This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Geodetic convexity and Kneser graphs

Marcos Bedo marcosbedo@id.uff.br João V. S. Leite joaovitorleite@id.uff.br Rodolfo A. Oliveira rodolfooliveira@id.uff.br Fábio Protti fabio@ic.uff.br Instituto do Noroeste Fluminense, Universidade Federal Fluminense, Brazil Instituto de Computação, Universidade Federal Fluminense, Brazil
Abstract

The Kneser graph K(2n+k,n)K(2n+k,n), for positive integers nn and kk, is the graph G=(V,E)G=(V,E) such that V={S{1,,2n+k}:|S|=n}V=\{S\subseteq\{1,\ldots,2n+k\}:|S|=n\} and there is an edge uvEuv\in E whenever uv=u\cap v=\emptyset. Kneser graphs have a nice combinatorial structure, and many parameters have been determined for them, such as the diameter, the chromatic number, the independence number, and, recently, the hull number (in the context of P3P_{3}-convexity). However, the determination of geodetic convexity parameters in Kneser graphs still remained open. In this work, we investigate both the geodetic number and the geodetic hull number of Kneser graphs. We give upper bounds and determine the exact value of these parameters for Kneser graphs of diameter two (which form a nontrivial subfamily). We prove that the geodetic hull number of a Kneser graph of diameter two is two, except for K(5,2)K(5,2), K(6,2)K(6,2), and K(8,2)K(8,2), which have geodetic hull number three. We also contribute to the knowledge on Kneser graphs by presenting a characterization of endpoints of diametral paths in K(2n+k,n)K(2n+k,n), used as a tool for obtaining some of the main results in this work.

keywords:
Kneser graphs , geodetic convexity , hull number
journal: Applied Mathematics and Computation

1 Introduction

Let n,kn,k be positive integers. The Kneser graph K(2n+k,n)K(2n+k,n) is the graph G=(V,E)G=(V,E) such that V={S{1,,2n+k}:|S|=n}V=\{S\subseteq\{1,\ldots,2n+k\}:|S|=n\} and there is an edge uvEuv\in E whenever uv=u\cap v=\emptyset. Kneser graphs have a rich combinatorial structure [9, 13], and there are many studies on this class involving colorings, independent sets, and products of graphs (see [1, 4, 11]). In addition, the P3P_{3}-hull number of a Kneser graph has been investigated in [10], where the authors determine the exact value of the P3P_{3}-hull number of K(2n+k,n)K(2n+k,n) for k>1k>1, and provide lower and upper bounds for k=1k=1. Similarly, the authors in [12] have recently studied the qq-analogues of Kneser graphs under the same convexity and parameter. To the best of the authors’ knowledge, however, no studies on geodetic convexity parameters are known for Kneser graphs. This work investigates two of the most addressed parameters in graph convexity, the geodetic number and the geodetic hull number, in the context of Kneser graphs. In particular, we determine the exact value of these parameters for Kneser graphs of diameter two. This turns out to be a relevant question because, for a fixed n2n\geq 2, almost all graphs in the family 𝒦n={K(2n+k,n):k1}{\mathscr{K}}_{n}=\{K(2n+k,n):k\geq 1\} have diameter two (those for which kn1k\geq n-1). We prove that the geodetic hull number of a Kneser graph of diameter two is two, except for K(5,2)K(5,2), K(6,2)K(6,2), and K(8,2)K(8,2), which have geodetic hull number three.

The geodetic and geodetic hull numbers have been studied for several graph classes, e.g. [2, 3, 5, 14]. For general graphs, determining the geodetic or the geodetic hull number is NP-hard [6, 8]; in view of these negative results, analyzing the behavior of these parameters in classes of graphs with an interesting structure, such as the class of Kneser graphs, is a natural research direction. Another objective of this work is to contribute to the knowledge on Kneser graphs. For instance, we characterize endpoints of diametral paths in Kneser graphs, and use this characterization as a step towards the determination of the geodetic number.

The remainder of this section provides all the necessary background. Section 2 gives a characterization of vertices that are endpoints of a diametral path in K(2n+k,n)K(2n+k,n), in terms of their intersection size. This characterization is used as a tool for proving Theorem 4 on the geodetic number of K(2n+k,n)K(2n+k,n). Sections 3 and 4 present the main results on the geodetic number and the geodetic hull number of K(2n+k,n)K(2n+k,n), respectively.


Definitions and notation.


Let G=(V,E)G=(V,E) be a finite graph. A path between u,vVu,v\in V is a sequence of distinct vertices u=x1,x2,,xp=vu=x_{1},x_{2},\ldots,x_{p}=v such that xixi+1Ex_{i}x_{i+1}\in E for 1ip11\leq i\leq p-1, and its length is the number of edges therein. A shortest path between u,vVu,v\in V is a path with minimum length. The distance between two vertices u,vVu,v\in V, denoted by 𝑑𝑖𝑠𝑡(u,v)\mathit{dist}(u,v), is the length of a shortest path between them. The diameter of GG is defined as 𝑑𝑖𝑎𝑚(G)=maxu,vV𝑑𝑖𝑠𝑡(u,v)\mathit{diam}(G)=\max_{u,v\in V}\mathit{dist}(u,v). A diametral path is a shortest path whose length is 𝑑𝑖𝑎𝑚(G)\mathit{diam}(G). We denote the open neighborhood of a vertex xx by N(x)N(x). For SVS\subseteq V, we define N(S)=xSN(x)N(S)=\cup_{x\in S}N(x).

An uvuv-geodesic is a shortest path between uu and vv. The geodetic interval I[u,v]I[u,v] is the set of all vertices belonging to some uvuv-geodesic. For a set WV(G)W\subseteq V(G), the geodetic interval I[W]I[W] is defined as I[W]=u,vWI[u,v]I[W]=\cup_{u,v\in W}I[u,v]. The set WW is geodetically convex (or gg-convex) if I[W]=WI[W]=W, and a geodetic set of GG if I[W]=V(G)I[W]=V(G). The geodetic number 𝑔𝑛(G)\mathit{gn}(G) of GG is the size of minimum geodetic set of GG.

The family of gg-convex sets of graph GG define the geodetic convexity associated with GG. In general, a convexity associated with a graph GG consists of a collection 𝒞\mathcal{C} of subsets of V(G)V(G), called convex sets, such that: (a) ,V(G)𝒞\emptyset,V(G)\in\mathcal{C}; (b) 𝒞\mathcal{C} is closed under intersections. Just like the geodetic convexity is defined over shortest paths, other graph convexities can be defined using different path systems, such as the monophonic convexity [7], associated with induced paths.

The geodetic hull of a set WV(G)W\subseteq V(G), denoted by H[W]H[W], is the minimum gg-convex set containing WW. Also, WW is a geodetic hull set of GG if H[W]=V(G)H[W]=V(G). The geodetic hull number, denoted by 𝑔ℎ𝑛(G)\mathit{ghn}\left(G\right), is the size of a minimum geodetic hull set of GG. For an integer k0k\geq 0, we define Ik[W]I^{k}[W] as follows: I0[W]=WI^{0}[W]=W and Ik[W]=I[Ik1[W]]I^{k}[W]=I[I^{k-1}[W]]. It is not difficult to see that H[W]=Ik[W]H[W]=I^{k}[W] for some k0k\geq 0; in fact, kk can be taken as the minimum index for which H[W]=Ik[W]H[W]=I^{k}[W].

Let nn and kk be positive integers, and let [n]={1,,n}[n]=\{1,\ldots,n\} and [2n+k]n={S[2n+k]:|S|=n}[2n+k]^{n}=\{S\subseteq[2n+k]:|S|=n\}. The Kneser graph K(2n+k,n)K(2n+k,n) is the graph G=(V,E)G=(V,E) such that V=[2n+k]nV=[2n+k]^{n} and there is an edge between two vertices u,v[2n+k]nu,v\in[2n+k]^{n} whenever uv=u\cap v=\emptyset (see [13]). Therefore, the Kneser graph K(2n+k,n)K(2n+k,n) contains (2n+kn)\binom{2n+k}{n} vertices and is a (n+kn)\binom{n+k}{n}-regular graph. The Kneser graph K(5,2)K(5,2) is the well-known Petersen graph.

In [15] the authors show that 𝑑𝑖𝑎𝑚(K(2n+k,n))=(n1)/k+1\mathit{diam}(K(2n+k,n))=\lceil(n-1)/k\rceil+1. Additionally, for any u,vV(K(2n+k,n))u,v\in V(K(2n+k,n)) with |uv|=s|u\cap v|=s, they show that:

𝑑𝑖𝑠𝑡(u,v)={min{2(ns)/k,2s/k+1},if 1k<n1;2,if kn1.\mathit{dist}(u,v)=\left\{\begin{array}[]{cl}\min\{2\lceil(n-s)/k\rceil,2\lceil s/k\rceil+1\},&\mbox{if }1\leq k<n-1;\\ 2,&\mbox{if }k\geq n-1.\end{array}\right. (1)

Observe that if n2n\geq 2 and kn1k\geq n-1 then diam(K(2n+k,n))=2{\mathit{d}iam}(K(2n+k,n))=2. Thus, the graphs of diameter two form a infinite subfamily of 𝒦n={K(2n+k,n):k1}{\mathscr{K}}_{n}=\{K(2n+k,n):k\geq 1\}.

2 Endpoints of diametral paths

The theorem below gives a necessary and sufficient condition for two vertices in the Kneser graph K(2n+k,n)K(2n+k,n) to be endpoints of a diametral path.

Theorem 1

Let uu and vv be distinct vertices of K(2n+k,n)K(2n+k,n), and let s=|uv|s=|u\cap v|. Then 𝑑𝑖𝑠𝑡(u,v)=𝑑𝑖𝑎𝑚(K(2n+k,n))\mathit{dist}(u,v)=\mathit{diam}(K(2n+k,n)) if and only if

(n12k1)k+1s(n12k1)k+1+H(n,k),\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1\leq s\leq\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1+H(n,k), (2)

where

H(n,k)={max{nmodk+k2,0},if 0nmodk1;nmodk2,if 2nmodkk1.H(n,k)=\left\{\begin{array}[]{ll}\max\{n\bmod k+k-2,0\},&\mathrm{if}\ 0\leq n\bmod k\leq 1;\\ n\bmod k-2,&\mathrm{if}\ 2\leq n\bmod k\leq k-1.\\ \end{array}\right. (3)

Proof: First, assume condition (2) holds.

If kn1k\geq n-1, we have 𝑑𝑖𝑎𝑚(K(2n+k,n))=2\mathit{diam}(K(2n+k,n))=2 and s1s\geq 1, that is, uu and vv are not adjacent. Therefore, 𝑑𝑖𝑠𝑡(u,v)=2=𝑑𝑖𝑎𝑚(K(2n+k,n))\mathit{dist}(u,v)=2=\mathit{diam}(K(2n+k,n)).

Now, consider n1=2αk+βk+γn-1=2\alpha k+\beta k+\gamma for α0\alpha\in\mathbb{N}_{0}, β{0,1}\beta\in\{0,1\}, and 0γ<k0\leq\gamma<k. For s=(n12k1)k+1+Δs=\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1+\Delta with 0ΔH(n,k)0\leq\Delta\leq H(n,k), we analyze two cases:

Case 1:  β=γ=0\beta=\gamma=0.

In this case, n=2αk+1n=2\alpha k+1, s=(α1)k+1+Δs=(\alpha-1)k+1+\Delta, and 𝑑𝑖𝑎𝑚(K(2n+k,n))=(n1)/k+1=2α+1\mathit{diam}(K(2n+k,n))=\lceil(n-1)/k\rceil+1=2\alpha+1.

If k=1k=1, we have H(n,k)=Δ=0H(n,k)=\Delta=0. By using Eq. (1), it follows that

𝑑𝑖𝑠𝑡(u,v)\displaystyle\mathit{dist}(u,v) =min{2((α+1)kΔ)/k,2((α1)k+1+Δ)/k+1}\displaystyle=\min\{2\lceil((\alpha+1)k-\Delta)/k\rceil,2\lceil((\alpha-1)k+1+\Delta)/k\rceil+1\}
=min{2(α+1)/1,2(α1)+1/1+1}\displaystyle=\min\{2\lceil(\alpha+1)/1\rceil,2\lceil(\alpha-1)+1/1\rceil+1\}
=2α+1=𝑑𝑖𝑎𝑚(K(2n+k,n)).\displaystyle=2\alpha+1=\mathit{diam}(K(2n+k,n)).

Let us assume now k2k\geq 2. Since nmodk=1n\bmod k=1, we have H(n,k)=k1H(n,k)=k-1, and, thus, 0Δk10\leq\Delta\leq k-1. Then, by Eq. (1), it follows that

𝑑𝑖𝑠𝑡(u,v)\displaystyle\mathit{dist}(u,v) =min{2((α+1)kΔ)/k,2((α1)k+1+Δ)/k+1}\displaystyle=\min\{2\lceil((\alpha+1)k-\Delta)/k\rceil,2\lceil((\alpha-1)k+1+\Delta)/k\rceil+1\}
=min{2(α+1)Δ/k,2(α1)+(1+Δ)/k+1}\displaystyle=\min\{2\lceil(\alpha+1)-\Delta/k\rceil,2\lceil(\alpha-1)+(1+\Delta)/k\rceil+1\}
=min{2α+2,2α+1}\displaystyle=\min\{2\alpha+2,2\alpha+1\}
=2α+1=𝑑𝑖𝑎𝑚(K(2n+k,n)),\displaystyle=2\alpha+1=\mathit{diam}(K(2n+k,n)),

for every 0ΔH(n,k)=k10\leq\Delta\leq H(n,k)=k-1. This concludes Case 1.

Case 2:  β=1\beta=1 or γ0\gamma\neq 0.

In this case, we have s=αk+1+Δs=\alpha k+1+\Delta.

First, let us assume k=1k=1. Then, γ=Δ=H(n,k)=0\gamma=\Delta=H(n,k)=0, which implies β=1\beta=1 and 𝑑𝑖𝑎𝑚(K(2n+k,n))=(2α+1)/1+1=2α+2\mathit{diam}(K(2n+k,n))=\lceil(2\alpha+1)/1\rceil+1=2\alpha+2. By using Eq. (1) and the fact that n=2αk+βk+γ+1n=2\alpha k+\beta k+\gamma+1, we have that:

𝑑𝑖𝑠𝑡(u,v)\displaystyle\mathit{dist}(u,v) =min{2(αk+βk+γΔ)/k,2(αk+1+Δ)/k+1}\displaystyle=\min\{2\lceil(\alpha k+\beta k+\gamma-\Delta)/k\rceil,2\lceil(\alpha k+1+\Delta)/k\rceil+1\}
=min{2α+β+(γΔ)/k,2α+(1+Δ)/k+1}\displaystyle=\min\{2\lceil\alpha+\beta+(\gamma-\Delta)/k\rceil,2\lceil\alpha+(1+\Delta)/k\rceil+1\} (4)
=min{2α+1,2α+1+1}\displaystyle=\min\{2\lceil\alpha+1\rceil,2\lceil\alpha+1\rceil+1\}
=2α+2=𝑑𝑖𝑎𝑚(K(2n+k,n)).\displaystyle=2\alpha+2=\mathit{diam}(K(2n+k,n)).

Assume now k2k\geq 2. Note that nmodk=(γ+1)modkn\bmod k=(\gamma+1)\bmod k. Substituting in Eq. (3):

H(n,k)={max{(γ+1)modk+k2,0},if 0(γ+1)modk1;(γ+1)modk2,if 2(γ+1)modkk1.H(n,k)=\left\{\begin{array}[]{ll}\max\{(\gamma+1)\bmod k+k-2,0\},&\mbox{if }0\leq(\gamma+1)\bmod k\leq 1;\\ (\gamma+1)\bmod k-2,&\mbox{if }2\leq(\gamma+1)\bmod k\leq k-1.\\ \end{array}\right.

From the above equation, γH(n,k)=1k\gamma-H(n,k)=1-k if γ=0\gamma=0, and γH(n,k)=1\gamma-H(n,k)=1 if 1γk11\leq\gamma\leq k-1. Then, we have 1γΔk11\leq\gamma-\Delta\leq k-1 when γ0\gamma\neq 0. We analyze the possible cases in Eq. (1):

  • If β=1\beta=1 and γ0\gamma\neq 0, 𝑑𝑖𝑠𝑡(u,v)=min{2α+4,2α+3}=2α+3\mathit{dist}(u,v)=\min\{2\alpha+4,2\alpha+3\}=2\alpha+3 and 𝑑𝑖𝑎𝑚(K(2n+k,n))=(2αk+βk+γ)/k+1=2α+3\mathit{diam}(K(2n+k,n))=\lceil(2\alpha k+\beta k+\gamma)/k\rceil+1=2\alpha+3;

  • If β=0\beta=0 and γ0\gamma\neq 0, 𝑑𝑖𝑠𝑡(u,v)=min{2α+2,2α+3}=2α+2=𝑑𝑖𝑎𝑚(K(2n+k,n))\mathit{dist}(u,v)=\min\{2\alpha+2,2\alpha+3\}=2\alpha+2=\mathit{diam}(K(2n+k,n));

  • If β=1\beta=1 and γ=0\gamma=0, 𝑑𝑖𝑠𝑡(u,v)=min{2α+2,2α+3}=2α+2\mathit{dist}(u,v)=\min\{2\alpha+2,2\alpha+3\}=2\alpha+2 and 𝑑𝑖𝑎𝑚(K(2n+k,n))=(2αk+βk)/k+1=2α+2\mathit{diam}(K(2n+k,n))=\lceil(2\alpha k+\beta k)/k\rceil+1=2\alpha+2.

This concludes Case 2 and the first part of the proof.

Conversely, suppose 𝑑𝑖𝑠𝑡(u,v)=𝑑𝑖𝑎𝑚(K(2n+k,n))\mathit{dist}(u,v)=\mathit{diam}(K(2n+k,n)), and assume by contradiction that there is an integer ε1\varepsilon\geq 1 such that

(n12k1)k+1ε=s<(n12k1)k+1or\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1-\varepsilon=s<\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1\ \ \ \text{or}
(n12k1)k+1+H(n,k)>s=(n12k1)k+1+H(n,k)+ε.\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1+H(n,k)>s=\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1+H(n,k)+\varepsilon.

Assuming n1=2αk+βk+γn-1=2\alpha k+\beta k+\gamma for α0\alpha\in\mathbb{N}_{0}, β{0,1}\beta\in\{0,1\} again, we analyze the two possible cases.

Case 1:  s=(n12k1)k+1εs=\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1-\varepsilon.

We divide the proof of Case 1 in two subcases, analyzing possible values of β\beta and γ\gamma.

Case 1.1:  β=γ=0\beta=\gamma=0.

This case implies n=2αk+1n=2\alpha k+1 and s=(α1)k+1εs=(\alpha-1)k+1-\varepsilon. Thus, substituting in Eq. (1),

𝑑𝑖𝑠𝑡(u,v)\displaystyle\mathit{dist}(u,v) =min{2((α+1)k+ε)/k,2((α1)k+1ε)/k+1}\displaystyle=\min\{2\lceil((\alpha+1)k+\varepsilon)/k\rceil,2\lceil((\alpha-1)k+1-\varepsilon)/k\rceil+1\}
=min{2(α+1)+ε/k,2(α1)+(1ε)/k+1}\displaystyle=\min\{2\lceil(\alpha+1)+\varepsilon/k\rceil,2\lceil(\alpha-1)+(1-\varepsilon)/k\rceil+1\}
=2(α1)+(1ε)/k+12α1.\displaystyle=2\lceil(\alpha-1)+(1-\varepsilon)/k\rceil+1\leq 2\alpha-1.

However, 𝑑𝑖𝑎𝑚(K(2n+k,n))=(n1)/k+1=2αk/k+1=2α+1\mathit{diam}(K(2n+k,n))=\lceil(n-1)/k\rceil+1=\lceil 2\alpha k/k\rceil+1=2\alpha+1.

Case 1.2:  β=1\beta=1 or γ0\gamma\neq 0.

This case implies n=2αk+βk+γ+1n=2\alpha k+\beta k+\gamma+1 and s=αk+1εs=\alpha k+1-\varepsilon. Substituting in Eq. (1),

𝑑𝑖𝑠𝑡(u,v)\displaystyle\mathit{dist}(u,v) =min{2(αk+βk+γ+ε)/k,2(αk+1ε)/k+1}\displaystyle=\min\{2\lceil(\alpha k+\beta k+\gamma+\varepsilon)/k\rceil,2\lceil(\alpha k+1-\varepsilon)/k\rceil+1\}
=min{2α+β+(γ+ε)/k,2α+(1ε)/k+1}\displaystyle=\min\{2\lceil\alpha+\beta+(\gamma+\varepsilon)/k\rceil,2\lceil\alpha+(1-\varepsilon)/k\rceil+1\}
=2α+(1ε)/k+12α+1.\displaystyle=2\lceil\alpha+(1-\varepsilon)/k\rceil+1\leq 2\alpha+1.

However, for β=1\beta=1 or γ0\gamma\neq 0, 2α+2𝑑𝑖𝑎𝑚(K(2n+k,n))2α+32\alpha+2\leq\mathit{diam}(K(2n+k,n))\leq 2\alpha+3. Therefore, both Cases 1.1 and 1.2 lead to contradictions, and this concludes Case 1.

Case 2:  s=(n12k1)k+1+H(n,k)+εs=\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1+H(n,k)+\varepsilon.

Again, we analyze the possible values of β\beta and γ\gamma.

Case 2.1:  β=γ=0\beta=\gamma=0.

This case implies n=2αk+1n=2\alpha k+1 and s=(α1)k+1+H(n,k)+εs=(\alpha-1)k+1+H(n,k)+\varepsilon.

Assume k=1k=1. Then, H(n,k)=0H(n,k)=0, and using Eq. (1),

𝑑𝑖𝑠𝑡(u,v)\displaystyle\mathit{dist}(u,v) =min{2((α+1)kε)/k,2((α1)k+1+ε)/k+1}\displaystyle=\min\{2\lceil((\alpha+1)k-\varepsilon)/k\rceil,2\lceil((\alpha-1)k+1+\varepsilon)/k\rceil+1\}
=min{2(α+1ε),2α+2ε+1}\displaystyle=\min\{2(\alpha+1-\varepsilon),2\alpha+2\varepsilon+1\}
=2(α+1ε)2α,\displaystyle=2(\alpha+1-\varepsilon)\leq 2\alpha,

while 𝑑𝑖𝑎𝑚(K(2n+k,n))=(n1)/k+1=2αk/k+1=2α+1\mathit{diam}(K(2n+k,n))=\lceil(n-1)/k\rceil+1=\lceil 2\alpha k/k\rceil+1=2\alpha+1.

Assume now k2k\geq 2. Then, recall that H(n,k)=k1H(n,k)=k-1, since nmodk=1n\bmod k=1. Substituting in Eq. (1), we have that

𝑑𝑖𝑠𝑡(u,v)\displaystyle\mathit{dist}(u,v) =min{2((α+1)kH(n,k)ε)/k,2((α1)k+1+H(n,k)+ε)/k+1}\displaystyle=\min\{2\lceil((\alpha+1)k-H(n,k)-\varepsilon)/k\rceil,2\lceil((\alpha-1)k+1+H(n,k)+\varepsilon)/k\rceil+1\}
=min{2(α+1)(H(n,k)+ε)/k,2(α1)+(1+H(n,k)+ε)/k+1}\displaystyle=\min\{2\lceil(\alpha+1)-(H(n,k)+\varepsilon)/k\rceil,2\lceil(\alpha-1)+(1+H(n,k)+\varepsilon)/k\rceil+1\}
=min{2(α+1)(k1+ε)/k,2(α1)+(k+ε)/k+1}\displaystyle=\min\{2\lceil(\alpha+1)-(k-1+\varepsilon)/k\rceil,2\lceil(\alpha-1)+(k+\varepsilon)/k\rceil+1\}
=2(α+1)(k1+ε)/k2α<𝑑𝑖𝑎𝑚(K(2n+k,n))=2α+1.\displaystyle=2\lceil(\alpha+1)-(k-1+\varepsilon)/k\rceil\leq 2\alpha<\mathit{diam}(K(2n+k,n))=2\alpha+1.

Case 2.2:  β=1\beta=1 or γ0\gamma\neq 0.

In this case, n=2αk+βk+γ+1n=2\alpha k+\beta k+\gamma+1 and s=αk+1+H(n,k)+εs=\alpha k+1+H(n,k)+\varepsilon.

If k=1k=1, we have H(n,k)=γ=0H(n,k)=\gamma=0, β=1\beta=1, and 𝑑𝑖𝑎𝑚(K(2n+k,n))=2α+2\mathit{diam}(K(2n+k,n))=2\alpha+2. Thus, by using Eq. (1), we have that

𝑑𝑖𝑠𝑡(u,v)\displaystyle\mathit{dist}(u,v) =min{2(αk+βk+γH(n,k)ε)/k,2(αk+1+H(n,k)+ε)/k+1}\displaystyle=\min\{2\lceil(\alpha k+\beta k+\gamma-H(n,k)-\varepsilon)/k\rceil,2\lceil(\alpha k+1+H(n,k)+\varepsilon)/k\rceil+1\}
=min{2α+1ε/k,2α+(1+ε)/k+1}\displaystyle=\min\{2\lceil\alpha+1-\varepsilon/k\rceil,2\lceil\alpha+(1+\varepsilon)/k\rceil+1\}
=2α+1ε/k2α<𝑑𝑖𝑎𝑚(K(2n+k,n))=2α+2.\displaystyle=2\lceil\alpha+1-\varepsilon/k\rceil\leq 2\alpha<\mathit{diam}(K(2n+k,n))=2\alpha+2.

Finally, assume k2k\geq 2. Again, by Eq. (1):

𝑑𝑖𝑠𝑡(u,v)\displaystyle\mathit{dist}(u,v) =min{2(αk+βk+γH(n,k)ε)/k,2(αk+1+H(n,k)+ε)/k+1}\displaystyle=\min\{2\lceil(\alpha k+\beta k+\gamma-H(n,k)-\varepsilon)/k\rceil,2\lceil(\alpha k+1+H(n,k)+\varepsilon)/k\rceil+1\}
=min{2α+β+(γH(n,k)ε)/k,2α+(1+H(n,k)+ε)/k+1}.\displaystyle=\min\{2\lceil\alpha+\beta+(\gamma-H(n,k)-\varepsilon)/k\rceil,2\lceil\alpha+(1+H(n,k)+\varepsilon)/k\rceil+1\}. (5)

Recall from Case 2 in the first part of the proof that γH(n,k)=1\gamma-H(n,k)=1, for all 1γk11\leq\gamma\leq k-1. By confronting Eq. (5) with the possibilities for β\beta and γ\gamma, we have:

  • If β=1\beta=1 and γ0\gamma\neq 0,

    𝑑𝑖𝑠𝑡(u,v)\displaystyle\mathit{dist}(u,v) =min{2α+1+(1ε)/k,2α+(1+H(n,k)+ε)/k+1}\displaystyle=\min\{2\lceil\alpha+1+(1-\varepsilon)/k\rceil,2\lceil\alpha+(1+H(n,k)+\varepsilon)/k\rceil+1\}
    =2α+1+(1ε)/k2α+2<𝑑𝑖𝑎𝑚(K(2n+k,n))=2α+3.\displaystyle=2\lceil\alpha+1+(1-\varepsilon)/k\rceil\leq 2\alpha+2<\mathit{diam}(K(2n+k,n))=2\alpha+3.
  • if β=0\beta=0 and γ0\gamma\neq 0,

    𝑑𝑖𝑠𝑡(u,v)\displaystyle\mathit{dist}(u,v) =min{2α+(1ε)/k,2α+(1+H(n,k)+ε)/k+1}\displaystyle=\min\{2\lceil\alpha+(1-\varepsilon)/k\rceil,2\lceil\alpha+(1+H(n,k)+\varepsilon)/k\rceil+1\}
    =2α+(1ε)/k2α<𝑑𝑖𝑎𝑚(K(2n+k,n))=2α+2.\displaystyle=2\lceil\alpha+(1-\varepsilon)/k\rceil\leq 2\alpha<\mathit{diam}(K(2n+k,n))=2\alpha+2.
  • If β=1\beta=1 and γ=0\gamma=0, we have (H(n,k)+ε)1-(H(n,k)+\varepsilon)\leq-1. Thus,

    𝑑𝑖𝑠𝑡(u,v)\displaystyle\mathit{dist}(u,v) =min{2α+1(H(n,k)+ε)/k,2α+(1+H(n,k)+ε)/k+1}\displaystyle=\min\{2\lceil\alpha+1-(H(n,k)+\varepsilon)/k\rceil,2\lceil\alpha+(1+H(n,k)+\varepsilon)/k\rceil+1\}
    =2α+1(H(n,k)+ε)/k2α<𝑑𝑖𝑎𝑚(K(2n+k,n))=2α+2.\displaystyle=2\lceil\alpha+1-(H(n,k)+\varepsilon)/k\rceil\leq 2\alpha<\mathit{diam}(K(2n+k,n))=2\alpha+2.

Therefore, both Cases 2.1 and 2.2 lead to contradictions. This concludes Case 2 and the proof of the theorem.  \Box

An interesting fact derived from Theorem 1 is:

Corollary 2

Let u,vV(K(2n+k,n))u,v\in V(K(2n+k,n)). Then:

  • 1.

    if |uv|<(n12k1)k+1|u\cap v|<\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1 then 𝑑𝑖𝑠𝑡(u,v)\mathit{dist}(u,v) is odd;

  • 2.

    if |uv|>(n12k1)k+1+H(n,k)|u\cap v|>\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1+H(n,k) then 𝑑𝑖𝑠𝑡(u,v)\mathit{dist}(u,v) is even.

Proof: According to the proof of Theorem 1, Cases 1 and 2 guarantee that intersections with fewer than (n12k1)k+1\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1 elements imply odd distances, while intersections with more than (n12k1)k+1+H(n,k)\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1+H(n,k) imply even distances.  \Box

Example 3

Figure 1 depicts the Kneser graph K(7,3)K(7,3), for which n=3n=3 and k=1k=1. By inspection (or using the formula in [15]), 𝑑𝑖𝑎𝑚(K(7,3))=3\mathit{diam}(K(7,3))=3. Substituting the values of nn and kk in Eqs. (2) and (3), two vertices uu and vv are endpoints of a diametral path in K(7,3)K(7,3) if and only if |uv|=1|u\cap v|=1. For instance, vertices {1,2,3}\{1,2,3\} and {1,4,5}\{1,4,5\} are endpoints of the diametral path P={1,2,3},{4,5,6},{2,3,7},{1,4,5}P=\{1,2,3\},\{4,5,6\},\{2,3,7\},\{1,4,5\}. By Corollary 2, if |uv|=0<1|u\cap v|=0<1 then uu and vv are at an odd distance d=1d=1, and if |uv|=2>1|u\cap v|=2>1 then uu and vv are at an even distance d=2d=2. For instance, vertices {1,2,3}\{1,2,3\} and {1,2,4}\{1,2,4\} are endpoints of the path P={1,2,3},{5,6,7},{1,2,4}P^{\prime}=\{1,2,3\},\{5,6,7\},\{1,2,4\}.

Refer to caption
Figure 1: Kneser graph K(7,3)K(7,3) (n=3n=3 and k=1k=1).

3 Geodetic number

The next theorem gives a sufficient condition for a set SV(K(2n+k,n))S\subseteq V(K(2n+k,n)) to be a geodetic set. Say that two vertices u,vu,v in a graph GG are diametrically opposed if d(u,v)=diam(G)d(u,v)={\mathit{d}iam}(G).

Theorem 4

Let rV(K(2n+k,n))r\in V(K(2n+k,n)) and let DD be the set of all vertices of K(2n+k,n)K(2n+k,n) diametrically opposed to rr. Then D{r}D\cup\{r\} is a geodetic set.

Proof:  Let T(r)T(r) be a tree rooted at rr, obtained by a breadth-first search in K(2n+k,n)K(2n+k,n). Let L(x)L(x) be the level of a vertex xx in T(r)T(r). Trivially, L(r)=0L(r)=0. In addition, xDx\in D if and only if L(x)=(n1)/k+1L(x)=\lceil(n-1)/k\rceil+1. Let (i)={x:L(x)=i}{\mathscr{L}}(i)=\{x:L(x)=i\}.

In order to prove that D{r}D\cup\{r\} is a geodetic set, we show that each x(i)x\in{\mathscr{L}}(i), with 0i<(n1)/k+10\leq i<\lceil(n-1)/k\rceil+1, has at least one neighbor z(i+1)z\in{\mathscr{L}}(i+1). This is trivial for i=0i=0. By Theorem 1, either |rx|<(n12k1)k+1|r\cap x|<\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1 or |rx|>(n12k1)k+1+H(n,k)|r\cap x|>\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1+H(n,k).

Let yN(x)(i1)y\in N(x)\cap{\mathscr{L}}(i-1). We analyze two cases.

Case 1: ii is even.

In this case, by Corollary 2, |ry|<(n12k1)k+1|r\cap y|<\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1.

Let k=min{k,(n12k1)k+1|ry|}k^{\prime}=\min\{k,\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1-|r\cap y|\}, and let z1z_{1} be a set formed by kk^{\prime} elements in r(xy)r\setminus(x\cup y). Observe that z1z_{1} exists because dist(x,r)<diam(K(2n+k,n)){\mathit{d}ist}(x,r)<{\mathit{d}iam}(K(2n+k,n)), which in turn implies the existence of a set that has at least kk^{\prime} more elements in common with rr than yy. Additionally, let z2z_{2} be a set formed by nk|ry|n-k^{\prime}-|r\cap y| elements in yry\setminus r. It follows that z=(ry)z1z2z=(r\cap y)\cup z_{1}\cup z_{2} is a neighbor of xx such that L(z)=i+1L(z)=i+1, and this concludes Case 1.

Case 2: ii is odd.

In this case, by Corollary 2, |ry|>(n12k1)k+1+H(n,k)|r\cap y|>\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1+H(n,k).

Let k′′=min{k,|ry|((n12k1)k+1+H(n,k))}k^{\prime\prime}=\min\{k,|r\cap y|-(\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1+H(n,k))\}, and let z3z_{3} be a set formed by k′′k^{\prime\prime} elements in ryr\cap y. In addition, let z4z_{4} be formed by nk′′n-k^{\prime\prime} elements in [2n+k](rx)[2n+k]\setminus(r\cup x). Again, z3z_{3} and z4z_{4} exist because there is a set with at least k′′k^{\prime\prime} elements that intersect rr less than yy, since dist(x,r)<diam(K(2n+k,n)){\mathit{d}ist}(x,r)<{\mathit{d}iam}(K(2n+k,n)). To conclude Case 2, note that z=(yz3)z4z=(y\setminus z_{3})\cup z_{4} is a neighbor of xx with L(z)=i+1L(z)=i+1.

As seen above, each vertex in ((n1)/k){\mathscr{L}}(\lceil(n-1)/k\rceil) has a neighbor in D=((n1)/k+1)D={\mathscr{L}}(\lceil(n-1)/k\rceil+1). Therefore, xI[r,x]x\in I[r,x^{\prime}], for some xDx^{\prime}\in D. In other words, D{r}D\cup\{r\} is a geodetic set.  \Box

Corollary 5

Let p=(n12k1)k+1p=\left(\left\lceil\frac{n-1}{2k}\right\rceil-1\right)k+1. Then,

𝑔𝑛(K(2n+k,n))1+i=pp+H(n,k)(ni)(n+kni).\mathit{gn}(K(2n+k,n))\leq 1+\sum_{i=p}^{p+H(n,k)}\binom{n}{i}\binom{n+k}{n-i}. (6)

Proof:  The bound in Eq. 6 is precisely the size of D{r}D\cup\{r\} in the proof of Theorem 4.  \Box

Note that the bound in Eq. 6 is valid for all possible diameter values of K(2n+k,n)K(2n+k,n). If 𝑑𝑖𝑎𝑚(K(2n+k,n))=2\mathit{diam}(K(2n+k,n))=2, we can improve the result of Theorem 4 and find the exact value of 𝑔𝑛(K(2n+k,n))\mathit{gn}(K(2n+k,n)), as shown in the next theorem:

Theorem 6

If kn1k\geq n-1 then

𝑔𝑛(K(2n+k,n))=(2n+k1n1).\mathit{gn}(K(2n+k,n))=\binom{2n+k-1}{n-1}.

Proof:  Let u,vV(K(2n+k,n))u,v\in V(K(2n+k,n)) and s=|uv|s=|u\cap v|. Since diam(K(2n+k,n))=2{\mathit{d}iam}(K(2n+k,n))=2, the elements of a geodetic set of K(2n+k,n)K(2n+k,n) must have 1sn11\leq s\leq n-1.

We notice that, for any geodetic set XX and a vertex xV(K(2n+k,n))x\in V(K(2n+k,n)), if xx has no neighbors in XX then xXx\in X, because the diameter is two. We construct a set DV(K(2n+k,n))D\subseteq V(K(2n+k,n)) consisting of pairwise diametrically opposed vertices as follows: for each s=1,,n1s=1,\ldots,n-1, include in DD a maximal subset DsD_{s} such that, for every distinct u,vDsu,v\in D_{s}, uv={1,2,,s}u\,\cap\,v=\{1,2,\ldots,s\}. In other words, D1D_{1} is formed by vertices with pairwise intersection {1}\{1\}, D2D_{2} by vertices with pairwise intersection {1,2}\{1,2\}, and so on. Note that DD is an independent set. Moreover, one can verify that

|D|=(2n+k1n1).|D|=\binom{2n+k-1}{n-1}.

The above construction generates a set DD of maximal size in which any pair of vertices in DD has a diametral path connecting them. Moreover, notice that any subset SS with |D|1|D|-1 vertices implies some vertex with no edge to vertices in SS. Then, |D||S||D|\leq|S| for any geodetic set SS. Now, let xV(K(2n+k,n))Dx\in V(K(2n+k,n))\setminus D. Then 1x1\notin x, and, by construction, xx has distinct neighbors y,zDy,z\in D (recall that yzy\cap z\neq\emptyset, which implies |xyz|3n12n+k|x\cup y\cup z|\leq 3n-1\leq 2n+k). Thus, DD is a geodetic set of minimum size and 𝑔𝑛(K(2n+k,n))=|D|\mathit{gn}(K(2n+k,n))=|D|.  \Box

Example 7

Let n=k=2n=k=2, and consider the Kneser graph K(6,2)K(6,2). According to the proof of Theorem 4, let r={1,2}r=\{1,2\} and let DD be the following set:

D={{x,3},{x,4},{x,5},{x,6}:x{1,2}}.D=\{\{x,3\},\{x,4\},\{x,5\},\{x,6\}:x\in\{1,2\}\}.

Note that DD is the set of vertices diametrically opposed to rr. Thus, D{r}D\cup\{r\} is a geodetic set of K(6,2)K(6,2), with size 99. Indeed, substituting n=k=2n=k=2 in Eq. 6 we have p=1p=1, H(n,k)=0H(n,k)=0, and

𝑔𝑛(K(6,2))1+(21)(41)=9.\mathit{gn}(K(6,2))\leq 1+\binom{2}{1}\binom{4}{1}=9.

However, we can improve this result using Theorem 6, whose proof tells us that a maximal set DD^{\prime} of vertices with pairwise intersection I={1}I=\{1\} is a minimum geodetic set of K(6,2)K(6,2). Thus, D={{1,2},{1,3},{1,4},{1,5},{1,6}}D^{\prime}=\{\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\}\} is the required set and 𝑔𝑛(K(6,2))=5\mathit{gn}(K(6,2))=5. Note that DD^{\prime} is also an independent set.

4 Geodetic hull number

The next lemma gives a necessary condition for a set to be a geodetic hull set of a Kneser graph with diameter two.

Lemma 8

Suppose kn1k\geq n-1, and let x,y,zV(K(2n+k,n))x,y,z\in V(K(2n+k,n)) be vertices such that

(xyz)(xyz)={h,i,j},(x\cup y\cup z)\setminus(x\cap y\cap z)=\{h,i,j\},

where hxh\in x, iyi\in y, and jzj\in z. Then, {x,y,z}\{x,y,z\} is a geodetic hull set of K(2n+k,n)K(2n+k,n).

Proof:  Let wV(K(2n+k,n)){x,y,z}w\in V(K(2n+k,n))\setminus\{x,y,z\}. If ww has empty intersections with at least two of x,y,zx,y,z, say xx and yy, then wI[x,y]w\in I[x,y]. Then we may assume, without loss of generality, that wxw\cap x\neq\emptyset and wyw\cap y\neq\emptyset.

If |w(xy)|>1|w\cap(x\cup y)|>1 and wz=w\cap z=\emptyset then wxy={h,i}w\cap x\cap y=\{h,i\}. In addition, we can define a vertex ww^{\prime} consisting of element jj plus n1n-1 elements of [2n+k](wxy)[2n+k]\setminus(w\cup x\cup y). Notice that wI[x,y]w^{\prime}\in I[x,y] and, consequently, wI[w,z]w\in I[w^{\prime},z].

If |w(xy)|=1|w\cap(x\cup y)|=1 and wz=w\cap z=\emptyset then either w(xy)={x}w\cap(x\cup y)=\{x\} or w(xy)={y}w\cap(x\cup y)=\{y\}. The former case implies wI[y,z]w\in I[y,z], and the latter wI[x,z]w\in I[x,z]. Such observations imply that N(z)H[{x,y,z}]N(z)\subseteq H[\{x,y,z\}]. Likewise, if ww has nonempty intersections with xzx\cup z (resp., yzy\cup z) then N(y)H[{x,y,z}]N(y)\subseteq H[\{x,y,z\}] (resp., N(x)H[{x,y,z}]N(x)\subseteq H[\{x,y,z\}]). Therefore, N({x,y,z})H[{x,y,z}]N(\{x,y,z\})\subseteq H[\{x,y,z\}].

Finally, if wN({x,y,z})w\notin N(\{x,y,z\}), then 𝑑𝑖𝑠𝑡(w,a)=2\mathit{dist}(w,a)=2 for a{x,y,z}a\in\{x,y,z\}. This means that wI[b,c]w\in I[b,c] for distinct b,cN({x,y,z})b,c\in N(\{x,y,z\}). Hence, {x,y,z}\{x,y,z\} is a geodetic hull set.  \Box

Example 9

Consider again the Kneser graph K(6,2)K(6,2), and let x={1,2}x=\{1,2\}, y={1,3}y=\{1,3\}, and z={1,4}z=\{1,4\}. Note that (xyz)(xyz)={2,3,4}(x\cup y\cup z)\setminus(x\cap y\cap z)=\{2,3,4\}, with 2x2\in x, 3y3\in y, and 4z4\in z. Therefore, according to Lemma 8, S={x,y,z}S=\{x,y,z\} is a geodetic hull set of K(6,2)K(6,2). Indeed,

I1[{x,y,z}]={x,y,z}{{4,5},{4,6},{5,6},{3,5},{3,6},{2,5},{2,6}}I^{1}[\{x,y,z\}]=\{x,y,z\}\cup\{\{4,5\},\{4,6\},\{5,6\},\{3,5\},\{3,6\},\{2,5\},\{2,6\}\}
and
I2[{x,y,z}]=I1[{x,y,z}]{{1,5},{1,6},{2,3},{2,4},{3,4}}=V(K(6,2)),I^{2}[\{x,y,z\}]=I^{1}[\{x,y,z\}]\cup\{\{1,5\},\{1,6\},\{2,3\},\{2,4\},\{3,4\}\}=V(K(6,2)),

that is, H[{x,y,z}]=V(K(6,2))H[\{x,y,z\}]=V(K(6,2)).

Theorem 10

If kn1k\geq n-1, then

𝑔ℎ𝑛(K(2n+k,n))={2,if k>2;3,otherwise.\mathit{ghn}(K(2n+k,n))=\left\{\begin{array}[]{cl}2,&\mbox{if }k>2;\\ 3,&\mbox{otherwise.}\end{array}\right. (7)

Proof:   Recall that if kn1k\geq n-1, then diam(K(2n+k,n))=2{\mathit{d}iam}(K(2n+k,n))=2. Suppose k>2k>2, and let x,y,zV(K(2n+k,n))x,y,z\in V(K(2n+k,n)) such that (xyz)(xyz)={h,i,j}(x\cup y\cup z)\setminus(x\cap y\cap z)=\{h,i,j\}, where hxh\in x, iyi\in y, and jzj\in z. By Lemma 8, we know that {x,y,z}\{x,y,z\} is a geodetic hull set. We show that {x,y}\{x,y\} is still a geodetic hull set in this case.

Notice that there are w,wI[x,y]w,w^{\prime}\in I[x,y] such that |ww|=n+1|w\cup w^{\prime}|=n+1 and jwwj\notin w\cup w^{\prime}. Also, |xyzww|=|xyz|+|ww|=(n+2)+(n+1)=2n+3|x\cup y\cup z\cup w\cup w^{\prime}|=|x\cup y\cup z|+|w\cup w^{\prime}|=(n+2)+(n+1)=2n+3 and zI[w,w]z\in I[w,w^{\prime}]. Therefore, zI2[{x,y}]z\in I^{2}[\{x,y\}] and this concludes the case k>2k>2.

Now, suppose k2k\leq 2. In this case, we show that no set SS with |S|=2|S|=2 is a geodetic hull set. Let S={x,y}S=\{x^{\prime},y^{\prime}\}, and assume |xy|=s|x^{\prime}\cap y^{\prime}|=s. Notice that I[x,y]I[x^{\prime},y^{\prime}] must contain at least two vertices ww and ww^{\prime}, since they must provide vertices with no edge to xx^{\prime} or yy^{\prime}. Observe that, even for |ww|=1|w\cap w^{\prime}|=1, |xyww|=|xy|+|ww|=(2ns+1)+(n+1)=3ns+2|x^{\prime}\cup y^{\prime}\cup w\cup w^{\prime}|=|x^{\prime}\cup y^{\prime}|+|w\cup w^{\prime}|=(2n-s+1)+(n+1)=3n-s+2. But since 2n+k2n+22n+k\leq 2n+2, we have 3ns+22n+23n-s+2\leq 2n+2. This implies sns\geq n, a contradiction. In other words, H[S]V(K(2n+k,n))H[S]\neq V(K(2n+k,n)). Thus, if k2k\leq 2, 𝑔ℎ𝑛(K(2n+k,n))=3\mathit{ghn}(K(2n+k,n))=3. This concludes the proof of the theorem.  \Box

Corollary 11

The only Kneser graphs with diameter two and geodetic hull number three are K(5,2)K(5,2), K(6,2)K(6,2), and K(8,2)K(8,2).

Proof:  By Theorem 10, the Kneser graphs with diameter two and geodetic hull number three are obtained by combining the inequalities kn11k\geq n-1\geq 1 and k2k\leq 2.  \Box

References

  • [1] Balogh, J., Cherkashin, D., and Kiselev, S. Coloring general Kneser graphs and hypergraphs via high-discrepancy hypergraphs. Eur. J. Comb. 79 (2019), 228–236.
  • [2] Brešar, B., and Horvat, A. T. On the geodetic number of median graphs. Discret. Math. 308, 18 (2008), 4044–4051.
  • [3] Brešar, B., Šumenjak, T. K., and Tepeh, A. The geodetic number of the lexicographic product of graphs. Discret. Math. 311, 16 (2011), 1693–1698.
  • [4] Brešar, B., and Valencia-Pabon, M. Independence number of products of Kneser graphs. Discret. Math. 342, 4 (2019), 1017–1027.
  • [5] Cáceres, J., Hernando, C., Mora, M., Pelayo, I., and Puertas, M. On the geodetic and the hull numbers in strong product graphs. Comput. Math. with Appl. 60, 11 (2010), 3020–3031.
  • [6] Dourado, M. C., Gimbel, J. G., Kratochvíl, J., Protti, F., and Szwarcfiter, J. L. On the computation of the hull number of a graph. Discret. Math. 309, 18 (2009), 5668–5674.
  • [7] Dourado, M. C., Protti, F., and Szwarcfiter, J. L. Complexity results related to monophonic convexity. Discret. Appl. Math. 158, 12 (2010) 1268–1274.
  • [8] Dourado, M. C., Protti, F., Rautenbach, D., and Szwarcfiter, J. L. Some remarks on the geodetic number of a graph. Discret. Math. 310, 4 (2010), 832–837.
  • [9] Godsil, C., and Royle, G. Algebraic graph theory, Springer, 2001.
  • [10] Grippo, L. N., Pastine, A., Torres, P., Valencia-Pabon, M., and Vera, J.-C. On the P3P_{3}-hull number of Kneser graphs. Electron. J. Comb. 28, 3 (2021) #P3.32.
  • [11] Jin, Z., Wang, F., Wang, H., and Lv, B. Rainbow triangles in edge-colored kneser graphs. Appl. Math. Comput. 365 (2020), 124724.
  • [12] Liao, J., Cao M., and Lu M. On the P3P_{3}-hull numbers of qq-Kneser graphs and Grassmann graphs. Applied Mathematics and Computation 437 (2023), 127536.
  • [13] Lovász, L. Kneser’s conjecture, chromatic number, and homotopy. J. Comb. Theory Ser. A 25, 3 (1978), 319–324.
  • [14] Pelayo, I. M. Generalizing the Krein-Milman property in graph convexity spaces: A short survey. In International Workshop on Metric and Convex Graph Theory (Jun 2006), 131–142.
  • [15] Valencia-Pabon, M., and Vera, J.-C. On the diameter of Kneser graphs. Discret. Math. 305, 1 (2005), 383–385.