This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

General analysis of polarization effects in coherent pseudoscalar mesons photo– and electroproduction on deuteron

G. I. Gakh National Science Centre, Kharkov Institute of Physics and Technology,
61108 Akademicheskaya 1, Kharkov, and V. N. Karazin Kharkov National University, Dept. of Physics and Technology, 31 Kurchatov, 61108, Kharkov, Ukraine
   A. G. Gakh V. N. Karazin Kharkov National University, Dept. of Physics and Technology, 31 Kurchatov, 61108, Kharkov, Ukraine    E. Tomasi–Gustafsson egle.tomasi@cea.fr IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
Abstract

General expressions for the unpolarized differential cross section and for various polarization observables in the coherent pseudoscalar meson photo- and electroproduction on the deuteron target have been obtained in one-photon-exchange approximation. The spin structure of the matrix element is explicitly derived in terms of structure functions. The correspondence with the helicity amplitudes is given. The polarization effects have been investigated for the case of a longitudinally polarized electron beam and vector or tensor polarized deuteron target. The polarization (vector or tensor) of the scattered deuteron for the case of unpolarized or a longitudinally polarized electron beam is also considered. In the case of the photoproduction reaction, we consider linearly, circularly or elliptically polarized photon beam. Numerical estimations have been done for the unpolarized differential cross section and for some polarization observables.

pacs:
13.40-f,13.40.Gp,13.88+e

I Introduction

The complete characterization of meson photo- and electroproduction on nuclei requires the detection of the neutron which must rely on meson production by real or virtual photons from light nuclei. The well known nuclear structure of the deuteron makes it a most suitable nuclear target, in comparison to other nuclei. Experiments with deuteron targets have been done and are being performed. A recent status of the study of the meson photoproduction can be found in the review Krusche and Schadmand (2003).

Besides the experiments on the electromagnetic production of the isovector mesons (π\pi-meson), a series of precise measurements of breakup and coherent isoscalar meson (η\eta-meson) photoproduction from the deuteron target have been performed during the last few years. The inclusive cross section of the reactions d(γ,η)Xd(\gamma,\eta)X are presented in Refs. Krusche et al. (1995); Weiss et al. (2003). The exclusive reaction with detection of the recoil nucleons was also investigated for the deuteron target Weiss et al. (2003); Hoffmann-Rothe et al. (1997); Hejny et al. (1999). The data on coherent η\eta-meson photoproduction off the deuteron are given in Refs. Hoffmann-Rothe et al. (1997); Weiss et al. (2001).

The combination of 4π4\pi detectors (as it can be recently done in Bonn and Mainz) with linearly and circularly polarized photon beams as well as polarized targets will provide the measurement of various polarization observables. These new observables can give us an additional information on resonance properties and the details of the reaction mechanism.

In the last decade the progress in the investigation of the meson production by the electromagnetic probes has been substantial and we moved forward in the understanding of the resonance properties.

The differential cross sections for the reaction on coherent and incoherent π0\pi^{0}-meson photoproduction from the deuteron have been measured at MAMI (Mainz) in the energy range 140140  MeV <Eγ<306<E_{\gamma}<306 MeV Siodlaczek et al. (2001). Earlier, the total and differential cross sections covering the full angular range have been obtained for coherent and incoherent single π0\pi^{0}-meson photoproduction from the deuteron in the second resonance region (200  MeV <Eγ<792<E_{\gamma}<792 MeV) at Mainz Krusche et al. (1999). It was found that final-state interaction effects for the incoherent process are much more important than for coherent reaction. In the last case these effects are not very large and different models do not agree about the main final-state interaction mechanism. Therefore, no final conclusion about these mechanisms can be reached.

The data on pion production in coherent electron-deuteron collisions are scarce. The experimental study of this reaction is now possible, at Mainz and JLab, due to the high-duty cycle of the electron machines. Threshold π0\pi^{0}-meson electroproduction on protons and deuteron has been investigated by the A1 collaboration at Mainz Distler et al. (1998); Ewald et al. (2001) at small four momentum transfer squared Q20.1Q^{2}\leq 0.1  GeV2. The first experimental results for the coherent π0\pi^{0}-meson electroproduction off the deuteron at large Q2Q^{2}, 1.1<Q2<1.81.1<Q^{2}<1.8  GeV2, from the threshold to 200 MeV excitation energy in the dπ0d\pi^{0} system, are reported in Ref. Tomasi-Gustafsson et al. (2003). The data were collected during the t20t_{20} experiment, the primary aim of which was the measurement of the deuteron tensor polarization in elastic electron-deuteron scattering Abbott et al. (2000).

A general theoretical study of pion electroproduction on deuterons was first developed in Ref. Rekalo et al. (2002) for the unpolarized case. The reaction e+de+d+π0e+d\to e+d+\pi^{0} involves the study of the deuteron structure and of the reaction mechanism, and requires the knowledge of the neutron and proton elementary amplitudes, γ+n,pn,p+π0\gamma^{*}+n,p\to n,p+\pi^{0}.

The experimental investigation of the nucleon resonance properties by means of the meson production processes can be used to verify and constrain the models of the hadron structure. The production of the neutral mesons by real or virtual photons is of special interest since,in these reactions, the background contributions are suppressed due to the weak coupling of the photon with neutral mesons.

In this work, we follow the formalism of Ref. Rekalo et al. (2002). We focus on the polarization observables, giving the general expressions for the case of a longitudinally polarized electron beam and vector or tensor polarized deuteron target (or scattered deuteron), in the one-photon exchange approximation and neglecting the lepton mass. In the case of the photoproduction reaction, we consider linearly, circularly or elliptically polarized photon beam. A numerical application and illustration of the observables is shown, on the basis of impulse approximation and the elementary model previously developed in Ref. Rekalo et al. (2002).

Not only high intensity polarized electron beams are available, and vector and tensor polarized targets are currently used, but also the principle of measuring the vector and tensor deuteron polarization in the GeV range from backward elastic scattering, has been proved to be feasible Tomasi-Gustafsson et al. (1999).

II Matrix element and differential cross section

The general structure of the differential cross section for the reaction

e(k1)+d(p1)e(k2)+d(p2)+π0(q),e^{-}(k_{1})+d(p_{1})\to e^{-}(k_{2})+d(p_{2})+\pi^{0}(q), (1)

(the four–momenta of the corresponding particles are indicated in the brackets) can be written in the frame of the one–photon–exchange mechanism. The formalism in this section is based on the most general symmetry properties of the hadron electromagnetic interaction, such as the gauge invariance (the conservation of the hadronic and leptonic electromagnetic currents), PP –invariance (the invariance with respect to the space reflections) and does not depend on the deuteron structure and on the details of the reaction mechanism.

In the one–photon–exchange approximation, the matrix element for the process of the coherent π0\pi^{0}–meson electroproduction on the deuteron can be written as

M(ededπ0)=e2k2jμJμ,M(ed\to ed\pi^{0})=\frac{e^{2}}{k^{2}}j_{\mu}J_{\mu}, (2)

with

jμ=u¯(k2)γμu(k1),Jμ=<dπ0|J^μ|d>,j_{\mu}=\bar{u}(k_{2})\gamma_{\mu}u(k_{1}),\ \ J_{\mu}=<d\pi^{0}|\hat{J}_{\mu}|d>, (3)

where k=k1k2k=k_{1}-k_{2} is the virtual–photon four–momentum and JμJ_{\mu} is the electromagnetic current describing the transition γ+dd+π0\gamma^{*}+d\to d+\pi^{0} (γ\gamma^{*} is the virtual photon).

The electromagnetic structure of nuclei, as probed by elastic and inelastic electron scattering by nuclei, can be characterized by a set of response functions or structure functions Donnelly and Raskin (1986); Boffi et al. (1944). Each of these structure functions is determined by different combinations of the longitudinal and transverse components of the electromagnetic current JμJ_{\mu}, thus providing different pieces of information about the nuclear structure or possible mechanisms of the reaction under consideration. The components which are determined by the real parts of the bilinear combinations of the reaction amplitudes, are nonzero in the impulse approximation, the other ones, which originate from the imaginary part of structure functions, vanish if the final state interaction is absent.

The formalism of the structure functions is especially convenient for the investigation of polarization phenomena for the reaction (1).

Using the conservation of the leptonic jμj_{\mu} and hadronic JμJ_{\mu} electromagnetic currents (kj=kJ=0)(k\cdot j=k\cdot J=0), one can rewrite the matrix element (2) in terms of the space components of these currents only

M(ededπ0)=e2k2eJ,e=jkk02kj,M(ed\to ed\pi^{0})=\frac{e^{2}}{k^{2}}{\vec{e}}\cdot{\vec{J}},\ \ {\vec{e}}=\frac{{\vec{j}}\cdot{\vec{k}}}{k_{0}^{2}}{\vec{k}}-{\vec{j}}, (4)

where k=(k0,k)k=(k_{0},{\vec{k}}) and k0(k)k_{0}({\vec{k}}) is the energy (three–momentum) of the virtual photon in CMS of the γ+dd+π0\gamma^{*}+d\to d+\pi^{0} reaction. All observables are determined by bilinear combinations of the space components of the hadronic current J{\vec{J}}: Hab=JaJb.H_{ab}=J_{a}J_{b}^{*}. As a result, we obtain the following general structure of the differential cross section for the reaction (1), when the scattered electron and π0\pi^{0}–meson are detected in coincidence, and the electron beam is longitudinally polarized (the polarization states of the deuteron target and scattered deuteron can be any)

d3σdEdΩedΩP\displaystyle\frac{d^{3}\sigma}{dE^{\prime}d\Omega_{e}d\Omega_{P}} =\displaystyle= N[Hxx+Hyy+εcos(2φ)(HxxHyy)+εsin(2φ)(Hxy+Hyx)\displaystyle N\biggl{[}H_{xx}+H_{yy}+\varepsilon\cos(2\varphi)(H_{xx}-H_{yy})+\varepsilon\sin(2\varphi)(H_{xy}+H_{yx}) (5)
2εk2k02Hzzk2k02ε(1+ε)cosφ(Hxz+Hzx)\displaystyle-2\varepsilon\frac{k^{2}}{k_{0}^{2}}H_{zz}-\frac{\sqrt{-k^{2}}}{k_{0}}\sqrt{2\varepsilon(1+\varepsilon)}\cos\varphi(H_{xz}+H_{zx})-
k2k02ε(1+ε)sinφ(Hyz+Hzy)\displaystyle-\frac{\sqrt{-k^{2}}}{k_{0}}\sqrt{2\varepsilon(1+\varepsilon)}\sin\varphi(H_{yz}+H_{zy})
iλ(1ε2)(HxyHyx)iλk2k02ε(1ε)cosφ(HyzHzy)±\displaystyle\mp i\lambda\sqrt{(1-\varepsilon^{2})}(H_{xy}-H_{yx})\mp i\lambda\frac{\sqrt{-k^{2}}}{k_{0}}\sqrt{2\varepsilon(1-\varepsilon)}\cos\varphi(H_{yz}-H_{zy})\pm
±iλk2k02ε(1ε)φ(HxzHzx)],\displaystyle\pm i\lambda\frac{\sqrt{-k^{2}}}{k_{0}}\sqrt{2\varepsilon(1-\varepsilon)}\varphi(H_{xz}-H_{zx})\biggr{]},
N=α264π3EE|q|MW11ε1(k2),|k|=12W(W2+M2k2)24M2W2,\displaystyle N=\frac{\alpha^{2}}{64\pi^{3}}\frac{E^{\prime}}{E}\frac{|{\vec{q}}|}{MW}\frac{1}{1-\varepsilon}\frac{1}{(-k^{2})},|{\vec{k}}|=\frac{1}{2W}\sqrt{(W^{2}+M^{2}-k^{2})^{2}-4M^{2}W^{2}},
|q|=12W(W2+MP2M2)24MP2W2,ε1=12kLab2k2tan2(θe2).\displaystyle|{\vec{q}}|=\frac{1}{2W}\sqrt{(W^{2}+M_{P}^{2}-M^{2})^{2}-4M_{P}^{2}W^{2}},\ \varepsilon^{-1}=1-2\frac{{\vec{k}}^{2}_{Lab}}{k^{2}}\tan^{2}(\frac{\theta_{e}}{2}).

The zz axis is directed along the virtual photon momentum k{\vec{k}}, the momentum of the detected PP–meson q{\vec{q}} lies in the xzxz plane (reaction plane); E(E)E(E^{\prime}) is the energy of the initial (scattered) electron in the deuteron rest frame (laboratory (Lab) system); θe\theta_{e} is the electron scattering angle (the angle between the momenta of the initial and scattered electrons) in the Lab system; dΩed\Omega_{e} is the solid angle of the scattered electron in the Lab system, dΩP(q)d\Omega_{P}(q) is the solid angle (value of the three-momentum) of the detected PP–meson in the PdPd–pair center–of–mass system (CMS), MP,MM_{P},M are the masses of the PP–meson, deuteron, respectively; φ\varphi is the azimuthal angle between the electron scattering plane and the plane where the detected PP–meson lies (xz)(xz), k0=(W2+k2M2)/2Wk_{0}=(W^{2}+k^{2}-M^{2})/2W is the virtual photon energy in the PdPd–pair CMS, WW is the invariant mass of the final hadrons, W2=M2+k2+2M(EE)W^{2}=M^{2}+k^{2}+2M(E-E^{\prime}); λ\lambda is the degree of the electron longitudinal polarization, ε\varepsilon is the degree of the linear polarization of the virtual photon. The upper (bottom) sign in this formula corresponds to the electron (positron) scattering. This expression is valid for zero electron mass. Below we will neglect it wherever possible.

Let us introduce, for convenience and simplification of the following calculations of the polarization observables, the orthonormal system of basic unit vectors m,n{\vec{m}},{\vec{n}}, and k^\hat{\vec{k}} which are built from the momenta of the particles participating in the reaction under consideration

k^=k|k|,n=k×q|k×q|,m=n×k^.\hat{\vec{k}}=\frac{{\vec{k}}}{|{\vec{k}}|},\ \ {\vec{n}}=\frac{{\vec{k}}\times{\vec{q}}}{|{\vec{k}}\times{\vec{q}}|},\ \ {\vec{m}}={\vec{n}}\times\hat{\vec{k}}.

The unit vectors k^\hat{\vec{k}} and m{\vec{m}} define the γ+dd+π0\gamma^{*}+d\to d+\pi^{0} reaction xzxz–plane (zz axis is directed along the three–momentum of the virtual photon k{\vec{k}}, and xx axis is directed along the unit vector m{\vec{m}}), and the unit vector n{\vec{n}} is perpendicular to the reaction plane.

First of all, let us establish the spin structure of the matrix element for the γ+dd+π0\gamma^{*}+d\to d+\pi^{0} reaction without any constraint on the kinematical conditions.

The amplitude spin structure can be parameterized by different (and equivalent) methods, but for the analysis of the polarization phenomena the choice of the transverse amplitudes is sometimes preferable. Taking into account the PP–invariance of the hadron electromagnetic interaction, the dependence of the γ+dd+π0\gamma^{*}+d\to d+\pi^{0} amplitude on the virtual–photon polarization vector and polarization three vectors U1{\vec{U}}_{1} and U2{\vec{U}}_{2} of the initial and final deuterons is given by Rekalo et al. (2002):

F(γddP)\displaystyle F(\gamma^{*}d\to dP) =\displaystyle= em(g1mU1nU2+g2k^U1nU2+g3nU1mU2+g4nU1k^U2)+\displaystyle{\vec{e}}\cdot{\vec{m}}(g_{1}{\vec{m}}\cdot{\vec{U}}_{1}{\vec{n}}\cdot{\vec{U}}_{2}^{*}+g_{2}\hat{\vec{k}}\cdot{\vec{U}}_{1}{\vec{n}}\cdot{\vec{U}}_{2}^{*}+g_{3}{\vec{n}}\cdot{\vec{U}}_{1}{\vec{m}}\cdot{\vec{U}}_{2}^{*}+g_{4}{\vec{n}}\cdot{\vec{U}}_{1}\hat{\vec{k}}\cdot{\vec{U}}_{2}^{*})+ (6)
+en(g5mU1mU2+g6nU1nU2+g7k^U1k^U2+\displaystyle+{\vec{e}}\cdot{\vec{n}}\bigl{(}g_{5}{\vec{m}}\cdot{\vec{U}}_{1}{\vec{m}}\cdot{\vec{U}}_{2}^{*}+g_{6}{\vec{n}}\cdot{\vec{U}}_{1}{\vec{n}}\cdot{\vec{U}}_{2}^{*}+g_{7}\hat{\vec{k}}\cdot{\vec{U}}_{1}\hat{\vec{k}}\cdot{\vec{U}}_{2}^{*}+
+g8mU1k^U2g9k^U1mU2)+ek^(g10mU1nU2+\displaystyle+g_{8}{\vec{m}}\cdot{\vec{U}}_{1}\hat{\vec{k}}\cdot{\vec{U}}_{2}^{*}g_{9}\hat{\vec{k}}\cdot{\vec{U}}_{1}{\vec{m}}\cdot{\vec{U}}_{2}^{*})+{\vec{e}}\cdot\hat{\vec{k}}(g_{10}{\vec{m}}\cdot{\vec{U}}_{1}{\vec{n}}\cdot{\vec{U}}_{2}^{*}+
+g11k^U1nU2+g12nU1mU2+g13nU1k^U2),\displaystyle+g_{11}\hat{\vec{k}}\cdot{\vec{U}}_{1}{\vec{n}}\cdot{\vec{U}}_{2}^{*}+g_{12}{\vec{n}}\cdot{\vec{U}}_{1}{\vec{m}}\cdot{\vec{U}}_{2}^{*}+g_{13}{\vec{n}}\cdot{\vec{U}}_{1}\hat{\vec{k}}\cdot{\vec{U}}_{2}^{*}\bigr{)},

where gi(i=113)g_{i}(i=1-13) are the scalar amplitudes, depending on three variables k2k^{2}, WW and ϑ\vartheta (ϑ\vartheta is the angle between the virtual photon and π0\pi^{0}–meson momenta in the γ+dd+π0\gamma^{*}+d\to d+\pi^{0} reaction CMS), which completely determine the reaction dynamics. If we single out the virtual–photon polarization vector e{\vec{e}}, we can write the amplitude F{\it F} as follows

F=Fiei{\it F}={\it F_{i}}e_{i}

and the hadronic tensor can be written in terms of Fi{\it F_{i}} as

Hij=FiFj.H_{ij}={\it F_{i}}{\it F_{j}^{*}}.

The process γ+dd+P\gamma^{*}+d\to d+P is described by a set of nine amplitudes for the absorption of a virtual photon with transverse polarization and four amplitudes for the absorption of a virtual photon with longitudinal polarization. These numbers are dictated by the values of the spins of the particles and by the PP–invariance of hadron electrodynamics. Therefore, the complete experiment requires, at least, the measurement of 25 observables. Let us mention in this respect specific properties of polarization phenomena for inelastic electron–hadron scattering: in exclusive e+de+d+Pe^{-}+d\to e^{-}+d+P processes the virtual photon has a nonzero linear polarization, even for the scattering of unpolarized electrons by an unpolarized deuteron target.

III Polarized deuteron target

Let us consider the dependence of the observables on the polarization state of the deuteron target, which is described by the spin density matrix. We use the following general expression for the deuteron spin density matrix in the coordinate representation Schildknecht (1965, 1967)

ρμν=13(gμνp1μp1νM2)i2Mεμναβsαp1β+Sμν,\rho_{\mu\nu}=-\frac{1}{3}(g_{\mu\nu}-\frac{p_{1\mu}p_{1\nu}}{M^{2}})-\frac{i}{2M}\varepsilon_{\mu\nu\alpha\beta}s_{\alpha}p_{1\beta}+S_{\mu\nu}, (7)

where sαs_{\alpha} is the four–vector describing the vector polarization of the target, s2=1,s^{2}=-1, sp1=0s\cdot p_{1}=0 and SμνS_{\mu\nu} is the tensor describing the tensor (quadrupole) polarization of the target, Sμν=Sνμ,S_{\mu\nu}=S_{\nu\mu}, p1μSμν=0,p_{1\mu}S_{\mu\nu}=0, Sμμ=0S_{\mu\mu}=0 (due to these properties the tensor SμνS_{\mu\nu} has only five independent components). In Lab system all time components of the tensor SμνS_{\mu\nu} are zero and the tensor polarization of the target is described by five independent space components (Sij=Sji,Sii=0,i,j=x,y,z).(S_{ij}=S_{ji},S_{ii}=0,i,j=x,y,z). The four–vector sαs_{\alpha} is related to the unit vector ξ{\vec{\xi}} of the deuteron vector polarization in its rest system by:

s0=kξ/M,s=ξ+k(kξ)/M(M+E1),s_{0}=-{\vec{k}}{\vec{\xi}}/M,\ {\vec{s}}={\vec{\xi}}+{\vec{k}}({\vec{k}}{\vec{\xi}})/M(M+E_{1}), (8)

where E1E_{1} is the deuteron–target energy in the γ+dd+π0\gamma^{*}+d\to d+\pi^{0} reaction CMS.

The hadronic tensor Hij(i,j=x,y,z)H_{ij}(i,j=x,y,z) depends linearly on the target polarization and can be written as

Hij=Hij(0)+Hij(ξ)+Hij(S),H_{ij}=H_{ij}(0)+H_{ij}(\xi)+H_{ij}(S), (9)

where the term Hij(0)H_{ij}(0) corresponds to the case of unpolarized deuteron target, and the term Hij(ξ)(Hij(S))H_{ij}(\xi)(H_{ij}(S)) corresponds to the case of vector (tensor)-polarized target.

III.1 Unpolarized deuteron target

The general structure of the part of the hadronic tensor which corresponds to the unpolarized deuteron target has following form:

Hij(0)=h1mimj+h2ninj+h3k^ik^j+h4{m,k^}ij+ih5[m,k^]ij,H_{ij}(0)=h_{1}m_{i}m_{j}+h_{2}n_{i}n_{j}+h_{3}\hat{k}_{i}\hat{k}_{j}+h_{4}\{m,\hat{k}\}_{ij}+ih_{5}[m,\hat{k}]_{ij}, (10)

where {a,b}ij=aibj+ajbi,[a,b]ij=aibjajbi\{a,b\}_{ij}=a_{i}b_{j}+a_{j}b_{i},\ [a,b]_{ij}=a_{i}b_{j}-a_{j}b_{i} and the real structure functions hih_{i} depend on three invariant variables s=W2=(k+p1)2s=W^{2}=(k+p_{1})^{2}, k2k^{2} and t=(kp1)2t=(k-p_{1})^{2}. The structure functions h1h4h_{1}-h_{4} determine the cross section for the e+de+d+Pe^{-}+d\to e^{-}+d+P reaction with unpolarized particles. Let us emphasize that the structure function h5h_{5} (the so–called fifth structure function) determines the asymmetry of longitudinally polarized electrons scattered by an unpolarized target. It is determined by the strong interaction effects of the PP–meson and deuteron in the final state and it vanishes for the pole (Born) diagram contribution in all kinematic range (independently on the particular parametrization of the γNNP\gamma^{*}N\to NP amplitude and dnpdnp-vertex). This is true for the nonrelativistic approach and for the relativistic one as well describing the γ+dd+P\gamma^{*}+d\to d+P reaction. The scattering of longitudinally polarized electrons by unpolarized deuteron target allows to determine the h5h_{5} contribution. Then the corresponding asymmetry is determined only by the strong interaction effects. More exactly, it is determined by the effects arising from non-pole mechanisms of various nature: meson exchange currents can induce nonzero asymmetry, dibaryon resonances, if they exist, lead also to nonzero asymmetry.

In the chosen coordinate system, the different hadronic tensor components, entering in the expression of the cross section (4), are related to the structure functions hi(i=15)h_{i}(i=1-5) by:

Hxx±Hyy\displaystyle H_{xx}\pm H_{yy} =\displaystyle= h1±h2,Hzz=h3,Hxz+Hzx=2h4,\displaystyle h_{1}\pm h_{2},\ \ H_{zz}=h_{3},\ \ H_{xz}+H_{zx}=2h_{4},
HxzHzx\displaystyle H_{xz}-H_{zx} =\displaystyle= 2ih5,Hxy±Hyx=0,Hyz±Hzy=0.\displaystyle 2ih_{5},\ \ H_{xy}\pm H_{yx}=0,\ \ H_{yz}\pm H_{zy}=0. (11)

The expressions for the structure functions hih_{i} (i=1-5) in terms of the reaction amplitudes gi(i=113)g_{i}(i=1-13) are given in Appendix I. The expressions of the reaction amplitudes gi(i=113)g_{i}(i=1-13) depend on the underlying model. Their explicit form as function of the deuteron inelastic form factors in impulse approximation can be found in Ref. Rekalo et al. (2002).

In the one–photon–exchange approximation, the general structure of the differential cross section for the reaction d(e,eP)dd({\vec{e}},e^{\prime}P)d (in the case of longitudinally polarized electron beam and unpolarized deuteron target) can be written in terms of five independent contributions

d3σdEdΩedΩP=N[σT+εσL+εcos(2φ)σP+2ε(1+ε)cosφσI+λ2ε(1ε)φσI],\frac{d^{3}\sigma}{dE^{\prime}d\Omega_{e}d\Omega_{P}}=N\biggl{[}\sigma_{T}+\varepsilon\sigma_{L}+\varepsilon\cos(2\varphi)\sigma_{P}+\sqrt{2\varepsilon(1+\varepsilon)}\cos\varphi\sigma_{I}+\lambda\sqrt{2\varepsilon(1-\varepsilon)}\varphi\sigma^{\prime}_{I}\biggr{]}, (12)

where the individual contributions are related to the structure functions hih_{i} of the spin–independent hadronic tensor, Eq. (10), by:

σT=h1+h2,σP=h1h2,σL=2k2k02h3,σI=2k2k0h4,σI=2k2k0h5.\sigma_{T}=h_{1}+h_{2},~\sigma_{P}=h_{1}-h_{2},~\sigma_{L}=-2\frac{k^{2}}{k_{0}^{2}}h_{3},\sigma_{I}=-2\frac{\sqrt{-k^{2}}}{k_{0}}h_{4},~\sigma^{\prime}_{I}=-2\frac{\sqrt{-k^{2}}}{k_{0}}h_{5}. (13)

One can see from this equation that it exists a single–spin asymmetry due to the longitudinal polarization of the electron beam and it is defined as:

Σe(φ)=dσ(λ=+1)dσ(λ=1)dσ(λ=+1)+dσ(λ=1)=\Sigma_{e}(\varphi)=\frac{d\sigma(\lambda=+1)-d\sigma(\lambda=-1)}{d\sigma(\lambda=+1)+d\sigma(\lambda=-1)}= (14)
=sinφ2ε(1ε)σIσT+εσL+εcos(2φ)σP+2ε(1+ε)cosφσI.=\frac{sin\varphi\sqrt{2\varepsilon(1-\varepsilon)}\sigma^{\prime}_{I}}{\sigma_{T}+\varepsilon\sigma_{L}+\varepsilon\cos(2\varphi)\sigma_{P}+\sqrt{2\varepsilon(1+\varepsilon)}\cos\varphi\sigma_{I}}.

Due to the φ\varphi–dependence, this asymmetry has to be measured in noncoplanar geometry (out–of–plane kinematics).

For the case of unpolarized particles, one can determine the so called left–right asymmetry

ALR=dσ(φ=00)dσ(φ=1800)dσ(φ=00)+dσ(φ=1800)=2ε(1+ε)σIσT+ε(σL+σP).A_{LR}=\frac{d\sigma(\varphi=0^{0})-d\sigma(\varphi=180^{0})}{d\sigma(\varphi=0^{0})+d\sigma(\varphi=180^{0})}=\frac{\sqrt{2\varepsilon(1+\varepsilon)}\sigma_{I}}{\sigma_{T}+\varepsilon(\sigma_{L}+\sigma_{P})}. (15)

We see that the Σe(φ)\Sigma_{e}(\varphi) asymmetry is determined by the structure function h5h_{5} which is defined by the interference of the reaction amplitudes characterizing the absorption of virtual photons with nonzero longitudinal and transverse components of the electromagnetic current corresponding to the process γ+dd+π0\gamma^{*}+d\to d+\pi^{0}. One finds that h5sinϑh_{5}\sim\sin\vartheta (ϑ\vartheta is the angle between three–momenta of the virtual photon and the P-meson in the CMS of the γ+dd+π0\gamma^{*}+d\to d+\pi^{0} reaction) for any reaction mechanism of the considered reaction. It vanishes in collinear kinematics, i.e., at π0\pi^{0}–meson emission angles ϑ=0\vartheta=0^{\circ} and ϑ=180\vartheta=180^{\circ} due to the conservation of the total helicity of the interacting particles. The structure function h5h_{5} is nonzero only if the complex amplitudes of the γ+dd+P\gamma^{*}+d\to d+P reaction have nonzero relative phases. This is a very specific observable, which has no counterpart in the process of the PP–meson photoproduction on the deuteron γ+dd+π0\gamma+d\to d+\pi^{0}.

The study of the single–spin asymmetry Σe\Sigma_{e} was firstly suggested for the pion production in the electron–nucleon scattering, e+Ne+N+πe+N\to e+N+\pi Gehlen (1971). Afterwards this asymmetry has been dicussed for the hadron production in the exclusive processes of the type A(e,eh)XA({\vec{e}},e^{\prime}h)X, where AA is a nucleus and hh is the detected hadron Boffi et al. (1985); Picklesimer et al. (1985). A number of experiments have measured the asymmetry Σe\Sigma_{e} Mandeville et al. (1994); Bartsch et al. (2002); Dolfini et al. (1995).

III.2 Vector polarized deuteron target

The part of the hadronic tensor depending on the deuteron vector polarization has the following general structure:

Hij(ξ)\displaystyle H_{ij}(\xi) =\displaystyle= ξm(h6{m,n}ij+h7{k^,n}ij+ih8[m,n]ij+ih9[k^,n]ij)+\displaystyle{\vec{\xi}}{\vec{m}}(h_{6}\{m,n\}_{ij}+h_{7}\{\hat{k},n\}_{ij}+ih_{8}[m,n]_{ij}+ih_{9}[\hat{k},n]_{ij})+ (16)
+ξn(h10mimj+h11ninj+h12k^ik^j+h13{m,k^}ij+ih14[m,k^]ij)+\displaystyle+{\vec{\xi}}{\vec{n}}(h_{10}m_{i}m_{j}+h_{11}n_{i}n_{j}+h_{12}\hat{k}_{i}\hat{k}_{j}+h_{13}\{m,\hat{k}\}_{ij}+ih_{14}[m,\hat{k}]_{ij})+
+ξk^(h15{m,n}ij+h16{k^,n}ij+ih17[m,n]ij+ih18[k^,n]ij).\displaystyle+{\vec{\xi}}\hat{\vec{k}}(h_{15}\{m,n\}_{ij}+h_{16}\{\hat{k},n\}_{ij}+ih_{17}[m,n]_{ij}+ih_{18}[\hat{k},n]_{ij}).

where one can see that , the dependence of the polarization observables on the deuteron vector polarization is determined by 13 structure functions. The expressions for these structure functions in terms of the reaction amplitudes gig_{i}, (i=113)(i=1-13) are given in Appendix I. On the basis of this formula one can make the following general conclusions:

  1. 1.

    If the deuteron is vector polarized and the polarization vector is perpendicular to the γ+dd+P\gamma^{*}+d\to d+P reaction plane, then the dependence of the differential cross section of the e+de+d+Pe^{-}+d\to e^{-}+d+P reaction on the ε\varepsilon and φ\varphi variables is the same as in the case of the unpolarized target, and the nonvanishing components of the Hij(ξ)H_{ij}(\xi) tensor are:

    Hxx(ξ)±Hyy(ξ)\displaystyle H_{xx}(\xi)\pm H_{yy}(\xi) =\displaystyle= (h10±h11)ξn,Hzz(ξ)=h12ξn,\displaystyle(h_{10}\pm h_{11}){\vec{\xi}}{\vec{n}},\ \ H_{zz}(\xi)=h_{12}{\vec{\xi}}{\vec{n}},
    Hxz(ξ)+Hzx(ξ)\displaystyle H_{xz}(\xi)+H_{zx}(\xi) =\displaystyle= 2h13ξn,Hxz(ξ)Hzx(ξ)=2ih14ξn.\displaystyle 2h_{13}{\vec{\xi}}{\vec{n}},\ \ H_{xz}(\xi)-H_{zx}(\xi)=2ih_{14}{\vec{\xi}}{\vec{n}}. (17)
  2. 2.

    If the deuteron target is polarized in the γ+dd+π0\gamma^{*}+d\to d+\pi^{0} reaction plane (in the direction of the vector k{\vec{k}} or m{\vec{m}}), then the dependence of the differential cross section of the e+de+d+π0e^{-}+d\to e^{-}+d+\pi^{0} reaction on the ε\varepsilon and φ\varphi variables is:

    • for deuteron P-meson production by an unpolarized electron beam:

      εsin(2φ),2ε(1+ε)sinφ,\varepsilon\sin(2\varphi),\ \ \sqrt{2\varepsilon(1+\varepsilon)}\sin\varphi, (18)
    • for deuteron P-meson production by a longitudinally polarized electron beam:

      ±iλ1ε2,iλ2ε(1ε)cosφ.\pm i\lambda\sqrt{1-\varepsilon^{2}},\ \ \mp i\lambda\sqrt{2\varepsilon(1-\varepsilon)}\cos\varphi. (19)
  3. 3.

    The differential cross section of the reaction d(e,eP)d{\vec{d}}({\vec{e}},e^{\prime}P)d, where the electron beam is longitudinally polarized and the deuteron target is vector polarized, can be written as follows:

    d3σdEdΩedΩP=σ0[1+λΣe+(Axd+λAxed)ξx+(Ayd+λAyed)ξy+(Azd+λAzed)ξz],\frac{d^{3}\sigma}{dE^{\prime}d\Omega_{e}d\Omega_{P}}=\sigma_{0}\biggl{[}1+\lambda\Sigma_{e}+(A_{x}^{d}+\lambda A_{x}^{ed})\xi_{x}+(A_{y}^{d}+\lambda A_{y}^{ed})\xi_{y}+(A_{z}^{d}+\lambda A_{z}^{ed})\xi_{z}\biggr{]}, (20)

    where σ0\sigma_{0} coincides with the five-fold unpolarized differential cross section, Eq. (5), Σe\Sigma_{e} is the beam analyzing power (the asymmetry induced by the electron–beam polarization), Aid(i=x,y,z)A_{i}^{d}(i=x,y,z) are the analyzing powers due to the vector polarization of the deuteron target, and AiedA_{i}^{ed}, (i=x,y,z)(i=x,y,z) are the spin–correlation parameters. The direction of the deuteron polarization vector is defined by the angles ϑ\vartheta^{*}, φ\varphi^{*} in the frame where the zz axis is along the direction of the three–momentum transfer k{\vec{k}} and the yy axis is defined by the vector product of the detected π0\pi^{0}– meson and virtual photon momenta (along the unit vector n{\vec{n}}). The target analyzing powers and spin–correlation parameters depend on the orientation of the deuteron polarization vector. The quantities Σe\Sigma_{e} and AidA_{i}^{d} are T–odd observables and they are entirely determined by the reaction mechanisms beyond the impulse approximation, for example, by final–state interaction effects. On the contrary, the quantities AiedA_{i}^{ed} are T–even observables and they do not vanish even in the absence of final–state interaction effects.

    The expressions of the AidA_{i}^{d} and AiedA_{i}^{ed} asymmetries can be explicitly written as functions of the azimuthal angle φ\varphi, of the virtual–photon linear polarization ε\varepsilon, and of contributions of the longitudinal (L) and transverse (T) components (relative to the virtual–photon momentum k{\vec{k}}) of the hadron electromagnetic current of γ+dd+π0\gamma^{*}+d\to d+\pi^{0} :

    Axdσ0\displaystyle A_{x}^{d}\sigma_{0} =\displaystyle= Nsinφ[2ε(1+ε)Ax(LT)+εcosφAx(TT)],\displaystyle N\sin\varphi\biggl{[}\sqrt{2\varepsilon(1+\varepsilon)}A_{x}^{(LT)}+\varepsilon\cos\varphi A_{x}^{(TT)}\biggr{]},
    Azdσ0\displaystyle A_{z}^{d}\sigma_{0} =\displaystyle= Nsinφ[2ε(1+ε)Az(LT)+εcosφAz(TT)],\displaystyle N\sin\varphi\biggl{[}\sqrt{2\varepsilon(1+\varepsilon)}A_{z}^{(LT)}+\varepsilon\cos\varphi A_{z}^{(TT)}\biggr{]},
    Aydσ0\displaystyle A_{y}^{d}\sigma_{0} =\displaystyle= N[Ay(TT)+εAy(LL)+2ε(1+ε)cosφAy(LT)+εcos(2φ)A¯y(TT)],\displaystyle N\biggl{[}A_{y}^{(TT)}+\varepsilon A_{y}^{(LL)}+\sqrt{2\varepsilon(1+\varepsilon)}cos\varphi A_{y}^{(LT)}+\varepsilon cos(2\varphi)\bar{A}_{y}^{(TT)}\biggr{]},
    Axedσ0\displaystyle A_{x}^{ed}\sigma_{0} =\displaystyle= N[1ε2Bx(TT)+2ε(1ε)cosφBx(LT)],\displaystyle N\biggl{[}\sqrt{1-\varepsilon^{2}}B_{x}^{(TT)}+\sqrt{2\varepsilon(1-\varepsilon)}cos\varphi B_{x}^{(LT)}\biggr{]},
    Azedσ0\displaystyle A_{z}^{ed}\sigma_{0} =\displaystyle= N[1ε2Bz(TT)+2ε(1ε)cosφBz(LT)],\displaystyle N\biggl{[}\sqrt{1-\varepsilon^{2}}B_{z}^{(TT)}+\sqrt{2\varepsilon(1-\varepsilon)}cos\varphi B_{z}^{(LT)}\biggr{]},
    Ayedσ0\displaystyle A_{y}^{ed}\sigma_{0} =\displaystyle= N2ε(1ε)sinφBy(LT),\displaystyle N\sqrt{2\varepsilon(1-\varepsilon)}\sin\varphi B_{y}^{(LT)}, (21)

    where NN is defined in Eq. (5) and the individual contributions to the considered asymmetries in terms of the structure functions hih_{i} are given by

    Ax(TT)\displaystyle A_{x}^{(TT)} =\displaystyle= 4h6,Ay(TT)=h10+h11,A¯y(TT)=h10h11,Az(TT)=4h15,\displaystyle 4h_{6},\ \ A_{y}^{(TT)}=h_{10}+h_{11},\ \ \bar{A}_{y}^{(TT)}=h_{10}-h_{11},\ \ A_{z}^{(TT)}=4h_{15},
    Ax(LT)\displaystyle A_{x}^{(LT)} =\displaystyle= 2Q2k0h7,Ay(LT)=2Q2k0h13,Az(LT)=2Q2k0h16,\displaystyle-2\frac{\sqrt{Q^{2}}}{k_{0}}h_{7},\ \ A_{y}^{(LT)}=-2\frac{\sqrt{Q^{2}}}{k_{0}}h_{13},\ \ A_{z}^{(LT)}=-2\frac{\sqrt{Q^{2}}}{k_{0}}h_{16},
    Ay(LL)\displaystyle A_{y}^{(LL)} =\displaystyle= 2Q2k02h12,Bx(TT)=2h8,Bz(TT)=2h17,\displaystyle 2\frac{Q^{2}}{k_{0}^{2}}h_{12},\ \ B_{x}^{(TT)}=2h_{8},\ \ B_{z}^{(TT)}=2h_{17},
    Bx(LT)\displaystyle B_{x}^{(LT)} =\displaystyle= 2Q2k0h9,By(LT)=2Q2k0h14,Bz(LT)=2Q2k0h18.\displaystyle-2\frac{\sqrt{Q^{2}}}{k_{0}}h_{9},\ \ B_{y}^{(LT)}=-2\frac{\sqrt{Q^{2}}}{k_{0}}h_{14},\ \ B_{z}^{(LT)}=-2\frac{\sqrt{Q^{2}}}{k_{0}}h_{18}. (22)

III.3 Tensor polarized deuteron target

The component of the hadronic tensor, Hij(S)H_{ij}(S), which depends on the deuteron tensor polarization has the following general structure:

Hij(S)\displaystyle H_{ij}(S) =\displaystyle= Sabmamb(h19mimj+h20ninj+h21k^ik^j+h22{m,k^}ij+ih23[m,k^]ij)+\displaystyle S_{ab}m_{a}m_{b}(h_{19}m_{i}m_{j}+h_{20}n_{i}n_{j}+h_{21}\hat{k}_{i}\hat{k}_{j}+h_{22}\{m,\hat{k}\}_{ij}+ih_{23}[m,\hat{k}]_{ij})+ (23)
+Sabnanb(h24mimj+h25ninj+h26k^ik^j+h27{m,k^}ij+ih28[m,k^]ij)+\displaystyle+S_{ab}n_{a}n_{b}(h_{24}m_{i}m_{j}+h_{25}n_{i}n_{j}+h_{26}\hat{k}_{i}\hat{k}_{j}+h_{27}\{m,\hat{k}\}_{ij}+ih_{28}[m,\hat{k}]_{ij})+
+Sabmak^b(h29mimj+h30ninj+h31k^ik^j+h32{m,k^}ij+ih33[m,k^]ij)+\displaystyle+S_{ab}m_{a}\hat{k}_{b}(h_{29}m_{i}m_{j}+h_{30}n_{i}n_{j}+h_{31}\hat{k}_{i}\hat{k}_{j}+h_{32}\{m,\hat{k}\}_{ij}+ih_{33}[m,\hat{k}]_{ij})+
+Sabmanb(h34{m,n}ij+h35{k^,n}ij+ih36[m,n]ij+ih37[k^,n]ij)+\displaystyle+S_{ab}m_{a}n_{b}(h_{34}\{m,n\}_{ij}+h_{35}\{\hat{k},n\}_{ij}+ih_{36}[m,n]_{ij}+ih_{37}[\hat{k},n]_{ij})+
+Sabk^anb(h38{m,n}ij+h39{k^,n}ij+ih40[m,n]ij+ih41[k^,n]ij).\displaystyle+S_{ab}\hat{k}_{a}n_{b}(h_{38}\{m,n\}_{ij}+h_{39}\{\hat{k},n\}_{ij}+ih_{40}[m,n]_{ij}+ih_{41}[\hat{k},n]_{ij}).

In this case, the dependence of the polarization observables on the deuteron tensor polarization is determined by 23 structure functions. The expressions for these structure functions in terms of the reaction amplitudes gi(i=113)g_{i}(i=1-13) are given in Appendix I.

From this expression one can conclude that:

  1. 1.

    If the deuteron is tensor polarized so that only Szz,SyyS_{zz},\ S_{yy} and (Sxz+Szx)(S_{xz}+S_{zx}) components of the quadrupole polarization tensor are nonzero, then the dependence of the differential cross section of the e+de+P+de^{-}+d\to e^{-}+P+d reaction on the parameter ε\varepsilon and on the azimuthal angle φ\varphi must be the same as in the case of the unpolarized target (more exactly, with similar ε\varepsilon– and φ\varphi– dependent terms).

  2. 2.

    If the deuteron is polarized so that only the (Sxy+Syx)(S_{xy}+S_{yx}) and (Syz+Szy)(S_{yz}+S_{zy}) components of the quadrupole polarization tensor are nonzero, then:

    - for PP-meson production with unpolarized electron beam the typical terms follow sinφ\sin\varphi and sin(2φ)\sin(2\varphi) dependencies;

    - for PP-meson production with longitudinally polarized electron beam the terms do not depend on ε\varepsilon, φ\varphi, and cosφ\cos\varphi.

In polarization experiments it is possible to prepare the deuteron target with definite spin projection on some quantization axis. The corresponding asymmetry is usually defined as

A=dσ(λd=+1)dσ(λd=1)dσ(λd=+1)+dσ(λd=1),A=\frac{d\sigma(\lambda_{d}=+1)-d\sigma(\lambda_{d}=-1)}{d\sigma(\lambda_{d}=+1)+d\sigma(\lambda_{d}=-1)}, (24)

where dσ(λd)d\sigma(\lambda_{d}) is the differential cross section of the e+de+P+de^{-}+d\to e^{-}+P+d reaction when the quantization axis for the deuteron spin (in the PdPd–pair CMS) coincides with its momentum, i.e., the deuteron has helicity λd\lambda_{d}. From an experimental point of view, the measurement of an asymmetry is more convenient than a measurement of a cross section, as most of systematic experimental errors and other multiplicative factors cancel in the ratio.

The general form of the hadron tensor Hij(λd)H_{ij}(\lambda_{d}), which determines the differential cross section of the process under consideration for the case of the deuteron with helicity λd\lambda_{d}, can be written as

Hij(λd\displaystyle H_{ij}(\lambda_{d} =\displaystyle= ±1)=δ1k^ik^j+δ2mimj+δ3ninj+δ4{k^,m}ij+iδ5[k^,m]ij±\displaystyle\pm 1)=\delta_{1}\hat{k}_{i}\hat{k}_{j}+\delta_{2}m_{i}m_{j}+\delta_{3}n_{i}n_{j}+\delta_{4}\{\hat{k},m\}_{ij}+i\delta_{5}[\hat{k},m]_{ij}\pm (25)
±δ6{k^,n}ij±iδ7[k^,n]ij±δ8{m,n}ij±iδ9[m,n]ij.\displaystyle\pm\delta_{6}\{\hat{k},n\}_{ij}\pm i\delta_{7}[\hat{k},n]_{ij}\pm\delta_{8}\{m,n\}_{ij}\pm i\delta_{9}[m,n]_{ij}.

The reaction amplitude is real in the Born (impulse) approximation. So, assuming the T-invariance of the hadron electromagnetic interactions, we can do the following statements, according to the deuteron polarization state:

The deuteron is unpolarized. Since, in this case, the hadronic tensor Hij(0)H_{ij}(0) has to be symmetric (over the i,ji,j indices), the asymmetry in the scattering of longitudinally polarized electrons vanishes.

The deuteron is vector polarized. Since, in this case, the hadronic tensor Hij(ξ)H_{ij}(\xi) has to be antisymmetric, then the deuteron vector polarization can manifest itself in the scattering of longitudinally polarized electrons. The perpendicular target polarization (normal to the γ+dd+π0\gamma^{*}+d\rightarrow d+\pi^{0} reaction plane) leads to a correlation of the following type: ±iλ2ε(1ε)sinφ.\pm i\lambda\sqrt{2\varepsilon(1-\varepsilon)}\sin\varphi. The longitudinal and transverse (along or perpendicular to the virtual–photon momentum) target polarization (lying in the γ+dP+d\gamma^{*}+d\rightarrow P+d reaction plane) leads to two correlations of the following type : iλ1ε2\mp i\lambda\sqrt{1-\varepsilon^{2}} and iλ2ε(1ε)cosφ.\mp i\lambda\sqrt{2\varepsilon(1-\varepsilon)}\cos\varphi.

The deuteron is tensor polarized. The hadronic tensor Hij(S)H_{ij}(S) is symmetric in this case. In the scattering of longitudinally polarized electrons the contribution proportional to λSab\lambda S_{ab} vanishes. If the target is polarized so that only the (Sxy+Syx)(S_{xy}+S_{yx}) or (Syz+Szy)(S_{yz}+S_{zy}) components of the quadrupole polarization tensor are nonzero, then in the differential cross section only the following two terms are present: εsin(2φ)\varepsilon\sin(2\varphi) and 2ε(1+ε)sinφ.\sqrt{2\varepsilon(1+\varepsilon)}\sin\varphi. For all other target polarizations the following structures are present: a term which does not depend on ε\varepsilon and φ\varphi variables as well as terms with the following dependencies: 2ε2\varepsilon, εcos(2φ)\varepsilon cos(2\varphi), and 2ε(1+ε)cosφ.\sqrt{2\varepsilon(1+\varepsilon)}cos\varphi.

The differential cross section of the PP–meson production in the scattering of longitudinally polarized electrons by a tensor polarized deuteron target (in a coincidence experimental setup) has the following general structure

d3σdEdΩedΩP\displaystyle\frac{d^{3}\sigma}{dE^{\prime}d\Omega_{e}d\Omega_{P}} =\displaystyle= N{σT+AxzTQxz+AxxT(QxxQyy)+AzzTQzz+\displaystyle N\biggl{\{}\sigma_{T}+A_{xz}^{T}Q_{xz}+A_{xx}^{T}(Q_{xx}-Q_{yy})+A_{zz}^{T}Q_{zz}+ (26)
+ε[σL+AxzLQxz+AxxL(QxxQyy)+AzzLQzz]+\displaystyle+\varepsilon\biggl{[}\sigma_{L}+A_{xz}^{L}Q_{xz}+A_{xx}^{L}(Q_{xx}-Q_{yy})+A_{zz}^{L}Q_{zz}\biggr{]}+
+2ε(1+ε)cosφ[σI+AxzIQxz+AxxI(QxxQyy)+AzzIQzz]+\displaystyle+\sqrt{2\varepsilon(1+\varepsilon)}\cos\varphi\biggl{[}\sigma_{I}+A_{xz}^{I}Q_{xz}+A_{xx}^{I}(Q_{xx}-Q_{yy})+A_{zz}^{I}Q_{zz}\biggr{]}+
+2ε(1+ε)sinφ(AxyIQxy+AyzIQyz))+\displaystyle+\sqrt{2\varepsilon(1+\varepsilon)}\sin\varphi(A_{xy}^{I}Q_{xy}+A_{yz}^{I}Q_{yz}))+
+εsin(2φ)(AxyPQxy+AyzPQyz)+\displaystyle+\varepsilon\sin(2\varphi)(A_{xy}^{P}Q_{xy}+A_{yz}^{P}Q_{yz})+
+εcos(2φ)[σP+AxzPQxz+AxxP(QxxQyy)+AzzPQzz]+\displaystyle+\varepsilon\cos(2\varphi)\biggl{[}\sigma_{P}+A_{xz}^{P}Q_{xz}+A_{xx}^{P}(Q_{xx}-Q_{yy})+A_{zz}^{P}Q_{zz}\biggr{]}+
+λ2ε(1ε)sinφ[σI+A¯xzIQxz+A¯xxI(QxxQyy)+A¯zzIQzz]+\displaystyle+\lambda\sqrt{2\varepsilon(1-\varepsilon)}\sin\varphi\biggl{[}\sigma_{I}^{\prime}+\bar{A}_{xz}^{I}Q_{xz}+\bar{A}_{xx}^{I}(Q_{xx}-Q_{yy})+\bar{A}_{zz}^{I}Q_{zz}\biggr{]}+
+λ2ε(1ε)cosφ[A¯xyIQxy+A¯yzIQyz]+\displaystyle+\lambda\sqrt{2\varepsilon(1-\varepsilon)}\cos\varphi\biggl{[}\bar{A}_{xy}^{I}Q_{xy}+\bar{A}_{yz}^{I}Q_{yz}\biggr{]}+
+λ1ε2cosφ[AxyTQxy+AyzTQyz]},\displaystyle+\lambda\sqrt{1-\varepsilon^{2}}\cos\varphi\biggl{[}A_{xy}^{T}Q_{xy}+A_{yz}^{T}Q_{yz}\biggr{]}\biggr{\}},

where the quantities Qij(i,j=x,y,z)Q_{ij}(i,j=x,y,z) are the components of the quadrupole polarization tensor of the deuteron in its rest system (the coordinate system is specified similarly to the case of the π0d\pi^{0}d–pair CMS). These components satisfy to the following conditions: Qij=QjiQ_{ij}=Q_{ji}, Qii=0Q_{ii}=0. In the derivation of this formula we take into account that Qxx+Qyy+Qzz=0Q_{xx}+Q_{yy}+Q_{zz}=0.

Thus, in the general case the exclusive cross section of the PP–meson production in the scattering of longitudinally polarized electrons by a tensor polarized deuteron target is determined by 23 independent asymmetries (16(7) ones in the scattering of unpolarized(longitudinally polarized) electrons) Aijm(W,k2,ϑ)A_{ij}^{m}(W,k^{2},\vartheta), where i,j=x,y,z;m=T,P,L,Ii,j=x,y,z;m=T,P,L,I. These asymmetries can be related to the structure functions hih_{i} which are the bilinear combinations of the 13 independent scalar amplitudes describing the γ+dP+d\gamma^{*}+d\to P+d reaction. These relations are:

AxzT\displaystyle A_{xz}^{T} =\displaystyle= γ1(h29+h30),AxxT=12(h19+h20h21h25),AzzT=12(h19+h20+h21+h25),\displaystyle\gamma_{1}(h_{29}+h_{30}),\ \ A_{xx}^{T}=\frac{1}{2}(h_{19}+h_{20}-h_{21}-h_{25}),\ \ A_{zz}^{T}=-\frac{1}{2}(h_{19}+h_{20}+h_{21}+h_{25}),
AxzL\displaystyle A_{xz}^{L} =\displaystyle= 2γ1k2k02h31,AxxL=k2k02(h21h26),AzzL=k2k02(h21+h26),\displaystyle-2\gamma_{1}\frac{k^{2}}{k_{0}^{2}}h_{31},\ \ A_{xx}^{L}=-\frac{k^{2}}{k_{0}^{2}}(h_{21}-h_{26}),\ \ A_{zz}^{L}=\frac{k^{2}}{k_{0}^{2}}(h_{21}+h_{26}),
AxzI\displaystyle A_{xz}^{I} =\displaystyle= 2γ1k2k0h32,AxxI=k2k0(h22h27),AzzI=k2k0(h22+h27),\displaystyle-2\gamma_{1}\frac{\sqrt{-k^{2}}}{k_{0}}h_{32},\ \ A_{xx}^{I}=-\frac{\sqrt{-k^{2}}}{k_{0}}(h_{22}-h_{27}),\ \ A_{zz}^{I}=\frac{\sqrt{-k^{2}}}{k_{0}}(h_{22}+h_{27}), (27)
AxyI\displaystyle A_{xy}^{I} =\displaystyle= 2k2k0h35,AyzI=2γ1k2k0h39,AxyP=2h34,AyzP=2γ1h38,\displaystyle-2\frac{\sqrt{-k^{2}}}{k_{0}}h_{35},\ \ A_{yz}^{I}=-2\gamma_{1}\frac{\sqrt{-k^{2}}}{k_{0}}h_{39},\ \ A_{xy}^{P}=2h_{34},\ \ A_{yz}^{P}=2\gamma_{1}h_{38},
AxzP\displaystyle A_{xz}^{P} =\displaystyle= γ1(h29h30),AxxP=12(h19h20h24+h25),AzzP=12(h19h20+h24h25),\displaystyle\gamma_{1}(h_{29}-h_{30}),\ \ A_{xx}^{P}=\frac{1}{2}(h_{19}-h_{20}-h_{24}+h_{25}),\ \ A_{zz}^{P}=-\frac{1}{2}(h_{19}-h_{20}+h_{24}-h_{25}),
A¯xzI\displaystyle\bar{A}_{xz}^{I} =\displaystyle= 2γ1k2k0h33,A¯xxI=k2k0(h23h28),A¯zzI=k2k0(h23+h28),\displaystyle-2\gamma_{1}\frac{\sqrt{-k^{2}}}{k_{0}}h_{33},\ \ \bar{A}_{xx}^{I}=-\frac{\sqrt{-k^{2}}}{k_{0}}(h_{23}-h_{28}),\ \ \bar{A}_{zz}^{I}=\frac{\sqrt{-k^{2}}}{k_{0}}(h_{23}+h_{28}),
A¯xyI\displaystyle\bar{A}_{xy}^{I} =\displaystyle= 2k2k0h37,A¯yzI=2γ1k2k0h41,AxyT=2h36,AyzT=2γ1h40.\displaystyle-2\frac{\sqrt{-k^{2}}}{k_{0}}h_{37},\ \ \bar{A}_{yz}^{I}=-2\gamma_{1}\frac{\sqrt{-k^{2}}}{k_{0}}h_{41},\ \ A_{xy}^{T}=2h_{36},\ \ A_{yz}^{T}=2\gamma_{1}h_{40}.

One can see from this formula that the scattering of unpolarized electrons by a tensor polarized deuteron target with components Qxy=Qyz=0Q_{xy}=Q_{yz}=0, is characterized by the same φ\varphi– and ε\varepsilon–dependences as in the case of the scattering of unpolarized electrons by the unpolarized deuteron target. If Qxy0,Qyz0Q_{xy}\neq 0,Q_{yz}\neq 0, then new terms of the type 2ε(1+ε)sinφ\sqrt{2\varepsilon(1+\varepsilon)}\sin\varphi and εsin(2φ)\varepsilon\sin(2\varphi) are present in the cross section. The asymmetries with upper indices T,P(L)T,P(L) are determined only by the transverse (longitudinal) components of the electromagnetic current for the γ+dP+d\gamma^{*}+d\to P+d reaction, while the asymmetries with upper index II are determined by the interference of the longitudinal and transverse components of the electromagnetic current.

Using the explicit form for the amplitude of the reaction under consideration it is easy to obtain the expression for the hadronic tensor HijH_{ij} in terms of the scalar amplitudes gi(i=1,,13).g_{i}\ (i=1,...,13). Appendix I contains the formulae for the structure functions hih_{i} in terms of the scalar amplitudes, which describe the polarization effects in the e+de+P+de^{-}+d\to e^{-}+P+d reaction caused by the deuteron polarization.

Let us stress again that the results listed above have a general nature and are not related to a particular reaction mechanism. They are valid for the one–photon–exchange mechanism assuming P-invariance of the hadron electromagnetic interaction. Their general nature is due to the fact that the derivation of these formulae requires only the hadron electromagnetic current conservation and the fact that the photon has spin one.

IV Polarization state of scattered deuteron

Let us consider the general structure of the polarization effects related to the polarization of the scattered deuteron. The scattered deuteron spin density matrix can be written as

ρμνs=(gμνp2μp2νM2)+i2Mεμναβs~αp2β+S~μν,\rho^{s}_{\mu\nu}=-(g_{\mu\nu}-\frac{p_{2\mu}p_{2\nu}}{M^{2}})+\frac{i}{2M}\varepsilon_{\mu\nu\alpha\beta}\tilde{s}_{\alpha}p_{2\beta}+\tilde{S}_{\mu\nu}, (28)

where s~α\tilde{s}_{\alpha} is the four–vector describing the vector polarization of the scattered deuteron, s~2=1,\tilde{s}^{2}=-1, s~p2=0\tilde{s}\cdot p_{2}=0 and S~μν\tilde{S}_{\mu\nu} is the tensor describing the tensor (quadrupole) polarization of the scattered deuteron, S~μν=S~νμ,\tilde{S}_{\mu\nu}=\tilde{S}_{\nu\mu}, p2μS~μν=0,p_{2\mu}\tilde{S}_{\mu\nu}=0, S~μμ=0\tilde{S}_{\mu\mu}=0 (due to these properties the tensor S~μν\tilde{S}_{\mu\nu} has only five independent components).

In the scattered deuteron rest system all time components of the tensor S~μν\tilde{S}_{\mu\nu} are zero and the tensor polarization of the scattered deuteron is described by five independent space components (S~ij=S~ji,S~ii=0,i,j=x,y,z).(\tilde{S}_{ij}=\tilde{S}_{ji},\tilde{S}_{ii}=0,i,j=x,y,z). The four–vector s~α\tilde{s}_{\alpha} is related to the unit vector ζ{\vec{\zeta}} of the scattered deuteron vector polarization in its rest system by s~0=qζ/M,\tilde{s}_{0}=-{\vec{q}}{\vec{\zeta}}/M,\ s~=ζ+qqζ/M(M+E2),{\vec{\tilde{s}}}={\vec{\zeta}}+{\vec{q}}{\vec{q}}\cdot{\vec{\zeta}}/M(M+E_{2}), E2E_{2} is the scattered deuteron energy in the γ+dd+P\gamma^{*}+d\to d+P reaction CMS.

The hadronic tensor Hij(i,j=x,y,z)H_{ij}(i,j=x,y,z) has a linear dependence on the scattered deuteron polarization parameters and it can be represented as follows:

Hij=Hij(0)+Hij(ζ)+Hij(S~),H_{ij}=H_{ij}(0)+H_{ij}(\zeta)+H_{ij}(\tilde{S}), (29)

where the term Hij(0)H_{ij}(0) corresponds to the case of the unpolarized deuteron target and scattered deuteron, and the term Hij(ζ)(Hij(S~))H_{ij}(\zeta)(H_{ij}(\tilde{S})) corresponds to the case of the vector (tensor)-polarization of the scattered deuteron provided that target is unpolarized.

  • The scattered deuteron is unpolarized. The structure of the tensor Hij(0)H_{ij}(0) is given by Eq. (10) with the same structure functions hi,i=15h_{i},i=1-5.

  • The scattered deuteron is vector polarized. The structure of the tensor Hij(ζ)H_{ij}(\zeta) is given by Eq. (16) where it is necessary to do the following change ξζ\vec{\xi}\to\vec{\zeta} and the structure functions must be also changed hih¯i,i=618h_{i}\to\bar{h}_{i},i=6-18. Therefore, the dependence of the polarization observables on the vector polarization of the scattered deuteron is also determined by 13 structure functions. The expressions for the structure functions h¯i\bar{h}_{i} in terms of the reaction amplitudes gi(i=113)g_{i}(i=1-13) are given in Appendix I. The differential cross section of the reaction d(e,eP)dd({\vec{e}},e^{\prime}P){\vec{d}}, where the electron beam is longitudinally polarized and the scattered deuteron has vector polarization, can be written as follows:

    d3σdEdΩedΩP=σ0[1+λΣe+(Pxd+λTxed)ζx+(Pyd+λTyed)ζy+(Pzd+λTzed)ζz],\frac{d^{3}\sigma}{dE^{\prime}d\Omega_{e}d\Omega_{P}}=\sigma_{0}\left[1+\lambda\Sigma_{e}+(P_{x}^{d}+\lambda T_{x}^{ed})\zeta_{x}+(P_{y}^{d}+\lambda T_{y}^{ed})\zeta_{y}+(P_{z}^{d}+\lambda T_{z}^{ed})\zeta_{z}\right], (30)

    where Pid(i=x,y,z)P_{i}^{d}(i=x,y,z) are the components of the vector polarization of the scattered deuteron, and Tied(i=x,y,z)T_{i}^{ed}(i=x,y,z) are the coefficients of the polarization transfer from the longitudinal polarization of the electron beam to the vector polarization of the scattered deuteron. The quantities Σe\Sigma_{e} and PidP_{i}^{d} are T–odd observables and they are completely determined by the reaction mechanism beyond the impulse approximation, for example, by the final–state interaction effects. On the contrary, the quantities TiedT_{i}^{ed} are T–even observables and they do not vanish in absence of final–state interaction effects.

    The expressions of the PidP_{i}^{d} and TiedT_{i}^{ed} polarization observables can be also explicitly written as functions of the azimuthal angle φ\varphi, of the virtual photon linear polarization ε\varepsilon, and of the contributions of the longitudinal (L) and transverse (T) components (relative to the virtual photon momentum k{\vec{k}}) of the hadron electromagnetic current of the γ+dd+P\gamma^{*}+d\to d+P reaction. These expressions can be obtained from Eqs. (21,22) with the following substitutions: AidPidA_{i}^{d}\to P_{i}^{d}, AiedTiedA_{i}^{ed}\to T_{i}^{ed}, Ai(IJ)Pi(IJ)A_{i}^{(IJ)}\to P_{i}^{(IJ)} and Bi(IJ)Ci(IJ)B_{i}^{(IJ)}\to C_{i}^{(IJ)}, where I,J=L,TI,J=L,T.

    The individual contributions to the components of the vector polarization and polarization transfer coefficients in terms of the structure functions hi¯\bar{h_{i}} are given by Eq. (22) where it is necessary to change hihi¯h_{i}\to\bar{h_{i}} .

    At this stage, the general model–independent analysis of the polarization observables in the reaction d(e,eP)dd({\vec{e}},e^{\prime}P)\vec{d}, for the case of the vector-polarized scattered deuteron, is completed. To proceed further in the calculation of the observables, one needs a model for the reaction mechanism and for the deuteron structure.

  • The scattered deuteron is tensor polarized. The general structure of the tensor Hij(S~)H_{ij}(\tilde{S}) is the same as given by Eq. (23) where it is necessary to do the following change SabS~abS_{ab}\to\tilde{S}_{ab} and hih¯i,i=1941h_{i}\to\bar{h}_{i},i=19-41 for the structure functions. Therefore, the dependence of the polarization observables on the tensor polarization of the scattered deuteron is also determined by 23 structure functions. The expressions for the structure functions h¯i\bar{h}_{i} in terms of the reaction amplitudes gi(i=113)g_{i}(i=1-13) are given in Appendix I.

    The differential cross section of the PP–meson production in the scattering of longitudinally polarized electrons by an unpolarized deuteron target, when the tensor polarization of the scattered deuteron is measured (in a coincidence experimental setup), has the following general structure:

    d3σdEdΩedΩP\displaystyle\frac{d^{3}\sigma}{dE^{\prime}d\Omega_{e}d\Omega_{P}} =\displaystyle= N{σT+PxzTQ~xz+PxxT(Q~xxQ~yy)+PzzTQ~zz+\displaystyle N\biggl{\{}\sigma_{T}+P_{xz}^{T}\tilde{Q}_{xz}+P_{xx}^{T}(\tilde{Q}_{xx}-\tilde{Q}_{yy})+P_{zz}^{T}\tilde{Q}_{zz}+ (31)
    +ε[σL+PxzLQ~xz+PxxL(Q~xxQ~yy)+PzzLQ~zz]+\displaystyle+\varepsilon\biggl{[}\sigma_{L}+P_{xz}^{L}\tilde{Q}_{xz}+P_{xx}^{L}(\tilde{Q}_{xx}-\tilde{Q}_{yy})+P_{zz}^{L}\tilde{Q}_{zz}\biggr{]}+
    +2ε(1+ε)cosφ[σI+PxzIQ~xz+PxxI(Q~xxQ~yy)+PzzIQ~zz]+\displaystyle+\sqrt{2\varepsilon(1+\varepsilon)}\cos\varphi\biggl{[}\sigma_{I}+P_{xz}^{I}\tilde{Q}_{xz}+P_{xx}^{I}(\tilde{Q}_{xx}-\tilde{Q}_{yy})+P_{zz}^{I}\tilde{Q}_{zz}\biggr{]}+
    +2ε(1+ε)sinφ(PxyIQ~xy+PyzIQ~yz)+εsin(2φ)(PxyPQ~xy+PyzPQ~yz)+\displaystyle+\sqrt{2\varepsilon(1+\varepsilon)}\sin\varphi(P_{xy}^{I}\tilde{Q}_{xy}+P_{yz}^{I}\tilde{Q}_{yz})+\varepsilon\sin(2\varphi)(P_{xy}^{P}\tilde{Q}_{xy}+P_{yz}^{P}\tilde{Q}_{yz})+
    +εcos(2φ)[σP+PxzPQ~xz+PxxP(Q~xxQ~yy)+PzzPQ~zz]+\displaystyle+\varepsilon\cos(2\varphi)\biggl{[}\sigma_{P}+P_{xz}^{P}\tilde{Q}_{xz}+P_{xx}^{P}(\tilde{Q}_{xx}-\tilde{Q}_{yy})+P_{zz}^{P}\tilde{Q}_{zz}\biggr{]}+
    +λ2ε(1ε)sinφ[σI+P¯xzIQ~xz+P¯xxI(Q~xxQ~yy)+P¯zzIQ~zz]+\displaystyle+\lambda\sqrt{2\varepsilon(1-\varepsilon)}\sin\varphi\biggl{[}\sigma_{I}^{\prime}+\bar{P}_{xz}^{I}\tilde{Q}_{xz}+\bar{P}_{xx}^{I}(\tilde{Q}_{xx}-\tilde{Q}_{yy})+\bar{P}_{zz}^{I}\tilde{Q}_{zz}\biggr{]}+
    +λ2ε(1ε)cosφ[P¯xyIQ~xy+P¯yzIQ~yz]+\displaystyle+\lambda\sqrt{2\varepsilon(1-\varepsilon)}\cos\varphi\biggl{[}\bar{P}_{xy}^{I}\tilde{Q}_{xy}+\bar{P}_{yz}^{I}\tilde{Q}_{yz}\biggr{]}+
    +λ1ε2cosφ[PxyTQ~xy+PyzTQ~yz]},\displaystyle+\lambda\sqrt{1-\varepsilon^{2}}\cos\varphi\biggl{[}P_{xy}^{T}\tilde{Q}_{xy}+P_{yz}^{T}\tilde{Q}_{yz}\biggr{]}\biggr{\}},

    where the quantities Q~ij(i,j=x,y,z)\tilde{Q}_{ij}(i,j=x,y,z) are the components of the quadrupole polarization tensor of the scattered deuteron in the PdPd–pair CMS. These components satisfy to the following conditions:

    Q~ij=Q~ji,dQ~zz+uQ~xx+γ22Q~yy2z(1+γ2)Q~xz=0,\tilde{Q}_{ij}=\tilde{Q}_{ji},\ d\tilde{Q}_{zz}+u\tilde{Q}_{xx}+\gamma^{2}_{2}\tilde{Q}_{yy}-2z(1+\gamma_{2})\tilde{Q}_{xz}=0, (32)

    where d=cos2ϑ+sin2ϑγ22,u=sin2ϑ+cos2ϑγ22,d=cos^{2}\vartheta+sin^{2}\vartheta\gamma^{2}_{2},\ u=sin^{2}\vartheta+cos^{2}\vartheta\gamma^{2}_{2}, z=(γ21)cosϑsinϑ,γ2=E2/Mz=(\gamma_{2}-1)cos\vartheta\sin\vartheta,\gamma_{2}=E_{2}/M. Eq. (31) takes into account the last condition.

Thus, in the general case the exclusive cross section of the PP–meson production in the scattering of longitudinally polarized electrons by unpolarized deuteron target, when the tensor polarization of the scattered deuteron is measured (in the coincidence experimental setup), is determined by 23 independent functions (16 (7) ones in the scattering of unpolarized (longitudinally polarized) electrons) Pijm(W,k2,ϑ)P_{ij}^{m}(W,k^{2},\vartheta), where i,j=x,y,z;m=T,P,L,Ii,j=x,y,z;m=T,P,L,I. These asymmetries can be related to the structure functions h¯i\bar{h}_{i} which are the bilinear combinations of the 13 independent scalar amplitudes describing the γ+dP+d\gamma^{*}+d\to P+d reaction. These relations are:

rPxzT\displaystyle rP_{xz}^{T} =\displaystyle= r(h¯29+h¯30)2z(1+γ2)(h¯19+h¯20+h¯24+h¯25),\displaystyle r(\bar{h}_{29}+\bar{h}_{30})-2z(1+\gamma_{2})(\bar{h}_{19}+\bar{h}_{20}+\bar{h}_{24}+\bar{h}_{25}),
rPxxT\displaystyle rP_{xx}^{T} =\displaystyle= u(h¯24+h¯25)γ22(h¯19+h¯20),rPzzT=d(h¯19+h¯20+h¯24+h¯25),\displaystyle u(\bar{h}_{24}+\bar{h}_{25})-\gamma^{2}_{2}(\bar{h}_{19}+\bar{h}_{20}),\ rP_{zz}^{T}=d(\bar{h}_{19}+\bar{h}_{20}+\bar{h}_{24}+\bar{h}_{25}),
rPxzL\displaystyle rP_{xz}^{L} =\displaystyle= 2Q2k02[rh¯312z(1+γ2)(h¯21+h¯26)],rPxxL=2Q2k02(uh¯26γ22h¯21),\displaystyle 2\frac{Q^{2}}{k_{0}^{2}}[r\bar{h}_{31}-2z(1+\gamma_{2})(\bar{h}_{21}+\bar{h}_{26})],\ rP_{xx}^{L}=2\frac{Q^{2}}{k_{0}^{2}}(u\bar{h}_{26}-\gamma^{2}_{2}\bar{h}_{21}),
rPzzL\displaystyle rP_{zz}^{L} =\displaystyle= 2Q2k02d(h¯21+h¯26),rPxzI=2Q2k0[rh¯322z(1+γ2)(h¯22+h¯27)],\displaystyle 2\frac{Q^{2}}{k_{0}^{2}}d(\bar{h}_{21}+\bar{h}_{26}),\ \ rP_{xz}^{I}=-2\frac{\sqrt{Q^{2}}}{k_{0}}[r\bar{h}_{32}-2z(1+\gamma_{2})(\bar{h}_{22}+\bar{h}_{27})],
rPxxI\displaystyle rP_{xx}^{I} =\displaystyle= 2Q2k0(uh¯27γ22h¯22),rPzzI=2Q2k0d(h¯22+h¯27),\displaystyle-2\frac{\sqrt{Q^{2}}}{k_{0}}(u\bar{h}_{27}-\gamma^{2}_{2}\bar{h}_{22}),rP_{zz}^{I}=-2\frac{\sqrt{Q^{2}}}{k_{0}}d(\bar{h}_{22}+\bar{h}_{27}),\ \ (33)
PxyI\displaystyle P_{xy}^{I} =\displaystyle= 2Q2k0h¯35,PyzI=2Q2k0h¯39,PxyP=2h¯34,PyzP=2h¯38,\displaystyle-2\frac{\sqrt{Q^{2}}}{k_{0}}\bar{h}_{35},\ \ P_{yz}^{I}=-2\frac{\sqrt{Q^{2}}}{k_{0}}\bar{h}_{39},\ \ P_{xy}^{P}=2\bar{h}_{34},\ P_{yz}^{P}=2\bar{h}_{38},
rPxzP\displaystyle rP_{xz}^{P} =\displaystyle= r(h¯29h¯30)2z(1+γ2)(h¯19h¯20+h¯24h¯25),\displaystyle r(\bar{h}_{29}-\bar{h}_{30})-2z(1+\gamma_{2})(\bar{h}_{19}-\bar{h}_{20}+\bar{h}_{24}-\bar{h}_{25}),\ \
rPxxP\displaystyle rP_{xx}^{P} =\displaystyle= u(h¯24h¯25)γ22(h¯19h¯20),\displaystyle u(\bar{h}_{24}-\bar{h}_{25})-\gamma^{2}_{2}(\bar{h}_{19}-\bar{h}_{20}),
rPzzP\displaystyle rP_{zz}^{P} =\displaystyle= d(h¯19h¯20+h¯24h¯25),rP¯xzI=2Q2k0[rh¯332z(1+γ2)(h¯23+h¯28)],\displaystyle d(\bar{h}_{19}-\bar{h}_{20}+\bar{h}_{24}-\bar{h}_{25}),\ \ r\bar{P}_{xz}^{I}=-2\frac{\sqrt{Q^{2}}}{k_{0}}[r\bar{h}_{33}-2z(1+\gamma_{2})(\bar{h}_{23}+\bar{h}_{28})],
rP¯xxI\displaystyle r\bar{P}_{xx}^{I} =\displaystyle= 2Q2k0(uh¯28γ22h¯23),rP¯zzI=2Q2k0d(h¯23+h¯28),\displaystyle-2\frac{\sqrt{Q^{2}}}{k_{0}}(u\bar{h}_{28}-\gamma^{2}_{2}\bar{h}_{23}),\ \ r\bar{P}_{zz}^{I}=-2\frac{\sqrt{Q^{2}}}{k_{0}}d(\bar{h}_{23}+\bar{h}_{28}),\ \
P¯xyI\displaystyle\bar{P}_{xy}^{I} =\displaystyle= 2Q2k0h¯37,P¯yzI=2Q2k0h¯41,PxyT=2h¯36,PyzT=2h¯40,\displaystyle-2\frac{\sqrt{Q^{2}}}{k_{0}}\bar{h}_{37},\bar{P}_{yz}^{I}=-2\frac{\sqrt{Q^{2}}}{k_{0}}\bar{h}_{41},\ \ P_{xy}^{T}=2\bar{h}_{36},\ \ P_{yz}^{T}=2\bar{h}_{40},

where r=(u+γ22)r=-(u+\gamma^{2}_{2}).

The results listed above have a general nature and are not related to a particular reaction mechanism. They are valid for the one–photon–exchange mechanism assuming P-invariance of the hadron electromagnetic interaction. Their general nature is due to the fact that derivation of these results requires only the hadron electromagnetic current conservation and the fact that the photon has spin one.

V Coherent production of pseudoscalar meson in deuteron photodisintegration process

Let us consider the particular case of the coherent photoproduction of the pseudoscalar meson on the deuteron target

γ(k)+d(p1)P(q)+d(p2),\gamma(k)+d(p_{1})\to P(q)+d(p_{2}), (34)

where the four–momenta of the particles are given in the brackets. Of course, all observables for this reaction can be obtained using the formulae presented above for the case of the virtual photon, but it is rather tedious procedure. So, it is worth to have the expressions for the differential cross section and various polarization observables which are suitable for the analysis of the data on this reaction.

The matrix element of this reaction can be written as

M=eAμJμ=eAiJi,M=eA_{\mu}J_{\mu}=-eA_{i}J_{i}, (35)

where AμA_{\mu} is the photon polarization four–vector and we use the transverse gauge: kA=0{\vec{k}}\cdot{\vec{A}}=0 (k{\vec{k}} is the photon momentum),

The differential cross section in CMS (not averaged over the spins of the initial particles) can be written as

dσdΩ=α8πqW1W2M2ρijHij,\frac{d\sigma}{d\Omega}=\frac{\alpha}{8\pi}\frac{q}{W}\frac{1}{W^{2}-M^{2}}\rho_{ij}H_{ij}, (36)

where ρij=AiAj\rho_{ij}=A_{i}A_{j}^{*} and hadronic tensor is determined as Hij=JiJjH_{ij}=J_{i}J_{j}^{*}. The quantities which are not redefined in this section have the same meaning as in the previous sections.

In the reaction CMS, the quantity JiJ_{i} can be represented as

Ji=miA+niB,J_{i}=m_{i}A+n_{i}B, (37)

where

A\displaystyle A =\displaystyle= g1mU1nU2+g2k^U1nU2+g3nU1mU2+g4nU1k^U2,\displaystyle g_{1}{\vec{m}}\cdot{\vec{U}}_{1}{\vec{n}}\cdot{\vec{U}}_{2}^{*}+g_{2}\hat{\vec{k}}\cdot{\vec{U}}_{1}{\vec{n}}\cdot{\vec{U}}_{2}^{*}+g_{3}{\vec{n}}\cdot{\vec{U}}_{1}{\vec{m}}\cdot{\vec{U}}_{2}^{*}+g_{4}{\vec{n}}\cdot{\vec{U}}_{1}\hat{\vec{k}}\cdot{\vec{U}}_{2}^{*},
B\displaystyle B =\displaystyle= g5mU1mU2+g6nU1nU2+g7k^U1k^U2+g8mU1k^U2+g9k^U1mU2.\displaystyle g_{5}{\vec{m}}\cdot{\vec{U}}_{1}{\vec{m}}\cdot{\vec{U}}_{2}^{*}+g_{6}{\vec{n}}\cdot{\vec{U}}_{1}{\vec{n}}\cdot{\vec{U}}_{2}^{*}+g_{7}\hat{\vec{k}}\cdot{\vec{U}}_{1}\hat{\vec{k}}\cdot{\vec{U}}_{2}^{*}+g_{8}{\vec{m}}\cdot{\vec{U}}_{1}\hat{\vec{k}}\cdot{\vec{U}}_{2}^{*}+g_{9}\hat{\vec{k}}\cdot{\vec{U}}_{1}{\vec{m}}\cdot{\vec{U}}_{2}^{*}.

In this case the nine scalar amplitudes depend on two variables WW and ϑ\vartheta (energy and scattering angle) instead of three ones for the case of the pseudoscalar meson electroproduction (k20k^{2}\neq 0).

The hadronic tensor Hij(i,j=x,y,z)H_{ij}(i,j=x,y,z) can be also represented in the form given by Eq. (9) where each term corresponds to the definite polarization state of the deuteron target, provided that the scattered deuteron is unpolarized.

Let us consider the polarization observables of the γ+dP+d\gamma+d\to P+d reaction which correspond to each contribution of the hadronic tensor HijH_{ij}.

  • The deuteron target is unpolarized. The general structure of the hadronic tensor for the case of unpolarized deuteron target has the following form

    Hij(0)=h1mimj+h2ninj,H_{ij}(0)=h_{1}m_{i}m_{j}+h_{2}n_{i}n_{j}, (38)

    where the structure functions hih_{i}, for the case of the photoproduction of the P-meson on the deuteron, can be expressed in terms of the γ+dP+d\gamma+d\to P+d reaction scalar amplitudes gi(i=19)g_{i}(i=1-9) using the expressions in Appendix I, where it is necessary to cancel the four amplitudes gi(i=1013)g_{i}(i=10-13), since they correspond to the absorption of a virtual photon with longitudinal polarization.

    Then the differential cross section of the γ+dP+d\gamma+d\to P+d reaction for the case of unpolarized particles can be written as:

    dσundΩ=N(h1+h2),N=α16πqW1W2M2.\frac{d\sigma_{un}}{d\Omega}=N(h_{1}+h_{2}),\ \ N=\frac{\alpha}{16\pi}\frac{q}{W}\frac{1}{W^{2}-M^{2}}. (39)
  • Let us consider the case when the photon beam is polarized. The general expression of the photon polarization vector is determined by two real parameters β\beta and δ\delta and it can be written as Akhiezer and Berestetskii (1965)

    A=cosβm+sinβexp(iδ)n.{\vec{A}}=\cos\beta{\vec{m}}+\sin\beta\exp(i\delta){\vec{n}}. (40)

    If the parameter δ\delta vanishes, δ=0\delta=0, then this photon polarization vector describes the linear polarization state of the photon at an angle β\beta with respect to the xx axis. The parameters β=π/4\beta=\pi/4 and δ=±π/2\delta=\pm\pi/2 denote circular polarization of the photon. Arbitrary β\beta and δ\delta correspond to the elliptic polarization of the photons.

    The differential cross section when only the photon beam is polarized has the following form:

    dσdΩ=dσundΩ(1+Acos2β),\frac{d\sigma}{d\Omega}=\frac{d\sigma_{un}}{d\Omega}(1+A_{\perp}\cos 2\beta), (41)

    where AA_{\perp} is the asymmetry due to the linear polarization of the photon beam. It is defined as:

    A=dσ/dΩ(β=0)dσ/dΩ(β=90)dσ/dΩ(β=0)+dσ/dΩ(β=90),A_{\perp}=\frac{d\sigma/d\Omega(\beta=0^{\circ})-d\sigma/d\Omega(\beta=90^{\circ})}{d\sigma/d\Omega(\beta=0^{\circ})+d\sigma/d\Omega(\beta=90^{\circ})}, (42)

    and it has the following form in terms of the structure functions:

    dσundΩA=N(h1h2)orA=h1h2h1+h2.\frac{d\sigma_{un}}{d\Omega}A_{\perp}=N(h_{1}-h_{2})\ \ or\ \ A_{\perp}=\frac{h_{1}-h_{2}}{h_{1}+h_{2}}. (43)

    Note that the circular polarization of the photon beam does not contribute to the differential cross section due to the P–invariance of the hadron electromagnetic interaction.

  • The deuteron target is vector polarized. In the case of the pseudoscalar meson photoproduction, the part of the hadronic tensor which depends on the deuteron vector polarization is determined by six structure functions. It can be written as:

    Hij(ξ)\displaystyle H_{ij}(\xi) =\displaystyle= ξm(h6{m,n}ij+ih8[m,n]ij)+ξm(h10mimj+h11ninj)+\displaystyle{\vec{\xi}}{\vec{m}}(h_{6}\{m,n\}_{ij}+ih_{8}[m,n]_{ij})+{\vec{\xi}}{\vec{m}}(h_{10}m_{i}m_{j}+h_{11}n_{i}n_{j})+ (44)
    ξk^(h15{m,n}ij+ih17[m,n]ij).\displaystyle{\vec{\xi}}\hat{\vec{k}}(h_{15}\{m,n\}_{ij}+ih_{17}[m,n]_{ij}).

    Therefore, for the γ+dP+d\gamma+d\to P+d reaction, the dependence of the polarization observables on the deuteron vector polarization is determined by six structure functions.

    The part of the differential cross section of the γ+dP+d\gamma+d\to P+d reaction which depends on the deuteron vector polarization, for the case of arbitrarily polarized photon, can be written as

    dσvdΩ\displaystyle\frac{d\sigma_{v}}{d\Omega} =\displaystyle= dσundΩ[Ayξy+Cylcos2βξy+sin2βcosδ(Cxlξx+Czlξz)+\displaystyle\frac{d\sigma_{un}}{d\Omega}\biggl{[}A_{y}\xi_{y}+C_{y}^{l}\cos 2\beta\xi_{y}+\sin 2\beta\cos\delta(C_{x}^{l}\xi_{x}+C_{z}^{l}\xi_{z})+ (45)
    +sin2βsinδ(Cxcξx+Czcξz)],\displaystyle+\sin 2\beta\sin\delta(C_{x}^{c}\xi_{x}+C_{z}^{c}\xi_{z})\biggr{]},

    where AyA_{y} is the asymmetry due to the vector polarization of the deuteron target, provided that the photon is unpolarized (the so called single target asymmetry). This asymmetry is due to the normal (to the reaction plane) component of the polarization vector ξ{\vec{\xi}} describing the vector polarization of the target. If the reaction amplitudes are real functions (as, for example, in the impulse approximation), then this asymmetry is equal to zero. The quantities Cx,y,zl(Cx,zc)C^{l}_{x,y,z}(C^{c}_{x,z}) are the correlation coefficients due to the vector polarization of the deuteron target when the photon is linear (circularly) polarized. The correlation coefficients Cx,y,zlC^{l}_{x,y,z} are zero when the amplitudes are real. The correlation coefficients Cx,zcC^{c}_{x,z} are determined by the components of the polarization vector lying in the reaction plane and these coefficients are nonzero, in general, for real amplitudes. All these polarization observables can be expressed in terms of the structure functions hih_{i} and they are

    dσundΩAy\displaystyle\frac{d\sigma_{un}}{d\Omega}A_{y} =\displaystyle= N(h10+h11),dσundΩCyl=N(h10h11),\displaystyle N(h_{10}+h_{11}),\ \ \frac{d\sigma_{un}}{d\Omega}C_{y}^{l}=N(h_{10}-h_{11}),
    dσundΩCxl\displaystyle\frac{d\sigma_{un}}{d\Omega}C_{x}^{l} =\displaystyle= 2Nh6,dσundΩCzl=2Nh15,\displaystyle 2Nh_{6},\ \ \frac{d\sigma_{un}}{d\Omega}C_{z}^{l}=2Nh_{15},
    dσundΩCxc\displaystyle\frac{d\sigma_{un}}{d\Omega}C_{x}^{c} =\displaystyle= 2Nh8,dσundΩCzc=2Nh17.\displaystyle 2Nh_{8},\ \ \frac{d\sigma_{un}}{d\Omega}C_{z}^{c}=2Nh_{17}. (46)
  • The deuteron target is tensor polarized. The part of the hadronic tensor which depends on the tensor (quadrupole) polarization of the deuteron target is determined by 10 structure functions for the case of real photons and its general structure is

    Hij(S)\displaystyle H_{ij}(S) =\displaystyle= Sabmamb(h19mimj+h20ninj)+Sabnanb(h24mimj+h25ninj)+\displaystyle S_{ab}m_{a}m_{b}(h_{19}m_{i}m_{j}+h_{20}n_{i}n_{j})+S_{ab}n_{a}n_{b}(h_{24}m_{i}m_{j}+h_{25}n_{i}n_{j})+ (47)
    +Sabk^amb(h29mimj+h30ninj)+Sabmanb(h34{m,n}ij+\displaystyle+S_{ab}\hat{k}_{a}m_{b}(h_{29}m_{i}m_{j}+h_{30}n_{i}n_{j})+S_{ab}m_{a}n_{b}(h_{34}\{m,n\}_{ij}+
    +ih36[m,n]ij)+Sabk^anb(h38{m,n}ij+ih40[m,n]ij).\displaystyle+ih_{36}[m,n]_{ij})+S_{ab}\hat{k}_{a}n_{b}(h_{38}\{m,n\}_{ij}+ih_{40}[m,n]_{ij}).

    Thus, for the γ+dP+d\gamma+d\to P+d reaction, the dependence of the polarization observables on the deuteron tensor (quadrupole) polarization is completely determined by 10 structure functions.

    For the case of arbitrarily polarized photons, the part of the differential cross section which depends on the deuteron tensor polarization, can be written as:

    dσtdΩ\displaystyle\frac{d\sigma_{t}}{d\Omega} =\displaystyle= dσundΩ{AzzQzz+Axx(QxxQyy)+AxzQxz+cos2β[CzzlQzz+\displaystyle\frac{d\sigma_{un}}{d\Omega}\biggl{\{}A_{zz}Q_{zz}+A_{xx}(Q_{xx}-Q_{yy})+A_{xz}Q_{xz}+\cos 2\beta\biggl{[}C^{l}_{zz}Q_{zz}+ (48)
    +Cxxl(QxxQyy)+CxzlQxz]+sin2βcosδ(CxylQxy+CyzlQyz)+\displaystyle+C^{l}_{xx}(Q_{xx}-Q_{yy})+C^{l}_{xz}Q_{xz}\biggr{]}+\sin 2\beta\cos\delta(C^{l}_{xy}Q_{xy}+C^{l}_{yz}Q_{yz})+
    +sin2βsinδ(CxycQxy+CyzcQyz)},\displaystyle+\sin 2\beta\sin\delta(C^{c}_{xy}Q_{xy}+C^{c}_{yz}Q_{yz})\biggr{\}},

    where Azz,AxxA_{zz},A_{xx} and AxzA_{xz} are the asymmetries due to the tensor polarization of the deuteron target when the photon is unpolarized. These asymmetries are non-zero, in general case, if the reaction amplitudes are real functions (as, for example, in the impulse approximation) in contrast to the AyA_{y} asymmetry. The quantities Czzl,Cxxl,Cxzl,CxylC^{l}_{zz},C^{l}_{xx},C^{l}_{xz},C^{l}_{xy} and CyzlC^{l}_{yz} are the correlation coefficients due to the tensor polarization of the deuteron target when the photon is linear polarized (they are also can be non–zero if the reaction amplitudes are the real functions). The quantities CxycC^{c}_{xy} and CyzcC^{c}_{yz} are the correlation coefficients determined by the tensor polarization of the deuteron target and the circular polarization of the photon (they originate from reaction mechanisms beyond the impulse approximation, for example, by the final–state interaction effects). All these polarization observables can be expressed in terms of the structure functions hih_{i} and they are:

    σAzz\displaystyle\sigma A_{zz} =\displaystyle= N2(h19+h20+h24+h25),\displaystyle-\frac{N}{2}(h_{19}+h_{20}+h_{24}+h_{25}),
    σAxx\displaystyle\sigma A_{xx} =\displaystyle= N2(h19+h20h24h25),\displaystyle\frac{N}{2}(h_{19}+h_{20}-h_{24}-h_{25}),
    σAxz\displaystyle\sigma A_{xz} =\displaystyle= Nγ1(h29+h30),\displaystyle N\gamma_{1}(h_{29}+h_{30}),
    σCzzl\displaystyle\sigma C^{l}_{zz} =\displaystyle= N2(h29+h25h19h24),\displaystyle\frac{N}{2}(h_{29}+h_{25}-h_{19}-h_{24}),
    σCxxl\displaystyle\sigma C^{l}_{xx} =\displaystyle= N2(h19+h25h20h24),\displaystyle\frac{N}{2}(h_{19}+h_{25}-h_{20}-h_{24}),
    σCxzl\displaystyle\sigma C^{l}_{xz} =\displaystyle= Nγ1(h29h30),\displaystyle N\gamma_{1}(h_{29}-h_{30}),
    σCxyl\displaystyle\sigma C^{l}_{xy} =\displaystyle= 2Nh34,σCyzl=2Nγ1h38,\displaystyle 2Nh_{34},\ \ \sigma C^{l}_{yz}=2N\gamma_{1}h_{38},
    σCxyc\displaystyle\sigma C^{c}_{xy} =\displaystyle= 2Nh36,σCyzc=2Nγ1h40,\displaystyle 2Nh_{36},\ \ \sigma C^{c}_{yz}=2N\gamma_{1}h_{40}, (49)

    with

    γ1=W2+M22MW,σ=dσundΩ=N(h1+h2).\gamma_{1}=\frac{W^{2}+M^{2}}{2MW},~\sigma=\displaystyle\frac{d\sigma_{un}}{d\Omega}=N(h_{1}+h_{2}).

VI Helicity amplitudes

Sometimes it is more convenient to use the helicity amplitudes formalism. Let us introduce the set of helicity amplitudes fλλ(k2,W,ϑ)f_{\lambda\lambda^{\prime}}(k^{2},W,\vartheta) (where λ\lambda and λ\lambda^{\prime} are the helicities of the initial (γ+d\gamma^{*}+d) and final (d+Pd+P) states) and define the amplitudes

hλλ=<λΔ,λN|T|λγ,λd>=χ2(λΔ)F(λγ,λd)χ1c(λN),h_{\lambda\lambda^{\prime}}=<\lambda_{\Delta},\lambda_{N}|T|\lambda_{\gamma},\lambda_{d}>={\vec{\chi}}_{2}^{*}(\lambda_{\Delta}){\vec{F}}(\lambda_{\gamma},\lambda_{d})\chi_{1}^{c}(\lambda_{N}), (50)

where λγ,λd,λd\lambda_{\gamma},\lambda_{d},\lambda^{\prime}_{d} are the helicities of the virtual photon, initial and scattered deuteron respectively, with λ=λγλd\lambda=\lambda_{\gamma}-\lambda_{d} and λ=λd\lambda^{\prime}=\lambda^{\prime}_{d}. We choose the following convention:

f1\displaystyle f_{1} =\displaystyle= <+|T|++>=i22[g1+g6+cosϑ(g5g3)+sinϑ(g4g8)],\displaystyle<+|T|++>=\frac{i}{2\sqrt{2}}[g_{1}+g_{6}+\cos\vartheta(g_{5}-g_{3})+\sin\vartheta(g_{4}-g_{8})],
f2\displaystyle f_{2} =\displaystyle= <|T|++>=i22[g1+g6cosϑ(g5g3)sinϑ(g4g8)],\displaystyle<-|T|++>=\frac{i}{2\sqrt{2}}[g_{1}+g_{6}-\cos\vartheta(g_{5}-g_{3})-\sin\vartheta(g_{4}-g_{8})],
f3\displaystyle f_{3} =\displaystyle= <0|T|++>=i2E2M[sinϑ(g5g3)+cosϑ(g8g4)],\displaystyle<0|T|++>=\frac{i}{2}\frac{E_{2}}{M}[\sin\vartheta(g_{5}-g_{3})+\cos\vartheta(g_{8}-g_{4})],
f4\displaystyle f_{4} =\displaystyle= <+|T|+>=i22[g6g1cosϑ(g3+g5)+sinϑ(g4+g8)],\displaystyle<+|T|+->=\frac{i}{2\sqrt{2}}[g_{6}-g_{1}-\cos\vartheta(g_{3}+g_{5})+\sin\vartheta(g_{4}+g_{8})],
f5\displaystyle f_{5} =\displaystyle= <|T|+>=i22[g6g1+cosϑ(g3+g5)sinϑ(g4+g8)],\displaystyle<-|T|+->=\frac{i}{2\sqrt{2}}[g_{6}-g_{1}+\cos\vartheta(g_{3}+g_{5})-\sin\vartheta(g_{4}+g_{8})],
f6\displaystyle f_{6} =\displaystyle= <0|T|+>=i2E2M[sinϑ(g3+g5)+cosϑ(g4+g8)],\displaystyle<0|T|+->=-\frac{i}{2}\frac{E_{2}}{M}[\sin\vartheta(g_{3}+g_{5})+\cos\vartheta(g_{4}+g_{8})],
f7\displaystyle f_{7} =\displaystyle= <+|T|+0>=i2E1M[g2sinϑg7+cosϑg9],\displaystyle<+|T|+0>=\frac{i}{2}\frac{E_{1}}{M}[g_{2}-\sin\vartheta g_{7}+\cos\vartheta g_{9}],
f8\displaystyle f_{8} =\displaystyle= <|T|+0>=i2E1M[g2+sinϑg7cosϑg9],\displaystyle<-|T|+0>=\frac{i}{2}\frac{E_{1}}{M}[g_{2}+\sin\vartheta g_{7}-\cos\vartheta g_{9}],
f9\displaystyle f_{9} =\displaystyle= <0|T|+0>=i2E1E2M2[cosϑg7+sinϑg9],\displaystyle<0|T|+0>=\frac{i}{\sqrt{2}}\frac{E_{1}E_{2}}{M^{2}}[\cos\vartheta g_{7}+\sin\vartheta g_{9}],
f10\displaystyle f_{10} =\displaystyle= <+|T|0+>=i2k0Q2[g10cosϑg12+sinϑg13],\displaystyle<+|T|0+>=-\frac{i}{2}\frac{k_{0}}{\sqrt{Q^{2}}}[g_{10}-\cos\vartheta g_{12}+\sin\vartheta g_{13}],
f11\displaystyle f_{11} =\displaystyle= <|T|0+>=i2k0Q2[g10+cosϑg12sinϑg13],\displaystyle<-|T|0+>=-\frac{i}{2}\frac{k_{0}}{\sqrt{Q^{2}}}[g_{10}+\cos\vartheta g_{12}-\sin\vartheta g_{13}],
f12\displaystyle f_{12} =\displaystyle= <0|T|0+>=i2E2Mk0Q2[cosϑg13+sinϑg12],\displaystyle<0|T|0+>=\frac{i}{\sqrt{2}}\frac{E_{2}}{M}\frac{k_{0}}{\sqrt{Q^{2}}}[\cos\vartheta g_{13}+\sin\vartheta g_{12}],
f13\displaystyle f_{13} =\displaystyle= <+|T|00>=i2E1Mk0Q2g11.\displaystyle<+|T|00>=-\frac{i}{\sqrt{2}}\frac{E_{1}}{M}\frac{k_{0}}{\sqrt{Q^{2}}}g_{11}. (51)

where E2=(W2MP2+M2)/2WE_{2}=(W^{2}-M_{P}^{2}+M^{2})/2W is the energy of the scattered deuteron in the reaction CMS.

At this stage, the general model–independent analysis of the polarization observables for pseudoscalar meson photo–production is completed. To proceed further in the calculation of the observables, one needs a model for the reaction mechanism and for the deuteron structure.

VII Model, kinematics, and results

In order to illustrate the derived formalism with numerical results it is necessary to calculate the elementary amplitudes in frame of a model describing the structure of the involved hadrons. Following Ref. Rekalo et al. (2002) we use the impulse approximation for the deuteron, and consider a model for the interaction of the virtual photon with the nucleon. The neutron and proton structure is parametrized in terms of electromagnetic form factors and deuteron wave functions. The Bonn Machleidt (2001) or the Paris Lacombe et al. (1980) nucleon-nucleon potentials, were considered in Ref. Rekalo et al. (2002) as they give the most different values for the observables. It was shown that other recent potentials based on the Argonne Wiringa et al. (1984) and Reid Reid (1968) potentials give indeed intermediate values. The photon interaction is described in frame of an effective Lagrangian model, considering nucleon and Δ\Delta-exchange in ss-channel, nucleon exchange in tt-channel and π\pi,ρ\rho and ω\omega-mesons exchange in uu-channel. The details of the model are given in Ref. Rekalo et al. (2002). In principle, in the near threshold region, for γ(γ)+dd+π0\gamma(\gamma^{*})+d\to d+\pi^{0}, rescattering effects may play an important role, for pion S-state electroproduction. However, it has been shown in a model independent way based only on the Pauli principle, that the main rescattering contribution from the two step process: γ+dp+p+π(andn+n+π+)d+π0\gamma+d\to p+p+\pi^{-}(\mbox{and}~n+n+\pi^{+})\to d+\pi^{0} vanishes, when the two nucleons in the NNπNN\pi-intermediate state are on mass shell Rekalo and Tomasi-Gustafsson (2002).

As stated in the introduction, the main purpose of this paper is the general and model independent derivation of polarized and unpolarized observables for pion electro and photo-production on the deuteron. Therefore, we give an example of the behavior of some of the observables and do not discuss in extent their dependence on the ingredients of the model.

The experimental detection of the pion and the scattered electron, for a definite beam energy, allows to fully determine the kinematics of the e+de+d+π0e+d\to e+d+\pi^{0} reaction, i.e., γ+dd+π0\gamma^{*}+d\to d+\pi^{0}, that depends on three kinematical variables. Let us choose

  • k2k^{2}: the four momentum squared of the γ\gamma^{*},

  • s=W2=(k+p1)2=(q+p2)2s=W^{2}=(k+p_{1})^{2}=(q+p_{2})^{2}: the total energy in CMS of the γd\gamma^{*}d system,

  • ϑ\vartheta: the π0\pi^{0} emission angle in the CMS of the reaction γ+dd+π0\gamma^{*}+d\to d+\pi^{0}.

As shown above, there are 13 independent amplitudes for the reaction γ+dd+π0\gamma^{*}+d\to d+\pi^{0}: gi(k2,W,ϑ),i=113g_{i}(k^{2},W,\vartheta),i=1-13, that are functions of these three variables.

In the assumption of impulse approximation, the γ\gamma^{*} interacts on the bare nucleon inside the deuteron either the proton or the neutron, while the other nucleon stays as a spectator. There are six amplitudes for the reaction γ+NN+π0\gamma^{*}+N\to N+\pi^{0}, depending also on three variables that can not be connected in a unique way to the previous set. The problem is that one has to make an assumption how the momentum Q2Q^{2} is transferred to one of the nucleons inside the deuteron, while this nucleon have itself a Fermi momentum.

It seems reasonable to calculate these amplitudes at the same values of the two variables, k2k^{2} and tt. The choice is open for the total energy, s=(k+p1)2=(k+M)2s1=(k+pN)2=(k+m)2s=(k+p_{1})^{2}=(k+M)^{2}\neq s_{1}=(k+p_{N})^{2}=(k+m)^{2}. The value of the π0\pi^{0} emission angle in the CMS of the reaction γ+NN+π0\gamma^{*}+N\to N+\pi^{0}, θπ\theta_{\pi}, calculated from s1s_{1} may fall outside the kinematical limits. However, one can increase s1s_{1}, what can be physically understood taking into account the Fermi-motion of the nucleon in the deuteron (see discussion in Ref. Rekalo et al. (2002), page 11).

Therefore the six independent amplitudes for γ+NN+π0\gamma^{*}+N\to N+\pi^{0}, depend on three kinematical variables: fiN(k2,WN,θπ),f^{N}_{i}(k^{2},W_{N},\theta_{\pi}), i=1-6, where sN=WN2s_{N}=W_{N}^{2} is the total energy of the γN\gamma^{*}N (or π0N\pi^{0}N).

In Ref. Rekalo et al. (2002) the structure functions and the observables have been calculated as a function of these last variables, because it was straightforward to implement the nucleon electro-production model. However, the experimentalists will measure the electron, deuteron and pion in the Lab system. They will have access to t,W,cosϑ,cosθt,W,\cos\vartheta,\cos\theta but not to: sNs_{N}, and in general to the participant nucleon.

Therefore we choose to fix p1+k\vec{p}_{1}+\vec{k}=0, s1=k0+ms_{1}=k_{0}+m in a near threshold kinematics, where all phase space is available for the proton: s=4.1 GeV, 0.5t2.50.5\leq t\leq 2.5GeV2 and calculate the structure functions and some polarization observables as a function of the pion angle in CMS of γd\gamma^{*}d system, cosϑ\cos\vartheta.

Let us stress that this application is given as an example. The general formalism derived in this paper allows to calculate the observables for any energy and for any kinematics, in frame of the one photon exchange approximation, implementing any suitable model for the deuteron structure and for the reaction.

VII.1 Numerical results

We choose to illustrate the results as a function of cosϑ\cos\vartheta, at the total energy WW=2.5 GeV for four values of the momentum transfer in the range 0.5k220.5\leq-k^{2}\leq 2 GeV2. These conditions do not violate the energy and momentum conservation in the γd\gamma^{*}d and γp\gamma^{*}p systems in the kinematical range of all the variables considered here. The numerical calculations are done for the Paris potential, for the dipole parametrization of the proton form factor, whereas the electric neutron form factor is set to zero.

VII.2 Unpolarized Structure Functions

The four structure functions that define the unpolarized cross section are shown in Fig. 1. From top to bottom each plot corresponds to k2-k^{2}= 0.5, 1, 1.5 and 2 GeV2, Hxx+HyyH_{xx}+H_{yy}, HxxHyyH_{xx}-H_{yy}, HzzH_{zz} and Hxz+HzxH_{xz}+H_{zx}. The different lines illustrate the considered contributions to π0\pi^{0} production: Δ\Delta (green, dotted line), Δ+s+u\Delta+s+u (blue, dash-dotted line), Δ+s+uω\Delta+s+u-\omega (red, dashed line), Δ+s+u+ω\Delta+s+u+\omega (black, solid line).

Refer to caption
Figure 1: ϑ\vartheta-dependence of the functions Hxx+HyyH_{xx}+H_{yy}, HxxHyyH_{xx}-H_{yy}, HzzH_{zz} and Hxz+HzxH_{xz}+H_{zx} (respectively from left to right) for WW=2.5 GeV. From top to bottom each plot corresponds to k2-k^{2}= 0.5, 1, 1.5 and 2 GeV2. The different lines illustrate the considered contributions for π0\pi^{0} production: Δ\Delta (green, dotted line), Δ+s+u\Delta+s+u (blue, dash-dotted line), Δ+s+uω\Delta+s+u-\omega (red, dashed line), Δ+s+u+ω\Delta+s+u+\omega (black, solid line).

VII.3 Observables for a polarized deuteron target

The asymmetries for a vector polarized target can be expressed as a function of longitudinal and transverse components, as in Eq. (22). In Fig. 2 the transverse components, i.e., the functions Ax(TT)A_{x}^{(TT)}, Ay(TT)A_{y}^{(TT)}, A¯y(TT)\bar{A}_{y}^{(TT)} and Az(TT)A_{z}^{(TT)} (respectively from left to right) are illustrated in terms of the π0\pi^{0} angle in the CMS of the γd\gamma^{*}d system, and the longitudinal components, Ax(LT)A_{x}^{(LT)}, Ay(LT)A_{y}^{(LT)}, Az(LT)A_{z}^{(LT)} and Ay(LL)A_{y}^{(LL)} are shown in Fig. 3. In Fig. 4 the ϑ\vartheta-dependence of the functions Bx(TT)B_{x}^{(TT)}, Bz(TT)B_{z}^{(TT)}, Bx(LT)B_{x}^{(LT)} By(LT)B_{y}^{(LT)} and Bz(LT)B_{z}^{(LT)} is shown.

Refer to caption
Figure 2: ϑ\vartheta-dependence of the functions Ax(TT)A_{x}^{(TT)}, Ay(TT)A_{y}^{(TT)}, A¯y(TT))\bar{A}_{y}^{(TT))} and Az(TT)A_{z}^{(TT)} from left to right. Notations as in Fig. 1.
Refer to caption
Figure 3: ϑ\vartheta-dependence of the functions Ax(LT)A_{x}^{(LT)}, Ay(LT)A_{y}^{(LT)}, Az(LT)A_{z}^{(LT)}, Ay(LL)A_{y}^{(LL)}, from left to right. Notations as in Fig. 1.
Refer to caption
Figure 4: ϑ\vartheta-dependence of the functions Bx(TT)B_{x}^{(TT)}, Bz(TT)B_{z}^{(TT)}, Bx(LT)B_{x}^{(LT)}, By(LT)B_{y}^{(LT)}, and Bz(LT)B_{z}^{(LT)} from left to right. Notations as in Fig. 1.

As an example of tensor observables, the ϑ\vartheta-dependence of the functions AzzTA_{zz}^{T}, AzzLA_{zz}^{L}, AzzIA_{zz}^{I}, AzzPA_{zz}^{P} and A¯zzI\bar{A}_{zz}^{I} (from left to right) is shown in Fig. 5.

Refer to caption
Figure 5: ϑ\vartheta-dependence of the functions AzzTA_{zz}^{T}, AzzLA_{zz}^{L}, AzzIA_{zz}^{I}, AzzPA_{zz}^{P} and A¯zzI\bar{A}_{zz}^{I} from left to right. Notations as in Fig. 1.

We can see that all observables have a strong angular dependence, they become smaller when k2k^{2} increases, they may change shape and also the sign.

VIII Conclusions

This work give general expressions for various polarization observables in the coherent pseudoscalar meson photo- and electroproduction on the deuteron target assuming one-photon-exchange approximation. It completes and generalizes a previous work on the unpolarized differential cross section. The spin structure of the matrix element is explicitly derived in terms of structure functions. The correspondence with the helicity amplitudes is given. The polarization effects have been investigated for the case of a longitudinally polarized electron beam and vector or tensor polarized deuteron target. In the case of the photoproduction reaction, we consider linearly, circularly or elliptically polarized photon beam. The asymmetries arising from the polarization of the particles in the initial state have been discussed as well as the measurable observables related to the scattered deuteron polarization.

Numerical estimations for the unpolarized differential cross section and for some polarization observables have been done in the frame of the simple model developed in Ref. Rekalo et al. (2002).

The purpose of this paper is focussed on model independent expressions, that depend on the elementary amplitudes. This formalism is applicable to all phenomenological models developed in frame of a definite picture of the deuteron, and is useful to bridge the experimental information and the theoretical background.

IX Acknowledgments

This work was partially supported by the Ministry of Education and Science of Ukraine (projects no. 0115U000474 and no. 0117U004866). The research is carried on in the frame of the France-Ukraine IDEATE International Associated Laboratory (LIA).

X Appendix I: explicit expressions for the amplitudes hh

We present here the expressions for the structure functions hih_{i} and h¯i\bar{h}_{i} (i=1-41) in terms of the scalar amplitudes gig_{i} (i=1-13) describing the γ+dd+P\gamma^{*}+d\to d+P reaction.

The structure functions hih_{i} describe the polarization observables in the γ+dd+P\gamma^{*}+d\to d+P reaction for the case of different polarization states of the deuteron target.

  • The deuteron target is unpolarized. The structure functions h1h5h_{1}-h_{5} corresponding to the interaction of the virtual photon with an unpolarized deuteron target can be written as

    h1\displaystyle h_{1} =\displaystyle= 13[|g1|2+γ12|g2|2+a|g3|2+b|g4|2+2cReg3g4],\displaystyle\frac{1}{3}\biggl{[}|g_{1}|^{2}+\gamma_{1}^{2}|g_{2}|^{2}+a|g_{3}|^{2}+b|g_{4}|^{2}+2cReg_{3}g_{4}^{*}\biggr{]},
    h2\displaystyle h_{2} =\displaystyle= 13[|g6|2+a(|g5|2+γ12|g9|2)+b(|g8|2+γ12|g7|2)+2cRe(g5g9+γ12g7g9)],\displaystyle\frac{1}{3}\biggl{[}|g_{6}|^{2}+a(|g_{5}|^{2}+\gamma_{1}^{2}|g_{9}|^{2})+b(|g_{8}|^{2}+\gamma_{1}^{2}|g_{7}|^{2})+2cRe(g_{5}g_{9}^{*}+\gamma_{1}^{2}g_{7}g_{9}^{*})\biggr{]},
    h3\displaystyle h_{3} =\displaystyle= 13[|g10|2+γ12|g11|2+a|g12|2+b|g13|2+2cReg12g13],\displaystyle\frac{1}{3}\biggl{[}|g_{10}|^{2}+\gamma_{1}^{2}|g_{11}|^{2}+a|g_{12}|^{2}+b|g_{13}|^{2}+2cReg_{12}g_{13}^{*}\biggr{]},
    h4\displaystyle h_{4} =\displaystyle= ReA1,h5=ImA1,\displaystyle ReA_{1},\ \ h_{5}=ImA_{1},
    A1\displaystyle A_{1} =\displaystyle= 13[g1g10+γ12g2g11+ag3g12+bg4g13+c(g3g13+g4g12)],\displaystyle\frac{1}{3}\biggl{[}g_{1}g_{10}^{*}+\gamma_{1}^{2}g_{2}g_{11}^{*}+ag_{3}g_{12}^{*}+bg_{4}g_{13}^{*}+c(g_{3}g_{13}^{*}+g_{4}g_{12}^{*})\biggr{]},
    γ1\displaystyle\gamma_{1} =\displaystyle= E1M,a=1+q2M2sin2ϑ,b=1+q2M2cos2ϑ,c=q2M2cosϑsinϑ,\displaystyle\frac{E_{1}}{M},\ \ a=1+\frac{{\vec{q}}^{2}}{M^{2}}\sin^{2}\vartheta,\ \ b=1+\frac{{\vec{q}}^{2}}{M^{2}}\cos^{2}\vartheta,\ \ c=\frac{{\vec{q}}^{2}}{M^{2}}\cos\vartheta\sin\vartheta, (52)

    where q(E1){\vec{q}}(E_{1}) is the PP-meson momentum (energy) in the γ+dP+d\gamma^{*}+d\to P+d reaction CMS and ϑ\vartheta is the angle between the pseudoscalar meson and virtual photon momenta in this system, E1=(W2k2+M2)/2W.E_{1}=(W^{2}-k^{2}+M^{2})/2W.

  • The deuteron target is a vector polarized. The structure functions h6h18h_{6}-h_{18} which describe the effects of the vector polarization of the deuteron target can be written as

    h6\displaystyle h_{6} =\displaystyle= γ12ImA2,h7=γ12ImA3,h8=γ12ReA2,h9=γ12ReA3,\displaystyle-\frac{\gamma_{1}}{2}ImA_{2},\ \ h_{7}=-\frac{\gamma_{1}}{2}ImA_{3},\ \ h_{8}=\frac{\gamma_{1}}{2}ReA_{2},\ \ h_{9}=-\frac{\gamma_{1}}{2}ReA_{3},
    A2\displaystyle A_{2} =\displaystyle= g2g6ag3g9bg4g7c(g3g7+g4g9),\displaystyle g_{2}g_{6}^{*}-ag_{3}g_{9}^{*}-bg_{4}g_{7}^{*}-c(g_{3}g_{7}^{*}+g_{4}g_{9}^{*}),
    A3\displaystyle A_{3} =\displaystyle= g6g11+ag9g12+bg7g13+c(g9g13+g7g12),\displaystyle-g_{6}g_{11}^{*}+ag_{9}g_{12}^{*}+bg_{7}g_{13}^{*}+c(g_{9}g_{13}^{*}+g_{7}g_{12}^{*}),
    h10\displaystyle h_{10} =\displaystyle= γ1Img1g2,h11=γ1Im[ag5g9+bg7g8c(g5g7+g8g9)],\displaystyle-\gamma_{1}Img_{1}g_{2}^{*},~h_{11}=\gamma_{1}Im\biggl{[}-ag_{5}g_{9}^{*}+bg_{7}g_{8}^{*}-c(g_{5}g_{7}^{*}+g_{8}g_{9}^{*})\biggr{]},
    h12\displaystyle h_{12} =\displaystyle= γ1Img10g11,h13=γ12Im(g1g11g2g10),h14=γ12Re(g1g11g2g10),\displaystyle-\gamma_{1}Img_{10}g_{11}^{*},h_{13}=-\frac{\gamma_{1}}{2}Im(g_{1}g_{11}^{*}-g_{2}g_{10}^{*}),~h_{14}=\frac{\gamma_{1}}{2}Re(g_{1}g_{11}^{*}-g_{2}g_{10}^{*}),
    h15\displaystyle h_{15} =\displaystyle= 12ImA4,h16=12ImA5,h17=12ReA4,h18=12ReA5,\displaystyle-\frac{1}{2}ImA_{4},\ \ h_{16}=-\frac{1}{2}ImA_{5},h_{17}=\frac{1}{2}ReA_{4},\ \ h_{18}=-\frac{1}{2}ReA_{5},
    A4\displaystyle A_{4} =\displaystyle= g1g6+ag3g5+bg4g8+c(g3g8+g4g5),\displaystyle-g_{1}g_{6}^{*}+ag_{3}g_{5}^{*}+bg_{4}g_{8}^{*}+c(g_{3}g_{8}^{*}+g_{4}g_{5}^{*}),
    A5\displaystyle A_{5} =\displaystyle= g6g10ag5g12bg8g13c(g5g13+g8g12).\displaystyle g_{6}g_{10}^{*}-ag_{5}g_{12}^{*}-bg_{8}g_{13}^{*}-c(g_{5}g_{13}^{*}+g_{8}g_{12}^{*}). (53)
  • The deuteron target is tensor polarized. The structure functions h19h41h_{19}-h_{41} which describe the effects of the tensor polarization of the deuteron target can be written as

    h19\displaystyle h_{19} =\displaystyle= |g1|2γ12|g2|2,h20=a|g5|2+b|g8|2+2cReg5g8\displaystyle|g_{1}|^{2}-\gamma_{1}^{2}|g_{2}|^{2},~h_{20}=a|g_{5}|^{2}+b|g_{8}|^{2}+2cReg_{5}g_{8}^{*}-
    γ12[a|g9|2+b|g7|2+2cReg7g9],\displaystyle\gamma_{1}^{2}\biggl{[}a|g_{9}|^{2}+b|g_{7}|^{2}+2cReg_{7}g_{9}^{*}\biggr{]},
    h21\displaystyle h_{21} =\displaystyle= |g10|2γ12|g11|2,h22=Re(g1g10γ12g2g11),\displaystyle|g_{10}|^{2}-\gamma_{1}^{2}|g_{11}|^{2},h_{22}=Re(g_{1}g_{10}^{*}-\gamma_{1}^{2}g_{2}g_{11}^{*}),
    h23\displaystyle h_{23} =\displaystyle= Im(g1g10γ12g2g11),h24=a|g3|2+b|g4|2+2cReg3g4γ12|g2|2,\displaystyle Im(g_{1}g_{10}^{*}-\gamma_{1}^{2}g_{2}g_{11}^{*}),~h_{24}=a|g_{3}|^{2}+b|g_{4}|^{2}+2cReg_{3}g_{4}^{*}-\gamma_{1}^{2}|g_{2}|^{2},
    h25\displaystyle h_{25} =\displaystyle= |g6|2γ12[a|g9|2+b|g7|2+2cReg7g9],\displaystyle|g_{6}|^{2}-\gamma_{1}^{2}\biggl{[}a|g_{9}|^{2}+b|g_{7}|^{2}+2cReg_{7}g_{9}^{*}\biggr{]},
    h26\displaystyle h_{26} =\displaystyle= a|g12|2+b|g13|2+2cReg12g13γ12|g11|2,\displaystyle a|g_{12}|^{2}+b|g_{13}|^{2}+2cReg_{12}g_{13}^{*}-\gamma_{1}^{2}|g_{11}|^{2},
    h27\displaystyle h_{27} =\displaystyle= ReA6,h28=ImA6,A6=ag3g12+bg4g13+c(g3g13+g4g12)γ12g2g11,\displaystyle ReA_{6},\ \ h_{28}=ImA_{6},~A_{6}=ag_{3}g_{12}^{*}+bg_{4}g_{13}^{*}+c(g_{3}g_{13}^{*}+g_{4}g_{12}^{*})-\gamma_{1}^{2}g_{2}g_{11}^{*},
    h29\displaystyle h_{29} =\displaystyle= 2Reg1g2,h30=2Re[ag5g9+bg7g8+c(g5g7+g8g9)],\displaystyle 2Reg_{1}g_{2}^{*},~h_{30}=2Re\biggl{[}ag_{5}g_{9}^{*}+bg_{7}g_{8}^{*}+c(g_{5}g_{7}^{*}+g_{8}g_{9}^{*})\biggr{]},
    h31\displaystyle h_{31} =\displaystyle= 2Reg10g11,h32=Re(g2g10+g1g11),h33=Im(g2g10+g1g11),\displaystyle 2Reg_{10}g_{11}^{*},~h_{32}=Re(g_{2}g_{10}^{*}+g_{1}g_{11}^{*}),~h_{33}=Im(g_{2}g_{10}^{*}+g_{1}g_{11}^{*}),
    h34\displaystyle h_{34} =\displaystyle= ReA7,h35=ReA8,h36=ImA7,h37=ImA8,\displaystyle ReA_{7},\ \ h_{35}=ReA_{8},\ \ h_{36}=ImA_{7},\ \ h_{37}=-ImA_{8},
    A7\displaystyle A_{7} =\displaystyle= ag3g5+bg4g8+c(g3g8+g4g5)+g1g6,\displaystyle ag_{3}g_{5}^{*}+bg_{4}g_{8}^{*}+c(g_{3}g_{8}^{*}+g_{4}g_{5}^{*})+g_{1}g_{6}^{*},
    A8\displaystyle A_{8} =\displaystyle= g5g12+bg8g13+c(g5g13+g8g12)+g6g10,\displaystyle g_{5}g_{12}^{*}+bg_{8}g_{13}^{*}+c(g_{5}g_{13}^{*}+g_{8}g_{12}^{*})+g_{6}g_{10}^{*},
    h38\displaystyle h_{38} =\displaystyle= ReA9,h39=ReA10,h40=ImA9,h41=ImA10,\displaystyle ReA_{9},\ \ h_{39}=ReA_{10},\ \ h_{40}=ImA_{9},\ \ h_{41}=-ImA_{10},
    A9\displaystyle A_{9} =\displaystyle= ag3g9+bg4g7+c(g3g7+g4g9)+g2g6,\displaystyle ag_{3}g_{9}^{*}+bg_{4}g_{7}^{*}+c(g_{3}g_{7}^{*}+g_{4}g_{9}^{*})+g_{2}g_{6}^{*},
    A10\displaystyle A_{10} =\displaystyle= ag9g12+bg7g13+c(g9g13+g7g12)+g6g11.\displaystyle ag_{9}g_{12}^{*}+bg_{7}g_{13}^{*}+c(g_{9}g_{13}^{*}+g_{7}g_{12}^{*})+g_{6}g_{11}^{*}. (54)

    The structure functions h¯i\bar{h}_{i} describe the polarization observables in the γ+dd+P\gamma^{*}+d\to d+P reaction for the case of the polarized scattered deuteron.

  • The scattered deuteron is vector polarized. The structure functions h¯6h¯18\bar{h}_{6}-\bar{h}_{18} which describe the effects of the vector polarization of the scattered deuteron can be written as

    h¯6\displaystyle\bar{h}_{6} =\displaystyle= 16[xIm(g4g6g1g8γ12g2g7)zIm(g1g5g3g6+γ12g2g9),\displaystyle\frac{1}{6}[xIm(g_{4}g_{6}^{*}-g_{1}g_{8}^{*}-\gamma^{2}_{1}g_{2}g_{7}^{*})-zIm(g_{1}g_{5}^{*}-g_{3}g_{6}^{*}+\gamma^{2}_{1}g_{2}g_{9}^{*}),
    h¯7\displaystyle\bar{h}_{7} =\displaystyle= 16[zIm(g6g12g5g10γ12g9g11)xIm(g8g10g6g13+γ12g7g11),\displaystyle-\frac{1}{6}[zIm(g_{6}g_{12}^{*}-g_{5}g_{10}^{*}-\gamma^{2}_{1}g_{9}g_{11}^{*})-xIm(g_{8}g_{10}^{*}-g_{6}g_{13}^{*}+\gamma^{2}_{1}g_{7}g_{11}^{*}),
    h¯8\displaystyle\bar{h}_{8} =\displaystyle= 16[xRe(g4g6g1g8γ12g2g7)+zRe(g1g5g3g6+γ12g2g9),\displaystyle\frac{1}{6}[-xRe(g_{4}g_{6}^{*}-g_{1}g_{8}^{*}-\gamma^{2}_{1}g_{2}g_{7}^{*})+zRe(g_{1}g_{5}^{*}-g_{3}g_{6}^{*}+\gamma^{2}_{1}g_{2}g_{9}^{*}),
    h¯9\displaystyle\bar{h}_{9} =\displaystyle= 16[zRe(g6g12g5g10γ12g9g11)xRe(g8g10g6g13+γ12g7g11),\displaystyle-\frac{1}{6}[zRe(g_{6}g_{12}^{*}-g_{5}g_{10}^{*}-\gamma^{2}_{1}g_{9}g_{11}^{*})-xRe(g_{8}g_{10}^{*}-g_{6}g_{13}^{*}+\gamma^{2}_{1}g_{7}g_{11}^{*}),
    h¯10\displaystyle\bar{h}_{10} =\displaystyle= 13γ2Img3g4,h¯11=13γ2Im(g5g8γ12g7g9),h¯12=13γ2Img12g13,\displaystyle\frac{1}{3}\gamma_{2}Img_{3}g_{4}^{*},\ \ \bar{h}_{11}=\frac{1}{3}\gamma_{2}Im(g_{5}g_{8}^{*}-\gamma^{2}_{1}g_{7}g_{9}^{*}),\ \ \bar{h}_{12}=\frac{1}{3}\gamma_{2}Img_{12}g_{13}^{*},
    h¯13\displaystyle\bar{h}_{13} =\displaystyle= 16γ2Im(g3g13g4g12),h¯14=16γ2Re(g3g13g4g12),\displaystyle\frac{1}{6}\gamma_{2}Im(g_{3}g_{13}^{*}-g_{4}g_{12}^{*}),\ \ \bar{h}_{14}=-\frac{1}{6}\gamma_{2}Re(g_{3}g_{13}^{*}-g_{4}g_{12}^{*}),
    h¯15\displaystyle\bar{h}_{15} =\displaystyle= 16[zIm(g4g6g1g8γ12g2g7)yIm(g1g5g3g6+γ12g2g9),\displaystyle-\frac{1}{6}[zIm(g_{4}g_{6}^{*}-g_{1}g_{8}^{*}-\gamma^{2}_{1}g_{2}g_{7}^{*})-yIm(g_{1}g_{5}^{*}-g_{3}g_{6}^{*}+\gamma^{2}_{1}g_{2}g_{9}^{*}),
    h¯16\displaystyle\bar{h}_{16} =\displaystyle= 16[zIm(g8g0g6g13+γ12g7g11)yIm(g6g12g5g10γ12g9g11),\displaystyle-\frac{1}{6}[zIm(g_{8}g_{0}^{*}-g_{6}g_{13}^{*}+\gamma^{2}_{1}g_{7}g_{11}^{*})-yIm(g_{6}g_{12}^{*}-g_{5}g_{10}^{*}-\gamma^{2}_{1}g_{9}g_{11}^{*}),
    h¯17\displaystyle\bar{h}_{17} =\displaystyle= 16[zRe(g4g6g1g8γ12g2g7)yRe(g1g5g3g6+γ12g2g9),\displaystyle\frac{1}{6}[zRe(g_{4}g_{6}^{*}-g_{1}g_{8}^{*}-\gamma^{2}_{1}g_{2}g_{7}^{*})-yRe(g_{1}g_{5}^{*}-g_{3}g_{6}^{*}+\gamma^{2}_{1}g_{2}g_{9}^{*}),
    h¯18\displaystyle\bar{h}_{18} =\displaystyle= 16[zRe(g8g0g6g13+γ12g7g11)yRe(g6g12g5g10γ12g9g11),\displaystyle-\frac{1}{6}[zRe(g_{8}g_{0}^{*}-g_{6}g_{13}^{*}+\gamma^{2}_{1}g_{7}g_{11}^{*})-yRe(g_{6}g_{12}^{*}-g_{5}g_{10}^{*}-\gamma^{2}_{1}g_{9}g_{11}^{*}), (55)

    where

    x=cos2ϑγ2+sin2ϑ,y=sin2ϑγ2+cos2ϑ,z=(γ21)cosϑsinϑ,γ2=E2M.x=\cos^{2}\vartheta\gamma_{2}+\sin^{2}\vartheta,\ \ y=\sin^{2}\vartheta\gamma_{2}+\cos^{2}\vartheta,\ \ z=(\gamma_{2}-1)\cos\vartheta\sin\vartheta,\ \ \gamma_{2}=\frac{E_{2}}{M}.
  • The scattered deuteron is tensor polarized. The structure functions h¯19h¯41\bar{h}_{19}-\bar{h}_{41} which describe the effects of the tensor polarization of the scattered deuteron can be written as

    h¯19\displaystyle\bar{h}_{19} =\displaystyle= 13d(d|g3|2u|g4|2),\displaystyle\frac{1}{3d}(d|g_{3}|^{2}-u|g_{4}|^{2}),
    h¯20\displaystyle\bar{h}_{20} =\displaystyle= 13d[d(|g5|2+γ12|g9|2)u(|g8|2+γ12|g7|2)],\displaystyle\frac{1}{3d}[d(|g_{5}|^{2}+\gamma^{2}_{1}|g_{9}|^{2})-u(|g_{8}|^{2}+\gamma^{2}_{1}|g_{7}|^{2})],
    h¯21\displaystyle\bar{h}_{21} =\displaystyle= 13d(d|g12|2u|g13|2),h¯22=13dRe(dg3g12ug4g13),\displaystyle\frac{1}{3d}(d|g_{12}|^{2}-u|g_{13}|^{2}),\ \ \bar{h}_{22}=\frac{1}{3d}Re(dg_{3}g_{12}^{*}-ug_{4}g_{13}^{*}),
    h¯23\displaystyle\bar{h}_{23} =\displaystyle= 13dIm(dg3g12ug4g13),h¯24=13d[d(|g1|2+γ12|g2|2)γ22|g4|2],\displaystyle\frac{1}{3d}Im(dg_{3}g_{12}^{*}-ug_{4}g_{13}^{*}),\ \ \bar{h}_{24}=\frac{1}{3d}[d(|g_{1}|^{2}+\gamma^{2}_{1}|g_{2}|^{2})-\gamma^{2}_{2}|g_{4}|^{2}],
    h¯25\displaystyle\bar{h}_{25} =\displaystyle= 13d[d|g6|2γ22(|g8|2+γ12|g7|2)],\displaystyle\frac{1}{3d}[d|g_{6}|^{2}-\gamma^{2}_{2}(|g_{8}|^{2}+\gamma^{2}_{1}|g_{7}|^{2})],
    h¯26\displaystyle\bar{h}_{26} =\displaystyle= 13d[d(|g10|2+γ12|g11|2)γ22|g13|2],\displaystyle\frac{1}{3d}[d(|g_{10}|^{2}+\gamma^{2}_{1}|g_{11}|^{2})-\gamma^{2}_{2}|g_{13}|^{2}],
    h¯27\displaystyle\bar{h}_{27} =\displaystyle= 13dRe[d(g1g10+γ12g2g11)γ22g4g13],\displaystyle\frac{1}{3d}Re[d(g_{1}g_{10}^{*}+\gamma^{2}_{1}g_{2}g_{11}^{*})-\gamma^{2}_{2}g_{4}g_{13}^{*}],\ \
    h¯28\displaystyle\bar{h}_{28} =\displaystyle= 13dIm[d(g1g10+γ12g2g11)γ22g4g13],\displaystyle\frac{1}{3d}Im[d(g_{1}g_{10}^{*}+\gamma^{2}_{1}g_{2}g_{11}^{*})-\gamma^{2}_{2}g_{4}g_{13}^{*}],
    h¯29\displaystyle\bar{h}_{29} =\displaystyle= 23d[dReg3g4+(1+γ2)z|g4|2],\displaystyle\frac{2}{3d}[dReg_{3}g_{4}^{*}+(1+\gamma_{2})z|g_{4}|^{2}],
    h¯30\displaystyle\bar{h}_{30} =\displaystyle= 23d[dRe(g5g8+γ12g7g9)+(1+γ2)z(|g8|2+γ12|g7|2)],\displaystyle\frac{2}{3d}[dRe(g_{5}g_{8}^{*}+\gamma^{2}_{1}g_{7}g_{9}^{*})+(1+\gamma_{2})z(|g_{8}|^{2}+\gamma^{2}_{1}|g_{7}|^{2})],
    h¯31\displaystyle\bar{h}_{31} =\displaystyle= 23d[dReg12g13+(1+γ2)z|g13|2],\displaystyle\frac{2}{3d}[dReg_{12}g_{13}^{*}+(1+\gamma_{2})z|g_{13}|^{2}],
    h¯32\displaystyle\bar{h}_{32} =\displaystyle= 13dRe[d(g4g12+g3g13)+2(1+γ2)zg4g13],\displaystyle\frac{1}{3d}Re[d(g_{4}g_{12}^{*}+g_{3}g_{13}^{*})+2(1+\gamma_{2})zg_{4}g_{13}^{*}],
    h¯33\displaystyle\bar{h}_{33} =\displaystyle= 13dIm[d(g4g12+g3g13)+2(1+γ2)zg4g13],\displaystyle\frac{1}{3d}Im[d(g_{4}g_{12}^{*}+g_{3}g_{13}^{*})+2(1+\gamma_{2})zg_{4}g_{13}^{*}],
    h¯34\displaystyle\bar{h}_{34} =\displaystyle= 13Re(g3g6+g1g5+γ12g2g9),\displaystyle\frac{1}{3}Re(g_{3}g_{6}^{*}+g_{1}g_{5}^{*}+\gamma^{2}_{1}g_{2}g_{9}^{*}),
    h¯35\displaystyle\bar{h}_{35} =\displaystyle= 13Re(g6g12+g5g10+γ12g9g11),h¯36=13Im(g3g6+g1g5+γ12g2g9),\displaystyle\frac{1}{3}Re(g_{6}g_{12}^{*}+g_{5}g_{10}^{*}+\gamma^{2}_{1}g_{9}g_{11}^{*}),\ \ \bar{h}_{36}=\frac{1}{3}Im(g_{3}g_{6}^{*}+g_{1}g_{5}^{*}+\gamma^{2}_{1}g_{2}g_{9}^{*}),
    h¯37\displaystyle\bar{h}_{37} =\displaystyle= 13Im(g6g12+g5g10+γ12g9g11),h¯38=13Re(g4g6+g1g8+γ12g2g7),\displaystyle-\frac{1}{3}Im(g_{6}g_{12}^{*}+g_{5}g_{10}^{*}+\gamma^{2}_{1}g_{9}g_{11}^{*}),\ \ \bar{h}_{38}=\frac{1}{3}Re(g_{4}g_{6}^{*}+g_{1}g_{8}^{*}+\gamma^{2}_{1}g_{2}g_{7}^{*}),
    h¯39\displaystyle\bar{h}_{39} =\displaystyle= 13Re(g6g13+g8g10+γ12g7g11),h¯40=13Im(g4g6+g1g8+γ12g2g7),\displaystyle\frac{1}{3}Re(g_{6}g_{13}^{*}+g_{8}g_{10}^{*}+\gamma^{2}_{1}g_{7}g_{11}^{*}),\ \ \bar{h}_{40}=\frac{1}{3}Im(g_{4}g_{6}^{*}+g_{1}g_{8}^{*}+\gamma^{2}_{1}g_{2}g_{7}^{*}),
    h¯41\displaystyle\bar{h}_{41} =\displaystyle= 13Im(g6g13+g8g10+γ12g7g11),\displaystyle-\frac{1}{3}Im(g_{6}g_{13}^{*}+g_{8}g_{10}^{*}+\gamma^{2}_{1}g_{7}g_{11}^{*}), (56)

    where d=cos2ϑ+γ22sin2ϑ,u=sin2ϑ+γ22cos2ϑ.d=\cos^{2}\vartheta+\gamma^{2}_{2}\sin^{2}\vartheta,\ u=\sin^{2}\vartheta+\gamma^{2}_{2}\cos^{2}\vartheta.

References

  • Krusche and Schadmand (2003) B. Krusche and S. Schadmand, Prog. Part. Nucl. Phys. 51, 399 (2003), eprint nucl-ex/0306023.
  • Krusche et al. (1995) B. Krusche, J. Ahrens, J. Annand, G. Anton, R. Beck, et al., Phys. Lett. B358, 40 (1995).
  • Weiss et al. (2003) J. Weiss, P. Achenbach, R. Beck, V. Hejny, V. Kleber, et al., Eur. Phys. J. A16, 275 (2003), eprint nucl-ex/0210003.
  • Hoffmann-Rothe et al. (1997) P. Hoffmann-Rothe, M. Krebeck, J. Hey, M. Breuer, G. Edel, et al., Phys. Rev. Lett. 78, 4697 (1997).
  • Hejny et al. (1999) V. Hejny, P. Achenbach, J. Ahrens, R. Beck, S. Hall, et al., Eur. Phys. J. A6, 83 (1999).
  • Weiss et al. (2001) J. Weiss, P. Achenbach, J. Ahrens, J. Annand, R. Beck, et al., Eur. Phys. J. A11, 371 (2001), eprint nucl-ex/0304009.
  • Siodlaczek et al. (2001) U. Siodlaczek, P. Achenbach, J. Ahrens, J. Annand, H. Arends, et al., Eur. Phys. J. A10, 365 (2001).
  • Krusche et al. (1999) B. Krusche, M. Fuchs, V. Metag, M. Robig-Landau, H. Stroher, et al., Eur. Phys. J. A6, 309 (1999).
  • Distler et al. (1998) M. Distler et al., Phys. Rev. Lett. 80, 2294 (1998).
  • Ewald et al. (2001) I. Ewald et al., Phys. Lett. B499, 238 (2001), eprint nucl-ex/0010008.
  • Tomasi-Gustafsson et al. (2003) E. Tomasi-Gustafsson, L. Bimbot, S. Danagoulian, K. Gustafsson, D. Mack, et al., Phys. Atom. Nucl. 66, 2159 (2003), eprint nucl-ex/0302002.
  • Abbott et al. (2000) D. Abbott et al. (JLAB t(20) Collaboration), Phys. Rev. Lett. 84, 5053 (2000), eprint nucl-ex/0001006.
  • Rekalo et al. (2002) M. Rekalo, E. Tomasi-Gustafsson, and J. Arvieux, Annals Phys. 295, 1 (2002).
  • Tomasi-Gustafsson et al. (1999) E. Tomasi-Gustafsson et al., Nucl. Instrum. Meth. A420, 90 (1999).
  • Donnelly and Raskin (1986) T. Donnelly and A. Raskin, Annals Phys. 169, 247 (1986).
  • Boffi et al. (1944) S. Boffi, C. Giusti, F. Pacati, and M. Radici, Electromagnetic Response of Atomic Nuclei (Oxford University Press, 1944).
  • Schildknecht (1965) D. Schildknecht, Zeitschrift für Physik 185, 382 (1965), ISSN 0044-3328, URL http://dx.doi.org/10.1007/BF01380697.
  • Schildknecht (1967) D. Schildknecht, Zeitschrift für Physik 201, 99 (1967), ISSN 0044-3328, URL http://dx.doi.org/10.1007/BF01332177.
  • Gehlen (1971) G. Gehlen, Nucl. Phys. B 26 (1971).
  • Boffi et al. (1985) S. Boffi, C. Giusti, and F. Pacati, Nucl. Phys. A435, 697 (1985).
  • Picklesimer et al. (1985) A. Picklesimer, J. W. Van Orden, and S. J. Wallace, Phys. Rev. C 32, 1312 (1985), URL http://link.aps.org/doi/10.1103/PhysRevC.32.1312.
  • Mandeville et al. (1994) J. Mandeville, R. Alarcon, R. Beck, A. Bernstein, W. Bertozzi, W. Boeglin, S. Boffi, L. Cardman, J. Comfort, D. Dale, et al., Phys. Rev. Lett. 72, 3325 (1994), URL http://link.aps.org/doi/10.1103/PhysRevLett.72.3325.
  • Bartsch et al. (2002) P. Bartsch, D. Baumann, J. Bermuth, R. Böhm, K. Bohinc, D. Bosnar, M. Ding, M. Distler, D. Drechsel, D. Elsner, et al., Phys. Rev. Lett. 88, 142001 (2002), URL http://link.aps.org/doi/10.1103/PhysRevLett.88.142001.
  • Dolfini et al. (1995) S. Dolfini, R. Alarcon, H. Arenhövel, R. Beck, A. Bernstein, W. Bertozzi, W. Boeglin, L. Cardman, J. Comfort, D. Dale, et al., Phys. Rev. C 51, 3479 (1995), URL http://link.aps.org/doi/10.1103/PhysRevC.51.3479.
  • Akhiezer and Berestetskii (1965) A. Akhiezer and V. Berestetskii, Quantum Electrodynamics (Interscience Publication New York-London, 1965).
  • Machleidt (2001) R. Machleidt, Phys. Rev. C 63, 024001 (2001), URL http://link.aps.org/doi/10.1103/PhysRevC.63.024001.
  • Lacombe et al. (1980) M. Lacombe, B. Loiseau, J. M. Richard, R. Vinh Mau, J. Cote, P. Pires, and R. De Tourreil, Phys. Rev. C21, 861 (1980).
  • Wiringa et al. (1984) R. B. Wiringa, R. A. Smith, and T. L. Ainsworth, Phys. Rev. C29, 1207 (1984).
  • Reid (1968) R. V. Reid, Jr., Annals Phys. 50, 411 (1968).
  • Rekalo and Tomasi-Gustafsson (2002) M. P. Rekalo and E. Tomasi-Gustafsson, Phys. Rev. C66, 015203 (2002).