This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Geometric characterization of anomalous Landau levels of isolated flat bands

Yoonseok Hwang Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea Center for Theoretical Physics (CTP), Seoul National University, Seoul 08826, Korea    Jun-Won Rhim jwrhim@ajou.ac.kr Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea Department of Physics, Ajou University, Suwon 16499, Korea    Bohm-Jung Yang bjyang@snu.ac.kr Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea Center for Theoretical Physics (CTP), Seoul National University, Seoul 08826, Korea
Abstract

According to the Onsager’s semiclassical quantization rule, the Landau levels of a band are bounded by its upper and lower band edges at zero magnetic field. However, there are two notable systems where the Landau level spectra violate this expectation, including topological bands and flat bands with singular band crossings, whose wave functions possess some singularities. Here, we introduce a distinct class of flat band systems where anomalous Landau level spreading (LLS) appears outside the zero-field energy bounds, although the relevant wave function is nonsingular. The anomalous LLS of isolated flat bands are governed by the cross-gap Berry connection that measures the wave-function geometry of multi bands. We also find that symmetry puts strong constraints on the LLS of flat bands. Our work demonstrates that an isolated flat band is an ideal system for studying the fundamental role of wave-function geometry in describing magnetic responses of solids.

I Introduction

Geometry of Bloch wave functions, manifested in the quantities such as Berry curvature and Berry phase, is a central notion in modern description of condensed matter. Due to the significant role of the wave-function geometry in describing the fundamental properties of solids, finding efficient methods of measuring it has been considered as a quintessential problem in solid state physics. In this respect, examining the Landau level spectrum has received a particular attention, as one of the most efficient and convenient methods for detecting the geometric properties of Bloch states.

A conventional way of determining the Landau levels of Bloch states is to use the semiclassical approach based on the Onsager’s semiclassical quantization rule given by

S0(ϵ)=2πeB(n+12γϵ,B2π),\displaystyle S_{0}(\epsilon)=\frac{2\pi eB}{\hbar}\left(n+\frac{1}{2}-\frac{\gamma_{\epsilon,B}}{2\pi}\right), (1)

which is generally valid in weak field limit. Here S0(ϵ)S_{0}(\epsilon) is the area of a closed semiclassical orbit at the energy ϵ\epsilon in momentum space, BB is magnetic field, ee is the electric charge, \hbar is the reduced Planck constant, and nn is a non-negative integer. The last term γϵ,B\gamma_{\epsilon,B} indicates the quantum correction from Berry phase, orbital magnetization, etc. Onsager (1952); Roth (1966); Mikitik and Sharlai (1999); Gao and Niu (2017); Fuchs et al. (2018), reflecting the geometric properties of solids. A collection of discrete energies (ϵ\epsilon) satisfying Eq. (1) forms the Landau levels which critically depend on the geometric quantity γϵ,B\gamma_{\epsilon,B}. For instance, in graphene with relativistic energy dispersion, Eq. (1) successfully predicts the nB\sqrt{nB} dependence of the Landau levels, where the existence of the zero-energy Landau level is a direct manifestation of the π\pi-Berry phase of massless Dirac particles Zhang et al. (2005); Novoselov et al. (2006). Later, this semiclassical approach is generalized further to the cases with an arbitrary strength of magnetic field Chang and Niu (1996) where the zero-field energy dispersion in Eq. (1) is replaced by the magnetic band structure with BB linear quantum corrections.

The Onsager’s semiclassical scheme has provided a powerful method of understanding complicated Landau level spectra of solids intuitively. In usual dispersive bands where BB linear quantum corrections are negligible in weak field limit, the Onsager’s semiclassical approach in Eq. (1) predicts that the Landau levels are developed in the energy interval bounded by the upper and lower band edges of the zero-field band structure. However, there are few examples violating this expectation. Especially, several systems exhibit anomalous Landau levels appearing in gapped regions away from the zero-field energy bounds where the semiclassical orbit as well as S0(ϵ)S_{0}(\epsilon) cannot be defined, according to Eq. (1). One famous example is the Landau levels of a Chern band which appear in an adjacent energy gap at zero-field. Similar behavior was also recently predicted in fragile topological bands characterized by nonzero Euler numbers Po et al. (2018); Ahn et al. (2019); Lian et al. (2020). More recently, it was shown that anomalous Landau levels also appear in singular flat bands Rhim and Yang (2019); Ma et al. (2020a) where a flat band is crossing with another parabolic band at a momentum Rhim et al. (2020). Interestingly, it is found that the Landau levels of a singular flat band appear in the energy region with vanishing density of states at zero magnetic field. Moreover, the total energy spreading of the flat band’s Landau levels, dubbed the Landau level spreading (LLS), is solely determined by a geometric quantity, called the maximum quantum distance which characterizes the singularity of the relevant Bloch wave function Rhim et al. (2020).

In this work, we propose a distinct class of flat-band systems that exhibit anomalous Landau level structures. The flat band we consider is isolated from other bands by a gap, which we call an isolated flat band (IFB). An IFB is generally non-singular as well as topologically trivial Chen et al. (2014); Read (2017); Alexandradinata and Höller (2018) as opposed to nearly flat topological bands or degenerate flat bands Ma et al. (2020b); Chiu et al. (2020), so that it does not belong to any category of the systems exhibiting anomalous Landau levels discussed above. However, it is found that the Landau levels of IFBs are anomalous, that is, unbounded by the original band structure at zero magnetic field and developed in the band gaps above and below the flat band.

In fact, the Onsager’s semiclassical quantization rule in Eq. (1) generally does not work in flat bands, unless the BB linear quantum corrections are properly included. This is because there are infinitely many semiclassical orbits allowed so that S0(ϵ)S_{0}(\epsilon) cannot be uniquely determined. Interestingly, after taking into account the BB linear quantum corrections, we find that an IFB generally exhibits anomalous LLS, and the upper and lower energy bounds for the LLS are determined by the cross-gap Berry connection defined as

Ainm(𝕜)=iun(𝕜)|ium(𝕜)(nm),\displaystyle A^{nm}_{i}({{\mathbb{k}}})=i\langle u_{n}({{\mathbb{k}}})|\partial_{i}u_{m}({{\mathbb{k}}})\rangle\quad(n\neq m), (2)

where un(𝕜)u_{n}({{\mathbb{k}}}) is the periodic part of the Bloch wave function of the nn-th band de Juan et al. (2017). This is a multi-band extension of the conventional Abelian Berry connection and describes inter-band couplings. Let us note that, unlike the Abelian Berry connection defined for a single band, the cross-gap Berry connection Ainm(𝕜)A^{nm}_{i}({{\mathbb{k}}}) (nm)(n\neq m) is gauge-covariant. We will show that the LLS of an IFB is given by the product of the xx and yy components of the cross-gap Berry connection between the flat band and other bands weighted by their energy. The LLS of an IFB is strongly constrained by the symmetry of the system, which is demonstrated in various flat band models including the Lieb and the Tasaki models as well as the model describing twisted bilayer graphene (see Results and Supplementary Note 4). Our work demonstrates the fundamental role of wave-function geometry in describing the Landau levels of flat bands.

II Results

II.1 Modified band dispersion and the Landau level spreading

The original Onsager’s semiclassical approach predicts IFBs inert under external magnetic field, and thus it cannot explain the LLS of IFBs. On the other hand, the modified semiclassical approach developed by M.-C. Chang and Q. Niu Chang and Niu (1996) can resolve this problem. Contrary to the Onsager’s approach, where the band structure at zero magnetic field εn(𝕜)\varepsilon_{n}({{\mathbb{k}}}) is used to define the closed semiclassical orbits and the corresponding area S0(ϵ)S_{0}(\epsilon), the modified semiclassical approach employs the modified band structure given by

En,B(𝕜)=εn(𝕜)+μn(𝕜)B,\displaystyle E_{n,B}({{\mathbb{k}}})=\varepsilon_{n}({{\mathbb{k}}})+\mu_{n}({{\mathbb{k}}})B, (3)

where 𝔹=B𝕫^{\mathbb{B}}=B\hat{{\mathbb{z}}} is the magnetic field, nn is the band index, and μn(𝕜)\mu_{n}({{\mathbb{k}}}) is the orbital magnetic moment of the nn-th magnetic band in the zz-direction arising from the self-rotation of the corresponding wave packet Chang and Niu (1996). The explicit form of μn(𝕜)\mu_{n}({{\mathbb{k}}}) is

μn(𝕜)=eImxun(𝕜)|[εn(𝕜)H(𝕜)]|yun(𝕜),\displaystyle\mu_{n}({{\mathbb{k}}})=\frac{e}{\hbar}\,{\rm Im}\langle\partial_{x}u_{n}({{\mathbb{k}}})|\left[\varepsilon_{n}({{\mathbb{k}}})-H({{\mathbb{k}}})\right]|\partial_{y}u_{n}({{\mathbb{k}}})\rangle, (4)

where H(𝕜)H({{\mathbb{k}}}) is the Hamiltonian in momentum space and i=ki\partial_{i}=\partial_{k_{i}} (i=x,y)(i=x,y). Hence, the second term on the right-hand side of Eq. (3) indicates the leading energy correction from the orbital magnetic moment coupled to the magnetic field. In usual dispersive bands, the BB-linear quantum correction is negligibly small in weak magnetic field limit compared to the zero-field band-width. This is the reason why the original Onsager’s semiclassical scheme in Eq. (1) works well.

In the case of a flat band with zero band-width, on the other hand, the BB-linear quantum correction always dominates the modified band structure En,B(𝕜)E_{n,B}({{\mathbb{k}}}) in Eq. (3) even in weak magnetic field limit. Moreover, the modified band dispersion of an IFB is generally dispersive so that the relevant semiclassical orbits can be defined unambiguously. As a result, one can obtain the Landau levels of the IFB in the adjacent gapped regions by applying the semiclassical quantization rule to En,B(𝕜)E_{n,B}({{\mathbb{k}}}), which naturally explains the LLS of the IFB. Especially, around the band edges of En,B(𝕜)E_{n,B}({{\mathbb{k}}}), one can define the effective mass mm^{*}, which is inversely proportional to BB, from which the Onsager’s scheme predicts Landau levels with a spacing eB/mB2\hbar eB/m^{*}\propto B^{2}. The resulting Landau spectrum is bounded by the upper and lower band edges of En,B(𝕜)E_{n,B}({{\mathbb{k}}}). The total magnitude Δ\Delta of the LLS is determined by the difference between the maximum and the minimum values of En,B(𝕜)E_{n,B}({{\mathbb{k}}}), namely, Δ=maxEn,B(𝕜)minEn,B(𝕜)\Delta={\rm max}\,E_{n,B}({{\mathbb{k}}})-{\rm min}\,E_{n,B}({{\mathbb{k}}}). This result is valid as long as the band gap EgapE_{\rm gap} between the IFB and its neighboring band at zero magnetic field is large enough, i.e., Egapmax|En,B(𝕜)|E_{\rm gap}\gg{\rm max}|E_{n,B}({{\mathbb{k}}})|. The generic behavior of an IFB under magnetic field is schematically described in Fig. 1 where one can clearly observe that the Landau levels of the IFB spread into the gaps at zero-field above and below the IFB.

Refer to caption
Figure 1: Landau level spreading (LLS) of an isolated flat band (IFB). a The band structure of a two-dimensional system in the absence of magnetic field. The second band with the energy ε2(𝕜)=0\varepsilon_{2}({{\mathbb{k}}})=0 corresponds to the IFB. The inter-band coupling εm(𝕜)χxym2(𝕜)\varepsilon_{m}({{\mathbb{k}}})\chi_{xy}^{m2}({{\mathbb{k}}}) of the IFB with the other dispersive band of the energy εm(𝕜)\varepsilon_{m}({{\mathbb{k}}}) (m=1,3,4)(m=1,3,4) is indicated by a dashed vertical arrow. b The modified band dispersion En,B(𝕜)E_{n,B}({{\mathbb{k}}}) (n=1,,4)(n=1,\dots,4) in the presence of the magnetic field. The corresponding Landau levels are shown by red solid lines. The LLS of the IFB is represented by the green arrow.

II.2 Geometric interpretation of the LLS

Interestingly, we find that the LLS of IFBs is a manifestation of the non-trivial wave-function geometry of the flat band arising from inter-band couplings. One can show that the modified band dispersion of the IFB is given by

En,B(𝕜)=2πϕϕ01A0Immnεm(𝕜)χxynm(𝕜),\displaystyle E_{n,B}({{\mathbb{k}}})=-2\pi\frac{\phi}{\phi_{0}}\frac{1}{A_{0}}{\rm Im}\,\sum_{m\neq n}\varepsilon_{m}({{\mathbb{k}}})\chi^{nm}_{xy}({{\mathbb{k}}}), (5)

in which

χijnm(𝕜)\displaystyle\chi^{nm}_{ij}({\mathbb{k}}) =iun(𝕜)|um(𝕜)um(𝕜)|jun(𝕜)\displaystyle=\langle\partial_{i}u_{n}({\mathbb{k}})|u_{m}({\mathbb{k}})\rangle\langle u_{m}({\mathbb{k}})|\partial_{j}u_{n}({\mathbb{k}})\rangle
=Ainm(𝕜)Ajnm(𝕜),\displaystyle=A^{nm}_{i}({\mathbb{k}})^{*}A^{nm}_{j}({\mathbb{k}}), (6)

where ϕ0=h/e\phi_{0}=h/e, ϕ=BA0\phi=BA_{0} is the magnetic flux per unit cell, and A0A_{0} is the unit cell area assumed to be A0=1A_{0}=1. Here, we assume that the nn-th band is the IFB at the zero energy without loss of generality so that εm(𝕜)\varepsilon_{m}({{\mathbb{k}}}) in Eq. (5) should be interpreted as the energy of the mm-th band with respect to the flat band energy. We note that Ainm(𝕜)A^{nm}_{i}({\mathbb{k}}) indicates the cross-gap Berry connection between the nn-th and mm-th bands (nmn\neq m) defined in Eq. (2), and χijnm(𝕜)\chi^{nm}_{ij}({\mathbb{k}}) is the corresponding fidelity tensor that describes the transition amplitude between the nn-th and mm-th bands as discussed below. See Supplementary Note 1 for the detailed derivation of Eq. (5). Hence, Eq. (5) indicates that the modified band dispersion of the IFB is given by the summation of the transition amplitudes χxynm(𝕜)\chi^{nm}_{xy}({{\mathbb{k}}}) between the IFB and the mm-th band weighted by the energy εm(𝕜)\varepsilon_{m}({{\mathbb{k}}}) of the mm-th band as illustrated in Fig. 1. This means that the immobile carriers with infinite effective mass in an IFB can respond to external magnetic field through the inter-band coupling, characterized by the cross-gap Berry connection, to dispersive bands. The geometric character of the LLS is evident in our interpretation based on Eq. (5).

Let us discuss the geometric character of the fidelity tensor χxynm(𝕜)\chi_{xy}^{nm}({{\mathbb{k}}}) more explicitly. In general, the geometry of the quantum state un(𝕜)u_{n}({{\mathbb{k}}}) can be derived from the Hilbert-Schmidt quantum distance Bužek and Hillery (1996); Dodonov et al. (2000); Berry (1989) defined as

s(un(𝕜),un(𝕜))=1|un(𝕜)|un(𝕜)|2,\displaystyle s\left(u_{n}({{\mathbb{k}}}),u_{n}({{\mathbb{k}}}^{\prime})\right)=1-|\langle u_{n}({{\mathbb{k}}})|u_{n}({{\mathbb{k}}}^{\prime})\rangle|^{2}, (7)

which measures the similarity between un(𝕜)u_{n}({{\mathbb{k}}}) and un(𝕜)u_{n}({{\mathbb{k}}}^{\prime}). For 𝕜=𝕜+d𝕜{{\mathbb{k}}}^{\prime}={{\mathbb{k}}}+d{{\mathbb{k}}}, we obtain

s(un(𝕜),un(𝕜+d𝕜))=𝔊ijn(𝕜)dkidkj,\displaystyle s\left(u_{n}({{\mathbb{k}}}),u_{n}({{\mathbb{k}}}+d{{\mathbb{k}}})\right)=\mathfrak{G}_{ij}^{n}({{\mathbb{k}}})dk_{i}dk_{j}, (8)

where 𝔊ijn(𝕜)\mathfrak{G}_{ij}^{n}({{\mathbb{k}}}) indicates the quantum geometric tensor Provost and Vallee (1980); Zanardi et al. (2007); Ma et al. (2010) whose explicit form is

𝔊ijn(𝕜)\displaystyle\mathfrak{G}_{ij}^{n}({{\mathbb{k}}}) =mniun(𝕜)|um(𝕜)um(𝕜)|jun(𝕜)\displaystyle=\sum_{m\neq n}\langle\partial_{i}u_{n}({\mathbb{k}})|u_{m}({\mathbb{k}})\rangle\langle u_{m}({\mathbb{k}})|\partial_{j}u_{n}({\mathbb{k}})\rangle
=mnχijnm(𝕜),\displaystyle=\sum_{m\neq n}\chi_{ij}^{nm}({{\mathbb{k}}}), (9)

which shows that the quantum geometric tensor 𝔊ijn(𝕜)\mathfrak{G}_{ij}^{n}({{\mathbb{k}}}) of the nn-th band is given by the summation of the fidelity tensor χijnm(𝕜)\chi_{ij}^{nm}({{\mathbb{k}}}) over all mnm\neq n. We note that χijnm(𝕜)\chi_{ij}^{nm}({{\mathbb{k}}}) itself cannot define a distance as the triangle inequality is not satisfied. However, it is related to the transition probability or the fidelity F(un(𝕜),um(𝕜))F\left(u_{n}({{\mathbb{k}}}),u_{m}({{\mathbb{k}}}^{\prime})\right) between the nn-th and mm-th bands Jozsa (1994) through the following relations:

F(un(𝕜),um(𝕜))=|un(𝕜)|um(𝕜)|2,\displaystyle F\left(u_{n}({{\mathbb{k}}}),u_{m}({{\mathbb{k}}}^{\prime})\right)=|\langle u_{n}({{\mathbb{k}}})|u_{m}({{\mathbb{k}}}^{\prime})\rangle|^{2}, (10)
F(un(𝕜),um(𝕜+d𝕜))=χijnm(𝕜)dkidkj.\displaystyle F\left(u_{n}({{\mathbb{k}}}),u_{m}({{\mathbb{k}}}+d{{\mathbb{k}}})\right)=\chi_{ij}^{nm}({{\mathbb{k}}})dk_{i}dk_{j}. (11)

Thus, the geometric interpretation based on Eqs. (5) and (11) clearly shows that the LLS originates from the inter-band coupling.

II.3 Symmetry constraints on the LLS

The LLS of an IFB is strongly constrained by symmetry. First, we consider a generic symmetry σ\sigma whose action on the Hamiltonian is given by

Uσ(𝕜)H(𝕜)¯sUσ(𝕜)=pH(Oσ𝕜),\displaystyle U_{\sigma}({\mathbb{k}})\overline{H({\mathbb{k}})}^{s}U_{\sigma}({\mathbb{k}})^{\dagger}=pH(O_{\sigma}{\mathbb{k}}), (12)

where s{0,1}s\in\{0,1\}, p{1,1}p\in\{-1,1\}, and Uσ(𝕜)U_{\sigma}({{\mathbb{k}}}) and OσO_{\sigma} are a unitary and orthogonal matrices representing σ\sigma, respectively. x¯s=1\overline{x}^{s=1} denotes the complex conjugation of xx while x¯s=0=x\overline{x}^{s=0}=x. Note that s=0s=0 and 11 are relevant to the unitary and anti-unitary symmetries, respectively, while p=1p=-1 and +1+1 correspond to anti-symmetry and symmetry, respectively.

Among all possible symmetries of the form in Eq. (12), we find that the modified band dispersion En,B(𝕜)E_{n,B}({{\mathbb{k}}}) vanishes when the system respects the chiral CC or space-time-inversion ISTI_{\rm ST} symmetries in the zero magnetic flux (see Methods and Supplementary Notes 2 and 3 for the detailed derivation). CC and ISTI_{\rm ST} are characterized by (Oσ,s,p)=(𝟙,0,1)(O_{\sigma},s,p)=(\mathds{1},0,-1) and (𝟙,1,1)(\mathds{1},1,1), respectively, where 𝟙\mathds{1} is the identity matrix. In the following, we demonstrate that the LLS is proportional to B2B^{2} for a flat-band system with ISTI_{\rm ST} symmetry in the zero magnetic field, while the LLS is forbidden in the presence of chiral symmetry. Interestingly, although ISTI_{\rm ST} symmetry would be broken as the magnetic field is turned on, the LLS is strongly constrained by ISTI_{\rm ST} symmetry.

We further find that maxEn,B(𝕜)=minEn,B(𝕜){\rm max}\,E_{n,B}({{\mathbb{k}}})=-{\rm min}\,E_{n,B}({{\mathbb{k}}}) when the system respects a symmetry satisfying (1)spDetOσ=1(-1)^{s}p\,{\rm Det}O_{\sigma}=-1 and Oσ𝟙O_{\sigma}\neq\mathds{1}, such as time-reversal TT or reflection RR symmetry, at the zero magnetic field (see Methods and Supplementary Note 2 for detailed derivations). This implies that the minimum and maximum values of the LLS have the same magnitude but with the opposite signs. The relevant tight-binding models are shown in the Supplementary Note 4.

II.4 Generic flat-band systems

We first consider the spin-orbit-coupled (SOC) Lieb model Goldman et al. (2011) as an example of generic flat-band systems. The lattice structure for this model is shown in Fig. 2a. The model consists of the nearest neighbor hopping with the amplitude 1 and the spin-orbit coupling between the next nearest neighbor sites, which are denoted as green solid and dashed arrows, respectively, in Fig. 2a. The tight-binding Hamiltonian in momentum space is given by

HsocL(𝕜)=(02cosky24iλsocsinkx2sinky22cosky202coskx24iλsocsinkx2sinky22coskx20),\displaystyle H_{\rm socL}({{\mathbb{k}}})=\begin{pmatrix}0&2\cos\frac{k_{y}}{2}&-4i\lambda_{\rm soc}\sin\frac{k_{x}}{2}\sin\frac{k_{y}}{2}\\ 2\cos\frac{k_{y}}{2}&0&2\cos\frac{k_{x}}{2}\\ 4i\lambda_{\rm soc}\sin\frac{k_{x}}{2}\sin\frac{k_{y}}{2}&2\cos\frac{k_{x}}{2}&0\end{pmatrix}, (13)

where λsoc\lambda_{\rm soc} denotes the strength of spin-orbit coupling. The flat band’s energy is zero, i.e., εsocL,fb(𝕜)=0\varepsilon_{\rm socL,fb}({{\mathbb{k}}})=0, and the energies of the other two bands are

εsocL,±(𝕜)=±2cos2kx2+cos2ky2+4λsoc2sin2kx2sin2ky2,\displaystyle\varepsilon_{{\rm socL},\pm}({{\mathbb{k}}})=\pm 2\sqrt{\cos^{2}\frac{k_{x}}{2}+\cos^{2}\frac{k_{y}}{2}+4\lambda_{soc}^{2}\sin^{2}\frac{k_{x}}{2}\sin^{2}\frac{k_{y}}{2}}, (14)

which are plotted in Fig. 2b for λsoc=0.2\lambda_{\rm soc}=0.2. The band gap between the IFB and its neighboring bands is given by 4|λsoc|4|\lambda_{\rm soc}| if |λsoc|<1/2|\lambda_{\rm soc}|<1/2, and 22 if |λsoc|1/2|\lambda_{\rm soc}|\geq 1/2, thus the flat band is decoupled from other bands for non-zero λsoc\lambda_{\rm soc}.

Refer to caption
Figure 2: Landau level spreading of a generic system with an IFB. a Lattice structure for the spin-orbit-coupled (SOC) Lieb model composed of three sublattices, AA, BB and CC. The double-headed green arrows denote the nearest neighbor hoppings, and the single-headed green arrows indicate the spin-orbit coupling between AA and CC sublattices. The next-nearest hoppings tt between A and C is set to be zero (t=0.0t=0.0) in the SOC Lieb model. b The band structure of HsocL(𝕜)H_{\rm socL}({{\mathbb{k}}}) with λsoc=0.2\lambda_{\rm soc}=0.2. c Distribution of ImχsocL,xyfb,(𝕜){\rm Im}\,\chi^{{\rm fb},-}_{{\rm socL},xy}({\mathbb{k}}). Note that ImχsocL,xyfb,(𝕜)=ImχsocL,xyfb,+(𝕜){\rm Im}\,\chi^{{\rm fb},-}_{{\rm socL},xy}({\mathbb{k}})=-{\rm Im}\,\chi^{{\rm fb},+}_{{\rm socL},xy}({\mathbb{k}}). d The modified band dispersion Efb,BsocL(𝕜)E^{\rm socL}_{{\rm fb},B}({\mathbb{k}}) of the flat band in the presence of magnetic flux. e Landau level spectra of the flat band (black dots) as a function of λsoc\lambda_{\rm soc} for magnetic flux ϕ/ϕ0=1/500\phi/\phi_{0}=1/500. f Landau level spectra of the flat band (black dots) as a function of magnetic flux ϕ/ϕ0\phi/\phi_{0} for λsoc=0.2\lambda_{\rm soc}=0.2.

The analytic form of the fidelity tensor χxynm(𝕜)\chi_{xy}^{nm}({{\mathbb{k}}}) is given by

χsocL,xyfb,+(𝕜)=(χsocL,xyfb,(𝕜))=f(kx,ky)f(ky,kx)(εsocL,+(𝕜))4(2+coskx+cosky),\displaystyle\chi^{{\rm fb},+}_{{\rm socL},xy}({\mathbb{k}})=\left(\chi^{{\rm fb},-}_{{\rm socL},xy}({\mathbb{k}})\right)^{*}=\frac{f(k_{x},k_{y})f(k_{y},k_{x})}{\left(\varepsilon_{{\rm socL},+}({\mathbb{k}})\right)^{4}(2+\cos k_{x}+\cos k_{y})}, (15)

where f(kx,ky)=4λsocsinkx2cosky2(cos2kx2+1)+iεsocL,+(𝕜)coskx2sinky2f(k_{x},k_{y})=4\lambda_{\rm soc}\sin\frac{k_{x}}{2}\cos\frac{k_{y}}{2}\left(\cos^{2}\frac{k_{x}}{2}+1\right)+i\varepsilon_{{\rm socL},+}({\mathbb{k}})\cos\frac{k_{x}}{2}\sin\frac{k_{y}}{2}. Then, from Eq. (5), the modified band dispersion for the flat band is given by

Efb,BsocL(𝕜)=2πλsoc(3coskxcoskycoskxcosky)(εsocL,+(𝕜))2ϕϕ0.\displaystyle E^{\rm socL}_{{\rm fb},B}({\mathbb{k}})=-\frac{2\pi\lambda_{\rm soc}\left(3-\cos k_{x}-\cos k_{y}-\cos k_{x}\cos k_{y}\right)}{\left(\varepsilon_{{\rm socL},+}({\mathbb{k}})\right)^{2}}\,\frac{\phi}{\phi_{0}}. (16)

In Fig. 2c and d, ImχsocL,xyfb,(𝕜){\rm Im}\,\chi^{{\rm fb},-}_{{\rm socL},xy}({\mathbb{k}}) and Efb,BsocL(𝕜)E^{\rm socL}_{{\rm fb},B}({\mathbb{k}}) are shown. We note that

maxEfb,BsocL(𝕜)=Efb,BsocL(0,0)=0,\displaystyle{\rm max}E^{\rm socL}_{{\rm fb},B}({{\mathbb{k}}})=E^{\rm socL}_{{\rm fb},B}(0,0)=0, (17)
minEfb,BsocL(𝕜)={Efb,BsocL(π,π)=π2λsocϕϕ0(λsoc12)Efb,BsocL(0,π)=2πλsocϕϕ0(λsoc>12).\displaystyle{\rm min}E^{\rm socL}_{{\rm fb},B}({\mathbb{k}})=\begin{cases}E^{\rm socL}_{{\rm fb},B}(\pi,\pi)=-\frac{\pi}{2\lambda_{\rm soc}}\frac{\phi}{\phi_{0}}&(\lambda_{\rm soc}\leq\frac{1}{2})\\ E^{\rm socL}_{{\rm fb},B}(0,\pi)=-2\pi\lambda_{\rm soc}\frac{\phi}{\phi_{0}}&(\lambda_{\rm soc}>\frac{1}{2})\end{cases}. (18)

These minimum and maximum values of Efb,BsocL(𝕜)E^{\rm socL}_{{\rm fb},B}({\mathbb{k}}) correspond to the lower and upper bounds for the LLS of the IFB as illustrated by red lines in Fig. 2e and f. Interestingly, the fidelity tensors χsocL,xyfb,+(𝕜)\chi^{{\rm fb},+}_{{\rm socL},xy}({\mathbb{k}}) and χsocL,xyfb,(𝕜)\chi^{{\rm fb},-}_{{\rm socL},xy}({\mathbb{k}}) are conjugate of each other. This originates from the anti-unitary symmetry CISTC\circ I_{\rm ST}, a combination of chiral CC and space-time-inversion ISTI_{\rm ST} symmetries, present in the system (see Supplementary Note 2 for the details.)

II.5 Chiral-symmetric system

Refer to caption
Figure 3: Landau level spreading of a flat-band system with chiral symmetry. a Lattice structure for the c-Lieb model. The green arrows denote the hoppings. Note that the direction dependent hopping parameters induce a finite gap between the flat band and other bands. b The band structure for HcL(𝕜)H_{\rm cL}({{\mathbb{k}}}) with t1=t2=2t_{1}=t_{2}=2. c Distribution of ImχcL,xyfb,(𝕜){\rm Im}\,\chi^{{\rm fb},-}_{{\rm cL},xy}({{\mathbb{k}}}). Due to the chiral symmetry, ImχcL,xyfb,(𝕜)=ImχcL,xyfb,+(𝕜){\rm Im}\,\chi^{{\rm fb},-}_{{\rm cL},xy}({{\mathbb{k}}})={\rm Im}\,\chi^{{\rm fb},+}_{{\rm cL},xy}({{\mathbb{k}}}) holds. d The Hofstadter spectrum of the c-Lieb model HcL(𝕜)H_{\rm cL}({{\mathbb{k}}}) with t1=t2=2t_{1}=t_{2}=2. For any value of magnetic flux, the Landau levels of the flat band are fixed to the zero energy.

We construct a chiral-symmetric Lieb (c-Lieb) model as a representative example for chiral-symmetric IFB systems. The c-Lieb is defined on the same Lieb lattice as the SOC-Lieb model, but with different hoppings. As shown in Fig. 3a, this model consists only of the nearest neighbor hoppings, denoted by green arrows. The hopping parameter from a B-site to a C-site is t1t_{1} for the rightward hopping, and 1 for the leftward hopping. On the other hand, the hopping parameter from a B-site to an A-site is t2t_{2} for the upward hopping, and 1 for the downward hopping. The corresponding tight-binding Hamiltonian in momentum space is given by

HcL(𝕜)=(0eiky2+t2eiky20eiky2+t2eiky20eikx2+t1eikx20eikx2+t1eikx20),\displaystyle H_{\rm cL}({{\mathbb{k}}})=\begin{pmatrix}0&e^{i\frac{k_{y}}{2}}+t_{2}e^{-i\frac{k_{y}}{2}}&0\\ e^{-i\frac{k_{y}}{2}}+t_{2}e^{i\frac{k_{y}}{2}}&0&e^{-i\frac{k_{x}}{2}}+t_{1}e^{i\frac{k_{x}}{2}}\\ 0&e^{i\frac{k_{x}}{2}}+t_{1}e^{-i\frac{k_{x}}{2}}&0\end{pmatrix}, (19)

with energy eigenvalues εcL,fb(𝕜)=0\varepsilon_{\rm cL,fb}({{\mathbb{k}}})=0 and εcL,±(𝕜)=±2+t12+t22+2t1coskx+2t2cosky\varepsilon_{{\rm cL},\pm}({{\mathbb{k}}})=\pm\sqrt{2+t_{1}^{2}+t_{2}^{2}+2t_{1}\cos k_{x}+2t_{2}\cos k_{y}}. The chiral symmetry operator CC is given by C=Diag(1,1,1)C={\rm Diag}(1,-1,1) which gives a symmetry relation,

CHcL(𝕜)C1=HcL(𝕜).\displaystyle CH_{\rm cL}({{\mathbb{k}}})C^{-1}=-H_{\rm cL}({{\mathbb{k}}}). (20)

Note that the wave function of the flat band is also a simultaneous eigenstate of the chiral symmetry having a definite chiral charge c=+1c=+1:

C|ucL,fb(𝕜)=c|ucL,fb(𝕜).\displaystyle C|u_{\rm cL,fb}({{\mathbb{k}}})\rangle=c|u_{\rm cL,fb}({{\mathbb{k}}})\rangle. (21)

Also, we obtain the fidelity tensor χxyfb,±\chi_{xy}^{{\rm fb},\pm}, expressed by

χcL,xyfb,+(𝕜)=χcL,xyfb,(𝕜)=(1+t1eikx)(1t1eikx)(1+t2eiky)(1t2eiky)8(εcL,+(𝕜))4.\displaystyle\chi^{{\rm fb},+}_{{\rm cL},xy}({{\mathbb{k}}})=\chi^{{\rm fb},-}_{{\rm cL},xy}({{\mathbb{k}}})=-\frac{(1+t_{1}e^{ik_{x}})(1-t_{1}e^{-ik_{x}})(1+t_{2}e^{-ik_{y}})(1-t_{2}e^{ik_{y}})}{8\left(\varepsilon_{{\rm cL},+}({{\mathbb{k}}})\right)^{4}}. (22)

The band structure and ImχcL,xyfb,(𝕜)\rm Im\,\chi^{{\rm fb},-}_{{\rm cL},xy}({{\mathbb{k}}}) are shown in Fig. 3b and c. Equation (22) indicates that the modified band dispersion Efb,B(𝕜)E_{{\rm fb},B}({{\mathbb{k}}}) vanishes for all 𝕜{{\mathbb{k}}} because εcL,+(𝕜)=εcL,(𝕜)\varepsilon_{{\rm cL},+}({{\mathbb{k}}})=-\varepsilon_{{\rm cL},-}({{\mathbb{k}}}), which means that there is no LLS in the weak magnetic field. Also, we calculate the Hofstadter spectrum Hofstadter (1976) for the c-Lieb model. Interestingly, we find that the LLS is absent even in the strong magnetic field, as shown in Fig. 3d. The existence of such zero-energy flat bands in the finite magnetic flux is guaranteed by chiral symmetry CC. As explained in Supplementary Note 3, the minimal number of zero-energy flat bands is given by |Tr[C]||{\rm Tr}[C]| at the zero magnetic flux. Moreover, when the system has the |Tr[C]|(>0)|{\rm Tr}[C]|(>0) number of zero-energy flat bands at the zero magnetic flux, the LLS of flat band(s) is forbidden unless a gap closes at zero energy E=0E=0 as the magnetic flux increases (see Supplementary Note 3). In the c-Lieb model, such a gap closing at E=0E=0 does not occur at any magnetic flux. Hence, there is no LLS in all range of magnetic flux. On the other hand, when a gap closes at E=0E=0 as the magnetic flux increases, the LLS is forbidden only in a finite range of magnetic flux. As an example, in Supplementary Note 4, we show the Hofstadter spectrum of the ten-band model for twisted-bilayer graphene proposed in Ref. Po et al., 2019.

II.6 Space-time-inversion-symmetric system

Refer to caption
Figure 4: Landau level spreading of a flat-band system with space-time-inversion symmetry. a The lattice structure for the ISTI_{\rm ST}-symmetric checkerboard model. The red and black lines denote the hopping processes between AA and BB sublattices. b The band structure of HIST(𝕜)H_{I_{\rm ST}}({{\mathbb{k}}}) with t=1.0t=1.0. c The Hofstadter spectrum of the ISTI_{\rm ST}-symmetric checkerboard model with t=1.0t=1.0. d Variation of the lowest and highest Landau levels related to the flat band in the weak magnetic field (blue and black circles). Efb,min(ϕ/ϕ0)E_{\rm fb,min}(\phi/\phi_{0}) and Efb,max(ϕ/ϕ0)E_{\rm fb,max}(\phi/\phi_{0}) indicate the corresponding fitting functions (red and black solid lines) that exhibit quadratic magnetic field dependence dominantly.

The LLS of an IFB is weakly dependent on magnetic field when the system respects space-time-inversion ISTI_{\rm ST} symmetry at zero magnetic field. We consider spinless fermions on the checkerboard lattice shown in Fig. 4a, which is sometimes called the Tasaki or decorated square lattice Tasaki (1992); Aoki et al. (1996); Misumi and Aoki (2017). This model respects both time-reversal TT and inversion II symmetries. Hence, a combined symmetry, space-time-inversion symmetry IST=ITI_{\rm ST}=I\circ T, exists. We note that the following discussion holds even if TT and II are broken as long as ISTI_{\rm ST} is not broken. The tight-binding Hamiltonian consists of the hopping processes up to the third nearest neighbor hopping. In momentum space, the Hamiltonian is written as

HIST(𝕜)\displaystyle H_{I_{\rm ST}}({{\mathbb{k}}}) =(1cosk+2+2tcosk2cosk+2+2tcosk22tcoskx+2tcosky+cos2k+2+4t2cos2k2),\displaystyle=\begin{pmatrix}1&\cos\frac{k_{+}}{2}+2t\cos\frac{k_{-}}{2}\\ \cos\frac{k_{+}}{2}+2t\cos\frac{k_{-}}{2}&2t\cos k_{x}+2t\cos k_{y}+\cos^{2}\frac{k_{+}}{2}+4t^{2}\cos^{2}\frac{k_{-}}{2}\end{pmatrix}, (23)
=(1cosk+2+2tcosk2)(1cosk+2+2tcosk2),\displaystyle=\begin{pmatrix}1\\ \cos\frac{k_{+}}{2}+2t\cos\frac{k_{-}}{2}\end{pmatrix}\begin{pmatrix}1&\cos\frac{k_{+}}{2}+2t\cos\frac{k_{-}}{2}\end{pmatrix}, (24)

where k±=kx±kyk_{\pm}=k_{x}\pm k_{y}. For t=1.0t=1.0, the band structure is shown in Fig. 4b. This system hosts a flat band with zero energy and a dispersive band with positive energy. The energy eigenvalues are given by εIST,(𝕜)=1+(cosk+2+2tcosk2)2\varepsilon_{I_{\rm ST},\uparrow}({{\mathbb{k}}})=1+(\cos\frac{k_{+}}{2}+2t\cos\frac{k_{-}}{2})^{2} and εIST,fb(𝕜)=0\varepsilon_{I_{\rm ST},{\rm fb}}({{\mathbb{k}}})=0.

n this system, ISTI_{\rm ST} is simply given by the complex conjugation, i.e., IST=𝒦I_{\rm ST}=\mathcal{K} and

IST|uIST,fb/(𝕜)=|uIST,fb/(𝕜).\displaystyle I_{ST}|u_{I_{\rm ST},{\rm fb}/\uparrow}({{\mathbb{k}}})\rangle=|u_{I_{\rm ST},{\rm fb}/\uparrow}({{\mathbb{k}}})\rangle. (25)

Also, explicit calculations show ImχIST,xyfb,(𝕜)=0{\rm Im}\,\chi^{{\rm fb},\uparrow}_{I_{\rm ST},xy}({{\mathbb{k}}})=0 and the vanishing modified band dispersion for the flat band En,B(𝕜)=0E_{n,B}({{\mathbb{k}}})=0, which results from Eq. (25). In Supplementary Note 2, we have proved that space-time inversion ISTI_{\rm ST} imposes En,B(𝕜)=0E_{n,B}({{\mathbb{k}}})=0 in general. We also note that En,B(𝕜)=0E_{n,B}({{\mathbb{k}}})=0 is consistent with the fact that the orbital angular momentum, which is proportional to the orbital magnetic moment, is constrained to be zero in ISTI_{\rm ST}-symmetric systems. Although the LLS is negligible in the weak magnetic field, it becomes considerably large in the strong magnetic field as shown in the Hofstadter spectrum in Fig. 4c. As shown in Fig. 4c, the Landau levels of the flat band acquire or lose their energy as the magnetic flux increases from 0 to some finite value much less than 1. This implies that the higher-order corrections of the magnetic field must be considered. Although it is out of the scope of this work, we present a fitting of the highest and lowest Landau levels of the flat band with respect to the magnetic flux:

Efb,min(ϕ/ϕ0)=1.35×1055.51×103(ϕ/ϕ0)2.53(ϕ/ϕ0)2,\displaystyle E_{\rm fb,min}(\phi/\phi_{0})=1.35\times 10^{-5}-5.51\times 10^{-3}(\phi/\phi_{0})-2.53(\phi/\phi_{0})^{2}, (26)
Efb,max(ϕ/ϕ0)=4.56×107+1.82×104(ϕ/ϕ0)+0.50(ϕ/ϕ0)2,\displaystyle E_{\rm fb,max}(\phi/\phi_{0})=-4.56\times 10^{-7}+1.82\times 10^{-4}(\phi/\phi_{0})+0.50(\phi/\phi_{0})^{2}, (27)

which is plotted in Fig. 4d where one can observe the dominant quadratic dependence on the magnetic field.

Finally, we comment on the gap closing at (ϕ/ϕ0,E)=(1,1.0)(\phi/\phi_{0},E)=(1,1.0) in the Hofstadter spectrum in Fig. 4c. At (ϕ/ϕ0,E)=(1,1.0)(\phi/\phi_{0},E)=(1,1.0), the Landau levels related to the flat and dispersive bands show a closing of an indirect gap. We note that there is no closing of direct gaps in the Hofstadter Hamiltonian. Unlike the inevitable closing of the direct gap between topological bands in the finite magnetic flux reported before Lian et al. (2020); Herzog-Arbeitman et al. (2020), it is not necessary to close a direct gap in our system.

III Discussion

We have shown that the LLS of an IFB is determined by its wave-function geometry and the underlying symmetry of the system. The idea presented in this work goes beyond the conventional semiclassical idea in which the Landau level spectrum is dominantly determined by the band dispersion at zero magnetic field. So far, we have focused on the cases when the band width of the IFB is strictly zero. However, in real materials, it is difficult to observe perfect flat bands due to the long-range hoppings and spin-orbit coupling Taie et al. (2015); Kajiwara et al. (2016); Slot et al. (2017); Drost et al. (2017); Leykam et al. (2018). To understand the influence of a finite band width of the IFB, we have studied another tight-binding model defined in the Lieb lattice including spin-orbit coupling. The hopping parameters, the band structure, and the LLS of this system are described in Fig. 2a, Fig. 5a, and Fig. 5b,c, respectively. Under weak magnetic flux with tλsocϕ>0t\lambda_{\rm soc}\phi>0, the LLS of the IFB cannot be observed because it is dominated by the energy scale of the band width of the nearly flat band. However, the anomalous LLS arising from the wave-function geometry can be observed for the magnetic flux larger than a threshold value (ϕ/ϕ0)thres8tλsoc/π(\phi/\phi_{0})_{\rm thres}\sim 8t\lambda_{\rm soc}/\pi (see Fig. 5c). On the other hand, the LLS is not disturbed by the band width when tλsocϕ<0t\lambda_{\rm soc}\phi<0, because the nearly flat band has only positive energy (see Fig. 5c). Such a Lieb lattice model with spin-orbit coupling hosting a nearly flat band was already realized in an exciton-polariton system Whittaker et al. (2018), and also is expected to be realized in electronic systems consisting of covalently-bonded organic frameworks Cui et al. (2020).

Refer to caption
Figure 5: Influence of finite band width and disorder on the Landau level spreading of IFBs. a-c A nearly-flat band in the spin-orbit coupled Lieb lattice where the dispersion of the FB arises from the next nearest neighbor hoppings between AA and CC sublattices with the amplitude tt (see Fig. 2a). a The band structure of the nearly-flat-Lieb model with (t,λsoc)=(0,0.2)(t,\lambda_{\rm soc})=(0,0.2) and (0.02,0.2)(0.02,0.2), which are denoted by the black and red lines, respectively. The right side of the band structure describes the first Brillouin zone and the high-symmetry points. b The Landau levels in the weak magnetic field for t=0.00t=0.00 and λsoc=0.2\lambda_{\rm soc}=0.2. The lowest (highest) Landau level has the energy π2λsocϕ/ϕ0-\frac{\pi}{2\lambda_{\rm soc}}\phi/\phi_{0} when ϕ>0\phi>0 (ϕ<0\phi<0). c Similar plot for t=0.02t=0.02 and λsoc=0.2\lambda_{\rm soc}=0.2. When ϕ>0\phi>0, the LLS can be observed once the magnetic flux exceeds the threshold value (ϕ/ϕ0)thres8tλsocπ(\phi/\phi_{0})_{\rm thres}\sim\frac{8t\lambda_{\rm soc}}{\pi} because of the finite band width 4t4t. While, the threshold magnetic flux is zero when ϕ<0\phi<0 since the LLS develops only in the negative energy direction. d-f Density of states (DOS) of Landau levels in the presence of disorder. d DOS of Landau levels in very clean system with W=0.001W=0.001. The red (black) line corresponds to ϕ/ϕ0=1.00×102\phi/\phi_{0}=1.00\times 10^{-2} (1.25×1021.25\times 10^{-2}). The lowest Landau level (LLL) peaks are denoted by black and red arrows. The energy range of the plot corresponds to the red dashed box in (b). e DOS of Landau levels for W=0.02W=0.02. f The intensity plot of the DOS (or the Landau fan diagram) for W=0.02W=0.02 and the iteration number Nitr=20N_{\rm itr}=20 as a function of ϕ/ϕ0\phi/\phi_{0}. The plot ranges for the energy and magnetic flux correspond to the red dashed box in (b). The black dashed line indicates the LLL peak positions. Note that the maximum value of DOS in the plotted region is 2.306×1022.306\times 10^{-2} (arb. unit).

Finally, we discuss the influence of disorder on the LLS of an IFB and the related Landau level fan diagram. The fan diagram is obtained by calculating the density of states (DOS) of Landau levels of the disordered SOC Lieb model including a random impurity potential whose maximum strength is denoted by WW (see Methods for details). As shown in Fig. 5d and e, aside from the huge and wide DOS peaks from the dense Landau levels with higher Landau level indices, one can find small but sharp peaks corresponding to the LLLs of the IFB, from which the LLS of the IFB can be determined. While this LLL peak is buried in the DOS envelope of the higher Landau levels in the weak magnetic field, it splits away from this envelope as the magnetic field is large enough as shown in Fig. 5f. From the fan diagram, one can check the geometric principle described by Eq. (5) by extracting the slope of the LLL, which is represented by the dashed guide line in Fig. 5f. Here we considered the magnetic fluxes ϕ/ϕ0\phi/\phi_{0} below 1.25×1021.25\times 10^{-2}, which correspond to the experimentally accessible region. Note that when the size of a unit cell is equal to llnm, the relevant magnetic field is about B4000×ϕ/ϕ0×l2(T)B\sim 4000\times\phi/\phi_{0}\times l^{-2}(T) approximately. For instance, in the case of the Lieb lattice composed of the covalently-bonded organic frameworks Cui et al. (2020), ϕ/ϕ0=1.25×102\phi/\phi_{0}=1.25\times 10^{-2} corresponds to B50TB\sim 50T. We expect the DOS peak corresponding to the LLL to be detected by the resistance measurement from magnetotransport experiments or the dI/dVdI/dV measurement from the scanning tunneling spectroscopy if the magnetic field is strong enough or the system is sufficiently clean so that the Landau level spacing becomes larger than the Landau level broadening. Especially, when the LLS develops asymmetrically, like in Fig. 5b, an overall energy shift of the DOS from the flat band’s energy appears more prominently, which provides a direct experimental signature of the LLS even in disordered systems.

Up to now, our discussion has been focused on conventional materials to realize flat bands. However, it is worth noting that there are various artificial systems such as photonic systems Ma et al. (2020a); Vicencio et al. (2015); Baboux et al. (2016); Ozawa et al. (2019), optical lattices Bloch (2005); Aidelsburger et al. (2011); Wu et al. (2007); Apaja et al. (2010); Song et al. (2019a); Tian et al. (2015), and systems with synthetic dimensions Ozawa and Price (2019); Celi et al. (2014); Ozawa and Carusotto (2017); Ozawa (2021); Dutt et al. (2019), which could offer better opportunities to test our theoretical prediction. In these systems, the band engineering is relatively easier, and controlled experiments with artificial magnetic fields can also be performed. Designing realistic experimental setups for observing LLS of flat bands in such artificial systems would be one important problem for future study.

Methods

III.1 Symmetry constraints on the LLS

In order to derive the symmetry constraints on En,B(𝕜)E_{n,B}({{\mathbb{k}}}) and χxynm(𝕜)\chi^{nm}_{xy}({{\mathbb{k}}}), let us consider a symmetry operation σ\sigma acting on the Hamiltonian,

Uσ(𝕜)H(𝕜)¯sUσ(𝕜)=pH(Oσ𝕜),\displaystyle U_{\sigma}({\mathbb{k}})\overline{H({\mathbb{k}})}^{s}U_{\sigma}({\mathbb{k}})^{\dagger}=pH(O_{\sigma}{\mathbb{k}}), (28)

where s{0,1}s\in\{0,1\}, p{1,1}p\in\{-1,1\}, UσU_{\sigma} indicates a unitary matrix representing the symmetry σ\sigma, and x¯=x\overline{x}=x^{*} means the complex conjugation of xx. From now on, we use a compact notation 𝔤σ=(Oσ,s,p)\mathfrak{g}_{\sigma}=(O_{\sigma},s,p) to describe the operation of the symmetry σ\sigma. For example, 𝔤T=(𝟙d,1,1)\mathfrak{g}_{T}=(-\mathds{1}_{d},1,1) is used for time-reversal symmetry TT where dd and 𝟙d\mathds{1}_{d} denote the dimensionality and the d×dd\times d identity matrix, respectively. The symmetry constraints on En,B(𝕜)E_{n,B}({{\mathbb{k}}}) and χijnm(𝕜)\chi_{ij}^{nm}({{\mathbb{k}}}) derived from Eq. (28) are

En,B(Oσ𝕜)=(1)spDetOσEn,B(𝕜),\displaystyle E_{n,B}(O_{\sigma}{{\mathbb{k}}})=(-1)^{s}p\,{\rm Det}O_{\sigma}\,E_{n,B}({{\mathbb{k}}}), (29)
χijnmσ(Oσ𝕜)=[Oσ]ii[Oσ]jjχijnm(𝕜)¯s,\displaystyle\chi_{ij}^{nm_{\sigma}}(O_{\sigma}{{\mathbb{k}}})=[O_{\sigma}]_{ii^{\prime}}[O_{\sigma}]_{jj^{\prime}}\overline{\chi_{i^{\prime}j^{\prime}}^{nm}({{\mathbb{k}}})}^{s}, (30)

where the band indices mm and mσm_{\sigma} in Eq. (30) are chosen such that εm(𝕜)=pεmσ(Oσ𝕜)\varepsilon_{m}({{\mathbb{k}}})=p\,\varepsilon_{m_{\sigma}}(O_{\sigma}{{\mathbb{k}}}). Detailed derivation of Eqs. (29) and (30) and comments on the degenerate bands can be found in Supplementary Note 2. From Eq. (29), we obtain two symmetries that give vanishing modified band dispersion, En,B(𝕜)=0E_{n,B}({{\mathbb{k}}})=0: 𝔤C=(𝟙d,0,1)\mathfrak{g}_{C}=(\mathds{1}_{d},0,-1) and 𝔤IST=(𝟙d,1,1)\mathfrak{g}_{I_{\rm ST}}=(\mathds{1}_{d},1,1) which correspond to chiral symmetry CC and space-time-inversion symmetry ISTI_{\rm ST}, respectively. On the other hand, when (1)spDetOσ=1(-1)^{s}p\,{\rm Det}O_{\sigma}=-1 and DetOσ𝟙{\rm Det}O_{\sigma}\neq\mathds{1}, the modified band dispersion satisfies En,B(Oσ𝕜)=En,B(𝕜)E_{n,B}(O_{\sigma}{{\mathbb{k}}})=-E_{n,B}({{\mathbb{k}}}), which implies maxEn,B(𝕜)=minEn,B(𝕜){\rm max}\,E_{n,B}({{\mathbb{k}}})=-{\rm min}\,E_{n,B}({{\mathbb{k}}}). Time-reversal TT and reflection RR symmetries belong to this case. Also, the contribution to the En,B(𝕜)E_{n,B}({{\mathbb{k}}}) from each band via the inter-band coupling in Eq. (5) can be systematically understood by using Eq. (30) (see Supplementary Note 2 for details).

III.2 Calculation scheme for the Landau levels

We calculate the Hofstadter spectrum by numerically implementing the Peierls substitution to the tight-binding Hamiltonian Hofstadter (1976).

III.3 Calculation of Landau fan diagram including disorder

To obtain the Landau fan diagram including disorder effect, we study a finite-size SOC Lieb model HsocL(𝕜)H_{\rm socL}({{\mathbb{k}}}) composed of 40 by 40 unit cells. Disorder is introduced by the Hamiltonian HdisH_{\rm dis} with components (Hdis)ij=wiδij\left(H_{\rm dis}\right)_{ij}=w_{i}\delta_{ij}, where i,j=1,,4800i,j=1,\dots,4800 denotes the unit cell index and wi[W/2,W/2]w_{i}\in[-W/2,W/2] follows a uniform probability distribution. By diagonalizing the disordered Hamiltonian Nitr=200N_{\rm itr}=200 times and averaging the results, the density of states (DOS) of Landau levels is obtained. Note that chiral edge states are found in the gap between flat and dispersive bands. It is because the two dispersive bands in the SOC Lieb model have the Chern number ±1\pm 1 respectively depending on the sign of spin-orbit coupling, despite the topologically trivial middle flat band. However, the contribution of edge states to DOS is quantitatively negligible.


Data availability The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability The numerical codes used in this paper are available from the corresponding authors upon reasonable request.

Acknowledgments

Y.H. was supported by IBS-R009-D1 and Samsung Science and Technology Foundation under Project Number SSTF-BA2002-06. J.W.R. was supported by IBS-R009-D1, and the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (Grant No. 2021R1A2C1010572). B.J.Y. was supported by the Institute for Basic Science in Korea (Grant No. IBS-R009-D1), Samsung Science and Technology Foundation under Project Number SSTF-BA2002-06, the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No.2021R1A2C4002773, and No. NRF-2021R1A5A1032996), and the U.S. Army Research Office and Asian Office of Aerospace Research & Development (AOARD) under Grant No. W911NF-18-1-0137.


Author contributions Y.H. and J.W.R. performed theoretical and numerical analyses. B.J.Y. supervised the project. All authors analysed the data. The manuscript was written by all authors.

Competing interests The authors declare no competing interests.

Correspondence and requests for materials should be addressed to J.-W. R. or B.-J. Y.

References

Supplementary Information for “Geometric characterization of anomalous Landau levels of isolated flat bands”

Supplementary Note 1. Derivation of the relation between the Landau level spreading of an isolated flat band and cross-gap Berry connection

In the main text, the Landau level spreading of an isolated flat band is related to the cross-gap Berry connection and fidelity tensor through Eq. (5) of the main text. In this Supplementary Note, we derive Eq. (5) of the main text from the definition of the modified band structure En,B(𝕜)E_{n,B}({{\mathbb{k}}}) and the orbital magnetic moment μn(𝕜)\mu_{n}({{\mathbb{k}}}), which are given by Eqs. (3) and (4) of the main text respectively. Recall that the modified band structure of nnth band is expressed as

En,B(𝕜)=εn(𝕜)+μn(𝕜)B,\displaystyle E_{n,B}({{\mathbb{k}}})=\varepsilon_{n}({{\mathbb{k}}})+\mu_{n}({{\mathbb{k}}})B, (S1)

where εn(𝕜)\varepsilon_{n}({{\mathbb{k}}}) denotes band dispersion of nnth band in the zero magnetic field. The orbital magnetic moment μn(𝕜)\mu_{n}({{\mathbb{k}}}) arises from the self rotation of wave packet corresponding to nnth band, and it is given by

μn(𝕜)=eImxun(𝕜)|[εn(𝕜)H(𝕜)]|yun(𝕜),\displaystyle\mu_{n}({{\mathbb{k}}})=\frac{e}{\hbar}\,{\rm Im}\langle\partial_{x}u_{n}({{\mathbb{k}}})|\left[\varepsilon_{n}({{\mathbb{k}}})-H({{\mathbb{k}}})\right]|\partial_{y}u_{n}({{\mathbb{k}}})\rangle, (S2)

where i=ki\partial_{i}=\partial_{k_{i}} (i=x,y)i=x,y) and |un(𝕜)|u_{n}({{\mathbb{k}}})\rangle denotes the periodic part of Bloch wave function of nnth band. These results, Eqs. (S1) and (S2), were obtained by M.-C. Chang and Q. Niu Chang and Niu (1996).

Before deriving Eq. (5) of the main text, we review how Eqs. (3) and (4) of the main text can be obtained from the semiclassical theory of wave packet dynamics by closely following Refs. Chang and Niu, 1996; Sundaram and Niu, 1999. First, let us consider a periodic Hamiltonian H0(𝕣^,𝕡^)H_{0}(\hat{{\mathbb{r}}},\hat{{\mathbb{p}}}) and the Bloch wave function |ψn(𝕢)|\psi_{n}({\mathbb{q}})\rangle for nnth band such that H0(𝕣^,𝕡^)|ψn(𝕢)=εn(𝕢)|ψn(𝕢)H_{0}(\hat{{\mathbb{r}}},\hat{{\mathbb{p}}})|\psi_{n}({\mathbb{q}})\rangle=\varepsilon_{n}({\mathbb{q}})|\psi_{n}({\mathbb{q}})\rangle where 𝕢{\mathbb{q}} is the crystal momentum. Correspondingly, the Bloch Hamiltonian, H0𝕢(𝕣^,𝕡^)=ei𝕢𝕣^H0(𝕣^,𝕡^)ei𝕢𝕣^H_{0{\mathbb{q}}}(\hat{{\mathbb{r}}},\hat{{\mathbb{p}}})=e^{-i{\mathbb{q}}\cdot\hat{{\mathbb{r}}}}H_{0}(\hat{{\mathbb{r}}},\hat{{\mathbb{p}}})e^{i{\mathbb{q}}\cdot\hat{{\mathbb{r}}}}, and the periodic part of Bloch wave function, |un(𝕢)=ei𝕢𝕣^|ψn(𝕢)|u_{n}({\mathbb{q}})\rangle=e^{i{\mathbb{q}}\cdot\hat{{\mathbb{r}}}}|\psi_{n}({\mathbb{q}})\rangle, satisfy a similar eigenvalue equation, H0𝕢(𝕣^,𝕡^)|un(𝕢)=εn(𝕢)|un(𝕢)H_{0{\mathbb{q}}}(\hat{{\mathbb{r}}},\hat{{\mathbb{p}}})|u_{n}({\mathbb{q}})\rangle=\varepsilon_{n}({\mathbb{q}})|u_{n}({\mathbb{q}})\rangle. From now on, we omit the argument of Hamiltonian unless there is no confusion.

In the presence of constant magnetic field, the vector potential can be chosen as 𝔸(𝕣)=12𝔹×𝕣{\mathbb{A}}({\mathbb{r}})=\frac{1}{2}{\mathbb{B}}\times{\mathbb{r}}. As the vector potential changes the Hamiltonian according to the Peierls substitution, the Hamiltonian in the magnetic field becomes H=H0(𝕣^,𝕡^+e𝔸(𝕣^))H=H_{0}(\hat{{\mathbb{r}}},\hat{{\mathbb{p}}}+e{\mathbb{A}}(\hat{{\mathbb{r}}})). When a semiclassical wave packet is localized at 𝕣c{\mathbb{r}}_{c} in real space, one can consider the derivative expansion of HH near 𝕣c{\mathbb{r}}_{c}. Up to first order in BB, the Hamiltonian is divided into unperturbed Hamiltonian H1H_{1} and perturbation Hamiltonian H2H_{2}, i.e. H=H1+H2H=H_{1}+H_{2}. Explicitly, H1,2H_{1,2} are expressed by

H1=H0(𝕣^,𝕡^+e𝔸(𝕣c)),H2=e4m𝔹[(𝕣^𝕣c)×^]+h.c,\displaystyle H_{1}=H_{0}(\hat{{\mathbb{r}}},\hat{{\mathbb{p}}}+e{\mathbb{A}}({\mathbb{r}}_{c})),\quad H_{2}=\frac{e}{4m}{\mathbb{B}}\cdot\left[(\hat{{\mathbb{r}}}-{\mathbb{r}}_{c})\times\hat{{\mathbb{P}}}\right]+h.c, (S3)

where ^=im[𝕣^,H1]\hat{{\mathbb{P}}}=-i\frac{m}{\hbar}[\hat{{\mathbb{r}}},H_{1}] is the momentum operator. H1H_{1} is the Hamiltonian that the wave packet experiences at its center 𝕣c{\mathbb{r}}_{c}. H2H_{2} is the coupling between the orbital magnetic moment and the magnetic field. This can be seen by noticing that 𝕃=12(𝕣^𝕣c)×^12^×(𝕣^𝕣c){{\mathbb{L}}}=\frac{1}{2}(\hat{{\mathbb{r}}}-{\mathbb{r}}_{c})\times\hat{{\mathbb{P}}}-\frac{1}{2}\hat{{\mathbb{P}}}\times(\hat{{\mathbb{r}}}-{\mathbb{r}}_{c}) where 𝕃{{\mathbb{L}}} is the angular momentum resulted from the self rotation of wave packet around its center. Hence, H2=e2m𝔹𝕃μ𝔹H_{2}=\frac{e}{2m}{\mathbb{B}}\cdot{\mathbb{L}}\simeq{\mathbb{\mu}}\cdot{\mathbb{B}} where we define the orbital magnetic moment as μe2m𝕃{\mathbb{\mu}}\simeq\frac{e}{2m}{\mathbb{L}}.

As we treat H1H_{1} as the unperturbed Hamiltonian, the corresponding unperturbed eigenstates should be identified. Since H1=H0(𝕣^,𝕡^+e𝔸(𝕣c))=eie𝔸(𝕣c)𝕣^H0(𝕣^,𝕡^)eie𝔸(𝕣c)𝕣^H_{1}=H_{0}(\hat{{\mathbb{r}}},\hat{{\mathbb{p}}}+e{\mathbb{A}}({\mathbb{r}}_{c}))=e^{-ie{\mathbb{A}}({\mathbb{r}}_{c})\cdot\hat{{\mathbb{r}}}}H_{0}(\hat{{\mathbb{r}}},\hat{{\mathbb{p}}})e^{ie{\mathbb{A}}({\mathbb{r}}_{c})\cdot\hat{{\mathbb{r}}}}, one can define H1𝕢=ei𝕢𝕣^H1ei𝕢𝕣^=ei𝕜𝕣^H0ei𝕜𝕣^H_{1{\mathbb{q}}}=e^{-i{\mathbb{q}}\cdot\hat{{\mathbb{r}}}}H_{1}e^{i{\mathbb{q}}\cdot\hat{{\mathbb{r}}}}=e^{-i{\mathbb{k}}\cdot\hat{{\mathbb{r}}}}H_{0}e^{i{\mathbb{k}}\cdot\hat{{\mathbb{r}}}} by introducing the gauge-invariant crystal momentum 𝕜=𝕢+e𝔸(𝕣c){{\mathbb{k}}}={\mathbb{q}}+\frac{e}{\hbar}{{\mathbb{A}}}({\mathbb{r}}_{c}). From H1𝕢=ei𝕜𝕣^H0ei𝕜𝕣^H_{1{\mathbb{q}}}=e^{-i{\mathbb{k}}\cdot\hat{{\mathbb{r}}}}H_{0}e^{i{\mathbb{k}}\cdot\hat{{\mathbb{r}}}}, H1𝕢H_{1{\mathbb{q}}} can also be identified as H0𝕜H_{0{\mathbb{k}}}. Hence, the Bloch wave function and its periodic part must be chosen such that H0𝕜|un(𝕜)=εn(𝕜)|un(𝕜)H_{0{\mathbb{k}}}|u_{n}({\mathbb{k}})\rangle=\varepsilon_{n}({\mathbb{k}})|u_{n}({\mathbb{k}})\rangle, H1|ψn(𝕜)=εn(𝕜)|ψn(𝕜)H_{1}|\psi_{n}({\mathbb{k}})\rangle=\varepsilon_{n}({\mathbb{k}})|\psi_{n}({\mathbb{k}})\rangle, and |ψn(𝕜)=ei𝕢𝕣^|un(𝕜)|\psi_{n}({\mathbb{k}})\rangle=e^{i{\mathbb{q}}\cdot\hat{{\mathbb{r}}}}|u_{n}({\mathbb{k}})\rangle. Once the unperturbed eigenstates are identified, a semiclassical wave packet |Wn|W_{n}\rangle can be constructed as follows. |Wn|W_{n}\rangle is a superposition of |ψn(𝕜)|\psi_{n}({{\mathbb{k}}})\rangle with different momenta 𝕜{{\mathbb{k}}}: |Wn=𝕢w(𝕢)|ψn(𝕜)=𝕢w(𝕢)ei𝕢𝕣^|un(𝕜)|W_{n}\rangle=\sum_{{\mathbb{q}}}w({\mathbb{q}})|\psi_{n}({\mathbb{k}})\rangle=\sum_{{\mathbb{q}}}w({\mathbb{q}})e^{i{\mathbb{q}}\cdot\hat{{\mathbb{r}}}}|u_{n}({\mathbb{k}})\rangle where the amplitude w(𝕢)w({\mathbb{q}}) are normalized according to 𝕢w(𝕢)¯w(𝕢)=1\sum_{{\mathbb{q}}}\overline{w({\mathbb{q}})}w({\mathbb{q}})=1. Since the wave packet is localized at real-space center 𝕣c{\mathbb{r}}_{c} and momentum-space center 𝕢c{\mathbb{q}}_{c}, the amplitude w(𝕢)w({\mathbb{q}}) must satisfy Wn|𝕣^|Wn=𝕣c\langle W_{n}|\hat{{\mathbb{r}}}|W_{n}\rangle={\mathbb{r}}_{c} and w(𝕢)¯w(𝕢)δ𝕢,𝕢c\overline{w({\mathbb{q}})}w({\mathbb{q}})\simeq\delta_{{\mathbb{q}},{\mathbb{q}}_{c}}. Note that x¯\overline{x} and δ\delta denote the complex conjugation of xx and the Kronecker delta symbol, respectively.

Now, we can calculate the energy expectation value Wn|H|Wn=E1+E2\langle W_{n}|H|W_{n}\rangle=E_{1}+E_{2} where E1,2=Wn|H1,2|WnE_{1,2}=\langle W_{n}|H_{1,2}|W_{n}\rangle. First, E1E_{1} can be obtained straightforwardly,

E1=Wn|H1|Wn=𝕢w(𝕢)¯w(𝕢)εn(𝕜)εn(𝕜c),\displaystyle E_{1}=\langle W_{n}|H_{1}|W_{n}\rangle=\sum_{{\mathbb{q}}}\overline{w({\mathbb{q}})}w({\mathbb{q}})\varepsilon_{n}({\mathbb{k}})\simeq\varepsilon_{n}({\mathbb{k}}_{c}), (S4)

where 𝕜c=𝕢c+e𝔸(𝕣c){\mathbb{k}}_{c}={\mathbb{q}}_{c}+\frac{e}{\hbar}{\mathbb{A}}({\mathbb{r}}_{c}). Hence, E1E_{1} is nothing but the unperturbed band dispersion at momentum 𝕜c{\mathbb{k}}_{c}. The energy correction E2E_{2} can be written as

Wn|H2|Wn\displaystyle\langle W_{n}|H_{2}|W_{n}\rangle =𝕢,𝕢w(𝕢)¯w(𝕢)ψn(𝕜)|H2|ψn(𝕜)\displaystyle=\sum_{{\mathbb{q}},{\mathbb{q}}^{\prime}}\overline{w({\mathbb{q}}^{\prime})}w({\mathbb{q}})\langle\psi_{n}({\mathbb{k}}^{\prime})|H_{2}|\psi_{n}({\mathbb{k}})\rangle
=ie4𝔹𝕢,𝕢w(𝕢)¯w(𝕢)un(𝕜)|(𝕣^𝕣c)×ei𝕢𝕣^[𝕣^,H1]ei𝕢𝕣^|un(𝕜)+h.c.\displaystyle=-i\frac{e}{4\hbar}{\mathbb{B}}\cdot\sum_{{\mathbb{q}},{\mathbb{q}}^{\prime}}\overline{w({\mathbb{q}}^{\prime})}w({\mathbb{q}})\langle u_{n}({\mathbb{k}}^{\prime})|(\hat{{\mathbb{r}}}-{\mathbb{r}}_{c})\times e^{-i{\mathbb{q}}^{\prime}\cdot\hat{{\mathbb{r}}}}[\hat{{\mathbb{r}}},H_{1}]e^{i{\mathbb{q}}\cdot\hat{{\mathbb{r}}}}|u_{n}({\mathbb{k}})\rangle+h.c.
=e4𝔹𝕢,𝕢w(𝕢)¯w(𝕢)un(𝕜)|(𝕣^𝕣c)ei(𝕢𝕢)𝕣^×𝕜H0𝕜|un(𝕜)+h.c.,\displaystyle=\frac{e}{4\hbar}{\mathbb{B}}\cdot\sum_{{\mathbb{q}},{\mathbb{q}}^{\prime}}\overline{w({\mathbb{q}}^{\prime})}w({\mathbb{q}})\langle u_{n}({\mathbb{k}}^{\prime})|(\hat{{\mathbb{r}}}-{\mathbb{r}}_{c})e^{-i({\mathbb{q}}^{\prime}-{\mathbb{q}})\cdot\hat{{\mathbb{r}}}}\times\partial_{{\mathbb{k}}}H_{0{\mathbb{k}}}|u_{n}({\mathbb{k}})\rangle+h.c.,
=e4𝔹𝕢,𝕢w(𝕢)¯w(𝕢)𝔽(𝕜,𝕜)+h.c.,\displaystyle=\frac{e}{4\hbar}{\mathbb{B}}\cdot\sum_{{\mathbb{q}},{\mathbb{q}}^{\prime}}\overline{w({\mathbb{q}}^{\prime})}w({\mathbb{q}}){{\mathbb{F}}}({\mathbb{k}}^{\prime},{\mathbb{k}})+h.c., (S5)

where [𝕣^,H0𝕜]=i𝕜H0𝕜[\hat{{\mathbb{r}}},H_{0{\mathbb{k}}}]=i\partial_{{\mathbb{k}}}H_{0{\mathbb{k}}} is applied in the third equality and we define 𝔽(𝕜,𝕜)=un(𝕜)|(𝕣^𝕣c)ei(𝕢𝕢)𝕣^×𝕜H0𝕜|un(𝕜){{\mathbb{F}}}({\mathbb{k}}^{\prime},{\mathbb{k}})=\langle u_{n}({\mathbb{k}}^{\prime})|(\hat{{\mathbb{r}}}-{\mathbb{r}}_{c})e^{-i({\mathbb{q}}^{\prime}-{\mathbb{q}})\cdot\hat{{\mathbb{r}}}}\times\partial_{{\mathbb{k}}}H_{0{\mathbb{k}}}|u_{n}({\mathbb{k}})\rangle for notational simplicity. The expression for F(𝕜,𝕜)F({{\mathbb{k}}}^{\prime},{{\mathbb{k}}}) can be simplified with the help of various identities such as 𝕣^=i𝕢ei𝕢𝕣^ei𝕢𝕣^\hat{{\mathbb{r}}}=i\partial_{{\mathbb{q}}}e^{-i{\mathbb{q}}\cdot\hat{{\mathbb{r}}}}e^{i{\mathbb{q}}\cdot\hat{{\mathbb{r}}}} and 𝕜H0𝕜|un(𝕜)=𝕜εn(𝕜)|un(𝕜)+(εn(𝕜)H0𝕜)|𝕜un(𝕜)\partial_{{\mathbb{k}}}H_{0{\mathbb{k}}}|u_{n}({\mathbb{k}})\rangle=\partial_{{\mathbb{k}}}\varepsilon_{n}({\mathbb{k}})|u_{n}({\mathbb{k}})\rangle+(\varepsilon_{n}({{\mathbb{k}}})-H_{0{\mathbb{k}}})|\partial_{{\mathbb{k}}}u_{n}({\mathbb{k}})\rangle. We also use f1(𝕢)|ei(𝕢𝕢)𝕣^|f2(𝕢)=f1(𝕢)|f2(𝕢)δ𝕢,𝕢\langle f_{1}({\mathbb{q}}^{\prime})|e^{-i({\mathbb{q}}^{\prime}-{\mathbb{q}})\cdot\hat{{\mathbb{r}}}}|f_{2}({\mathbb{q}})\rangle=\langle f_{1}({\mathbb{q}})|f_{2}({\mathbb{q}})\rangle\delta_{{\mathbb{q}}^{\prime},{\mathbb{q}}}, which holds for two states |f1,2(𝕢)|f_{1,2}({\mathbb{q}})\rangle that are periodic in real space. Applying these identities, we obtain

𝔽(𝕜,𝕜)\displaystyle{{\mathbb{F}}}({\mathbb{k}}^{\prime},{\mathbb{k}}) =iun(𝕜)|[(𝕢𝕣c)ei(𝕢𝕢)r^]×[𝕜εn(𝕜)|un(𝕜)+(εn(𝕜)H0𝕜)|𝕜un(𝕜)]\displaystyle=i\langle u_{n}({\mathbb{k}}^{\prime})|\left[(\partial_{{\mathbb{q}}^{\prime}}-{\mathbb{r}}_{c})e^{-i({\mathbb{q}}^{\prime}-{\mathbb{q}})\cdot\hat{r}}\right]\times\left[\partial_{{\mathbb{k}}}\varepsilon_{n}({\mathbb{k}})|u_{n}({\mathbb{k}})\rangle+(\varepsilon_{n}({{\mathbb{k}}})-H_{0{\mathbb{k}}})|\partial_{{\mathbb{k}}}u_{n}({\mathbb{k}})\rangle\right]
=(i𝕜δ𝕜,𝕜𝕣c+An(𝕜))×𝕜εn(𝕜)i𝕜un(𝕜)|×[εn(𝕜)H0𝕜]|𝕜un(𝕜),\displaystyle=\left(i\partial_{{{\mathbb{k}}}^{\prime}}\delta_{{\mathbb{k}}^{\prime},{\mathbb{k}}}-{\mathbb{r}}_{c}+A_{n}({{\mathbb{k}}})\right)\times\partial_{{{\mathbb{k}}}}\varepsilon_{n}({{\mathbb{k}}})-i\langle\partial_{{{\mathbb{k}}}}u_{n}({{\mathbb{k}}})|\times\left[\varepsilon_{n}({{\mathbb{k}}})-H_{0{\mathbb{k}}}\right]|\partial_{{{\mathbb{k}}}}u_{n}({{\mathbb{k}}})\rangle, (S6)

where An(𝕜)=i𝕜un(𝕜)|un(𝕜)A_{n}({{\mathbb{k}}})=-i\langle\partial_{{{\mathbb{k}}}}u_{n}({{\mathbb{k}}})|u_{n}({{\mathbb{k}}})\rangle. Here, we treat the Kronecker delta as the Dirac delta function with the appropriate numerical factor. The substitution of Eq. (S6) into Eq. (S5) leads to

E2=\displaystyle E_{2}= ie4𝔹𝕢|w(𝕢)|2𝕜un(𝕜)|×[εn(𝕜)H0𝕜]|𝕜un(𝕜)\displaystyle-\frac{ie}{4\hbar}{\mathbb{B}}\cdot\sum_{{\mathbb{q}}}|w({\mathbb{q}})|^{2}\langle\partial_{{{\mathbb{k}}}}u_{n}({{\mathbb{k}}})|\times\left[\varepsilon_{n}({{\mathbb{k}}})-H_{0{\mathbb{k}}}\right]|\partial_{{{\mathbb{k}}}}u_{n}({{\mathbb{k}}})\rangle
+e4𝔹𝕢[iw(𝕢)𝕢w(𝕢)¯+(An(𝕜)𝕣c)|w(𝕢)|2]×𝕜εn(𝕜)+h.c.\displaystyle+\frac{e}{4\hbar}{\mathbb{B}}\cdot\sum_{{\mathbb{q}}}\left[-iw({\mathbb{q}})\partial_{{\mathbb{q}}}\overline{w({\mathbb{q}})}+(A_{n}({{\mathbb{k}}})-{\mathbb{r}}_{c})|w({\mathbb{q}})|^{2}\right]\times\partial_{{{\mathbb{k}}}}\varepsilon_{n}({{\mathbb{k}}})+h.c.
\displaystyle\simeq ie4𝔹𝕜cun(𝕜c)|×[εn(𝕜c)H0𝕜c]|𝕜cun(𝕜c)\displaystyle-\frac{ie}{4\hbar}{\mathbb{B}}\cdot\langle\partial_{{\mathbb{k}}_{c}}u_{n}({\mathbb{k}}_{c})|\times\left[\varepsilon_{n}({\mathbb{k}}_{c})-H_{0{\mathbb{k}}_{c}}\right]|\partial_{{\mathbb{k}}_{c}}u_{n}({\mathbb{k}}_{c})\rangle
+e4𝔹[iw(𝕢c)𝕢cw(𝕢c)¯+(An(𝕜c)𝕣c)|w(𝕢c)|2]×𝕜cεn(𝕜c)+h.c.\displaystyle+\frac{e}{4\hbar}{\mathbb{B}}\cdot\left[-iw({\mathbb{q}}_{c})\partial_{{\mathbb{q}}_{c}}\overline{w({\mathbb{q}}_{c})}+(A_{n}({\mathbb{k}}_{c})-{\mathbb{r}}_{c})|w({\mathbb{q}}_{c})|^{2}\right]\times\partial_{{\mathbb{k}}_{c}}\varepsilon_{n}({\mathbb{k}}_{c})+h.c. (S7)

As the condition, Wn|𝕣^|Wn=𝕣c\langle W_{n}|\hat{{\mathbb{r}}}|W_{n}\rangle={\mathbb{r}}_{c}, imposes iw(𝕢c)𝕢cw(𝕢c)¯=(An(𝕜c)𝕣c)|w(𝕢c)|2iw({\mathbb{q}}_{c})\partial_{{\mathbb{q}}_{c}}\overline{w({\mathbb{q}}_{c})}=(A_{n}({\mathbb{k}}_{c})-{\mathbb{r}}_{c})|w({\mathbb{q}}_{c})|^{2}, we finally obtain

E2=ie4𝔹𝕜cun(𝕜c)|×[εn(𝕜c)H0𝕜c]|𝕜cun(𝕜c)+h.c..\displaystyle E_{2}=-\frac{ie}{4\hbar}{\mathbb{B}}\cdot\langle\partial_{{\mathbb{k}}_{c}}u_{n}({\mathbb{k}}_{c})|\times\left[\varepsilon_{n}({\mathbb{k}}_{c})-H_{0{\mathbb{k}}_{c}}\right]|\partial_{{\mathbb{k}}_{c}}u_{n}({\mathbb{k}}_{c})\rangle+h.c.. (S8)

Since this result holds for any wave packet with 𝕜c{\mathbb{k}}_{c}, 𝕜c{\mathbb{k}}_{c} can be replaced with 𝕜{\mathbb{k}}. Hence, E2=𝝁(𝕜)𝔹E_{2}={\bm{\mu}}({{\mathbb{k}}})\cdot{\mathbb{B}} where the orbital magnetic moment is defined by

𝝁(𝕜)=ie4𝕜un(𝕜)|×[εn(𝕜)H0𝕜]|𝕜un(𝕜)+h.c.,\displaystyle{\bm{\mu}}({{\mathbb{k}}})=-\frac{ie}{4\hbar}\langle\partial_{{\mathbb{k}}}u_{n}({\mathbb{k}})|\times\left[\varepsilon_{n}({\mathbb{k}})-H_{0{\mathbb{k}}}\right]|\partial_{{\mathbb{k}}}u_{n}({\mathbb{k}})\rangle+h.c., (S9)

The zz component of 𝝁(𝕜){\bm{\mu}}({{\mathbb{k}}}) is identical to Eq. (S2).

Equipped with the above result, we now derive Eq. (5) of the main text from the orbital magnetic moment formula in Eq. (S2). While we are interested in the Landau level spreading of the flat band, let us assume that the flat band is the nn-th band with energy ε0\varepsilon_{0}. Then, Eq. (S2) becomes

μn(𝕜)\displaystyle\mu_{n}({{\mathbb{k}}}) =eImxun(𝕜)|[ε0H(𝕜)]|yun(𝕜),\displaystyle=\frac{e}{\hbar}\,{\rm Im}\langle\partial_{x}u_{n}({{\mathbb{k}}})|\left[\varepsilon_{0}-H({{\mathbb{k}}})\right]|\partial_{y}u_{n}({{\mathbb{k}}})\rangle, (S10)
=eImxun(𝕜)|l|ul(𝕜)ul(𝕜)|[ε0H(𝕜)]m|um(𝕜)um(𝕜)|yun(𝕜),\displaystyle=\frac{e}{\hbar}\,{\rm Im}\langle\partial_{x}u_{n}({{\mathbb{k}}})|\sum_{l}|u_{l}({{\mathbb{k}}})\rangle\langle u_{l}({{\mathbb{k}}})|\left[\varepsilon_{0}-H({{\mathbb{k}}})\right]\sum_{m}|u_{m}({{\mathbb{k}}})\rangle\langle u_{m}({{\mathbb{k}}})|\partial_{y}u_{n}({{\mathbb{k}}})\rangle, (S11)
=eIml,m[ε0εm(𝕜)]xun(𝕜)|ul(𝕜)um(𝕜)|yun(𝕜)δlm,\displaystyle=\frac{e}{\hbar}\,{\rm Im}\sum_{l,m}\left[\varepsilon_{0}-\varepsilon_{m}({{\mathbb{k}}})\right]\langle\partial_{x}u_{n}({{\mathbb{k}}})|u_{l}({{\mathbb{k}}})\rangle\langle u_{m}({{\mathbb{k}}})|\partial_{y}u_{n}({{\mathbb{k}}})\rangle\delta_{lm}, (S12)
=eImm[ε0εm(𝕜)]xun(𝕜)|um(𝕜)um(𝕜)|yun(𝕜),\displaystyle=\frac{e}{\hbar}\,{\rm Im}\sum_{m}\left[\varepsilon_{0}-\varepsilon_{m}({{\mathbb{k}}})\right]\langle\partial_{x}u_{n}({{\mathbb{k}}})|u_{m}({{\mathbb{k}}})\rangle\langle u_{m}({{\mathbb{k}}})|\partial_{y}u_{n}({{\mathbb{k}}})\rangle, (S13)

where the completeness relation I=m|um(𝕜)um(𝕜)|I=\sum_{m}|u_{m}({{\mathbb{k}}})\rangle\langle u_{m}({{\mathbb{k}}})| is used. Without loss of generality, one can assume that ε0=0\varepsilon_{0}=0. Then, by inserting Eq. (S13) into the Eq. (S1), we obtain

En,B(𝕜)\displaystyle E_{n,B}({{\mathbb{k}}}) =εn(𝕜)+μn(𝕜)B=μn(𝕜)B,\displaystyle=\varepsilon_{n}({{\mathbb{k}}})+\mu_{n}({{\mathbb{k}}})B=\mu_{n}({{\mathbb{k}}})B, (S14)
=BeImmεm(𝕜)xun(𝕜)|um(𝕜)um(𝕜)|yun(𝕜),\displaystyle=-B\frac{e}{\hbar}\,{\rm Im}\sum_{m}\varepsilon_{m}({{\mathbb{k}}})\langle\partial_{x}u_{n}({{\mathbb{k}}})|u_{m}({{\mathbb{k}}})\rangle\langle u_{m}({{\mathbb{k}}})|\partial_{y}u_{n}({{\mathbb{k}}})\rangle, (S15)
=2πϕϕ0Immεm(𝕜)xun(𝕜)|um(𝕜)um(𝕜)|yun(𝕜),\displaystyle=-2\pi\frac{\phi}{\phi_{0}}\,{\rm Im}\sum_{m}\varepsilon_{m}({{\mathbb{k}}})\langle\partial_{x}u_{n}({{\mathbb{k}}})|u_{m}({{\mathbb{k}}})\rangle\langle u_{m}({{\mathbb{k}}})|\partial_{y}u_{n}({{\mathbb{k}}})\rangle, (S16)

where A0A_{0} is the area of the unit cell, ϕ=BA0\phi=BA_{0}, and ϕ0=h/e\phi_{0}=h/e. Finally, noting that the fidelity tensor is defined by

χijnm(𝕜)=iun(𝕜)|um(𝕜)um(𝕜)|jun(𝕜)=Ainm(𝕜)Ajnm(𝕜),\displaystyle\chi^{nm}_{ij}({\mathbb{k}})=\langle\partial_{i}u_{n}({\mathbb{k}})|u_{m}({\mathbb{k}})\rangle\langle u_{m}({\mathbb{k}})|\partial_{j}u_{n}({\mathbb{k}})\rangle=A^{nm}_{i}({\mathbb{k}})^{*}A^{nm}_{j}({\mathbb{k}}), (S17)

we obtain

En,B(𝕜)=2πϕϕ01A0Immnεm(𝕜)χxynm(𝕜).\displaystyle E_{n,B}({{\mathbb{k}}})=-2\pi\frac{\phi}{\phi_{0}}\frac{1}{A_{0}}{\rm Im}\,\sum_{m\neq n}\varepsilon_{m}({{\mathbb{k}}})\chi^{nm}_{xy}({{\mathbb{k}}}). (S18)

Since we assume that the flat band’s energy is zero, one should interpret εm(𝕜)\varepsilon_{m}({{\mathbb{k}}}) in Eq. (S18) as the energy of the mm-th band with respect to the flat band energy.

Supplementary Note 2. Symmetry constraint on the Landau level spreading of flat band

In this Supplementary Note, we study the symmetry transformation of the modified band dispersion En,B(𝕜)E_{n,B}({{\mathbb{k}}}) and the fidelity tensor χijnm(𝕜)\chi_{ij}^{nm}({{\mathbb{k}}}). Here, we use a compact notation which can be applied to both unitary and anti-unitary (anti)-symmetries. In this notation, any symmetry operation σ^\hat{\sigma} can be expressed by

Uσ(𝕜)H(𝕜)¯sUσ(𝕜)=pH(Oσ𝕜),\displaystyle U_{\sigma}({\mathbb{k}})\overline{H({\mathbb{k}})}^{s}U_{\sigma}({\mathbb{k}})^{\dagger}=pH(O_{\sigma}{\mathbb{k}}), (S19)
𝔤σ=(Oσ,s,p),\displaystyle\mathfrak{g}_{\sigma}=(O_{\sigma},s,p), (S20)

where s=0,1s=0,1 and p=±1p=\pm 1. The bar notation denotes the complex conjugation, i.e., x¯=x\overline{x}=x^{*}. For example, 𝔤σ=(𝟙,0,1)\mathfrak{g}_{\sigma}=(\mathds{1},0,-1) and (𝟙,1,1)(-\mathds{1},1,1) correspond to chiral and time-reversal symmetries, respectively, where 𝟙\mathds{1} denotes the identity matrix. First consequence of symmetry in Eq. (S20) is that the band structure is symmetric with respect to σ\sigma. Namely, pε(𝕜)p\,\varepsilon({{\mathbb{k}}}) is the corresponding energy eigenvalue at Oσ𝕜O_{\sigma}{{\mathbb{k}}} for an energy eigenvalue ε(𝕜)\varepsilon({{\mathbb{k}}}) in the band structure. Furthermore, symmetry relations are imposed on the energy eigenstates as follows.

Uσ(𝕜)|um(𝕜)¯s=|umσ(Oσ𝕜)Bσ(𝕜)mσm(mn),\displaystyle U_{\sigma}({{\mathbb{k}}})\overline{|u_{m}({{\mathbb{k}}})\rangle}^{s}=|u_{m_{\sigma}}(O_{\sigma}{{\mathbb{k}}})\rangle B_{\sigma}({{\mathbb{k}}})_{m_{\sigma}m}\quad(m\neq n), (S21)
Uσ(𝕜)|un(𝕜)¯s=|un(Oσ𝕜)eiϕn(𝕜),\displaystyle U_{\sigma}({{\mathbb{k}}})\overline{|u_{n}({{\mathbb{k}}})\rangle}^{s}=|u_{n}(O_{\sigma}{{\mathbb{k}}})\rangle e^{i\phi_{n}({{\mathbb{k}}})}, (S22)

for dispersive bands mm (mnm\neq n) and the flat band nn, respectively. Here, the band indices are defined such that εm(𝕜)=pεmσ(Oσ𝕜)\varepsilon_{m}({{\mathbb{k}}})=p\,\varepsilon_{m_{\sigma}}(O_{\sigma}{{\mathbb{k}}}), and Bσ(𝕜)mσmB_{\sigma}({{\mathbb{k}}})_{m_{\sigma}m} and eiϕn(𝕜)e^{i\phi_{n}({{\mathbb{k}}})} are unitary and periodic in the Brillouin zone. With the symmetry transformation of energy eigenstates defined above in Eqs. (S21) and (S22), one can derive symmetry constraint on the modified band dispersion En,B(𝕜)E_{n,B}({{\mathbb{k}}}) and the fidelity tensor χijnm(𝕜)\chi_{ij}^{nm}({{\mathbb{k}}}).

Symmetry constraint on the modified band dispersion En,B(𝕜)E_{n,B}({{\mathbb{k}}})

We recall the definition of modified band dispersion En,B(𝕜)E_{n,B}({{\mathbb{k}}}):

En,B(𝕜)=\displaystyle E_{n,B}({{\mathbb{k}}})= 2πϕϕ01A0Imxun(𝕜)|H(𝕜)|yun(𝕜).\displaystyle-2\pi\frac{\phi}{\phi_{0}}\frac{1}{A_{0}}{\rm Im}\langle\partial_{x}u_{n}({{\mathbb{k}}})|H({{\mathbb{k}}})|\partial_{y}u_{n}({{\mathbb{k}}})\rangle. (S23)

Note that nn-th band is an isolated flat band with εn(𝕜)=0\varepsilon_{n}({{\mathbb{k}}})=0. Now, we study the symmetry transformation of lijn(𝕜)iun(𝕜)|H(𝕜)|jun(𝕜)l_{ij}^{n}({{\mathbb{k}}})\coloneqq\langle\partial_{i}u_{n}({{\mathbb{k}}})|H({{\mathbb{k}}})|\partial_{j}u_{n}({{\mathbb{k}}})\rangle by using Eq. (S22):

lijn(Oσ𝕜)=\displaystyle l_{ij}^{n}(O_{\sigma}{\mathbb{k}})= [𝕜iun(𝕜)|H(𝕜)|𝕜jun(𝕜)]𝕜=Oσ𝕜\displaystyle\left[\langle\partial_{{\mathbb{k}}^{\prime}_{i}}u_{n}({\mathbb{k}}^{\prime})|H({\mathbb{k}}^{\prime})|\partial_{{\mathbb{k}}^{\prime}_{j}}u_{n}({\mathbb{k}}^{\prime})\rangle\right]_{{\mathbb{k}}^{\prime}=O_{\sigma}{\mathbb{k}}}
=\displaystyle= [Oσ]ii[Oσ]jji(eiϕn(𝕜)un(𝕜)|¯sUσ(𝕜))\displaystyle[O_{\sigma}]_{ii^{\prime}}[O_{\sigma}]_{jj^{\prime}}\,\partial_{i^{\prime}}\left(e^{i\phi_{n}({\mathbb{k}})}\overline{\langle u_{n}({\mathbb{k}})|}^{s}U_{\sigma}({\mathbb{k}})^{\dagger}\right)
×(pUσ(𝕜)H(𝕜)¯sUσ(𝕜))j(eiϕn(𝕜)Uσ(𝕜)|un(𝕜)¯s)\displaystyle\times\left(pU_{\sigma}({\mathbb{k}})\overline{H({\mathbb{k}})}^{s}U_{\sigma}({\mathbb{k}})^{\dagger}\right)\,\partial_{j^{\prime}}\left(e^{-i\phi_{n}({\mathbb{k}})}U_{\sigma}({\mathbb{k}})\overline{|u_{n}({\mathbb{k}})\rangle}^{s}\right)
=\displaystyle= p[Oσ]ii[Oσ]jjiun(𝕜)|H(𝕜)|jun(𝕜)¯s\displaystyle p[O_{\sigma}]_{ii^{\prime}}[O_{\sigma}]_{jj^{\prime}}\,\overline{\langle\partial_{i^{\prime}}u_{n}({\mathbb{k}})|H({\mathbb{k}})|\partial_{j^{\prime}}u_{n}({\mathbb{k}})\rangle}^{s}
=\displaystyle= p[Oσ]ii[Oσ]jjlijn(𝕜)¯s.\displaystyle p[O_{\sigma}]_{ii^{\prime}}[O_{\sigma}]_{jj^{\prime}}\,\overline{l_{i^{\prime}j^{\prime}}^{n}({{\mathbb{k}}})}^{s}. (S24)

Hence, we obtain

En,B(Oσ𝕜)=\displaystyle E_{n,B}(O_{\sigma}{{\mathbb{k}}})= 2πϕϕ01A0Im[p[Oσ]xi[Oσ]yjlijn(𝕜)¯s]\displaystyle-2\pi\frac{\phi}{\phi_{0}}\frac{1}{A_{0}}\,{\rm Im}\left[p\,[O_{\sigma}]_{xi}[O_{\sigma}]_{yj}\,\overline{l_{ij}^{n}({{\mathbb{k}}})}^{s}\right]
=\displaystyle= (1)sp([Oσ]xx[Oσ]yy[Oσ]xy[Oσ]yx)×2πϕϕ01A0Imlxyn(𝕜)\displaystyle-(-1)^{s}p\,\left([O_{\sigma}]_{xx}[O_{\sigma}]_{yy}-[O_{\sigma}]_{xy}[O_{\sigma}]_{yx}\right)\times 2\pi\frac{\phi}{\phi_{0}}\frac{1}{A_{0}}\,{\rm Im}\,l_{xy}^{n}({{\mathbb{k}}})
=\displaystyle= (1)spDetOσEn,B(𝕜).\displaystyle(-1)^{s}p\,{\rm Det}O_{\sigma}\,E_{n,B}({{\mathbb{k}}}). (S25)

Note that lxxn(𝕜)l_{xx}^{n}({{\mathbb{k}}}) and lyyn(𝕜)l_{yy}^{n}({{\mathbb{k}}}) are real, thus Imlxxn(𝕜)=Imlyyn(𝕜)=0{\rm Im}\,l_{xx}^{n}({{\mathbb{k}}})={\rm Im}\,l_{yy}^{n}({{\mathbb{k}}})=0. We remark two cases when the LLS is strongly constrained by symmetry. First, when (1)sp=1(-1)^{s}p=-1 and Oσ=𝟙O_{\sigma}=\mathds{1} are satisfied at the same time, the modified band dispersion En,B(𝕜)=0E_{n,B}({{\mathbb{k}}})=0 vanishes. Chiral symmetry CC and space-time-inversion symmetry ISTI_{\rm ST}, characterized by 𝔤C=(𝟙,0,1)\mathfrak{g}_{C}=(\mathds{1},0,-1) and 𝔤IST=(𝟙,1,1)\mathfrak{g}_{I_{\rm ST}}=(\mathds{1},1,1) respectively, belong to this case. The second case is when (1)spDetOσ=1(-1)^{s}p\,{\rm Det}O_{\sigma}=-1 and Oσ𝟙O_{\sigma}\neq\mathds{1}. In this case, En,B(Oσ𝕜)=En,B(𝕜)E_{n,B}(O_{\sigma}{{\mathbb{k}}})=-E_{n,B}({{\mathbb{k}}}) and this implies that the minimum and maximum values of LLS has the same magnitude but opposite in sign, i.e., maxEn,B(𝕜)=minEn,B(𝕜){\rm max}\,E_{n,B}({{\mathbb{k}}})=-{\rm min}\,E_{n,B}({{\mathbb{k}}}). Notable examples are time-reversal symmetry TT and reflection symmetry RR.

Symmetry constraint on χxynm(𝕜)\chi_{xy}^{nm}({{\mathbb{k}}})

Although the symmetry analysis for the modified band dispersion En,B(𝕜)E_{n,B}({{\mathbb{k}}}) is sufficient for studying the Landau level spreading (LLS), the symmetry analysis for χxynm(𝕜)\chi_{xy}^{nm}({{\mathbb{k}}}) provides some useful insights for understanding of the LLS as the inter-band coupling. From Eqs. (S21) and (S22), we obtain the relation between χijnm(𝕜)\chi_{ij}^{nm}({{\mathbb{k}}}) and χijnmσ(Oσ𝕜)\chi_{ij}^{nm_{\sigma}}(O_{\sigma}{{\mathbb{k}}}) where the band mm and the band mσm_{\sigma} are related by the symmetry σ\sigma so that εm(𝕜)=pεmσ(Oσ𝕜)\varepsilon_{m}({{\mathbb{k}}})=p\,\varepsilon_{m_{\sigma}}(O_{\sigma}{{\mathbb{k}}}):

χijnmσ(Oσ𝕜)=\displaystyle\chi_{ij}^{nm_{\sigma}}(O_{\sigma}{{\mathbb{k}}})= [𝕜iun(𝕜)|umσ(𝕜)umσ(𝕜)|𝕜jun(𝕜)]𝕜=Oσ𝕜\displaystyle\left[\langle\partial_{{{\mathbb{k}}}^{\prime}_{i}}u_{n}({{\mathbb{k}}}^{\prime})|u_{m_{\sigma}}({{\mathbb{k}}}^{\prime})\rangle\langle u_{m_{\sigma}}({{\mathbb{k}}}^{\prime})|\partial_{{{\mathbb{k}}}^{\prime}_{j}}u_{n}({{\mathbb{k}}}^{\prime})\rangle\right]_{{{\mathbb{k}}}^{\prime}=O_{\sigma}{{\mathbb{k}}}}
=\displaystyle= [Oσ]ii[Oσ]jji(eiϕn(𝕜)un(𝕜)|¯sUσ(𝕜))\displaystyle[O_{\sigma}]_{ii^{\prime}}[O_{\sigma}]_{jj^{\prime}}\,\partial_{i^{\prime}}\left(e^{i\phi_{n}({{\mathbb{k}}})}\overline{\langle u_{n}({{\mathbb{k}}})|}^{s}U_{\sigma}({{\mathbb{k}}})^{\dagger}\right)
×(Uσ(𝕜)|um(𝕜)um(𝕜)|¯sUσ(𝕜))j(Uσ(𝕜)|un(𝕜)¯seiϕn(𝕜))\displaystyle\times\left(U_{\sigma}({{\mathbb{k}}})\overline{|u_{m}({{\mathbb{k}}})\rangle\langle u_{m}({{\mathbb{k}}})|}^{s}U_{\sigma}({{\mathbb{k}}})^{\dagger}\right)\partial_{j^{\prime}}\left(U_{\sigma}({{\mathbb{k}}})\overline{|u_{n}({{\mathbb{k}}})\rangle}^{s}e^{-i\phi_{n}({{\mathbb{k}}})}\right)
=\displaystyle= [Oσ]ii[Oσ]jjχijnm(𝕜)¯s.\displaystyle[O_{\sigma}]_{ii^{\prime}}[O_{\sigma}]_{jj^{\prime}}\overline{\chi_{i^{\prime}j^{\prime}}^{nm}({{\mathbb{k}}})}^{s}. (S26)

Let us now apply Eq. (S26) to i) chiral symmetry CC, ii) space-time-inversion symmetry ISTI_{\rm ST}, iii) a combined symmetry CST=CISTC_{\rm ST}=C\circ I_{\rm ST} with CC and ISTI_{\rm ST}, iv) time-reversal symmetry TT, and v) reflection symmetry

i) Chiral symmetry CC is characterized by 𝔤C=(Oσ,s,p)=(𝟙,0,1)\mathfrak{g}_{C}=(O_{\sigma},s,p)=(\mathds{1},0,-1), and Eq. (S26) implies χijnmσ(𝕜)=χijnm(𝕜)\chi_{ij}^{nm_{\sigma}}({{\mathbb{k}}})=\chi_{ij}^{nm}({{\mathbb{k}}}). Noting that εm(𝕜)=εmσ(𝕜)\varepsilon_{m}({{\mathbb{k}}})=-\varepsilon_{m_{\sigma}}({{\mathbb{k}}}), we obtain

a=m,mσεa(𝕜)χijna(𝕜)=0.\displaystyle\sum_{a=m,m_{\sigma}}\varepsilon_{a}({{\mathbb{k}}})\chi_{ij}^{na}({{\mathbb{k}}})=0. (S27)

Thus, for each chiral-symmetric pair |um(𝕜)|u_{m}({{\mathbb{k}}})\rangle and |umσ(𝕜)|u_{m_{\sigma}}({{\mathbb{k}}})\rangle, the contribution to the modified band dispersion En,B(𝕜)E_{n,B}({{\mathbb{k}}}) cancels out.

ii) Space-time inversion ISTI_{\rm ST} define by 𝔤IST=(𝟙,1,1)\mathfrak{g}_{I_{\rm ST}}=(\mathds{1},1,1) imposes the condition χijnmσ(𝕜)=(χijnm(𝕜))\chi_{ij}^{nm_{\sigma}}({{\mathbb{k}}})=\left(\chi_{ij}^{nm}({{\mathbb{k}}})\right)^{*}. In ISTI_{\rm ST}-symmetric system, let us suppose non-degenerate band structure with band labeling m=mσm=m_{\sigma} with εm(𝕜)=εmσ(𝕜)\varepsilon_{m}({{\mathbb{k}}})=\varepsilon_{m_{\sigma}}({{\mathbb{k}}}) for simplicity. Hence,

εm(𝕜)Imχijnm(𝕜)=0,\displaystyle\varepsilon_{m}({{\mathbb{k}}})\,{\rm Im}\,\chi_{ij}^{nm}({{\mathbb{k}}})=0, (S28)

and contribution from each energy eigenstate |um(𝕜)|u_{m}({{\mathbb{k}}})\rangle vanishes.

iii) Let us consider CST=CISTC_{\rm ST}=C\circ I_{\rm ST}, a combination of chiral and space-time-inversion symmetries, characterized by 𝔤CST=(𝟙,1,1)\mathfrak{g}_{C_{\rm ST}}=(\mathds{1},1,-1). For this symmetry, the condition χijnmσ(𝕜)=(χijnm(𝕜))\chi_{ij}^{nm_{\sigma}}({{\mathbb{k}}})=\left(\chi_{ij}^{nm}({{\mathbb{k}}})\right)^{*} is imposed. This symmetry constraint is similar to ISTI_{\rm ST}-symmetric system, but now εm(𝕜)=εmσ(𝕜)\varepsilon_{m}({\mathbb{k}})=-\varepsilon_{m_{\sigma}}({{\mathbb{k}}}). Hence,

{εa(𝕜)>0}εa(𝕜)Imχijna(𝕜)={εa¯(𝕜)<0}εa¯(𝕜)Imχijna¯(𝕜).\displaystyle\sum_{\{\varepsilon_{a}({{\mathbb{k}}})>0\}}\varepsilon_{a}({\mathbb{k}})\,{\rm Im}\,\chi_{ij}^{na}({{\mathbb{k}}})=\sum_{\{\varepsilon_{\overline{a}}({{\mathbb{k}}})<0\}}\,\varepsilon_{\overline{a}}({{\mathbb{k}}}){\rm Im}\,\chi_{ij}^{n\overline{a}}({{\mathbb{k}}}). (S29)

In this system, both energy eigenstates with positive and negative energy eigenvalues contribute to the LLS with the same sign. In the main text, we discuss the spin-orbit-coupled (SOC) Lieb model. This model possesses CSTC_{\rm ST},

CSTHsocL(𝕜)CST1=HsocL(𝕜)whereCST=Diag(1,1,1)𝒦.\displaystyle C_{\rm ST}H_{\rm socL}({\mathbb{k}})C_{\rm ST}^{-1}=-H_{\rm socL}({{\mathbb{k}}})\quad\textrm{where}\quad C_{\rm ST}={\rm Diag}(1,-1,1)\mathcal{K}. (S30)

This symmetry leads to χsocL,xyfb,+(𝕜)=(χsocL,xyfb,(𝕜))\chi_{{\rm socL},xy}^{{\rm fb},+}({{\mathbb{k}}})=\left(\chi_{{\rm socL},xy}^{{\rm fb},-}({{\mathbb{k}}})\right)^{*}.

iv) Time-reversal symmetry TT is characterized by 𝔤T=(𝟙,1,1)\mathfrak{g}_{T}=(-\mathds{1},1,1), and χijnmσ(𝕜)=(χijnm(𝕜))\chi_{ij}^{nm_{\sigma}}(-{{\mathbb{k}}})=\left(\chi_{ij}^{nm}({{\mathbb{k}}})\right)^{*} consequently. Noting that εm(𝕜)=εmσ(𝕜)\varepsilon_{m}({{\mathbb{k}}})=\varepsilon_{m_{\sigma}}(-{{\mathbb{k}}}), we obtain

εm(𝕜)Imχijnm(𝕜)=εmσ(𝕜)Imχijnmσ(𝕜).\displaystyle\varepsilon_{m}({{\mathbb{k}}})\,{\rm Im}\,\chi_{ij}^{nm}({{\mathbb{k}}})=-\varepsilon_{m_{\sigma}}(-{{\mathbb{k}}})\,{\rm Im}\,\chi_{ij}^{nm_{\sigma}}(-{{\mathbb{k}}}). (S31)

Thus, En,B(𝕜)=En,B(𝕜)E_{n,B}({{\mathbb{k}}})=-E_{n,B}(-{{\mathbb{k}}}), and this implies maxEn,B(𝕜)=minEn,B(𝕜){\rm max}\,E_{n,B}({{\mathbb{k}}})=-{\rm min}\,E_{n,B}({{\mathbb{k}}}).

v) For a discussion on reflection symmetry RR, we consider RxR_{x}, characterized by 𝔤Rx=(Diag(1,1),0,1)\mathfrak{g}_{R_{x}}=({\rm Diag}(-1,1),0,1), for convenience. RxR_{x} imposes χijnmσ(kx,ky)=χijnm(𝕜)\chi_{ij}^{nm_{\sigma}}(-k_{x},k_{y})=-\chi_{ij}^{nm}({{\mathbb{k}}}). Considering εm(𝕜)=εmσ(kx,ky)\varepsilon_{m}({{\mathbb{k}}})=\varepsilon_{m_{\sigma}}(-k_{x},k_{y}), we obtain

εm(𝕜)Imχijnm(𝕜)=εmσ(kx,ky)Imχijnmσ(kx,ky),\displaystyle\varepsilon_{m}({{\mathbb{k}}})\,{\rm Im}\,\chi_{ij}^{nm}({{\mathbb{k}}})=-\varepsilon_{m_{\sigma}}(-k_{x},k_{y})\,{\rm Im}\,\chi_{ij}^{nm_{\sigma}}(-k_{x},k_{y}), (S32)

and En,B(𝕜)=En,B(kx,ky)E_{n,B}({{\mathbb{k}}})=-E_{n,B}(-k_{x},k_{y}). In similar to iv), we conclude that maxEn,B(𝕜)=minEn,B(𝕜){\rm max}\,E_{n,B}({{\mathbb{k}}})=-{\rm min}\,E_{n,B}({{\mathbb{k}}}).

Let us comment on the case where some bands are degenerate. When the band mm is degenerate with other band(s), χijnm(𝕜)\chi_{ij}^{nm}({{\mathbb{k}}}) or εm(𝕜)Imχijnm(𝕜)\varepsilon_{m}({{\mathbb{k}}})\,{\rm Im}\,\chi_{ij}^{nm}({{\mathbb{k}}}) alone is not gauge invariant. Let us suppose that the DD number of bands, whose band indices are m1,m2,,mDm_{1},m_{2},\dots,m_{D}, form a set of degenerate bands {m}\{m\}, i.e., (m1,m2,,mD){m}(m_{1},m_{2},\dots,m_{D})\in\{m\}. Then, a{m}χijna(𝕜)\sum_{a\in\{m\}}\chi_{ij}^{na}({{\mathbb{k}}}) and a{m}εa(𝕜)Imχijna(𝕜)\sum_{a\in\{m\}}\varepsilon_{a}({{\mathbb{k}}})\,{\rm Im}\,\chi_{ij}^{na}({{\mathbb{k}}}) are gauge invariant under the gauge transformation,

|umi(𝕜)|umj(𝕜)Gmjmi(𝕜)(i,j=1,2,,D),\displaystyle|u_{m_{i}}({{\mathbb{k}}})\rangle\rightarrow|u_{m_{j}}({{\mathbb{k}}})\rangle\,G_{m_{j}m_{i}}({{\mathbb{k}}})\quad(i,j=1,2,\dots,D), (S33)

where Gmjmi(𝕜)G_{m_{j}m_{i}}({{\mathbb{k}}}) is DD-by-DD unitary matrix.

Supplementary Note 3. Landau level spreading of flat-band system with chiral symmetry

In this Supplementary Note, we discuss the LLS of flat-band system in the presence of chiral symmetry. As discussed in the main text and Supplementary Note 1, the LLS of chiral-symmetric system is forbidden in finite or all range of magnetic flux. First, let us discuss some properties of chiral-symmetric system in the zero magnetic flux. For chiral-symmetric Hamiltonian, the symmetry relation,

CH(𝕜)C1=H(𝕜)\displaystyle CH({{\mathbb{k}}})C^{-1}=-H({{\mathbb{k}}}) (S34)

holds. The implies that eigenstates |ua(𝕜)|u_{a}({{\mathbb{k}}})\rangle and |ua¯(𝕜)|u_{\bar{a}}({{\mathbb{k}}})\rangle, having energy eigenvalues εa(𝕜)\varepsilon_{a}({{\mathbb{k}}}) and εa¯(𝕜)=εa(𝕜)\varepsilon_{\bar{a}}({{\mathbb{k}}})=-\varepsilon_{a}({{\mathbb{k}}}) respectively, are related by the chiral symmetry operator CC:

C|ua(𝕜)=|ua¯(𝕜)B(𝕜)a¯a.\displaystyle C|u_{a}({{\mathbb{k}}})\rangle=|u_{\bar{a}}({{\mathbb{k}}})\rangle B({{\mathbb{k}}})_{\bar{a}a}. (S35)

Here, B(𝕜)B({{\mathbb{k}}}) denotes the sewing matrix for the chiral symmetry. The chiral eigenvalues cc are given by the eigenvalues of Ba¯a(𝕜)B_{\bar{a}a}({{\mathbb{k}}}). When εa¯(𝕜)=εa(𝕜)0\varepsilon_{\bar{a}}({{\mathbb{k}}})=-\varepsilon_{a}({{\mathbb{k}}})\neq 0, the sewing matrix is equal to

B(𝕜)a¯a=(0110),\displaystyle B({{\mathbb{k}}})_{\bar{a}a}=\begin{pmatrix}0&1\\ 1&0\end{pmatrix}, (S36)

up to unitary transformation, and its eigenvalues are given by c=±1c=\pm 1. Conversely, this implies that two degenerate flat-bands with zero energy having opposite chiral eigenvalues c=±1c=\pm 1 can be gapped under chiral-symmetric perturbations. However, a set of zero-energy flat bands cannot be gapped when all the chiral eigenvalues of such flat bands are equal. Since the sewing matrix B(𝕜)a¯aB({{\mathbb{k}}})_{\bar{a}a} for all bands is identical to the chiral symmetry operator CC up to unitary transformation, the minimum number of zero-energy flat bands, guaranteed to be exists due to the chiral symmetry, is given by |Tr[C]||{\rm Tr}[C]|.

In the magnetic finite flux, the system still remains chiral symmetric. This is because chiral symmetry arises from a specific way of choosing the hoppings between the sublattices, and it is not changed by the Peierls substitution. For the magnetic unit cell qq times larger than the original unit cell, the minimal number of flat bands are equal to q|Tr[C]|q|{\rm Tr}[C]| where qq is determined by the magnetic flux ϕ/ϕ0=q0pq\phi/\phi_{0}=q_{0}\frac{p}{q} (q0,p,qq_{0},p,q\in\mathbb{Z}). Note that q0q_{0} is a constant dependent on the gauge choice and the models. These zero-energy flat bands still have the same chiral eigenvalues, thus these are protected by chiral symmetry (Cnew=i=1qCC_{\rm new}=\oplus_{i=1}^{q}C now). Hence, unless a gap between zero-energy and non-zero-energy Landau levels closes as the magnetic flux increases, the LLS is forbidden even in the finite magnetic flux when the number of flat bands is q|Tr[C]|q|{\rm Tr}[C]| at the zero magnetic flux. When such a gap closing occurs at ϕ/ϕ0=φ\phi/\phi_{0}=\varphi_{*}, the LLS can be finite for the magnetic flux larger than φ\varphi_{*}. Nevertheless, there must be at least the q|Tr[C]|q|{\rm Tr}[C]| number of zero-energy Landau levels.

Supplementary Note 4. More lattice models

Time-reversal-symmetric system on the checkerboard lattice

Refer to caption
Supplementary Figure 1: Landau level spreading of a flat-band system with time-reversal symmetry. a Lattice structure for the TT-symmetric checkerboard model. Neighboring sites connected by the same type of bonds (a solid or dotted line) with the same color have the same hopping amplitudes. b The band structure of HT(𝕜)H_{T}({{\mathbb{k}}}). c Distribution of Imχxyfb,(𝕜){\rm Im}\chi_{xy}^{{\rm fb},\uparrow}({{\mathbb{k}}}). d The modified band dispersion Efb,B(𝕜)E_{{\rm fb},B}({{\mathbb{k}}}) of the flat band in the presence of magnetic flux. e Landau level spectra of the flat band (black dots) as a function of tt for magnetic flux ϕ/ϕ0=1/500\phi/\phi_{0}=1/500. f Landau level spectra of the flat band (black dots) as a function of magnetic flux ϕ/ϕ0\phi/\phi_{0} for t=0.6t=0.6. e, f The upper and lower bounds of Landau levels are equal in magnitude but opposite in sign.

When a time-reversal symmetry TT exists at zero magnetic field, the LLS of an IFS has the minimum and maximum values of the same magnitude but opposite in sign. We consider a TT-symmetric system defined in the checkerboard lattice. The lattice structure is shown in Supplementary Figure 1a. The on-site potentials at A- and B-sites are set to be 5 and 1+t21+t^{2}, respectively. The hopping parameters are set to 22 along the red solid line, tt along the black sold line, 11 along the red dashed lines, and 2t2t along the black dashed lines. The tight-binding Hamiltonian is written as

HT(𝕜)=(5+4cosky2tei𝕜𝕕1+2ei𝕜𝕕2+ei𝕜𝕕1+tei𝕜𝕕22tei𝕜𝕕1+2ei𝕜𝕕2+ei𝕜𝕕1+tei𝕜𝕕21+t2+2tcoskx),\displaystyle H_{T}({{\mathbb{k}}})=\begin{pmatrix}5+4\cos k_{y}&2te^{-i{\mathbb{k}}\cdot{\mathbb{d}}_{1}}+2e^{-i{\mathbb{k}}\cdot{\mathbb{d}}_{2}}+e^{i{\mathbb{k}}\cdot{\mathbb{d}}_{1}}+te^{i{\mathbb{k}}\cdot{\mathbb{d}}_{2}}\\ 2te^{i{\mathbb{k}}\cdot{\mathbb{d}}_{1}}+2e^{i{\mathbb{k}}\cdot{\mathbb{d}}_{2}}+e^{-i{\mathbb{k}}\cdot{\mathbb{d}}_{1}}+te^{-i{\mathbb{k}}\cdot{\mathbb{d}}_{2}}&1+t^{2}+2t\cos k_{x}\end{pmatrix}, (S37)

where 𝕕1=(1/2,1/2){\mathbb{d}}_{1}=(1/2,1/2) and 𝕕2=(1/2,1/2){\mathbb{d}}_{2}=(-1/2,1/2). This Hamiltonian gives a zero-energy flat band, and a dispersive band with energy εT,(𝕜)=6+t2+2tcoskx+4cosky>0\varepsilon_{T,\uparrow}({{\mathbb{k}}})=6+t^{2}+2t\cos k_{x}+4\cos k_{y}>0 as show in Supplementary Figure 1b. The time-reversal symmetry operator is given by the complex conjugation 𝒦\mathcal{K}, i.e., T=𝒦T=\mathcal{K}, which gives a symmetry relation,

THT(𝕜)T1=HT(𝕜).\displaystyle TH_{T}({{\mathbb{k}}})T^{-1}=H_{T}(-{{\mathbb{k}}}). (S38)

The analytic form of the fidelity tensor χxynm(𝕜)\chi_{xy}^{nm}({{\mathbb{k}}}) is given by

χxyfb,(𝕜)=(3+4isinky)(t2+2isinkx1)4(εT,(𝕜))2.\displaystyle\chi^{{\rm fb},\uparrow}_{xy}({{\mathbb{k}}})=\frac{(3+4i\sin k_{y})(t^{2}+2i\sin k_{x}-1)}{4\left(\varepsilon_{T,\uparrow}({\mathbb{k}})\right)^{2}}. (S39)

Then, the modified band dispersion for the flat band is given by

Efb,B(𝕜)=π(3tsinkx+2(t21)sinky)εT,(𝕜)ϕϕ0.\displaystyle E_{{\rm fb},B}({{\mathbb{k}}})=-\frac{\pi(3t\sin k_{x}+2(t^{2}-1)\sin k_{y})}{\varepsilon_{T,\uparrow}({{\mathbb{k}}})}\,\frac{\phi}{\phi_{0}}. (S40)

In Supplementary Figure 1c, d, Imχxyfb,(𝕜){\rm Im}\,\chi^{{\rm fb},\uparrow}_{xy}({{\mathbb{k}}}) and Efb,B(𝕜)E_{{\rm fb},B}({{\mathbb{k}}}) are shown. Note that Efb,B(𝕜)=Efb,B(𝕜)E_{{\rm fb},B}(-{{\mathbb{k}}})=-E_{{\rm fb},B}({{\mathbb{k}}}). Consequently, the Landau levels of the flat band spread in both positive and negative energy directions with the same amounts as shown in Supplementary Figure 1e, f.

Reflection-symmetric system on the checkerboard lattice

Refer to caption
Supplementary Figure 2: Landau level spreading of a flat-band system with reflection symmetry. a The lattice structure for the ISTI_{\rm ST}-symmetric checkerboard model. The red and black lines denote the hopping processes between AA and BB sublattices. b The band structure of HR(𝕜)H_{R}({{\mathbb{k}}}) with t=2.0t=2.0. c Distribution of Imχxyfb,(𝕜){\rm Im}\chi_{xy}^{{\rm fb},\uparrow}({{\mathbb{k}}}) with t=2.0t=2.0. d The modified band dispersion Efb,B(𝕜)E_{{\rm fb},B}({{\mathbb{k}}}) of the flat band in the presence of magnetic flux. e Landau level spectra of the flat band (black dots) as a function of tt for magnetic flux ϕ/ϕ0=1/500\phi/\phi_{0}=1/500. We note that space-time inversion symmetry ISTI_{\rm ST} exist when t=1.0t=1.0, thus the LLS is strongly suppressed. f Landau level spectra of the flat band (black dots) as a function of magnetic flux ϕ/ϕ0\phi/\phi_{0} for t=2.0t=2.0. e, f The upper and lower bounds of Landau levels are equal in magnitude but opposite in sign.

In similar to time-reversal symmetric system at the zero magnetic field, we expect that the LLS whose the minimum and maximum values have the same magnitude but opposite in sign, for reflection RR symmetric system at the zero field. We consider a RR-symmetric system defined in the checkerboard lattice. This model is symmetric under reflection symmetry RR in the xx-direction. The lattice structure is shown in Supplementary Figure 2a. The tight-binding Hamiltonian consists of the hopping processes up to the next-to-next neighbor hopping. In momentum space, the Hamiltonian is written as

HR(𝕜)=|ϕ(𝕜)ϕ(𝕜)|,\displaystyle H_{R}({{\mathbb{k}}})=|\phi({{\mathbb{k}}})\rangle\langle\phi({{\mathbb{k}}})|, (S41)
|ϕ(𝕜)=(iei𝕜𝕕1+iei𝕜𝕕2+tei𝕜𝕕1+tei𝕜𝕕2,4)T,\displaystyle|\phi({{\mathbb{k}}})\rangle=(ie^{-i{{\mathbb{k}}}\cdot{\mathbb{d}}_{1}}+ie^{-i{{\mathbb{k}}}\cdot{\mathbb{d}}_{2}}+te^{i{{\mathbb{k}}}\cdot{\mathbb{d}}_{1}}+te^{i{{\mathbb{k}}}\cdot{\mathbb{d}}_{2}},4)^{T}, (S42)

where 𝕕1=(1/2,1/2){\mathbb{d}}_{1}=(1/2,1/2) and 𝕕2=(1/2,1/2){\mathbb{d}}_{2}=(-1/2,1/2). The band structure for t=2.0t=2.0 is shown in Supplementary Figure 2b. The flat band’s energy is zero and the energies of dispersive band is

εR,(𝕜)=18+2t2+2(1+t2)coskx+4tsinky+2tsin(kx+ky)2tsin(kxky).\displaystyle\varepsilon_{R,\uparrow}({{\mathbb{k}}})=18+2t^{2}+2(1+t^{2})\cos k_{x}+4t\sin k_{y}+2t\sin(k_{x}+k_{y})-2t\sin(k_{x}-k_{y}). (S43)

The reflection symmetry operator is given by R=Diag(1,1)R={\rm Diag}(1,1) which gives a symmetry relation,

RHR(𝕜)R1=HR(kx,ky).\displaystyle RH_{R}({{\mathbb{k}}})R^{-1}=H_{R}(-k_{x},k_{y}). (S44)

The analytic form of the fidelity tensor χxynm(𝕜)\chi_{xy}^{nm}({{\mathbb{k}}}) is given by

χxyfb,(𝕜)=8isinkx(t2+2icosky1)(εR,(𝕜))2.\displaystyle\chi^{{\rm fb},\uparrow}_{xy}({{\mathbb{k}}})=\frac{8i\sin k_{x}(t^{2}+2i\cos k_{y}-1)}{\left(\varepsilon_{R,\uparrow}({\mathbb{k}})\right)^{2}}. (S45)

Then, the modified band dispersion for the flat band is given by

Efb,B(𝕜)=16π(t21)sinkxεR,(𝕜)ϕϕ0.\displaystyle E_{{\rm fb},B}({{\mathbb{k}}})=-\frac{16\pi(t^{2}-1)\sin k_{x}}{\varepsilon_{R,\uparrow}({{\mathbb{k}}})}\,\frac{\phi}{\phi_{0}}. (S46)

In Supplementary Figure 2c, d, Imχxyfb,(𝕜){\rm Im}\,\chi^{{\rm fb},\uparrow}_{xy}({{\mathbb{k}}}) and Efb,B(𝕜)E_{{\rm fb},B}({{\mathbb{k}}}) are shown. Note that Efb,B(kx,ky)=Efb,B(𝕜)E_{{\rm fb},B}(-k_{x},k_{y})=-E_{{\rm fb},B}({{\mathbb{k}}}). Consequently, the Landau levels of the flat band spread in both positive and negative energy directions with the same amounts as shown in Supplementary Figure 2e, f.

Ten-band model for twisted bilayer graphene

Refer to caption
Supplementary Figure 3: Landau level spreading of 10-band TBG model. a The band structure for 10-band TBG model proposed in Ref. Po et al. (2019). The Brillouin zone and the high-symmetry points are defined in the inset. b The Hofstadter spectrum exhibits the zero LLS of flat band at the magnetic flux ϕ/ϕ0\phi/\phi_{0} in a range of 0ϕ/ϕ0<10\leq\phi/\phi_{0}<1. When ϕ/ϕ0=1\phi/\phi_{0}=1, a gap closing at E=0E=0 occurs, then the finite LLS is observed for ϕ/ϕ0>1\phi/\phi_{0}>1. c A zoom-in of the Hofstadter spectrum shown in b. Chiral symmetry guarantees the zero-energy Landau levels despite the appearance of non-zero LLS.

In this Supplementary Note, we discuss one more example for chiral-symmetric system. For this, we consider the ten-band model for twisted-bilayer graphene (TBG) proposed in Ref. Po et al., 2019. The band structure and the Hofstadter spectrum is shown in Supplementary Figure 3a and 3b, c, respectively. The band structure exhibits two degenerate flat bands at zero energy when the on-site potential is neglected. Moreover, these flat bands have fragile topology protected by C2zTC_{2z}\circ T Po et al. (2018, 2019); Ahn et al. (2019); Song et al. (2019b). Although this system is not our interest in this paper as we focus only on an isolated and topologically trivial flat band, we study this system in detail as an important example of chiral-symmetric flat-band system.

As shown in Supplementary Figure 3b, c, There is no LLS in the Hofstadter spectrum for 0ϕ/ϕ0<10\leq\phi/\phi_{0}<1. This is because the chiral symmetry operator of this system is given by

C=Diag(1,1,1,1,1,1,1,1,1,1),\displaystyle C={\rm Diag}(-1,-1,-1,-1,1,1,1,1,1,1), (S47)

and Tr[C]0{\rm Tr}[C]\neq 0 at the zero magnetic field. According to the discussion in Supplementary Note 2, this implies the zero LLS in a finite range of the magnetic flux. Interestingly, the gap near E=0E=0 closes at ϕ/ϕ0=1\phi/\phi_{0}=1, and then the LLS is developed after the gap closing, as shown in Supplementary Figure 3c. The connection between the gap closing and fragile topology is discussed in Ref. Lian et al., 2020.