mμ1(ξ)m\in\mu^{-1}(\xi) and t𝕋intt\in\mathbb{T}_{\emph{int}} satisfy tmμ1(ξ)t\cdot m\in\mu^{-1}(\xi), then t=et=e.

  • (ii)

    The saturation of μ1(ξ)\mu^{-1}(\xi) under the action of 𝕋int\mathbb{T}_{\emph{int}} on Ms-regM_{\emph{s-reg}} is λM1(λbig(ξ))\lambda_{M}^{-1}(\lambda_{\emph{big}}(\xi)).

Proof.

To verify (i), let mμ1(ξ)m\in\mu^{-1}(\xi) and t𝕋intt\in\mathbb{T}_{\text{int}} be such that tmμ1(ξ)t\cdot m\in\mu^{-1}(\xi). Let us also observe that μ\mu is 𝕋int\mathbb{T}_{\text{int}}-equivariant when restricted to a map Ms-reg𝔤s-regM_{\text{s-reg}}\longrightarrow\mathfrak{g}^{*}_{\text{s-reg}}. These last two sentences imply that ξ=tξ\xi=t\cdot\xi. Since 𝕋int\mathbb{T}_{\text{int}} acts freely on 𝔤s-reg\mathfrak{g}^{*}_{\text{s-reg}}, we must have t=et=e.

We now verify (ii). To this end, note that λM1(λbig(ξ))\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi)) is a 𝕋int\mathbb{T}_{\text{int}}-invariant subset of Ms-regM_{\text{s-reg}} that contains μ1(ξ)\mu^{-1}(\xi). This implies that the saturation of μ1(ξ)\mu^{-1}(\xi) is contained in λM1(λbig(ξ))\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi)). For the opposite inclusion, suppose that mλM1(λbig(ξ))m\in\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi)). Definition 1(v) tells us that tμ(m)=ξt\cdot\mu(m)=\xi for some t𝕋intt\in\mathbb{T}_{\text{int}}. By the equivariance property of μ\mu mentioned in the previous paragraph, we must have tmμ1(ξ)t\cdot m\in\mu^{-1}(\xi). This completes the proof of (ii). ∎

Fix ξ𝔤s-reg\xi\in\mathfrak{g}^{*}_{\text{s-reg}}. In light of the previous proposition, we may define the map

δξ:μ1(ξ)×𝕋intλM1(λbig(ξ)),(m,t)tm.\delta_{\xi}:\mu^{-1}(\xi)\times\mathbb{T}_{\text{int}}\longrightarrow\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi)),\quad(m,t)\mapsto t\cdot m.

The following result is immediate consequence of the previous proposition.

Corollary 10.

If ξ𝔤s-reg\xi\in\mathfrak{g}^{*}_{\emph{s-reg}}, then δξ\delta_{\xi} is a homeomorphism.

4.3. Proof of the abelianization theorem

Let us continue with the notation and conventions set in Sections 3.1, 4.1, and 4.2.

Theorem 11.

Let MM be a Hamiltonian GG-space with moment map μ:M𝔤\mu:M\longrightarrow\mathfrak{g}^{*}. Suppose that ξ𝔤s-reg\xi\in\mathfrak{g}^{*}_{\emph{s-reg}}.

  • (i)

    The stabilizer GξG_{\xi} acts freely on μ1(ξ)\mu^{-1}(\xi) if and only if 𝕋big\mathbb{T}_{\emph{big}} acts freely on λM1(λbig(ξ))\lambda_{M}^{-1}(\lambda_{\emph{big}}(\xi)).

  • (ii)

    In the case of (i), there is a canonical symplectomorphism M//ξGMs-reg//λbig(ξ)𝕋bigM\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G\cong M_{\emph{s-reg}}\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\lambda_{\text{big}}(\xi)}}\mathbb{T}_{\emph{big}}.

Proof.

We begin by verifying (i). In light of Proposition 7, the multiplication map

ρξ:Gξ×𝕋int𝕋big,(g,t)τξ(g)t\rho_{\xi}:G_{\xi}\times\mathbb{T}_{\text{int}}\longrightarrow\mathbb{T}_{\text{big}},\quad(g,t)\mapsto\tau_{\xi}(g)t

is a Lie group isomorphism. We also note that the action of GξG_{\xi} on μ1(ξ)\mu^{-1}(\xi) and multiplication action of 𝕋int\mathbb{T}_{\text{int}} on itself define an action Gξ×𝕋intG_{\xi}\times\mathbb{T}_{\text{int}} on μ1(ξ)×𝕋int\mu^{-1}(\xi)\times\mathbb{T}_{\text{int}}. By Proposition 8, the homeomorphism δξ\delta_{\xi} is equivariant in the following sense:

δξ((g,t)x)=ρξ(g,t)δξ(x)\delta_{\xi}((g,t)\cdot x)=\rho_{\xi}(g,t)\cdot\delta_{\xi}(x)

for all (g,t)Gξ×𝕋int(g,t)\in G_{\xi}\times\mathbb{T}_{\text{int}} and xμ1(ξ)×𝕋intx\in\mu^{-1}(\xi)\times\mathbb{T}_{\text{int}}. It follows that GξG_{\xi} acts freely on μ1(ξ)\mu^{-1}(\xi) if and only if 𝕋big\mathbb{T}_{\text{big}} acts freely on λM1(λbig(ξ))\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi)).

We now prove (ii). By Corollary 10, the inclusion μ1(ξ)\longhookrightarrowλM1(λbig(ξ))\mu^{-1}(\xi)\longhookrightarrow\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi)) descends to a diffeomorphism

f:μ1(ξ)λM1(λbig(ξ))/𝕋int.\mathrm{f}:\mu^{-1}(\xi)\overset{\cong}{\longrightarrow}\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))/\mathbb{T}_{\text{int}}.

We also note that the 𝕋big\mathbb{T}_{\text{big}}-action on λM1(λbig(ξ))\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi)) induces a residual action of the subtorus 𝕋small\mathbb{T}_{\text{small}} on λM1(λbig(ξ))/𝕋int\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))/\mathbb{T}_{\text{int}}. Proposition 8 then tells us that

f(gm)=τξ(g)f(m)\mathrm{f}(g\cdot m)=\tau_{\xi}(g)\cdot\mathrm{f}(m)

for all gGξg\in G_{\xi} and mμ1(ξ)m\in\mu^{-1}(\xi). The map f\mathrm{f} therefore descends to a diffeomorphism

φ:M//ξGMs-reg//λbig(ξ)𝕋big.\varphi:M\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G\overset{\cong}{\longrightarrow}M_{\text{s-reg}}\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\lambda_{\text{big}}(\xi)}}\mathbb{T}_{\text{big}}.

It therefore suffices to prove that φ\varphi pulls the symplectic form β\beta on Ms-reg//λbig(ξ)𝕋bigM_{\text{s-reg}}\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\lambda_{\text{big}}(\xi)}}\mathbb{T}_{\text{big}} back to the symplectic form α\alpha on M//ξGM\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G.

We have a commutative diagram

μ1(ξ)λM1(λbig(ξ))M//ξGMs-reg//λbig(ξ)𝕋bigjπθφ,\leavevmode\hbox to129.04pt{\vbox to62.13pt{\pgfpicture\makeatletter\hbox{\hskip 64.51852pt\lower-34.2577pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-64.51852pt}{-27.8772pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 15.72801pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.42247pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mu^{-1}(\xi)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 15.72801pt\hfil&\hfil\hskip 50.85918pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-22.55367pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 26.8592pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 18.691pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.38545pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${M\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 18.691pt\hfil&\hfil\hskip 57.82751pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-29.522pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${M_{\text{s-reg}}\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\lambda_{\text{big}}(\xi)}}\mathbb{T}_{\text{big}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 33.82755pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-29.89952pt}{10.4756pt}\pgfsys@lineto{3.23181pt}{10.4756pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.4318pt}{10.4756pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.20332pt}{14.18947pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\mathrm{j}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-45.82753pt}{1.61589pt}\pgfsys@lineto{-45.82753pt}{-16.11752pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-45.82753pt}{-16.3175pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-52.17047pt}{-8.95773pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\pi}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{30.69098pt}{1.08257pt}\pgfsys@lineto{30.69098pt}{-16.11752pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{30.69098pt}{-16.3175pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{33.04375pt}{-10.148pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-26.93654pt}{-25.3772pt}\pgfsys@lineto{-3.73653pt}{-25.3772pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.53654pt}{-25.3772pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-17.42613pt}{-30.74385pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\varphi}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},

where π:μ1(ξ)μ1(ξ)/Gξ=M//ξG\pi:\mu^{-1}(\xi)\longrightarrow\mu^{-1}(\xi)/G_{\xi}=M\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G and θ:λM1(λbig(ξ))λM1(λbig(ξ))/𝕋big=Ms-reg//λbig(ξ)𝕋big\theta:\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))\longrightarrow\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))/\mathbb{T}_{\text{big}}=M_{\text{s-reg}}\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\lambda_{\text{big}}(\xi)}}\mathbb{T}_{\text{big}} are the canonical quotient maps and j:μ1(ξ)\longhookrightarrowλM1(λbig(ξ))\mathrm{j}:\mu^{-1}(\xi)\longhookrightarrow\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi)) is the inclusion. We also have inclusion maps k:μ1(ξ)\longhookrightarrowM\mathrm{k}:\mu^{-1}(\xi)\longhookrightarrow M and l:λM1(λbig(ξ))\longhookrightarrowM\mathrm{l}:\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))\longhookrightarrow M. Another consideration is that α\alpha (resp. β\beta) is the unique 22-form on M//ξGM\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G (resp. Ms-reg//λbig(ξ)𝕋bigM_{\text{s-reg}}\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\lambda_{\text{big}}(\xi)}}\mathbb{T}_{\text{big}}) for which πα=kω\pi^{*}\alpha=\mathrm{k}^{*}\omega (resp. θβ=lω\theta^{*}\beta=\mathrm{l}^{*}\omega), where ω\omega is the symplectic form on MM. It therefore suffices to prove that π(φβ)=kω\pi^{*}(\varphi^{*}\beta)=\mathrm{k}^{*}\omega. On the other hand, our commutative diagram implies that

π(φβ)=j(θβ)=j(lω)=kω.\pi^{*}(\varphi^{*}\beta)=\mathrm{j}^{*}(\theta^{*}\beta)=\mathrm{j}^{*}(\mathrm{l}^{*}\omega)=\mathrm{k}^{*}\omega.

This completes the proof. ∎

5. Generalization to stratified symplectic spaces

We now provide a generalization of Theorem 11 in the realm of stratified symplectic spaces [10]. In 5.1, we recall the immediately pertinent parts of Sjamaar and Lerman’s more general theory of stratified symplectic spaces. The generalization of Theorem 11 to stratified symplectic spaces appears in 5.2.

5.1. Stratified symplectic spaces

Let XX be a topological space on which a compact torus TT acts continuously. Given a closed subgroup HTH\subset T, let

XH{xX:Tx=H}X_{H}\coloneqq\{x\in X:T_{x}=H\}

be the locus of points with TT-stabilizer TxT_{x} equal to HH. Denote by Stab(T,X)\mathrm{Stab}(T,X) the set of all closed subgroups HTH\subset T for which XHX_{H}\neq\emptyset.

Now let GG be a compact connected Lie group with Lie algebra 𝔤\mathfrak{g}. Suppose that MM is a Hamiltonian GG-space with moment map μ:M𝔤\mu:M\longrightarrow\mathfrak{g}^{*}. As discussed in the introduction to this paper, M//ξGM\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G is a stratified symplectic space [10] for all ξ𝔤\xi\in\mathfrak{g}^{*}. This means that M//ξGM\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G is naturally partitioned into symplectic manifolds satisfying certain compatibility conditions. While we refer the reader to [10, Definition 1.12] for a precise definition and description of stratified symplectic spaces, the following exposition will be sufficient for our purposes.

Fix a point ξ𝔤reg\xi\in\mathfrak{g}^{*}_{\text{reg}}, and recall that GξGG_{\xi}\subset G is a maximal torus. Adopt the more parsimonious notation

Stab(G,ξ)Stab(Gξ,μ1(ξ)),\mathrm{Stab}(G,\xi)\coloneqq\mathrm{Stab}(G_{\xi},\mu^{-1}(\xi)),

and note that μ1(ξ)\mu^{-1}(\xi) is the disjoint union

μ1(ξ)=HStab(G,ξ)μ1(ξ)H.\mu^{-1}(\xi)=\bigsqcup_{H\in\mathrm{Stab}(G,\xi)}\mu^{-1}(\xi)_{H}.

The arguments in the proof of [10, Theorem 2.1] imply that each subset μ1(ξ)H\mu^{-1}(\xi)_{H} is a locally closed, GξG_{\xi}-invariant submanifold of MM. These arguments also imply that the topological quotient (μ1(ξ)H)/Gξ(\mu^{-1}(\xi)_{H})/G_{\xi} carries a unique manifold structure for which the canonical map π:μ1(ξ)H(μ1(ξ)H)/Gξ\pi:\mu^{-1}(\xi)_{H}\longrightarrow(\mu^{-1}(\xi)_{H})/G_{\xi} is a surjective submersion. One further consequence of [10, Theorem 2.1] is the existence of a symplectic form ω¯\overline{\omega} on (μ1(ξ)H)/Gξ(\mu^{-1}(\xi)_{H})/G_{\xi} such that πω¯\pi^{*}\overline{\omega} is the pullback of ω\omega along the inclusion μ1(ξ)H\longhookrightarrowM\mu^{-1}(\xi)_{H}\longhookrightarrow M. It follows that M//ξG=μ1(ξ)/GξM\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G=\mu^{-1}(\xi)/G_{\xi} is a disjoint union

(5.1) M//ξG=HStab(G,ξ)(μ1(ξ)H)/GξM\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G=\bigsqcup_{H\in\mathrm{Stab}(G,\xi)}(\mu^{-1}(\xi)_{H})/G_{\xi}

of symplectic manifolds, called the symplectic strata of M//ξGM\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G.

Remark 12.

The quotients (μ1(ξ)H)/Gξ(\mu^{-1}(\xi)_{H})/G_{\xi} need not be manifolds in the traditional sense of the term; each may have connected components of different dimensions. To obtain a stratification into genuine symplectic manifolds, one must refine (5.1) and declare the symplectic strata to be the connected components of the quotients (μ1(ξ)H)/Gξ(\mu^{-1}(\xi)_{H})/G_{\xi}. The distinction between (5.1) and this refined stratification will not materially affect any argument in this paper.

Definition 13.

Let GG and KK be compact connected Lie groups with respective Lie algebras 𝔤\mathfrak{g} and 𝔨\mathfrak{k}. Suppose that MM (resp. NN) is a Hamiltonian GG-space (resp. Hamiltonian KK-space) with moment map μ:M𝔤\mu:M\longrightarrow\mathfrak{g}^{*} (resp. ν:N𝔨\nu:N\longrightarrow\mathfrak{k}^{*}). Take ξ𝔤reg\xi\in\mathfrak{g}^{*}_{\text{reg}} and η𝔨reg\eta\in\mathfrak{k}^{*}_{\text{reg}}. A pair of maps φ:M//ξGN//ηK\varphi:M\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G\longrightarrow N\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\eta}}K and ϕ:Stab(G,ξ)Stab(K,η)\phi:\mathrm{Stab}(G,\xi)\longrightarrow\mathrm{Stab}(K,\eta) will be called an isomorphism of stratified symplectic spaces if the following conditions are satisfied:

  • (i)

    φ\varphi is a homeomorphism;

  • (ii)

    ϕ\phi is a bijection;

  • (iii)

    φ\varphi restricts to a symplectomorphism (μ1(ξ)H)/Gξ(ν1(η)ϕ(H))/Kη(\mu^{-1}(\xi)_{H})/G_{\xi}\longrightarrow(\nu^{-1}(\eta)_{\phi(H)})/K_{\eta} for each HStab(G,ξ)H\in\mathrm{Stab}(G,\xi).

Remark 14.

Assume that this definition is satisfied. Equip M//ξGM\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G and N//ηKN\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\eta}}K with the refined stratifications discussed in Remark 12. By (ii) and (iii), the association Sφ(S)S\mapsto\varphi(S) defines a bijection from the set of symplectic strata SM//ξGS\subset M\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G to the set of symplectic strata in N//ηKN\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\eta}}K. Property (i) implies that this bijection is an isomorphism of partially ordered sets, i.e. any symplectic strata S,TM//ξGS,T\subset M\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G satisfying ST¯S\subset\overline{T} must also satisfy φ(S)φ(T)¯\varphi(S)\subset\overline{\varphi(T)}. We also know that φ\varphi restricts to a symplectomorphism Sφ(S)S\longrightarrow\varphi(S) for all symplectic strata SM//ξGS\subset M\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G, as follows from (iii). In other words, an isomorphism in the sense of Definition 13 gives rise to an isomorphism between the refined symplectic stratifications on M//ξGM\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G and N//ηKN\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\eta}}K.

5.2. A more general abelianization theorem

Let us continue with the notation and conventions set in Section 4, as well as those in Section 5.1 concerning stratified symplectic spaces.

In preparation for our next proposition, we encourage the reader to recall Proposition 7 and Corollary 10.

Proposition 15.

Let MM be a Hamiltonian GG-space with moment map μ:M𝔤\mu:M\longrightarrow\mathfrak{g}^{*}. Suppose that ξ𝔤s-reg\xi\in\mathfrak{g}^{*}_{\emph{s-reg}}.

  • (i)

    The association Hτξ(H)H\mapsto\tau_{\xi}(H) defines a bijection Stab(G,ξ)Stab(𝕋big,λbig(ξ))\mathrm{Stab}(G,\xi)\overset{\cong}{\longrightarrow}\mathrm{Stab}(\mathbb{T}_{\emph{big}},\lambda_{\emph{big}}(\xi)).

  • (ii)

    If HGξH\subset G_{\xi} is a closed subgroup, then δξ\delta_{\xi} restricts to a diffeomorphism

    μ1(ξ)H×𝕋intλM1(λbig(ξ))τξ(H).\mu^{-1}(\xi)_{H}\times\mathbb{T}_{\emph{int}}\overset{\cong}{\longrightarrow}\lambda_{M}^{-1}(\lambda_{\emph{big}}(\xi))_{\tau_{\xi}(H)}.
Proof.

As in the proof of Theorem 11(i), we have

δξ((g,t)x)=ρξ(g,t)δξ(x)\delta_{\xi}((g,t)\cdot x)=\rho_{\xi}(g,t)\cdot\delta_{\xi}(x)

for all (g,t)Gξ×𝕋int(g,t)\in G_{\xi}\times\mathbb{T}_{\text{int}} and xμ1(ξ)×𝕋intx\in\mu^{-1}(\xi)\times\mathbb{T}_{\text{int}}. It follows that Kρξ(K)K\mapsto\rho_{\xi}(K) defines a bijection

Stab(Gξ×𝕋int,μ1(ξ)×𝕋int)Stab(𝕋big,λbig(ξ)),\mathrm{Stab}(G_{\xi}\times\mathbb{T}_{\text{int}},\mu^{-1}(\xi)\times\mathbb{T}_{\text{int}})\overset{\cong}{\longrightarrow}\mathrm{Stab}(\mathbb{T}_{\text{big}},\lambda_{\text{big}}(\xi)),

and that δξ\delta_{\xi} restricts to a homeomorphism

(μ1(ξ)×𝕋int)KλM1(λbig(ξ))ρξ(K)(\mu^{-1}(\xi)\times\mathbb{T}_{\text{int}})_{K}\overset{\cong}{\longrightarrow}\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))_{\rho_{\xi}(K)}

for all closed subgroups KGξ×𝕋intK\subset G_{\xi}\times\mathbb{T}_{\text{int}}. On the other hand, we clearly have a bijection

Stab(G,ξ)Stab(Gξ×𝕋int,μ1(ξ)×𝕋int),HH×{e}Gξ×𝕋int.\mathrm{Stab}(G,\xi)\overset{\cong}{\longrightarrow}\mathrm{Stab}(G_{\xi}\times\mathbb{T}_{\text{int}},\mu^{-1}(\xi)\times\mathbb{T}_{\text{int}}),\quad H\mapsto H\times\{e\}\subset G_{\xi}\times\mathbb{T}_{\text{int}}.

We also note that (μ1(ξ)×𝕋int)K=μ1(ξ)H×𝕋int(\mu^{-1}(\xi)\times\mathbb{T}_{\text{int}})_{K}=\mu^{-1}(\xi)_{H}\times\mathbb{T}_{\text{int}} and ρξ(K)=τξ(H)\rho_{\xi}(K)=\tau_{\xi}(H) for K=H×{e}K=H\times\{e\}. These last three sentences combine to imply the desired results. ∎

The following is our generalization of Theorem 11 to stratified symplectic spaces.

Theorem 16.

If ξ𝔤s-reg\xi\in\mathfrak{g}^{*}_{\emph{s-reg}}, then there is a canonical isomorphism M//ξGMs-reg//λbig(ξ)𝕋bigM\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G\cong M_{\emph{s-reg}}\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\lambda_{\text{big}}(\xi)}}\mathbb{T}_{\emph{big}} of stratified symplectic spaces.

Proof.

By Corollary 10 and Proposition 15, the inclusion μ1(ξ)\longhookrightarrowλM1(λbig(ξ))\mu^{-1}(\xi)\longhookrightarrow\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi)) descends to a homeomorphism

f:μ1(ξ)λM1(λbig(ξ))/𝕋int\mathrm{f}:\mu^{-1}(\xi)\overset{\cong}{\longrightarrow}\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))/\mathbb{T}_{\text{int}}

whose restriction to μ1(ξ)H\mu^{-1}(\xi)_{H} is a diffeomorphism

μ1(ξ)HλM1(λbig(ξ))τξ(H)/𝕋int\mu^{-1}(\xi)_{H}\overset{\cong}{\longrightarrow}\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))_{\tau_{\xi}(H)}/\mathbb{T}_{\text{int}}

for all HStab(G,ξ)H\in\mathrm{Stab}(G,\xi). We also note that the 𝕋big\mathbb{T}_{\text{big}}-action on λM1(λbig(ξ))\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi)) induces a residual action of the subtorus 𝕋small\mathbb{T}_{\text{small}} on λM1(λbig(ξ))/𝕋int\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))/\mathbb{T}_{\text{int}}. Proposition 8 then tells us that

f(gm)=τξ(g)f(m)\mathrm{f}(g\cdot m)=\tau_{\xi}(g)\cdot\mathrm{f}(m)

for all gGξg\in G_{\xi} and mμ1(ξ)m\in\mu^{-1}(\xi). The map f\mathrm{f} therefore descends to a homeomorphism

φ:M//ξGMs-reg//λbig(ξ)𝕋big\varphi:M\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\xi}}G\overset{\cong}{\longrightarrow}M_{\text{s-reg}}\mkern-4.0mu\mathbin{/\mkern-5.0mu/}_{\mkern-4.0mu{\lambda_{\text{big}}(\xi)}}\mathbb{T}_{\text{big}}

whose restriction to (μ1(ξ)H)/Gξ(\mu^{-1}(\xi)_{H})/G_{\xi} is a diffeomorphism

φH:(μ1(ξ)H)/Gξ(λM1(λbig(ξ))τξ(H))/𝕋big\varphi_{H}:(\mu^{-1}(\xi)_{H})/G_{\xi}\overset{\cong}{\longrightarrow}(\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))_{\tau_{\xi}(H)})/\mathbb{T}_{\text{big}}

for all HStab(G,ξ)H\in\mathrm{Stab}(G,\xi).

Now consider the bijection

ϕ:Stab(G,ξ)Stab(𝕋big,λbig(ξ)),Hτξ(H)\phi:\mathrm{Stab}(G,\xi)\overset{\cong}{\longrightarrow}\mathrm{Stab}(\mathbb{T}_{\text{big}},\lambda_{\text{big}}(\xi)),\quad H\mapsto\tau_{\xi}(H)

from Proposition 15(i). We claim that φ\varphi and ϕ\phi define an isomorphism of stratified symplectic spaces, in the sense of Definition 13. In light of the previous paragraph, it suffices to prove the following for all HStab(G,ξ)H\in\mathrm{Stab}(G,\xi): φH\varphi_{H} pulls the symplectic form β\beta on (λM1(λbig(ξ))τξ(H))/𝕋big(\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))_{\tau_{\xi}(H)})/\mathbb{T}_{\text{big}} back to the symplectic form α\alpha on (μ1(ξ)H)/Gξ(\mu^{-1}(\xi)_{H})/G_{\xi}.

Proposition 15(ii) implies that μ1(ξ)HλM1(λbig(ξ))\mu^{-1}(\xi)_{H}\subset\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi)). This leads to the commutative diagram

μ1(ξ)HλM1(λbig(ξ))τξ(H)(μ1(ξ)H)/Gξ(λM1(λbig(ξ))τξ(H))/𝕋bigjπθφH,\leavevmode\hbox to184.82pt{\vbox to64.19pt{\pgfpicture\makeatletter\hbox{\hskip 92.41077pt\lower-35.28775pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-92.41077pt}{-28.90166pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 18.283pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.97746pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mu^{-1}(\xi)_{H}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 18.283pt\hfil&\hfil\hskip 57.51598pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-29.21046pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))_{\tau_{\xi}(H)}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 33.516pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 32.05032pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.74478pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${(\mu^{-1}(\xi)_{H})/G_{\xi}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 32.05032pt\hfil&\hfil\hskip 72.36043pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-44.05492pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${(\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))_{\tau_{\xi}(H)})/\mathbb{T}_{\text{big}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 48.36046pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-41.87744pt}{11.50003pt}\pgfsys@lineto{9.93434pt}{11.50003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{10.13432pt}{11.50003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.84102pt}{15.2139pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\mathrm{j}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-60.36044pt}{2.64032pt}\pgfsys@lineto{-60.36044pt}{-17.14198pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-60.36044pt}{-17.34196pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-66.70338pt}{-8.95775pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\pi}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{44.05031pt}{1.30699pt}\pgfsys@lineto{44.05031pt}{-15.8931pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{44.05031pt}{-16.09308pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{46.40308pt}{-9.92357pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-28.11012pt}{-26.40166pt}\pgfsys@lineto{-4.91011pt}{-26.40166pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.71013pt}{-26.40166pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-20.42471pt}{-31.76831pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\varphi_{H}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},

where π:μ1(ξ)H(μ1(ξ)H)/Gξ\pi:\mu^{-1}(\xi)_{H}\longrightarrow(\mu^{-1}(\xi)_{H})/G_{\xi} and θ:λM1(λbig(ξ))τξ(H)(λM1(λbig(ξ))τξ(H))/𝕋big\theta:\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))_{\tau_{\xi}(H)}\longrightarrow(\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))_{\tau_{\xi}(H)})/\mathbb{T}_{\text{big}} are the canonical quotient maps and j:μ1(ξ)H\longhookrightarrowλM1(λbig(ξ))\mathrm{j}:\mu^{-1}(\xi)_{H}\longhookrightarrow\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi)) is the inclusion. We also have inclusion maps k:μ1(ξ)\longhookrightarrowM\mathrm{k}:\mu^{-1}(\xi)\longhookrightarrow M and l:λM1(λbig(ξ))\longhookrightarrowM\mathrm{l}:\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))\longhookrightarrow M. Another consideration is that α\alpha (resp. β\beta) is the unique 22-form on (μ1(ξ)H)/Gξ(\mu^{-1}(\xi)_{H})/G_{\xi} (resp. (λM1(λbig(ξ))τξ(H))/𝕋big(\lambda_{M}^{-1}(\lambda_{\text{big}}(\xi))_{\tau_{\xi}(H)})/\mathbb{T}_{\text{big}}) for which πα=kω\pi^{*}\alpha=\mathrm{k}^{*}\omega (resp. θβ=lω\theta^{*}\beta=\mathrm{l}^{*}\omega). It therefore suffices to prove that π(φHβ)=kω\pi^{*}(\varphi_{H}^{*}\beta)=\mathrm{k}^{*}\omega. On the other hand, our commutative diagram implies that

π(φHβ)=j(θβ)=j(lω)=kω.\pi^{*}(\varphi_{H}^{*}\beta)=\mathrm{j}^{*}(\theta^{*}\beta)=\mathrm{j}^{*}(\mathrm{l}^{*}\omega)=\mathrm{k}^{*}\omega.

This completes the proof. ∎

References

  • [1] Duistermaat, J. J. On global action-angle coordinates. Comm. Pure Appl. Math. 33, 6 (1980), 687–706.
  • [2] Guillemin, V., Jeffrey, L., and Sjamaar, R. Symplectic implosion. Transform. Groups 7, 2 (2002), 155–184.
  • [3] Guillemin, V., and Sternberg, S. The moment map and collective motion. Ann. Physics 127, 1 (1980), 220–253.
  • [4] Guillemin, V., and Sternberg, S. The Gel’fand-Cetlin system and quantization of the complex flag manifolds. J. Funct. Anal. 52, 1 (1983), 106–128.
  • [5] Guillemin, V., and Sternberg, S. On collective complete integrability according to the method of Thimm. Ergodic Theory Dynam. Systems 3, 2 (1983), 219–230.
  • [6] Harada, M. The symplectic geometry of the Gelfand-Cetlin-Molev basis for representations of Sp(2n,){\rm Sp}(2n,{\mathbb{C}}). J. Symplectic Geom. 4, 1 (2006), 1–41.
  • [7] Harada, M., and Kaveh, K. Integrable systems, toric degenerations and Okounkov bodies. Invent. Math. 202, 3 (2015), 927–985.
  • [8] Hoffman, B., and Lane, J. Stratified gradient Hamiltonian vector fields and collective integrable systems. arXiv:2008.13656 (2022), 44pp.
  • [9] Marsden, J. E., and Weinstein, A. Reduction of symplectic manifolds with symmetry. Rep. Mathematical Phys. 5, 1 (1974), 121–130.
  • [10] Sjamaar, R., and Lerman, E. Stratified symplectic spaces and reduction. Ann. of Math. (2) 134, 2 (1991), 375–422.