This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Generalized Gibbons-Werner method for stationary spacetimes

Yang Huang    Zhoujian Cao 11footnotetext: Corresponding author.    Zhenyan Lu
Abstract

The Gibbons-Werner (GW) method is a powerful approach in studying the gravitational deflection of particles moving in curved spacetimes. The application of the Gauss-Bonnet theorem (GBT) to integral regions constructed in a two-dimensional manifold enables the deflection angle to be expressed and calculated from the perspective of geometry. However, different techniques are required for different scenarios in the practical implementation which leads to different GW methods. For the GW method for stationary axially symmetric (SAS) spacetimes, we identify two problems: (a) the integral region is generally infinite, which is ill-defined for some asymptotically nonflat spacetimes whose metric possesses singular behavior, and (b) the intricate double and single integrals bring about complicated calculation, especially for highly accurate results and complex spacetimes. To address these issues, a generalized GW method is proposed in which the infinite region is replaced by a flexible region to avoid the singularity, and a simplified formula involving only a single integral of a simple integrand is derived by discovering a significant relationship between the integrals in conventional methods. Our method provides a comprehensive framework for describing the GW method for various scenarios. Additionally, the generalized GW method and simplified calculation formula are applied to three different kinds of spacetimes—Kerr spacetime, Kerr-like black hole in bumblebee gravity, and rotating solution in conformal Weyl gravity. The first two cases have been previously computed by other researchers, affirming the effectiveness and superiority of our approach. Remarkably, the third case is newly examined, yielding an innovative result for the first time.

1 Introduction

The motion of objects in strong gravitational field is one of the most significant research topics in general relativity (GR). By regarding an object as a test particle whose gravitational field can be ignored, one can analyze its trajectory via the geodesic equation of the strong gravitational field. The deflection of trajectories is an important aspect in the investigation of the motion of test particles.

Generally, the particle can be classified into two categories: massless particles (photons) and massive particles. For massless particles, the gravitational deflection plays a significant role in verifying GR and other gravitational theories [1]. After Eddington’s observation confirmed the deflection of light passing by the Sun [2], gravitational lensing has been deeply and extensively studied as a powerful tool in various fields of astronomy and cosmology [3]. Numerous approaches have been proposed to calculate the deflection angle for photons [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. For massive particles, they can also serve as messengers of the universe. Examples include neutrons, neutrinos, cosmic rays from high-energy celestial events (π\pi-mesons, µons, K-mesons, etc.), theorized weakly interacting massive particles and axions [38], gravitons. The gravitational deflection of these massive particles provides valuable information about the source, the lens, the background of the trajectory and the particles themselves [39, 40, 41, 42, 43, 44, 45, 46, 47].

The GW method, initially proposed by Gibbons and Werner in 2008 [48] and subsequently developed by researchers in recent years [49, 50, 51, 52, 53, 54], contributes to the calculation and understanding of the deflection angle for both massless and massive particles from the geometric perspective. The basic scheme of the GW method involves: (a) constructing a reduced three-dimensional space which can be used to describe the particle’s motion in four-dimensional spacetimes, (b) establishing a two-dimensional Riemannian manifold to describe the motion in the equatorial plane based on the reduced three-dimensional space, (c) defining an integral region on the two-dimensional Riemannian manifold (typically enclosed by four curves: the particle’s trajectory, an auxiliary circular arc, a radial outward curve passing through the source, and a radial outward curve passing through the observer), and (d) applying the GBT to the integral region to express the deflection angle in terms of geometric quantities. It should be remarked that, while there are differences in the technical details between the calculations for photons and massive particles, the calculation process and result for massive particles can reduce to those for photons when the rest mass approaches zero and the velocity approaches the speed of light. Throughout this paper, the term "particles" refers to both massless and massive particles.

The practical calculation process of the GW method requires different techniques depending on the specific situation. In this paper, the term "GW method" is a general reference to all methods that calculate the deflection angle of particles based on the aforementioned scheme. Although the original GW method proposed by Gibbons and Werner is based on the static spherically symmetric (SSS) spacetime, it has been extended to SAS scenarios with three different techniques [49, 51, 53]. Among these techniques, the one proposed by Ono, Ishihara, and Asada (referred to as GWOIA method) [51] is the most powerful and widely used due to its flexibility and straightforwardness. Specifically, in GWOIA method, the equatorial plane of the Riemannian part of a Rander-Finsler metric is selected as the two-dimensional Riemannian manifold, and the deflection angle is expressed in terms of the integral of the Gaussian curvature and the geodesic curvature. More related works for SAS spacetimes using GWOIA method can be found in [55, 56, 57, 58, 59, 60, 61, 62, 63, 54, 64, 65, 66, 67, 68].

However, the existing works studying the deflection angle for SAS spacetimes using the GWOIA method face two main challenges. First, the auxiliary circular arc is located at the infinite region, thus the resulting infinite integral region is ill-defined for certain asymptotically nonflat spacetimes, such as the Kerr-de Sitter spacetime [69] and the rotating solution in conformal Weyl gravity [70, 71], which encounter singularities as the radial coordinate approaches infinity. Second, the calculation formula contains a double integral and a single integral, and the quantities involved (the Gaussian curvature, the geodesic curvature, and the upper and lower bounds of integrals) are very complex, making the computation cumbersome.

In this paper, we simultaneously address these two challenges by proposing a generalized GW method and giving its corresponding simplified calculation formula. The work in this paper is based on the discovery of an important relation between the integral of the Gaussian curvature over the integral region and the integral of the geodesic curvature along the auxiliary circular arc. Moreover, an interesting development emerged during the review of this paper—Ishihara et al. noticed our manuscript on arXiv and established the equivalence between our generalized GW method and the GWOIA method [72]. Their discovery significantly enhance our confidence in the robustness of our methodology.

The remainder of this paper is organized as follows. In Sec. 2, we provide a review of the GBT, the Jacobi-Maupertuis Randers-Finsler (JMRF) metric, and the finite-distance deflection angle. Sec. 3 presents a brief introduction to the GWOIA method. In Sec. 4, we propose the generalized GW method and derive the corresponding simplified calculation formula. In Sec. 5, we demonstrate the validity and superiority of our method and formula by performing calculations for different spacetimes. Finally, we conclude the paper in Sec. 6. In the upcoming sections, we adopt the spacetime signature (,+,+,+-,+,+,+), and geometric units where the gravitational constant GG and the speed of light are set to one, i.e. G=1G=1 and c=1c=1.

2 GBT, JMRF metric, and Finite-distance deflection angle

2.1 GBT

Let DD be a compact and connected region on a two-dimensional Riemannian manifold (as depicted in Fig. 1).

Refer to caption
Figure 1: A region DD with boundary D=iDi\partial D=\cup_{i}\partial D_{i}. The jump angles of DD are denoted by ηi(i=1,2,)\eta_{i}(i=1,2,\cdots) in the positive sense.

The boundary of DD, denoted as D\partial D, consists of piecewise smooth components Di\partial D_{i} (i=1,2,i=1,2,\cdots), and the jump angles at each vertex are represented by ηi\eta_{i} in the positive sense. Then the GBT can be expressed as [73]

DKdS+iDiκdl+iηi=2πχ(D),\iint_{D}K\mathrm{d}S+\sum_{i}\int_{\partial D_{i}}\kappa\mathrm{d}l+\sum_{i}\eta_{i}=2\pi\chi(D), (2.1)

where KK and dS\mathrm{d}S are the Gaussian curvature and area element of DD, respectively; κ\kappa and dl\mathrm{d}l represent the geodesic curvature and line element of D\partial D, respectively; χ(D)\chi(D) denotes the Euler characteristic number of DD.

Eq. (2.1) establishes a fundamental relation between the integral of curvature quantities and the Euler characteristic of the region DD. The GBT serves as a powerful tool for analyzing the geometric property of surfaces and their topological characteristics.

2.2 JMRF metric

The JMRF metric, constructed by Chanda etal.et\ al. in 2019 [74], is of great significance in geometrodynamics and provides a framework for studying the particle’s motion in stationary spacetimes. Consider a coordinate (t,𝒙)(t,\boldsymbol{x}) where (/t)a\left(\partial/\partial t\right)^{a} is the Killing vector corresponding to the stationary property of the spacetime, the metric of the stationary spacetime states

ds2=g00(𝒙)dt2+2g0i(𝒙)dtdxi+gij(𝒙)dxidxj.\mathrm{d}s^{2}=g_{00}(\boldsymbol{x})\mathrm{d}t^{2}+2g_{0i}(\boldsymbol{x})\mathrm{d}t\mathrm{d}x^{i}+g_{ij}(\boldsymbol{x})\mathrm{d}x^{i}\mathrm{d}x^{j}. (2.2)

Then the corresponding JMRF metric reads [74]

ds~=αijdxidxj+βidxi,\mathrm{d}\tilde{s}=\sqrt{\alpha_{ij}\mathrm{d}x^{i}\mathrm{d}x^{j}}+\beta_{i}\mathrm{d}x^{i}, (2.3)

where the components of the JMRF metric are given by

αij\displaystyle\alpha_{ij} =E2+m2g00g00(gijg0ig0jg00),\displaystyle=\frac{E^{2}+m^{2}g_{00}}{-g_{00}}\left(g_{ij}-\frac{g_{0i}g_{0j}}{g_{00}}\right), (2.4)
βi\displaystyle\beta_{i} =Eg0ig00.\displaystyle=-E\frac{g_{0i}}{g_{00}}. (2.5)

Here, mm and EE stand for the rest mass and relativistic energy of the particle, respectively, and we dropped ’(𝒙)(\boldsymbol{x})’ from ’g00(𝒙)g_{00}(\boldsymbol{x})’, ’g0i(𝒙)g_{0i}(\boldsymbol{x})’, and ’gij(𝒙)g_{ij}(\boldsymbol{x})’ . The Riemannian metric αij\alpha_{ij} and one-form βi\beta_{i} must satisfy the inequality αijβiβj<1\sqrt{\alpha^{ij}\beta_{i}\beta_{j}}<1. We denote the three-dimensional space determined by αij\alpha_{ij}, i.e. the Riemannian part of the JMRF metric, as M(α3)M^{\left(\alpha 3\right)}. For a geodesic in the four-dimensional stationary spacetime Eq. (2.2), its spatial projection γ\gamma is a geodesic in the three-dimensional JMRF space Eq. (2.3) [74]. Additionally, the JMRF metric encompasses various special cases, including the Jacobi metric applicable to massive particles in SSS spacetimes [75], the optical Randers-Finsler metric applicable to photons in SAS spacetimes [49], and the optical metric applicable to photons in SSS spacetimes [48]. Researchers have utilized the JMRF metric, as well as its specific forms, to investigate the gravitational deflection of particles [48, 49, 76, 77, 50, 78, 75, 79, 80, 51, 81, 82, 83, 58, 52, 53, 84, 85, 63, 86, 54, 87, 88, 89], the Kepler orbit [90], the motion of charged particles [91], and Hawking radiation [92, 93]. A comprehensive discussion on the JMRF metric can be found in [94].

For SAS spacetimes, the metric in the Boyer-Lindquist coordinates can be expressed as

ds2=gtt(r,θ)dt2+grr(r,θ)dr2+gθθ(r,θ)dθ2+gϕϕ(r,θ)dϕ2+2gtϕ(r,θ)dtdϕ,\mathrm{d}s^{2}=g_{tt}\left(r,\theta\right)\mathrm{d}t^{2}+g_{rr}\left(r,\theta\right)\mathrm{d}r^{2}+g_{\theta\theta}\left(r,\theta\right)\mathrm{d}\theta^{2}+g_{\phi\phi}\left(r,\theta\right)\mathrm{d}\phi^{2}+2g_{t\phi}\left(r,\theta\right)\mathrm{d}t\mathrm{d}\phi, (2.6)

and the metric of the corresponding M(α3)M^{\left(\alpha 3\right)} can be written as

dl^2=αrr(r,θ)dr2+αθθ(r,θ)dθ2+αϕϕ(r,θ)dϕ2.\mathrm{d}{\hat{l}}^{2}=\alpha_{rr}\left(r,\theta\right)\mathrm{d}r^{2}+\alpha_{\theta\theta}\left(r,\theta\right)\mathrm{d}\theta^{2}+\alpha_{\phi\phi}\left(r,\theta\right)\mathrm{d}\phi^{2}. (2.7)

We focus on the motion in the equatorial plane (θ=π/2\theta=\pi/2), and M(α3)M^{\left(\alpha 3\right)} reduces to a two-dimensional Riemannian space (denoted as M(α2)M^{\left(\alpha 2\right)} for simplicity). The metric of M(α2)M^{\left(\alpha 2\right)} reads

dl2=αrr(r)dr2+αϕϕ(r)dϕ2,\mathrm{d}l^{2}=\alpha_{rr}\left(r\right)\mathrm{d}r^{2}+\alpha_{\phi\phi}\left(r\right)\mathrm{d}\phi^{2}, (2.8)

in which

αrr(r)=E2+m2gttgttgrr,αϕϕ(r)=E2+m2gttgttgϕϕ.\alpha_{rr}\left(r\right)=\frac{E^{2}+m^{2}g_{tt}}{-g_{tt}}g_{rr},\qquad\alpha_{\phi\phi}\left(r\right)=\frac{E^{2}+m^{2}g_{tt}}{-g_{tt}}g_{\phi\phi}. (2.9)

The corresponding βi\beta_{i} states

βϕ(r)=Egtϕgtt.\beta_{\phi}\left(r\right)=-E\frac{g_{t\phi}}{g_{tt}}. (2.10)

Here, we dropped ’(r,θ=π/2)\left(r,\theta=\pi/2\right)’ from ’gtt(r,θ=π/2)g_{tt}\left(r,\theta=\pi/2\right)’, ’grr(r,θ=π/2)g_{rr}\left(r,\theta=\pi/2\right)’, ’gϕϕ(r,θ=π/2)g_{\phi\phi}\left(r,\theta=\pi/2\right)’, and ’gtϕ(r,θ=π/2)g_{t\phi}\left(r,\theta=\pi/2\right)’ for simplicity.

Furthermore, the equation of motion for unbound particles moving in the equatorial plane of the SAS spacetime equipped with metric (2.6) can be written as [67]

(dudϕ)2=u4(gtϕ2gttgϕϕ)[gttb2v2+2gtϕbv+gϕϕ(1+gttgttv2)+gtϕ2(v21)]grr(gttbv+gtϕ)2,\left(\frac{\mathrm{d}u}{\mathrm{d}\phi}\right)^{2}=\frac{u^{4}\left(g_{t\phi}^{2}-g_{tt}g_{\phi\phi}\right)\left[g_{tt}b^{2}v^{2}+2g_{t\phi}bv+g_{\phi\phi}\left(1+g_{tt}-g_{tt}v^{2}\right)+g_{t\phi}^{2}\left(v^{2}-1\right)\right]}{g_{rr}(g_{tt}bv+g_{t\phi})^{2}}, (2.11)

where u=1/ru=1/r, bb symbolizes the impact parameter, vv is the velocity of particles.

2.3 Finite-distance deflection angle

In 2017, by taking into account the finite distance from a lens object to a light source and a observer, Ishihara etal.et\ al. investigate the finite-distance corrections for the deflection angle of photons [50]. With the GW method, they defined a finite-distance deflection angle and prove it is geometric invariant, namely well-defined.

As shown in Fig. 2,

Refer to caption
Figure 2: In a two-dimensional Riemannian manifold, LL represents the lens; SS and RR are the source and the observer of particles, respectively; γ=SR\gamma=\overset{\curvearrowright}{SR} is the trajectory from SS to RR; ΨS\Psi_{S} and ΨR\Psi_{R} are the angle between the tangent vector along γ\gamma and the radial outward vector at SS and RR, respectively.

in a two-dimensional Riemannian manifold, LL represents the lens, SS and RR are the source and the receiver of particles, respectively, γ=SR\gamma=\overset{\curvearrowright}{SR} is the trajectory from SS to RR, then the deflection angle is defined by [50]

δ=ΨRΨS+ϕRS,\delta=\Psi_{R}-\Psi_{S}+\phi_{RS}, (2.12)

in which ϕRS=ϕRϕS\phi_{RS}=\phi_{R}-\phi_{S} is the increment of the azimuthal coordinate, ΨS\Psi_{S} and ΨR\Psi_{R} are the angle between the tangent vector along γ\gamma and the radial outward vector at SS and RR, respectively. In the limit as SS and RR tend to infinity, ΨS=π\Psi_{S}=\pi and ΨR=0\Psi_{R}=0, the above formula reduces to the usual infinite-distance deflection angle δ=ϕRSπ\delta=\phi_{RS}-\pi. The definition Eq. (2.12) has been widely employed in the investigation of the deflection of particles [80, 51, 55, 59, 58, 61, 95, 60, 63, 54, 96, 87, 64, 97, 98, 65, 66, 99].

3 GWOIA method

In 2017, Ono, Ishihara, and Asada extended the GW method for calculating the finite-distance deflection angle from SSS spacetimes to SAS spacetimes [51]. Considering the motion of particles moving in the equatorial plane of an SAS spacetime equipped with the metric (2.6), the GWOIA method directly selects the corresponding M(α2)M^{\left(\alpha 2\right)} as the two-dimensional Riemannian manifold. It is more flexible (can be applied to various scenarios) and more straightforward (easy to understand) compared the osculating Riemannian method [49] and refractive index method [53].

Denoting the spatial projection of geodesics in the equatorial plane of the spacetime equipped with metric (2.6) as γ\gamma, Ono etal.et\ al. demonstrated that γ\gamma is not a geodesic in M(α2)M^{\left(\alpha 2\right)}. However the deviation of γ\gamma from the geodesic of M(α2)M^{\left(\alpha 2\right)} can be described by the corresponding one-form βi\beta_{i} [54]. The geodesic curvature of γ\gamma in M(α2)M^{\left(\alpha 2\right)} can be evaluated using the following expression [51],

κ=βϕ,rα^αθθ,\kappa=-\frac{\beta_{\phi,r}}{\sqrt{\hat{\alpha}\cdot\alpha^{\theta\theta}}}, (3.1)

where βϕ\beta_{\phi} can be derived by Eq. (2.10), the comma denotes the derivative, α^\hat{\alpha} is the determinant of metric (2.7), and αθθ\alpha^{\theta\theta} represents the contravariant form of αθθ\alpha_{\theta\theta} in the metric (2.7).

Moreover, the Gaussian curvature of M(α2)M^{\left(\alpha 2\right)} can be obtained by [49],

K=1α[ϕ(ααrrΓrrϕ)r(ααrrΓrϕϕ)].K=\frac{1}{\sqrt{\alpha}}\left[\frac{\partial}{\partial\phi}\left(\frac{\sqrt{\alpha}}{\alpha_{rr}}\Gamma_{rr}^{\phi}\right)-\frac{\partial}{\partial r}\left(\frac{\sqrt{\alpha}}{\alpha_{rr}}\Gamma_{r\phi}^{\phi}\right)\right]. (3.2)

where all quantities come from metric (2.8), α\alpha and Γ\Gamma are the determinant and Christoffel symbol, respectively.

3.1 Applying GWOIA method to asymptotically flat spacetimes

As shown in Fig. 3,

Refer to caption
Figure 3: The quadrilateral region AABB{}_{B_{\infty}}^{B}\square_{A_{\infty}}^{A} embedded in the M(α2)M^{(\alpha 2)} corresponding to an SAS spacetime.

in the M(α2)M^{\left(\alpha 2\right)} corresponding to the SAS spacetime equipped with metric (2.6), LL, SS, RR, γ\gamma, ΨS\Psi_{S}, and ΨR\Psi_{R} have the same meaning as that in Fig. 2, CC_{\infty} is an infinite circular arc, intersecting the outgoing radial curve LS\overrightarrow{LS} and LR\overrightarrow{LR} at SS_{\infty} and RR_{\infty}, respectively. Then the integral region is constructed as D=RRSSD_{\infty}=_{R}^{R_{\infty}}\square_{S}^{S_{\infty}}. Applying the GBT Eq. (2.1) to DD_{\infty} leads to

DKdS+SSκdl+Cκdl+RRκdl+RSκdl+ηS+ηS+ηR+ηR=2πχ(D).\iint_{D_{\infty}}K\mathrm{d}S+\int_{\overrightarrow{SS}_{\infty}}\kappa\mathrm{d}l+\int_{C_{\infty}}\kappa\mathrm{d}l+\int_{\overrightarrow{R_{\infty}R}}\kappa\mathrm{d}l+\int_{\overset{\curvearrowright}{RS}}\kappa\mathrm{d}l+\eta_{S}+\eta_{S_{\infty}}+\eta_{R_{\infty}}+\eta_{R}=2\pi\chi\left(D_{\infty}\right). (3.3)

SSκdl=RRκdl=0\int_{\overrightarrow{SS}_{\infty}}\kappa\mathrm{d}l=\int_{\overrightarrow{R_{\infty}R}}\kappa\mathrm{d}l=0, since SS\overrightarrow{SS_{\infty}} and RR\overrightarrow{R_{\infty}R} are geodesics (see Appendix A of Ref. [67] for the proof). RSκdl=γκdl\int_{\overset{\curvearrowright}{RS}}\kappa\mathrm{d}l=-\int_{\gamma}\kappa\mathrm{d}l, ηS=πΨS\eta_{S}=\pi-\Psi_{S}, ηR=ΨR\eta_{R}=\Psi_{R}, ηS=ηR=π/2\eta_{S_{\infty}}=\eta_{R_{\infty}}=\pi/2, and χ(D)=1\chi\left(D_{\infty}\right)=1 as DD_{\infty} is simply connected.

In the scenario where the spacetime is asymptotically flat, CC_{\infty} can be treated as a circular arc in the flat space, i.e. Cκdl=ϕSϕR(1/r)rdϕ=ϕRS\int_{C_{\infty}}\kappa\cdot\mathrm{d}l=\int_{\phi_{S}}^{\phi_{R}}\left(1/r_{\infty}\right)\cdot r_{\infty}\mathrm{d}\phi=\phi_{RS}. According to Eq. (3.3) and the related results, we can express the deflection angle as

δ=DKdS+γκdl,\delta=-\iint_{D_{\infty}}K\mathrm{d}S+\int_{\gamma}\kappa\mathrm{d}l, (3.4)

in which the definition Eq. (2.12) is adopted. The above formula has been used to calculate the deflection angle of particles in Refs. [55, 56, 57, 58, 59, 60, 61, 62, 54, 64, 65, 66, 68], where the spacetime is asymptotically flat.

3.2 Applying GWOIA method to asymptotically nonflat spacetimes

Based on the presence or absence of the singularity as the radial coordinate approaches infinity, asymptotically nonflat SAS spacetimes can be divided into two categories: the infinity-reachable and the infinity-unreachable. Examples of the infinity-reachable include the Kerr-like black hole in bumblebee gravity [100, 101], while the Kerr-de Sitter spacetime [69] and the rotating solution in conformal Weyl gravity [70, 71] fall under the category of the infinity-unreachable.

In the case of infinity-reachable asymptotically nonflat SAS spacetimes, the construction of an infinite integral region is still allowed. However, the calculation formula of the deflection angle becomes more intricate and relies on the specific metric. To illustrate this, we briefly review the work in [63], where the Kerr-like black hole in bumblebee gravity is considered. The metric for such black hole is given by

ds2=(12Mrρ2)dt24Marλsin2θρ2dϕdt+ρ2Δdr2+ρ2dθ2+Asin2θρ2dϕ2,\mathrm{d}s^{2}=-\left(1-\frac{2Mr}{\rho^{2}}\right)\mathrm{d}t^{2}-\frac{4Mar\lambda\sin^{2}\theta}{\rho^{2}}\mathrm{d}\phi\mathrm{d}t+\frac{\rho^{2}}{\Delta}\mathrm{d}r^{2}+\rho^{2}\mathrm{d}\theta^{2}+\frac{A\sin^{2}\theta}{\rho^{2}}\mathrm{d}\phi^{2}, (3.5)

in which λ=1+l\lambda=\sqrt{1+l}, ρ2=r2+λ2a2cos2θ\rho^{2}=r^{2}+\lambda^{2}a^{2}\cos^{2}\theta, Δ=(r22Mr)/λ2+a2\Delta=\left(r^{2}-2Mr\right)/\lambda^{2}+a^{2}, A=(r2+λ2a2)2Δλ4a2sin2θA=\left(r^{2}+\lambda^{2}a^{2}\right)^{2}-\Delta\lambda^{4}a^{2}\sin^{2}\theta. Here, MM and aa are the mass and rotation parameter of the black hole, respectively, and ll is the Lorentz violation parameter. In this scenario, Fig. 3 can still serve as the illustration, and the relevant constructions and results, including Eq. (3.3), remain valid except for the integral of the geodesic curvature along CC_{\infty}. The author derived Cκdl=(1/λ)ϕRS\int_{C_{\infty}}\kappa\mathrm{d}l=\left(1/\lambda\right)\phi_{RS} instead of the result obtained in asymptotically flat spacetime. Consequently, the deflection angle is expressed as

δ=DKdS+γκdl+(11λ)ϕRS,\delta=-\iint_{D_{\infty}}K\mathrm{d}S+\int_{\gamma}\kappa\mathrm{d}l+\left(1-\frac{1}{\lambda}\right)\phi_{RS}, (3.6)

in which an additional item, the change in the coordinate angle, appears compared to Eq. (3.4) due to the existence of the bumblebee vector field. It is important to note that the formula for the deflection angle will vary depending on the specific metrics employed.

As for the infinity-unreachable asymptotically nonflat SAS spacetime, the infinite integral region DD_{\infty} is ill-defined, rendering the GWOIA method invalid.

4 Generalized GW method

In this section, we present a generalized GW method to solve the ill-defined problem and simplify the related calculation. Denoting the radial coordinate of the auxiliary circular arc as rcr_{c}, we give up the limit rcr_{c}\to\infty (or rc=r_{c}=\infty) in the conventional GWOIA method and prove that the rcr_{c} can be chosen arbitrarily, the only requirement is that the resulting integral region should not contain the physically unreasonable region (the region with singularity points).

The generalized GW method is elaborated by considering three different situations based on the relation between rcr_{c} and the maximum (rγmaxr_{\gamma}^{max}) and the minimum (rγminr_{\gamma}^{min}) of the radial coordinates of trajectories. These situations are rc>rγmaxr_{c}>r_{\gamma}^{max}, rγmaxrcrγminr_{\gamma}^{max}\geq r_{c}\geq r_{\gamma}^{min}, and rc<rγminr_{c}<r_{\gamma}^{min}. Like the previous section, the M(α2)M^{\left(\alpha 2\right)} represents the equatorial plane of the Riemannian part of the JMRF metric corresponding to an SAS spacetime equipped with metric (2.6), and its metric is expressed as Eq. (2.8).

4.1 rc>rγmaxr_{c}>r_{\gamma}^{max}

As shown in Fig. 4,

Refer to caption
Figure 4: The schematic for the situation rc>rγmaxr_{c}>r_{\gamma}^{max}.

in the M(α2)M^{\left(\alpha 2\right)}, LL, SS, RR, and γ\gamma have the same meaning as that in Fig. 2. Ca=SaRaC_{a}=\overset{\curvearrowright}{S_{a}R_{a}} is the auxiliary circular arc with rc>rγmaxr_{c}>r_{\gamma}^{max}, and intersects with LS\overrightarrow{LS} and LR\overrightarrow{LR} at SaS_{a} and RaR_{a}, respectively. Thus we obtain a quadrilateral region Da=RRaSSaD_{a}=^{R_{a}}_{R}\square^{S_{a}}_{S}. Here, the subscript aa indicates "arbitrary". The application of the GBT to DaD_{a} yields

DaKdS+SSaκdl+Caκdl+RaRκdl+RSκdl+ηS+ηSa+ηRa+ηR=2πχ(Da).\iint_{D_{a}}K\mathrm{d}S+\int_{\overrightarrow{SS}_{a}}\kappa\mathrm{d}l+\int_{C_{a}}\kappa\mathrm{d}l+\int_{\overrightarrow{R_{a}R}}\kappa\mathrm{d}l+\int_{\overset{\curvearrowright}{RS}}\kappa\mathrm{d}l+\eta_{S}+\eta_{S_{a}}+\eta_{R_{a}}+\eta_{R}=2\pi\chi(D_{a}). (4.1)

Substituting κ(SSa)=κ(RaR)=0\kappa(\overrightarrow{SS}_{a})=\kappa(\overrightarrow{R_{a}R})=0, RSκdl=γκdl\int_{\overset{\curvearrowright}{RS}}\kappa\mathrm{d}l=-\int_{\gamma}\kappa\mathrm{d}l, ηS=πΨS\eta_{S}=\pi-\Psi_{S}, ηSa=ηRa=π/2\eta_{S_{a}}=\eta_{R_{a}}=\pi/2, ηR=ΨR\eta_{R}=\Psi_{R}, and χ(Da)=1\chi\left(D_{a}\right)=1 into the above equation leads to

DaKdS+Caκdlγκdl+ΨRΨS=0.\iint_{D_{a}}K\mathrm{d}S+\int_{C_{a}}\kappa\mathrm{d}l-\int_{\gamma}\kappa\mathrm{d}l+\Psi_{R}-\Psi_{S}=0. (4.2)

With the definition Eq. (2.12), the deflection angle can be written as

δ=DaKdSCaκdl+ϕRS+γκdl.\delta=-\iint_{D_{a}}K\mathrm{d}S-\int_{C_{a}}\kappa\mathrm{d}l+\phi_{RS}+\int_{\gamma}\kappa\mathrm{d}l. (4.3)

Firstly, we analyze DaKdS\iint_{D_{a}}K\mathrm{d}S. According to Eqs. (2.8) and (3.2), we have

Kαdr=αϕϕ,r2α+Const.\int K\sqrt{\alpha}\mathrm{d}r=-\frac{\alpha_{\phi\phi,r}}{2\sqrt{\alpha}}+Const. (4.4)

Introducing H(r)H(r) to denote the indefinite integral of KαK\sqrt{\alpha} with respect to the radial coordinate up to a constant, namely,

H(r)=αϕϕ,r2α,H(r)=-\frac{\alpha_{\phi\phi,r}}{2\sqrt{\alpha}}, (4.5)

we derive

DaKdS=ϕSϕRrγrcKαdrdϕ=ϕSϕR[H(rc)H(rγ)]dϕ.\iint_{D_{a}}K\mathrm{d}S=\int_{\phi_{S}}^{\phi_{R}}\int_{r_{\gamma}}^{r_{c}}K\sqrt{\alpha}\mathrm{d}r\mathrm{d}\phi=\int_{\phi_{S}}^{\phi_{R}}\left[H(r_{c})-H(r_{\gamma})\right]\mathrm{d}\phi. (4.6)

Secondly, we analyze Caκdl\int_{C_{a}}\kappa\mathrm{d}l. According to Liouville’s formula for geodesic curvature, the geodesic curvature of the circular arc in M(α2)M^{(\alpha 2)} can be expressed as (Chapter 4 of Ref. [102])

κ(c)=Γϕϕrα1/2αϕϕ3/2=αϕϕ,r2αϕϕαrr.\kappa^{(c)}=-\Gamma^{r}_{\phi\phi}\frac{\alpha^{1/2}}{\alpha^{3/2}_{\phi\phi}}=\frac{\alpha_{\phi\phi,r}}{2\alpha_{\phi\phi}\sqrt{\alpha_{rr}}}. (4.7)

Introducing G(r)=κ(c)dl/dϕG(r)=\kappa^{(c)}\mathrm{d}l/\mathrm{d}\phi to denote the integrand of the integral of geodesic curvature along the auxiliary circular arc with respect the azimuthal coordinate, we derive

Caκdl=ϕSϕR[κ(c)dldϕ]r=rcdϕ=ϕSϕRG(rc)dϕ.\int_{C_{a}}\kappa\mathrm{d}l=\int_{\phi_{S}}^{\phi_{R}}\left[\kappa^{(c)}\frac{\mathrm{d}l}{\mathrm{d}\phi}\right]_{r=r_{c}}\mathrm{d}\phi=\int_{\phi_{S}}^{\phi_{R}}G(r_{c})\mathrm{d}\phi. (4.8)

According to Eqs. (2.8) and (4.7) we obtain

G(r)=αϕϕ,r2α.G(r)=\frac{\alpha_{\phi\phi,r}}{2\sqrt{\alpha}}. (4.9)

Finally, substituting Eqs. (4.6) and (4.8) into Eq. (4.3) yields

δ=ϕSϕR[H(rc)H(rγ)+G(rc)1]dϕ+γκdl.\delta=-\int_{\phi_{S}}^{\phi_{R}}\left[H(r_{c})-H(r_{\gamma})+G(r_{c})-1\right]\mathrm{d}\phi+\int_{\gamma}\kappa\mathrm{d}l. (4.10)

We find that H(r)=G(r)H(r)=-G(r) regardless of the value of rr according to Eqs. (4.5) and (4.9), thus the above formula becomes

δ=ϕSϕR[1+H(rγ)]dϕ+γκdl.\delta=\int_{\phi_{S}}^{\phi_{R}}\left[1+H(r_{\gamma})\right]\mathrm{d}\phi+\int_{\gamma}\kappa\mathrm{d}l. (4.11)

4.2 rγmaxrcrγminr_{\gamma}^{max}\geq r_{c}\geq r_{\gamma}^{min}

Now, we show that Eq. (4.11) also holds for the situation rγmaxrcrγminr_{\gamma}^{max}\geq r_{c}\geq r_{\gamma}^{min}. As depicted in Fig. 5,

Refer to caption
Figure 5: The schematic for the situation rγmaxrcrγminr_{\gamma}^{max}\geq r_{c}\geq r_{\gamma}^{min}.

the auxiliary circular arc CaC_{a} satisfies rγmaxrcrγminr_{\gamma}^{max}\geq r_{c}\geq r_{\gamma}^{min}, and intersects with γ\gamma at PP and QQ. Thus we obtain two triangle regions Da1=PSaSD_{a1}=_{P}\triangle_{S_{a}}^{S} and Da3=RRaQD_{a3}=_{R}\triangle^{Q}_{R_{a}}, and a digon Da2D_{a2} with vertexes PP and QQ. ξ\xi and ω\omega are the angle between CaC_{a} and γ\gamma at PP and QQ, respectively.

Applying the GBT to Da1D_{a1} leads to

Da1KdS+SaSκdl+SPκdl+PSaκdl+ηSa+ηS+ηP(1)=2πχ(Da1).\iint_{D_{a1}}K\mathrm{d}S+\int_{\overrightarrow{S_{a}S}}\kappa\mathrm{d}l+\int_{\overset{\curvearrowright}{SP}}\kappa\mathrm{d}l+\int_{\overset{\curvearrowright}{PS_{a}}}\kappa\mathrm{d}l+\eta_{S_{a}}+\eta_{S}+\eta_{P}^{(1)}=2\pi\chi(D_{a1}). (4.12)

Using κ(SaS)=0\kappa(\overrightarrow{S_{a}S})=0, ηSa=π/2\eta_{S_{a}}=\pi/2, ηS=ΨS\eta_{S}=\Psi_{S}, ηP(1)=πξ\eta_{P}^{(1)}=\pi-\xi, and χ(Da1)=1\chi(D_{a1})=1, we derive

Da1KdS+SPκdl+PSaκdl+ΨSξ=π2.\iint_{D_{a1}}K\mathrm{d}S+\int_{\overset{\curvearrowright}{SP}}\kappa\mathrm{d}l+\int_{\overset{\curvearrowright}{PS_{a}}}\kappa\mathrm{d}l+\Psi_{S}-\xi=\frac{\pi}{2}. (4.13)

Applying the GBT to Da2D_{a2} leads to

Da2KdS+QPκdl+PQκdl+ηP(2)+ηQ(2)=2πχ(Da2),\iint_{D_{a2}}K\mathrm{d}S+\int_{\overset{\curvearrowright}{QP}}\kappa\mathrm{d}l+\int_{\overset{\Large\curvearrowright}{PQ}}\kappa\mathrm{d}l+\eta_{P}^{\left(2\right)}+\eta_{Q}^{\left(2\right)}=2\pi\chi\left(D_{a2}\right), (4.14)

where QP\overset{\curvearrowright}{QP} denotes the curve followed from QQ to PP along the trajectory γ\gamma, PQ\overset{\curvearrowright}{PQ} represents the curve followed from PP to QQ along the circular arc CaC_{a}. Using ηP(2)=πξ\eta_{P}^{\left(2\right)}=\pi-\xi, ηQ(2)=πω\eta_{Q}^{\left(2\right)}=\pi-\omega, and χ(Da2)=1\chi(D_{a2})=1, we derive

Da2KdS+QPκdl+PQκdlξω=0.\iint_{D_{a2}}K\mathrm{d}S+\int_{\overset{\curvearrowright}{QP}}\kappa\mathrm{d}l+\int_{\overset{\Large\curvearrowright}{PQ}}\kappa\mathrm{d}l-\xi-\omega=0. (4.15)

Applying the GBT to Da3D_{a3} leads to

Da3KdS+QRκdl+RRaκdl+RaQκdl+ηQ(3)+ηR+ηRa=2πχ(Da3).\iint_{D_{a3}}K\mathrm{d}S+\int_{\overset{\curvearrowright}{QR}}\kappa\mathrm{d}l+\int_{\overrightarrow{RR_{a}}}\kappa\mathrm{d}l+\int_{\overset{\curvearrowright}{R_{a}Q}}\kappa\mathrm{d}l+\eta_{Q}^{(3)}+\eta_{R}+\eta_{R_{a}}=2\pi\chi\left(D_{a3}\right). (4.16)

Using κ(RRa)=0\kappa\left(\overrightarrow{RR_{a}}\right)=0, ηQ(3)=πω\eta_{Q}^{(3)}=\pi-\omega, ηR=πΨR\eta_{R}=\pi-\Psi_{R}, ηRa=π/2\eta_{R_{a}}=\pi/2, and χ(Da3)=1\chi\left(D_{a3}\right)=1, we derive

Da3KdS+QRκdl+RaQκdlωΨR=π2.\iint_{D_{a3}}K\mathrm{d}S+\int_{\overset{\curvearrowright}{QR}}\kappa\mathrm{d}l+\int_{\overset{\curvearrowright}{R_{a}Q}}\kappa\mathrm{d}l-\omega-\Psi_{R}=-\frac{\pi}{2}. (4.17)

Acoording to Eq. (2.12), Eq. (4.13)++Eq. (4.17)-Eq. (4.15) results in

δ=Da1KdSDa2KdS+Da3KdSCaκdl+ϕRS+γκdl.\delta=\iint_{D_{a1}}K\mathrm{d}S-\iint_{D_{a2}}K\mathrm{d}S+\iint_{D_{a3}}K\mathrm{d}S-\int_{C_{a}}\kappa\mathrm{d}l+\phi_{RS}+\int_{\gamma}\kappa\mathrm{d}l. (4.18)

With the help of Eqs. (4.5) and (4.9), the deflection angle is expressed as

δ=\displaystyle\delta= ϕSϕP[H(rγ)H(rc)]dϕϕPϕQ[H(rc)H(rγ)]dϕ+ϕQϕR[H(rγ)H(rc)]dϕ\displaystyle\int_{\phi_{S}}^{\phi_{P}}\left[H(r_{\gamma})-H(r_{c})\right]\mathrm{d}\phi-\int_{\phi_{P}}^{\phi_{Q}}\left[H(r_{c})-H(r_{\gamma})\right]\mathrm{d}\phi+\int_{\phi_{Q}}^{\phi_{R}}\left[H(r_{\gamma})-H(r_{c})\right]\mathrm{d}\phi (4.19)
ϕSϕRG(rc)dϕ+ϕRS+γκdl\displaystyle-\int_{\phi_{S}}^{\phi_{R}}G(r_{c})\mathrm{d}\phi+\phi_{RS}+\int_{\gamma}\kappa\mathrm{d}l
=\displaystyle= ϕSϕR[H(rγ)H(rc)]dϕϕSϕRG(rc)dϕ+ϕRS+γκdl\displaystyle\int_{\phi_{S}}^{\phi_{R}}\left[H(r_{\gamma})-H(r_{c})\right]\mathrm{d}\phi-\int_{\phi_{S}}^{\phi_{R}}G(r_{c})\mathrm{d}\phi+\phi_{RS}+\int_{\gamma}\kappa\mathrm{d}l
=\displaystyle= ϕSϕR[1+H(rγ)]dϕ+γκdl,\displaystyle\int_{\phi_{S}}^{\phi_{R}}\left[1+H(r_{\gamma})\right]\mathrm{d}\phi+\int_{\gamma}\kappa\mathrm{d}l,

which is the same as Eq. (4.11). Additionally, if CaC_{a} intersects with γ\gamma at more or fewer points, one can also obtain the above formula by applying the GBT to more or fewer quadrilateral, triangle, or digon regions.

4.3 rc<rγminr_{c}<r_{\gamma}^{min}

As shown in Fig. 6,

Refer to caption
Figure 6: The schematic for the situation rc<rγminr_{c}<r_{\gamma}^{min}.

rc<rγminr_{c}<r_{\gamma}^{min}, applying the GBT to Da=RaRSaSD_{a}=^{R}_{R_{a}}\square_{S_{a}}^{S} yields

DaKdS+SaSκdl+SRκdl+RRaκdl+RaSaκdl+ηSa+ηS+ηR+ηRa=2πχ(Da).\iint_{D_{a}}K\mathrm{d}S+\int_{\overrightarrow{S_{a}S}}\kappa\mathrm{d}l+\int_{\overset{\curvearrowright}{SR}}\kappa\mathrm{d}l+\int_{\overrightarrow{RR}_{a}}\kappa\mathrm{d}l+\int_{\overset{\curvearrowright}{R_{a}S_{a}}}\kappa\mathrm{d}l+\eta_{S_{a}}+\eta_{S}+\eta_{R}+\eta_{R_{a}}=2\pi\chi(D_{a}). (4.20)

Using κ(SaS)=κ(RRa)=0\kappa(\overrightarrow{S_{a}S})=\kappa(\overrightarrow{RR}_{a})=0, ηSa=ηRa=π/2\eta_{S_{a}}=\eta_{R_{a}}=\pi/2, ηS=ΨS\eta_{S}=\Psi_{S}, ηR=πΨR\eta_{R}=\pi-\Psi_{R}, χ(Da)=1\chi\left(D_{a}\right)=1 and Eq. (2.12), we derive

δ=DaKdS+RaSaκdl+ϕRS+γκdl.\delta=\iint_{D_{a}}K\mathrm{d}S+\int_{\overset{\curvearrowright}{R_{a}S_{a}}}\kappa\mathrm{d}l+\phi_{RS}+\int_{\gamma}\kappa\mathrm{d}l. (4.21)

Namely,

δ=\displaystyle\delta= ϕSϕR[H(rγ)H(rc)]dϕϕSϕRG(rc)dϕ+ϕRS+γκdl\displaystyle\int_{\phi_{S}}^{\phi_{R}}\left[H(r_{\gamma})-H(r_{c})\right]\mathrm{d}\phi-\int_{\phi_{S}}^{\phi_{R}}G(r_{c})\mathrm{d}\phi+\phi_{RS}+\int_{\gamma}\kappa\mathrm{d}l (4.22)
=\displaystyle= ϕSϕR[1+H(rγ)]dϕ+γκdl,\displaystyle\int_{\phi_{S}}^{\phi_{R}}\left[1+H(r_{\gamma})\right]\mathrm{d}\phi+\int_{\gamma}\kappa\mathrm{d}l,

which is the same as Eq. (4.11).

4.4 Further simplifying the calculation formula and briefly summarizing the calculation step

Although Eq. (4.11) is simpler than that in the conventional GWOIA method (Eqs. (3.4) and (3.6)), calculating the integral of geodesic curvature along the trajectory is still not straightforward. Here, we recast it into a form that further simplifies the calculation process for practical computations. We denote the integrand of the integral of geodesic curvature along the trajectory with respect to the azimuthal coordinate by T(r)=κγdl/dϕT\left(r\right)=\kappa_{\gamma}\mathrm{d}l/\mathrm{d}\phi. Then using Eqs. (2.7), (2.8) and (3.1), we obtain

T(r)=βϕ,r1αϕϕ(drdϕ)2+1αrr,orT(r)=βϕ,rr4αϕϕ(dudϕ)2+1αrr.T\left(r\right)=-\beta_{\phi,r}\sqrt{\frac{1}{\alpha_{\phi\phi}}\left(\frac{\mathrm{d}r}{\mathrm{d}\phi}\right)^{2}+\frac{1}{\alpha_{rr}}},\qquad\text{or}\qquad T\left(r\right)=-\beta_{\phi,r}\sqrt{\frac{r^{4}}{\alpha_{\phi\phi}}\left(\frac{\mathrm{d}u}{\mathrm{d}\phi}\right)^{2}+\frac{1}{\alpha_{rr}}}. (4.23)

As a consequence, we express the integral of geodesic curvature along γ\gamma as

γκdl=ϕSϕR[κγdldϕ]|r=rγdϕ=ϕSϕRT(rγ)dϕ,\int_{\gamma}\kappa\mathrm{d}l=\int_{\phi_{S}}^{\phi_{R}}\left.\left[\kappa_{\gamma}\frac{\mathrm{d}l}{\mathrm{d}\phi}\right]\right|_{r=r_{\gamma}}\mathrm{d}\phi=\int_{\phi_{S}}^{\phi_{R}}T(r_{\gamma})\mathrm{d}\phi, (4.24)

with which Eq. (4.11) is finally simplified as

δ=ϕSϕR[1+H(rγ)+T(rγ)]dϕ.\delta=\int_{\phi_{S}}^{\phi_{R}}\left[1+H(r_{\gamma})+T(r_{\gamma})\right]\mathrm{d}\phi. (4.25)

This formula is applicable to all kinds of SAS spacetime, including the asymptotically flat, the infinity-reachable asymptotically nonflat, and the infinity-unreachable asymptotically nonflat. It provides an unified description for the finite-distance deflection angle of particles moving in the equatorial plane of SAS spacetimes, the calculation process using the simplified formula Eq. (4.25) is simpler and more straightforward. It can be summarized as follows:

  • Firstly, substitute the metric into Eq. (2.11) to obtain the (du/dϕ)2\left(\mathrm{d}u/\mathrm{d}\phi\right)^{2}, and the orbit solution u(ϕ)=1/r(ϕ)u\left(\phi\right)=1/r(\phi) and ϕ(u)\phi\left(u\right).

  • Secondly, substitute the metric into Eqs. (2.9) and (2.10) to get αrr\alpha_{rr}, αϕϕ\alpha_{\phi\phi} and βϕ\beta_{\phi}.

  • Thirdly, substitute αrr\alpha_{rr}, αϕϕ\alpha_{\phi\phi}, βϕ\beta_{\phi}, (du/dϕ)2\left(\mathrm{d}u/\mathrm{d}\phi\right)^{2} and rγ=1/u(ϕ)r_{\gamma}=1/u(\phi) into the integrand of Eq. (4.25) to derive f(ϕ)f(\phi), where

    f(ϕ)=1+H(rγ)+T(rγ).f\left(\phi\right)=1+H(r_{\gamma})+T(r_{\gamma}). (4.26)
  • Finally, obtain the deflection angle in terms of uRu_{R} and uSu_{S} with

    δ=F(ϕR)F(ϕS),\delta=F\left(\phi_{R}\right)-F\left(\phi_{S}\right), (4.27)

    where ϕR=ϕ(uR)\phi_{R}=\phi(u_{R}) and ϕS=ϕ(uS)\phi_{S}=\phi(u_{S}), ϕR>π/2\phi_{R}>\pi/2 and ϕS<π/2\phi_{S}<\pi/2 are usually assumed, uRu_{R} and uSu_{S} are respectively the reciprocal of the radial coordinate of the observer (receiver) and source, and F(ϕ)F\left(\phi\right) denotes the indefinite integral of f(ϕ)f\left(\phi\right).

The scheme of the generalized GW encompasses various special cases, such as the deflection angle of photons (v=1v=1), the infinite-distance deflection angle (uS=uR=0u_{S}=u_{R}=0, only valid for spacetimes where the source and observer can reach infinity), and the deflection angle of SSS counterparts (the rotation parameter vanishes). Furthermore, for the GW method, numerous examples demonstrate that if the spacetime can be approximated as Minkowski spacetime (ds2=dt2+dr2+r2dθ2+r2sin2θdϕ2\mathrm{d}s^{2}=-\mathrm{d}t^{2}+\mathrm{d}r^{2}+r^{2}\mathrm{d}\theta^{2}+r^{2}\sin^{2}\theta\mathrm{d}\phi^{2}) in terms of the quantities of interest under the zeroth-order approximation, the nn-th order deflection angle can be obtained using the (n1)(n-1)-th order orbit solution.

4.5 Some discussion

Our discovery of the expression H(rc)=G(rc)H(r_{c})=-G(r_{c}) is the cornerstone of the generalized GW method. It neutralizes the G(rc)G(r_{c}) in the integral of geodesic curvature and the H(rc)H(r_{c}) in the integral of Gaussian curvature regardless of the chosen value of rcr_{c}. The resulting Eq. (4.25) does not depend on the location of the auxiliary circular arc. Our method encompasses the conventional GWOIA method as a specific case with rc=r_{c}=\infty. To illustrate the relationship between the two methods, we employ the generalized GW method with rc=r_{c}=\infty to reproduce the calculation formula in the conventional GWOIA method. When rc=r_{c}=\infty the deflection angle can be expressed by Eq. (4.10) since >rγmax\infty>r_{\gamma}^{max}. Firstly, we reproduce Eq. (3.4), which corresponds to asymptotically flat SAS spacetimes. Given the asymptotic flatness of spacetimes, we have αrr()=1\alpha_{rr}\left(\infty\right)=1 and αϕϕ()=r2\alpha_{\phi\phi}\left(\infty\right)=r^{2} according to Eq. (2.8). Substituting these values into Eq. (4.9) yields G(rc=)=1G\left(r_{c}=\infty\right)=1, with which Eq. (4.10) can reduce to Eq. (3.4). Secondly we reproduce Eq. (3.6), which corresponds to an infinity-reachable nonflat SAS spacetime (Kerr-like black hole in bumblebee gravity). Using the result G(rc=)=1/λG(r_{c}=\infty)=1/\lambda from Ref. [63], Eq. (4.10) directly reduces to Eq. (3.6).

The generalized GW and the corresponding simplified calculation formula holds significant meaning in five aspects:

  • (a)

    The GW method can be extended to infinity-unreachable spacetimes by constructing an appropriate finite integral region, since the auxiliary circular arc can be chosen arbitrarily instead of taking the limit rc=r_{c}=\infty in previous works.

  • (b)

    For infinity-reachable asymptotically nonflat SAS spacetimes, our calculation formula Eq. (4.25) is universally applicable, unlike that in the conventional GWOIA method which varies depending on specific metrics.

  • (c)

    Our method can be viewed as an unified description to the GW method for calculating the finite-distance and infinite-distance deflection angle of massive and massless particles in SSS and SAS spacetimes with or without asymptotical flatness. This is the reason why we call it the generalized GW method.

  • (d)

    Compared to calculation formulas in the conventional GWOIA method (Eqs. (3.4) and (3.6)), our formula Eq. (4.25) is easier to apply in practical computation processes. Since it involves only a single integral of an fully simplified integrand, rather than a double integral of the intricate Gaussian curvature and a single integral of the geodesic curvature required by Eqs. (3.4) and (3.6).

  • (e)

    Since the presence of the surface integral over DD_{\infty} in the calculation formula in conventional GWOIA method (Eqs. (3.4) and (3.6)), the deflection angle seems depend on the nature of the region between the trajectory and infinity. While our result, Eq. (4.25), clearly demonstrates that the deflection angle is solely determined by the properties of the trajectory itself, which is closer to our intuitive understanding.

5 Application of Generalized GW method

In this section, we aim to showcase the calculation process outlined in Sec.4.4 and demonstrate the conclusion drawn in Sec. 4.5. To this end, by utilizing the generalized GW method along with the simplified formula Eq. (4.25), we compute the finite-distance deflection angle of particles for three spacetimes: an asymptotically flat SAS spacetime, Kerr black hole; an infinity-reachable asymptotically nonflat SAS spacetime, Kerr-like black hole in bumblebee gravity; and an infinity-unreachable asymptotically nonflat SAS spacetime, rotating solution in conformal Weyl gravity.

5.1 Asymptotically flat SAS spacetime (Kerr black hole)

The Kerr metric with Boyer-Lindquist coordinates states [103]

ds2=(12MrΣ)dt24aMrsin2θΣdtdϕ+ΣΔdr2+Σdθ2+[Δ+2Mr(r2+a2)Σ]sin2θdϕ2,\mathrm{d}s^{2}=-\left(1-\frac{2Mr}{\Sigma}\right)\mathrm{d}t^{2}-\frac{4aMr\sin^{2}\theta}{\Sigma}\mathrm{d}t\mathrm{d}\phi+\frac{\Sigma}{\Delta}\mathrm{d}r^{2}+\Sigma\mathrm{d}\theta^{2}+\left[\Delta+\frac{2Mr\left(r^{2}+a^{2}\right)}{\Sigma}\right]\sin^{2}\theta\mathrm{d}\phi^{2}, (5.1)

where Σ=r2+a2cos2θ\Sigma=r^{2}+a^{2}\cos^{2}\theta, Δ=r22Mr+a2\Delta=r^{2}-2Mr+a^{2}. We adopt the calculation steps in Sec.4.4 to calculate the deflection angle of particles moving in the equatorial plane of Kerr spacetime. Firstly, according to Eq. (2.11), we obtain the equation of motion

(dudϕ)2=1b2u2b2+M2u(b2u2v2v2+1)b2v2+𝒪(M2,Ma,a2).\left(\frac{\mathrm{d}u}{\mathrm{d}\phi}\right)^{2}=\frac{1-b^{2}u^{2}}{b^{2}}+M\cdot\frac{2u\left(b^{2}u^{2}v^{2}-v^{2}+1\right)}{b^{2}v^{2}}+\mathcal{O}\left(M^{2},Ma,a^{2}\right). (5.2)

Then the orbit solution can be derived with the perturbation method 222When M=a=0M=a=0, Kerr metric becomes the Minkowski spacetime. Here we calculate the second order deflection angle with respect to MM and aa, thus the orbit solution up to first order is enough.

u(ϕ)=sinϕb+M1+v2cos2ϕb2v2+𝒪(M2,Ma,a2).u\left(\phi\right)=\frac{\sin\phi}{b}+M\cdot\frac{1+v^{2}\cos^{2}\phi}{b^{2}v^{2}}+\mathcal{O}\left(M^{2},Ma,a^{2}\right). (5.3)

In addition, the iterative solution of ϕ\phi can be obtained by using the above formula

ϕ(u)={Φ(u),if |ϕ|<π2,πΦ(u),if |ϕ|>π2,\phi(u)=\begin{cases}\Phi(u),&\text{if }\left|\phi\right|<\frac{\pi}{2},\\ \pi-\Phi(u),&\text{if }\left|\phi\right|>\frac{\pi}{2},\end{cases} (5.4)

where

Φ(u)=arcsin(bu)M1+v2b2u2v2bv21b2u2+𝒪(M2,Ma,a2).\Phi\left(u\right)=\arcsin\left(bu\right)-M\cdot\frac{1+v^{2}-b^{2}u^{2}v^{2}}{bv^{2}\sqrt{1-b^{2}u^{2}}}+\mathcal{O}\left(M^{2},Ma,a^{2}\right). (5.5)

Secondly, we substitute the metric (5.1) into Eqs. (2.9) and (2.10) to obtain αrr\alpha_{rr}, αϕϕ\alpha_{\phi\phi}, and βϕ\beta_{\phi}. Thirdly, substituting αrr\alpha_{rr}, αϕϕ\alpha_{\phi\phi}, βϕ\beta_{\phi}, and Eq. (5.2) into Eqs. (4.5) and (4.23), and using Eq. (4.26), we derive

f(ϕ)=\displaystyle f(\phi)= M(v2+1)sinϕbv2+M214b2v4[(v22)2cos(2ϕ)+3(v2+4)v2]\displaystyle M\cdot\frac{\left(v^{2}+1\right)\sin\phi}{bv^{2}}+M^{2}\cdot\frac{1}{4b^{2}v^{4}}\left[\left(v^{2}-2\right)^{2}\cos(2\phi)+3\left(v^{2}+4\right)v^{2}\right] (5.6)
Ma2sinϕb2v+𝒪(M3,M2a,Ma2,a3),\displaystyle-Ma\cdot\frac{2\sin\phi}{b^{2}v}+\mathcal{O}\left(M^{3},M^{2}a,Ma^{2},a^{3}\right),

in which rγr_{\gamma} is expressed as the reciprocal of Eq. (5.3). Finally, substituting F(ϕ)F\left(\phi\right) (derived by integrating f(ϕ)f(\phi)), ϕR=πΦ(uR)\phi_{R}=\pi-\Phi\left(u_{R}\right), and ϕS=Φ(uS)\phi_{S}=\Phi\left(u_{S}\right) into Eq. (4.27) yields the deflection angle of particles moving in the equatorial plane

δ=\displaystyle\delta= M(v2+1)(1b2u2R+1b2u2S)bv2+M2{3(v2+4)[arccos(buR)+arccos(buS)]4b2v2\displaystyle M\cdot\frac{\left(v^{2}+1\right)\left(\sqrt{1-b^{2}u{{}_{R}}^{2}}+\sqrt{1-b^{2}u{{}_{S}}^{2}}\right)}{bv^{2}}+M^{2}\cdot\left\{\frac{3\left(v^{2}+4\right)[\arccos(bu_{R})+\arccos(bu_{S})]}{4b^{2}v^{2}}\right. (5.7)
+uS[3v2(v2+4)b2u(3v4+8v24)S2]4bv41b2u2S+uR[3v2(v2+4)b2u(3v4+8v24)R2]4bv41b2u2R}\displaystyle+\frac{u_{S}\left[3v^{2}\left(v^{2}+4\right)-b^{2}u{{}_{S}}^{2}\left(3v^{4}+8v^{2}-4\right)\right]}{4bv^{4}\sqrt{1-b^{2}u{{}_{S}}^{2}}}\left.+\frac{u_{R}\left[3v^{2}\left(v^{2}+4\right)-b^{2}u{{}_{R}}^{2}\left(3v^{4}+8v^{2}-4\right)\right]}{4bv^{4}\sqrt{1-b^{2}u{{}_{R}}^{2}}}\right\}
Ma2(1b2uR2+1b2uS2)b2v+𝒪(M3,M2a,Ma2,a3).\displaystyle-Ma\cdot\frac{2\left(\sqrt{1-b^{2}u_{R}^{2}}+\sqrt{1-b^{2}u_{S}^{2}}\right)}{b^{2}v}+\mathcal{O}\left(M^{3},M^{2}a,Ma^{2},a^{3}\right).

Li and Jia also obtained Eq. (5.7) with the conventional GWOIA method in Ref. [54], where the calculation process is much more complicated than ours and the redundant second order term MaMa is retained in the orbit solution.

5.2 Infinity-reachable asymptotically nonflat SAS spacetime (Kerr-like black hole in bumblebee gravity)

The metric of the Kerr-like black hole in bumblebee gravity is Eq. (3.5). We calculate the deflection angle of particles moving in the equatorial plane of such spacetime. Firstly, substituting metric (3.5) into Eq. (2.11) leads to

(dudϕ)2=1b2u2b2λ2+M2(b2u3v2uv2+u)b2λ2v2Ma4ub3λv+a23u22b2u4b2+𝒪(M3,M2a,Ma2,a3),\left(\frac{\mathrm{d}u}{\mathrm{d}\phi}\right)^{2}=\frac{1-b^{2}u^{2}}{b^{2}\lambda^{2}}+M\cdot\frac{2\left(b^{2}u^{3}v^{2}-uv^{2}+u\right)}{b^{2}\lambda^{2}v^{2}}-Ma\cdot\frac{4u}{b^{3}\lambda v}+a^{2}\cdot\frac{3u^{2}-2b^{2}u^{4}}{b^{2}}+\mathcal{O}\left(M^{3},M^{2}a,Ma^{2},a^{3}\right), (5.8)

with which we obtain the orbit solution of particles moving in the equatorial plane

u(ϕ)=\displaystyle u(\phi)= 1bsinϕλ+M1b2[cos2ϕλ+1v2]M218b3λv4cosϕλ[3λv4sin2ϕλ+6v2(v2+4)ϕ\displaystyle\frac{1}{b}\sin\frac{\phi}{\lambda}+M\cdot\frac{1}{b^{2}}\left[\cos^{2}\frac{\phi}{\lambda}+\frac{1}{v^{2}}\right]-M^{2}\cdot\frac{1}{8b^{3}\lambda v^{4}}\cos\frac{\phi}{\lambda}\left[3\lambda v^{4}\sin\frac{2\phi}{\lambda}+6v^{2}\left(v^{2}+4\right)\phi\right. (5.9)
4λ(4v2+1)tanϕλ]Ma2λb3v+a2λ22b3sin3ϕλ+𝒪(M3,M2a,Ma2,a3),\displaystyle\left.-4\lambda\left(4v^{2}+1\right)\tan\frac{\phi}{\lambda}\right]-Ma\cdot\frac{2\lambda}{b^{3}v}+a^{2}\cdot\frac{\lambda^{2}}{2b^{3}}\sin^{3}\frac{\phi}{\lambda}+\mathcal{O}\left(M^{3},M^{2}a,Ma^{2},a^{3}\right),

and

ϕ(u)={Φ(u),if |ϕ|<π2,λπΦ(u),if |ϕ|>π2,\phi(u)=\begin{cases}\Phi(u),&\text{if }\left|\phi\right|<\frac{\pi}{2},\\ \lambda\pi-\Phi(u),&\text{if }\left|\phi\right|>\frac{\pi}{2},\end{cases} (5.10)

where

Φ(u)=\displaystyle\Phi(u)= λarcsin(bu)+Mλ(b2u2v2v21)bv21b2u2M2λ4b2v4(1b2u2)3/2[3b5u5v4\displaystyle\lambda\arcsin(bu)+M\cdot\frac{\lambda\left(b^{2}u^{2}v^{2}-v^{2}-1\right)}{bv^{2}\sqrt{1-b^{2}u^{2}}}-M^{2}\cdot\frac{\lambda}{4b^{2}v^{4}\left(1-b^{2}u^{2}\right)^{3/2}}\Big{[}3b^{5}u^{5}v^{4} (5.11)
+3buv2(v2+4)3v2(v2+4)(1b2u2)3/2arcsin(bu)2b3u3(3v4+6v2+1)]\displaystyle+3buv^{2}\left(v^{2}+4\right)-3v^{2}\left(v^{2}+4\right)\left(1-b^{2}u^{2}\right)^{3/2}\arcsin(bu)-2b^{3}u^{3}\left(3v^{4}+6v^{2}+1\right)\Big{]}
+Ma2λ2b2v1b2u2a2bλ3u321b2u2+𝒪(M3,M2a,Ma2,a3).\displaystyle+Ma\cdot\frac{2\lambda^{2}}{b^{2}v\sqrt{1-b^{2}u^{2}}}-a^{2}\cdot\frac{b\lambda^{3}u^{3}}{2\sqrt{1-b^{2}u^{2}}}+\mathcal{O}\left(M^{3},M^{2}a,Ma^{2},a^{3}\right).

Secondly, substituting metric (3.5) into Eqs. (2.9) and (2.10) yields the corresponding αrr\alpha_{rr}, αϕϕ\alpha_{\phi\phi}, and βϕ\beta_{\phi}. Thirdly, substituting αrr\alpha_{rr}, αϕϕ\alpha_{\phi\phi}, βϕ\beta_{\phi}, and Eq. (5.8) into Eqs. (4.5) and (4.23), and using Eq. (4.26), we derive

f(ϕ)=\displaystyle f(\phi)= λ1λ+Mv2+1bλv2sinϕλMa2b2vsinϕλ\displaystyle\frac{\lambda-1}{\lambda}+M\cdot\frac{v^{2}+1}{b\lambda v^{2}}\sin\frac{\phi}{\lambda}-Ma\cdot\frac{2}{b^{2}v}\sin\frac{\phi}{\lambda} (5.12)
+M214b2λv4[(v22)2cos2ϕλ+3(v2+4)v2]+𝒪(M3,M2a,Ma2,a3),\displaystyle+M^{2}\cdot\frac{1}{4b^{2}\lambda v^{4}}\left[\left(v^{2}-2\right)^{2}\cos\frac{2\phi}{\lambda}+3\left(v^{2}+4\right)v^{2}\right]+\mathcal{O}\left(M^{3},M^{2}a,Ma^{2},a^{3}\right),

where rγr_{\gamma} is expressed as the reciprocal of Eq. (5.9). Finally, substituting F(ϕ)F\left(\phi\right) (derived by integrating f(ϕ)f(\phi)), ϕR=λπΦ(uR)\phi_{R}=\lambda\pi-\Phi\left(u_{R}\right), and ϕS=Φ(uS)\phi_{S}=\Phi\left(u_{S}\right) into Eq. (4.27) yields the deflection angle of particles moving in the equatorial plane

δ=\displaystyle\delta= (λ1)[πarcsin(buR)arcsin(buS)]\displaystyle(\lambda-1)[\pi-\arcsin(bu_{R})-\arcsin(bu_{S})] (5.13)
+M[λv2(1b2uR2)+λb2uR2bv21b2uR2+λv2(1b2uS2)+λb2uS2bv21b2uS2]\displaystyle+M\cdot\left[\frac{\lambda v^{2}\left(1-b^{2}u_{R}^{2}\right)+\lambda-b^{2}u_{R}^{2}}{bv^{2}\sqrt{1-b^{2}u_{R}^{2}}}+\frac{\lambda v^{2}\left(1-b^{2}u_{S}^{2}\right)+\lambda-b^{2}u_{S}^{2}}{bv^{2}\sqrt{1-b^{2}u_{S}^{2}}}\right]
+M214b2v4{3v2(v2+4)(πλ[arcsin(buR)+arcsin(buS)])\displaystyle+M^{2}\cdot\frac{1}{4b^{2}v^{4}}\Biggl{\{}3v^{2}\cdot\left(v^{2}+4\right)\bigl{(}\pi-\lambda[\arcsin(bu_{R})+\arcsin(bu_{S})]\bigr{)}
+buR[1b2uR2(3λv4+8v24)+2b2(1λ)uR2(1b2uR2)3/2+4(3λ2)v2+41b2uR2]\displaystyle+bu_{R}\Biggl{[}\sqrt{1-b^{2}u_{R}^{2}}\left(3\lambda v^{4}+8v^{2}-4\right)+\frac{2b^{2}(1-\lambda)u_{R}^{2}}{\left(1-b^{2}u_{R}^{2}\right)^{3/2}}+\frac{4(3\lambda-2)v^{2}+4}{\sqrt{1-b^{2}u_{R}^{2}}}\Biggr{]}
+buS[1b2uS2(3λv4+8v24)+2b2(1λ)uS2(1b2uS2)3/2+4(3λ2)v2+41b2uS2]}\displaystyle+bu_{S}\Biggl{[}\sqrt{1-b^{2}u_{S}^{2}}\left(3\lambda v^{4}+8v^{2}-4\right)+\frac{2b^{2}(1-\lambda)u_{S}^{2}}{\left(1-b^{2}u_{S}^{2}\right)^{3/2}}+\frac{4(3\lambda-2)v^{2}+4}{\sqrt{1-b^{2}u_{S}^{2}}}\Biggr{]}\Biggr{\}}
Ma2λb2v(λb2uR21b2uR2+λb2uS21b2uS2)\displaystyle-Ma\cdot\frac{2\lambda}{b^{2}v}\left(\frac{\lambda-b^{2}u_{R}^{2}}{\sqrt{1-b^{2}u_{R}^{2}}}+\frac{\lambda-b^{2}u_{S}^{2}}{\sqrt{1-b^{2}u_{S}^{2}}}\right)
+a2(λ1)λ22b2(b3uR31b2uR2+b3uS31b2uS2)+𝒪(M3,M2a,Ma2,a3).\displaystyle+a^{2}\cdot\frac{(\lambda-1)\lambda^{2}}{2b^{2}}\left(\frac{b^{3}u_{R}^{3}}{\sqrt{1-b^{2}u_{R}^{2}}}+\frac{b^{3}u_{S}^{3}}{\sqrt{1-b^{2}u_{S}^{2}}}\right)+\mathcal{O}\left(M^{3},M^{2}a,Ma^{2},a^{3}\right).

Thus result is consistent with that in Ref. [63] where the calculation formula Eq. (3.6) is adopted. As is expected, the computation in Ref. [63] is much more complicated than ours.

5.3 Infinity-unreachable asymptotically nonflat SAS spacetime (rotating solution in conformal Weyl gravity)

Aiming at providing an alternative to general relativity to solve some issues such as dark energy, dark matter, and cosmological constants, researchers proposed the conformal Weyl gravity [104, 105, 106]. Mannheim etal.et\ al. have found exact solutions in fourth-order conformal Weyl gravity [107, 70, 108, 109], including the rotating solution [70] which can be written as the following expression in the Boyer-Lindquist coordinates [71]

ds2=\displaystyle\mathrm{d}s^{2}= [1+μrr2+a2cos2θ𝒦(r2a2cos2θ)]dt2\displaystyle-\left[1+\frac{\mu r}{r^{2}+a^{2}\cos^{2}\theta}-\mathcal{K}\left(r^{2}-a^{2}\cos^{2}\theta\right)\right]\mathrm{d}t^{2} (5.14)
+r2+a2cos2θr2+μr+a2𝒦r4dr2+r2+a2cos2θ1𝒦a2cos2θcot2θdθ2\displaystyle+\frac{r^{2}+a^{2}\cos^{2}\theta}{r^{2}+\mu r+a^{2}-\mathcal{K}r^{4}}\mathrm{d}r^{2}+\frac{r^{2}+a^{2}\cos^{2}\theta}{1-\mathcal{K}a^{2}\cos^{2}\theta\cot^{2}\theta}\mathrm{d}\theta^{2}
+[(r2+a2μra2sin2θr2+a2cos2θ)sin2θ+𝒦a2r4sin4θ(r2+a2)2cos4θr2+a2cos2θ]dϕ2\displaystyle+\left[\left(r^{2}+a^{2}-\frac{\mu ra^{2}\sin^{2}\theta}{r^{2}+a^{2}\cos^{2}\theta}\right)\sin^{2}\theta+\mathcal{K}a^{2}\frac{r^{4}\sin^{4}\theta-\left(r^{2}+a^{2}\right)^{2}\cos^{4}\theta}{r^{2}+a^{2}\cos^{2}\theta}\right]\mathrm{d}\phi^{2}
+2μrasin2θ+𝒦a[a2(r2+a2)cos4θr4sin2θ]r2+a2cos2θdtdϕ,\displaystyle+2\frac{\mu ra\sin^{2}\theta+\mathcal{K}a\left[a^{2}\left(r^{2}+a^{2}\right)\cos^{4}\theta-r^{4}\sin^{2}\theta\right]}{r^{2}+a^{2}\cos^{2}\theta}\mathrm{d}t\mathrm{d}\phi,

where μ=M(23Mγ)\mu=-M(2-3M\gamma) and 𝒦=k+γ2(1Mγ)/(23Mγ)2\mathcal{K}=k+\gamma^{2}(1-M\gamma)/(2-3M\gamma)^{2}. γ\gamma and kk are two small parameters required by conformal gravity, MM is the mass of the source, and aa denotes the rotation parameter. We recast the metric component corresponding to dr2\mathrm{d}r^{2} as

grr=1+a2cos2θr21+μr+a2r2𝒦r2=1+a2cos2θr212M3M2γr+a2r2[k+γ24+𝒪(M3,M2γ,Mγ2,γ3)]r2.g_{rr}=\frac{1+\frac{a^{2}\cos^{2}\theta}{r^{2}}}{1+\frac{\mu}{r}+\frac{a^{2}}{r^{2}}-\mathcal{K}r^{2}}=\frac{1+\frac{a^{2}\cos^{2}\theta}{r^{2}}}{1-\frac{2M-3M^{2}\gamma}{r}+\frac{a^{2}}{r^{2}}-\left[k+\frac{\gamma^{2}}{4}+\mathcal{O}\left(M^{3},M^{2}\gamma,M\gamma^{2},\gamma^{3}\right)\right]r^{2}}. (5.15)

When certain conditions are met for the parameters, there exist two roots (rr) such that the denominator of Eq. (5.15) becomes zero 333For example, when a=0a=0, γ=0\gamma=0 and k=Λ/3k=\Lambda/3, Eq. (5.14) becomes the Schwarzschild de-Sitter metric. For 0<9ΛM2<10<9\Lambda M^{2}<1, there exist two positive roots r+r_{+} and r++r_{++} of 12M/rΛr2/31-2M/r-\Lambda r^{2}/3 such that 0<2M<r+<3M<r++0<2M<r_{+}<3M<r_{++}. The root r+=(2/Λ)cos(ϵ/3+4π/3)r_{+}=(2/\sqrt{\Lambda})\cos(\epsilon/3+4\pi/3), with cosϵ=3MΛ\cos\epsilon=-3M\sqrt{\Lambda}, describes the event horizon, and the root r++=(2/Λ)cos(ϵ/3)r_{++}=(2/\sqrt{\Lambda})\cos(\epsilon/3) localizes the cosmological event horizon [110].. The larger root corresponds to the cosmological event horizon, rendering the metric (5.14) infinity-unreachable and making the conventional GWOIA method invalid.

We calculate the deflection angle of particles moving in the equatorial plane with the generalized GW method. Firstly, substituting metric (5.14) into Eq. (2.11) leads to

(dudϕ)2=\displaystyle\left(\frac{\mathrm{d}u}{\mathrm{d}\phi}\right)^{2}= 1b2u2b2+M2u(1v2b2v2+u2)+k(1v2b2u2v2+1)\displaystyle\frac{1-b^{2}u^{2}}{b^{2}}+M\cdot 2u\left(\frac{1-v^{2}}{b^{2}v^{2}}+u^{2}\right)+k\cdot\left(\frac{1-v^{2}}{b^{2}u^{2}v^{2}}+1\right) (5.16)
+𝒪(M2,Ma,Mγ,Mk,a2,aγ,ak,γ2,γk,k2),\displaystyle+\mathcal{O}\left(M^{2},Ma,M\gamma,Mk,a^{2},a\gamma,ak,\gamma^{2},\gamma k,k^{2}\right),

with which we obtain

u(ϕ)=\displaystyle u(\phi)= sinϕb+M1+v2cos2ϕb2v2+kbsinϕ2v2(11v2tan2ϕ)\displaystyle\frac{\sin\phi}{b}+M\cdot\frac{1+v^{2}\cos^{2}\phi}{b^{2}v^{2}}+k\cdot\frac{b\sin\phi}{2v^{2}}\left(1-\frac{1-v^{2}}{\tan^{2}\phi}\right) (5.17)
+𝒪(M2,Ma,Mγ,Mk,a2,aγ,ak,γ2,γk,k2),\displaystyle+\mathcal{O}\left(M^{2},Ma,M\gamma,Mk,a^{2},a\gamma,ak,\gamma^{2},\gamma k,k^{2}\right),

and

ϕ(u)={Φ(u),if |ϕ|<π2,πΦ(u),if |ϕ|>π2,\phi(u)=\begin{cases}\Phi(u),&\text{if }\left|\phi\right|<\frac{\pi}{2},\\ \pi-\Phi(u),&\text{if }\left|\phi\right|>\frac{\pi}{2},\end{cases} (5.18)

where

Φ(u)=\displaystyle\Phi(u)= arcsin(bu)+Mb2u2v2v21bv21b2u2+kb(b2u2v22b2u2v2+1)2uv21b2u2\displaystyle\arcsin(bu)+M\cdot\frac{b^{2}u^{2}v^{2}-v^{2}-1}{bv^{2}\sqrt{1-b^{2}u^{2}}}+k\cdot\frac{b\left(b^{2}u^{2}v^{2}-2b^{2}u^{2}-v^{2}+1\right)}{2uv^{2}\sqrt{1-b^{2}u^{2}}} (5.19)
+𝒪(M2,Ma,Mγ,Mk,a2,aγ,ak,γ2,γk,k2).\displaystyle+\mathcal{O}\left(M^{2},Ma,M\gamma,Mk,a^{2},a\gamma,ak,\gamma^{2},\gamma k,k^{2}\right).

Secondly, substituting metric (5.14) into Eqs. (2.9) and (2.10) yields the corresponding αrr\alpha_{rr}, αϕϕ\alpha_{\phi\phi}, and βϕ\beta_{\phi}. Thirdly, substituting αrr\alpha_{rr}, αϕϕ\alpha_{\phi\phi}, βϕ\beta_{\phi}, and Eq. (5.16) into Eqs. (4.5) and (4.23), and using Eq. (4.26), we derive

f(ϕ)=\displaystyle f(\phi)= M(v2+1)sinϕbv2kb2(2v2)2v2sin2ϕ+M2(2v2)2cos(2ϕ)+3v4+12v24b2v4\displaystyle M\cdot\frac{\left(v^{2}+1\right)\sin\phi}{bv^{2}}-k\cdot\frac{b^{2}\left(2-v^{2}\right)}{2v^{2}\sin^{2}\phi}+M^{2}\cdot\frac{\left(2-v^{2}\right)^{2}\cos(2\phi)+3v^{4}+12v^{2}}{4b^{2}v^{4}} (5.20)
Ma2sinϕb2v+Mkb16v4sin3ϕ[(2v4+v2)cos(4ϕ)+3(14v43v2)\displaystyle-Ma\cdot\frac{2\sin\phi}{b^{2}v}+Mk\cdot\frac{b}{16v^{4}\sin^{3}\phi}\Big{[}\left(2-v^{4}+v^{2}\right)\cos(4\phi)+3\left(14-v^{4}-3v^{2}\right)
12(1v2)2cos(2ϕ)]+ak2bvsin2ϕ+γ2b2(v22)8v2sin2ϕ\displaystyle-12\left(1-v^{2}\right)^{2}\cos(2\phi)\Big{]}+ak\cdot\frac{2b}{v\sin^{2}\phi}+\gamma^{2}\cdot\frac{b^{2}\left(v^{2}-2\right)}{8v^{2}\sin^{2}\phi}
+k2b4[8v48v22(2v2)2cos(2ϕ)]8v4sin4ϕ+𝒪(M3,M2a,M2γ,M2k,Ma2,\displaystyle+k^{2}\cdot\frac{b^{4}\left[8-v^{4}-8v^{2}-2\left(2-v^{2}\right)^{2}\cos(2\phi)\right]}{8v^{4}\sin^{4}\phi}+\mathcal{O}(M^{3},M^{2}a,M^{2}\gamma,M^{2}k,Ma^{2},
Maγ,Mak,Mγ2,Mγk,Mk2,a3,a2γ,a2k,aγ2,aγk,ak2,γ3,γ2k,γk2,k3),\displaystyle Ma\gamma,Mak,M\gamma^{2},M\gamma k,Mk^{2},a^{3},a^{2}\gamma,a^{2}k,a\gamma^{2},a\gamma k,ak^{2},\gamma^{3},\gamma^{2}k,\gamma k^{2},k^{3}),

where rγr_{\gamma} is expressed as the reciprocal of Eq. (5.17). Finaly, substituting F(ϕ)F\left(\phi\right) (derived by integrating f(ϕ)f(\phi)), ϕR=πΦ(uR)\phi_{R}=\pi-\Phi\left(u_{R}\right), and ϕS=Φ(uS)\phi_{S}=\Phi\left(u_{S}\right) into Eq. (4.27) yields the deflection angle of particles moving in the equatorial plane

δ=\displaystyle\delta= M(v2+1)(1b2uR2+1b2uS2)bv2+kb(v22)2v2(1b2uR2uR+1b2uS2uS)\displaystyle M\cdot\frac{\left(v^{2}+1\right)\left(\sqrt{1-b^{2}u_{R}^{2}}+\sqrt{1-b^{2}u_{S}^{2}}\right)}{bv^{2}}+k\cdot\frac{b\left(v^{2}-2\right)}{2v^{2}}\left(\frac{\sqrt{1-b^{2}u_{R}^{2}}}{u_{R}}+\frac{\sqrt{1-b^{2}u_{S}^{2}}}{u_{S}}\right) (5.21)
+M2{3(v2+4)[arccos(buR)+arccos(buS)]4b2v2+uR[3v2(v2+4)b2uR2(3v4+8v24)]4bv41b2uR2\displaystyle+M^{2}\cdot\left\{\frac{3\left(v^{2}+4\right)[\arccos(bu_{R})+\arccos(bu_{S})]}{4b^{2}v^{2}}+\frac{u_{R}\left[3v^{2}\left(v^{2}+4\right)-b^{2}u_{R}^{2}\left(3v^{4}+8v^{2}-4\right)\right]}{4bv^{4}\sqrt{1-b^{2}u_{R}^{2}}}\right.
+uS[3v2(v2+4)b2uS2(3v4+8v24)]4bv41b2uS2}Ma2(1b2uR2+1b2uS2)b2v\displaystyle\left.+\frac{u_{S}\left[3v^{2}\left(v^{2}+4\right)-b^{2}u_{S}^{2}\left(3v^{4}+8v^{2}-4\right)\right]}{4bv^{4}\sqrt{1-b^{2}u_{S}^{2}}}\right\}-Ma\cdot\frac{2\left(\sqrt{1-b^{2}u_{R}^{2}}+\sqrt{1-b^{2}u_{S}^{2}}\right)}{b^{2}v}
+Mkb2v4{3(1v2)2ln[cotarcsin(buR)2cotarcsin(buS)2]12v21b2uR212v21b2uS2}\displaystyle+Mk\cdot\frac{b}{2v^{4}}\left\{3\left(1-v^{2}\right)^{2}\ln\left[\cot\frac{\arcsin(bu_{R})}{2}\cot\frac{\arcsin(bu_{S})}{2}\right]-\frac{1-2v^{2}}{\sqrt{1-b^{2}u_{R}^{2}}}-\frac{1-2v^{2}}{\sqrt{1-b^{2}u_{S}^{2}}}\right\}
+ak2v(1b2uR2uR+1b2uS2uS)+γ2b(v22)8v2(1b2uR2uR+1b2uS2uS)\displaystyle+ak\cdot\frac{2}{v}\left(\frac{\sqrt{1-b^{2}u_{R}^{2}}}{u_{R}}+\frac{\sqrt{1-b^{2}u_{S}^{2}}}{u_{S}}\right)+\gamma^{2}\cdot\frac{b\left(v^{2}-2\right)}{8v^{2}}\left(\frac{\sqrt{1-b^{2}u_{R}^{2}}}{u_{R}}+\frac{\sqrt{1-b^{2}u_{S}^{2}}}{u_{S}}\right)
+k2b8v4[(v48v2+8)(1+b2uR22b4uR4)+2v24uR31b2uR2\displaystyle+k^{2}\cdot\frac{b}{8v^{4}}\left[\frac{\left(v^{4}-8v^{2}+8\right)\left(1+b^{2}u_{R}^{2}-2b^{4}u_{R}^{4}\right)+2v^{2}-4}{u_{R}^{3}\sqrt{1-b^{2}u_{R}^{2}}}\right.
+(v48v2+8)(1+b2uS22b4uS4)+2v24uS31b2uS2]+𝒪(M3,M2a,M2γ,M2k,Ma2,\displaystyle\left.+\frac{\left(v^{4}-8v^{2}+8\right)\left(1+b^{2}u_{S}^{2}-2b^{4}u_{S}^{4}\right)+2v^{2}-4}{u_{S}^{3}\sqrt{1-b^{2}u_{S}^{2}}}\right]+\mathcal{O}\left(M^{3},M^{2}a,M^{2}\gamma,M^{2}k,Ma^{2},\right.
Maγ,Mak,Mγ2,Mγk,Mk2,a3,a2γ,a2k,aγ2,aγk,ak2,γ3,γ2k,γk2,k3),\displaystyle\left.Ma\gamma,Mak,M\gamma^{2},M\gamma k,Mk^{2},a^{3},a^{2}\gamma,a^{2}k,a\gamma^{2},a\gamma k,ak^{2},\gamma^{3},\gamma^{2}k,\gamma k^{2},k^{3}\right),

which will reduce to the result in Ref. [54], i.e. Eq. (5.7) (the result of Kerr spacetime), when γ=k=0\gamma=k=0.

6 Conclusion

The application and development of the existing GW method for SAS spacetimes are impeded by two issues. Firstly, for certain spacetimes with singular behavior, the infinite integral region is ill-defined. Secondly, the computation involved is cumbersome. In this paper, we put forward a generalized GW method and the corresponding calculation formula to solve these issues. Specifically, with careful analysis to the integral of Gaussian curvature over the integral region and the integral of geodesic curvature along the auxiliary circular arc, we find that the radial coordinate of the auxiliary circular arc can be chosen arbitrarily. Hence the integral region without singular behavior can be constructed, and the ill-defined issue is solved. As for the complicated computation, based on the free choice of the auxiliary circular arc and the streamlining of the integral of geodesic curvature along the trajectory, we obtain a simplified formula, with which the deflection angle can be derived with few steps. Finally, we compute the deflection angle of particles in Kerr spacetime and Kerr-like black hole in bumblebee gravity, the results are consistent with those from existing works, thereby convincingly validating the effectiveness and superiority of our method. Additionally, we present, for the first time, the deflection angle of particles for the rotating solution in conformal Weyl gravity.

In summary, the generalized GW method offers a comprehensive framework for describing the GW method for various scenarios while also substantially optimizing the related calculation. We believe that our work will greatly facilitate the application of the GW method in astrophysics.

Acknowledgments

This work was supported in part by the National Key Research and Development Program of China Grant No. 2021YFC2203001 and in part by the NSFC (No. 11920101003, No. 12021003 and No. 12005016). Z. Cao was supported by “the Interdiscipline Research Funds of Beijing Normal University” and CAS Project for Young Scientists in Basic Research YSBR-006. This work was also supported in part by the National Natural Science Foundation of China (Grant No. 12205093).

References

  • [1] C.M. Will, The confrontation between general relativity and experiment, Living reviews in relativity 17 (2014) 1.
  • [2] F.W. Dyson, A.S. Eddington and C. Davidson, Ix. a determination of the deflection of light by the sun’s gravitational field, from observations made at the total eclipse of may 29, 1919, Philosophical Transactions of the Royal Society of London, Series A 220 (1920) 291.
  • [3] S. Dodelson, Gravitational lensing, Cambridge University Press (2017).
  • [4] S. Weinberg, Principles and Applications of the General Theory of Relativity: Gravitation and Cosmology, Wiley (1972).
  • [5] A. Vilenkin, Cosmic strings as gravitational lenses, The Astrophysical Journal 282 (1984) L51.
  • [6] A. Vilenkin, Cosmic strings and domain walls, Physics reports 121 (1985) 263.
  • [7] J.R. Gott III, Gravitational lensing effects of vacuum strings-exact solutions, The Astrophysical Journal 288 (1985) 422.
  • [8] V. Bozza, S. Capozziello, G. Iovane and G. Scarpetta, Strong field limit of black hole gravitational lensing, General Relativity and Gravitation 33 (2001) 1535.
  • [9] V. Bozza, Gravitational lensing in the strong field limit, Physical Review D 66 (2002) 103001.
  • [10] J. Bodenner and C.M. Will, Deflection of light to second order: A tool for illustrating principles of general relativity, American Journal of Physics 71 (2003) 770.
  • [11] O. Wucknitz and U. Sperhake, Deflection of light and particles by moving gravitational lenses, Physical Review D 69 (2004) 063001.
  • [12] W. Rindler and M. Ishak, Contribution of the cosmological constant to the relativistic bending of light revisited, Physical Review D 76 (2007) 043006.
  • [13] J. Sultana, Contribution of the cosmological constant to the bending of light in kerr–de sitter spacetime, Physical Review D 88 (2013) 042003.
  • [14] A. Bhattacharya, R. Isaev, M. Scalia, C. Cattani and K.K. Nandi, Light bending in the galactic halo by rindler-ishak method, Journal of Cosmology and Astroparticle Physics 2010 (2010) 004.
  • [15] A. Bhattacharya, G.M. Garipova, E. Laserra, A. Bhadra and K.K. Nandi, The vacuole model: new terms in the second order deflection of light, Journal of Cosmology and Astroparticle Physics 2011 (2011) 028.
  • [16] C. Cattani, M. Scalia, E. Laserra, I. Bochicchio and K.K. Nandi, Correct light deflection in weyl conformal gravity, Physical Review D 87 (2013) 047503.
  • [17] G. Farrugia, J.L. Said and M.L. Ruggiero, Solar system tests in f (t) gravity, Physical Review D 93 (2016) 104034.
  • [18] A. Mishra and S. Chakraborty, On the trajectories of null and timelike geodesics in different wormhole geometries, The European Physical Journal C 78 (2018) 1.
  • [19] M. Ishak, Light deflection, lensing, and time delays from gravitational potentials and fermat’s principle in the presence of a cosmological constant, Physical Review D 78 (2008) 103006.
  • [20] M. Sereno, Influence of the cosmological constant on gravitational lensing in small systems, Physical Review D 77 (2008) 043004.
  • [21] M. Sereno, Role of λ\lambda in the cosmological lens equation, Physical review letters 102 (2009) 021301.
  • [22] T.K. Dey and S. Sen, Gravitational lensing by wormholes, Modern Physics Letters A 23 (2008) 953.
  • [23] A. Bhattacharya and A.A. Potapov, Bending of light in ellis wormhole geometry, Modern Physics Letters A 25 (2010) 2399.
  • [24] E. Gallo and O.M. Moreschi, Gravitational lens optical scalars in terms of energy-momentum distributions, Physical Review D 83 (2011) 083007.
  • [25] E. Gallo and O.M. Moreschi, Peculiar anisotropic stationary spherically symmetric solution of einstein equations, Modern Physics Letters A 27 (2012) 1250044.
  • [26] V. Bozza and A. Postiglione, Alternatives to schwarzschild in the weak field limit of general relativity, Journal of Cosmology and Astroparticle Physics 2015 (2015) 036.
  • [27] E.F. Boero and O.M. Moreschi, Gravitational lens optical scalars in terms of energy–momentum distributions in the cosmological framework, Monthly Notices of the Royal Astronomical Society 475 (2018) 4683.
  • [28] G. Crisnejo and E. Gallo, Expressions for optical scalars and deflection angle at second order in terms of curvature scalars, Physical Review D 97 (2018) 084010.
  • [29] G.S. Bisnovatyi-Kogan and O.Y. Tsupko, Gravitational lensing in presence of plasma: strong lens systems, black hole lensing and shadow, Universe 3 (2017) 57.
  • [30] M. Guenouche and S.R. Zouzou, Deflection of light and time delay in closed einstein-straus solution, Physical Review D 98 (2018) 123508.
  • [31] D. Glavan and C. Lin, Einstein-gauss-bonnet gravity in four-dimensional spacetime, Physical review letters 124 (2020) 081301.
  • [32] R. Kumar, S.U. Islam and S.G. Ghosh, Gravitational lensing by charged black hole in regularized 4d einstein–gauss–bonnet gravity, The European Physical Journal C 80 (2020) 1.
  • [33] X.-H. Jin, Y.-X. Gao and D.-J. Liu, Strong gravitational lensing of a 4-dimensional einstein–gauss–bonnet black hole in homogeneous plasma, International Journal of Modern Physics D 29 (2020) 2050065.
  • [34] M. Heydari-Fard, M. Heydari-Fard and H.R. Sepangi, Bending of light in novel 4d gauss-bonnet-de sitter black holes by the rindler-ishak method, Europhysics Letters 133 (2021) 50006.
  • [35] B.E. Panah, K. Jafarzade and S. Hendi, Charged 4d einstein-gauss-bonnet-ads black holes: Shadow, energy emission, deflection angle and heat engine, Nuclear Physics B 961 (2020) 115269.
  • [36] K. Jafarzade, M.K. Zangeneh and F.S. Lobo, Shadow, deflection angle and quasinormal modes of born-infeld charged black holes, Journal of Cosmology and Astroparticle Physics 2021 (2021) 008.
  • [37] F. Atamurotov, S. Shaymatov, P. Sheoran and S. Siwach, Charged black hole in 4d einstein-gauss-bonnet gravity: particle motion, plasma effect on weak gravitational lensing and centre-of-mass energy, Journal of Cosmology and Astroparticle Physics 2021 (2021) 045.
  • [38] B.R. Patla, R.J. Nemiroff, D.H. Hoffmann and K. Zioutas, Flux enhancement of slow-moving particles by sun or jupiter: can they be detected on earth?, The Astrophysical Journal 780 (2013) 158.
  • [39] J. Liu and M.S. Madhavacheril, Constraining neutrino mass with the tomographic weak lensing one-point probability distribution function and power spectrum, Physical Review D 99 (2019) 083508.
  • [40] A. Accioly and R. Paszko, Photon mass and gravitational deflection, Physical Review D 69 (2004) 107501.
  • [41] A. Bhadra, K. Sarkar and K. Nandi, Testing gravity at the second post-newtonian level through gravitational deflection of massive particles, Physical Review D 75 (2007) 123004.
  • [42] O.Y. Tsupko, Unbound motion of massive particles in the schwarzschild metric: Analytical description in case of strong deflection, Physical Review D 89 (2014) 084075.
  • [43] X. Liu, N. Yang and J. Jia, Gravitational lensing of massive particles in schwarzschild gravity, Classical and Quantum Gravity 33 (2016) 175014.
  • [44] G. He and W. Lin, Gravitational deflection of light and massive particles by a moving kerr–newman black hole, Classical and Quantum Gravity 33 (2016) 095007.
  • [45] G. He and W. Lin, Analytical derivation of second-order deflection in the equatorial plane of a radially moving kerr–newman black hole, Classical and Quantum Gravity 34 (2017) 105006.
  • [46] X. Pang and J. Jia, Gravitational lensing of massive particles in reissner–nordström black hole spacetime, Classical and Quantum Gravity 36 (2019) 065012.
  • [47] Z.-H. Li, X. Zhou, W.-J. Li and G.-S. He, Gravitational deflection of massive particles by a schwarzschild black hole in radiation gauge, Communications in Theoretical Physics 71 (2019) 1219.
  • [48] G. Gibbons and M. Werner, Applications of the gauss–bonnet theorem to gravitational lensing, Classical and Quantum Gravity 25 (2008) 235009.
  • [49] M. Werner, Gravitational lensing in the kerr-randers optical geometry, General Relativity and Gravitation 44 (2012) 3047.
  • [50] A. Ishihara, Y. Suzuki, T. Ono, T. Kitamura and H. Asada, Gravitational bending angle of light for finite distance and the gauss-bonnet theorem, Physical Review D 94 (2016) 084015.
  • [51] T. Ono, A. Ishihara and H. Asada, Gravitomagnetic bending angle of light with finite-distance corrections in stationary axisymmetric spacetimes, Physical Review D 96 (2017) 104037.
  • [52] G. Crisnejo and E. Gallo, Weak lensing in a plasma medium and gravitational deflection of massive particles using the gauss-bonnet theorem. a unified treatment, Physical Review D 97 (2018) 124016.
  • [53] K. Jusufi, Gravitational deflection of relativistic massive particles by kerr black holes and teo wormholes viewed as a topological effect, Physical Review D 98 (2018) 064017.
  • [54] Z. Li and J. Jia, The finite-distance gravitational deflection of massive particles in stationary spacetime: a jacobi metric approach, The European Physical Journal C 80 (2020) 1.
  • [55] T. Ono, A. Ishihara and H. Asada, Deflection angle of light for an observer and source at finite distance from a rotating wormhole, Physical Review D 98 (2018) 044047.
  • [56] A. Övgün, Light deflection by damour-solodukhin wormholes and gauss-bonnet theorem, Physical Review D 98 (2018) 044033.
  • [57] A. Övgün, İ. Sakallı and J. Saavedra, Shadow cast and deflection angle of kerr-newman-kasuya spacetime, Journal of Cosmology and Astroparticle Physics 2018 (2018) 041.
  • [58] S. Haroon, M. Jamil, K. Jusufi, K. Lin and R.B. Mann, Shadow and deflection angle of rotating black holes in perfect fluid dark matter with a cosmological constant, Physical Review D 99 (2019) 044015.
  • [59] T. Ono, A. Ishihara and H. Asada, Deflection angle of light for an observer and source at finite distance from a rotating global monopole, Physical Review D 99 (2019) 124030.
  • [60] T. Ono and H. Asada, The effects of finite distance on the gravitational deflection angle of light, Universe 5 (2019) 218.
  • [61] R. Kumar, S.G. Ghosh and A. Wang, Shadow cast and deflection of light by charged rotating regular black holes, Physical Review D 100 (2019) 124024.
  • [62] Z. Li and T. Zhou, Equivalence of gibbons-werner method to geodesics method in the study of gravitational lensing, Physical Review D 101 (2020) 044043.
  • [63] Z. Li and A. Övgün, Finite-distance gravitational deflection of massive particles by a kerr-like black hole in the bumblebee gravity model, Physical Review D 101 (2020) 024040.
  • [64] Z. Li and T. Zhou, Kerr black hole surrounded by a cloud of strings and its weak gravitational lensing in rastall gravity, Physical Review D 104 (2021) 104044.
  • [65] Z. Li and J. Jia, Kerr-newman-jacobi geometry and the deflection of charged massive particles, Physical Review D 104 (2021) 044061.
  • [66] Z. Li, W. Wang and J. Jia, Deflection of charged signals in a dipole magnetic field in a schwarzschild background using the gauss-bonnet theorem, Physical Review D 106 (2022) 124025.
  • [67] Y. Huang and Z. Cao, Finite-distance gravitational deflection of massive particles by a rotating black hole in loop quantum gravity, The European Physical Journal C 83 (2023) 80.
  • [68] R.C. Pantig, A. Övgün and D. Demir, Testing symmergent gravity through the shadow image and weak field photon deflection by a rotating black hole using the m87* and sgr. a* results, The European Physical Journal C 83 (2023) 250.
  • [69] C. DeWitt, C.D. Morette, B.S. DeWitt, C.M. DeWitt et al., Black holes, vol. 23, CRC Press (1973).
  • [70] P.D. Mannheim and D. Kazanas, Solutions to the reissner-nordström, kerr, and kerr-newman problems in fourth-order conformal weyl gravity, Physical Review D 44 (1991) 417.
  • [71] G.U. Varieschi, Kerr metric, geodesic motion, and flyby anomaly in fourth-order conformal gravity, General Relativity and Gravitation 46 (2014) 1.
  • [72] K. Takahashi, R. Kudo, K. Takizawa and H. Asada, Equivalence between definitions of the gravitational deflection angle of light for a stationary spacetime, arXiv preprint arXiv:2310.00884 (2023) .
  • [73] M.P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, Upper Saddle River, NJ (1976).
  • [74] S. Chanda, G. Gibbons, P. Guha, P. Maraner and M.C. Werner, Jacobi-maupertuis randers-finsler metric for curved spaces and the gravitational magnetoelectric effect, Journal of Mathematical Physics 60 (2019) 122501.
  • [75] G. Gibbons, The jacobi metric for timelike geodesics in static spacetimes, Classical and Quantum Gravity 33 (2016) 025004.
  • [76] K. Jusufi, Gravitational lensing by reissner-nordström black holes with topological defects, Astrophysics and Space Science 361 (2016) 24.
  • [77] K. Jusufi, Light deflection with torsion effects caused by a spinning cosmic string, The European Physical Journal C 76 (2016) 1.
  • [78] K. Jusufi, Quantum effects on the deflection of light and the gauss–bonnet theorem, International Journal of Geometric Methods in Modern Physics 14 (2017) 1750137.
  • [79] K. Jusufi, Deflection angle of light by wormholes using the gauss–bonnet theorem, International Journal of Geometric Methods in Modern Physics 14 (2017) 1750179.
  • [80] A. Ishihara, Y. Suzuki, T. Ono and H. Asada, Finite-distance corrections to the gravitational bending angle of light in the strong deflection limit, Physical Review D 95 (2017) 044017.
  • [81] K. Jusufi, N. Sarkar, F. Rahaman, A. Banerjee and S. Hansraj, Deflection of light by black holes and massless wormholes in massive gravity, The European Physical Journal C 78 (2018) 1.
  • [82] İ. Sakallı, K. Jusufi and A. Övgün, Analytical solutions in a cosmic string born–infeld-dilaton black hole geometry: quasinormal modes and quantization, General Relativity and Gravitation 50 (2018) 1.
  • [83] K. Jusufi and A. Övgün, Light deflection by a quantum improved kerr black hole pierced by a cosmic string, International Journal of Geometric Methods in Modern Physics 16 (2019) 1950116.
  • [84] K. Jusufi, A. Banerjee, G. Gyulchev and M. Amir, Distinguishing rotating naked singularities from kerr-like wormholes by their deflection angles of massive particles, The European Physical Journal C 79 (2019) 1.
  • [85] G. Crisnejo, E. Gallo and K. Jusufi, Higher order corrections to deflection angle of massive particles and light rays in plasma media for stationary spacetimes using the gauss-bonnet theorem, Physical Review D 100 (2019) 104045.
  • [86] Z. Li, G. He and T. Zhou, Gravitational deflection of relativistic massive particles by wormholes, Physical Review D 101 (2020) 044001.
  • [87] Z. Li, G. Zhang and A. Övgün, Circular orbit of a particle and weak gravitational lensing, Physical Review D 101 (2020) 124058.
  • [88] Y. Huang and Z. Cao, Generalized gibbons-werner method for deflection angle, Physical Review D 106 (2022) 104043.
  • [89] Y. Huang, B. Sun and Z. Cao, Extending gibbons-werner method to bound orbits of massive particles, Physical Review D 107 (2023) 104046.
  • [90] S. Chanda, G. Gibbons and P. Guha, Jacobi-maupertuis-eisenhart metric and geodesic flows, Journal of Mathematical Physics 58 (2017) 032503.
  • [91] P. Das, R. Sk and S. Ghosh, Motion of charged particle in reissner–nordström spacetime: a jacobi-metric approach, The European Physical Journal C 77 (2017) 1.
  • [92] I. Sakalli and A. Övgün, Hawking radiation and deflection of light from rindler modified schwarzschild black hole, EPL (Europhysics Letters) 118 (2017) 60006.
  • [93] A. Bera, S. Ghosh and B.R. Majhi, Hawking radiation in a non-covariant frame: the jacobi metric approach, The European Physical Journal Plus 135 (2020) 1.
  • [94] S. Chanda, Fermat metric: Gravitational optics with randers-finsler geometry, arXiv preprint arXiv:1911.06321 (2019) .
  • [95] G. Crisnejo, E. Gallo and A. Rogers, Finite distance corrections to the light deflection in a gravitational field with a plasma medium, Physical Review D 99 (2019) 124001.
  • [96] K. Takizawa, T. Ono and H. Asada, Gravitational deflection angle of light: Definition by an observer and its application to an asymptotically nonflat spacetime, Physical Review D 101 (2020) 104032.
  • [97] Z. Li, Y. Duan and J. Jia, Deflection of charged massive particles by a four-dimensional charged einstein–gauss–bonnet black hole, Classical and Quantum Gravity 39 (2021) 015002.
  • [98] A. Belhaj, H. Belmahi, M. Benali and H. El Moumni, Light deflection by rotating regular black holes with a cosmological constant, Chinese Journal of Physics (2022) .
  • [99] R.C. Pantig, A. Övgün and D. Demir, Testing symmergent gravity through the shadow image and weak field photon deflection by a rotating black hole using the m87* and sgr. a* results, arXiv preprint arXiv:2208.02969 (2022) .
  • [100] C.L.C. Ding and J. Jing, Thin accretion disk around a rotating kerr-like black hole in einstein-bumblebee gravity model, arXiv preprint arXiv:1910.13259 (2019) .
  • [101] C. Ding, C. Liu, R. Casana and A. Cavalcante, Exact kerr-like solution and its shadow in a gravity model with spontaneous lorentz symmetry breaking, The European Physical Journal C 80 (2020) 1.
  • [102] D.J. Struik, Lectures on Classical Differential Geometry, Dover Publications, Inc., second ed. (1961).
  • [103] R.H. Boyer and R.W. Lindquist, Maximal analytic extension of the kerr metric, Journal of mathematical physics 8 (1967) 265.
  • [104] P.D. Mannheim and D. Kazanas, Exact vacuum solution to conformal weyl gravity and galactic rotation curves, The Astrophysical Journal 342 (1989) 635.
  • [105] D. Kazanas and P.D. Mannheim, General structure of the gravitational equations of motion in conformal weyl gravity, The Astrophysical Journal Supplement Series 76 (1991) 431.
  • [106] R.J. Riegert, Birkhoff’s theorem in conformal gravity, Physical review letters 53 (1984) 315.
  • [107] P.D. Mannheim, Conformal cosmology with no cosmological constant, General Relativity and Gravitation 22 (1990) 289.
  • [108] P.D. Mannheim, Conformal gravity and the flatness problem, The Astrophysical Journal 391 (1992) 429.
  • [109] P.D. Mannheim and D. Kazanas, Newtonian limit of conformal gravity and the lack of necessity of the second order poisson equation, General Relativity and Gravitation 26 (1994) 337.
  • [110] J. Podolsky, The structure of the extreme schwarzschild-de sitter space-time, General Relativity and Gravitation 31 (1999) 1703.