This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: The first author is supported in part by the Ministry of Education and Science of the Russian Federation in the frameworks of the project part of the state work quota (Project No 1.3464.2017/4.6). The second author is supported in part by NSF grant DMS-1322127. The third author is supported in part by RFBR grant 16-01-00197.

General Dirac Operators as
Generators of Operator Groups

Anatoly G. Baskakov Department of Applied Mathematics and Mechanics
Voronezh State University
Voronezh 394693
Russia
anatbaskakov@yandex.ru
   Ilya A. Krishtal Department of Mathematical Sciences
Northern Illinois University
DeKalb, IL 60115
USA
krishtal@math.niu.edu
   Natalia B. Uskova Department of Higher Mathematics and Mathematical Physical Modeling
Voronezh State Technical University
Voronezh 394026
Russia
nat-uskova@mail.ru
(September 28, 2025)
Abstract.

We use the method of similar operators to study a general Dirac operator LL and its spectral properties. We find a similar operator to the Dirac operator that is an orthogonal direct sum of simpler operators. The result is used to describe an operator group generated by the operator iLiL and study its properties such as the asymptotics of the spectrum.

Key words and phrases:
Spectral asymptotic analysis, Method of similar operators, Dirac operator, Operator groups
1991 Mathematics Subject Classification:
35L75, 35Q53, 37K10, 37K35

1. Introduction

Dirac operators arise in various problems modeling physical phenomena such as electromagnetic fields. The operators are a centerpiece of classical boundary value problems in mathematical physics. The spectral theory of such problems has been investigated already by Birkhoff [14, 15] and Tamarkin [39].

The main result of this paper is Theorem 2.2, where we establish the similarity of a general Dirac operator LL on an interval [0,ω][0,\omega] and an operator given by a direct sum of finite rank operators, all but one of which have rank at most two. A more explicit version of the result is in Theorem 6.6. The similarity of the operators allows us to obtain structural results about LL and the group generated by the operator iLiL. In particular, the asymptotic estimates of the eigenvalues of LL appear in Theorem 7.1. The (generalized) spectrality of operator LL is stated in Theorem 8.1. In Theorem 8.5, we obtain a result on equiconvergence of the spectral decompositions in the Hilbert-Schmidt operator topology. Finally, the group generated by the operator iLiL is exhibited in Theorem 9.1.

We study one-dimensional Dirac operators in one of their most general forms. We let =L2=L2([0,ω],2)=L2[0,ω]L2[0,ω]\mathcal{H}=L^{2}=L^{2}([0,\omega],\mathbb{C}^{2})=L^{2}[0,\omega]\oplus L^{2}[0,\omega] – be the Hilbert space (of equivalence classes) of 2\mathbb{C}^{2}-valued square-summable functions on [0,ω][0,\omega]. The inner product in \mathcal{H} is given by

f,g=1ω0ω(f1(t)g¯1(t)+f2(t)g¯2(t))𝑑t,f=(f1,f2),g=(g1,g2).\langle f,g\rangle=\frac{1}{\omega}\int_{0}^{\omega}(f_{1}(t)\overline{g}_{1}(t)+f_{2}(t)\overline{g}_{2}(t))\,{d}t,\ f=(f_{1},f_{2}),\ g=(g_{1},g_{2})\in{\mathcal{H}}.

The space {\mathcal{H}} is isometrically isomorphic to the space L2,ω=L2,ω(,2)L_{2,\omega}=L_{2,\omega}(\mathbb{R},{\mathbb{C}}^{2}) of ω\omega-periodic 2{\mathbb{C}}^{2}-valued functions on \mathbb{R} that are square-summable over [0,ω][0,\omega]. In this paper, we typically do not distinguish these two spaces.

By W21([0,ω],2)W_{2}^{1}([0,\omega],\mathbb{C}^{2}) we denote the Sobolev space of absolutely continuous L2L^{2}-functions with derivatives in L2L^{2} and the inner product f,gW=f,g+f,g\langle f,g\rangle_{W}=\langle f,g\rangle+\langle f^{\prime},g^{\prime}\rangle, f,gW21([0,ω],2)f,g\in W_{2}^{1}([0,\omega],\mathbb{C}^{2}).

We consider Dirac operators Lbc:D(Lbc)L_{bc}:D(L_{bc})\subset\mathcal{H}\to\mathcal{H}, such that

(Lbcy)(t)=i(1001)dydtP(t)y(t),(L_{bc}y)(t)=i\begin{pmatrix}1&0\\ 0&-1\end{pmatrix}\frac{dy}{dt}-P(t)y(t), (1.1)

where t[0,ω]t\in[0,\omega] and

P(t)=(p1(t)p2(t)p3(t)p4(t)),P(t)=\begin{pmatrix}p_{1}(t)&p_{2}(t)\\ p_{3}(t)&p_{4}(t)\end{pmatrix}, (1.2)

pjL2[0,ω]p_{j}\in L^{2}[0,\omega], 1j41\mathchar 14390\relax j\mathchar 14390\relax 4.

The notation “bc” refers to the various kinds of boundary conditions that we will use to describe the domain D(Lbc)D(L_{bc}). We employ the notation from [8, 23] and consider the following three cases:

  1. (a)

    periodic boundary condition (bc=perbc=per: y(0)=y(ω)2y(0)=y(\omega)\in\mathbb{C}^{2});

  2. (b)

    anti-periodic boundary condition (bc=apbc=ap: y(0)=y(ω)2y(0)=-y(\omega)\in\mathbb{C}^{2});

  3. (c)

    Dirichlet boundary condition (bc=dirbc=dir: y1(0)=y2(0),y1(ω)=y2(ω)y_{1}(0)=y_{2}(0),y_{1}(\omega)=y_{2}(\omega)), where y=(y1,y2)W21([0,ω],2)y=(y_{1},y_{2})\in W_{2}^{1}([0,\omega],\mathbb{C}^{2}).

We let D(Lbc)={yW21([0,ω],2),ybc}D(L_{bc})=\{y\in W_{2}^{1}([0,\omega],\mathbb{C}^{2}),y\in bc\} and use the notation LperL_{per}, LapL_{ap}, or LdirL_{dir} to refer to the Dirac operators with periodic, anti-periodic or Dirichlet boundary conditions, respectively.

We remark that perper and apap are Birkhoff regular but not strictly regular [38]. The boundary conditions dirdir are strictly regular. We also note an alternative form of Dirac operators commonly used in the literature [37, 38]:

(L¯bcu)(t)=(0110)dudt(v1(t)v2(t)v3(t)v4(t))u(t),(\bar{L}_{bc}u)(t)=\begin{pmatrix}0&1\\ -1&0\end{pmatrix}\frac{du}{dt}-\begin{pmatrix}v_{1}(t)&v_{2}(t)\\ v_{3}(t)&v_{4}(t)\end{pmatrix}u(t), (1.3)

where viL2[0,ω]v_{i}\in L^{2}[0,\omega], 1i41\mathchar 14390\relax i\mathchar 14390\relax 4. The study of L¯bc\bar{L}_{bc} is reduced to that of Lbc{L}_{bc} via a simple change of variables: u1=12(y1+y2)u_{1}=\frac{1}{2}(y_{1}+y_{2}), u2=i2(y1y2)u_{2}=\frac{i}{2}(y_{1}-y_{2}), y=(y1,y2)y=(y_{1},y_{2}), yL2([0,ω],2)y\in L^{2}([0,\omega],{\mathbb{C}}^{2}).

The research on Dirac operators has a long and illustrious history (see [23, 38, 40] and references therein). It was initiated in [16, 17], where Dirac considered operators of the form (1.3) with v2=v3=0v_{2}=v_{3}=0, v1=Vmv_{1}=V-m, v4=V+mv_{4}=V+m, where the function VV represented the potential of an electromagnetic field and mm represented mass. Since then, Dirac operators with various kinds of matrix potentials have become a staple in theoretical and applied research in mathematical physics. Multisection semiconductor lasers [43] is one of the applications. In the next several paragraphs, we mention theoretical papers that are most relevant to our research; the list is by no means exhaustive. There are also many papers that study operators that can be transformed into Dirac operators; [11, 12, 34] are among them.

In [18, 19, 20, 23], Djakov and Mityagin extensively studied the spectral theory of the operators LbcL_{bc} in the cases of periodic, anti-periodic and other Birkhoff regular boundary conditions. For example, in [18], generalized spectrality of Dirac operators was proved.

In [30, 31, 32], Malamud et. al. studied the questions of completeness of root vectors of Dirac operators.

In [35, 36, 37, 38], equiconvergence of spectral decompositions in the strong operator topology was obtained for different classes of Dirac operators in Hilbert and Banach spaces.

In [8], the method of similar operators was used for the first time to study Dirac operators. Asymptotic formulas for the eigenvalues and equiconvergence of spectral decompositions in the uniform operator topology were obtained there for the case p1=p4=0p_{1}=p_{4}=0 in (1.2). The latter case is commonly considered by various authors [23, 36, 38].

In this paper, we continue the line of research started in [8] and consider the case of the general matrix potential. On the technical side, this necessitates a more elaborate version of the method of similar operators, akin to the one developed in [13]. On the results side, it turns out that a generic potential leads to a better estimate of the structure of the spectrum of the Dirac operator compared to the special case of [8].

The remainder of the paper is organized as follows. In Section 2, we set the basic notation and exhibit a few preliminary results that will be used throughout the paper. We also state a version of our main result – Theorem 2.2 – to serve as a goal for the following four sections. In Section 3, we describe the idea of the method of similar operators and illustrate it with a two dimensional example. In Section 4, we present preliminary similarity transforms which put Dirac operators into a form that is amenable for the use of the method described in Section 3. The method calls for constructing two more similarity transforms, the first of which appears in Section 5 (see Theorem 5.6). We remark that the approach we use to construct the first similarity transform is new and requires many technical details. In Section 6, we perform the last similarity transform of the method and finally arrive at the main result of the paper – Theorem 6.6. We use Theorem 6.6 to obtain asymptotic estimates of the spectrum σ(Lbc)\sigma(L_{bc}) in Section 7 and results on equiconvergence of spectral decompositions in Section 8. The final Section 9 is devoted to the description of the group generated by the operator iLbciL_{bc}. The description is based on Theorem 6.6 and the asymptotic estimates of the spectrum from Section 7.

2. Notation and Preliminaries

In this section, we introduce the necessary notation and state a version of the main result of the paper. A lot of the notation is the same as in [12]; the results, however, though similar in nature, apply to a very different class of operators.

We begin with notation that will allow us to formulate a technical condition on the potential matrix PP in (1.1) that we need to distinguish between different cases in our main results.

Given a function vL2[0,ω]v\in L^{2}[0,\omega], its Fourier series is

v(t)nv^(n)ei2πnωt,t[0,ω],v(t)\sim\sum_{n\in\mathbb{Z}}\mathaccent 866{v}(n)e^{i\frac{2\pi n}{\omega}t},\quad t\in[0,\omega],

where the Fourier coefficients are

v^(n)=1ω0ωv(t)ei2πnωt𝑑t=v,en,n.\mathaccent 866{v}(n)=\frac{1}{\omega}\int_{0}^{\omega}v(t)e^{-i\frac{2\pi n}{\omega}t}\,dt=\langle v,e_{n}\rangle,\quad n\in\mathbb{Z}.

As usual, we shall refer to the number v^(0)\mathaccent 866{v}(0) as the average (value) of the function vv. Most commonly, we shall use the averages p^1(0)\mathaccent 866{p}_{1}(0) and p^4(0)\mathaccent 866{p}_{4}(0). Moreover, we shall occasionally assume the following technical condition:

r=ωβ2π=ω2π(p^1(0)p^4(0)){0}.r=\frac{\omega\beta}{2\pi}=\frac{\omega}{2\pi}\left(\mathaccent 866{p}_{1}(0)-\mathaccent 866{p}_{4}(0)\right)\notin{\mathbb{Z}}\setminus\{0\}. (2.1)

For certain results, we will have to use a different approach if the above condition does not hold. We shall discuss it in more detail in Remark 5.1.

To simplify the exposition, we shall also use the following notation:

ν=12(p^1(0)+p^4(0)),θ=πr=ω2(p^4(0)p^1(0));\nu=\frac{1}{2}(\mathaccent 866{p}_{1}(0)+\mathaccent 866{p}_{4}(0)),\quad\theta=-\pi r=\frac{\omega}{2}(\mathaccent 866{p}_{4}(0)-\mathaccent 866{p}_{1}(0)); (2.2)
φ(t)=νt0tp1(τ)𝑑τ,ψ(t)=νt+0tp4(τ)𝑑τ,\varphi(t)=\nu t-\int_{0}^{t}p_{1}(\tau)\,d\tau,\quad\psi(t)=-\nu t+\int_{0}^{t}p_{4}(\tau)\,d\tau, (2.3)
q2(t)=p2(t)ei(ψ(t)φ(t)),q3(t)=p3(t)ei(φ(t)ψ(t)),t[0,ω].q_{2}(t)=p_{2}(t)e^{i(\psi(t)-\varphi(t))},\quad q_{3}(t)=p_{3}(t)e^{i(\varphi(t)-\psi(t))},\quad t\in[0,\omega]. (2.4)

We note that φ(0)=ψ(0)=0\varphi(0)=\psi(0)=0 and φ(ω)=ψ(ω)=θ\varphi(\omega)=\psi(\omega)=\theta.

We continue our exposition of definitions and notation with orthogonal direct sums of Hilbert spaces and operators.

Throughout this section and the following one, {\mathcal{H}} will denote an abstract Hilbert space. By B()B({\mathcal{H}}) we shall mean the Banach algebra of all bounded linear operators in {\mathcal{H}}. We shall also make use of the ideal of Hilbert-Schmidt operators in {\mathcal{H}} denoted by 𝔖2()\mathfrak{S}_{2}({\mathcal{H}}) and the ideal of nuclear operators – 𝔖1()\mathfrak{S}_{1}({\mathcal{H}}). Recall that in 𝔖1()\mathfrak{S}_{1}({\mathcal{H}}) the norm is given by X1=n=1|sn|\|X\|_{1}=\sum\limits_{n=1}^{\infty}|s_{n}|, where (sn)(s_{n}) is the sequence of singular values of the operator XX. The norm in 𝔖2()\mathfrak{S}_{2}({\mathcal{H}}) is X2=(trXX)12=(n=1|sn|2)1/2\|X\|_{2}=(\mathrm{tr}\,XX^{*})^{\frac{1}{2}}=\left(\sum\limits_{n=1}^{\infty}|s_{n}|^{2}\right)^{1/2}. We refer to [21, 27] for the standard properties of these ideals used in this paper.

Assume that {\mathcal{H}} is an orthogonal direct sum of nontrivial closed subspaces n\mathcal{H}_{n}, nn\in\mathbb{Z}, i.e.

=nn,\mathcal{H}=\bigoplus_{n\in\mathbb{Z}}\mathcal{H}_{n}, (2.5)

where m\mathcal{H}_{m} is orthogonal to n\mathcal{H}_{n} for mnm\neq n, mm, nn\in\mathbb{Z}, and x=nxnx=\sum\limits_{n\in\mathbb{Z}}x_{n}, xnnx_{n}\in\mathcal{H}_{n}, x2=nxn2\|x\|^{2}=\sum\limits_{n\in\mathbb{Z}}\|x_{n}\|^{2}. Such a representation of \mathcal{H} generates a resolution of the identity {Pn\{{P}_{n}, n}n\in\mathbb{Z}\}, where the idempotents Pn{P}_{n}, nn\in\mathbb{Z}, have the following properties:

  1. (1)

    Pn=Pn{P}_{n}^{*}={P}_{n}, nn\in\mathbb{Z}.

  2. (2)

    PmPn=0{P}_{m}{P}_{n}=0 for mnm\neq n, mm, nn\in\mathbb{Z}.

  3. (3)

    The series nPnx\sum\limits_{n\in\mathbb{Z}}{P}_{n}x converges unconditionally to xx\in\mathcal{H} and x2=nPnx2\|x\|^{2}=\sum\limits_{n\in\mathbb{Z}}\|{P}_{n}x\|^{2}.

  4. (4)

    k=ImPk\mathcal{H}_{k}=\mathrm{Im}\,{P}_{k}, xk=Pkxx_{k}={P}_{k}x, kk\in\mathbb{Z}.

We remark that the third of the above properties is equivalent to

  1. 3’.

    Pkx=0{P}_{k}x=0 for all kk\in\mathbb{Z} implies x=0x=0.

We note that given a resolution of the identity {Pn:n}\{P_{n}:n\in{\mathbb{Z}}\} and X𝔖2()X\in\mathfrak{S}_{2}({\mathcal{H}}) we have

X22=m,nPnXPm22.\|X\|_{2}^{2}=\sum\limits_{m,n\in{\mathbb{Z}}}\|P_{n}XP_{m}\|_{2}^{2}.
Definition 2.1.

We say that a linear operator A:D(A){A}:D({A})\subset\mathcal{H}\to\mathcal{H} is an orthogonal direct sum

A=nAn,{A}=\bigoplus_{n\in\mathbb{Z}}{A}_{n}, (2.6)

of bounded linear operators AnB(n){A}_{n}\in B(\mathcal{H}_{n}), nn\in\mathbb{Z}, with respect to a decomposition (2.5), if the following three conditions hold:

  1. (1)

    D(A)={x:kAkPkx2<}D({A})=\{x\in\mathcal{H}:\sum\limits_{k\in\mathbb{Z}}\|{A}_{k}P_{k}x\|^{2}<\infty\} and nD(A)\mathcal{H}_{n}\subset D({A}) for all nn\in\mathbb{Z};

  2. (2)

    Each n\mathcal{H}_{n}, nn\in\mathbb{Z}, is an invariant subspace of the operator A{A} and An{A}_{n}, nn\in\mathbb{Z}, is the restriction of A{A} to n\mathcal{H}_{n}, nn\in\mathbb{Z};

  3. (3)

    Ax=kAkPkx{A}x=\sum\limits_{k\in\mathbb{Z}}{A}_{k}P_{k}x, xD(A)x\in D({A}).

We remark that for an orthogonal direct sum of operators we have σ(Ak)σ(A)\sigma({A}_{k})\subset\sigma({A}), kk\in\mathbb{Z}. It may, however, happen that σ(A)\sigma({A}) is strictly larger than the closure of the union of σ(Ak)\sigma({A}_{k}), kk\in\mathbb{Z}. We also mention a slight abuse of notation in the above definition, where we treat the operators AkA_{k} as both members of B(k)B({\mathcal{H}}_{k}) and B()B({\mathcal{H}}). We believe, it should be clear from the context what exactly is meant in each instance.

We shall illustrate the notion of direct sums of operators with the help of an operator Lbc0L_{bc}^{0}, which is the Dirac operator LbcL_{bc} with a trivial potential P=0P=0, i.e. pi=0p_{i}=0, 1i41\leq i\leq 4. We shall call such operators unperturbed or free. The operators Lbc0L_{bc}^{0}, bc{per,ap,dir}bc\in\{per,ap,dir\}, are self-adjoint and their spectral properties can be easily described [8, 23]:

  1. (1)

    σ(Lper0)={2πnω}\sigma(L_{per}^{0})=\left\{\frac{2\pi n}{\omega}\right\}, nn\in\mathbb{Z}, where each λn=2πnω\lambda_{n}=\frac{2\pi n}{\omega}, nn\in\mathbb{Z}, is an eigenvalue of multiplicity two. Moreover, the corresponding eigenspace is given by n=En0=span{en1,en2}{\mathcal{H}}_{n}=E_{n}^{0}=\mathrm{span}\,\{e_{n}^{1},e_{n}^{2}\}, where

    en1=(en0),en2=(0en),en(t)=eiλnt,t[0,ω].e_{n}^{1}=\begin{pmatrix}e_{-n}\\ 0\end{pmatrix},\quad e_{n}^{2}=\begin{pmatrix}0\\ e_{n}\end{pmatrix},\quad e_{n}(t)=e^{i\lambda_{n}t},\quad t\in[0,\omega].
  2. (2)

    σ(Lap0)={π(2n+1)ω}\sigma(L_{ap}^{0})=\left\{\frac{\pi(2n+1)}{\omega}\right\}, nn\in\mathbb{Z}, where each λn=π(2n+1)ω\lambda_{n}=\frac{\pi(2n+1)}{\omega}, nn\in\mathbb{Z}, is again an eigenvalue of multiplicity two and the corresponding eigenspace is defined the same way as for Lper0L^{0}_{per}.

  3. (3)

    σ(Ldir0)={πnω}\sigma(L_{dir}^{0})=\left\{\frac{\pi n}{\omega}\right\}, nn\in\mathbb{Z}, where each λn=πnω\lambda_{n}=\frac{\pi n}{\omega}, nn\in\mathbb{Z}, is a simple eigenvalue, and the corresponding normalized eigenfunction is given by sn=12(en1+en2)s_{n}=\frac{1}{\sqrt{2}}(e_{n}^{1}+e_{n}^{2}), nn\in\mathbb{Z}.

We remark that Birkhoff regularity of the boundary conditions yields spectrality of the unperturbed operator Lbc0L^{0}_{bc} in the sense of Dunford [22].

Example 2.1.

The Riesz projections of an operator Lbc0L_{bc}^{0} form resolutions of the identity that lead to the direct sums of operators. In particular, we denote by PnP_{n} the (spectral) Riesz projection that corresponds to the eigenvalue λn\lambda_{n} of the operator Lbc0L_{bc}^{0}, nn\in{\mathbb{Z}}. Then {Pn,n}\{P_{n},n\in{\mathbb{Z}}\} is indeed a resolution of the identity that satisfies the three properties preceding Definition 2.1. We shall also make use of the spectral projections P(k)=|n|kPnP_{(k)}=\sum\limits_{|n|\leq k}P_{n}, and the corresponding coarser resolutions of the identity given by {P(k)}{Pn,|n|>k}\{P_{(k)}\}\cup\{P_{n},|n|>k\}, k+={0}k\in{\mathbb{Z}}_{+}={\mathbb{N}}\cup\{0\}. We then let n=ImPn{\mathcal{H}}_{n}={\rm{Im}}\,P_{n} and (k)=ImP(k){\mathcal{H}}_{(k)}={\rm{Im}}\,P_{(k)}, n,kn,k\in{\mathbb{Z}}, k0k\geq 0, be the corresponding eigenspaces, which provide us with orthogonal decompositions of =L2{\mathcal{H}}=L^{2}. The operators (Lbc0)n=Lbc0|n=λnIn(L_{bc}^{0})_{n}=L_{bc}^{0}|_{{\mathcal{H}}_{n}}=\lambda_{n}I_{n}, where InI_{n} is the identity operator in n{\mathcal{H}}_{n}, and (Lbc0)(k)=Lbc0|(k)(L_{bc}^{0})_{(k)}=L_{bc}^{0}|_{{\mathcal{H}}_{(k)}} then give orthogonal direct sums of the operator Lbc0L_{bc}^{0}:

Lbc0=(Lbc0)(k)(|n|>k(Lbc0)n)=(Lbc0)(k)(|n|>kλnIn),k+,L_{bc}^{0}=(L_{bc}^{0})_{(k)}\oplus\left(\bigoplus_{|n|>k}(L_{bc}^{0})_{n}\right)=(L_{bc}^{0})_{(k)}\oplus\left(\bigoplus_{|n|>k}\lambda_{n}I_{n}\right),\quad k\in\mathbb{Z}_{+},

with respect to the orthogonal decompositions of \mathcal{H} given by

=(k)(|n|>kn),k+.\mathcal{H}=\mathcal{H}_{(k)}\oplus\left(\bigoplus_{|n|>k}\mathcal{H}_{n}\right),\quad k\in\mathbb{Z}_{+}.

We remark that the operators (Lbc0)n(L_{bc}^{0})_{n} have rank 22 if bc{per,ap}bc\in\{per,ap\} and rank 11 if bc=dirbc=dir.

To state our main result we need the following standard notion of similarity between unbounded linear operators.

Definition 2.2.

Two linear operators Am:D(Am)A_{m}:D(A_{m})\subset\mathcal{H}\to\mathcal{H}, m=1,2m=1,2, are called similar, if there exists a continuously invertible operator UB()U\in B(\mathcal{H}) such that

A1Ux=UA2x,xD(A2),UD(A2)=D(A1).A_{1}Ux=UA_{2}x,\quad x\in D(A_{2}),\quad UD(A_{2})=D(A_{1}).

The operator UU is called the similarity transform of A1A_{1} into A2A_{2}.

The following two definitions are natural in view of the notion of similarity.

Definition 2.3.

Assume that {\mathcal{H}} has an orthogonal decomposition (2.5). Given an invertible operator UB()U\in B({\mathcal{H}}), we call the direct sum

=kUk,\mathcal{H}=\bigoplus_{k\in\mathbb{Z}}U\mathcal{H}_{k}, (2.7)

a quasi- or UU-orthogonal decomposition. If U=I+WU=I+W for some operator W𝔖2()W\in\mathfrak{S}_{2}(\mathcal{H}), we call such a decomposition of \mathcal{H} a Riesz decomposition.

We remark that a UU-orthogonal decomposition (2.7) of \mathcal{H} may be regarded as an orthogonal decomposition of \mathcal{H} with respect to an equivalent inner product

x,yU=Ux,Uy,x,y.\langle x,y\rangle_{U}=\langle Ux,Uy\rangle,\quad x,y\in\mathcal{H}.
Definition 2.4.

Assume that a linear operator A:D(A){A}:D({A})\subset\mathcal{H}\to\mathcal{H} is an orthogonal direct sum of the form (2.6). Assume also that A~\mathaccent 869{A} is similar to AA and UB()U\in B({\mathcal{H}}) is the similarity transform of A~\mathaccent 869{A} into AA. We then say that A~\mathaccent 869{A} is a quasi- or UU-orthogonal direct sum

A~=kA~k\mathaccent 869{A}=\bigoplus_{k\in\mathbb{Z}}\mathaccent 869{A}_{k}

of bounded linear operators A~k\mathaccent 869{A}_{k}, kk\in\mathbb{Z}, with respect to a decomposition of the space \mathcal{H} of the form (2.7), if A~k=UAkU1\mathaccent 869{A}_{k}=UA_{k}U^{-1}, kk\in\mathbb{Z}.

Directly from Definition 2.2, we have the following result about the spectral properties of similar operators.

Lemma 2.1.

Let Am:D(Am)A_{m}:D(A_{m})\subset{\mathcal{H}}\to{\mathcal{H}}, m=1,2m=1,2, be two similar operators with the operator UU being the similarity transform of A1A_{1} into A2A_{2}. Then the following properties hold.

  1. (1)

    We have σ(A1)=σ(A2)\sigma(A_{1})=\sigma(A_{2}), σp(A1)=σp(A2)\sigma_{p}(A_{1})=\sigma_{p}(A_{2}), and σc(A1)=σc(A2)\sigma_{c}(A_{1})=\sigma_{c}(A_{2}), where σp\sigma_{p} denotes the point spectrum and σc\sigma_{c} denotes the continuous spectrum;

  2. (2)

    If λ\lambda is an eigenvalue of the operator A2A_{2} and xx is a corresponding eigenvector, then y=Uxy=Ux is an eigenvector of the operator A1A_{1} corresponding to the same eigenvalue λ\lambda.

  3. (3)

    Assume that the operator A2A_{2} is an orthogonal direct sum A2=n(A2)nA_{2}=\bigoplus\limits_{n\in{\mathbb{Z}}}(A_{2})_{n} with respect to an orthogonal decomposition =nn{\mathcal{H}}=\bigoplus\limits_{n\in{\mathbb{Z}}}{\mathcal{H}}_{n}. Then the operator A1A_{1} is a UU-orthogonal direct sum A1=n(A1)nA_{1}=\bigoplus\limits_{n\in{\mathbb{Z}}}(A_{1})_{n} with respect to the UU-orthogonal decomposition =n~n{\mathcal{H}}=\bigoplus\limits_{n\in{\mathbb{Z}}}\mathaccent 869{{\mathcal{H}}}_{n}, where ~n=Un{\mathaccent 869{{\mathcal{H}}}_{n}}=U{\mathcal{H}}_{n}. Moreover, if {Pn}\{P_{n}\} is the resolution of the identity corresponding to the decomposition =nn{\mathcal{H}}=\bigoplus\limits_{n\in{\mathbb{Z}}}{\mathcal{H}}_{n}, then {P~n=UPnU1}\{\mathaccent 869{P}_{n}=UP_{n}U^{-1}\} is the resolution of the identity corresponding to the decomposition =n~n{\mathcal{H}}=\bigoplus\limits_{n\in{\mathbb{Z}}}\mathaccent 869{{\mathcal{H}}}_{n}.

  4. (4)

    If A2A_{2} is a generator of a C0C_{0}-semigroup (or group) T2:𝕁B()T_{2}:\mathbb{J}\to B(\mathcal{H}), 𝕁{,+}\mathbb{J}\in\{{\mathbb{R}},{\mathbb{R}}_{+}\}, then the operator A1A_{1} generates the C0C_{0}-semigroup (group)

    T1(t)=UT2(t)U1,t𝕁,T1:𝕁B(),𝕁{,+}.T_{1}(t)=UT_{2}(t)U^{-1},\quad t\in\mathbb{J},\quad T_{1}:\mathbb{J}\to B(\mathcal{H}),\ \mathbb{J}\in\{{\mathbb{R}},{\mathbb{R}}_{+}\}.

The following is the key result of the paper. In its formulation, we use the notation introduced when we represented the operator Lbc0L_{bc}^{0} as the direct sums of bounded operators.

Theorem 2.2.

Assume that an operator LbcL_{bc} is given by (1.1). There exists m+m\in\mathbb{Z}_{+}, such that the operator LbcL_{bc} is similar to the operator L~bcPV\mathaccent 869{L}_{bc}^{P}-V, where V𝔖2()V\in\mathfrak{S}_{2}(\mathcal{H}), and the subspaces (m)\mathcal{H}_{(m)} and n\mathcal{H}_{n}, |n|>m|n|>m, are invariant for the operators L~bcP\mathaccent 869{L}_{bc}^{P} and VV. Moreover, the dimension of (m){\mathcal{H}}_{(m)} is at most 2m+22m+2, the dimensions of n\mathcal{H}_{n}, |n|>m|n|>m, are at most 22, the operator L~bcP\mathaccent 869{L}_{bc}^{P} can be written explicitly, we have

LbcWbc(I+U)=Wbc(I+U)(L~bcPV),L_{bc}W_{bc}(I+U)=W_{bc}(I+U)(\mathaccent 869{L}_{bc}^{P}-V),

and the operator LbcL_{bc} is a Wbc(I+U)W_{bc}(I+U)-direct sum

Lbc=Wbc(I+U)((L~bcPV)(m)(|n|>m(L~bcPV)n))(I+U)1Wbc1,L_{bc}=W_{bc}(I+U)\left(\left(\mathaccent 869{L}_{bc}^{P}-V\right)_{(m)}\oplus\left(\bigoplus_{|n|>m}\left(\mathaccent 869{L}_{bc}^{P}-V\right)_{n}\right)\right)(I+U)^{-1}W_{bc}^{-1},

for some WbcB()W_{bc}\in B({\mathcal{H}}) and U𝔖2()U\in\mathfrak{S}_{2}(\mathcal{H}).

A more explicit version of the above result is in Theorem 6.6.

To describe the C0C_{0}-group generated by the operator iLbciL_{bc} in Section 9, we shall make use of the following lemma.

Lemma 2.3.

[12, Lemma 3.4] Assume that an operator AA is an orthogonal direct sum as in Definition 2.1. Then AA is a generator of a C0C_{0}-group of operators T:B()T:\mathbb{R}\to B(\mathcal{H}) if and only if

sup|t|bsupnetAnB(n)=C(b)<,\sup_{|t|\leq b}\sup_{n\in\mathbb{Z}}\|e^{tA_{n}}\|_{B(\mathcal{H}_{n})}=C(b)<\infty, (2.8)

b1b\geq 1. If (2.8) holds, then the operators T(t)T(t), tt\in\mathbb{R}, are orthogonal direct sums

T(t)=netAn,t,T(t)=\bigoplus_{n\in\mathbb{Z}}e^{tA_{n}},\quad t\in\mathbb{R},

with respect to the orthogonal decomposition (2.5) of \mathcal{H}.

3. The method of similar operators

The method of similar operators has its origins in various similarity and perturbation techniques. Among them, we mention classical perturbation methods of celestial mechanics, Ljapunov’s kinematic similarity method [26, 29, 33], Friedrichs’ method of similar operators that is used in quantum mechanics [25], and Turner’s method of similar operators [41, 42]. A close relative of the method is the Krylov-Bogolyubov substitution described in [2].

The method of similar operators has been extensively developed and used for various classes of unbounded linear operators, see e.g. [1, 3, 4, 5, 6, 7, 8, 9, 11, 12]. In this paper, we use a version of the method that is derived mostly from [8, 13]. In Subsection 3.1, we exhibit the basic ideas and theorems of the method. In the following Subsection 3.2, we first illustrate the method in the case of 2×22\times 2 matrices and next provide a construction for direct sums of operators.

3.1. The idea and basic theorems of the method of similar operators.

The main idea of the method is to construct a similarity transform for an operator AB:D(A)A-B:D(A)\subset{\mathcal{H}}\to{\mathcal{H}}, where the spectrum of the operator AA is known and has certain properties, and the operator BB is AA-bounded (see Definition 3.1 below). The goal of the method is to obtain an operator B1B_{1} such that the operator ABA-B is similar to AB1A-B_{1} and the spectral properties of AB1A-B_{1} are in some sense close to those of AA. In particular, certain spectral subspaces of AA are mapped by the similarity transform onto certain subspaces that are invariant for AB1A-B_{1}. In this paper, the role of AA is played by the operator Wbc1Lbc0WbcW_{bc}^{-1}L_{bc}^{0}W_{bc} (see the notation in Theorem 2.2 and Section 4 below).

Definition 3.1.

Let A:D(A)A:D(A)\subset{\mathcal{H}}\to{\mathcal{H}} be a linear operator. A linear operator B:D(B)B:D(B)\subset{\mathcal{H}}\to{\mathcal{H}} is AA-bounded if D(B)D(A)D(B)\supseteq D(A) and BA=inf{c>0:Bxc(x+Ax),xD(A)}<\|B\|_{A}=\inf\{c>0:\|Bx\|\leq c(\|x\|+\|Ax\|),\ x\in D(A)\}<\infty.

The space 𝔏A()\mathfrak{L}_{A}({\mathcal{H}}) of all AA-bounded linear operators is a Banach space with respect to the norm A\|\cdot\|_{A}. Moreover, given λ0ρ(A)\lambda_{0}\in\rho(A), where ρ(A)=\σ(A)\rho(A)={\mathbb{C}}\backslash\sigma(A) is the resolvent set of AA, we have B𝔏A()B\in\mathfrak{L}_{A}({\mathcal{H}}) if and only if B(λ0IA)1B()B(\lambda_{0}I-A)^{-1}\in B({\mathcal{H}}) and Bλ0=B(λ0IA)1B()\|B\|_{\lambda_{0}}=\|B(\lambda_{0}I-A)^{-1}\|_{B({\mathcal{H}})} defines an equivalent norm in 𝔏A()\mathfrak{L}_{A}({\mathcal{H}}) [24].

The method of similar operators uses the commutator transform adA:D(adA)B()B()\mathrm{ad}_{A}:D(\mathrm{ad}_{A})\subset B(\mathcal{H})\to B(\mathcal{H}) defined by

adAX=AXXA,XD(adA).\mathrm{ad}_{A}X=AX-XA,\quad X\in D(\mathrm{ad}_{A}). (3.1)

The domain D(adA)D(\mathrm{ad}_{A}) in (3.1) consists of all XB()X\in B(\mathcal{H}) such that the following two properties hold:

  1. (1)

    XD(A)D(A)XD(A)\subseteq D(A);

  2. (2)

    The operator adAX:D(A)\mathrm{ad}_{A}X:D(A)\to\mathcal{H} admits a unique extension to a bounded operator YB()Y\in B(\mathcal{H}); we then let adAX=Y\mathrm{ad}_{A}X=Y.

The key notion of the method of similar operators is that of an admissible triplet. Once such a triplet is constructed, achieving the goal of the method becomes a routine task.

Definition 3.2 ([8, 13]).

Let \mathcal{M} be a linear subspace of 𝔏A()\mathfrak{L}_{A}(\mathcal{H}), J:J:\mathcal{M}\to\mathcal{M}, and Γ:B()\Gamma:\mathcal{M}\to B(\mathcal{H}). The collection (,J,Γ)(\mathcal{M},J,\Gamma) is an admissible triplet for the operator AA, and the space \mathcal{M} is the space of admissible perturbations, if the following six properties hold.

  1. (1)

    \mathcal{M} is a Banach space that is continuously embedded in 𝔏A()\mathfrak{L}_{A}(\mathcal{H}), i.e., \mathcal{M} has a norm \|\cdot\|_{\ast} such that there is a constant C>0C>0 that yields XACX\|X\|_{A}\leq C\|X\|_{\ast} for any XX\in\mathcal{M}.

  2. (2)

    JJ and Γ\Gamma are bounded linear operators; moreover, JJ is an idempotent.

  3. (3)

    (ΓX)D(A)D(A)(\Gamma X)D(A)\subset D(A) and

    (adAΓX)x=(XJX)x,xD(A),X;(\mathrm{ad}_{A}\,\Gamma X)x=(X-JX)x,\quad x\in D(A),\quad X\in\mathcal{M};

    moreover Y=ΓXB()Y=\Gamma X\in B(\mathcal{H}) is the unique solution of the equation

    adAY=AYYA=XJX,\mathrm{ad}_{A}\,Y=AY-YA=X-JX, (3.2)

    that satisfies JY=0JY=0.

  4. (4)

    XΓYX\Gamma Y, (ΓX)Y(\Gamma X)Y\in\mathcal{M} for all X,YX,Y\in\mathcal{M}, and there is a constant γ>0\gamma>0 such that

    Γγ,max{XΓY,(ΓX)Y}γXY.\|\Gamma\|\leq\gamma,\quad\max\{\|X\Gamma Y\|_{\ast},\|(\Gamma X)Y\|_{\ast}\}\leq\gamma\|X\|_{\ast}\|Y\|_{\ast}.
  5. (5)

    J((ΓX)JY)=0J((\Gamma X)JY)=0 for all X,YX,Y\in\mathcal{M}.

  6. (6)

    For every XX\in\mathcal{M} and ε>0\varepsilon>0 there exists a number λερ(A)\lambda_{\varepsilon}\in\rho(A), such that X(AλεI)1<ε\|X(A-\lambda_{\varepsilon}I)^{-1}\|<\varepsilon.

To illustrate the above definition, one should think of the operators involved in terms of infinite matrices. The operator AA is then represented by an infinite diagonal matrix and the operator BB – by a matrix with some kind of off-diagonal decay. The transform JJ should be thought of as a projection that picks the main (block) diagonal of an infinite matrix, whereas the transform Γ\Gamma annihilates the main (block) diagonal and weighs the remaining diagonals in accordance with equation (3.2) thereby introducing or enhancing the off-diagonal decay. A more precise illustration is provided in Section 3.2.

To formulate the main theorem of the method of similar operators for an operator ABA-B, we use the function Φ:\Phi:\mathcal{M}\to\mathcal{M} given by

Φ(X)=BΓX(ΓX)(JB)(ΓX)J(BΓX)+B.\Phi(X)=B\Gamma X-(\Gamma X)(JB)-(\Gamma X)J(B\Gamma X)+B. (3.3)
Theorem 3.1 ([8, 13]).

Assume that (,J,Γ)(\mathcal{M},J,\Gamma) is an admissible triplet for an operator A:D(A)A:D(A)\subset\mathcal{H}\to\mathcal{H} and BB\in\mathcal{M}. Assume also that

4γJB<1,4\gamma\|J\|\|B\|_{\ast}<1, (3.4)

where γ\gamma comes from the Property 4 of Definition 3.2. Then the map Φ:\Phi:\mathcal{M}\to\mathcal{M} given by (3.3) is a contraction and has a unique fixed point XX_{*} in the ball

{X:XB3B},\{X\in\mathcal{M}:\|X-B\|_{\ast}\leq 3\|B\|_{\ast}\}, (3.5)

which can be found as a limit of simple iterations: X0=0X_{0}=0, X1=Φ(X0)=BX_{1}=\Phi(X_{0})=B, etc. Moreover, the operator ABA-B is similar to the operator AJXA-JX_{*} and the similarity transform of ABA-B into AJXA-JX_{*} is given by I+ΓXB()I+\Gamma X_{*}\in B(\mathcal{H}).

The space \mathcal{M} in the above theorem is typically constructed based on the properties of the operator BB. Condition (3.4) is there to guarantee existence of the solution of the functional equation Φ(X)=X\Phi(X)=X or, in other words, existence and uniqueness of the fixed point of Φ\Phi in a ball in the space \mathcal{M}.

We will need the following consequence of Lemma 2.1 and Theorem 3.1.

Theorem 3.2 ([13]).

Assume that (,J,Γ)(\mathcal{M},J,\Gamma) is an admissible triplet for A:D(A)A:D(A)\subset\mathcal{H}\to\mathcal{H}, BB\in\mathcal{M} satisfies (3.4), and AJXA-JX_{*} is a generator of a C0C_{0}-group T~:B()\mathaccent 869{T}:\mathbb{R}\to B(\mathcal{H}). Then the operator ABA-B is a generator of the C0C_{0}-group T:EndT:\mathbb{R}\to\mathrm{End}\,\mathcal{H} given by

T(t)=(I+ΓX)T~(t)(I+ΓX)1,t,T(t)=(I+\Gamma X_{*})\mathaccent 869{T}(t)(I+\Gamma X_{*})^{-1},\quad t\in{\mathbb{R}},

where XX_{*} is the fixed point of the function Φ\Phi in (3.3).

In many cases, it can be difficult to define the space \mathcal{M} of admissible perturbations for a given operator ABA-B. It may, however, be possible to pick a good space \mathcal{M} first, and then find an operator ACA-C that is similar to ABA-B and such that CC\in\mathcal{M}. In our case, this will be possible if the following assumption holds.

Assumption 3.3 ([13]).

Assume that (,J,Γ)(\mathcal{M},J,\Gamma) is an admissible triplet for an operator AA such that the transforms JJ and Γ\Gamma are restrictions of linear operators from 𝔏A()\mathfrak{L}_{A}(\mathcal{H}) to 𝔏A()\mathfrak{L}_{A}(\mathcal{H}) denoted by the same symbols. Assume also that the operator B𝔏A()B\in\mathfrak{L}_{A}(\mathcal{H}) has the following five properties.

  1. (1)

    ΓBB()\Gamma B\in B(\mathcal{H}) and ΓB<1\|\Gamma B\|<1;

  2. (2)

    (ΓB)D(A)D(A)(\Gamma B)D(A)\subset D(A);

  3. (3)

    BΓBB\Gamma B, (ΓB)JB(\Gamma B)JB\in\mathcal{M};

  4. (4)

    A(ΓB)x(ΓB)Ax=Bx(JB)xA(\Gamma B)x-(\Gamma B)Ax=Bx-(JB)x, xD(A)x\in D(A);

  5. (5)

    For any ε>0\varepsilon>0 there is λερ(A)\lambda_{\varepsilon}\in\rho(A) such that B(AλεI)1<ε\|B(A-\lambda_{\varepsilon}I)^{-1}\|<\varepsilon.

Theorem 3.4 ([13]).

If Assumption 3.3 holds then the operator ABA-B is similar to AJBB0A-JB-B_{0}, where B0=(I+ΓB)1(BΓB(ΓB)JB)B_{0}=(I+\Gamma B)^{-1}(B\Gamma B-(\Gamma B)JB). The similarity transform is given by I+ΓBI+\Gamma B so that

(AB)(I+ΓB)=(I+ΓB)(AJBB0).(A-B)(I+\Gamma B)=(I+\Gamma B)(A-JB-B_{0}).

3.2. Constructing the transforms JJ and Γ\Gamma for direct sums of operators.

We begin with the following, simplest possible non-trivial illustration of the method of similar operators that will prove surprisingly useful for us.

Example 3.1.

Let =2{\mathcal{H}}={\mathbb{C}}^{2}, so that B()B({\mathcal{H}}) is simply the set of all 2×22\times 2 matrices with the operator norm, and 𝔖2()\mathfrak{S}_{2}({\mathcal{H}}) is the same set endowed with the Frobenius norm. We let

A=(a1100a22)andB=(b11b12b21b22),A=\left(\begin{array}[]{cc}a_{11}&0\\ 0&a_{22}\end{array}\right)\quad\mbox{and}\quad B=\left(\begin{array}[]{cc}b_{11}&b_{12}\\ b_{21}&b_{22}\end{array}\right),

where a11,a22,b11,b12,b21,b22a_{11},a_{22},b_{11},b_{12},b_{21},b_{22}\in{\mathbb{C}} and a11a22a_{11}\neq a_{22}. With {B(),𝔖2()}\mathcal{M}\in\{B({\mathcal{H}}),\mathfrak{S}_{2}({\mathcal{H}})\}, we define

J(x11x12x21x22)=(x1100x22) and J\left(\begin{array}[]{cc}x_{11}&x_{12}\\ x_{21}&x_{22}\end{array}\right)=\left(\begin{array}[]{cc}x_{11}&0\\ 0&x_{22}\end{array}\right)\mbox{ and }
Γ(x11x12x21x22)=(0x12a11a22x21a22a110),(x11x12x21x22).\Gamma\left(\begin{array}[]{cc}x_{11}&x_{12}\\ x_{21}&x_{22}\end{array}\right)=\left(\begin{array}[]{cc}0&\frac{x_{12}}{a_{11}-a_{22}}\\ \frac{x_{21}}{a_{22}-a_{11}}&0\end{array}\right),\ \left(\begin{array}[]{cc}x_{11}&x_{12}\\ x_{21}&x_{22}\end{array}\right)\in\mathcal{M}.

One can easily verify that {,J,Γ}\{\mathcal{M},J,\Gamma\} is then an admissible triplet with J=1\|J\|=1 and γ=|a22a11|1\gamma=|a_{22}-a_{11}|^{-1} (see Definition 3.2). Therefore, Theorem 3.1 is applicable for ABA-B as long as B<14|a11a22|\|B\|_{*}<\frac{1}{4}|a_{11}-a_{22}|. In that case, the operator ABA-B is similar to AJXA-JX_{*}, where XX_{*} is a fixed point of (3.3). In view of Property 5 of Definition 3.2, we have JX=J(BΓX)+JBJX_{*}=J(B\Gamma X_{*})+JB. Denoting

X=(x11x12x21x22) and BΓX=(c11c12c21c22),X_{*}=\left(\begin{array}[]{cc}x^{*}_{11}&x^{*}_{12}\\ x^{*}_{21}&x^{*}_{22}\end{array}\right)\mbox{ and }B\Gamma X_{*}=\left(\begin{array}[]{cc}c_{11}&c_{12}\\ c_{21}&c_{22}\end{array}\right), (3.6)

we then have that ABA-B is similar to

(a11b11c1100a22b22c22)\left(\begin{array}[]{cc}a_{11}-b_{11}-c_{11}&0\\ 0&a_{22}-b_{22}-c_{22}\end{array}\right)

with the similarity transform given by

I+ΓX=(1x12a11a22x21a22a111).I+\Gamma X_{*}=\left(\begin{array}[]{cc}1&\frac{x^{*}_{12}}{a_{11}-a_{22}}\\ \frac{x^{*}_{21}}{a_{22}-a_{11}}&1\end{array}\right).
Remark 3.1.

In applying the method of similar operators to a Dirac operator, we will often end up with a sequence of 2×22\times 2 matrices. The usefulness of the above example will then be revealed.

Next, we generalize the construction of JJ and Γ\Gamma from Example 3.1 to the case when an operator AA is an orthogonal direct sum induced by a spectral decomposition. We assume that the resolvent operator (AλI)1(A-\lambda I)^{-1} is in 𝔖2()\mathfrak{S}_{2}({\mathcal{H}}) for any λρ(A)\lambda\in\rho(A). Additionally, we assume that the spectrum σ(A)\sigma(A) is a separated set:

σ(A)=n{λn} with δ=inf{|λmλn|:mn}>0.\sigma(A)=\bigcup_{n\in{\mathbb{Z}}}\{\lambda_{n}\}\mbox{ with }\delta=\inf\{|\lambda_{m}-\lambda_{n}|:m\neq n\in{\mathbb{Z}}\}>0. (3.7)

By PnP_{n} we denote the (orthogonal) Riesz projection that corresponds to the spectral component {λn}\{\lambda_{n}\}, nn\in{\mathbb{Z}}. We then have that the family {Pn,n}\{P_{n},n\in{\mathbb{Z}}\} forms a resolution of the identity and the subspaces n=ImPn{\mathcal{H}}_{n}={\rm Im}P_{n} provide an orthogonal decomposition of {\mathcal{H}} of the form (2.5). As in Example 2.1, we get A=nλnInA=\bigoplus\limits_{n\in{\mathbb{Z}}}\lambda_{n}I_{n}, where InI_{n} is the identity operator on n{\mathcal{H}}_{n}, nn\in{\mathbb{Z}}.

Thus, an operator XD(X)X\in D(X)\subseteq{\mathcal{H}}\to{\mathcal{H}} is determined by an operator matrix with entries Xmn=PmXPnX_{mn}=P_{m}XP_{n}, m,nm,n\in{\mathbb{Z}}, as long as the domain D(X)D(X) is properly specified. As we mentioned above, the transform JJ is supposed to pick out the main diagonal of the operator matrix. Hence, we define JJ via

(JX)mn=δmnXmn,m,n,X:D(X),(JX)_{mn}=\delta_{m-n}X_{mn},\ m,n\in{\mathbb{Z}},\ X:D(X)\subseteq{\mathcal{H}}\to{\mathcal{H}}, (3.8)

where δk\delta_{k} is the usual Kronecker delta. Clearly, we have

JX=nPnXPn,X𝔖2(),JX=\sum_{n\in{\mathbb{Z}}}P_{n}XP_{n},\ X\in\mathfrak{S}_{2}({\mathcal{H}}), (3.9)

where the series converges unconditionally in 𝔖2()\mathfrak{S}_{2}({\mathcal{H}}).

Observe that in this setting the matrix of the commutator adAX\mathrm{ad}_{A}X in (3.1) satisfies

(adAX)mn=(λmλn)Xmn,XD(adA).(\mathrm{ad}_{A}X)_{mn}=(\lambda_{m}-\lambda_{n})X_{mn},\ X\in D(\mathrm{ad}_{A}).

Therefore, it is natural to define the transform Γ\Gamma via

(ΓX)mn={1λmλnXmn,mn;0,m=n;X:D(X).(\Gamma X)_{mn}=\begin{cases}\frac{1}{\lambda_{m}-\lambda_{n}}X_{mn},&m\neq n;\\ 0,&m=n;\end{cases}\quad X:D(X)\subseteq{\mathcal{H}}\to{\mathcal{H}}. (3.10)

For X𝔖2()X\in\mathfrak{S}_{2}({\mathcal{H}}), we have

ΓX=m,nmnPmXPnλmλn,\Gamma X=\sum_{\begin{subarray}{c}m,n\in{\mathbb{Z}}\\ {m\neq n}\end{subarray}}\frac{P_{m}XP_{n}}{\lambda_{m}-\lambda_{n}}, (3.11)

where the series converges unconditionally in 𝔖2()\mathfrak{S}_{2}({\mathcal{H}}) because of (3.7). In (3.8) and (3.10), we let the domains of the operators JXJX and ΓX\Gamma X be the largest possible, unless otherwise specified. We will provide a more careful treatment of the case of XA()X\in\mathcal{L}_{A}({\mathcal{H}}) in Section 5.

Lemma 3.5.

Assume that =𝔖2()\mathcal{M}=\mathfrak{S}_{2}({\mathcal{H}}), the transforms JJ and Γ\Gamma are defined by (3.9) and (3.11), and for any ε>0\varepsilon>0 there is λερ(A)\lambda_{\varepsilon}\in\rho(A), such that (AλεI)1<ε\|(A-\lambda_{\varepsilon}I)^{-1}\|<\varepsilon. Then (,J,Γ)(\mathcal{M},J,\Gamma) is an admissible triplet.

Proof.

Observe that Properties 1, 2, and 6 of Definition 3.2 are automatically satisfied. Property 5 follows easily from (3.9) and (3.11) via a straightforward computation. It can also be obtained as a direct application of [10, Corollary 7.8]. Property 4 clearly follows from (3.7) by letting γ=δ1\gamma=\delta^{-1}.

To prove Property 3 of Definition 3.2, we first observe that Γ𝔖2()𝔖2()\Gamma\mathfrak{S}_{2}({\mathcal{H}})\subseteq\mathfrak{S}_{2}({\mathcal{H}}) because of (3.7).

Secondly, we need to prove that (ΓX)D(A)D(A)(\Gamma X)D(A)\subset D(A) for X𝔖2()X\in\mathfrak{S}_{2}({\mathcal{H}}). Pick xD(A)x\in D(A) and λρ(A)\lambda\in\rho(A). Then there is yy\in{\mathcal{H}} such that

x=(AλI)1y=n1λnλPny.x=(A-\lambda I)^{-1}y=\sum_{n\in{\mathbb{Z}}}\frac{1}{\lambda_{n}-\lambda}P_{n}y.

We then have

ΓXx=(ΓX)(AλI)1y=m,nmnPmXPny(λmλn)(λnλ)=m,nmnPmXPny(λmλn)(λmλ)+m,nmnPmXPny(λmλ)(λnλ)=(AλI)1(ΓX)y+(AλI)1(ΓX)(AλI)1y=(AλI)1(ΓX)(x+y)D(A).\begin{split}\Gamma Xx&=(\Gamma X)(A-\lambda I)^{-1}y=\sum_{\begin{subarray}{c}m,n\in{\mathbb{Z}}\\ {m\neq n}\end{subarray}}\frac{P_{m}XP_{n}y}{(\lambda_{m}-\lambda_{n})(\lambda_{n}-\lambda)}\\ &=\sum_{\begin{subarray}{c}m,n\in{\mathbb{Z}}\\ {m\neq n}\end{subarray}}\frac{P_{m}XP_{n}y}{(\lambda_{m}-\lambda_{n})(\lambda_{m}-\lambda)}+\sum_{\begin{subarray}{c}m,n\in{\mathbb{Z}}\\ {m\neq n}\end{subarray}}\frac{P_{m}XP_{n}y}{(\lambda_{m}-\lambda)(\lambda_{n}-\lambda)}\\ &=(A-\lambda I)^{-1}(\Gamma X)y+(A-\lambda I)^{-1}(\Gamma X)(A-\lambda I)^{-1}y\\ &=(A-\lambda I)^{-1}(\Gamma X)(x+y)\in D(A).\end{split}

Thirdly, for X𝔖2()X\in\mathfrak{S}_{2}({\mathcal{H}}) and xD(A)x\in D(A), we have

A(ΓX)x(ΓX)Ax=m,nmnλmPmXPnxλmλnm,nmnλnPmXPnxλmλn=m,nmnPmXPnx=(XJX)x.\begin{split}A(\Gamma X)x-(\Gamma X)Ax&=\sum_{\begin{subarray}{c}m,n\in{\mathbb{Z}}\\ {m\neq n}\end{subarray}}\frac{\lambda_{m}P_{m}XP_{n}x}{\lambda_{m}-\lambda_{n}}-\sum_{\begin{subarray}{c}m,n\in{\mathbb{Z}}\\ {m\neq n}\end{subarray}}\frac{\lambda_{n}P_{m}XP_{n}x}{\lambda_{m}-\lambda_{n}}\\ &=\sum_{\begin{subarray}{c}m,n\in{\mathbb{Z}}\\ {m\neq n}\end{subarray}}{P_{m}XP_{n}}x=(X-JX)x.\end{split}

Finally, we observe that J(ΓX)=0J(\Gamma X)=0 for all X𝔖2()X\in\mathfrak{S}_{2}({\mathcal{H}}). ∎

As in Example 2.1, we will also need to consider coarser resolutions of the identity given by {P(k)}{Pn,|n|>k}\{P_{(k)}\}\cup\{P_{n},|n|>k\}, k+k\in{\mathbb{Z}}_{+}, where P(k)=|n|kPnP_{(k)}=\sum\limits_{|n|\leq k}P_{n}. We then have two families of transforms – {Jk\{J_{k}, k+}k\in{\mathbb{Z}}_{+}\} and {Γk\{\Gamma_{k}, k+}k\in{\mathbb{Z}}_{+}\} – that are given by

JkX=JXP(k)(JX)P(k)+P(k)XP(k)=P(k)XP(k)+|n|>kPnXPn,J_{k}X=JX-P_{(k)}(JX)P_{(k)}+P_{(k)}XP_{(k)}=P_{(k)}XP_{(k)}+\sum_{|n|>k}P_{n}XP_{n}, (3.12)

and

ΓkX=ΓXP(k)(ΓX)P(k)=max{|m|,|n|}>kmnPmXPnλmλn,X𝔖2().\Gamma_{k}X=\Gamma X-P_{(k)}(\Gamma X)P_{(k)}=\sum_{\begin{subarray}{c}\max\{|m|,|n|\}>k\\ {m\neq n}\end{subarray}}\frac{P_{m}XP_{n}}{\lambda_{m}-\lambda_{n}},\quad X\in\mathfrak{S}_{2}({\mathcal{H}}). (3.13)

Clearly, J0J_{0} and Γ0\Gamma_{0} coincide with the transforms given by (3.9) and (3.11), respectively, and JkXJ_{k}X and ΓkX\Gamma_{k}X, k+k\in{\mathbb{Z}}_{+}, are finite-rank perturbations of JX=J0XJX=J_{0}X and ΓX=Γ0X\Gamma X=\Gamma_{0}X, X𝔖2()X\in\mathfrak{S}_{2}({\mathcal{H}}). Moreover,

limkΓkX=0\lim_{k\to\infty}\Gamma_{k}X=0 (3.14)

in the topology of 𝔖2()\mathfrak{S}_{2}({\mathcal{H}}). Similarly to Lemma 3.5, one can check that (𝔖2(),Jk,Γk)(\mathfrak{S}_{2}({\mathcal{H}}),J_{k},\Gamma_{k}) is an admissible triplet for each k+k\in{\mathbb{Z}}_{+} as long as the condition on the resolvent of AA holds.

In Section 5, we will show that in the case of Dirac operators the above construction will lead to an admissible triplet that satisfies Assumption 3.3.

4. Preliminary similarity transforms for Dirac operators

As indicated by the discussion at the end of Section 3.1, one often cannot directly apply Theorem 3.2 without using the transform from Theorem 3.4. In the case of a Dirac operator with a general potential, the situation is even more complicated. Before we can extend the construction of the transforms JJ and Γ\Gamma from Section 3.2 for Theorem 3.4, we need yet another preliminary similarity transform. This preliminary transform will depend on the type of boundary conditions imposed on the operator.

Remark 4.1.

In the literature (see e.g. [23, 36, 37, 38]), the operators LbcL_{bc} are typically considered in the case when p1=p4=0p_{1}=p_{4}=0 in (1.2). For this case, as well as for the diagonal case p2=p3=0p_{2}=p_{3}=0, an extensive spectral theory of Dirac operators have been created. It is often said [36, 37, 38] that the general case can be reduced to that of p1=p4=0p_{1}=p_{4}=0 via a kind of similarity transform that is not connected to the method of similar operators. Such a reduction, however, may change the spectral properties of the unperturbed operator. This leads to complications that prevent one from clear understanding of the spectral theory of the general case.

4.1. The preliminary similarity transform for LdirL_{dir}.

In this case, we can use the similarity transform from [37, 38] that was alluded to in Remark 4.1. We include the transform in the statement of the following theorem, which is merely a reformulation of the results in [37, 38].

Theorem 4.1.

An operator LdirL_{dir} is similar to the operator L~dir:D(Ldir)\mathaccent 869{L}_{dir}:D(L_{dir})\subset{\mathcal{H}}\to{\mathcal{H}}, given by

(L~diry)(t)=i(1001)dydtνy(t)(0q2(t)q3(t)0)y(t),yD(Ldir),(\mathaccent 869{L}_{dir}y)(t)=i\begin{pmatrix}1&0\\ 0&-1\end{pmatrix}\frac{dy}{dt}-\nu y(t)-\begin{pmatrix}0&q_{2}(t)\\ q_{3}(t)&0\end{pmatrix}y(t),\ y\in D(L_{dir}),

where ν\nu is defined by (2.2) and q2q_{2}, q3q_{3} – by (2.4).

The similarity transfrom WdirW_{dir} of LdirL_{dir} into L~dir\mathaccent 869{L}_{dir} is given by

(Wdiry)(t)=(eiφ(t)00eiψ(t))y(t),(W_{dir}y)(t)=\begin{pmatrix}e^{i\varphi(t)}&0\\ 0&e^{i\psi(t)}\end{pmatrix}y(t), (4.1)

t[0,ω]t\in[0,\omega], yD(Ldir)y\in D(L_{dir}), where φ\varphi, ψ\psi are defined by (2.3).

Observe that with this similarity transform the free operator satisfies L~dir0=Ldir0νI\mathaccent 869{L}_{dir}^{0}={L}_{dir}^{0}-\nu I. Therefore, one can use the results in [8] to obtain all of the theorems for LdirL_{dir} stated in this paper, and we shall omit the corresponding proofs.

The following corollary is immediate from Theorem 4.1.

Corollary 4.2.

Assume that the potential PP is such that p2=p3=0p_{2}=p_{3}=0. Then the operator LdirL_{dir} is similar to the operator Ldir0νIL^{0}_{dir}-\nu I, where ν\nu is defined by (2.2). In particular, the eigenvalues of LdirL_{dir} are λn=πnων\lambda_{n}=\frac{\pi n}{\omega}-\nu, nn\in\mathbb{Z}, and the eigenfunctions s~n\mathaccent 869{s}_{n} of LdirL_{dir} are the images of the eigenfunctions of the free operator Ldir0L_{dir}^{0} under WdirW_{dir}:

s~n=12(ei(φ(t)πnωt)ei(ψ(t)+πnωt)),n.\mathaccent 869{s}_{n}=\frac{1}{\sqrt{2}}\begin{pmatrix}e^{i\left(\varphi(t)-\frac{\pi n}{\omega}t\right)}\\ e^{i\left(\psi(t)+\frac{\pi n}{\omega}t\right)}\end{pmatrix},\ n\in{\mathbb{Z}}.

4.2. The preliminary similarity transforms for LperL_{per} and LapL_{ap}.

In this subsection, we exhibit new similarity transforms that are especially suited for bc{per,ap}bc\in\{per,ap\}. Alternatively, one could use the similarity transform given by (4.1) with the corresponding domains for operators LperL_{per} and LapL_{ap}. In the case when p^1(0)\mathaccent 866{p}_{1}(0) and p^4(0)\mathaccent 866{p}_{4}(0) are not both real, however, this would lead to a free operator that is not normal. The use of the method of similar operators would then become unnecessarily complicated.

The following theorem is the result of a straightforward computation, which we omit for the sake of brevity.

Theorem 4.3.

For bc{per,ap}bc\in\{per,ap\}, we have

L~bc=Wbc1LbcWbc,\mathaccent 869{L}_{bc}=W_{bc}^{-1}L_{bc}W_{bc}, (4.2)

where WbcB(L2[0,ω])W_{bc}\in B(L^{2}[0,\omega]) and L~bc\mathaccent 869{L}_{bc} are given by

(Wbcy)(t)=(ei(φ(t)θωt)00ei(ψ(t)θωt))y(t)(W_{bc}y)(t)=\begin{pmatrix}e^{i(\varphi(t)-\frac{\theta}{\omega}t)}&0\\ 0&e^{i(\psi(t)-\frac{\theta}{\omega}t)}\end{pmatrix}y(t) (4.3)

and

(L~bcy)(t)=i(1001)dydt(p^1(0)00p^4(0))y(t)(0q2(t)q3(t)0)y(t),(\mathaccent 869{L}_{bc}y)(t)=i\begin{pmatrix}1&0\\ 0&-1\end{pmatrix}\frac{dy}{dt}-\begin{pmatrix}\mathaccent 866{p}_{1}(0)&0\\ 0&\mathaccent 866{p}_{4}(0)\end{pmatrix}y(t)-\begin{pmatrix}0&q_{2}(t)\\ q_{3}(t)&0\end{pmatrix}y(t), (4.4)

yD(Lbc)y\in D(L_{bc}), t[0,ω]t\in[0,\omega], with

D(L~bc)=D(Lbc).D(\mathaccent 869{L}_{bc})=D(L_{bc}). (4.5)

In the above formulae, θ\theta is given by (2.2), φ\varphi and ψ\psi – by (2.3), and q2q_{2} and q3q_{3} – by (2.4).

From Theorem 4.3, it follows that the study of the operators LbcL_{bc} is reduced to that of L~bc\mathaccent 869{L}_{bc}, bc{per,ap}bc\in\{per,ap\}. We write

L~bc=L~bcPQ:D(L~bc)=D(Lbc)L2[0,ω]L2[0,ω],\mathaccent 869{L}_{bc}=\mathaccent 869{L}_{bc}^{P}-Q:D(\mathaccent 869{L}_{bc})=D(L_{bc})\subset L_{2}[0,\omega]\to L_{2}[0,\omega],

where the free (unperturbed) operator L~bcP\mathaccent 869{L}_{bc}^{P} is given by

(L~bcPy)(t)=i(1001)dydt(p^1(0)00p^4(0))y(t),yD(L~bc),t[0,ω],(\mathaccent 869{L}_{bc}^{P}y)(t)=i\begin{pmatrix}1&0\\ 0&-1\end{pmatrix}\frac{dy}{dt}-\begin{pmatrix}\mathaccent 866{p}_{1}(0)&0\\ 0&\mathaccent 866{p}_{4}(0)\end{pmatrix}y(t),\quad y\in D(\mathaccent 869{L}_{bc}),\quad t\in[0,\omega], (4.6)

and the perturbation Q:D(Lbc)L2[0,ω]L2[0,ω]Q:D(L_{bc})\subset L_{2}[0,\omega]\to L_{2}[0,\omega] – by

(Qy)(t)=(0q2(t)q3(t)0)y(t),yD(L~bc),t[0,ω],(Qy)(t)=\begin{pmatrix}0&q_{2}(t)\\ q_{3}(t)&0\end{pmatrix}y(t),\quad y\in D(\mathaccent 869{L}_{bc}),\quad t\in[0,\omega], (4.7)

with q2q_{2} and q3q_{3} defined by (2.4).

The following corollary is immediate from Theorem 4.3.

Corollary 4.4.

Assume that the potential PP is such that p2=p3=0p_{2}=p_{3}=0. Then the operator LbcL_{bc} is similar to the operator L~bcP\mathaccent 869{L}_{bc}^{P} given by (4.6), and we have

σ(Lbc)=nσn,\sigma(L_{bc})=\bigcup_{n\in{\mathbb{Z}}}\sigma_{n}, (4.8)

where

  1. (a)

    in the case bc=perbc=per, σn={2πnωp^1(0),2πnωp^4(0)}\sigma_{n}=\left\{\frac{2\pi n}{\omega}-\mathaccent 866{p}_{1}(0),\frac{2\pi n}{\omega}-\mathaccent 866{p}_{4}(0)\right\}, nn\in\mathbb{Z}, and the corresponding eigenvectors of Lbc=LperL_{bc}=L_{per} are given by

    gn1(t)=(ei((2πnωp^1(0))t+0tp1(τ)𝑑τ)0) and gn2(t)=(0ei((2πnωp^4(0))t+0tp4(τ)𝑑τ)),n,t[0,ω];\begin{split}g_{n}^{1}(t)&=\begin{pmatrix}e^{-i\left((\frac{2\pi n}{\omega}-\mathaccent 866{p}_{1}(0))t+\int_{0}^{t}{p}_{1}(\tau)d\tau\right)}\\ 0\end{pmatrix}\mbox{ and }\\ g_{n}^{2}(t)&=\begin{pmatrix}0\\ e^{i\left((\frac{2\pi n}{\omega}-\mathaccent 866{p}_{4}(0))t+\int_{0}^{t}{p}_{4}(\tau)d\tau\right)}\end{pmatrix},\ n\in\mathbb{Z},\ t\in[0,\omega];\end{split} (4.9)
  2. (b)

    in the case bc=apbc=ap, σn={π(2n+1)ωp^1(0),π(2n+1)ωp^4(0)}\sigma_{n}=\left\{\frac{\pi(2n+1)}{\omega}-\mathaccent 866{p}_{1}(0),\frac{\pi(2n+1)}{\omega}-\mathaccent 866{p}_{4}(0)\right\}, nn\in\mathbb{Z}, and the corresponding eigenvectors of Lbc=LapL_{bc}=L_{ap} are given by

    g¯n1(t)=eπitωgn1(t) and g¯n2(t)=eπitωgn2(t),n,t[0,ω],\bar{g}_{n}^{1}(t)=e^{-\frac{\pi it}{\omega}}g_{n}^{1}(t)\mbox{ and }\bar{g}_{n}^{2}(t)=e^{\frac{\pi it}{\omega}}g_{n}^{2}(t),\ n\in\mathbb{Z},\ t\in[0,\omega],

    where gn1g_{n}^{1} and gn2g_{n}^{2} are given by (4.9).

5. Constructing the transforms JJ and Γ\Gamma for Dirac operators.

In this section, we adapt the construction from Section 3.2 to obtain the transforms of the method of similar operators for L~bc\mathaccent 869{L}_{bc}, bc{per,ap}bc\in\{per,ap\}, defined by (4.4). We then show that inside the family of admissible triplets we get in the process, there will be at list one that satisfies Assumption 3.3 for a given potential matrix that we consider in this paper.

As in Section 3.2, we choose =𝔖2()\mathcal{M}=\mathfrak{S}_{2}({\mathcal{H}}) to be the space of admissible perturbations. Since we deal with Dirac operators, we have =L2([0,ω],2){\mathcal{H}}=L^{2}([0,\omega],{\mathbb{C}}^{2}). For each potential matrix PP, we will exhibit a pair of families of transforms – {Jk=JkP\{J_{k}=J_{k}^{P}, k+}k\in{\mathbb{Z}}_{+}\} and {Γk=ΓkP\{\Gamma_{k}=\Gamma^{P}_{k}, k+}k\in{\mathbb{Z}}_{+}\} – that form admissible triplets together with \mathcal{M}. Assuming (2.1), the family {Jk\{J_{k}, k+}k\in{\mathbb{Z}}_{+}\} will be independent of PP and we will omit the superscript. The second family, however, does depend on PP and we will only omit the superscript in cases when no confusion may arise. We shall write {Γk0\{\Gamma^{0}_{k}, k+}k\in{\mathbb{Z}}_{+}\} for the transforms corresponding to L~bc0=Lbc0\mathaccent 869{L}^{0}_{bc}=L^{0}_{bc}.

Remark 5.1.

If (2.1) does not hold, the construction from Section 3.2 leads to different families {JkP}\{J_{k}^{P}\} and {ΓkP}\{\Gamma_{k}^{P}\} for each integer value of r=ωβ2π=ω2π(p^4(0)p^1(0))r=\frac{\omega\beta}{2\pi}=\frac{\omega}{2\pi}\left(\mathaccent 866{p}_{4}(0)-\mathaccent 866{p}_{1}(0)\right). All of these cases, however, can be treated following the blueprint of [8]. As the corresponding constructions contain no new insights, we shall only state the results and omit the proofs.

To use the construction from Section 3.2, we will need the spectral resolutions of the identity akin to the ones in Example 2.1. As before, in the case bc=perbc=per, we let λn=2πnω\lambda_{n}=\frac{2\pi n}{\omega}, nn\in\mathbb{Z}, and in the case bc=apbc=ap, we let λn=π(2n+1)ω\lambda_{n}=\frac{\pi(2n+1)}{\omega}, nn\in\mathbb{Z}. The spectral components σn=σnP\sigma_{n}=\sigma_{n}^{P} will then be as in Corollary 4.4: σn={λnp^1(0),λnp^4(0)}.\sigma_{n}=\left\{\lambda_{n}-\mathaccent 866{p}_{1}(0),\,\lambda_{n}-\mathaccent 866{p}_{4}(0)\right\}. Notice that σn\sigma_{n} is a two-element set if p^1(0)p^4(0)\mathaccent 866{p}_{1}(0)\neq\mathaccent 866{p}_{4}(0) and a singleton otherwise. Moreover, these components form a (disjoint) partition of the spectrum of L~bcP\mathaccent 869{L}^{P}_{bc} because of our assumption (2.1) on PP. Next, we let {Pn,n}\{P_{n},n\in{\mathbb{Z}}\} be the resolution of the identity that corresponds to the spectral decomposition (4.8) of L~bcP\mathaccent 869{L}^{P}_{bc} with these σn\sigma_{n}. As in Example 2.1, we shall also use the spectral projections P(k)=|n|kPnP_{(k)}=\sum\limits_{|n|\leq k}P_{n}, and the corresponding coarser resolutions of the identity given by {P(k)}{Pn,|n|>k}\{P_{(k)}\}\cup\{P_{n},|n|>k\}, k+k\in{\mathbb{Z}}_{+}. Notice that these projections are independent of the potential matrix PP. In fact, each PnP_{n}, nn\in{\mathbb{Z}}, is an orthogonal projection onto the eigenspace spanned by the vectors

en1=(en0) and en2=(0en),en(t)=eiλnt,t[0,ω].e_{n}^{1}=\begin{pmatrix}e_{-n}\\ 0\end{pmatrix}\mbox{ and }e_{n}^{2}=\begin{pmatrix}0\\ e_{n}\end{pmatrix},\quad e_{n}(t)=e^{i\lambda_{n}t},\quad t\in[0,\omega]. (5.1)

With the above notation, (3.8) and (3.10) give us the transforms J0J_{0} and Γ00\Gamma_{0}^{0}, respectively. The first equation in (3.12) then gives us the transforms JkJ_{k} and the first equation in (3.13) – the transforms Γk0\Gamma_{k}^{0}, k+k\in{\mathbb{Z}}_{+}. To define the transforms in the general case, we had to choose between two options. The first choice was to follow the abstract scheme outlined in Section 3.2. This, however, made the family {Jk}\{J_{k}\} dependent on PP and the subsequent calculations became insurmountably difficult. Thus, we chose to pursue the second option, where we kept the family {Jk}\{J_{k}\} intact and defined {ΓkP}\{\Gamma_{k}^{P}\} as a perturbation of Γk0\Gamma_{k}^{0}: we let ΓkP=Γk0+ΔkP\Gamma_{k}^{P}=\Gamma_{k}^{0}+\Delta_{k}^{P}. The formula for ΔkP\Delta_{k}^{P} arose from the key Property 3 in Definition 3.2 of admissible triplet.

To exhibit the formula for ΔkP\Delta_{k}^{P}, it is convenient to use the following notation for the matrix elements of operators X:D(X)X:D(X)\subseteq{\mathcal{H}}\to{\mathcal{H}}. We will denote by XmnX_{mn} the matrix element that corresponds to the operator PmXPnP_{m}XP_{n}. Clearly, we have

Xmn=(xmn11xmn12xmn21xmn22)=(Xen1,em1Xen2,em1Xen1,em2Xen2,em2),X_{mn}=\begin{pmatrix}x_{mn}^{11}&x_{mn}^{12}\\ x_{mn}^{21}&x_{mn}^{22}\end{pmatrix}=\begin{pmatrix}\langle Xe_{n}^{1},e_{m}^{1}\rangle&\langle Xe_{n}^{2},e_{m}^{1}\rangle\\ \langle Xe_{n}^{1},e_{m}^{2}\rangle&\langle Xe_{n}^{2},e_{m}^{2}\rangle\end{pmatrix}, (5.2)

where the basis elements en1,2e_{n}^{1,2}, nn\in{\mathbb{Z}}, are given by (5.1). Observe that the matrix elements of the operator QQ given by (4.7) satisfy

Qmn=(0q^2(mnϵbc)q^3(m+n+ϵbc)0),m,n,Q_{mn}=\begin{pmatrix}0&\mathaccent 866{q}_{2}(-m-n-\epsilon_{bc})\\ \mathaccent 866{q}_{3}(m+n+\epsilon_{bc})&0\end{pmatrix},\quad m,n\in{\mathbb{Z}}, (5.3)

where qkq_{k}, k=2,3k=2,3, are given by (2.4), bc{per,ap}bc\in\{per,ap\}, ϵper=0\epsilon_{per}=0, and ϵac=1\epsilon_{ac}=1.

For X𝔖2()X\in\mathfrak{S}_{2}({\mathcal{H}}) given by (5.2), we let β=p^1(0)p^4(0)\beta=\mathaccent 866{p}_{1}(0)-\mathaccent 866{p}_{4}(0) as in (2.1) and

(Δ0PX)mn=βλmλn(0xmn12λmλnβxmn21λmλn+β0),m,n,mn.(\Delta_{0}^{P}X)_{mn}=\frac{\beta}{\lambda_{m}-\lambda_{n}}\begin{pmatrix}0&\frac{x_{mn}^{12}}{\lambda_{m}-\lambda_{n}-\beta}\\ \frac{-x_{mn}^{21}}{\lambda_{m}-\lambda_{n}+\beta}&0\end{pmatrix},\ m,n\in{\mathbb{Z}},m\neq n. (5.4)

Naturally, we also define (Δ0PX)nn=0(\Delta_{0}^{P}X)_{nn}=0, nn\in{\mathbb{Z}}. We note that Δ0P\Delta_{0}^{P} is well defined because of our technical assumption (2.1). We also observe that since λmλn=2πω(mn)\lambda_{m}-\lambda_{n}=\frac{2\pi}{\omega}(m-n), we have Δ0P𝔖2()𝔖2()\Delta_{0}^{P}\mathfrak{S}_{2}({\mathcal{H}})\subseteq\mathfrak{S}_{2}({\mathcal{H}}). With the above definition, a straightforward computation shows that Property 3 in Definition 3.2 is, indeed, satisfied for Γ0P=Γ00+Δ0P\Gamma_{0}^{P}=\Gamma_{0}^{0}+\Delta_{0}^{P}. It remains to let ΓkPX=Γ0PXP(k)(Γ0PX)P(k)\Gamma_{k}^{P}X=\Gamma_{0}^{P}X-P_{(k)}(\Gamma_{0}^{P}X)P_{(k)} as in (3.13). Observe that the matrix elements of ΓkPX\Gamma_{k}^{P}X satisfy

(ΓkPX)mn={(xmn11λmλnxmn12λmλn+βxmn21λmλnβxmn22λmλn),max{|m|,|n|}>k,mn;0,otherwise.(\Gamma_{k}^{P}X)_{mn}=\begin{cases}\begin{pmatrix}\frac{x_{mn}^{11}}{\lambda_{m}-\lambda_{n}}&\frac{x_{mn}^{12}}{\lambda_{m}-\lambda_{n}+\beta}\\ \frac{x_{mn}^{21}}{\lambda_{m}-\lambda_{n}-\beta}&\frac{x_{mn}^{22}}{\lambda_{m}-\lambda_{n}}\end{pmatrix},&\max\{|m|,|n|\}>k,m\neq n;\\ 0,&\mbox{otherwise}.\end{cases} (5.5)

We remark that the transforms ΓkP\Gamma_{k}^{P} do not come from the general scheme in Section 3.2 if β0\beta\neq 0. The difference, however, is restricted to the main (block) diagonal in the block-matrix representation of ΓkPX\Gamma_{k}^{P}X.

The advantage of the use of the transforms JkJ_{k} and Γk0\Gamma_{k}^{0} in the definition of ΓkP\Gamma_{k}^{P} is in the fact that these transforms were studied in [8, 13]. Thus, we can simply recall their properties.

Lemma 5.1.

[8]. The following properties hold.

  1. (1)

    The transforms JkJ_{k} and Γk0\Gamma_{k}^{0}, k+k\in{\mathbb{Z}}_{+}, are well defined for XB()X\in B({\mathcal{H}}) by (3.8), (3.10), and the first equations in (3.12) and (3.13).

  2. (2)

    The transforms JkJ_{k}, k+k\in{\mathbb{Z}}_{+}, are idempotents and

    JkB(B())=JkB(𝔖2())=1.\|J_{k}\|_{B(B({\mathcal{H}}))}=\|J_{k}\|_{B(\mathfrak{S}_{2}({\mathcal{H}}))}=1.
  3. (3)

    The transform Γ00\Gamma_{0}^{0} satisfies

    Γ00B(B())ω4 and Γ00B(𝔖2())ω2π.\|\Gamma_{0}^{0}\|_{B(B({\mathcal{H}}))}\leq\frac{\omega}{4}\mbox{ and }\|\Gamma_{0}^{0}\|_{B(\mathfrak{S}_{2}({\mathcal{H}}))}\leq\frac{\omega}{2\pi}.
  4. (4)

    For XB()X\in B({\mathcal{H}}), we have Γk0XD(adLbc0)\Gamma_{k}^{0}X\in D({\rm{ad}}_{L^{0}_{bc}}) and

    adLbc0(Γk0X)=Lbc0(Γk0X)(Γk0X)Lbc0=XJkX.{\rm{ad}}_{L^{0}_{bc}}(\Gamma_{k}^{0}X)={L^{0}_{bc}}(\Gamma_{k}^{0}X)-(\Gamma_{k}^{0}X){L^{0}_{bc}}=X-J_{k}X.

From the above result we derive the following properties of the transforms ΓkP\Gamma_{k}^{P}, k+k\in{\mathbb{Z}}_{+}.

Lemma 5.2.

The following properties hold.

  1. (1)

    The transforms ΓkP=Γk0+ΔkP\Gamma_{k}^{P}=\Gamma_{k}^{0}+\Delta_{k}^{P}, k+k\in{\mathbb{Z}}_{+}, are well defined for XB()X\in B({\mathcal{H}}) by (3.10), (5.4), and the first equation in (3.13).

  2. (2)

    The transforms ΓkP\Gamma_{k}^{P}, k+k\in{\mathbb{Z}}_{+}, belong to B(B()){B(B({\mathcal{H}}))} as well as B(𝔖2()){B(\mathfrak{S}_{2}({\mathcal{H}}))} and

    limkΓkPX2=0 for all X𝔖2().\lim_{k\to\infty}\|\Gamma_{k}^{P}X\|_{2}=0\mbox{ for all }X\in\mathfrak{S}_{2}({\mathcal{H}}).
  3. (3)

    For XB()X\in B({\mathcal{H}}), we have ΓkPXD(adL~bcP)\Gamma_{k}^{P}X\in D({\rm{ad}}_{\mathaccent 869{L}^{P}_{bc}}) and

    adL~bcP(ΓkPX)=L~bcP(ΓkPX)(ΓkPX)L~bcP=XJkX.{\rm{ad}}_{\mathaccent 869{L}^{P}_{bc}}(\Gamma_{k}^{P}X)={\mathaccent 869{L}^{P}_{bc}}(\Gamma_{k}^{P}X)-(\Gamma_{k}^{P}X){\mathaccent 869{L}^{P}_{bc}}=X-J_{k}X. (5.6)
Proof.

In view of Lemma 5.1, to prove the first property, one needs to verify that (5.4) defines a bounded operator Δ0PXB()\Delta_{0}^{P}X\in B({\mathcal{H}}) for any XB()X\in B({\mathcal{H}}). First, recall from [8] that an arbitrary XB()X\in B({\mathcal{H}}) satisfies

Xx=limn=nn(1||n)Xx,x,Xx=\lim_{n\to\infty}\sum_{\ell=-n}^{n}\left(1-\frac{|\ell|}{n}\right)X_{\ell}x,\quad x\in{\mathcal{H}},

where XX_{\ell}, \ell\in{\mathbb{Z}}, are the matrix diagonals of XX. Secondly, for a given 0\ell\neq 0, and x=n(x,en1en1+x,en2en2)=n(xn1+xn2)x=\sum\limits_{n\in{\mathbb{Z}}}\left(\langle x,e_{n}^{1}\rangle e_{n}^{1}+\langle x,e_{n}^{2}\rangle e_{n}^{2}\right)=\sum\limits_{n\in{\mathbb{Z}}}(x_{n}^{1}+x_{n}^{2})\in{\mathcal{H}}, we have

(Δ0PX)x=ωβ2πn1(xn+,n12xn22πωβxn+,n21xn12πω+β)(\Delta_{0}^{P}X_{\ell})x=\frac{\omega\beta}{2\pi}\sum_{n\in{\mathbb{Z}}}\frac{1}{\ell}\left(\frac{x_{n+\ell,n}^{12}x_{n}^{2}}{\frac{2\pi\ell}{\omega}-\beta}-\frac{x_{n+\ell,n}^{21}x_{n}^{1}}{\frac{2\pi\ell}{\omega}+\beta}\right)

from (5.4). Since Δ0PX0=0\Delta_{0}^{P}X_{0}=0, it follows that the sequence

{Δ0PXB()}\{\|\Delta_{0}^{P}X_{\ell}\|_{B({\mathcal{H}})}\}_{\ell\in{\mathbb{Z}}}

is summable, yielding Property 1 and Δ0PB(B())<\|\Delta_{0}^{P}\|_{B(B({\mathcal{H}}))}<\infty. The remaining part of Property 2 follows from (5.5). More precisely, we have

ΓkPB(𝔖2())=maxm,nmndmn1=:δP,k+,\|\Gamma_{k}^{P}\|_{B(\mathfrak{S}_{2}({\mathcal{H}}))}=\max_{\begin{subarray}{c}m,n\in\mathbb{Z}\\ m\neq n\end{subarray}}d_{mn}^{-1}=:\delta^{P},\quad k\in\mathbb{Z}_{+}, (5.7)

where dmn=distmn(σm,σn)d_{mn}=\mathrm{dist}_{m\neq n}\,(\sigma_{m},\sigma_{n}), m,nm,n\in\mathbb{Z}, is the distance between distinct spectral components σm\sigma_{m} and σn\sigma_{n} of the operator L~bcP\mathaccent 869{L}_{bc}^{P}. Observe that dmn=dnm=dmn,0d_{mn}=d_{nm}=d_{m-n,0}, m,nm,n\in{\mathbb{Z}}, and (5.5) implies

δP=max{ω2π,max{0}ω|2πβω|}.\delta^{P}=\max\left\{\frac{\omega}{2\pi},\max_{\ell\in{\mathbb{Z}}\setminus\{0\}}\frac{\omega}{\left|{2\pi}\ell-\beta\omega\right|}\right\}.

Finally, the third property can be verified by direct computation; in fact, (5.4) was derived from (5.6). ∎

From the above two lemmas and the preceding discussion we conclude that the following result holds.

Corollary 5.3.

The triplets (𝔖2(),Jk,ΓkP)(\mathfrak{S}_{2}({\mathcal{H}}),J_{k},\Gamma_{k}^{P}), k+k\in{\mathbb{Z}}_{+}, are admissible for L~bcP\mathaccent 869{L}_{bc}^{P}.

Next, to verify the properties in Assumption 3.3, we need to extend the transforms JkJ_{k} and ΓkP\Gamma_{k}^{P}, k+k\in{\mathbb{Z}}_{+}, to 𝔏L~bcP()\mathfrak{L}_{\mathaccent 869{L}^{P}_{bc}}(\mathcal{H}). We recall that D(L~bcP)=D(Lbc)=D(Lbc0)D(\mathaccent 869{L}_{bc}^{P})=D(L_{bc})=D(L_{bc}^{0}), and that the spaces 𝔏L~bcP()\mathfrak{L}_{\mathaccent 869{L}^{P}_{bc}}(\mathcal{H}) and 𝔏Lbc0()\mathfrak{L}_{L^{0}_{bc}}(\mathcal{H}) have equivalent norms. This allows us to define the transforms so that JkJ_{k}, ΓkP\Gamma^{P}_{k}: 𝔏L~bcP()𝔏L~bcP()\mathfrak{L}_{\mathaccent 869{L}_{bc}^{P}}({\mathcal{H}})\to\mathfrak{L}_{\mathaccent 869{L}_{bc}^{P}}({\mathcal{H}}), k+k\in{\mathbb{Z}}_{+}, in the following way. Given λρ(Lbc0)\lambda\in\rho({L_{bc}^{0}}), we let

JkX=Jk(X(Lbc0λI)1)(Lbc0λI),X𝔏L~bcP(),J_{k}X=J_{k}(X({L_{bc}^{0}}-\lambda I)^{-1})({L_{bc}^{0}}-\lambda I),\quad X\in\mathfrak{L}_{\mathaccent 869{L}_{bc}^{P}}({\mathcal{H}}), (5.8)

and

ΓkPX=ΓkP(X(Lbc0λI)1)(Lbc0λI),X𝔏L~bcP().\Gamma_{k}^{P}X=\Gamma_{k}^{P}(X({L_{bc}^{0}}-\lambda I)^{-1})({L_{bc}^{0}}-\lambda I),\quad X\in\mathfrak{L}_{\mathaccent 869{L}_{bc}^{P}}({\mathcal{H}}). (5.9)

We observe that these extensions do not depend on the choice of λρ(Lbc0)\lambda\in\rho({L_{bc}^{0}}). Moreover, if xD(Lbc0)x\in D({L_{bc}^{0}}), the formulas (3.8), (3.10), (5.4), and the first equations in (3.12) and (3.13) may still be used for computation.

Yet again, we shall derive the properties of Jk,ΓkP:𝔏L~bcP()𝔏L~bcP()J_{k},\Gamma_{k}^{P}:\mathfrak{L}_{\mathaccent 869{L}^{P}_{bc}}(\mathcal{H})\to\mathfrak{L}_{\mathaccent 869{L}^{P}_{bc}}(\mathcal{H}) using analogous results in [8].

Lemma 5.4.

[8, Lemma 6]. For the operator QQ given by (4.7), we have that the operators JkQJ_{k}Q, Γk0Q\Gamma_{k}^{0}Q, QΓk0QQ\Gamma_{k}^{0}Q, and (Γk0Q)JkQ(\Gamma^{0}_{k}Q)J_{k}Q, k+k\in\mathbb{Z}_{+}, are Hilbert-Schmidt, i.e. belong to 𝔖2()\mathfrak{S}_{2}({\mathcal{H}}).

Proposition 5.5.

There exists k+k\in{\mathbb{Z}}_{+} such that Assumption 3.3 holds for the triplet (𝔖2(),Jk,ΓkP)(\mathfrak{S}_{2}({\mathcal{H}}),J_{k},\Gamma_{k}^{P}) and the operator QQ given by (4.7).

Proof.

Observe that it suffices to verify Properties 2, 3, and 5 of Assumption 3.3 for Γ=Δ0P\Gamma=\Delta_{0}^{P} and B=QB=Q. Indeed, the remaining assertions will follow immediately from the definitions. Let us exhibit the (non-zero) matrix elements of the relevant operators. To shorten the notation, we let

ubcmn=q^2(mnϵbc) and vbcmn=q^3(m+n+ϵbc),u^{mn}_{bc}=\mathaccent 866{q}_{2}(-m-n-\epsilon_{bc})\mbox{ and }v^{mn}_{bc}=\mathaccent 866{q}_{3}(m+n+\epsilon_{bc}), (5.10)

where qkq_{k}, k=2,3k=2,3, and ϵbc\epsilon_{bc} are as in (5.3). Using (5.4), we have

(Δ0PQ)mn=ω2β2π(mn)(0ubcmn2π(mn)ωβvbcmn2π(mn)+ωβ0),mn,(\Delta_{0}^{P}Q)_{mn}=\frac{\omega^{2}\beta}{2\pi(m-n)}\begin{pmatrix}0&\frac{u^{mn}_{bc}}{2\pi(m-n)-\omega\beta}\\ \frac{-v^{mn}_{bc}}{2\pi(m-n)+\omega\beta}&0\end{pmatrix},\ m\neq n\in{\mathbb{Z}},
(QΔ0PQ)mn=nω2β2π(n)(ubcmvbcn2π(n)+ωβ00vbcmubcn2π(n)ωβ),and(Q\Delta_{0}^{P}Q)_{mn}=\sum_{\begin{subarray}{c}\ell\in{\mathbb{Z}}\\ {\ell\neq n}\end{subarray}}\frac{\omega^{2}\beta}{2\pi(\ell-n)}\begin{pmatrix}\frac{-u^{m\ell}_{bc}v^{\ell n}_{bc}}{2\pi(\ell-n)+\omega\beta}&0\\ 0&\frac{v^{m\ell}_{bc}u^{\ell n}_{bc}}{2\pi(\ell-n)-\omega\beta}\end{pmatrix},\ \mbox{and}
((Lbc0λI)(Δ0PQ)(Lbc0λI)1)mn=[ω2β2πnωλ+ω2β2π(mn)](0ubcmn2π(mn)ωβvbcmn2π(mn)+ωβ0),mn,\begin{split}((&L_{bc}^{0}-\lambda I)(\Delta_{0}^{P}Q)(L_{bc}^{0}-\lambda I)^{-1})_{mn}=\\ &\left[\frac{\omega^{2}\beta}{2\pi n-\omega\lambda}+\frac{\omega^{2}\beta}{2\pi(m-n)}\right]\begin{pmatrix}0&\frac{u^{mn}_{bc}}{2\pi(m-n)-\omega\beta}\\ \frac{-v^{mn}_{bc}}{2\pi(m-n)+\omega\beta}&0\end{pmatrix},\ m\neq n\in{\mathbb{Z}},\end{split}

where λρ(Lbc0)\lambda\in\rho(L_{bc}^{0}). Since q2,q3L2([0,ω])q_{2},q_{3}\in L^{2}([0,\omega]), we have q^2\mathaccent 866{q}_{2}, q^32()\mathaccent 866{q}_{3}\in\ell^{2}({\mathbb{Z}}), and one can easily verify that all three of these operators are Hilbert-Schmidt via multiple applications of Cauchy-Schwarz inequality. For example, for QΔ0PQQ\Delta_{0}^{P}Q, we have

QΔ0PQ22=mnnm(QΔ0PQ)mn22=mnnm|nω2β2π(n)ubcmvbcn2π(n)+ωβ|2+mnnm|nω2β2π(n)ubcnvbcm2π(n)ωβ|2=\begin{split}\left\|Q\Delta_{0}^{P}Q\right\|_{2}^{2}&=\sum_{m\in{\mathbb{Z}}}\sum_{\begin{subarray}{c}n\in{\mathbb{Z}}\\ {n\neq m}\end{subarray}}\left\|(Q\Delta_{0}^{P}Q)_{mn}\right\|_{2}^{2}\\ &=\sum_{m\in{\mathbb{Z}}}\sum_{\begin{subarray}{c}n\in{\mathbb{Z}}\\ {n\neq m}\end{subarray}}\left|\sum_{\begin{subarray}{c}\ell\in{\mathbb{Z}}\\ {\ell\neq n}\end{subarray}}\frac{\omega^{2}\beta}{2\pi(\ell-n)}\cdot\frac{u^{m\ell}_{bc}v^{\ell n}_{bc}}{2\pi(\ell-n)+\omega\beta}\right|^{2}\\ &+\sum_{m\in{\mathbb{Z}}}\sum_{\begin{subarray}{c}n\in{\mathbb{Z}}\\ {n\neq m}\end{subarray}}\left|\sum_{\begin{subarray}{c}\ell\in{\mathbb{Z}}\\ {\ell\neq n}\end{subarray}}\frac{\omega^{2}\beta}{2\pi(\ell-n)}\cdot\frac{u^{\ell n}_{bc}v^{m\ell}_{bc}}{2\pi(\ell-n)-\omega\beta}\right|^{2}=\end{split}
[ω2β2π]2mnnm(nννnubcmvbcnubcmνvbcνn¯(n)(νn)(2π(n)+ωβ)(2π(νn)+ωβ¯)+nννnubcnvbcmubcnνvbcmν¯(n)(νn)(2π(n)ωβ)(2π(νn)ωβ¯))\begin{split}\left[\frac{\omega^{2}\beta}{2\pi}\right]^{2}&\sum_{m\in{\mathbb{Z}}}\sum_{\begin{subarray}{c}n\in{\mathbb{Z}}\\ {n\neq m}\end{subarray}}\left(\sum_{\begin{subarray}{c}\ell\in{\mathbb{Z}}\\ {\ell\neq n}\end{subarray}}\sum_{\begin{subarray}{c}\nu\in{\mathbb{Z}}\\ {\nu\neq n}\end{subarray}}\frac{u^{m\ell}_{bc}v^{\ell n}_{bc}\overline{u^{m\nu}_{bc}v^{\nu n}_{bc}}}{(\ell-n)(\nu-n)(2\pi(\ell-n)+\omega\beta)(2\pi(\nu-n)+\omega\overline{\beta})}\right.\\ +&\left.\sum_{\begin{subarray}{c}\ell\in{\mathbb{Z}}\\ {\ell\neq n}\end{subarray}}\sum_{\begin{subarray}{c}\nu\in{\mathbb{Z}}\\ {\nu\neq n}\end{subarray}}\frac{u^{\ell n}_{bc}v^{m\ell}_{bc}\overline{u^{n\nu}_{bc}v^{m\nu}_{bc}}}{(\ell-n)(\nu-n)(2\pi(\ell-n)-\omega\beta)(2\pi(\nu-n)-\omega\overline{\beta})}\right)\leq\\ &\end{split}
ω4β24π2(nnννnmmn|ubcm||ubcmν||vbcn||vbcνn||n||νn||2π(n)+ωβ||2π(νn)+ωβ|+nnννnmmn|ubcn||ubcnν||vbcm||vbcmν||n||νn||2π(n)ωβ||2π(νn)ωβ|)\begin{split}&\frac{\omega^{4}\beta^{2}}{4\pi^{2}}\left(\sum_{n\in{\mathbb{Z}}}\sum_{\begin{subarray}{c}\ell\in{\mathbb{Z}}\\ {\ell\neq n}\end{subarray}}\sum_{\begin{subarray}{c}\nu\in{\mathbb{Z}}\\ {\nu\neq n}\end{subarray}}\sum_{\begin{subarray}{c}m\in{\mathbb{Z}}\\ {m\neq n}\end{subarray}}\frac{|u^{m\ell}_{bc}||u^{m\nu}_{bc}||v^{\ell n}_{bc}||v^{\nu n}_{bc}|}{|\ell-n||\nu-n||2\pi(\ell-n)+\omega\beta||2\pi(\nu-n)+\omega\beta|}\right.\\ &+\left.\sum_{n\in{\mathbb{Z}}}\sum_{\begin{subarray}{c}\ell\in{\mathbb{Z}}\\ {\ell\neq n}\end{subarray}}\sum_{\begin{subarray}{c}\nu\in{\mathbb{Z}}\\ {\nu\neq n}\end{subarray}}\sum_{\begin{subarray}{c}m\in{\mathbb{Z}}\\ {m\neq n}\end{subarray}}\frac{|u^{\ell n}_{bc}||u^{n\nu}_{bc}||v^{m\ell}_{bc}||v^{m\nu}_{bc}|}{|\ell-n||\nu-n||2\pi(\ell-n)-\omega\beta||2\pi(\nu-n)-\omega\beta|}\right)\leq\end{split}
ω4β24π2(q2220νν0n|vbc,2n||vbcν,2n||||ν||2π+ωβ||2πν+ωβ|+q3220νν0n|ubc,2n||ubcν,2n||||ν||2πωβ||2πνωβ|)\begin{split}\frac{\omega^{4}\beta^{2}}{4\pi^{2}}&\left(\|q_{2}\|_{2}^{2}\sum_{\begin{subarray}{c}\ell\in{\mathbb{Z}}\\ {\ell\neq 0}\end{subarray}}\sum_{\begin{subarray}{c}\nu\in{\mathbb{Z}}\\ {\nu\neq 0}\end{subarray}}\sum_{n\in{\mathbb{Z}}}\frac{|v^{\ell,2n}_{bc}||v^{\nu,2n}_{bc}|}{|\ell||\nu||2\pi\ell+\omega\beta||2\pi\nu+\omega\beta|}\right.\\ &\left.+\|q_{3}\|_{2}^{2}\sum_{\begin{subarray}{c}\ell\in{\mathbb{Z}}\\ {\ell\neq 0}\end{subarray}}\sum_{\begin{subarray}{c}\nu\in{\mathbb{Z}}\\ {\nu\neq 0}\end{subarray}}\sum_{n\in{\mathbb{Z}}}\frac{|u^{\ell,2n}_{bc}||u^{\nu,2n}_{bc}|}{|\ell||\nu||2\pi\ell-\omega\beta||2\pi\nu-\omega\beta|}\right)\leq\end{split}
ω4β2q222q3224π2({0}12)(ν1|2πν+ωβ|2+ν1|2πνωβ|2)<.\frac{\omega^{4}\beta^{2}\|q_{2}\|^{2}_{2}\|q_{3}\|^{2}_{2}}{4\pi^{2}}\left(\sum_{\ell\in{\mathbb{Z}}\setminus\{0\}}\frac{1}{\ell^{2}}\right)\left(\sum_{\nu\in{\mathbb{Z}}}\frac{1}{|2\pi\nu+\omega\beta|^{2}}+\sum_{\nu\in{\mathbb{Z}}}\frac{1}{|2\pi\nu-\omega\beta|^{2}}\right)<\infty.

Properties 2 and 3 follow.

To prove Property 5, we write Q(L~bcPλεI)1=MNεQ(\mathaccent 869{L}^{P}_{bc}-\lambda_{\varepsilon}I)^{-1}=MN_{\varepsilon}, where M:LL2M:L^{\infty}\to L^{2} is given by My=QyMy=Qy, yLy\in L^{\infty}, and Nε:L2LN_{\varepsilon}:L^{2}\to L^{\infty} – by Nεx=(L~bcPλεI)1xN_{\varepsilon}x=(\mathaccent 869{L}^{P}_{bc}-\lambda_{\varepsilon}I)^{-1}x, xL2x\in L^{2}. Clearly, q2,q3L2([0,ω])q_{2},q_{3}\in L^{2}([0,\omega]) implies that the operator MM is bounded. Now let us consider the operators NiN_{i\ell}, \ell\in\mathbb{N}. For x=(x1,x2)x=(x_{1},x_{2})\in\mathcal{H}, we have

Nix=(nx^1(n)eiλntλnp^1(0)i,nx^2(n)eiλntλnp^4(0)i).N_{i\ell}x=\left(\sum_{n\in\mathbb{Z}}\frac{\mathaccent 866{x}_{1}(n)e^{i\lambda_{n}t}}{\lambda_{n}-\mathaccent 866{p}_{1}(0)-i\ell},\sum_{n\in\mathbb{Z}}\frac{\mathaccent 866{x}_{2}(-n)e^{i\lambda_{n}t}}{\lambda_{n}-\mathaccent 866{p}_{4}(0)-i\ell}\right).

Therefore,

Nix(n1(λnRep^1(0))2+(+Imp^1(0))2++n1(λnRep^4(0))2+(+Imp^4(0))2)1/2x20\left\|N_{i\ell}x\right\|_{\infty}\leq\left(\sum_{n\in\mathbb{Z}}\frac{1}{\left(\lambda_{n}-\mathrm{Re}\,\mathaccent 866{p}_{1}(0)\right)^{2}+(\ell+\mathrm{Im}\,\mathaccent 866{p}_{1}(0))^{2}}+\right.\\ \left.+\sum_{n\in\mathbb{Z}}\frac{1}{\left(\lambda_{n}-\mathrm{Re}\,\mathaccent 866{p}_{4}(0)\right)^{2}+(\ell+\mathrm{Im}\,\mathaccent 866{p}_{4}(0))^{2}}\right)^{1/2}\|x\|_{2}\to 0

as \ell\to\infty, and the result follows. ∎

We are now in position to apply Theorem 3.4.

Theorem 5.6.

There exists k+k\in\mathbb{Z}_{+} such that ΓkPQ2<1\|\Gamma_{k}^{P}Q\|_{2}<1, i. e. the operator I+ΓkPQI+\Gamma_{k}^{P}Q is invertible and (I+ΓkPQ)1I𝔖2()(I+\Gamma_{k}^{P}Q)^{-1}-I\in\mathfrak{S}_{2}({\mathcal{H}}). Moreover, the operator L~bcPQ\mathaccent 869{L}_{bc}^{P}-Q, bc{per,ap}bc\in\{per,ap\}, is similar to L~bcPB\mathaccent 869{L}_{bc}^{P}-{B}, B𝔖2(){B}\in\mathfrak{S}_{2}(\mathcal{H}), where

B=JkQ+(I+ΓkPQ)1(QΓkPQ(ΓkPQ)JkQ),{B}=J_{k}Q+(I+\Gamma_{k}^{P}Q)^{-1}(Q\Gamma_{k}^{P}Q-(\Gamma_{k}^{P}Q)J_{k}Q),

and

(L~bcPQ)(I+ΓkPQ)=(I+ΓkPQ)(L~bcPB).(\mathaccent 869{L}_{bc}^{P}-Q)(I+\Gamma_{k}^{P}Q)=(I+\Gamma_{k}^{P}Q)(\mathaccent 869{L}_{bc}^{P}-{B}).

The operators JkQJ_{k}Q, ΓkPQ\Gamma_{k}^{P}Q, QΓkPQQ\Gamma_{k}^{P}Q are Hilbert-Schmidt and we have that the operator B𝔖2(){B}\in\mathfrak{S}_{2}(\mathcal{H}) satisfies

B=J0Q+QΓ0PQ+C,{B}=J_{0}Q+Q\Gamma_{0}^{P}Q+C, (5.11)

where C𝔖1()C\in\mathfrak{S}_{1}(\mathcal{H}).

Proof.

In view of Proposition 5.5 and Theorem 3.4, we only need to verify the last assertion. We have

C=(I+ΓkPQ)1(ΓkPQ)(QΓkPQ(ΓkPQ)JkQ)+QΓkPQQΓ0PQ(ΓkPQ)JkQ+JkQJ0Q=(I+ΓkPQ)1(ΓkPQ)(QΓkPQ(ΓkPQ)JkQ)+C2=C1+C2,\begin{split}C&=-(I+\Gamma_{k}^{P}Q)^{-1}(\Gamma_{k}^{P}Q)(Q\Gamma_{k}^{P}Q-(\Gamma_{k}^{P}Q)J_{k}Q)\\ &+Q\Gamma_{k}^{P}Q-Q\Gamma_{0}^{P}Q-(\Gamma_{k}^{P}Q)J_{k}Q+J_{k}Q-J_{0}Q\\ &=-(I+\Gamma_{k}^{P}Q)^{-1}(\Gamma_{k}^{P}Q)(Q\Gamma_{k}^{P}Q-(\Gamma_{k}^{P}Q)J_{k}Q)+C_{2}=C_{1}+C_{2},\end{split}

where C2C_{2} has finite rank and C1𝔖1()C_{1}\in\mathfrak{S}_{1}(\mathcal{H}) as a product of two Hilbert-Schmidt operators. ∎

6. Final similarity transform

To finish the proof of Theorem 2.2, we would like to apply Theorem 3.1 to the operator L~bcPB\mathaccent 869{L}_{bc}^{P}-B constructed in Theorem 5.6. Unfortunately, triplets (𝔖2(),Jm,ΓmP)(\mathfrak{S}_{2}({\mathcal{H}}),J_{m},\Gamma_{m}^{P}), mm\in{\mathbb{N}}, can be used only if B2\|B\|_{2} is sufficiently small. Since we do not have any control over the norm of BB, we would like to circumvent this issue. It is possible to do so if we choose a smaller space \mathcal{M} of admissible perturbations. The space \mathcal{M} depends on the operator BB and its definition is rather involved. Roughly, it can be seen as a weighted Hilbert-Schmidt space.

In what follows, it is assumed that the operator BB given by (5.11) satisfies BP(m)BP(m)B\neq P_{(m)}BP_{(m)} for all m+m\in{\mathbb{Z}}_{+}. If the latter condition does not hold, the main results follow trivially from Theorem 5.6. To simplify the notation, in this section we shall write AA for L~bcP\mathaccent 869{L}_{bc}^{P}, bc{per,ap}bc\in\{per,ap\}.

Given X𝔖2()X\in\mathfrak{S}_{2}({\mathcal{H}}), we shall make use of the sequence (αn(X))(\alpha_{n}(X)) defined by

αn(X)=X212max{(|k||n|kPkX22)14,(|k||n|kXPk22)14},n.\alpha_{n}(X)=\|X\|_{2}^{-\frac{1}{2}}\max\left\{\left(\sum\limits_{\begin{subarray}{c}|k|\geq|n|\\ k\in\mathbb{Z}\end{subarray}}\|P_{k}X\|_{2}^{2}\right)^{\frac{1}{4}},\left(\sum\limits_{\begin{subarray}{c}|k|\geq|n|\\ k\in\mathbb{Z}\end{subarray}}\|XP_{k}\|_{2}^{2}\right)^{\frac{1}{4}}\right\},\quad n\in\mathbb{Z}. (6.1)

It is easy to check that the above sequence has the following properties:

  1. (1)

    αn(X)=αn(X)\alpha_{n}(X)=\alpha_{-n}(X), nn\in\mathbb{Z}.

  2. (2)

    lim|n|αn(X)=0\lim\limits_{|n|\to\infty}\alpha_{n}(X)=0, nn\in\mathbb{Z}.

  3. (3)

    αn(X)1\alpha_{n}(X)\leq 1 for all nn\in\mathbb{Z}.

  4. (4)

    αn(X)αn+1(X)\alpha_{n}(X)\geq\alpha_{n+1}(X), n0n\geq 0.

  5. (5)

    Given that P(m)XP(m)XP_{(m)}XP_{(m)}\neq X for all m+m\in\mathbb{Z}_{+}, we have αn(X)0\alpha_{n}(X)\neq 0 for all nn\in\mathbb{Z}, and

    nXPn22+PnX22(αn(X))2<.\sum\limits_{n\in\mathbb{Z}}\frac{\|XP_{n}\|_{2}^{2}+\|P_{n}X\|_{2}^{2}}{(\alpha_{n}(X))^{2}}<\infty. (6.2)

We remark that the sequence (αn(X))(\alpha_{n}(X)) characterizes the decay of matrix elements of XX along the rows and columns of the matrix. In view of (6.2), one may conclude that any X𝔖2()X\in\mathfrak{S}_{2}({\mathcal{H}}) also belongs to a “weighted Hilbert Schmidt space” with a weight that depends on XX. This is a manifestation of the fact that for any convergent series there is another one with a slower rate of convergence. If X=BX=B, we shall write simply αn\alpha_{n} instead of αn(B)\alpha_{n}(B).

Next, we introduce the function f=fB:σ(A)+f=f_{B}:\sigma(A)\to\mathbb{R}_{+} given by

f(λ)=nαnχσn(λ),λσ(A),f(\lambda)=\sum_{n\in{\mathbb{Z}}}\alpha_{n}\chi_{\sigma_{n}}(\lambda),\ \lambda\in\sigma(A),

where σn={μn1,μn2}\sigma_{n}=\{\mu_{n}^{1},\mu_{n}^{2}\} are, as before, the spectral components of the operator AA, and χE\chi_{E} denotes the characteristic function of a set EE. In particular, if bc=perbc=per, we have μn1=2πnωp^1(0)\mu_{n}^{1}=\frac{2\pi n}{\omega}-\mathaccent 866{p}_{1}(0) and μn2=2πnωp^4(0)\mu_{n}^{2}=\frac{2\pi n}{\omega}-\mathaccent 866{p}_{4}(0). Using the functional calculus for unbounded normal operators [21], we get that the operator

f(A)=nαnPnf(A)=\sum_{n\in\mathbb{Z}}\alpha_{n}P_{n}

belongs to B()B(\mathcal{H}) and f(A)maxn|αn|=1\|f(A)\|\leq\max\limits_{n\in\mathbb{Z}}|\alpha_{n}|=1.

We let =(B)\mathcal{M}=\mathcal{M}(B) be the set of all operators X𝔖2()X\in\mathfrak{S}_{2}({\mathcal{H}}) such that there exist operators Xl,Xr𝔖2()X_{l},X_{r}\in\mathfrak{S}_{2}({\mathcal{H}}) satisfying

X=Xlf(A)andX=f(A)Xr.X=X_{l}f(A)\quad\mbox{and}\quad X=f(A)X_{r}. (6.3)

Observe that the matrix of the operator f(A)f(A) is diagonal and the assumption BP(m)BP(m)B\neq P_{(m)}BP_{(m)} for all m+m\in{\mathbb{Z}}_{+} implies that it has no zeros on the main diagonal (see the last property of the sequence αn\alpha_{n}). Therefore, given XX\in\mathcal{M}, the operators XlX_{l} and XrX_{r} are uniquely defined by (6.3). Moreover, \mathcal{M} is a Banach space with the norm X=max{Xl2,Xr2}\|X\|_{*}=\max\{\|X_{l}\|_{2},\|X_{r}\|_{2}\} and

X2=Xlf(A)2=f(A)Xr2X.\|X\|_{2}=\|X_{l}f(A)\|_{2}=\|f(A)X_{r}\|_{2}\leq\|X\|_{*}. (6.4)

From (6.2), we also deduce that B(B)B\in\mathcal{M}(B) with

Bl=n1αnBPn and Br=n1αnPnB.B_{l}=\sum_{n\in{\mathbb{Z}}}\frac{1}{\alpha_{n}}BP_{n}\mbox{ and }B_{r}=\sum_{n\in{\mathbb{Z}}}\frac{1}{\alpha_{n}}P_{n}B.

Next, we will show that for each m+m\in{\mathbb{Z}}_{+} the transforms JmJ_{m} and ΓmP\Gamma_{m}^{P} defined in Section 5 form an admissible triplet for the operator A=L~bcPA=\mathaccent 869{L}_{bc}^{P} together with (B)\mathcal{M}(B). We will also show that in this case the constants γ=γmP\gamma=\gamma_{m}^{P} in Property 4 of Definition 3.2 satisfy

limmγmP=0,\lim\limits_{m\to\infty}\gamma_{m}^{P}=0, (6.5)

clearing the way for application of Theorem 3.1.

The first and last properties of the admissible triplet in Definition 3.2 follow from (6.4). Next, observe that

Jm(Xlf(A))=(JmXl)f(A),Jm(f(A)Xr)=f(A)(JmXr),J_{m}(X_{l}f(A))=(J_{m}X_{l})f(A),\quad J_{m}(f(A)X_{r})=f(A)(J_{m}X_{r}),
ΓmP(Xlf(A))=(ΓmPXl)f(A),ΓmP(f(A)Xr)=f(A)(ΓmPXr),\Gamma_{m}^{P}(X_{l}f(A))=(\Gamma_{m}^{P}X_{l})f(A),\quad\Gamma_{m}^{P}(f(A)X_{r})=f(A)(\Gamma_{m}^{P}X_{r}),

for XrX_{r}, Xl𝔖2()X_{l}\in\mathfrak{S}_{2}(\mathcal{H}). It follows that the space \mathcal{M} is invariant for JmJ_{m} and ΓmP\Gamma_{m}^{P} and, therefore, the restrictions of the transforms to \mathcal{M} are well defined. The second, third, and fifth properties of the admissible triplet follow. It remains to prove Property 4. To do so, we shall make use of two more sequences: (αn)(\alpha_{n}^{\prime}) and (α~n)(\mathaccent 869{\alpha}_{n}), nn\in{\mathbb{N}}. The first of them is defined by

αn+1=max{αdj1:,j,||n,|j|>n},n+,\alpha_{n+1}^{\prime}=\max\left\{\alpha_{\ell}{d_{j\ell}^{-1}}:\ell,j\in\mathbb{Z},|\ell|\leq n,|j|>n\right\},\quad n\in\mathbb{Z}_{+},

where dj=dist(σ,σj)d_{j\ell}=\mathrm{dist}(\sigma_{\ell},\sigma_{j}), ,j\ell,j\in\mathbb{Z}, is, as before, the distance between the spectral components σ\sigma_{\ell} and σj\sigma_{j} of the operator AA. The second sequence is given by

α~n=δPαn+αn,n,\mathaccent 869{\alpha}_{n}=\delta^{P}\alpha_{n}+\alpha_{n}^{\prime},\quad n\in{\mathbb{N}}, (6.6)

where δP\delta^{P} is defined in (5.7). Observe that limnαn=limnα~n=0\lim\limits_{n\to\infty}\alpha_{n}^{\prime}=\lim\limits_{n\to\infty}\mathaccent 869{\alpha}_{n}=0.

An analog of the following lemma can be found in [8, 11]. We do, however, have to provide a new proof because the spectral components and the transforms are different in this paper. Moreover, the proof in this paper is more streamlined and provides better estimates.

Lemma 6.1.

For any m+m\in\mathbb{Z}_{+} and X𝔖2()X\in\mathfrak{S}_{2}(\mathcal{H}) we have

max{ΓmP(Xf(A))2,ΓmP(f(A)X)2}α~m+1X2.\max\left\{\|\Gamma_{m}^{P}(Xf(A))\|_{2},\|\Gamma_{m}^{P}(f(A)X)\|_{2}\right\}\leq\mathaccent 869{\alpha}_{m+1}\|X\|_{2}.
Proof.

Let Q(m)=IP(m)Q_{(m)}=I-P_{(m)}, m+m\in\mathbb{Z}_{+}. Then, for X𝔖2()X\in\mathfrak{S}_{2}(\mathcal{H}), we have

ΓmP(Xf(A))=ΓmP(Xf(A)Q(m))+ΓmP(Q(m)Xf(A)P(m)).\Gamma_{m}^{P}(Xf(A))=\Gamma_{m}^{P}(Xf(A)Q_{(m)})+\Gamma_{m}^{P}(Q_{(m)}Xf(A)P_{(m)}).

Using (5.5) and the matrix representation (5.2) of XX, we can write the matrix elements of the above two operators as

(ΓmP(Xf(A)Q(m)))j={(αxj11λjλαxj12λjλ+βαxj21λjλβαxj22λjλ),||>m,j;0,otherwise;(\Gamma_{m}^{P}(Xf(A)Q_{(m)}))_{j\ell}=\begin{cases}\begin{pmatrix}\frac{\alpha_{\ell}x_{j\ell}^{11}}{\lambda_{j}-\lambda_{\ell}}&\frac{\alpha_{\ell}x_{j\ell}^{12}}{\lambda_{j}-\lambda_{\ell}+\beta}\\ \frac{\alpha_{\ell}x_{j\ell}^{21}}{\lambda_{j}-\lambda_{\ell}-\beta}&\frac{\alpha_{\ell}x_{j\ell}^{22}}{\lambda_{j}-\lambda_{\ell}}\end{pmatrix},&|\ell|>m,\ell\neq j;\\ 0,&\mbox{otherwise};\end{cases}

and

(ΓmP(Q(m)Zf(A)P(m)))j={(αxj11λjλαxj12λjλ+βαxj21λjλβαxj22λjλ),||m,|j|>m;0,otherwise.(\Gamma_{m}^{P}(Q_{(m)}Zf(A)P_{(m)}))_{j\ell}=\begin{cases}\begin{pmatrix}\frac{\alpha_{\ell}x_{j\ell}^{11}}{\lambda_{j}-\lambda_{\ell}}&\frac{\alpha_{\ell}x_{j\ell}^{12}}{\lambda_{j}-\lambda_{\ell}+\beta}\\ \frac{\alpha_{\ell}x_{j\ell}^{21}}{\lambda_{j}-\lambda_{\ell}-\beta}&\frac{\alpha_{\ell}x_{j\ell}^{22}}{\lambda_{j}-\lambda_{\ell}}\end{pmatrix},&|\ell|\leq m,|j|>m;\\ 0,&\mbox{otherwise}.\end{cases}

It follows that

ΓmP(Xf(A)Q(m))2δPαm+1X2\|\Gamma_{m}^{P}(Xf(A)Q_{(m)})\|_{2}\leq\delta^{P}\alpha_{m+1}\|X\|_{2}

and

ΓmP(Q(m)Xf(A)P(m))2αm+1X2,\|\Gamma_{m}^{P}(Q_{(m)}Xf(A)P_{(m)})\|_{2}\leq\alpha_{m+1}^{\prime}\|X\|_{2},

yielding the first of the desired inequalities. The second one is obtained in a similar fashion. ∎

Immediately from the above lemma, we have the following result.

Corollary 6.2.

For any m+m\in\mathbb{Z}_{+}, we have ΓmPB()α~m+1\|\Gamma_{m}^{P}\|_{B(\mathcal{M})}\leq\mathaccent 869{\alpha}_{m+1}.

The following lemma concludes the proof of Property 4 in Definition 3.2. The proof is exactly the same as in [8] and is, therefore, omitted.

Lemma 6.3.

[8, Lemma 4]. For any m0m\geq 0 and X,YX,Y\in\mathcal{M}, we have

max{XΓmPY,(ΓmPX)Y}α~m+1XY.\max\left\{\|X\Gamma_{m}^{P}Y\|_{*},\|(\Gamma_{m}^{P}X)Y\|_{*}\right\}\leq\mathaccent 869{\alpha}_{m+1}\|X\|_{*}\|Y\|_{*}.

We summarize the facts obtained after the definition of the space =(B)\mathcal{M}=\mathcal{M}(B) in the following proposition.

Proposition 6.4.

For any m0m\geq 0 we have that ((B),Jm,ΓmP)(\mathcal{M}(B),J_{m},\Gamma_{m}^{P}) is an admissible triplet for the operator AA with Jm=1\|J_{m}\|=1 and γm=α~m+1\gamma_{m}=\mathaccent 869{\alpha}_{m+1}.

We are now in position to apply Theorem 3.1. In conjunction with Lemma 2.1, we obtain the following Theorem 6.6, which is, in fact, stronger, than Theorem 2.2. To simplify the exposition, we collect all the necessary notation and hypotheses in the following assumption.

Assumption 6.5.

Assume the following.

  1. (1)

    An operator Lbc=Lbc0PL_{bc}=L_{bc}^{0}-P is given by (1.1).

  2. (2)

    WbcW_{bc} is given by (4.1) for bc=dirbc=dir and (4.3) for bc{per,ap}bc\in\{per,ap\}.

  3. (3)

    L~bc=Wbc1LbcWbc=L~bcPQ\mathaccent 869{L}_{bc}=W_{bc}^{-1}L_{bc}W_{bc}=\mathaccent 869{L}_{bc}^{P}-Q, where QQ is given by (4.7).

  4. (4)

    β=p^1(0)p^4(0)\beta=\mathaccent 866{p}_{1}(0)-\mathaccent 866{p}_{4}(0), r=ωβ2πr=\frac{\omega\beta}{2\pi} as in (2.1).

  5. (5)

    If bc=dirbc=dir or bc{per,ap}bc\in\{per,ap\} and r{0}r\notin{\mathbb{Z}}\setminus\{0\}, let {Pn,n}\{P_{n},n\in{\mathbb{Z}}\} be the resolution of the identity consisting of the spectral projections of the operator Lbc0L_{bc}^{0}.

  6. (6)

    If bc{per,ap}bc\in\{per,ap\} and r{0}r\in{\mathbb{Z}}\setminus\{0\}, let {Pn,n}\{P_{n},n\in{\mathbb{Z}}\} be the resolution of the identity consisting of the spectral projections of the operator L~bcP\mathaccent 869{L}_{bc}^{P}.

  7. (7)

    Let {Jn,n+}\{J_{n},n\in{\mathbb{Z}}_{+}\} be the family of transforms defined by (3.8) and (3.12).

  8. (8)

    If bc=dirbc=dir or bc{per,ap}bc\in\{per,ap\} and rr\in{\mathbb{Z}}, let {Γn,n+}\{\Gamma_{n},n\in{\mathbb{Z}}_{+}\} be the family of transforms defined by (3.10) and (3.13).

  9. (9)

    If bc{per,ap}bc\in\{per,ap\} and rr\notin{\mathbb{Z}}, let {Γn,n+}\{\Gamma_{n},n\in{\mathbb{Z}}_{+}\} be the family of transforms defined by (5.5).

  10. (10)

    For an operator B𝔖2()B\in\mathfrak{S}_{2}({\mathcal{H}}), let =(B)\mathcal{M}=\mathcal{M}(B) be the Banach space defined earlier in this section, and α~n=α~n(B)\mathaccent 869{\alpha}_{n}=\mathaccent 869{\alpha}_{n}(B), nn\in{\mathbb{N}}, be the sequence given by (6.6).

Theorem 6.6.

With the notation and hypotheses in Assumption 6.5, there exists k+k\in\mathbb{Z}_{+} such that ΓkQ2<1\|\Gamma_{k}Q\|_{2}<1, and the operator Lbc{L}_{bc} is similar to L~bcPB\mathaccent 869{L}_{bc}^{P}-{B}, where

B=JkQ+(I+ΓkQ)1(QΓkQ(ΓkQ)JkQ)𝔖2().{B}=J_{k}Q+(I+\Gamma_{k}Q)^{-1}(Q\Gamma_{k}Q-(\Gamma_{k}Q)J_{k}Q)\in\mathfrak{S}_{2}(\mathcal{H}).

Moreover, the operators JkQJ_{k}Q, ΓkQ\Gamma_{k}Q, and QΓkQQ\Gamma_{k}Q are Hilbert-Schmidt, and we have B=J0Q+QΓ0Q+C,{B}=J_{0}Q+Q\Gamma_{0}Q+C, where C𝔖1()C\in\mathfrak{S}_{1}(\mathcal{H}).

Furthermore, there exists m+m\in\mathbb{Z}_{+} such that 4α~m+1B<14\mathaccent 869{\alpha}_{m+1}\|B\|_{*}<1, and the operator Lbc{L}_{bc} is similar to L~bcPV\mathaccent 869{L}_{bc}^{P}-{V} with

LbcWbc(I+U)=Wbc(I+U)(L~bcPV).L_{bc}W_{bc}(I+U)=W_{bc}(I+U)(\mathaccent 869{L}_{bc}^{P}-V).

In the above formula:

  • U=ΓkQ+ΓmX+(ΓkQ)ΓmX𝔖2()U=\Gamma_{k}Q+\Gamma_{m}X_{*}+(\Gamma_{k}Q)\Gamma_{m}X_{*}\in\mathfrak{S}_{2}({\mathcal{H}});

  • X(B)X_{*}\in\mathcal{M}(B) is the unique fixed point of the function Φ\Phi given by (3.3) with J=JmJ=J_{m} and Γ=Γm\Gamma=\Gamma_{m} in the ball (3.5);

  • V=JmX=J0Q+J0(QΓ0Q)+C~𝔖2()V=J_{m}X_{*}=J_{0}Q+J_{0}(Q\Gamma_{0}Q)+\mathaccent 869{C}\in\mathfrak{S}_{2}(\mathcal{H});

  • C~𝔖1()\mathaccent 869{C}\in\mathfrak{S}_{1}({\mathcal{H}}).

Moreover, the subspaces (m)=P(m)\mathcal{H}_{(m)}=P_{(m)}{\mathcal{H}} and n=Pn\mathcal{H}_{n}=P_{n}{\mathcal{H}}, |n|>m|n|>m, are invariant for the operator VV, the dimension of (m){\mathcal{H}}_{(m)} is at most 2m+22m+2, the dimensions of n\mathcal{H}_{n}, |n|>m|n|>m, are at most 22, and the operator LbcL_{bc} is a Wbc(I+U)W_{bc}(I+U)-orthogonal direct sum

Lbc=Wbc(I+U)((L~bcPV)(m)(|n|>m(L~bcPV)n))(I+U)1Wbc1.L_{bc}=W_{bc}(I+U)\left(\left(\mathaccent 869{L}_{bc}^{P}-V\right)_{(m)}\oplus\left(\bigoplus_{|n|>m}\left(\mathaccent 869{L}_{bc}^{P}-V\right)_{n}\right)\right)(I+U)^{-1}W_{bc}^{-1}.
Proof.

The case bc=dirbc=dir follows from [8, Theorem 6]. The case bc{per,ap}bc\in\{per,ap\} and r{0}r\in{\mathbb{Z}}\setminus\{0\} does not follow directly from there but may be obtained in the same way.

The remaining case: bc{per,ap}bc\in\{per,ap\} and r{0}r\notin{\mathbb{Z}}\setminus\{0\}, follows from the discussion preceding the statement of the theorem.

The representation of LbcL_{bc} as a direct sum was not explicitly discussed in [8]. It follows from V=JmXV=J_{m}X_{*} and Lemma 2.1. The formula

V=J0Q+J0(QΓ0Q)+C~V=J_{0}Q+J_{0}(Q\Gamma_{0}Q)+\mathaccent 869{C} (6.7)

is obtained the same way as in [8] using the fact that J0𝔖1()𝔖1()J_{0}\mathfrak{S}_{1}({\mathcal{H}})\subseteq\mathfrak{S}_{1}({\mathcal{H}}). ∎

7. Asymptotic estimates of the spectrum

In this section, we operate under Assumption 6.5 and use the direct sum representation in Theorem 6.6 to estimate the spectrum σ(Lbc)=σ(L~bcPV)\sigma(L_{bc})=\sigma(\mathaccent 869{L}_{bc}^{P}-V). We let σ(m)=σ((L~bcPV)(m))\sigma_{(m)}=\sigma\left((\mathaccent 869{L}_{bc}^{P}-V)_{(m)}\right) and σn=σ((L~bcPV)n)\sigma_{n}=\sigma\left((\mathaccent 869{L}_{bc}^{P}-V)_{n}\right), |n|m|n|\geq m.

First, observe that the operator L~bcP\mathaccent 869{L}_{bc}^{P} has compact resolvent. Therefore, so do the operators L~bcPV\mathaccent 869{L}_{bc}^{P}-V and LbcL_{bc}. Repeating the argument in [8, Remark 2], we get

σ(Lbc)=σ(m)(|n|mσn).\sigma(L_{bc})=\sigma_{(m)}\cup\left(\bigcup_{|n|\geq m}\sigma_{n}\right). (7.1)

We remark that an analog of the above result was proved in [18].

Secondly, we observe that the spaces n{\mathcal{H}}_{n}, nn\in{\mathbb{Z}}, have dimensions at most 22 and the space (m){\mathcal{H}}_{(m)} – at most 2m+22m+2. Therefore, the set σ(m)\sigma_{(m)} has at most 2m+22m+2 elements and each σn\sigma_{n} – at most 22.

In the following result, we summarize coarse estimates of σ(Lbc)\sigma(L_{bc}) that follow immediately from Theorem 6.6, Lemma 2.1, and (7.1).

Theorem 7.1.

The following equations hold.

  • σ(Ldir)={πnων+bn1:n}\sigma(L_{dir})=\left\{\frac{\pi n}{\omega}-\nu+b^{1}_{n}:n\in{\mathbb{Z}}\right\},

  • σ(Lper)={2πnωp^1(0)+bn2,2πnωp^4(0)+bn3:n}\sigma(L_{per})=\left\{\frac{2\pi n}{\omega}-\mathaccent 866{p}_{1}(0)+b^{2}_{n},\frac{2\pi n}{\omega}-\mathaccent 866{p}_{4}(0)+b^{3}_{n}:n\in{\mathbb{Z}}\right\},

  • σ(Lap)={π(2n+1)ωp^1(0)+bn4,π(2n+1)ωp^4(0)+bn5:n}\sigma(L_{ap})=\left\{\frac{\pi(2n+1)}{\omega}-\mathaccent 866{p}_{1}(0)+b^{4}_{n},\frac{\pi(2n+1)}{\omega}-\mathaccent 866{p}_{4}(0)+b^{5}_{n}:n\in{\mathbb{Z}}\right\};

where ν\nu is given by (2.2) and bk={bnk:n}2()b^{k}=\{b^{k}_{n}:n\in{\mathbb{Z}}\}\in\ell^{2}({\mathbb{Z}}), k=1,,5k=1,\ldots,5.

To provide more accurate estimates of the spectra, we need to consider various cases in greater detail.

7.1. The spectrum of LdirL_{dir}.

This case is covered by [8, Theorem 7]. The result is as follows.

Theorem 7.2.

There exists mm\in{\mathbb{N}} such that (7.1) holds. Moreover, we have σn={λ~n}\sigma_{n}=\{\mathaccent 869{\lambda}_{n}\}, |n|>m|n|>m, where

λ~n=πnωνθ2n{0}θ+2n2+cn,\mathaccent 869{\lambda}_{n}=\frac{\pi n}{\omega}-\nu-\theta_{2n}-\sum_{\ell\in{\mathbb{Z}}\setminus\{0\}}\frac{\theta^{2}_{\ell+2n}}{\ell}+c_{n}, (7.2)
θn={12(q^2(n2)+q^3(n2)),n2;12(η^2(n+12)+η^3(n+12)),n2+1;,\theta_{n}=\begin{cases}\frac{1}{2}\left(\mathaccent 866{q}_{2}(-\frac{n}{2})+\mathaccent 866{q}_{3}(\frac{n}{2})\right),&n\in 2{\mathbb{Z}};\\ \frac{1}{2}\left(\mathaccent 866{\eta}_{2}(-\frac{n+1}{2})+\mathaccent 866{\eta}_{3}(\frac{n+1}{2})\right),&n\in 2{\mathbb{Z}}+1;\end{cases},

ν\nu is given by (2.2), qkq_{k}, k=2,3k=2,3, – by (2.4), η2(t)=q2(t)eiπωt\eta_{2}(t)=q_{2}(t)e^{-i\frac{\pi}{\omega}t}, η3(t)=q3(t)eiπωt\eta_{3}(t)=q_{3}(t)e^{i\frac{\pi}{\omega}t}, and c=(cn)1()c=(c_{n})\in\ell^{1}({\mathbb{Z}}).

7.2. The spectrum of LbcL_{bc}, bc{per,ap}bc\in\{per,ap\}, with r=ωβ2πr=\frac{\omega\beta}{2\pi}\notin{\mathbb{Z}}.

In this case, we will use the following lemma, which is implied by the calculations in Example 3.1.

Lemma 7.3.

Consider a family of 2×22\times 2 matrices ZnZ_{n}, nn\in{\mathbb{N}}, given by

Zn=(zn100zn2)(bn1bn3bn4bn2)(cn1cn3cn4cn2),Z_{n}=\left(\begin{array}[]{cc}z_{n}^{1}&0\\ 0&z_{n}^{2}\end{array}\right)-\left(\begin{array}[]{cc}b_{n}^{1}&b_{n}^{3}\\ b_{n}^{4}&b_{n}^{2}\end{array}\right)-\left(\begin{array}[]{cc}c_{n}^{1}&c_{n}^{3}\\ c_{n}^{4}&c_{n}^{2}\end{array}\right),

where ε=infn|zn1zn2|>0\varepsilon=\inf\limits_{n\in{\mathbb{Z}}}|z_{n}^{1}-z_{n}^{2}|>0, the sequences {bnk:n}\{b_{n}^{k}:n\in{\mathbb{Z}}\}, k=1,2,3,4k=1,2,3,4, belong to 2()\ell^{2}({\mathbb{Z}}), and the sequences {cnk:n}\{c_{n}^{k}:n\in{\mathbb{Z}}\}, k=1,2,3,4k=1,2,3,4, belong to 1()\ell^{1}({\mathbb{Z}}). Then for all nn\in{\mathbb{Z}} that are sufficiently large in absolute value, the matrix ZnZ_{n} is similar to

Z~n=(zn1bn1dn100zn2bn2dn2),\mathaccent 869{Z}_{n}=\left(\begin{array}[]{cc}z_{n}^{1}-b_{n}^{1}-d_{n}^{1}&0\\ 0&z_{n}^{2}-b_{n}^{2}-d_{n}^{2}\end{array}\right),

where the sequences {dnk:n}\{d_{n}^{k}:n\in{\mathbb{Z}}\}, k=1,2k=1,2, belong to 1()\ell^{1}({\mathbb{Z}}).

Proof.

Observe that for nn\in{\mathbb{Z}} that are sufficiently large in absolute value we have

(bn1bn3bn4bn2)+(cn1cn3cn4cn2)2<ε4.\left\|\left(\begin{array}[]{cc}b_{n}^{1}&b_{n}^{3}\\ b_{n}^{4}&b_{n}^{2}\end{array}\right)+\left(\begin{array}[]{cc}c_{n}^{1}&c_{n}^{3}\\ c_{n}^{4}&c_{n}^{2}\end{array}\right)\right\|_{2}<\frac{\varepsilon}{4}.

According to Example 3.1, we have that for such nn\in{\mathbb{Z}} the operator ZnZ_{n} is similar to

Z~n=(zn1bn1cn1νn100zn2bn2cn2νn2),\mathaccent 869{Z}_{n}=\left(\begin{array}[]{cc}z_{n}^{1}-b_{n}^{1}-c_{n}^{1}-\nu_{n}^{1}&0\\ 0&z_{n}^{2}-b_{n}^{2}-c_{n}^{2}-\nu_{n}^{2}\end{array}\right),

where {νnk}\{\nu_{n}^{k}\}, k=1,2k=1,2, can be estimated using (3.6). In particular, they belong to 1\ell^{1} as pointwise products of two 2\ell^{2} sequences. ∎

In view of the representation (6.7), we may apply the above result to the sequence (L~bcPV)n\left(\mathaccent 869{L}_{bc}^{P}-V\right)_{n}, |n|>m|n|>m.

Theorem 7.4.

There exists mm\in{\mathbb{N}} such that (7.1) holds with

σn={π(2n+ϵbc)ωp^1(0)2nωq^2(ϵbc)q^3(+ϵbc)2π(2n)ωβdn1,π(2n+ϵbc)ωp^4(0)2nωq^2(ϵbc)q^3(+ϵbc)2π(2n)+ωβdn2},|n|>m,\begin{split}\sigma_{n}=\Bigg{\{}&\frac{\pi(2n+\epsilon_{bc})}{\omega}-\mathaccent 866{p}_{1}(0)-\sum_{\ell\neq 2n}\frac{\omega\mathaccent 866{q}_{2}(-\ell-\epsilon_{bc})\mathaccent 866{q}_{3}(\ell+\epsilon_{bc})}{2\pi(\ell-2n)-\omega\beta}-d_{n}^{1},\\ &\frac{\pi(2n+\epsilon_{bc})}{\omega}-\mathaccent 866{p}_{4}(0)-\sum_{\ell\neq 2n}\frac{\omega\mathaccent 866{q}_{2}(-\ell-\epsilon_{bc})\mathaccent 866{q}_{3}(\ell+\epsilon_{bc})}{2\pi(\ell-2n)+\omega\beta}-d_{n}^{2}\Bigg{\}},\ |n|>m,\end{split}

where qkq_{k}, k=2,3k=2,3, are given by (2.4), ϵbc\epsilon_{bc} is as in (5.3), and the sequences {dnk:n}\{d_{n}^{k}:n\in{\mathbb{Z}}\}, k=1,2k=1,2, belong to 1()\ell^{1}({\mathbb{Z}}).

Proof.

Since rr\notin{\mathbb{Z}}, the transform Γ0=Γ0P\Gamma_{0}=\Gamma_{0}^{P} is given by (5.5). Using (5.3) and

(QΓ0Q)nn=(2nωq^2(ϵbc)q^3(+ϵbc)2π(2n)ωβ002nωq^2(ϵbc)q^3(+ϵbc)2π(2n)+ωβ),(Q\Gamma_{0}Q)_{nn}=\left(\begin{array}[]{cc}\sum\limits_{\ell\neq 2n}\frac{\omega\mathaccent 866{q}_{2}(-\ell-\epsilon_{bc})\mathaccent 866{q}_{3}(\ell+\epsilon_{bc})}{2\pi(\ell-2n)-\omega\beta}&0\\ 0&\sum\limits_{\ell\neq 2n}\frac{\omega\mathaccent 866{q}_{2}(-\ell-\epsilon_{bc})\mathaccent 866{q}_{3}(\ell+\epsilon_{bc})}{2\pi(\ell-2n)+\omega\beta}\end{array}\right), (7.3)

the result follows from (6.7) and Lemma 7.3 via a direct computation. ∎

7.3. The spectrum of LbcL_{bc}, bc{per,ap}bc\in\{per,ap\}, with r=ωβ2πr=\frac{\omega\beta}{2\pi}\in{\mathbb{Z}}.

Observe that in this case the matrix elements of QQ and QΓ0QQ\Gamma_{0}Q satisfy

Qmn=(0q^2(mnrϵbc)q^3(m+n+r+ϵbc)0) and (QΓ0Q)nn=2n+rωq^2(ϵbc)q^3(+ϵbc)2π(2nr)(1001),\begin{split}Q_{mn}&=\begin{pmatrix}0&\mathaccent 866{q}_{2}(-m-n-r-\epsilon_{bc})\\ \mathaccent 866{q}_{3}(m+n+r+\epsilon_{bc})&0\end{pmatrix}\mbox{ and }\\ (Q\Gamma_{0}Q)_{nn}&=\sum\limits_{\ell\neq 2n+r}\frac{\omega\mathaccent 866{q}_{2}(-\ell-\epsilon_{bc})\mathaccent 866{q}_{3}(\ell+\epsilon_{bc})}{2\pi(\ell-2n-r)}\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right),\end{split} (7.4)

where QQ is given by (5.3) and Γ0\Gamma_{0} by (3.10).

We will need the following lemma.

Lemma 7.5.

Let Zn=Bn+CnZ_{n}=B_{n}+C_{n} be a sequence of matrices such that

Bn=(0bn2bn30) and Cn=(cn1cn3cn4cn2),B_{n}=\left(\begin{array}[]{cc}0&b_{n}^{2}\\ b_{n}^{3}&0\end{array}\right)\mbox{ and }C_{n}=\left(\begin{array}[]{cc}c_{n}^{1}&c_{n}^{3}\\ c_{n}^{4}&c_{n}^{2}\end{array}\right),

where the sequences {bnk:n}\{b_{n}^{k}:n\in{\mathbb{Z}}\}, k=2,3k=2,3, belong to 2()\ell^{2}({\mathbb{Z}}), and the sequences {cnk:n}\{c_{n}^{k}:n\in{\mathbb{Z}}\}, k=1,2,3,4k=1,2,3,4, belong to 1()\ell^{1}({\mathbb{Z}}). Then

σ(Zn)={bn2bn3+dn1,bn2bn3+dn2},\sigma(Z_{n})=\left\{\sqrt{b_{n}^{2}b_{n}^{3}}+d_{n}^{1},-\sqrt{b_{n}^{2}b_{n}^{3}}+d_{n}^{2}\right\}, (7.5)

where the sequences {dnk:n}\{d_{n}^{k}:n\in{\mathbb{Z}}\}, k=1,2k=1,2, belong to 4/3()\ell^{4/3}({\mathbb{Z}}). Moreover, if there exist c,C>0c,C>0 such that cbn2bn3Cbn2cb_{n}^{2}\leq b_{n}^{3}\leq Cb_{n}^{2} for all nn\in{\mathbb{Z}} that are sufficiently large in absolute value, then the sequences {dnk:n}\{d_{n}^{k}:n\in{\mathbb{Z}}\}, k=1,2k=1,2, belong to 1()\ell^{1}({\mathbb{Z}}).

Proof.

Let σ(Zn)={μn+,μn}\sigma(Z_{n})=\{\mu_{n}^{+},\mu_{n}^{-}\}. Observe that

{μn++μn=tr(Zn)=cn1+cn2:n}1.\left\{\mu_{n}^{+}+\mu_{n}^{-}={\rm{tr}}(Z_{n})=c_{n}^{1}+c_{n}^{2}:n\in{\mathbb{Z}}\right\}\in\ell^{1}. (7.6)

Hence,

det(Zn)=μn+μn=μn+(cn1+cn2)(μn+)2=μn(cn1+cn2)(μn)2=bn2bn3+νn,{\rm{det}}(Z_{n})=\mu_{n}^{+}\mu_{n}^{-}=\mu_{n}^{+}(c_{n}^{1}+c_{n}^{2})-(\mu_{n}^{+})^{2}=\mu_{n}^{-}(c_{n}^{1}+c_{n}^{2})-(\mu_{n}^{-})^{2}=-b_{n}^{2}b_{n}^{3}+\nu_{n},

where {νn=cn1cn2bn3cn3bn2cn4cn3cn4:n}2/3\{\nu_{n}=c_{n}^{1}c_{n}^{2}-b_{n}^{3}c_{n}^{3}-b_{n}^{2}c_{n}^{4}-c_{n}^{3}c_{n}^{4}:n\in{\mathbb{Z}}\}\in\ell^{2/3}. Since {μn±}2\{\mu_{n}^{\pm}\}\in\ell^{2}, it follows that {μn±(cn1+cn2)}\{\mu_{n}^{\pm}(c_{n}^{1}+c_{n}^{2})\} and, consequently, {(μn±)2bn2bn3}\{(\mu_{n}^{\pm})^{2}-b_{n}^{2}b_{n}^{3}\} belong to 2/3\ell^{2/3}. Since

[min{|μn±+bn2bn3|,|μn±bn2bn3|}]2|μn±+bn2bn3||μn±bn2bn3|=|(μn±)2bn2bn3|,\begin{split}&\left[\min\left\{\left|\mu_{n}^{\pm}+\sqrt{b_{n}^{2}b_{n}^{3}}\right|,\left|\mu_{n}^{\pm}-\sqrt{b_{n}^{2}b_{n}^{3}}\right|\right\}\right]^{2}\leq\\ &\left|\mu_{n}^{\pm}+\sqrt{b_{n}^{2}b_{n}^{3}}\right|\left|\mu_{n}^{\pm}-\sqrt{b_{n}^{2}b_{n}^{3}}\right|=\left|(\mu_{n}^{\pm})^{2}-b_{n}^{2}b_{n}^{3}\right|,\end{split}

we have

{min{|μn±+bn2bn3|,|μn±bn2bn3|}:n}4/3.\left\{\min\left\{\left|\mu_{n}^{\pm}+\sqrt{b_{n}^{2}b_{n}^{3}}\right|,\left|\mu_{n}^{\pm}-\sqrt{b_{n}^{2}b_{n}^{3}}\right|\right\}:n\in{\mathbb{Z}}\right\}\in\ell^{4/3}.

Using (7.6) once again, we deduce (7.5) with {dnk}4/3\{d_{n}^{k}\}\in\ell^{4/3}.

Let us now assume that c,C>0c,C>0 are such that cbn2bn3Cbn2cb_{n}^{2}\leq b_{n}^{3}\leq Cb_{n}^{2} for all nn\in{\mathbb{Z}} that are sufficiently large in absolute value. Without loss of generality, we may also assume that bn20b_{n}^{2}\neq 0 and the double inequalities hold for all nn\in{\mathbb{Z}}. Then rn=bn3/bn2r_{n}=\sqrt{b_{n}^{3}/b_{n}^{2}} is well defined and

0<crnC<.0<\sqrt{c}\leq r_{n}\leq\sqrt{C}<\infty. (7.7)

Therefore, the matrices

Un=(11rnrn)andUn1=12rn(rn1rn1)U_{n}=\begin{pmatrix}1&1\\ -r_{n}&r_{n}\end{pmatrix}\quad\mbox{and}\quad U_{n}^{-1}=\frac{1}{2r_{n}}\begin{pmatrix}r_{n}&-1\\ r_{n}&1\end{pmatrix}

are also well defined. Then the matrix

Z~N=Un1ZnUn=(bn2bn300bn2bn3)+Un1(cn1cn2cn3cn4)Un\mathaccent 869{Z}_{N}=U_{n}^{-1}Z_{n}U_{n}=\left(\begin{array}[]{cc}-\sqrt{b_{n}^{2}b_{n}^{3}}&0\\ 0&\sqrt{b_{n}^{2}b_{n}^{3}}\end{array}\right)+U_{n}^{-1}\left(\begin{array}[]{cc}c_{n}^{1}&c_{n}^{2}\\ c_{n}^{3}&c_{n}^{4}\end{array}\right)U_{n}

has the same spectrum as ZnZ_{n}, and the desired result follows from (7.7) and an argument similar to the proof of Lemma 7.3. Indeed, the similarity transform of Example 3.1 applies for the subsequence indexed by nn\in{\mathbb{Z}} such that

Un1(cn1cn2cn3cn4)Un2<12|bn2bn3|.\left\|U_{n}^{-1}\left(\begin{array}[]{cc}c_{n}^{1}&c_{n}^{2}\\ c_{n}^{3}&c_{n}^{4}\end{array}\right)U_{n}\right\|_{2}<\frac{1}{2}\sqrt{|b_{n}^{2}b_{n}^{3}|}. (7.8)

For the complementary subsequence where (7.8) is not satisfied, we have that (7.5) holds automatically because the sequence of norms in the left hand side of (7.8) is in 1\ell^{1} due to (7.7). ∎

The condition in the above lemma motivates the following definition.

Definition 7.1.

For a given rr\in{\mathbb{Z}}, the potential function PP given by (1.2) is called rbcr_{bc}-balanced if there exist c,C>0c,C>0 and NN\in\mathbb{N} such that

cq2(2nrϵbc)q3(2n+r+ϵbc)Cq2(2nrϵbc)cq_{2}(-2n-r-\epsilon_{bc})\leq q_{3}(2n+r+\epsilon_{bc})\leq Cq_{2}(-2n-r-\epsilon_{bc}) (7.9)

for all nn\in{\mathbb{Z}} satisfying |n|N|n|\geq N. In the above double inequality q2q_{2} and q3q_{3} are given by (2.4), and ϵbc\epsilon_{bc} is as in (5.3).

With the above definition, the following result is essentially immediate.

Theorem 7.6.

There exists mm\in{\mathbb{N}} such that (7.1) holds with

σn={π(2n+ϵbc)ωp^1(0)2n+rωq^2(ϵbc)q^3(+ϵbc)2π(2nr)q^2(2nrϵbc)q^3(2n+r+ϵbc)dn1,π(2n+ϵbc)ωp^1(0)2n+rωq^2(ϵbc)q^3(+ϵbc)2π(2nr)+q^2(2nrϵbc)q^3(2n+r+ϵbc)dn2},|n|>m,\begin{split}\sigma_{n}=\Bigg{\{}&\frac{\pi(2n+\epsilon_{bc})}{\omega}-\mathaccent 866{p}_{1}(0)-\sum_{\ell\neq 2n+r}\frac{\omega\mathaccent 866{q}_{2}(-\ell-\epsilon_{bc})\mathaccent 866{q}_{3}(\ell+\epsilon_{bc})}{2\pi(\ell-2n-r)}\ -\\ &\sqrt{\mathaccent 866{q}_{2}(-2n-r-\epsilon_{bc})\mathaccent 866{q}_{3}(2n+r+\epsilon_{bc})}-d_{n}^{1},\\ &\frac{\pi(2n+\epsilon_{bc})}{\omega}-\mathaccent 866{p}_{1}(0)-\sum_{\ell\neq 2n+r}\frac{\omega\mathaccent 866{q}_{2}(-\ell-\epsilon_{bc})\mathaccent 866{q}_{3}(\ell+\epsilon_{bc})}{2\pi(\ell-2n-r)}\ +\\ &\sqrt{\mathaccent 866{q}_{2}(-2n-r-\epsilon_{bc})\mathaccent 866{q}_{3}(2n+r+\epsilon_{bc})}-d_{n}^{2}\Bigg{\}},\ |n|>m,\end{split} (7.10)

where the sequences {dnk:n}\{d_{n}^{k}:n\in{\mathbb{Z}}\}, k=1,2k=1,2, belong to 4/3()\ell^{4/3}({\mathbb{Z}}). Moreover, if the potential function PP in (1.2) is rbcr_{bc}-balanced then the sequences {dnk:n}\{d_{n}^{k}:n\in{\mathbb{Z}}\}, k=1,2k=1,2, belong to 1()\ell^{1}({\mathbb{Z}}).

Proof.

The result follows from (6.7), (7.4), and Lemma 7.5. ∎

Remark 7.1.

If p1(t)=p4(t)0p_{1}(t)=p_{4}(t)\equiv 0, Theorem 7.6 yields [8, Theorem 7] in the case bc{per,ap}bc\in\{per,ap\}. Then r=0r=0 and the sequences {dnk}\{d_{n}^{k}\}, k=1,2k=1,2, are guaranteed to be in 4/3()\ell^{4/3}({\mathbb{Z}}). The case of balanced potentials was not considered in [8]. A different estimate for the eigenvalues in the case of balanced potentials can be obtained in terms of the constants cc and CC in (7.9). We cite [13] for a similar approach used for a different kind of operator.

8. Equiconvergence of spectral decompositions

In this section, we explore the consequences of Theorem 6.6 for equiconvergence of spectral decompositions. We continue to operate under Assumption 6.5 and use the notation of Theorem 6.6. We cite [18, 19, 20, 30, 31, 32, 35, 36, 37, 38, and references therein] for preexisting results on spectrality and equiconvergence for Dirac operators. A few special cases of the results in this section appear in [8]. It turns out that the proofs in the general case are either very straightforward or very similar; we omit them for the sake of brevity.

Definition 8.1.

[8, Definition 3]. Assume that the spectrum σ(A)\sigma(A) of a linear operator A:D(A)A:D(A)\subseteq{\mathcal{H}}\to{\mathcal{H}} satisfies

σ(A)=nσk,\sigma(A)=\bigcup_{n\in{\mathbb{Z}}}\sigma_{k}, (8.1)

where σk\sigma_{k} are mutually disjoint compact sets. Let PkP_{k} be the Riesz projections corresponding to σk\sigma_{k}. The operator AA is said to be spectral with respect to the decomposition (8.1) (or to possess generalized spectrality) if {Pk:k}\{P_{k}:k\in{\mathbb{Z}}\} forms a resolution of the identity in B()B({\mathcal{H}}).

Immediately, from Theorems 6.6, 7.1 and Lemma 2.1, we get the following result (see also [8, 18]).

Theorem 8.1.

The operator LbcL_{bc} is spectral with respect to decomposition (7.1).

Next, similarly to [8], we compare the convergence of spectral decompositions for operators LbcL_{bc}, L~bcPQ\mathaccent 869{L}^{P}_{bc}-Q, and L~bcPV\mathaccent 869{L}^{P}_{bc}-V. To this end, we consider three families of Riesz projections. The first, {P(m)}{Pj:|j|>m}\{P_{(m)}\}\cup\{P_{j}:|j|>m\}, corresponds to the spectral decompositions of both L~bcP\mathaccent 869{L}^{P}_{bc} and L~bcPV\mathaccent 869{L}^{P}_{bc}-V. The second family of Riesz projections, {P~(m)}{P~j:|j|>m}\{\mathaccent 869{P}_{(m)}\}\cup\{\mathaccent 869{P}_{j}:|j|>m\}, corresponds to the operator L~bcPQ\mathaccent 869{L}^{P}_{bc}-Q. From Theorem 6.6 and Lemma 2.1, we have

P~j=(I+U)Pj(I+U)1,|j|>m.\mathaccent 869{P}_{j}=(I+U)P_{j}(I+U)^{-1},\ |j|>m. (8.2)

The third family of Riesz projections, {P¯(m)}{P¯j:|j|>m}\{\bar{P}_{(m)}\}\cup\{\bar{P}_{j}:|j|>m\}, corresponds to the operator LbcL_{bc}. Again, from Lemma 2.1, we have

P¯j=WbcP~jWbc1,|j|>m.\bar{P}_{j}=W_{bc}\mathaccent 869{P}_{j}W_{bc}^{-1},\ |j|>m. (8.3)

Given a set Ω{j:|j|>m}\Omega\subseteq\{j\in{\mathbb{Z}}:|j|>m\}, we define

P(Ω)=jΩPj,P~(Ω)=jΩP~j, and P¯(Ω)=jΩP¯j.P(\Omega)=\sum_{j\in\Omega}P_{j},\ \mathaccent 869{P}(\Omega)=\sum_{j\in\Omega}\mathaccent 869{P}_{j},\mbox{ and }\bar{P}(\Omega)=\sum_{j\in\Omega}\bar{P}_{j}.

We also let α(Ω,X)=maxnΩαn(X)\alpha(\Omega,X)=\max_{n\in\Omega}\alpha_{n}(X), where αn(X)\alpha_{n}(X) is defined by (6.1). The following lemma is proved the same way as [8, Lemma 8].

Lemma 8.2.

Given X𝔖2()X\in\mathfrak{S}_{2}({\mathcal{H}}) and Ω{j:|j|>m}\Omega\subseteq\{j\in{\mathbb{Z}}:|j|>m\}, we have

max{P(Ω)X2,XP(Ω)2}C(X)α(Ω,X)\max\{\|P(\Omega)X\|_{2},\|XP(\Omega)_{2}\}\leq C(X)\alpha(\Omega,X)

for some constant C(X)C(X) that depends only on XX.

Immediately from (6.1), we also have the following auxiliary result (see also [8, Lemma 9].

Lemma 8.3.

Assume that 0X𝔖2()0\neq X\in\mathfrak{S}_{2}({\mathcal{H}}) and Ω{j:|j|>m}\Omega\subseteq\{j\in{\mathbb{Z}}:|j|>m\}.

  1. (1)

    If X=jXjX=\sum_{j\in{\mathbb{Z}}}X_{j}, Xj𝔖2()X_{j}\in\mathfrak{S}_{2}({\mathcal{H}}), and the series converges absolutely, then

    X212α(Ω,X)jXj212α(Ω,Xj).\|X\|_{2}^{\frac{1}{2}}\alpha(\Omega,X)\leq\sum_{j\in{\mathbb{Z}}}\|X_{j}\|_{2}^{\frac{1}{2}}\alpha(\Omega,X_{j}).
  2. (2)

    If X=X1XX=X_{1}\cdot\ldots\cdot X_{\ell}, Xj𝔖2()X_{j}\in\mathfrak{S}_{2}({\mathcal{H}}), 1j1\leq j\leq\ell, then

    X212α(Ω,X)min1jα(Ω,Xj)j=1Xj212.\|X\|_{2}^{\frac{1}{2}}\alpha(\Omega,X)\leq\min_{1\leq j\leq\ell}\alpha(\Omega,X_{j})\prod_{j=1}^{\ell}\|X_{j}\|_{2}^{\frac{1}{2}}.

The key result of this section is the following theorem (once again, see Assumption 6.5 and Theorem 6.6 for the notation).

Theorem 8.4.

Given Ω{j:|j|>m}\Omega\subseteq\{j\in{\mathbb{Z}}:|j|>m\}, we have

P~(Ω)P(Ω)2C(α(Ω,Γ0Q)+α(Ω,Γ0X)),\|\mathaccent 869{P}(\Omega)-P(\Omega)\|_{2}\leq C(\alpha(\Omega,\Gamma_{0}Q)+\alpha(\Omega,\Gamma_{0}X_{*})),

where C>0C>0 does not depend on Ω\Omega.

Proof.

The proof of [8, Theorem 9] can be used as a blueprint. ∎

Immediately from the above theorem and (8.3) we get the following result about equiconvergence.

Theorem 8.5.

We have

limP¯(m)+m<|n|P¯nWbc1(P(m)+m<|n|Pn)Wbc2=0.\lim_{\ell\to\infty}\left\|\bar{{P}}_{(m)}+\sum_{m<|n|\leq\ell}\bar{{P}}_{n}-W_{bc}^{-1}\left({P}_{(m)}+\sum_{m<|n|\leq\ell}P_{n}\right)W_{bc}\right\|_{2}=0.

9. C0C_{0}-group generated by the Dirac operator

We conclude this paper with a description of the C0C_{0}-group generated by the operator iLbciL_{bc} under Assumption 6.5. The following result is immediate from Theorems 3.2, 6.6 and 7.1, and Lemmas 2.1 and 2.3. In its formulation, we continue to use the notation from Assumption 6.5 and Theorem 6.6.

Theorem 9.1.

The operator iLbciL_{bc} generates a C0C_{0}-group of operators T:B()T:{\mathbb{R}}\to B({\mathcal{H}}) such that T(t)=Wbc(I+U)T~(t)(I+U)1Wbc1T(t)=W_{bc}(I+U)\mathaccent 869{T}(t)(I+U)^{-1}W_{bc}^{-1}, where

T~(t)=eit(L~bcPV)(m)(|n|>meit(L~bcPV)n),t.\mathaccent 869{T}(t)=e^{it\left(\mathaccent 869{L}^{P}_{bc}-V\right)_{(m)}}\oplus\left(\bigoplus_{|n|>m}e^{it\left(\mathaccent 869{L}^{P}_{bc}-V\right)_{n}}\right),\quad t\in\mathbb{R}. (9.1)
Proof.

Theorem 6.6 provides a Wbc(I+U)W_{bc}(I+U)-orthogonal decomposition of the operator LbcL_{bc} and an orthogonal decomposition of the operator L~bcPV\mathaccent 869{L}^{P}_{bc}-V. From Theorem 7.1 we deduce that (2.8) is satisfied for L~bcPV\mathaccent 869{L}^{P}_{bc}-V, and Lemma 2.3 yields the group T~\mathaccent 869{T}. It remains to cite Lemma 2.1(4) to complete the proof. ∎

As a corollary, we obtain the following result, which can be used to estimate the rate of convergence of the generalized Fourier series of mild solutions of differential equations involving Dirac operators. We let Z=Wbc(I+U)Z=W_{bc}(I+U).

Corollary 9.2.

For any φ\varphi\in{\mathcal{H}} and nn\in{\mathbb{N}} with n>mn>m, we have

T(t)φZT~(t)P(n)Z1φZ(|k|>ne2|t|(Vk+γbc)PkZ1φ2)1/2,\left\|T(t)\varphi-Z\mathaccent 869{T}(t)P_{(n)}Z^{-1}\varphi\right\|\leq\|Z\|\left(\sum_{|k|>n}e^{2|t|(\|V_{k}\|+\gamma_{bc})}\left\|P_{k}Z^{-1}\varphi\right\|^{2}\right)^{1/2},

where γdir=|Imν|\gamma_{dir}=|\mathrm{Im}\,\nu| with ν\nu given by (2.2) and γbc=max{|Imp^1(0)|,|Imp^4(0)|}\gamma_{bc}=\max\left\{|\mathrm{Im}\,\mathaccent 866{p}_{1}(0)|,|\mathrm{Im}\,\mathaccent 866{p}_{4}(0)|\right\} for bc{per,ap}bc\in\{per,ap\}.

Proof.

Follows via an application of Parseval’s identity and (9.1). ∎

The next result is a direct consequence of the above corollary. We cite [24] for the standard definitions of the growth and spectral bounds of C0C_{0}-groups.

Corollary 9.3.

The growth and spectral bounds of the groups TT and T~\mathaccent 869{T} in Theorem 9.1 coincide.

We proceed with more explicit estimates for the groups generated by the operators i(L~bcPV)ni\left(\mathaccent 869{L}^{P}_{bc}-V\right)_{n}, |n|>m|n|>m. The case bc=dirbc=dir is the simplest as it yields (L~bcPV)n=(πnων+bn)In\left(\mathaccent 869{L}^{P}_{bc}-V\right)_{n}=(\frac{\pi n}{\omega}-\nu+\ b_{n})I_{n}, where ν\nu is given by (2.2) and {bn:n}2\{b_{n}:n\in{\mathbb{Z}}\}\in\ell^{2}, according to Theorem 7.1.

Theorem 9.4.

For bc=dirbc=dir, the group T~\mathaccent 869{T} in (9.1) can be written as

T~(t)=(|n|>meit(πnων+bn)In)eit(L~dirPV)(m),t,\mathaccent 869{T}(t)=\left(\bigoplus_{|n|>m}e^{it(\frac{\pi n}{\omega}-\nu+b_{n})}I_{n}\right)\oplus e^{it\left(\mathaccent 869{L}^{P}_{dir}-V\right)_{(m)}},\quad t\in\mathbb{R}, (9.2)

where {bn:n}2\{b_{n}:n\in{\mathbb{Z}}\}\in\ell^{2} can be estimated from (7.2).

For the cases bc{per,ap}bc\in\{per,ap\}, we use the following formula for the group generated by a 2×22\times 2 matrix [28]:

exp(it(abcd))=eit(a+d)2{cos(ρt)(1001)+isin(ρt)ρ(ad2bcda2)},\begin{split}\exp\left(it\left(\begin{array}[]{cc}a&b\\ c&d\end{array}\right)\right)=e^{it\frac{(a+d)}{2}}&\left\{\cos(\rho t)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right)\right.\\ &+\left.\frac{i\sin(\rho t)}{\rho}\left(\begin{array}[]{cc}\frac{a-d}{2}&b\\ c&\frac{d-a}{2}\end{array}\right)\right\},\end{split} (9.3)

where ρ=((ad)2/4+bc)12\rho=((a-d)^{2}/4+bc)^{\frac{1}{2}}, and sin(ρt)ρ\frac{\sin(\rho t)}{\rho} is replaced with tt in the case when ρ=0\rho=0.

Theorem 9.5.

For bc{per,ap}bc\in\{per,ap\}, the group T~\mathaccent 869{T} in (9.1) can be written as

T~(t)=(|n|>meit(πω(2n+ϵbc)ν+bn1){cos(ρt)(1001)+isin(ρt)ρ(β2+bn4bn2bn3β2bn4)})eit(L~bcPV)(m),t,\begin{split}\mathaccent 869{T}(t)&=\Bigg{(}\bigoplus_{|n|>m}e^{it\left(\frac{\pi}{\omega}(2n+\epsilon_{bc})-\nu+b_{n}^{1}\right)}\left\{\cos(\rho t)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right)\right.\\ &+\left.\frac{i\sin(\rho t)}{\rho}\left(\begin{array}[]{cc}\frac{\beta}{2}+b_{n}^{4}&b_{n}^{2}\\ b_{n}^{3}&-\frac{\beta}{2}-b_{n}^{4}\end{array}\right)\right\}{\Bigg{)}}\oplus e^{it\left(\mathaccent 869{L}^{P}_{bc}-V\right)_{(m)}},\quad t\in\mathbb{R},\end{split} (9.4)

where ϵbc\epsilon_{bc} is as in (5.3), β\beta – as in (2.1), ρ=((β+2bn4)2/16+bn2bn3)12\rho=({(\beta+2b_{n}^{4})^{2}/16+b_{n}^{2}b_{n}^{3}})^{\frac{1}{2}}, sin(ρt)ρ\frac{\sin(\rho t)}{\rho} is replaced with tt if ρ=0\rho=0, and {bnk:n}2\{b_{n}^{k}:n\in{\mathbb{Z}}\}\in\ell^{2}, k=1,2,3,4k=1,2,3,4.

Proof.

Formula (9.4) is obtained via a straightforward computation. Better estimates for the sequences {bnk:n}2\{b_{n}^{k}:n\in{\mathbb{Z}}\}\in\ell^{2}, k=1,2,3,4k=1,2,3,4, may be obtained the same way as for either Theorem 7.4 or Theorem 7.6. ∎

Remark 9.1.

In our final remark, we mention a few results that may be derived from the theorems in this paper.

  1. (1)

    The norm of the resolvent operator (Lbcλ)1(L_{bc}-\lambda)^{-1} may be estimated.

  2. (2)

    For a specific potential function P(t)P(t), stability of the group generated by iLbciL_{bc} may be investigated.

  3. (3)

    A representation of the group {T~(t)}\{\mathaccent 869{T}(t)\} as a multiplicative perturbation of an explicit group may be obtained as in [12, Corollary 2.11].

  4. (4)

    Special cases of the results in [11] and [12] may be obtained.

  5. (5)

    Existence results for a semigroup in [34] may be improved.

References

  • [1] A. G. Baskakov, Methods of abstract harmonic analysis in the theory of perturbations of linear operators, Sibirsk. Mat. Zh., 24 (1983), pp. 21–39, 191. English translation: Siberian Math. J. 24 (1983), no. 1, pp. 17–32.
  • [2]  , The Krylov-Bogolyubov substitution in the theory of perturbations of linear operators, Ukrain. Mat. Zh., 36 (1984), pp. 606–611. English translation: Ukrainian Math. J. 36 (1984), no. 5, 451–455.
  • [3]  , The averaging method in the theory of perturbations of linear differential operators, Differentsial’nye Uravneniya, 21 (1985), pp. 555–562, 732. English translation: Differential Equations 21 (1985), no. 4, 357–362.
  • [4]  , A theorem on splitting of an operator and some related problems in the analytic theory of perturbations, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), pp. 435–457, 638. English translation: Math. USSR-Izv. 28 (1987), no. 3, pp. 421–444.
  • [5]  , Spectral analysis of perturbed non-quasi-analytic and spectral operators, Izv. Ross. Akad. Nauk Ser. Mat., 58 (1994), pp. 3–32. English translation: Russian Acad. Sci. Izv. Math. 45 (1995), no. 1, pp. 1–31.
  • [6]  , An abstract analogue of the Krylov-Bogolyubov transformation in the theory of perturbed linear operators, Funktsional. Anal. i Prilozhen., 33 (1999), pp. 76–80.
  • [7]  , Estimates for the Green’s function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations, Mat. Sb., 206 (2015), pp. 23–62. English translation: Sb. Math., 206 (2015), no. 8, pp. 1049–1086.
  • [8] A. G. Baskakov, A. V. Derbushev, and A. O. Shcherbakov, The method of similar operators in the spectral analysis of the nonselfadjoint Dirac operator with nonsmooth potential, Izv. Ross. Akad. Nauk Ser. Mat., 75 (2011), pp. 3–28. English translation: Izv. Math. 75 (2011), no. 3, 445–469.
  • [9] A. G. Baskakov and T. K. Katsaran, Spectral analysis of integro-differential operators with nonlocal boundary conditions, Differentsial’nye Uravneniya, 24 (1988), pp. 1424–1433, 1471. English translation: Differential Equations 24 (1988), no. 8, 934–941 (1989).
  • [10] A. G. Baskakov and I. A. Krishtal, Harmonic analysis of causal operators and their spectral properties, Izv. Ross. Akad. Nauk Ser. Mat., 69 (2005), pp. 3–54. English translation: Izv. Math. 69 (2005), no. 3, pp. 439–486.
  • [11] A. G. Baskakov, I. A. Krishtal, and E. Y. Romanova, Spectral analysis of a differential operator with an involution, Journal of Evolution Equations, 17 (2017), pp. 669–684.
  • [12] A. G. Baskakov, I. A. Krishtal, and N. B. Uskova, Linear differential operator with an involution as a generator of an operator group, Oper. Matrices, (2018). To appear. ArXiv:1806.04109.
  • [13] A. G. Baskakov and D. M. Polyakov, The method of similar operators in spectral analysis for the Hill operator with nonsmooth potential, Mat. Sb., 208 (2017), pp. 3–47. English Translation: Sb. Math., 2017, 208(1): 1–43.
  • [14] G. D. Birkhoff, Boundary value and expansion problems of ordinary linear differential equations, Trans. Amer. Math. Soc., 9 (1908), pp. 373–395.
  • [15]  , On the asymptotic character of the solutions of certain linear differential equations containing a parameter, Trans. Amer. Math. Soc., 9 (1908), pp. 219–231.
  • [16] P. A. M. Dirac, The quantum theory of the electron. I., Proc. R. Soc. Lond., Ser. A, 117 (1928), pp. 610–624.
  • [17]  , The quantum theory of the electron. II., Proc. R. Soc. Lond., Ser. A, 118 (1928), pp. 351–361.
  • [18] P. Djakov and B. Mityagin, Bari-Markus property for Riesz projections of 1D periodic Dirac operators, Math. Nachr., 283 (2010), pp. 443–462.
  • [19] P. Djakov and B. Mityagin, Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators, J. Funct. Anal., 263 (2012), pp. 2300–2332.
  • [20]  , Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions, Indiana Univ. Math. J., 61 (2012), pp. 359–398.
  • [21] N. Dunford and J. T. Schwartz, Linear operators. Part II, Wiley Classics Library, John Wiley & Sons Inc., New York, 1988. Spectral theory. Selfadjoint operators in Hilbert space, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1963 original, A Wiley-Interscience Publication.
  • [22]  , Linear operators. Part III, Wiley Classics Library, John Wiley & Sons Inc., New York, 1988. Spectral operators, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1971 original, A Wiley-Interscience Publication.
  • [23] P. Dzhakov and B. S. Mityagin, Instability zones of one-dimensional periodic Schrödinger and Dirac operators, Uspekhi Mat. Nauk, 61 (2006), pp. 77–182.
  • [24] K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, vol. 194 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt.
  • [25] K. O. Friedrichs, Lectures on advanced ordinary differential equations, Notes by P. Berg, W. Hirsch, P. Treuenfels, Gordon and Breach Science Publishers, New York, 1965.
  • [26] I. Gohberg, M. A. Kaashoek, and J. Kos, Classification of linear time-varying difference equations under kinematic similarity, Integral Equations Operator Theory, 25 (1996), pp. 445–480.
  • [27] I. C. Gohberg and M. G. Kreĭn, Vvedenie v teoriyu lineĭnykh nesamosopryazhennykh operatorov v gil’bertovom prostranstve, Izdat. “Nauka”, Moscow, 1965.
  • [28] A. A. Kirillov, Elements of the theory of representations, Springer-Verlag, Berlin-New York, 1976. Translated from the Russian by Edwin Hewitt, Grundlehren der Mathematischen Wissenschaften, Band 220.
  • [29] A. M. Ljapunov, Sobranie sochineniĭ. Tom II, Izdat. Akad. Nauk SSSR, Moscow, 1956.
  • [30] A. A. Lunyov and M. M. Malamud, On spectral synthesis for dissipative Dirac type operators, Integral Equations Operator Theory, 80 (2014), pp. 79–106.
  • [31]  , On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications, J. Spectr. Theory, 5 (2015), pp. 17–70.
  • [32] M. M. Malamud and L. L. Oridoroga, On the completeness of root subspaces of boundary value problems for first order systems of ordinary differential equations, J. Funct. Anal., 263 (2012), pp. 1939–1980.
  • [33] M. Niezabitowski, Kinematic similarity of the discrete linear time-varying systems, in 2015 20th International Conference on Control Systems and Computer Science, May 2015, pp. 10–17.
  • [34] L. Recke, K. R. Schneider, and V. V. Strygin, Spectral properties of coupled wave operators, Z. Angew. Math. Phys., 50 (1999), pp. 925–933.
  • [35] I. V. Sadovnichaya, Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces, Tr. Mat. Inst. Steklova, 293 (2016), pp. 296–324. English translation: Proceedings of the Steklov Institute of Mathematics, May 2016, Volume 293, Issue 1, pp 288–316.
  • [36]  , Uniform asymptotics of the eigenvalues and eigenfunctions of the Dirac system with an integrable potential, Differ. Equ., 52 (2016), pp. 1000–1010. Translation of Differ. Uravn. 52 (2016), no. 8, 1039–1049.
  • [37] A. M. Savchuk and I. V. Sadovnichaya, The Riesz basis property with brackets for the Dirac system with a summable potential, Sovrem. Mat. Fundam. Napravl., 58 (2015), pp. 128–152.
  • [38] A. M. Savchuk and A. A. Shkalikov, The Dirac operator with complex-valued summable potential, Math. Notes, 96 (2014), pp. 777–810.
  • [39] J. Tamarkin, Some general problems of the theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions, Math. Z., 27 (1928), pp. 1–54.
  • [40] B. Thaller, The Dirac equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992.
  • [41] R. E. L. Turner, Perturbation of compact spectral operators, Comm. Pure Appl. Math., 18 (1965), pp. 519–541.
  • [42] N. B. Uskova, On a result of R. Turner, Mat. Zametki, 76 (2004), pp. 905–917. English translation: Math. Notes 76 (2004), no. 5-6, 844–854.
  • [43] Y. Ziber, L. Rekke, and K. R. Shnaĭder, The dynamics of multisection semiconductor lasers, Sovrem. Mat. Fundam. Napravl., 2 (2003), pp. 70–82. English translation: J. Math. Sci. (N.Y.) 124 (2004), no. 5, 5298–5309.