This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: This work was supported by the NWO VICI grant 639.043.201 “Optical Interferometry: A new Method for Studies of Extrasolar Planets” to A. Quirrenbach.

Geodetic Line at Constant Altitude above the Ellipsoid

Richard J. Mathar mathar@mpia-hd.mpg.de https://www.mpia-hd.mpg.de/˜mathar Max-Planck Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
(August 6, 2025)
Abstract

The two-dimensional surface of a bi-axial ellipsoid is characterized by the lengths of its major and minor axes. Longitude and latitude span an angular coordinate system across. We consider the egg-shaped surface of constant altitude above (or below) the ellipsoid surface, and compute the geodetic lines—lines of minimum Euclidean length—within this surface which connect two points of fixed coordinates. This addresses the common “inverse” problem of geodesics generalized to non-zero elevations. The system of differential equations which couples the two angular coordinates along the trajectory is reduced to a single integral, which is handled by Taylor expansion up to fourth power in the eccentricity.

geodesy; ellipsoid; eccentricity; geodetic line; inverse problem
pacs:
91.10.By, 91.10.Ws, 02.40.Hw

I Contents

The common three parameters employed to relate Cartesian coordinates to an ellipsoidal surface are the angles of latitude and longitude in a grid on the surface, plus an altitude which is a shortest (perpendicular) distance to the surface. The well-known functional relations (coordinate transformations) are summarized in Section II.

The inverse problem of geodesy is to find the line embedded in the ellipsoid surface which connects two fixed points subject to minimization of its length. We pose the equivalent problem for lines at constant altitude, as if one would ask for the shortest track of the center of a sphere of given radius which rolls on the ellipsoid surface and meets two points of the same, known altitude. In Section III, we formulate this in terms of the generic differential equations of geodesy parametrized by the Christoffel symbols.

In the main Section IV, the coupled system of differential equations of latitude and longitude as a function of path length is reduced to one degree of freedom, here chosen to be the direction along the path at one of the fixed terminal points, measured in the topocentric horizontal system, and dubbed the launching angle. Closed-form expressions of this parameter in terms of the coordinates of the terminal points have not been found; instead, the results are presented as series expansions up to fourth power in the eccentricity.

The standard treatment of this analysis is the projection on an auxiliary sphere; this technique is (almost) completely ignored but for the pragmatic aspect that the case of zero eccentricity is a suitable zeroth-order reference of series expansions around small eccentricities.

II Spheroidal Coordinates

II.1 Surface

The cross section of an ellipsis of equatorial radius ρe>ρp\rho_{e}>\rho_{p} with eccentricity ee in a Cartesian (x,zx,z) system is:

ρp2=ρe2(1e2);x2ρe2+z2ρp2=1.\rho_{p}^{2}=\rho_{e}^{2}(1-e^{2});\quad\frac{x^{2}}{\rho_{e}^{2}}+\frac{z^{2}}{\rho_{p}^{2}}=1. (1)

The ellipsis defines a geocentric latitude ϕ\phi^{\prime} and a geodetic latitude ϕ\phi, the latter measured by intersection of the normal to the tangential plane with the equatorial plane (Figure 1).

Refer to caption
Figure 1: Major semi-axis ρe\rho_{e}, minor semi-axis ρp\rho_{p}, straight distance to the center of coordinates ρ\rho, geocentric latitude ϕ\phi^{\prime}, geodetic latitude ϕ\phi, and their pointing difference vv.

On the surface of the ellipsoid [23, §IX][5][2, §140]:

tanϕ=zxρe2ρp2;zx=tanϕ=ρp2ρe2tanϕ.\tan\phi=\frac{z}{x}\frac{\rho_{e}^{2}}{\rho_{p}^{2}};\quad\frac{z}{x}=\tan\phi^{\prime}=\frac{\rho_{p}^{2}}{\rho_{e}^{2}}\tan\phi. (2)

Supposed ρ\rho denotes the distance from the center of coordinates to the point on the geoid surface, the transformation from (x,z)(x,z) to ϕ\phi is

x=ρcosϕ=ρecosϕ1e2sin2ϕ,z=ρsinϕ=ρe(1e2)sinϕ1e2sin2ϕ.x=\rho\cos\phi^{\prime}=\frac{\rho_{e}\cos\phi}{\sqrt{1-e^{2}\sin^{2}\phi}},\quad z=\rho\sin\phi^{\prime}=\frac{\rho_{e}(1-e^{2})\sin\phi}{\sqrt{1-e^{2}\sin^{2}\phi}}. (3)

v=ϕϕv=\phi-\phi^{\prime} defines the difference between the geodetic (astronomical) and the geocentric latitudes,

tanv=e2sin(2ϕ)2(1e2sin2ϕ)=msin(2ϕ)1+mcos(2ϕ)=msin(2ϕ)m2sin(2ϕ)cos(2ϕ)+m3sin(2ϕ)cos2(2ϕ)+;\tan v=\frac{e^{2}\sin(2\phi)}{2(1-e^{2}\sin^{2}\phi)}=\frac{m\sin(2\phi)}{1+m\cos(2\phi)}=m\sin(2\phi)-m^{2}\sin(2\phi)\cos(2\phi)+m^{3}\sin(2\phi)\cos^{2}(2\phi)+\cdots; (4)

where the expansion of the denominator has been given in terms of the geometric series of the parameter

me22e2.m\equiv\frac{e^{2}}{2-e^{2}}. (5)

The Taylor series in powers of sin(2ϕ)\sin(2\phi) and in powers of mm are

v\displaystyle v =\displaystyle= m1+msin(2ϕ)+m2(2+m)6(1+m)3sin3(2ϕ)+m2(5+25m+15m2+3m3)40(1+m)5sin5(2ϕ)+\displaystyle\frac{m}{1+m}\sin(2\phi)+\frac{m^{2}(2+m)}{6(1+m)^{3}}\sin^{3}(2\phi)+\frac{m^{2}(5+25m+15m^{2}+3m^{3})}{40(1+m)^{5}}\sin^{5}(2\phi)+\cdots (6)
=\displaystyle= sin(2ϕ)m12sin(4ϕ)m2+13sin(6ϕ)m314sin(8ϕ)m4+15sin(10ϕ)m5+.\displaystyle\sin(2\phi)m-\frac{1}{2}\sin(4\phi)m^{2}+\frac{1}{3}\sin(6\phi)m^{3}-\frac{1}{4}\sin(8\phi)m^{4}+\frac{1}{5}\sin(10\phi)m^{5}+\cdots. (7)

A flattening factor ff is also commonly defined [10][19, (3.14)],

f=ρeρpρe=11e2;e2=f(2f).f=\frac{\rho_{e}-\rho_{p}}{\rho_{e}}=1-\sqrt{1-e^{2}};\quad e^{2}=f(2-f). (8)

The reference values of the Earth ellipsoid adopted in the WGS84 [16] are

f=1/298.257223563,ρe=6378137.0 m.f=1/298.257223563,\quad\rho_{e}=6378137.0\text{ m}. (9)

II.2 General Altitude

If one moves along the direction of ϕ\phi a distance hh away from the surface of the geoid, the new coordinates relative to (3) are [6, 28, 9, 18, 30, 8, 12]

x=ρcosϕ+hcosϕ;z=ρsinϕ+hsinϕ,x=\rho\cos\phi^{\prime}+h\cos\phi;\quad z=\rho\sin\phi^{\prime}+h\sin\phi, (10)

which can be written in terms of a distance N(ϕ)N(\phi),

N(ϕ)ρe1e2sin2ϕN(\phi)\equiv\frac{\rho_{e}}{\sqrt{1-e^{2}\sin^{2}\phi}} (11)

as

x=(N+h)cosϕ;z=[N(1e2)+h]sinϕ.x=(N+h)\cos\phi;\quad z=[N(1-e^{2})+h]\sin\phi. (12)
Refer to caption
Figure 2: A point with Cartesian coordinates (x,y,z)(x,y,z) has a distance zz to the equatorial plane, a distance x2+y2\sqrt{x^{2}+y^{2}} to the polar axis, a distance hh to the surface of the ellipsoid, and a distance N+hN+h to the polar axis, measured along the local normal to the surface [13]. The vector 𝐞ϕ{\mathbf{e}}_{\phi} points North at this point.

Rotation of (12) around the polar axis with geographic longitude λ\lambda defines the full 3D transformation between (x,y,z)(x,y,z) and (λ,ϕ,h)(\lambda,\phi,h),

(xyz)=([N(ϕ)+h]cosϕcosλ[N(ϕ)+h]cosϕsinλ[N(ϕ)(1e2)+h]sinϕ).\left(\begin{array}[]{c}x\\ y\\ z\\ \end{array}\right)=\left(\begin{array}[]{c}\left[N(\phi)+h\right]\cos\phi\cos\lambda\\ \left[N(\phi)+h\right]\cos\phi\sin\lambda\\ \left[N(\phi)(1-e^{2})+h\right]\sin\phi\\ \end{array}\right). (13)

The only theme of this paper is to generalize the geodetic lines of the literature [5, 24, 21, 25, 17, 3, 11, 14] to the case of finite altitude h0h\neq 0. The physics of gravimetric or potential theory is not involved, only the mathematics of the geometry. It should be noted that points with constant, non-zero hh do not define a surface of an ellipsoid with effective semi-axes ρe,p+h\rho_{e,p}+h—otherwise the geodetic line could be deduced by mapping the problem onto an equivalent ellipsoidal surface [5].

III Inverse Problem of Geodesy

III.1 Topocentric Coordinate System

A line of shortest distance at constant height h=h=const between two points 1 and 2 is defined by minimizing the Euclidean distance, the line integral

S=12dx2+dy2+dz2=12ds212𝑑sS=\int_{1}^{2}\sqrt{dx^{2}+dy^{2}+dz^{2}}=\int_{1}^{2}\sqrt{ds^{2}}\equiv\int_{1}^{2}{\cal L}ds (14)

for some parametrization λ(ϕ)\lambda(\phi). The integrand is equivalent to a Lagrange function (ϕ,λ,dλ/dϕ){\cal L}(\phi,\lambda,d\lambda/d\phi) or (ϕ,λ,dϕ/dλ){\cal L}(\phi,\lambda,d\phi/d\lambda).

The gradient of (13) with respect to λ\lambda and ϕ\phi defines the vectors 𝐞λ,ϕ{\mathbf{e}}_{\lambda,\phi} that span the topocentric tangent plane

𝐞λ=([N(ϕ)+h]cosϕsinλ[N(ϕ)+h]cosϕcosλ0);𝐞ϕ=(sinϕcosλ[M(ϕ)+h]sinϕsinλ[M(ϕ)+h]cosϕ[M(ϕ)+h]),{\bf e}_{\lambda}=\left(\begin{array}[]{c}-\left[N(\phi)+h\right]\cos\phi\sin\lambda\\ \left[N(\phi)+h\right]\cos\phi\cos\lambda\\ 0\\ \end{array}\right);\quad{\bf e}_{\phi}=\left(\begin{array}[]{c}-\sin\phi\cos\lambda\left[M(\phi)+h\right]\\ -\sin\phi\sin\lambda\left[M(\phi)+h\right]\\ \cos\phi\left[M(\phi)+h\right]\\ \end{array}\right), (15)

where a meridional radius of curvature [26][19, (3.87)]

M(ϕ)ρe(1e2)(1e2sin2ϕ)3/2=N(ϕ)1e21e2sin2ϕM(\phi)\equiv\frac{\rho_{e}(1-e^{2})}{(1-e^{2}\sin^{2}\phi)^{3/2}}=N(\phi)\frac{1-e^{2}}{1-e^{2}\sin^{2}\phi} (16)

is defined to simplify the notation. Building squares and dot products computes the three Gauss Fundamental parameters of the surface [20]

𝐞λ2=E\displaystyle{\bf e}_{\lambda}^{2}=E =\displaystyle= (N+h)2cos2ϕ;\displaystyle(N+h)^{2}\cos^{2}\phi; (17)
𝐞λ𝐞ϕ=F\displaystyle{\bf e}_{\lambda}\cdot{\bf e}_{\phi}=F =\displaystyle= 0;\displaystyle 0; (18)
𝐞ϕ2=G\displaystyle{\bf e}_{\phi}^{2}=G =\displaystyle= [N1e21e2sin2ϕ+h]2=(M+h)2.\displaystyle\left[N\frac{1-e^{2}}{1-e^{2}\sin^{2}\phi}+h\right]^{2}=(M+h)^{2}. (19)

Specializing to h=0h=0 we get the You formulae [29]. EE and GG provide the principal curvatures along the meridian and azimuth [4], and the coefficients of the metric tensor in the quadratic form of ds2ds^{2},

S=Edλ2+2Fdλdϕ+Gdϕ2.S=\int\sqrt{Ed\lambda^{2}+2Fd\lambda d\phi+Gd\phi^{2}}. (20)

III.2 Christoffel Symbols

Christoffel symbols are the connection coefficients between differentials d𝐞ϵd{\bf e}_{\epsilon} of the topocentric axis and of the positions d𝐱βd{\bf x}^{\beta}, in a generic definition

d𝐞ϵ=α,β𝐞αΓβϵαd𝐱β.d{\bf e}_{\epsilon}=\sum_{\alpha,\beta}{\bf e}_{\alpha}\Gamma_{\beta\epsilon}^{\alpha}d{\bf x}^{\beta}. (21)

This format is matched by first computing the derivative of 𝐞λ{\bf e}_{\lambda} with respect to λ\lambda and ϕ\phi (at h=consth=const):

d𝐞λ=((N+h)cosϕcosλ(N+h)cosϕsinλ0)dλ+((M+h)sinϕsinλ(M+h)sinϕcosλ0)dϕd{\bf e}_{\lambda}=\left(\begin{array}[]{c}-(N+h)\cos\phi\cos\lambda\\ -(N+h)\cos\phi\sin\lambda\\ 0\\ \end{array}\right)d\lambda+\left(\begin{array}[]{c}(M+h)\sin\phi\sin\lambda\\ -(M+h)\sin\phi\cos\lambda\\ 0\\ \end{array}\right)d\phi (22)

and of 𝐞ϕ{\bf e}_{\phi} with respect to λ\lambda and ϕ\phi:

d𝐞ϕ=((M+h)sinϕsinλ(M+h)sinϕcosλ0)dλ+([Ne2cos2ϕ1e2sin2ϕ3Ne2(1e2)sin2ϕ(1e2sin2ϕ)2(N+h)]cosϕcosλ[Ne2cos2ϕ1e2sin2ϕ3Ne2(1e2)sin2ϕ(1e2sin2ϕ)2(N+h)]cosϕsinλ[Ne2(1e2)(3cos2ϕ(1e2sin2ϕ)2sin2ϕ1e2sin2ϕ)[N(1e2)+h]]sinϕ)dϕ.d{\bf e}_{\phi}=\left(\begin{array}[]{c}(M+h)\sin\phi\sin\lambda\\ -(M+h)\sin\phi\cos\lambda\\ 0\\ \end{array}\right)d\lambda+\left(\begin{array}[]{c}\left[Ne^{2}\frac{\cos^{2}\phi}{1-e^{2}\sin^{2}\phi}-3Ne^{2}(1-e^{2})\frac{\sin^{2}\phi}{(1-e^{2}\sin^{2}\phi)^{2}}-(N+h)\right]\cos\phi\cos\lambda\\ \left[Ne^{2}\frac{\cos^{2}\phi}{1-e^{2}\sin^{2}\phi}-3Ne^{2}(1-e^{2})\frac{\sin^{2}\phi}{(1-e^{2}\sin^{2}\phi)^{2}}-(N+h)\right]\cos\phi\sin\lambda\\ \left[Ne^{2}(1-e^{2})\left(3\frac{\cos^{2}\phi}{(1-e^{2}\sin^{2}\phi)^{2}}-\frac{\sin^{2}\phi}{1-e^{2}\sin^{2}\phi}\right)-[N(1-e^{2})+h]\right]\sin\phi\\ \end{array}\right)d\phi. (23)

The next step splits these two equations to the expanded version of (21),

d𝐞λ\displaystyle d{\bf e}_{\lambda} =\displaystyle= (𝐞λΓλλλ+𝐞ϕΓλλϕ)dλ+(𝐞λΓϕλλ+𝐞ϕΓϕλϕ)dϕ;\displaystyle({\bf e}_{\lambda}\Gamma_{\lambda\lambda}^{\lambda}+{\bf e}_{\phi}\Gamma_{\lambda\lambda}^{\phi})d\lambda+({\bf e}_{\lambda}\Gamma_{\phi\lambda}^{\lambda}+{\bf e}_{\phi}\Gamma_{\phi\lambda}^{\phi})d\phi; (24)
d𝐞ϕ\displaystyle d{\bf e}_{\phi} =\displaystyle= (𝐞λΓλϕλ+𝐞ϕΓλϕϕ)dλ+(𝐞λΓϕϕλ+𝐞ϕΓϕϕϕ)dϕ.\displaystyle({\bf e}_{\lambda}\Gamma_{\lambda\phi}^{\lambda}+{\bf e}_{\phi}\Gamma_{\lambda\phi}^{\phi})d\lambda+({\bf e}_{\lambda}\Gamma_{\phi\phi}^{\lambda}+{\bf e}_{\phi}\Gamma_{\phi\phi}^{\phi})d\phi. (25)

The eight Γ\Gamma are extracted by evaluating dot products of the four vector coefficients in (22)–(23) by 𝐞λ{\bf e}_{\lambda} and 𝐞ϕ{\bf e}_{\phi},

Γλλλ=Γϕλϕ=Γλϕϕ=Γϕϕλ=0;\Gamma_{\lambda\lambda}^{\lambda}=\Gamma_{\phi\lambda}^{\phi}=\Gamma_{\lambda\phi}^{\phi}=\Gamma_{\phi\phi}^{\lambda}=0; (26)
Γλλϕ=(N+h)cosϕsinϕ1e2sin2ϕh(1e2sin2ϕ)+N(1e2);\Gamma_{\lambda\lambda}^{\phi}=(N+h)\cos\phi\sin\phi\frac{1-e^{2}\sin^{2}\phi}{h(1-e^{2}\sin^{2}\phi)+N(1-e^{2})}; (27)
Γϕλλ=Γλϕλ=sinϕh(1e2sin2ϕ)+N(1e2)(N+h)(1e2sin2ϕ)cosϕ;\Gamma_{\phi\lambda}^{\lambda}=\Gamma_{\lambda\phi}^{\lambda}=-\sin\phi\frac{h(1-e^{2}\sin^{2}\phi)+N(1-e^{2})}{(N+h)(1-e^{2}\sin^{2}\phi)\cos\phi}; (28)
Γϕϕϕ=3Ne2(1e2)sinϕcosϕ1[h(1e2sin2ϕ)+N(1e2)](1e2sin2ϕ).\Gamma_{\phi\phi}^{\phi}=3Ne^{2}(1-e^{2})\sin\phi\cos\phi\frac{1}{[h(1-e^{2}\sin^{2}\phi)+N(1-e^{2})](1-e^{2}\sin^{2}\phi)}. (29)

The Euler-Lagrange Differential Equations δ12Edλ2+Gdϕ2=0\delta\int_{1}^{2}\sqrt{Ed\lambda^{2}+Gd\phi^{2}}=0 for a stationary Lagrange density \cal L (at F=0F=0) become the differential equations of the geodesic [20], in the generic format

d2xϵds2+μνΓμνϵdxμdsdxνds=0.\frac{d^{2}x^{\epsilon}}{ds^{2}}+\sum_{\mu\nu}\Gamma_{\mu\nu}^{\epsilon}\frac{dx^{\mu}}{ds}\frac{dx^{\nu}}{ds}=0. (30)

The explicit write-up

d2λds2+Γλλλdλdsdλds+Γλϕλdλdsdϕds+Γϕλλdϕdsdλds+Γϕϕλdϕdsdϕds=0;\frac{d^{2}\lambda}{ds^{2}}+\Gamma_{\lambda\lambda}^{\lambda}\frac{d\lambda}{ds}\frac{d\lambda}{ds}+\Gamma_{\lambda\phi}^{\lambda}\frac{d\lambda}{ds}\frac{d\phi}{ds}+\Gamma_{\phi\lambda}^{\lambda}\frac{d\phi}{ds}\frac{d\lambda}{ds}+\Gamma_{\phi\phi}^{\lambda}\frac{d\phi}{ds}\frac{d\phi}{ds}=0; (31)
d2ϕds2+Γλλϕdλdsdλds+Γλϕϕdλdsdϕds+Γϕλϕdϕdsdλds+Γϕϕϕdϕdsdϕds=0,\frac{d^{2}\phi}{ds^{2}}+\Gamma_{\lambda\lambda}^{\phi}\frac{d\lambda}{ds}\frac{d\lambda}{ds}+\Gamma_{\lambda\phi}^{\phi}\frac{d\lambda}{ds}\frac{d\phi}{ds}+\Gamma_{\phi\lambda}^{\phi}\frac{d\phi}{ds}\frac{d\lambda}{ds}+\Gamma_{\phi\phi}^{\phi}\frac{d\phi}{ds}\frac{d\phi}{ds}=0, (32)

simplifies with (26) to

d2λds2+2Γλϕλdλdsdϕds\displaystyle\frac{d^{2}\lambda}{ds^{2}}+2\Gamma_{\lambda\phi}^{\lambda}\frac{d\lambda}{ds}\frac{d\phi}{ds} =\displaystyle= 0;\displaystyle 0; (33)
d2ϕds2+Γλλϕ(dλds)2+Γϕϕϕ(dϕds)2\displaystyle\frac{d^{2}\phi}{ds^{2}}+\Gamma_{\lambda\lambda}^{\phi}\left(\frac{d\lambda}{ds}\right)^{2}+\Gamma_{\phi\phi}^{\phi}\left(\frac{d\phi}{ds}\right)^{2} =\displaystyle= 0.\displaystyle 0. (34)

IV Reduction of the Differential Equations

IV.1 Separation of Angular Variables

Decoupling of the two differential equations (33)–(34) starts with the separation of variables in (33),

d2λds2dλds=2Γϕλλdϕds.\frac{\frac{d^{2}\lambda}{ds^{2}}}{\frac{d\lambda}{ds}}=-2\Gamma_{\phi\lambda}^{\lambda}\frac{d\phi}{ds}. (35)

Change of the integration variable on the right hand side from ss to ϕ\phi allows to use the underivative of (28)

Γλϕλ(ϕ)𝑑ϕ=log{[N(ϕ)+h]cosϕ}+const\int\Gamma_{\lambda\phi}^{\lambda}(\phi)d\phi=\log\left\{[N(\phi)+h]\cos\phi\right\}+const (36)

to generate a first integral

logdλds=2log[(N+h)cosϕ]+const.\log\frac{d\lambda}{ds}=-2\log[(N+h)\cos\phi]+const. (37)

Exponentiation yields

dλds=c31(N+h)2cos2ϕ,\frac{d\lambda}{ds}=c_{3}\frac{1}{(N+h)^{2}\cos^{2}\phi}, (38)

where

c3dλds1(N1+h)2cos2ϕ1c_{3}\equiv\frac{d\lambda}{ds}_{\mid 1}(N_{1}+h)^{2}\cos^{2}\phi_{1} (39)

is a constant for each geodesic; it plays the role of the Clairaut constant [22, 27], but has length units in our case. It has been defined with the azimuth ϕ1\phi_{1} and N1N(ϕ1)N_{1}\equiv N(\phi_{1}) at the start of the line, but could as well be associated with any other point or the end point 22. c3c_{3} is positive for trajectories starting into eastwards direction, negative for the westwards heading, zero for routes to the poles. Moving the square of (38) into (34) yields

d2ϕds2+sinϕ(N+h)3cos3ϕ1e2sin2ϕh(1e2sin2ϕ)+N(1e2)c32+3Ne2(1e2)sinϕcosϕ[h(1e2sin2ϕ)+N(1e2)](1e2sin2ϕ)(dϕds)2=0.\frac{d^{2}\phi}{ds^{2}}+\frac{\sin\phi}{(N+h)^{3}\cos^{3}\phi}\,\frac{1-e^{2}\sin^{2}\phi}{h(1-e^{2}\sin^{2}\phi)+N(1-e^{2})}c_{3}^{2}+\frac{3Ne^{2}(1-e^{2})\sin\phi\cos\phi}{[h(1-e^{2}\sin^{2}\phi)+N(1-e^{2})](1-e^{2}\sin^{2}\phi)}\left(\frac{d\phi}{ds}\right)^{2}=0. (40)

To solve this differential equation, we substitute the variable ϕ\phi by its projection τ\tau onto the polar axis,

τsinϕ,\tau\equiv\sin\phi, (41)

which implies transformations in the derivatives:

dτds=cosϕdϕds;\frac{d\tau}{ds}=\cos\phi\frac{d\phi}{ds}; (42)
d2τds2=sinϕdϕdsdϕds+cosϕd2ϕds2;\frac{d^{2}\tau}{ds^{2}}=-\sin\phi\frac{d\phi}{ds}\frac{d\phi}{ds}+\cos\phi\frac{d^{2}\phi}{ds^{2}}; (43)
cosϕd2ϕds2=d2τds2+τ(dϕds)2=d2τds2+τcos2ϕ(dτds)2=d2τds2+τ1τ2(dτds)2.\cos\phi\frac{d^{2}\phi}{ds^{2}}=\frac{d^{2}\tau}{ds^{2}}+\tau\left(\frac{d\phi}{ds}\right)^{2}=\frac{d^{2}\tau}{ds^{2}}+\frac{\tau}{\cos^{2}\phi}\left(\frac{d\tau}{ds}\right)^{2}=\frac{d^{2}\tau}{ds^{2}}+\frac{\tau}{1-\tau^{2}}\left(\frac{d\tau}{ds}\right)^{2}. (44)

We multiply (40) by cosϕ\cos\phi, then replace dϕ/dsd\phi/ds and d2ϕ/ds2d^{2}\phi/ds^{2} as noted above,

d2τds2+τ1τ2(dτds)2+τ(N+h)3(1τ2)1e2τ2h(1e2τ2)+N(1e2)c32+3Ne2(1e2)τ[h(1e2τ2)+N(1e2)](1e2τ2)(dτds)2=0;\frac{d^{2}\tau}{ds^{2}}+\frac{\tau}{1-\tau^{2}}\left(\frac{d\tau}{ds}\right)^{2}+\frac{\tau}{(N+h)^{3}(1-\tau^{2})}\,\frac{1-e^{2}\tau^{2}}{h(1-e^{2}\tau^{2})+N(1-e^{2})}c_{3}^{2}+\frac{3Ne^{2}(1-e^{2})\tau}{[h(1-e^{2}\tau^{2})+N(1-e^{2})](1-e^{2}\tau^{2})}\left(\frac{d\tau}{ds}\right)^{2}=0;
d2τds2+τ1τ2h(1e2τ2)2+N(14e2τ2+2e2+4e4τ23e4)[h(1e2τ2)+N(1e2)][1e2τ2](dτds)2+τ(N+h)3(1τ2)1e2τ2h(1e2τ2)+N(1e2)c32=0.\frac{d^{2}\tau}{ds^{2}}+\frac{\tau}{1-\tau^{2}}\,\frac{h(1-e^{2}\tau^{2})^{2}+N(1-4e^{2}\tau^{2}+2e^{2}+4e^{4}\tau^{2}-3e^{4})}{[h(1-e^{2}\tau^{2})+N(1-e^{2})][1-e^{2}\tau^{2}]}\left(\frac{d\tau}{ds}\right)^{2}\\ +\frac{\tau}{(N+h)^{3}(1-\tau^{2})}\,\frac{1-e^{2}\tau^{2}}{h(1-e^{2}\tau^{2})+N(1-e^{2})}c_{3}^{2}=0. (45)

This is a differential equation with no explicit appearance of the independent variable ss,

(1τ2)d2τds2+h(1e2τ2)2+N(1e2)(1+3e24e2τ2)[h(1e2τ2)+N(1e2)][1e2τ2]τ(dτds)2+τc32(N+h)31e2τ2h(1e2τ2)+N(1e2)=0,(1-\tau^{2})\frac{d^{2}\tau}{ds^{2}}+\frac{h(1-e^{2}\tau^{2})^{2}+N(1-e^{2})(1+3e^{2}-4e^{2}\tau^{2})}{[h(1-e^{2}\tau^{2})+N(1-e^{2})][1-e^{2}\tau^{2}]}\tau\left(\frac{d\tau}{ds}\right)^{2}+\frac{\tau c_{3}^{2}}{(N+h)^{3}}\,\frac{1-e^{2}\tau^{2}}{h(1-e^{2}\tau^{2})+N(1-e^{2})}=0,

and the standard way of progressing is the substitution

dτdsp;d2τds2=pdpdτ;\frac{d\tau}{ds}\equiv p;\quad\frac{d^{2}\tau}{ds^{2}}=p\frac{dp}{d\tau}; (46)
(1τ2)pdpdτ+h(1e2τ2)2+N(1e2)(1+3e24e2τ2)[h(1e2τ2)+N(1e2)][1e2τ2]τp2+τc32(N+h)31e2τ2h(1e2τ2)+N(1e2)=0.(1-\tau^{2})p\frac{dp}{d\tau}+\frac{h(1-e^{2}\tau^{2})^{2}+N(1-e^{2})(1+3e^{2}-4e^{2}\tau^{2})}{[h(1-e^{2}\tau^{2})+N(1-e^{2})][1-e^{2}\tau^{2}]}\tau p^{2}+\frac{\tau c_{3}^{2}}{(N+h)^{3}}\,\frac{1-e^{2}\tau^{2}}{h(1-e^{2}\tau^{2})+N(1-e^{2})}=0. (47)

This is transformed to a linear differential equation by the further substitution Pp2P\equiv p^{2}, dP/dτ=2pdp/dτdP/d\tau=2p\,dp/d\tau,

12(1τ2)dPdτ+h(1e2τ2)2+N(1e2)(1+3e24e2τ2)[h(1e2τ2)+N(1e2)][1e2τ2]τP+τc32(N+h)31e2τ2h(1e2τ2)+N(1e2)=0.\frac{1}{2}(1-\tau^{2})\frac{dP}{d\tau}+\frac{h(1-e^{2}\tau^{2})^{2}+N(1-e^{2})(1+3e^{2}-4e^{2}\tau^{2})}{[h(1-e^{2}\tau^{2})+N(1-e^{2})][1-e^{2}\tau^{2}]}\tau P+\frac{\tau c_{3}^{2}}{(N+h)^{3}}\,\frac{1-e^{2}\tau^{2}}{h(1-e^{2}\tau^{2})+N(1-e^{2})}=0. (48)

The standard approach is to solve the homogeneous differential equation first,

dPdτ=2τh(1e2τ2)2+N(1e2)(1+3e24e2τ2)[1τ2][h(1e2τ2)+N(1e2)][1e2τ2]P.\frac{dP}{d\tau}=-2\tau\frac{h(1-e^{2}\tau^{2})^{2}+N(1-e^{2})(1+3e^{2}-4e^{2}\tau^{2})}{[1-\tau^{2}][h(1-e^{2}\tau^{2})+N(1-e^{2})][1-e^{2}\tau^{2}]}P. (49)

After division through PP, the left hand side is easily integrated, and the right hand side (incompletely) decomposed into partial fractions,

logP\displaystyle\log P =\displaystyle= 2τh(1e2τ2)2+N(1e2)(1+3e24e2τ2)[1τ2][h(1e2τ2)+N(1e2)][1e2τ2]𝑑τ\displaystyle-2\int\tau\frac{h(1-e^{2}\tau^{2})^{2}+N(1-e^{2})(1+3e^{2}-4e^{2}\tau^{2})}{[1-\tau^{2}][h(1-e^{2}\tau^{2})+N(1-e^{2})][1-e^{2}\tau^{2}]}d\tau (50)
=\displaystyle= 2τ1τ2𝑑τ+32e2τ1e2τ2𝑑τ+6he2τh(1e2τ2)+N(1e2)𝑑τ\displaystyle\int\frac{-2\tau}{1-\tau^{2}}d\tau+3\int\frac{-2e^{2}\tau}{1-e^{2}\tau^{2}}d\tau+6he^{2}\int\frac{\tau}{h(1-e^{2}\tau^{2})+N(1-e^{2})}d\tau
=\displaystyle= log(1τ2)+3log(1e2τ2)2log[h(1e2τ2)3/2+ρe(1e2)]+const.\displaystyle\log(1-\tau^{2})+3\log(1-e^{2}\tau^{2})-2\log\left[h(1-e^{2}\tau^{2})^{3/2}+\rho_{e}(1-e^{2})\right]+const.
P=const(1τ2)(1e2τ2)3[h(1e2τ2)3/2+ρe(1e2)]2=const(1τ2)(1e2τ2)2[h(1e2τ2)+N(1e2)]2=const(1τ2)G(τ).P=const\cdot\frac{(1-\tau^{2})(1-e^{2}\tau^{2})^{3}}{\left[h(1-e^{2}\tau^{2})^{3/2}+\rho_{e}(1-e^{2})\right]^{2}}=const\cdot\frac{(1-\tau^{2})(1-e^{2}\tau^{2})^{2}}{\left[h(1-e^{2}\tau^{2})+N(1-e^{2})\right]^{2}}=\frac{const\cdot(1-\tau^{2})}{G(\tau)}.

Solution of the inhomogeneous differential equation (48) proceeds with the variation of the constant, the ansatz

P=c(τ)(1τ2)(1e2τ2)2[h(1e2τ2)+N(1e2)]2.P=c(\tau)\cdot\frac{(1-\tau^{2})(1-e^{2}\tau^{2})^{2}}{\left[h(1-e^{2}\tau^{2})+N(1-e^{2})\right]^{2}}. (51)

Back insertion into (48) leads to a first order differential equation for c(τ)c(\tau),

dc(τ)dτ1τ2G(τ)=2τc32(1τ2)(N+h)31e2τ2h(1e2τ2)+N(1e2),\frac{dc(\tau)}{d\tau}\frac{1-\tau^{2}}{G(\tau)}=-\frac{2\tau c_{3}^{2}}{(1-\tau^{2})(N+h)^{3}}\,\frac{1-e^{2}\tau^{2}}{h(1-e^{2}\tau^{2})+N(1-e^{2})},

which is decomposed into partial fractions

dc(τ)dτ=c32[eN2eτ1e2τ21(N+h)3+2τ1τ21(N+h)2]11τ2.\frac{dc(\tau)}{d\tau}=c_{3}^{2}\left[eN\frac{2e\tau}{1-e^{2}\tau^{2}}\frac{1}{(N+h)^{3}}+\frac{-2\tau}{1-\tau^{2}}\frac{1}{(N+h)^{2}}\right]\frac{1}{1-\tau^{2}}.

The ensuing integral over dτd\tau is solved by aid of the substitution τ2=u\tau^{2}=u,

c(τ)=c321(N+h)2(1τ2)+const.c(\tau)=-c_{3}^{2}\frac{1}{(N+h)^{2}(1-\tau^{2})}+const.

Back into (51)—using constconst to indicate placement of any member of an anonymous bag of constants of integration,

P\displaystyle P =\displaystyle= [const1(N+h)2(1τ2)]c32(1τ2)(1e2τ2)2[h(1e2τ2)+N(1e2)]2\displaystyle\left[const-\frac{1}{(N+h)^{2}(1-\tau^{2})}\right]\frac{c_{3}^{2}(1-\tau^{2})(1-e^{2}\tau^{2})^{2}}{\left[h(1-e^{2}\tau^{2})+N(1-e^{2})\right]^{2}} (52)
=\displaystyle= c5(1τ2)(1e2τ2)2[h(1e2τ2)+N(1e2)]2c32(1e2τ2)2(N+h)2[h(1e2τ2)+N(1e2)]2\displaystyle c_{5}\frac{(1-\tau^{2})(1-e^{2}\tau^{2})^{2}}{\left[h(1-e^{2}\tau^{2})+N(1-e^{2})\right]^{2}}-\frac{c_{3}^{2}(1-e^{2}\tau^{2})^{2}}{(N+h)^{2}\left[h(1-e^{2}\tau^{2})+N(1-e^{2})\right]^{2}} (53)
=\displaystyle= c51(h+M)2(1τ2c32(N+h)2)=c51τ2G(τ)(1c32E(τ))=p2.\displaystyle c_{5}\frac{1}{(h+M)^{2}}\left(1-\tau^{2}-\frac{c_{3}^{2}}{(N+h)^{2}}\right)=c_{5}\frac{1-\tau^{2}}{G(\tau)}\left(1-\frac{c_{3}^{2}}{E(\tau)}\right)=p^{2}. (54)

The subscript 11 denotes values at the starting point of the curve,

P1\displaystyle P_{1} =\displaystyle= c5cos2ϕ1(1e2sin2ϕ1)2[h(1e2sin2ϕ1)+N1(1e2)]2c32(1e2sin2ϕ1)2(N1+h)2[h(1e2sin2ϕ1)+N1(1e2)]2=p12\displaystyle c_{5}\frac{\cos^{2}\phi_{1}(1-e^{2}\sin^{2}\phi_{1})^{2}}{\left[h(1-e^{2}\sin^{2}\phi_{1})+N_{1}(1-e^{2})\right]^{2}}-\frac{c_{3}^{2}(1-e^{2}\sin^{2}\phi_{1})^{2}}{(N_{1}+h)^{2}\left[h(1-e^{2}\sin^{2}\phi_{1})+N_{1}(1-e^{2})\right]^{2}}=p_{1}^{2} (55)
=\displaystyle= c5cos2ϕ1(1e2sin2ϕ1)2[h(1e2sin2ϕ1)+N1(1e2)]2(dλ/ds)12(N1+h)2cos4ϕ1(1e2sin2ϕ1)2[h(1e2sin2ϕ1)+N1(1e2)]2.\displaystyle c_{5}\frac{\cos^{2}\phi_{1}(1-e^{2}\sin^{2}\phi_{1})^{2}}{\left[h(1-e^{2}\sin^{2}\phi_{1})+N_{1}(1-e^{2})\right]^{2}}-\frac{(d\lambda/ds)_{1}^{2}(N_{1}+h)^{2}\cos^{4}\phi_{1}(1-e^{2}\sin^{2}\phi_{1})^{2}}{\left[h(1-e^{2}\sin^{2}\phi_{1})+N_{1}(1-e^{2})\right]^{2}}. (56)

Solving for c5c_{5} yields

c5\displaystyle c_{5} =\displaystyle= (dλds1)2cos2ϕ1(N1+h)2+p12[h(1e2sin2ϕ1)+N1(1e2)]2cos2ϕ1(1e2sin2ϕ1)2=(dλds1)2cos2ϕ1(N1+h)2+p12cos2ϕ1G1\displaystyle\left(\frac{d\lambda}{ds}_{\mid 1}\right)^{2}\cos^{2}\phi_{1}(N_{1}+h)^{2}+\frac{p_{1}^{2}\left[h(1-e^{2}\sin^{2}\phi_{1})+N_{1}(1-e^{2})\right]^{2}}{\cos^{2}\phi_{1}(1-e^{2}\sin^{2}\phi_{1})^{2}}=\left(\frac{d\lambda}{ds}_{\mid 1}\right)^{2}\cos^{2}\phi_{1}(N_{1}+h)^{2}+\frac{p_{1}^{2}}{\cos^{2}\phi_{1}}G_{1} (57)
=\displaystyle= (dλds1)2E1+(dϕds1)2G1=c32(N1+h)2cos2ϕ1+(dϕds1)2(M1+h)2.\displaystyle\left(\frac{d\lambda}{ds}_{\mid 1}\right)^{2}E_{1}+\left(\frac{d\phi}{ds}_{\mid 1}\right)^{2}G_{1}=\frac{c_{3}^{2}}{(N_{1}+h)^{2}\cos^{2}\phi_{1}}+\left(\frac{d\phi}{ds}_{\mid 1}\right)^{2}(M_{1}+h)^{2}.

Compared with the differential version of (20),

ds2=Edλ2+Gdϕ2;1=E(dλds)2+G(dϕds)2,ds^{2}=Ed\lambda^{2}+Gd\phi^{2};\quad 1=E\left(\frac{d\lambda}{ds}\right)^{2}+G\left(\frac{d\phi}{ds}\right)^{2}, (58)

we must have c5=1c_{5}=1. Note that (54) is essentially a write-up for p2(dϕ/ds)2p^{2}\sim(d\phi/ds)^{2} and could be derived quickly by inserting (38) directly into (58).

The square root of (54) is

p=±1e2τ2h(1e2τ2)+N(1e2)1τ2c32(N+h)2=±1τ2c32(N+h)2h+M(τ)=dτds.p=\pm\frac{1-e^{2}\tau^{2}}{h(1-e^{2}\tau^{2})+N(1-e^{2})}\sqrt{1-\tau^{2}-\frac{c_{3}^{2}}{(N+h)^{2}}}=\pm\frac{\sqrt{1-\tau^{2}-\frac{c_{3}^{2}}{(N+h)^{2}}}}{h+M(\tau)}=\frac{d\tau}{ds}. (59)

The sign in front of the square root is to be chosen positive for pieces of the trajectory with dτ/ds>0d\tau/ds>0 (northern direction), negative where dτ/ds<0d\tau/ds<0 (southern direction). The value in the square root may run through zero within one curve, dτ/ds=0d\tau/ds=0 at one point τm\tau_{m}, such that the square root switches sign there (Figure 3). This happens whenever

(1τm2)[N(τm)+h]2=c32(1-\tau_{m}^{2})[N(\tau_{m})+h]^{2}=c_{3}^{2} (60)

yields a vanishing discriminant of the square root for some (λ,ϕ)(\lambda,\phi), that is, whenever the difference λ2λ1\lambda_{2}-\lambda_{1} is sufficiently large to create a point of minimum polar distance along the trajectory that is not one of the terminal points.

Refer to caption
Refer to caption
Figure 3: Two examples of trajectories of dτ/dsd\tau/ds [left, equation (59)] or ds/dτds/d\tau [right] as a function of τ\tau. They may or may not pass through a zero τm\tau_{m} of (59) while connecting the starting abscissa τ1\tau_{1} with the final abscissa τ2\tau_{2}. There are four basic topologies, depending on whether τm\tau_{m} is positive or negative, and depending on whether the sign change in dτ/dsd\tau/ds is from ++ to - or from - to ++ at this point.

IV.2 Launching Direction

So far we have written the bundle of all geodesics through (λ1,ϕ1)(\lambda_{1},\phi_{1}) in the format (59), which specifies the change of latitude as a function of distance traveled. The direction at point 1 in the topocentric system of coordinates is represented by c3c_{3}. To address the inverse problem of geodesy, that is to pick the particular geodesics which also runs through the terminal point (λ2,ϕ2)(\lambda_{2},\phi_{2}) in fulfillment of the Dirichlet boundary conditions, the associated change in longitude, some form of (38),

dλds=c31(N+h)2(1τ2)=c3E,\frac{d\lambda}{ds}=c_{3}\frac{1}{(N+h)^{2}(1-\tau^{2})}=\frac{c_{3}}{E}, (61)

must obviously get involved. The strategy is to write down τ(λ)\tau(\lambda) or λ(τ)\lambda(\tau) with c3c_{3} as a parameter, then to adjust c3c_{3} to ensure with what would be called a shooting method that starting at point 1 at that angle eventually passes through point 2. Coupling of λ\lambda to τ\tau is done by division of (59) and (61),

dτdλ=dτdsdsdλ=dτds/dλds=±(N+h)2(1τ2)1τ2c32(N+h)2c3(h+M).\frac{d\tau}{d\lambda}=\frac{d\tau}{ds}\frac{ds}{d\lambda}=\frac{d\tau}{ds}/\frac{d\lambda}{ds}=\pm\frac{(N+h)^{2}(1-\tau^{2})\sqrt{1-\tau^{2}-\frac{c_{3}^{2}}{(N+h)^{2}}}}{c_{3}(h+M)}. (62)

Separation of both variables yields

±1𝑑τc3(h+M)(N+h)2(1τ2)1τ2c32(N+h)2=λ1.\pm\int_{1}d\tau\frac{c_{3}(h+M)}{(N+h)^{2}(1-\tau^{2})\sqrt{1-\tau^{2}-\frac{c_{3}^{2}}{(N+h)^{2}}}}=\lambda_{\mid 1}. (63)

An approach of evaluating the integral by power series expansion in h/ρeh/\rho_{e} is proposed in [15].

For short paths, small |λ2λ1||\lambda_{2}-\lambda_{1}|, the integral is simply τ1τ2\int_{\tau_{1}}^{\tau_{2}}. If one of the cases occurs, where the difference in λ\lambda is too large for a solution, the additional path through the singularity τm\tau_{m} is to be used [with some local extremum in the graph τ(s)\tau(s)], and the integral is to be interpreted as τ1τmτmτ2\int_{\tau_{1}}^{\tau_{m}}-\int_{\tau_{m}}^{\tau_{2}}. Taking the sign change and the symmetry of the integrand into account, this is τ1τ2+2τ2τm=τ1τm+τ2τm\int_{\tau_{1}}^{\tau_{2}}+2\int_{\tau_{2}}^{\tau_{m}}=\int_{\tau_{1}}^{\tau_{m}}+\int_{\tau_{2}}^{\tau_{m}}, twice the underivative at τm\tau_{m} minus the sum of the underivative at τ1\tau_{1} and τ2\tau_{2}. In the right plot of Figure 3, the difference is in including or not including the loudspeaker shaped area between τ2\tau_{2} and τm\tau_{m}.

τm\tau_{m} is the solution of (60), the positive value of the solution taken if dτ/ds>0d\tau/ds>0 at ϕ1\phi_{1}, the negative value if dτ/ds<0d\tau/ds<0 at ϕ1\phi_{1}. The squared zero of dτ/dsd\tau/ds, τm2\tau_{m}^{2}, is a root of the fourth-order polynomial which emerges by rewriting (60),

e4h4(τm2)4+2e2h2[ρe2h2+e2(c32h2)](τm2)3+[(ρe2h2)2+2e2(2h42c32h22ρe2h2ρe2c32)+e4(c32h2)2](τm2)2+2[(ρe2h2)2+c32(ρe2+h2)+e2((c32h2)2+ρe2(c32+h2))]τm2+[(ρe+h)2c32][(ρeh)2c32]=0.e^{4}h^{4}(\tau_{m}^{2})^{4}+2e^{2}h^{2}\left[\rho_{e}^{2}-h^{2}+e^{2}\left(c_{3}^{2}-h^{2}\right)\right](\tau_{m}^{2})^{3}\\ +\left[\left(\rho_{e}^{2}-h^{2}\right)^{2}+2e^{2}\left(2h^{4}-2c_{3}^{2}h^{2}-2\rho_{e}^{2}h^{2}-\rho_{e}^{2}c_{3}^{2}\right)+e^{4}\left(c_{3}^{2}-h^{2}\right)^{2}\right](\tau_{m}^{2})^{2}\\ +2\left[-\left(\rho_{e}^{2}-h^{2}\right)^{2}+c_{3}^{2}\left(\rho_{e}^{2}+h^{2}\right)+e^{2}\left(-\left(c_{3}^{2}-h^{2}\right)^{2}+\rho_{e}^{2}(c_{3}^{2}+h^{2})\right)\right]\tau_{m}^{2}\\ +\left[(\rho_{e}+h)^{2}-c_{3}^{2}\right]\left[(\rho_{e}-h)^{2}-c_{3}^{2}\right]=0. (64)

Alternatively, τm\tau_{m} admits a Taylor expansion by expanding the zero of (60) in orders of ee:

±τm=1c32H2+c32ρe2H31c32H2e23c32ρe8H3[(ρeHc32H2)21]1c32H2e4+O(e6),\pm\tau_{m}=\sqrt{1-\frac{c_{3}^{2}}{H^{2}}}+\frac{c_{3}^{2}\rho_{e}}{2H^{3}}\sqrt{1-\frac{c_{3}^{2}}{H^{2}}}e^{2}-\frac{3c_{3}^{2}\rho_{e}}{8H^{3}}\left[\left(\frac{\rho_{e}}{H}-\frac{c_{3}^{2}}{H^{2}}\right)^{2}-1\right]\sqrt{1-\frac{c_{3}^{2}}{H^{2}}}e^{4}+O(e^{6}), (65)

where some maximum distance

Hρe+hH\equiv\rho_{e}+h (66)

to the polar axis has been defined to condense the notation.

The integrand in (63) has a Taylor expansion in ee,

±𝑑τ[c3/(ρe+h)(1τ2)1τ2c32(ρe+h)2c3ρe[(ρe+h)2(2τ2)2c32]2(ρe+h)4(1τ2c32(ρe+h)2)3/2e2+O(e4)]=λ1.\pm\int d\tau\left[\frac{c_{3}/(\rho_{e}+h)}{(1-\tau^{2})\sqrt{1-\tau^{2}-\frac{c_{3}^{2}}{(\rho_{e}+h)^{2}}}}-\frac{c_{3}\rho_{e}[(\rho_{e}+h)^{2}(2-\tau^{2})-2c_{3}^{2}]}{2(\rho_{e}+h)^{4}\left(1-\tau^{2}-\frac{c_{3}^{2}}{(\rho_{e}+h)^{2}}\right)^{3/2}}e^{2}+O(e^{4})\right]=\lambda_{\mid 1}. (67)

We integrate the left hand side of (67) separately for each power of ee up to O(e4)O(e^{4}),

[arctanτc3HTc3ρe2H2(τT+arctanτT)e2c3ρe16H7(τT3/2[2H2c32ρe+4H2c32ρeT+2c34ρe6H3c32T+6H5T9H5T24H4ρeT+6H4ρeT2]+H2[3H32ρeH23c32H+4c32ρe]arctanτT)e4+O(e6)]τ1τ2=±(λ2λ1),\Big{[}\arctan\frac{\tau\frac{c_{3}}{H}}{\sqrt{T}}-\frac{c_{3}\rho_{e}}{2H^{2}}\left(\frac{\tau}{\sqrt{T}}+\arctan\frac{\tau}{\sqrt{T}}\right)e^{2}\\ -\frac{c_{3}\rho_{e}}{16H^{7}}\Big{(}\frac{\tau}{T^{3/2}}[-2H^{2}c_{3}^{2}\rho_{e}+4H^{2}c_{3}^{2}\rho_{e}T+2c_{3}^{4}\rho_{e}-6H^{3}c_{3}^{2}T+6H^{5}T-9H^{5}T^{2}-4H^{4}\rho_{e}T+6H^{4}\rho_{e}T^{2}]\\ +H^{2}[3H^{3}-2\rho_{e}H^{2}-3c_{3}^{2}H+4c_{3}^{2}\rho_{e}]\arctan\frac{\tau}{\sqrt{T}}\Big{)}e^{4}+O(e^{6})\Big{]}_{\tau_{1}}^{\tau_{2}}=\pm(\lambda_{2}-\lambda_{1}), (68)

where

T1τ2(c3H)2T\equiv 1-\tau^{2}-\left(\frac{c_{3}}{H}\right)^{2} (69)

is some convenient definition of the trajectory’s distance to its solstice τm\tau_{m}. The first term is not the principal value of the arc tangent but its steadily defined extension through the entire interval of τ\tau-values, |τ|τm|\tau|\leq\tau_{m}. It is an odd function of τ\tau, and phase jumps are corrected as follows: the inclination at τ=0\tau=0 has (by inspection of the derivative above at τ=0\tau=0) the sign of c3c_{3}. So whenever the triple product sgnτsgnc3sgn(arctan.)\operatorname{sgn}\tau\operatorname{sgn}c_{3}\operatorname{sgn}(\arctan.) is negative, one must shift the branch of the arctan by adding multiples of πsgnτsgnc3\pi\operatorname{sgn}\tau\operatorname{sgn}c_{3} to the principal value.

Whether this is to be taken between the limits τ2\tau_{2} and τ1\tau_{1} or as the sum of two components (see above) can be tested by integrating up to τm\tau_{m}, τ1τm\int_{\tau_{1}}^{\tau_{m}}, where the value of the underivative at τm\tau_{m} is given by (1/2)arctan0(1/2)\arctan 0, effectively π2sgnτmsgnc3\frac{\pi}{2}\operatorname{sgn}\tau_{m}\operatorname{sgn}c_{3} after selecting the branch of the inverse trigonometric function as described above.

Equation (68) is solved numerically, where c3/Hc_{3}/H is the unknown, where τ1,2\tau_{1,2} and λ1,2\lambda_{1,2} are known from the coordinates of the two points that define the boundary value problem, and where ee and HH are constant parameters. The complexity of the equation suggests use of a Newton algorithm to search for the zero, starting from (118), c3/Hcosϕ1cosϕ2sin(λ2λ1)/sinZc_{3}/H\approx\cos\phi_{1}\cos\phi_{2}\sin(\lambda_{2}-\lambda_{1})/\sin Z, as the initial estimate.

An alternative is to insert the power series

c3=c3(0)+c3(2)e2+c3(4)e4+c_{3}=c_{3}^{(0)}+c_{3}^{(2)}e^{2}+c_{3}^{(4)}e^{4}+\cdots (70)

right into (63), integrate the orders of ee term-by-term, and to obtain the coefficients c3(2)c_{3}^{(2)}, c3(4)c_{3}^{(4)} etc. by comparison with the equivalent powers of the right hand side. c3(0)c_{3}^{(0)} is given by (118); the coefficients of the higher powers are recursively calculated from linear equations. c3(2)c_{3}^{(2)}, for example, is determined via

[ρec3(0)H21τ2(c3(0)H)2[1c3(0)2H2]arctanHτ1τ2(c3(0)H)2+ρec3(0)H2[1c3(0)2H2]τ2c3(2)Hτ]τ1τ2=0.\left[\frac{\rho_{e}c_{3}^{(0)}}{H^{2}}\sqrt{1-\tau^{2}-\left(\frac{c_{3}^{(0)}}{H}\right)^{2}}\left[1-\frac{{c_{3}^{(0)}}^{2}}{H^{2}}\right]\arctan\frac{H\tau}{\sqrt{1-\tau^{2}-\left(\frac{c_{3}^{(0)}}{H}\right)^{2}}}+\frac{\rho_{e}c_{3}^{(0)}}{H^{2}}\left[\frac{1-{c_{3}^{(0)}}^{2}}{H^{2}}\right]\tau-2\frac{c_{3}^{(2)}}{H}\tau\right]_{\tau_{1}}^{\tau_{2}}=0. (71)

The corresponding equation for c3(4)c_{3}^{(4)} is already too lengthy to be reproduced here, so no real advantage remains in comparison with solving the non-linear equation (67).

Once the parameter c3c_{3} is known for a particular set of terminal coordinates, λ(ϕ)\lambda(\phi) is given by replacing τ2\tau_{2} and λ2\lambda_{2} in (68) by any other generic pair of values. Two other variables of interest along the curve, the direction and integrated distance from the starting point, are then accessible with methods summarized in the next, final two sub-chapters.

IV.3 Nautical course

The nautical course at any point of the trajectory ϕ(λ)\phi(\lambda) is the angle κ\kappa in the topocentric coordinate system spanned by 𝐞ϕ{\bf e}_{\phi} (direction North) and 𝐞λ{\bf e}_{\lambda} (direction East), measured North over East,

d𝐫ds=cosκ𝐞ϕ|𝐞ϕ|+sinκ𝐞λ|𝐞λ|=sinκ𝐞λE+cosκ𝐞ϕG.\frac{d\bf r}{ds}=\cos\kappa\frac{{\bf e}_{\phi}}{|{\bf e}_{\phi}|}+\sin\kappa\frac{{\bf e}_{\lambda}}{|{\bf e}_{\lambda}|}=\sin\kappa\frac{{\bf e}_{\lambda}}{\sqrt{E}}+\cos\kappa\frac{{\bf e}_{\phi}}{\sqrt{G}}. (72)

d𝐫/dsd{\bf r}/ds is the differential of (13) with respect to ss, where d/ds=(dλ/ds)(d/dλ)+(dϕ/ds)(d/dϕ)d/ds=(d\lambda/ds)(d/d\lambda)+(d\phi/ds)(d/d\phi),

d𝐫dsdλds𝐞λ+dϕds𝐞ϕ.\frac{d\bf r}{ds}\propto\frac{d\lambda}{ds}{\bf e}_{\lambda}+\frac{d\phi}{ds}{\bf e}_{\phi}. (73)

The sign \propto indicates that the left hand side of this equation is a vector normalized to unity, but not the right hand side.

sinκ/Ecosκ/G=dλ/dsdϕ/ds=dλdϕ.\frac{\sin\kappa/\sqrt{E}}{\cos\kappa/\sqrt{G}}=\frac{d\lambda/ds}{d\phi/ds}=\frac{d\lambda}{d\phi}. (74)

Insertion of (17), (19) and (42) yield

M+h(N+h)cosϕtanκ=1dϕdλ=1dϕdτdτdλ=dτ/dϕdτdλ=cosϕdτdλ.\frac{M+h}{(N+h)\cos\phi}\tan\kappa=\frac{1}{\frac{d\phi}{d\lambda}}=\frac{1}{\frac{d\phi}{d\tau}\frac{d\tau}{d\lambda}}=\frac{d\tau/d\phi}{\frac{d\tau}{d\lambda}}=\frac{\cos\phi}{\frac{d\tau}{d\lambda}}. (75)

Mixing (62) into this yields the course, supposed ϕ\phi and c3c_{3} are known,

tanκ=±c3(N+h)cos2ϕ(c3N+h)2.\tan\kappa=\pm\,\frac{c_{3}}{(N+h)\sqrt{\cos^{2}\phi-(\frac{c_{3}}{N+h})^{2}}}. (76)

IV.4 Distance To Terminal Points

An implicit write-up for the distance from the origin 𝐬1{\mathbf{s}}_{1} measured along the curve is given by separating variables in (59):

s=±τ1𝑑τh(1e2τ2)+N(1e2)(1e2τ2)1τ2c32(N+h)2.s=\pm\int_{\tau_{1}}d\tau\frac{h(1-e^{2}\tau^{2})+N(1-e^{2})}{(1-e^{2}\tau^{2})\sqrt{1-\tau^{2}-\frac{c_{3}^{2}}{(N+h)^{2}}}}. (77)

Power series expansion of the integrand in powers of ee, then integration term-by-term, generate a Taylor series of the form

s=±(s(0)+s(2)e2+s(4)e4+)|τ1τ.s=\pm(s^{(0)}+s^{(2)}e^{2}+s^{(4)}e^{4}+\ldots)\big{|}_{\tau_{1}}^{\tau}.

In the notation (69), the components of the underivative read:

s(0)=Harctanτ1τ2c32/H2=HarctanτT;s^{(0)}=H\arctan\frac{\tau}{\sqrt{1-\tau^{2}-c_{3}^{2}/H^{2}}}=H\arctan\frac{\tau}{\sqrt{T}}; (78)
s(2)=ρe4[(1+c32/H2)arctanτT+τ3(1τ2)c32/H2T];s^{(2)}=-\frac{\rho_{e}}{4}\Big{[}(1+c_{3}^{2}/H^{2})\arctan\frac{\tau}{\sqrt{T}}+\tau\frac{3(1-\tau^{2})-c_{3}^{2}/H^{2}}{\sqrt{T}}\Big{]}; (79)
s(4)=ρe64{[9(c3/H)46(c3/H)212(c3/H)4(ρe/H)+4(c3/H)2(ρe/H)3]arctanτT+τT3/2[24T(c3/H)424T(c3/H)2+63T2(c3/H)28(ρe/H)(c3/H)6+8(ρe/H)(c3/H)48(ρe/H)T(c3/H)4+8(ρe/H)T(c3/H)212(ρe/H)T2(c3/H)227T2+30T3]}.s^{(4)}=\frac{\rho_{e}}{64}\Big{\{}\left[9(c_{3}/H)^{4}-6(c_{3}/H)^{2}-12(c_{3}/H)^{4}(\rho_{e}/H)+4(c_{3}/H)^{2}(\rho_{e}/H)-3\right]\arctan\frac{\tau}{\sqrt{T}}\\ +\frac{\tau}{T^{3/2}}\Big{[}24T(c_{3}/H)^{4}-24T(c_{3}/H)^{2}+63T^{2}(c_{3}/H)^{2}-8(\rho_{e}/H)(c_{3}/H)^{6}+8(\rho_{e}/H)(c_{3}/H)^{4}\\ -8(\rho_{e}/H)T(c_{3}/H)^{4}+8(\rho_{e}/H)T(c_{3}/H)^{2}-12(\rho_{e}/H)T^{2}(c_{3}/H)^{2}-27T^{2}+30T^{3}\Big{]}\Big{\}}. (80)

V Summary

Computation of the geodetic line within the iso-surface of constant altitude above the ellipsoid is of the same complexity as on its surface at zero altitude. Although the surface is no longer an ellipsoid, mathematics reaches an equivalent level of simplification at which one integral is commonly expanded in powers of the eccentricity or flattening factor. We have done this first for the parameter which provides a solution to the inverse problem, then for two of the basic functions, distance from the starting point and compass course.

Appendix A Reference: Spherical case

The limit of vanishing eccentricity, e=0e=0, simplifies the curved trajectories to arcs of great circles, and presents an easily accessible first estimate of the series expansions in orders of ee. The Cartesian coordinates of the two points to be connected then are

𝐬1=(ρe+h)(cosϕ1cosλ1cosϕ1sinλ1sinϕ1);𝐬2=(ρe+h)(cosϕ2cosλ2cosϕ2sinλ2sinϕ2).{\mathbf{s}}_{1}=(\rho_{e}+h)\left(\begin{array}[]{c}\cos\phi_{1}\cos\lambda_{1}\\ \cos\phi_{1}\sin\lambda_{1}\\ \sin\phi_{1}\\ \end{array}\right);\quad{\mathbf{s}}_{2}=(\rho_{e}+h)\left(\begin{array}[]{c}\cos\phi_{2}\cos\lambda_{2}\\ \cos\phi_{2}\sin\lambda_{2}\\ \sin\phi_{2}\\ \end{array}\right). (81)

The angular separation ZZ is derived from the dot product 𝐬1𝐬2=|𝐬1||𝐬2|cosZ{\bf s}_{1}\cdot{\bf s}_{2}=|{\bf s}_{1}||{\bf s}_{2}|\cos Z,

cosZ=sinϕ1sinϕ2+cosϕ1cosϕ2cos(λ1λ2);0Zπ.\cos Z=\sin\phi_{1}\sin\phi_{2}+\cos\phi_{1}\cos\phi_{2}\cos(\lambda_{1}-\lambda_{2});\quad 0\leq Z\leq\pi. (82)

Each point 𝐬{\bf s} on the great circle in between lies in the plane defined by the sphere center and the terminal points, and can therefore be written as a linear combination

𝐬=α𝐬1+β𝐬2,0α,β.{\bf s}=\alpha{\mathbf{s}}_{1}+\beta{\mathbf{s}}_{2},\quad 0\leq\alpha,\beta. (83)

The square must remain normalized to the squared radius

s2=α2𝐬12+β2𝐬22+2αβ𝐬1𝐬2=α2(ρe+h)2+β2(ρe+h)2+2αβ(ρe+h)2cosZ,s^{2}=\alpha^{2}{\mathbf{s}}_{1}^{2}+\beta^{2}{\mathbf{s}}_{2}^{2}+2\alpha\beta{\mathbf{s}}_{1}\cdot{\mathbf{s}}_{2}=\alpha^{2}(\rho_{e}+h)^{2}+\beta^{2}(\rho_{e}+h)^{2}+2\alpha\beta(\rho_{e}+h)^{2}\cos Z, (84)

which couples the two expansion coefficients via

α2+β2+2αβcosZ=1.\alpha^{2}+\beta^{2}+2\alpha\beta\cos Z=1. (85)

One reduction to a single parameter ξ\xi to enforce this condition is

α=cosξ1+sin(2ξ)cosZ;β=sinξ1+sin(2ξ)cosZ;0ξπ/2.\alpha=\frac{\cos\xi}{\sqrt{1+\sin(2\xi)\cos Z}};\quad\beta=\frac{\sin\xi}{\sqrt{1+\sin(2\xi)\cos Z}};\quad 0\leq\xi\leq\pi/2. (86)

In summary, the point (83) on the great circle of radius ρe+h\rho_{e}+h between 𝐬1{\mathbf{s}}_{1} and 𝐬2{\mathbf{s}}_{2} has the Cartesian coordinates

𝐬\displaystyle{\mathbf{s}} =\displaystyle= (ρe+h)cosξ1+sin(2ξ)cosZ(cosϕ1cosλ1cosϕ1sinλ1sinϕ1)+(ρe+h)sinξ1+sin(2ξ)cosZ(cosϕ2cosλ2cosϕ2sinλ2sinϕ2)\displaystyle(\rho_{e}+h)\frac{\cos\xi}{\sqrt{1+\sin(2\xi)\cos Z}}\left(\begin{array}[]{c}\cos\phi_{1}\cos\lambda_{1}\\ \cos\phi_{1}\sin\lambda_{1}\\ \sin\phi_{1}\\ \end{array}\right)+(\rho_{e}+h)\frac{\sin\xi}{\sqrt{1+\sin(2\xi)\cos Z}}\left(\begin{array}[]{c}\cos\phi_{2}\cos\lambda_{2}\\ \cos\phi_{2}\sin\lambda_{2}\\ \sin\phi_{2}\\ \end{array}\right) (93)
\displaystyle\equiv (ρe+h)(cosϕ(ξ)cosλ(ξ)cosϕ(ξ)sinλ(ξ)sinϕ(ξ)).\displaystyle(\rho_{e}+h)\left(\begin{array}[]{c}\cos\phi(\xi)\cos\lambda(\xi)\\ \cos\phi(\xi)\sin\lambda(\xi)\\ \sin\phi(\xi)\\ \end{array}\right). (97)

The zz-component of this,

sinϕ(ξ)=cosξsinϕ1+sinξsinϕ21+sin(2ξ)cosZ,\sin\phi(\xi)=\frac{\cos\xi\sin\phi_{1}+\sin\xi\sin\phi_{2}}{\sqrt{1+\sin(2\xi)\cos Z}}, (98)

allows to convert ξ\xi into φ\varphi. No ambiguity with respect to the branch of the arcsin\arcsin arises since π/2ϕπ/2-\pi/2\leq\phi\leq\pi/2. The ratio of the yy and xx-components demonstrates the dependence of λ\lambda on ξ\xi,

tanλ(ξ)=cosξcosϕ1sinλ1+sinξcosϕ2sinλ2cosξcosϕ1cosλ1+sinξcosϕ2cosλ2,\tan\lambda(\xi)=\frac{\cos\xi\cos\phi_{1}\sin\lambda_{1}+\sin\xi\cos\phi_{2}\sin\lambda_{2}}{\cos\xi\cos\phi_{1}\cos\lambda_{1}+\sin\xi\cos\phi_{2}\cos\lambda_{2}}, (99)

where the arctan\arctan branch is defined by considering separately the numerator and denominator under the restrictions that no signs are canceled. The azimuth angle σ\sigma between the points at ξ=0\xi=0 and at ξ\xi follows from 𝐬𝐬1=(ρe+h)2cosσ{\mathbf{s}}\cdot{\mathbf{s}}_{1}=(\rho_{e}+h)^{2}\cos\sigma,

cosσ\displaystyle\cos\sigma =\displaystyle= (cosξ1+sin(2ξ)cosZ(cosϕ1cosλ1cosϕ1sinλ1sinϕ1)+sinξ1+sin(2ξ)cosZ(cosϕ2cosλ2cosϕ2sinλ2sinϕ2))(cosϕ1cosλ1cosϕ1sinλ1sinϕ1)\displaystyle\left(\frac{\cos\xi}{\sqrt{1+\sin(2\xi)\cos Z}}\left(\begin{array}[]{c}\cos\phi_{1}\cos\lambda_{1}\\ \cos\phi_{1}\sin\lambda_{1}\\ \sin\phi_{1}\\ \end{array}\right)+\frac{\sin\xi}{\sqrt{1+\sin(2\xi)\cos Z}}\left(\begin{array}[]{c}\cos\phi_{2}\cos\lambda_{2}\\ \cos\phi_{2}\sin\lambda_{2}\\ \sin\phi_{2}\\ \end{array}\right)\right)\cdot\left(\begin{array}[]{c}\cos\phi_{1}\cos\lambda_{1}\\ \cos\phi_{1}\sin\lambda_{1}\\ \sin\phi_{1}\\ \end{array}\right) (109)
=\displaystyle= sinξcosZ+cosξ1+sin(2ξ)cosZ;0σZ.\displaystyle\frac{\sin\xi\cos Z+\cos\xi}{\sqrt{1+\sin(2\xi)\cos Z}};\quad 0\leq\sigma\leq Z. (110)

The path length along the great circle perimeter is simply the radial distance ρe+h\rho_{e}+h to the center of coordinates times the azimuth angle σ\sigma measured in radians,

s=1ds2=(ρe+h)σ=(ρe+h)arccossinξcosZ+cosξ1+sin(2ξ)cosZ;0s(ρe+h)Z.s=\int_{1}\sqrt{ds^{2}}=(\rho_{e}+h)\sigma=(\rho_{e}+h)\arccos\frac{\sin\xi\cos Z+\cos\xi}{\sqrt{1+\sin(2\xi)\cos Z}};\quad 0\leq s\leq(\rho_{e}+h)Z. (111)

To calculate the direction in the 𝐞λ{\mathbf{e}}_{\lambda}- 𝐞ϕ{\mathbf{e}}_{\phi}-plane at the starting point 𝐬1{\mathbf{s}}_{1}, we employ ξ\xi as the parameter that mediates between λ\lambda and ϕ\phi:

dλds=1ρe+hdλdσ=1ρe+hdλdξdξdσ=1ρe+hdλdξ/dσdξ.\frac{d\lambda}{ds}=\frac{1}{\rho_{e}+h}\frac{d\lambda}{d\sigma}=\frac{1}{\rho_{e}+h}\frac{d\lambda}{d\xi}\,\frac{d\xi}{d\sigma}=\frac{1}{\rho_{e}+h}\frac{d\lambda}{d\xi}/\frac{d\sigma}{d\xi}. (112)

To calculate dλ/dξd\lambda/d\xi, use the derivative of (99) with respect to ξ\xi,

1cos2λdλdξ\displaystyle\frac{1}{\cos^{2}\lambda}\frac{d\lambda}{d\xi} =\displaystyle= sinξcosϕ1sinλ1+cosξcosϕ2sinλ2cosξcosϕ1cosλ1+sinξcosϕ2cosλ2\displaystyle\frac{-\sin\xi\cos\phi_{1}\sin\lambda_{1}+\cos\xi\cos\phi_{2}\sin\lambda_{2}}{\cos\xi\cos\phi_{1}\cos\lambda_{1}+\sin\xi\cos\phi_{2}\cos\lambda_{2}} (113)
(cosξcosϕ1sinλ1+sinξcosϕ2sinλ2)sinξcosϕ1cosλ1+cosξcosϕ2cosλ2(cosξcosϕ1cosλ1+sinξcosϕ2cosλ2)2.\displaystyle-(\cos\xi\cos\phi_{1}\sin\lambda_{1}+\sin\xi\cos\phi_{2}\sin\lambda_{2})\frac{-\sin\xi\cos\phi_{1}\cos\lambda_{1}+\cos\xi\cos\phi_{2}\cos\lambda_{2}}{(\cos\xi\cos\phi_{1}\cos\lambda_{1}+\sin\xi\cos\phi_{2}\cos\lambda_{2})^{2}}.

In particular at the starting point, where ξ=0\xi=0, λ=λ1\lambda=\lambda_{1} and ϕ=ϕ1\phi=\phi_{1},

1cos2λ1dλdξ1=cosϕ2sinλ2cosϕ1cosλ1cosϕ1sinλ1cosϕ2cosλ2(cosϕ1cosλ1)2.\frac{1}{\cos^{2}\lambda_{1}}\frac{d\lambda}{d\xi}_{\mid 1}=\frac{\cos\phi_{2}\sin\lambda_{2}}{\cos\phi_{1}\cos\lambda_{1}}-\cos\phi_{1}\sin\lambda_{1}\frac{\cos\phi_{2}\cos\lambda_{2}}{(\cos\phi_{1}\cos\lambda_{1})^{2}}.

By multiplication with cosϕ1cos2λ1\cos\phi_{1}\cos^{2}\lambda_{1}

cosϕ1dλdξ1=cosϕ2sinλ2cosλ1sinλ1cosϕ2cosλ2=cosϕ2sin(λ2λ1).\cos\phi_{1}\frac{d\lambda}{d\xi}_{\mid 1}=\cos\phi_{2}\sin\lambda_{2}\cos\lambda_{1}-\sin\lambda_{1}\cos\phi_{2}\cos\lambda_{2}=\cos\phi_{2}\sin(\lambda_{2}-\lambda_{1}). (114)

To calculate dσ/dξd\sigma/d\xi, we convert the cosine in (110) to the sine,

sinσ\displaystyle\sin\sigma =\displaystyle= 1cos2σ=sinξsinZ1+sin(2ξ)cosZ.\displaystyle\sqrt{1-\cos^{2}\sigma}=\frac{\sin\xi\sin Z}{\sqrt{1+\sin(2\xi)\cos Z}}. (115)

The derivative of this with respect to ξ\xi is

cosσdσdξ=cosξsinZ11+sin(2ξ)cosZ12sinξsinZ2cos(2ξ)cosZ(1+sin(2ξ)cosZ)3/2,\cos\sigma\frac{d\sigma}{d\xi}=\cos\xi\sin Z\frac{1}{\sqrt{1+\sin(2\xi)\cos Z}}-\frac{1}{2}\sin\xi\sin Z\frac{2\cos(2\xi)\cos Z}{(1+\sin(2\xi)\cos Z)^{3/2}},

in particular at the starting point, σ=ξ=0\sigma=\xi=0,

dσdξ1=sinZ.\frac{d\sigma}{d\xi}_{\mid 1}=\sin Z. (116)

Insert this derivative and (114) back into (112)

dλds1=1ρe+hcosϕ2sin(λ2λ1)cosϕ11sinZ,\frac{d\lambda}{ds}_{\mid 1}=\frac{1}{\rho_{e}+h}\frac{\cos\phi_{2}\sin(\lambda_{2}-\lambda_{1})}{\cos\phi_{1}}\frac{1}{\sin Z}, (117)

to obtain the master parameter c3c_{3} for the spherical case with (39),

c3(0)=(ρe+h)cosϕ1cosϕ2sin(λ2λ1)sinZ;(e=0).c_{3}^{(0)}=(\rho_{e}+h)\frac{\cos\phi_{1}\cos\phi_{2}\sin(\lambda_{2}-\lambda_{1})}{\sin Z};\quad(e=0). (118)

Appendix B Notations

c5,c3c_{5},c_{3} constants of integration
E,E1E,E_{1} Gauss parameter eq. (17) and its value at curve origin (λ1,ϕ1,h)(\lambda_{1},\phi_{1},h)
E(..)E(.\setminus.) Incomplete Elliptic Integral of the Second Kind in the Abramowitz-Stegun notation [1, §17]
ee eccentricity of the ellipsoid, eq. (1)
𝐞λ,ϕ{\mathbf{e}}_{\lambda,\phi} horizontal topocentric coordinate vectors at (λ,ϕ,h\lambda,\phi,h)
ff flattening, eq. (8)
FF Gauss parameter, eq. (18)
G,G1G,G_{1} Gauss parameter, eq. (19) and its value at curve origin
Γ...\Gamma_{..}^{.} Christoffel symbols in (λ,ϕ,h)(\lambda,\phi,h) coordinates
hh vertical distance to surface of ellipsoid
HH maximum distance to polar axis (in the equatorial plane), eq. (66)
κ\kappa nautical angle, North over East in the topocentric tangential plane
λ\lambda longitude
MM a radius of curvature on the ellipsoid surface, eq. (16)
NN a radius of curvature on the ellipsoid surface, eq. (11)
ρ\rho distance ellipsoid center to foot point on the surface
ρe,p\rho_{e,p} equatorial, polar radius of ellipsoid, eq. (1)
ss distance along geodetic line measured from curve origin
𝐬{\mathbf{s}} vector from ellipsoid center to point on geodetic line
SS length of curved geodetic trajectory; equals s2s_{2} at (λ2,ϕ2,h)(\lambda_{2},\phi_{2},h)
sgn\operatorname{sgn} sign function, ±1\pm 1 or 0
σ\sigma azimuth along great circle, eq. (111)
TT normalized distance from closest polar approach, eq (69)
τ,τ1\tau,\tau_{1} sinϕ\sin\phi and its value at start of curve, eq. (41)
vv geodetic minus geocentric latitude
ϕ\phi geodetic latitude
ϕ\phi^{\prime} geocentric latitude
x,y,zx,y,z Cartesian coordinates from ellipsoid center, eq. (13)
ξ\xi parametrization of great circle (spherical case), eq. (93)
ZZ cone angle of circular section (spherical case), eq. (82)

Appendix C FEM implementation

C.1 Compilation

The simplest numerical solution of the inverse problem without restriction on the eccentricity could be a finite-element (FEM) integration of (63) and iterative adjustment of the single free parameter c3c_{3}. The Java program in the anc directory implements this approach. It is either compiled with

cd anc ; make

on Linux systems or by manually executing the compiler steps in anc/Makefile . It is then called with

  • java -jar Geod.jar
    

    which will query the parameters interactively

  • or providing all parameters with

    java -jar Geod.jar [-e ee ] [-R ρe\rho_{e} ] [-h h ] [-s NsN_{s} ] [-u N2N_{2}] ϕ1\phi_{1} λ1\lambda_{1} ϕ2\phi_{2} λ2\lambda_{2}

    on the command line. The last four parameters are the geodetic angles of the start and final point in degrees. NsN_{s} is the positive integer number of finite elements in the interval λ\lambda-interval in the approximation, and N2N_{2} in the range 1…NsN_{s} (and typically a divisor of NsN_{s}) is the small positive integer subsampling number of the results along the trajectory which are actually printed to the standard output. The square brackets above indicate that the switches are optional because they have default values; the square brackets are not part of the command line syntax.

  • or calling the program as

    java -cp Geod.jar org.nevec.rjm.GeodGUI

    which allows to type the parameters in fields of a graphical user interface (GUI); the purpose of that wrapper is to embed the program in web applications that support the Java Network Launch Protocol (JNLP).

The output lines contain the information on the trajectory: the first three values are the xx, yy and zz Cartesian coordinates of the subsampled points, the next three values are ϕ\phi, λ\lambda and κ\kappa at these points in degrees, and the last value is the length ss travelled from the start point.

C.2 Overview of Functions

Member functions in overview: the constructors Geod define a surface from the parameters ρe\rho_{e}, ee and hh in which the geodetic line is embedded. getCartesian computes the vector (13). curvN computes (11). dNdtau computes

dNdτ=N(τ)e2τ1e2τ2.\frac{dN}{d\tau}=N(\tau)\frac{e^{2}\tau}{1-e^{2}\tau^{2}}. (119)

flatt computes (8). curvM computes (16). dMdtau computes

dMdτ=3M(τ)e2τ1e2τ2.\frac{dM}{d\tau}=3M(\tau)\frac{e^{2}\tau}{1-e^{2}\tau^{2}}. (120)

d2Mdtau2 computes

d2Mdτ2=3M(τ)e2(1+4e2τ2)(1e2τ2)2.\frac{d^{2}M}{d\tau^{2}}=3M(\tau)\frac{e^{2}(1+4e^{2}\tau^{2})}{(1-e^{2}\tau^{2})^{2}}. (121)

GaussE computes (17). dEdtau computes

dEdτ=2τ(N+h)(M+h).\frac{dE}{d\tau}=-2\tau(N+h)(M+h). (122)

d2Edtau2 computes the next higher derivative, d2E/dτ2d^{2}E/d\tau^{2}. GaussG computes (19). dtaudlambda computes dτ/dλd\tau/d\lambda via (62), referencing one factor to (59). dsdlambda is ds/dλds/d\lambda, the inverse of (61). discrT computes 1τ2c32/(N+h)21-\tau^{2}-c_{3}^{2}/(N+h)^{2}, which generalizes (69) to nonzero ee. Its derivatives

ddτ[1τ2c32[N(τ)+h]2]\displaystyle\frac{d}{d\tau}\left[1-\tau^{2}-\frac{c_{3}^{2}}{[N(\tau)+h]^{2}}\right] =\displaystyle= 2τ[Ne2c32(N+h)3(1e2τ2)1];\displaystyle 2\tau\left[\frac{Ne^{2}c_{3}^{2}}{(N+h)^{3}(1-e^{2}\tau^{2})}-1\right]; (123)
d2dτ2[1τ2c32[N(τ)+h]2]\displaystyle\frac{d^{2}}{d\tau^{2}}\left[1-\tau^{2}-\frac{c_{3}^{2}}{[N(\tau)+h]^{2}}\right] =\displaystyle= 2[1Nc32e2(N+h)3(1e2τ2)(1+3he2τ2(N+h)(1e2τ2))],\displaystyle-2\left[1-\frac{Nc_{3}^{2}e^{2}}{(N+h)^{3}(1-e^{2}\tau^{2})}\left(1+\frac{3he^{2}\tau^{2}}{(N+h)(1-e^{2}\tau^{2})}\right)\right], (124)

are implemented in dTdtau and d2Tdtau2. dtauds calculates (59). d2taudlambda2 calculates the derivative of (62),

d2τdλ2=ddλE(τ)1τ2c32/(N+h)2c3(h+M)=dτdλddτE(τ)1τ2c32/(N+h)2c3(h+M).\frac{d^{2}\tau}{d\lambda^{2}}=\frac{d}{d\lambda}\frac{E(\tau)\sqrt{1-\tau^{2}-c_{3}^{2}/(N+h)^{2}}}{c_{3}(h+M)}=\frac{d\tau}{d\lambda}\frac{d}{d\tau}\frac{E(\tau)\sqrt{1-\tau^{2}-c_{3}^{2}/(N+h)^{2}}}{c_{3}(h+M)}. (125)

d3taudlambda3 is the next higher order application of Bruno di Faà’s formula to relegate derivatives d/dλd/d\lambda to derivatives d/dτd/d\tau, [7, 0.430],

d3τdλ3=d2τdλ2ddτE(τ)1τ2c32/(N+h)2c3(h+M)+(dτdλ)2d2dτ2E(τ)1τ2c32/(N+h)2c3(h+M).\frac{d^{3}\tau}{d\lambda^{3}}=\frac{d^{2}\tau}{d\lambda^{2}}\frac{d}{d\tau}\frac{E(\tau)\sqrt{1-\tau^{2}-c_{3}^{2}/(N+h)^{2}}}{c_{3}(h+M)}+\left(\frac{d\tau}{d\lambda}\right)^{2}\frac{d^{2}}{d\tau^{2}}\frac{E(\tau)\sqrt{1-\tau^{2}-c_{3}^{2}/(N+h)^{2}}}{c_{3}(h+M)}. (126)

d2sdlambda2 calculates

d2sdλ2=ddλEc3=1c3dτdλddτE.\frac{d^{2}s}{d\lambda^{2}}=\frac{d}{d\lambda}\frac{E}{c_{3}}=\frac{1}{c_{3}}\,\frac{d\tau}{d\lambda}\,\frac{d}{d\tau}E. (127)

d3sdlambda3 calculates

d3sdλ3=d2dλ2Ec3=1c3[(dτdλ)2d2dτ2E+d2τdλ2ddτE].\frac{d^{3}s}{d\lambda^{3}}=\frac{d^{2}}{d\lambda^{2}}\frac{E}{c_{3}}=\frac{1}{c_{3}}\left[(\frac{d\tau}{d\lambda})^{2}\,\frac{d^{2}}{d\tau^{2}}E+\frac{d^{2}\tau}{d\lambda^{2}}\,\frac{d}{d\tau}E\right]. (128)

c3Sphere returns the estimate (118). dtaudsSignum returns the sign of dτ/dsd\tau/ds at τ1\tau_{1}, obtained by considering the sign of the derivative of (98) with respect to ξ\xi. adjLambdaEnd modifies ϕ2\phi_{2} modulo 2π2\pi to select the smallest value of |ϕ2ϕ1||\phi_{2}-\phi_{1}|. nautAngle computes κ\kappa from (76).

tauShoot walks along a geodetic line on a discrete mesh of width Δλ\Delta\lambda by extrapolating

τλ+Δλτλ+dτdλΔλ+12d2τdλ2(Δλ)2+16d3τdλ3(Δλ)3+124d4τdλ4(Δλ)4,\tau_{\lambda+\Delta\lambda}\approx\tau_{\lambda}+\frac{d\tau}{d\lambda}\Delta\lambda+\frac{1}{2}\frac{d^{2}\tau}{d\lambda^{2}}(\Delta\lambda)^{2}+\frac{1}{6}\frac{d^{3}\tau}{d\lambda^{3}}(\Delta\lambda)^{3}+\frac{1}{24}\frac{d^{4}\tau}{d\lambda^{4}}(\Delta\lambda)^{4}, (129)

initialized at λ1,ϕ1\lambda_{1},\phi_{1}, given c3c_{3}. The equivalent formula is used to build up sλ+Δλs_{\lambda+\Delta\lambda}. c3shoot calls tauShoot four times to adjust c3c_{3} such that the error by which ϕ2\phi_{2} was missed—returned by tauShoot—is minimized. The first call assumes (118), the second takes an arbitrary small offset, and the third and fourth estimates are from linear and quadratic interpolations in the earlier calls to zoom into a root of this error as a function of c3c_{3}. The last of these runs tabulates the Cartesian coordinates (13), λ\lambda, ϕ\phi, κ\kappa and ss on a subgrid of the λ\lambda-mesh. main collects some adjustable parameters plus the pairs (λ1,ϕ1)(\lambda_{1},\phi_{1}) and (λ2,ϕ2)(\lambda_{2},\phi_{2}), and calls c3shoot to solve the inverse problem of geodetics.

References

  • Abramowitz and Stegun [1972] Abramowitz, M., and I. A. Stegun (eds.), 1972, Handbook of Mathematical Functions (Dover Publications, New York), 9th edition, ISBN 0-486-61272-4.
  • Bouasse [1919] Bouasse, H., 1919, Geographie Mathématique (Librairie Delagrave, Paris).
  • Bowring [1983] Bowring, B. R., 1983, Bull. Geod. 57(1–4), 109.
  • Dorrer [1999] Dorrer, E., 1999, in Quo vadis geodesia…?, edited by F. Krumm and V. S. Schwarze (Universität Stuttgart), Technical Reports of Geodesy and GeoInformatics, ISSN 0933-2839.
  • Dufour [1958] Dufour, H. M., 1958, Bull. Geod. 32(2), 26.
  • Fukushima [2006] Fukushima, T., 2006, J. Geod. 79(12), 689.
  • Gradstein and Ryshik [1981] Gradstein, I., and I. Ryshik, 1981, Summen-, Produkt- und Integraltafeln (Harri Deutsch, Thun), 1st edition, ISBN 3-87144-350-6.
  • Hradilek [1976] Hradilek, L., 1976, Bull. Geod. 50(4), 301.
  • Jones [2004] Jones, G. C., 2004, J. Geod. 76(8), 437.
  • Kaplan [2006] Kaplan, G. H., 2006, arXiv:astro-ph/0602086 eprint astro-ph/0602086.
  • Karney [2013] Karney, C. F. F., 2013, J. Geod. 87, 43.
  • Keeler and Nievergelt [1998] Keeler, S. P., and Y. Nievergelt, 1998, SIAM Review 40(2), 300.
  • Long [1975] Long, S. A. T., 1975, Cel. Mech. 12(2), 225.
  • Mai [2010] Mai, E. ., 2010, J. Appl. Geodesy 4, 145.
  • Mathar [2010] Mathar, R. J., 2010, arXiv:1005.3790 [math.CA] .
  • National Imagery and Mapping Agency [2000] National Imagery and Mapping Agency, 2000, Department Of Defense World Geodetic System 1984, Technical Report TR8350.2, NIMA, URL http://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350_2.html.
  • Ölander [1952] Ölander, V. R., 1952, Bull. Geod. 26(3), 337.
  • Pollard [2002] Pollard, J., 2002, J. Geod. 76(1), 36.
  • Rapp [1991] Rapp, R. H., 1991, Geometric Geodesy Part 1 (Ohio State University, Columbus, Ohio).
  • Reichardt [1957] Reichardt, H., 1957, Vorlesungen über Vektor- und Tensorrechnung, volume 34 of Hochschulbücher für Mathematik (Deutscher Verlag der Wissenschaften, Berlin).
  • Saito [1970] Saito, T., 1970, Bull. Geod. 44(4), 341.
  • Sjöberg [2012] Sjöberg, L. E., 2012, J. Geod. Sci. 2(3), 162.
  • Smart [1949] Smart, W. M., 1949, Text-book on Spherical Astronomy (Cambridge University Press, Cambridge), 4th edition.
  • Sodano [1958] Sodano, E. M., 1958, Bull. Geod. 32(2), 13.
  • Thomas [1965] Thomas, P. D., 1965, J. Geophys. Res. 70(14), 3331.
  • Tienstra [1951] Tienstra, J. M., 1951, Bull. Geod. 25(1), 7.
  • Tseng [2014] Tseng, W.-K., 2014, J. Navig. 67(5), 825.
  • Vermeille [2004] Vermeille, H., 2004, J. Geod. 78(1–2), 94.
  • You [1999] You, R.-J., 1999, in Quo vadis geodesia…?, edited by F. Krumm and V. S. Schwarze (Universität Stuttgart), Technical Reports of Geodesy and GeoInformatics, ISSN 0933-2839.
  • Zhang et al. [2005] Zhang, C.-D., H. T. Hsu, X. P. Wu, S. S. Li, Q. B. Wang, H. Z. Chai, and L. Du, 2005, J. Geod. 79(8), 413.