This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Generation of Talbot-like fields

Jorge A. Anaya-Contreras Instituto Polit´ecnico Nacional, ESFM, Departamento de F´ısica. Edificio 9,
Unidad Profesional Adolfo L´opez Mateos, CP 07738 CDMX, Mexico.
   Arturo Zúñiga-Segundo Instituto Polit´ecnico Nacional, ESFM, Departamento de F´ısica. Edificio 9,
Unidad Profesional Adolfo L´opez Mateos, CP 07738 CDMX, Mexico.
   David Sánchez-de-la-Llave Instituto Nacional de Astrofísica Óptica y Electrónica
Calle Luis Enrique Erro No. 1
Santa María Tonantzintla, Pue., 72840, Mexico.
   Héctor M. Moya-Cessa Instituto Nacional de Astrofísica Óptica y Electrónica
Calle Luis Enrique Erro No. 1
Santa María Tonantzintla, Pue., 72840, Mexico.
Abstract

We present an integral of diffraction based on particular eigenfunctions of the Laplacian in two dimensions. We show how to propagate some fields, in particular a Bessel field, a superposition of Airy beams, both over the square root of the radial coordinate, and show how to construct a field that reproduces itself periodically in propagation, i.e., a field that renders the Talbot effect. Additionally, it is shown that the superposition of Airy beams produces self-focusing.

I Introduction

In recent years there has been much interest in the propagation of light in free space where it has been shown that light not only propagates in straight lines but there are beams that also bend while propagating [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

On the other hand, Montgomery [16] has given the necessary and sufficient conditions in order that a given field at z=0z=0, replicates itself without the aid of lenses or other optical accessories, i.e., for the Talbot effect to take place.

In this contribution, by using eigenfunctions of the perpendicular Laplacian in polar coordinates, we show that an integral of diffraction may be written which we use to propagate some fields, namely Bessel and superposition of Airy beams, both divided by the square root of the radial coordinate. We also show that particular series of Bessel beams with integer or fractional order, reproduce themselves during propagation, ı.e., giving rise to the Talbot effect.

I.1 Paraxial equation

The paraxial equation reads as

2E+2ikEz=0,\nabla_{\perp}^{2}E+2ik\frac{\partial E}{\partial z}=0, (1)

with solution (where we consider units such that k=1k=1)

E(x,y,z)=exp[iz22]E(x,y,0)E(x,y,z)=\exp\left[i\frac{z}{2}\nabla_{\perp}^{2}\right]E(x,y,0) (2)

where \nabla_{\perp} is the Laplacian that in Cartesian coordinates reads

2=2x2+2y2\nabla_{\perp}^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} (3)

and in polar coordinates we may find a set of eigenfunctions

(2r2+1rr+1r22θ2)e±iαrre±iθ2=α2e±iαrre±iθ2,\displaystyle\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}+\frac{1}{r^{2}}\frac{\partial^{2}}{\partial\theta^{2}}\right)\frac{\hbox{e}^{\pm i\alpha r}}{\sqrt{r}}e^{\pm i\frac{\theta}{2}}=-\alpha^{2}\frac{\hbox{e}^{\pm i\alpha r}}{\sqrt{r}}\hbox{e}^{\pm i\frac{\theta}{2}}, (4)

with eigenvalues given by α2-\alpha^{2}.

II Integral of diffraction

If we consider the field at z = 0 given in the form

E(r,θ,0)=eiθ/2r(α)eirα𝑑α,E(r,\theta,0)=\frac{\hbox{e}^{i\theta/2}}{\sqrt{r}}\int_{-\infty}^{\infty}\mathcal{E}(\alpha)\hbox{e}^{ir\alpha}d\alpha\;, (5)

it is easy to see that we may write an integral of diffraction of the form

E(r,θ,z)=eiθ/2reiz2α2(α)eirα𝑑α,E(r,\theta,z)=\frac{\hbox{e}^{i\theta/2}}{\sqrt{r}}\int_{-\infty}^{\infty}\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}i\frac{z}{2}\alpha^{2}}\mathcal{E}(\alpha)\hbox{e}^{ir\alpha}d\alpha, (6)

where we have applied the property that a function of (the operator) 2\nabla_{\perp}^{2} applied to the eigenfunction is simply the function of the eigenvalue times the eigenfunction, i.e.,

F(2)eiαrre±iθ2=F(α2)eiαrre±iθ2.\displaystyle F(\nabla_{\perp}^{2})\frac{\hbox{e}^{i\alpha r}}{\sqrt{r}}\hbox{e}^{\pm i\frac{\theta}{2}}=F(-\alpha^{2})\frac{\hbox{e}^{i\alpha r}}{\sqrt{r}}\hbox{e}^{\pm i\frac{\theta}{2}}. (7)

III Propagating a Bessel function

We consider the following field at z=0z=0

E(r,θ,z=0)=Jn(ar)reiθ2,n1,E(r,\theta,z=0)=\frac{J_{n}(ar)}{\sqrt{r}}\hbox{e}^{i\frac{\theta}{2}},\qquad n\geq 1, (8)

where Jn(x)J_{n}(x) is a Bessel function of order nn and the case n=0n=0 is not considered because of its singularity. We write the Bessel function in terms of its integral representation

E(r,θ,z=0)=12πππeiarsinureiθ2einu𝑑u,E(r,\theta,z=0)=\frac{1}{2\pi}\int_{-\pi}^{\pi}\frac{\hbox{e}^{iar\sin u}}{\sqrt{r}}\hbox{e}^{i\frac{\theta}{2}}\hbox{e}^{-inu}du, (9)

such that, by applying the property described by Eq. (7), we obtain

E(r,θ,z)=eiθ22πrππeia2z2sin2ueiarsinuinu𝑑u.E(r,\theta,z)=\frac{\hbox{e}^{i\frac{\theta}{2}}}{2\pi\sqrt{r}}\int_{-\pi}^{\pi}\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}i\frac{a^{2}z}{2}\sin^{2}u}\hbox{e}^{iar\sin u-inu}du. (10)

It is not difficult to show that the integral above is a so-called Generalized Bessel function. For this, we rewrite it as

E(r,θ,z)=eia2z4eiθ22πrππeia2z4cos2ueiarsinuinu𝑑u.E(r,\theta,z)=\frac{\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}i\frac{a^{2}z}{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}4}}\hbox{e}^{i\frac{\theta}{2}}}{2\pi\sqrt{r}}\int_{-\pi}^{\pi}\hbox{e}^{i\frac{a^{2}z}{4}\cos 2u}\hbox{e}^{iar\sin u-inu}du. (11)

We define Z=a2z/4Z=a^{2}z/{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}4} and use a Taylor series for the cosine term argument exponential, yielding

E(r,θ,z)=eiZeiθ22πrm=0(iZ)m2mm!ππ(e2iu+e2iu)meiarsinuinu𝑑u,E(r,\theta,z)=\frac{\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}iZ}\hbox{e}^{i\frac{\theta}{2}}}{2\pi\sqrt{r}}\sum_{m=0}^{\infty}\frac{(iZ)^{m}}{2^{m}m!}\int_{-\pi}^{\pi}(\hbox{e}^{2iu}+\hbox{e}^{-2iu})^{m}\hbox{e}^{iar\sin u-inu}du, (12)

and developing the binomial inside the integral we obtain

E(r,θ,z)\displaystyle E(r,\theta,z) =\displaystyle= eiZeiθ22πrm=0(iZ)m2mm!×\displaystyle\frac{\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}iZ}\hbox{e}^{i\frac{\theta}{2}}}{2\pi\sqrt{r}}\sum_{m=0}^{\infty}\frac{(iZ)^{m}}{2^{m}m!}\times (16)
k=0m(mk)ππe2iu(m2k)eiarsinuinu𝑑u.\displaystyle\sum_{k=0}^{m}\left(\begin{array}[]{c}m\\ k\end{array}\right)\int_{-\pi}^{\pi}\hbox{e}^{2iu(m-2k)}\hbox{e}^{iar\sin u-inu}du.

We extend the second sum to infinity as we would only add zeros to the sum and exchange the order of the sums

E(r,θ,z)\displaystyle E(r,\theta,z) =\displaystyle= eiZeiθ22πrk=0m=0(iZ)m2mk!(mk)!×\displaystyle\frac{\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}iZ}\hbox{e}^{i\frac{\theta}{2}}}{2\pi\sqrt{r}}\sum_{k=0}^{\infty}\sum_{m=0}^{\infty}\frac{(iZ)^{m}}{2^{m}k!(m-k)!}\times (17)
ππe2iu(m2k)eiarsinuinu𝑑u,\displaystyle\int_{-\pi}^{\pi}\hbox{e}^{2iu(m-2k)}\hbox{e}^{iar\sin u-inu}du,

and start the sum that runs on mm at m=km=k (as for m<km<k the terms added are zero)

E(r,θ,z)\displaystyle E(r,\theta,z) =\displaystyle= eiZeiθ22πrk=0m=k(iZ)m2mk!(mk)!×\displaystyle\frac{\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}iZ}\hbox{e}^{i\frac{\theta}{2}}}{2\pi\sqrt{r}}\sum_{k=0}^{\infty}\sum_{m=k}^{\infty}\frac{(iZ)^{m}}{2^{m}k!(m-k)!}\times (18)
ππe2iu(m2k)eiarsinuinu𝑑u.\displaystyle\int_{-\pi}^{\pi}\hbox{e}^{2iu(m-2k)}\hbox{e}^{iar\sin u-inu}du.

By letting j=mkj=m-k we obtain

E(r,θ,z)\displaystyle E(r,\theta,z) =\displaystyle= eiZeiθ22πrk=0j=0(iZ)j+k2j+kk!j!\displaystyle\frac{\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}iZ}\hbox{e}^{i\frac{\theta}{2}}}{2\pi\sqrt{r}}\sum_{k=0}^{\infty}\sum_{j=0}^{\infty}\frac{(iZ)^{j+k}}{2^{j+k}k!j!} (19)
×\displaystyle\times ππe2iu(jk)eiarsinuinu𝑑u,\displaystyle\int_{-\pi}^{\pi}\hbox{e}^{2iu(j-k)}\hbox{e}^{iar\sin u-inu}du,

that, by using the integral representation of Bessel functions, gives

E(r,θ,z)=eiZeiθ2rk=0j=0(iZ)j+k2j+kk!j!Jn+2(kj)(ar).E(r,\theta,z)=\frac{\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}iZ}\hbox{e}^{i\frac{\theta}{2}}}{\sqrt{r}}\sum_{k=0}^{\infty}\sum_{j=0}^{\infty}\frac{(iZ)^{j+k}}{2^{j+k}k!j!}J_{n+2(k-j)}(ar). (20)
Refer to caption
Figure 1: Intensity field distribution |E(r,z)|2|E(r,z)|^{2} obtained from initial state given in Eq. (8) with n=1n=1 and a=1a=1.

By letting s=kjs=k-j we obtain

E(r,θ,z)=eiZeiθ2rs=Jn+2s(ar)j=0(iZ)2j+s22j+s(j+s)!j!,E(r,\theta,z)=\frac{\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}iZ}\hbox{e}^{i\frac{\theta}{2}}}{\sqrt{r}}\sum_{s=-\infty}^{\infty}J_{n+2s}(ar)\sum_{j=0}^{\infty}\frac{(iZ)^{2j+s}}{2^{2j+s}(j+s)!j!}, (21)

where we have extended the sum on ss to minus infinity as we simply add zeros.

This finally gives a sum of two Bessel functions of different order

E(r,θ,z)=eiZeiθ2rs=isJn+2s(ar)Js(Z),E(r,\theta,z)=\frac{\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}iZ}\hbox{e}^{i\frac{\theta}{2}}}{\sqrt{r}}\sum_{s=-\infty}^{\infty}i^{s}J_{n+2s}(ar)J_{s}({\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}Z}), (22)

that may be added to give the so-called Generalized Bessel functions studied by Dattoli et al. [17, 18] and Eichelkraut [19]. By using that Bessel generalized functions, given by the expression 𝒥n(r,z;g)=s=gsJn2s(r)Js(z)\mathcal{J}_{n}(r,z;g)=\sum_{s=-\infty}^{\infty}g^{s}J_{n-2s}(r)J_{s}(z), we write the propagated field as

E(r,θ,z)=eiZeiθ2r𝒥n(ar,Z;i).E(r,\theta,z)=\frac{\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}iZ}\hbox{e}^{i\frac{\theta}{2}}}{\sqrt{r}}\mathcal{J}_{n}(ar,{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}Z};i). (23)

In Fig. 1 we plot the field intensity for an initial Bessel function of order n=1n=1 as a function of the propagation distance and the radial coordinate. It may be observed that there is an energy redistribution from the central rings towards the outer rings as the field propagates, nevertheless, an overall intensity decrease also exists.

Refer to caption
Figure 2: Intensity field distribution |E(r,z)|2|E(r,z)|^{2} obtained from initial state given in Eq. (24) .

IV Superposition of Airy functions

We now study the propagation of a superposition of Airy beams [2, 6] whose distribution at z=0z=0 is given by

E(r,θ,z=0)\displaystyle E(r,\theta,z=0) =\displaystyle= eiθ22πr[ei(t33+rt)dt\displaystyle\frac{\hbox{e}^{i\frac{\theta}{2}}}{2\pi\sqrt{r}}\left[\int_{-\infty}^{\infty}\hbox{e}^{i\left(\frac{t^{3}}{3}+rt\right)}\right.dt (24)
\displaystyle- ei(t33rt)dt],\displaystyle\left.\int_{-\infty}^{\infty}\hbox{e}^{i\left(\frac{t^{3}}{3}-rt\right)}dt\right],

where we have written the Airy function in its integral representation. By applying the integral of diffraction given by Eq. (5) we obtain

E(r,θ,z)\displaystyle E(r,\theta,z) =\displaystyle= eiθ22πr[ei(t33+rt)eizt22dt\displaystyle\frac{\hbox{e}^{i\frac{\theta}{2}}}{2\pi\sqrt{r}}\left[\int_{-\infty}^{\infty}\hbox{e}^{i\left(\frac{t^{3}}{3}+rt\right)}\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}i\frac{zt^{2}}{2}}dt\right. (25)
\displaystyle- ei(t33rt)eizt22dt].\displaystyle\left.\int_{-\infty}^{\infty}\hbox{e}^{i\left(\frac{t^{3}}{3}-rt\right)}\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}i\frac{zt^{2}}{2}}dt\right].
Refer to caption
Figure 3: Normalized Field intensity distribution |E(r,z)|2|E(r,z)|^{2} obtained from initial state (28).

By changing variables in the integrals above, we may rewrite them as

E(r,θ,z)\displaystyle E(r,\theta,z) =\displaystyle= eiz312eiθ22πr[eirz2ei(t33+[rz24]t)dt\displaystyle\frac{\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}i\frac{z^{3}}{12}}\hbox{e}^{i\frac{\theta}{2}}}{2\pi\sqrt{r}}\left[\hbox{e}^{i\frac{rz}{2}}\int_{-\infty}^{\infty}\hbox{e}^{i\left(\frac{t^{3}}{3}+\left[r{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}\frac{z^{2}}{4}\right]t\right)}dt\right. (26)
\displaystyle- eirz2ei(t33[r+z24]t)dt],\displaystyle\left.\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}i\frac{rz}{2}}\int_{-\infty}^{\infty}\hbox{e}^{i\left(\frac{t^{3}}{3}-\left[r{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}+}\frac{z^{2}}{4}\right]t\right)}dt\right],

that finally yields the superposition of Airy functions

E(r,θ,z)\displaystyle E(r,\theta,z) =\displaystyle= eiz312eiθ2r(e+irz2Ai[rz24]\displaystyle\frac{\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}i\frac{z^{3}}{12}}\hbox{e}^{i\frac{\theta}{2}}}{\sqrt{r}}\left(\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}+}i\frac{rz}{2}}\hbox{Ai}\left[r{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}\frac{z^{2}}{4}\right]\right. (27)
\displaystyle- eirz2Ai[rz24]).\displaystyle\left.\hbox{e}^{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}i\frac{rz}{2}}\hbox{Ai}\left[-r{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}-}\frac{z^{2}}{4}\right]\right).

We plot the propagated field intensity in Fig. 2 where it may be observed abrupt focusing that may be attributed to the superposition of the Airy functions. There is one Airy function whose main contribution would be in the negative part of the axis, and would bend towards the right. However, as rr is always positive, it does not have enough weight to produce an effect. On the other hand, the Airy function whose main contribution is on the positive part, dominates the propagation and bends towards the left. Although there is no medium, the focusing may be explained by the fact that the Airy function produces an effective index of refraction (the so-called Bohm potential in quantum mechanics) [20, 21] that gives rise to such behaviour.

V Talbot effect

We can superimpose the eigenfunctions described by Eq. (4), with the same eigenvalue to find another eigenfunction, a beam of the form sinbrr\frac{\sin{br}}{\sqrt{r}}, which takes us to a Bessel function of order one half

E(r,θ,z=0)=J12(br)eiθ2,E(r,\theta,z=0)=J_{\frac{1}{2}}(br)\hbox{e}^{i\frac{\theta}{2}}, (28)

that is indeed, a diffraction-free beam and we plot it in Fig. 3.

We then may show that, a proper superposition of them

E(r,θ,z=0)=eiθ2k=1NckJ12(2k+1πr),E(r,\theta,z=0)=\hbox{e}^{i\frac{\theta}{2}}\sum_{k=1}^{N}c_{k}J_{\frac{1}{2}}\left(\sqrt{2^{k+1}\pi}r\right), (29)
Refer to caption
Figure 4: Normalized Field intensity distribution |E(r,z)|2|E(r,z)|^{2} obtained from initial state given by Eq. (35) with N=10N=10 and ck=1c_{k}=1.

propagates as

E(r,θ,z)=eiθ2k=1Nei2kzπckJ12(2k+1πr),E(r,\theta,z)=\hbox{e}^{i\frac{\theta}{2}}\sum_{k=1}^{N}e^{-i2^{k}z\pi}c_{k}J_{\frac{1}{2}}\left(\sqrt{2^{k+1}\pi}r\right), (30)

that recovers periodically the field at z=0z=0,

E(r,θ,z=n)\displaystyle E(r,\theta,z=n) =\displaystyle= eiθ2k=1Nei2knπckJ12(2k+1πr)\displaystyle\hbox{e}^{i\frac{\theta}{2}}\sum_{k=1}^{N}e^{-i2^{k}n\pi}c_{k}J_{\frac{1}{2}}\left(\sqrt{2^{k+1}\pi}r\right) (31)
=\displaystyle= E(r,θ,z=0).\displaystyle E(r,\theta,z=0).

We plot in Fig. 4 the field propagated for ck=1c_{k}=1 and N=10N=10, where it may be seen clearly this effect.

V.1 Generalization of the Talbot effect to any order of the Bessel function

It is well-known that Bessel functions (of integer or fractional order) obey the differential equation [22]

d2Jν(βr)dr2+1rdJν(βr)dr+(β2ν2r2)Jν(βr)=0,\frac{d^{2}J_{\nu}(\beta r)}{dr^{2}}+\frac{1}{r}\frac{dJ_{\nu}(\beta r)}{dr}+\left(\beta^{2}-\frac{\nu^{2}}{r^{2}}\right)J_{\nu}(\beta r)=0, (32)

which, if multiplied by eiνθ\hbox{e}^{i\nu\theta}, may be rewritten as

(d2dr2+1rddr+1r2d2dθ2)Jν(βr)eiνθ=β2Jν(βr)eiνθ,\left(\frac{d^{2}}{dr^{2}}+\frac{1}{r}\frac{d}{dr}+\frac{1}{r^{2}}\frac{d^{2}}{d\theta^{2}}\right)J_{\nu}(\beta r)\hbox{e}^{i\nu\theta}=-\beta^{2}J_{\nu}(\beta r)\hbox{e}^{i\nu\theta}, (33)

or

2Jν(βr)eiνθ=β2Jν(βr)eiνθ,\nabla_{\perp}^{2}J_{\nu}(\beta r)\hbox{e}^{i\nu\theta}=-\beta^{2}J_{\nu}(\beta r)\hbox{e}^{i\nu\theta}, (34)

making the functions Jν(βr)eiνθJ_{\nu}(\beta r)\hbox{e}^{i\nu\theta} eigenfunctions (with eigenvalue β2-\beta^{2}) of the Laplacian in polar coordinates and therefore becoming diffraction-free beams [23]. Therefore a field at z=0z=0 given by

E(r,θ,z=0)=eiνθk=1NckJν(2k+1πr),E(r,\theta,z=0)=\hbox{e}^{i\nu\theta}\sum_{k=1}^{N}c_{k}J_{\nu}\left(\sqrt{2^{k+1}\pi}r\right), (35)

propagates as

E(r,θ,z)=eiνθk=1Nei2kzπckJν(2k+1πr),E(r,\theta,z)=\hbox{e}^{i\nu\theta}\sum_{k=1}^{N}\hbox{e}^{-i2^{k}z\pi}c_{k}J_{\nu}\left(\sqrt{2^{k+1}\pi}r\right), (36)

recovering Eq. (28) for ν=1/2\nu=1/2. The field at z=0z=0, is then recovered periodically, i.e.,

E(r,θ,z=n)\displaystyle E(r,\theta,z=n) =\displaystyle= eiνθk=1Nei2knπckJν(2k+1πr)\displaystyle\hbox{e}^{i\nu\theta}\sum_{k=1}^{N}\hbox{e}^{-i2^{k}n\pi}c_{k}J_{\nu}\left(\sqrt{2^{k+1}\pi}r\right) (37)
=\displaystyle= E(r,θ,z=0),\displaystyle E(r,\theta,z=0),

as seen in Fig. 4

VI Conclusions

We have shown that by properly writing a field at z=0z=0 we may propagate it by using an integral of diffraction that we introduced in this manuscript. We have shown how to propagate Bessel and a superposition of Airy beams (over the square root of the radial coordinate) and have shown that a series of Bessel functions that may have integer or fractional order and with proper parameters reproduces itself during propagation, therefore producing the Talbot effect. We have shown self focusing of the superposition of Airy beams that may be explained by the existence of an effective index of refraction related to the Bohm potential.

References

  • [1] M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
  • [2] G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
  • [3] C.-Y. Hwang, D. Choi, K.-Y. Kim, and B. Lee, “Dual airy beam,” Opt. Express 18, 23504–23516 (2010).
  • [4] S. Chávez-Cerda, U. Ruiz, V. Arrizón, and H. M. Moya-Cessa, “Generation of airy solitary-like wave beams by acceleration control in inhomogeneous media,” Opt. Express 19, 16448–16454 (2011).
  • [5] S. Yan, B. Yao, M. Lei, D. Dan, Y. Yang, and P. Gao, “Virtual source for an airy beam,” Opt. Lett. 37, 4774–4776 (2012).
  • [6] P. Vaveliuk, A. Lencina, J. A. Rodrigo, and O. M. Matos, “Symmetric airy beams,” Opt. Lett. 39, 2370–2373 (2014).
  • [7] R. Jáuregui and P. Quinto-Su, “On the general properties of symmetric incomplete airy beams,” J. Opt. Soc. Am. A 31, 2484–2488 (2014).
  • [8] P. Vaveliuk, A. Lencina, J. A. Rodrigo, and O. M. Matos, “Intensitysymmetric airy beams,” J. Opt. Soc. Am. A 32, 443–446 (2015).
  • [9] Y. Kaganovsky and E. Heyman, “Wave analysis of airy beams,” Opt. Express 18, 8440–8452 (2010).
  • [10] D. G. Papazoglou, V. Y. Fedorov, and S. Tzortzakis, “Janus waves,” Opt. Lett. 41, 4656–4659 (2016).
  • [11] A. Torre, “Propagating airy wavelet-related patterns,” J. Opt. 17, 075604 (2015).
  • [12] P. Aleahmad, H. Moya-Cessa, I. Kaminer, M. Segev, and D. N. Christodoulides, “Dynamics of accelerating bessel solutions of maxwell’s equations,” J.Opt. Soc. Am. A 33, 2047–2052 (2016).
  • [13] D. Weisman, S. Fu, M. Gonçalves, L. Shemer, J. Zhou, W. P. Schleich, and A. Arie, “Diffractive focusing of waves in time and in space,” Phys. Rev. Lett. 118, 154301 (2017).
  • [14] D. Mansour and D. G. Papazoglou, “Tailoring the focal region of abruptly autofocusing and autodefocusing ring-airy beams,” OSA Continuum 1, 104–115 (2018).
  • [15] G. G. Rozenman, M. Zimmermann, M. A. Efremov, W. P. Schleich, L. Shemer, and A. Arie, “Amplitude and phase of wave packets in a linear potential,” Phys. Rev. Lett. 122, 124302 (2019).
  • [16] W. D. Montgomery, “Self-imaging objects of infinite aperture,” J.Opt. Soc. Am. 57, 772–778 (1967).
  • [17] G. Dattoli, L. Giannessi, M. Richetta, and A. Torre, “Miscellaneous results on infinite series of bessel functions,” Il Nuovo Cimento 103B, 149–159 (1989).
  • [18] G. Dattoli, A. Torre, S. Lorenzutta, G. M. S., and C. Chiccoli, “Theory of generalized bessel functions.-ii,” Il Nuovo Cimento 101, 21–51 (1991).
  • [19] T. Eichelkraut, C. Vetter, A. Perez-Leija, H. Moya-Cessa, D. N. Christodoulides, and A. Szameit, “Coherent random walks in free space,” Optica 1, 268–271 (2014).
  • [20] F. A.Asenjo, S. A. Hojman, H. M. Moya-Cessa, and F. Soto-Eguibar, “Propagation of light in linear and quadratic grin media: The bohm potential,” Opt. Commun. 490, 126947 (2021).
  • [21] Sergio A. Hojman, Felipe A. Asenjo, and H.M. Moya-Cessa and F. Soto-Eguibar, “Bohm potential is real and its effects are measurable,” Optik 232, 166341 (2021).
  • [22] I. Gradshteyn and I. Ryzhik, Table of integrals, series, and products (Academic Press, Inc., San Diego, 1980).
  • [23] J. J. Durnin, J. J. Miceli and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).