This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Global existence and stability of time-periodic solution to isentropic compressible Euler equations with source term

Huimin Yu  Xiaomin Zhang  Jiawei Sun
Department of mathematics, Shandong Normal University, Jinan 250014 China
e-mail: hmyu@sdnu.edu.cne-mail: zxm15924687@163.comCorresponding author e-mail: sunjiawei0122@163.com

Abstract: In this paper, we study the initial-boundary value problem of one-dimensional isentropic compressible Euler equations with the source term βρ|u|αu\beta\rho|u|^{\alpha}u. By means of wave decomposition and the uniform a-priori estimates, we prove the global existence of smooth solutions under small perturbations around the supersonic Fanno flow. Then, by Gronwall’s inequality, we get the smooth solution is time-periodic.
Keywords: Isentropic compressible Euler equations, global existence, time-periodic solutions, supersonic Fanno flow, wave composition
Mathematics Subject Classification 2010: 35B10, 35A01, 35Q31.

1 Introduction

In this paper, we are concerned with isentropic compressible Euler equations with a nonlinear term:

{tρ+x(ρu)=0,t(ρu)+x(ρu2+p)=βρ|u|αu,(t,x)[0,+)×[0,L],\left\{\begin{aligned} &\partial_{t}\rho+\partial_{x}(\rho u)=0,\\ &\partial_{t}(\rho u)+\partial_{x}(\rho u^{2}+p)=\beta\rho|u|^{\alpha}u,\end{aligned}\right.\quad(t,x)\in[0,+\infty)\times[0,L], (1.1)

where ρ,u\rho,u and pp are the density, velocity and pressure of gas, respectively. The pressure p(ρ)p(\rho) is governed by p(ρ)=aργp(\rho)=a\rho^{\gamma}, here the adiabatic exponent γ>1\gamma>1 and the parameter aa is scaled to unity for mathematical convenience. The sound speed c0c\geq 0 is defined by c2=p/ρc^{2}=\partial p/\partial\rho. And the term βρ|u|αu\beta\rho|u|^{\alpha}u represents the friction with α,β\alpha,\beta\in\mathbb{R}.
In this paper, we assume the initial data are

(ρ,u)|t=0=(ρ0(x),u0(x)).\displaystyle(\rho,u)^{\top}|_{t=0}=(\rho_{0}(x),u_{0}(x))^{\top}. (1.2)

The boundary conditions are

(ρ,u)|x=0=(ρl(t),ul(t))\displaystyle(\rho,u)^{\top}|_{x=0}=(\rho_{l}(t),u_{l}(t))^{\top} (1.3)

and ρl(t),ul(t)\rho_{l}(t),u_{l}(t) are periodic functions with a period P>0P>0, i.e.

ρl(t+P)=ρl(t),ul(t+P)=ul(t).\rho_{l}(t+P)=\rho_{l}(t),u_{l}(t+P)=u_{l}(t).

In order to obtain the C1C^{1} solution, the initial and boundary data should satisfy the following compatibility conditions at point (0,0)(0,0)

{ρl(0)+ρ0(0)u0(0)+ρ0(0)u0(0)=0,ρl(0)ul(0)+ρl(0)ul(0)+ρ0(0)u02(0)+2ρ0(0)u0(0)u0(0)+p0(0)βρ0(0)u0α+1(0)=0,ρ0(0)=ρl(0),u0(0)=ul(0),\left\{\begin{aligned} &\rho_{l}^{\prime}(0)+\rho_{0}^{\prime}(0)u_{0}(0)+\rho_{0}(0)u_{0}^{\prime}(0)=0,\\ &\rho_{l}^{\prime}(0)u_{l}(0)+\rho_{l}(0)u_{l}^{\prime}(0)+\rho_{0}^{\prime}(0)u_{0}^{2}(0)+2\rho_{0}(0)u_{0}(0)u_{0}^{\prime}(0)\\ &\quad+p^{\prime}_{0}(0)-\beta\rho_{0}(0)u_{0}^{\alpha+1}(0)=0,\\ &\rho_{0}(0)=\rho_{l}(0),u_{0}(0)=u_{l}(0),\end{aligned}\right. (1.4)

where

p0(0)=γρ0γ1(0)ρ0(0).p^{\prime}_{0}(0)=\gamma\rho_{0}^{\gamma-1}(0)\rho^{\prime}_{0}(0).

Because of the widespread application background, the compressible Euler equation with several kinds of source term have been studied extensively and there are fruitful results. For example, we can refer [7, 6, 21, 16] for the research on the existence and stability of the small smooth solution, [2, 3, 9, 8, 23, 26, 5] for the singularity formation of smooth solution and the results on weak solution. In this paper, we are interested in the time-periodic solution of problem (1.1)-(1.3). As far as we know, there are many works on the studies of time-periodic solutions of the partial differential equations such as the viscous fluids equations [1, 11, 15, 17, 18] and the hyperbolic conservation laws [4, 20, 24, 25, 19]. All of the studies mentioned above discuss the time-periodic solutions which are derived by the time-periodic external forces or the piston motion. But there are few works on the time-periodic solutions of the hyperbolic conservations laws derived by the time-periodic boundary condition. In [29], Yuan studied time-periodic supersonic solutions for the isentropic compressible Euler equation (i.e. β=0\beta=0) triggered by periodic supersonic boundary condition. For the quasilinear hyperbolic system with a more general time-periodic boundary conditions, Qu showed the existence and stability of the time-periodic solutions around a small neighborhood of u0u\equiv 0 in [22]. Recently, Wei et al. [28] studied the global stability problem for supersonic flows in one dimensional compressible Euler equations with a friction term μρ|u|u,μ>0-\mu\rho|u|u,\mu>0.
In this paper, we would like to show global existence and uniqueness of time-periodic supersonic solutions of initial-boundary value problem (1.1)-(1.3) with the general friction term βρ|u|αu\beta\rho|u|^{\alpha}u by perturbing some supersonic Fanno flow. Different from [28], we consider (1.1)-(1.3) in the form of sound speed and fluid speed. Then the Fanno fluid are considered for some upstream with positive constants state (c,u)(c_{-},u_{-}) at the left side. After analyzing the ODEs carefully, we get the maximal duct length LmL_{m}, exceed which the flow will get chock. Base on the supersonic Fanno flow, we prove the existence of time periodic solution by wave decomposition.
The main results of this paper are:

Theorem 1.1.

For any fixed non-sonic upstream state (ρ,u)(\rho_{-},u_{-}) satisfying 0<uγργ120<u_{-}\neq\sqrt{\gamma}\rho_{-}^{{\gamma-1}\over 2}, there exists a maximal duct length LmL_{m}, which only depend on α,β,γ\alpha,\beta,\gamma and (ρ,u)(\rho_{-},u_{-})^{\top}, such that the steady solution V~=(ρ~(x),u~(x))\tilde{V}=(\tilde{\rho}(x),\tilde{u}(x))^{\top} of problem (1.1) exists in [0,Lm][0,L_{m}] and keeps the upstream supersonic/subsonic state.

Theorem 1.2.

Suppose the duct length L<LmL<L_{m} and the upstream state (ρ,u)(\rho_{-},u_{-}) is supersonic, i.e. u>γργ12u_{-}>\sqrt{\gamma}\rho_{-}^{{\gamma-1}\over 2}. Then there exists a ε0>0\varepsilon_{0}>0 such that for any fixed ε\varepsilon with 0<εε00<\varepsilon\leq\varepsilon_{0}, if

(ρ0(x)ρ~(x),u0(x)u~(x))C1([0,L])<ε,\displaystyle\|(\rho_{0}(x)-\tilde{\rho}(x),~{}u_{0}(x)-\tilde{u}(x))\|_{C^{1}([0,L])}<\varepsilon, (1.5)
(ρl(t)ρ,ul(t)u)C1([0,+))<ε,\displaystyle\|(\rho_{l}(t)-\rho_{-},~{}u_{l}(t)-u_{-})\|_{C^{1}([0,+\infty))}<\varepsilon, (1.6)

then the mixed initial-boundary value problem (1.1) -(1.3) have a unique C1C^{1} solution V=(ρ(t,x),u(t,x))V=(\rho(t,x),u(t,x))^{\top} in the domain E={(t,x)|t>0,x(0,L]}E=\{(t,x)|t>0,x\in(0,L]\}, satisfying

VV~C1(E)<Cε\displaystyle\|V-\tilde{V}\|_{C^{1}(E)}<C\varepsilon

for some constant C>0C>0 and

V(t+P,x)=V(t,x),t>T1,x[0,L],\displaystyle V(t+P,x)=V(t,x),\quad\forall t>T_{1},x\in[0,L],

where V~=(ρ~(x),u~(x))\tilde{V}=(\tilde{\rho}(x),\tilde{u}(x))^{\top} is the supersonic Fanno flow obtained in Theorem 1.1 and

T1=maxt0,x[0,L]i=1,2Lλi(V(t,x)).\displaystyle T_{1}=\max_{\begin{subarray}{c}t\geq 0,x\in[0,L]\\ i=1,2\end{subarray}}\frac{L}{\lambda_{i}(V(t,x))}. (1.7)
Remark 1.1.

For the supersonic flow, the flow at x=Lx=L is completely determined by the initial data at x[0,L]x\in[0,L] and boundary conditions at x=0x=0, so we only need to give the boundary condition at x=0x=0.

The rest of the paper is organised as follows. In Section 22, we construct the Fanno flow. In Section 33, we present a reformulation of the problem by perturbing the solution around the supersonic Fanno flow and introduce a wave decomposition for the perturbed solution. In Section 44, we prove global existence and uniqueness of solution under the help of uniform a-priori estimates. In Section 55, we prove time-periodicity of solutions by the Gronwall’s inequality.

2 Fanno Flow

Fanno flow refers to adiabatic flow through a constant area duct where the effect of friction (i.e.β<0)(i.e.\beta<0) is considered. The friction causes the flow properties to change along the duct. For the completeness of our results, we also consider the case β>0\beta>0 in this section.
We rewrite the initial-boundary problem (1.1)- (1.3) in terms of the sound speed c=γργ12c=\sqrt{\gamma}\rho^{\frac{\gamma-1}{2}} and the fluid velocity uu as follows

{ct+cxu+γ12cux=0,ut+uux+2γ1ccx=β|u|αu,(c,u)|t=0=(c0(x),u0(x)),(c,u)|x=0=(cl(t),ul(t)),\left\{\begin{aligned} &c_{t}+c_{x}u+\frac{\gamma-1}{2}cu_{x}=0,\\ &u_{t}+uu_{x}+\frac{2}{\gamma-1}cc_{x}=\beta|u|^{\alpha}u,\\ &(c,u)^{\top}|_{t=0}=(c_{0}(x),u_{0}(x))^{\top},\\ &(c,u)^{\top}|_{x=0}=(c_{l}(t),u_{l}(t))^{\top},\end{aligned}\right. (2.1)

where c0(x)=γρ0γ12(x),cl(t)=γρlγ12(t)c_{0}(x)=\sqrt{\gamma}\rho_{0}^{\frac{\gamma-1}{2}}(x),c_{l}(t)=\sqrt{\gamma}\rho_{l}^{\frac{\gamma-1}{2}}(t).
Now, we consider the positive solution (c~,u~)(\tilde{c},\tilde{u})^{\top} of the steady flow of system (2.1) which satisfies

{c~u~+γ12c~u~=0,u~u~+2γ1c~c~=βu~1+α,(c~,u~)|x=0=(c,u),\displaystyle\left\{\begin{aligned} &\tilde{c}^{\prime}\tilde{u}+\frac{\gamma-1}{2}\tilde{c}\tilde{u}^{\prime}=0,\\ &\tilde{u}\tilde{u}^{\prime}+\frac{2}{\gamma-1}\tilde{c}\tilde{c}^{\prime}=\beta\tilde{u}^{1+\alpha},\\ &(\tilde{c},\tilde{u})^{\top}|_{x=0}=(c_{-},u_{-})^{\top},\end{aligned}\right. (2.2)

where uu_{-} and cc_{-} are two positive constants.
First, by (2.2)1~{}\eqref{a5}_{1}, we get

c~\displaystyle\tilde{c} =cuγ12u~γ12.\displaystyle=c_{-}u_{-}^{\frac{\gamma-1}{2}}\tilde{u}^{-\frac{\gamma-1}{2}}. (2.3)

Substituting (2.3) into (2.2)2\eqref{a5}_{2}, we have

u~αu~c2uγ1u~γα1u~=β.\displaystyle\tilde{u}^{-\alpha}\tilde{u}^{\prime}-c_{-}^{2}u_{-}^{\gamma-1}\tilde{u}^{-\gamma-\alpha-1}\tilde{u}^{\prime}=\beta. (2.4)

We consider (2.4) by classifying α\alpha and β\beta.

Case 1: α1\alpha\neq 1 and αγ\alpha\neq-\gamma.
In this case, (2.4) becomes

1α+1(u~α+1)+1γ+αc2uγ1(u~γα)=β.\displaystyle\frac{1}{-\alpha+1}(\tilde{u}^{-\alpha+1})^{\prime}+\frac{1}{\gamma+\alpha}c_{-}^{2}u_{-}^{\gamma-1}(\tilde{u}^{-\gamma-\alpha})^{\prime}=\beta. (2.5)

Integrating (2.5) from 0 to xx, we get

1α+1u~α+1+1γ+αc2uγ1u~γα=1α+1uα+1+1γ+αc2u1α+βx.\displaystyle\frac{1}{-\alpha+1}\tilde{u}^{-\alpha+1}+\frac{1}{\gamma+\alpha}c_{-}^{2}u_{-}^{\gamma-1}\tilde{u}^{-\gamma-\alpha}=\frac{1}{-\alpha+1}u_{-}^{-\alpha+1}+\frac{1}{\gamma+\alpha}c_{-}^{2}u_{-}^{-1-\alpha}+\beta x. (2.6)

Denote the left-hand-side function of (2.6) as h(s)h(s), i.e.

h(s)=1α+1sα+1+1γ+αc2uγ1sγα,h(s)=\frac{1}{-\alpha+1}s^{-\alpha+1}+\frac{1}{\gamma+\alpha}c_{-}^{2}u_{-}^{\gamma-1}s^{-\gamma-\alpha},

then we deduce

h(s)<0,for0<s<sc;\displaystyle h^{\prime}(s)<0,\quad{\rm for~{}}0<s<s_{c};
h(s)>0,fors>sc,\displaystyle h^{\prime}(s)>0,\quad{\rm for~{}}s>s_{c},

where sc=c2γ+1uγ1γ+1s_{c}=c_{-}^{\frac{2}{\gamma+1}}u_{-}^{\frac{\gamma-1}{\gamma+1}}. This means that h(s)h(s) gets its minimum at point s=scs=s_{c}. On the other hand, from  (2.3), we have c~=c2γ+1uγ1γ+1\tilde{c}=c_{-}^{\frac{2}{\gamma+1}}u_{-}^{\frac{\gamma-1}{\gamma+1}}, when u~=sc=c2γ+1uγ1γ+1\tilde{u}=s_{c}=c_{-}^{\frac{2}{\gamma+1}}u_{-}^{\frac{\gamma-1}{\gamma+1}}. That is, the flow speed equals to the sound speed (i.e.M=1)(i.e.M=1) at the choked point (sc,h(sc))(s_{c},h(s_{c})). See Figure 1 below.

[Uncaptioned image]

Figure 1

If β>0\beta>0 and the upstream is supersonic (i.e. u>cu_{-}>c_{-}), u~\tilde{u} is monotonically increasing by considering (2.6) and u~>u\tilde{u}>u_{-}. By (2.3), c~\tilde{c} is monotonically decreasing and c~<c\tilde{c}<c_{-}. Then, u~>c~\tilde{u}>\tilde{c}. If β>0\beta>0 and the upstream is subsonic (i.e. u<cu_{-}<c_{-}), u~\tilde{u} is monotonically decreasing and c~\tilde{c} is monotonically increasing. Then u~<c~\tilde{u}<\tilde{c}.
When β<0\beta<0, from (2.6), h(s)h(s) decreases with respect to the length of the duct till arriving its minimum. Therefore, we can get the maximal length of the duct LmL_{m} for a supersonic or subsonic flow before it gets choked, which is

Lm=1β(1α+1(scα+1uα+1)+1γ+αc2(uγ1scγαu1α)).\displaystyle L_{m}=\frac{1}{\beta}\Big{(}\frac{1}{-\alpha+1}(s_{c}^{-\alpha+1}-u_{-}^{-\alpha+1})+\frac{1}{\gamma+\alpha}c_{-}^{2}(u_{-}^{\gamma-1}s_{c}^{-\gamma-\alpha}-u_{-}^{-1-\alpha})\Big{)}. (2.7)

Case 2: α=1\alpha=1 or α=γ\alpha=-\gamma.
Now, (2.4) is turned into

(lnu~)+1γ+1c2uγ1(u~γ1)=β,forα=1,\displaystyle(\ln\tilde{u})^{\prime}+\frac{1}{\gamma+1}c_{-}^{2}u_{-}^{\gamma-1}(\tilde{u}^{-\gamma-1})^{\prime}=\beta,\quad{\rm for}~{}~{}\alpha=1, (2.8)

and

1γ+1(u~γ+1)c2uγ1(lnu~)=β,forα=γ.\displaystyle\frac{1}{\gamma+1}(\tilde{u}^{\gamma+1})^{\prime}-c_{-}^{2}u_{-}^{\gamma-1}(\ln\tilde{u})^{\prime}=\beta,\quad{\rm for}~{}~{}\alpha=-\gamma. (2.9)

Integrating  (2.8) and (2.9) from 0 to xx, we get

lnu~+1γ+1c2uγ1u~γ1=lnu+1γ+1c2u2+βx,forα=1,\displaystyle\ln\tilde{u}+\frac{1}{\gamma+1}c_{-}^{2}u_{-}^{\gamma-1}\tilde{u}^{-\gamma-1}=\ln u_{-}+\frac{1}{\gamma+1}c_{-}^{2}u_{-}^{-2}+\beta x,\quad{\rm for}~{}~{}\alpha=1, (2.10)

and

1γ+1u~γ+1c2uγ1lnu~=1γ+1uγ+1c2uγ1lnu+βx,forα=γ.\displaystyle\frac{1}{\gamma+1}\tilde{u}^{\gamma+1}-c_{-}^{2}u_{-}^{\gamma-1}\ln\tilde{u}=\frac{1}{\gamma+1}u_{-}^{\gamma+1}-c_{-}^{2}u_{-}^{\gamma-1}\ln u_{-}+\beta x,\quad{\rm for}~{}~{}\alpha=-\gamma. (2.11)

Define

f(s)=lns+1γ+1c2uγ1sγ1,f(s)=\ln s+\frac{1}{\gamma+1}c_{-}^{2}u_{-}^{\gamma-1}s^{-\gamma-1},

and

g(s)=1γ+1sγ+1c2uγ1lns.g(s)=\frac{1}{\gamma+1}s^{\gamma+1}-c_{-}^{2}u_{-}^{\gamma-1}\ln s.

The functions f(s)f(s) and g(s)g(s) get their minimums at point s=sc=c2γ+1uγ1γ+1s=s_{c}=c_{-}^{\frac{2}{\gamma+1}}u_{-}^{\frac{\gamma-1}{\gamma+1}}. Furthermore, we get the maximal length of the duct LmL_{m} :

Lm=1β(1γ+1c2(uγ1scγ1u2)+lnscu),forα=1\displaystyle L_{m}=\frac{1}{\beta}\Big{(}\frac{1}{\gamma+1}c_{-}^{2}(u_{-}^{\gamma-1}s_{c}^{-\gamma-1}-u_{-}^{-2})+\ln\frac{s_{c}}{u_{-}}\Big{)},{~{}~{}\rm for~{}~{}}\alpha=1 (2.12)

and

Lm=1β(1γ+1(scγ+1uγ+1)c2uγ1lnscu),forα=γ.\displaystyle L_{m}=\frac{1}{\beta}\Big{(}\frac{1}{\gamma+1}(s_{c}^{\gamma+1}-u_{-}^{\gamma+1})-c_{-}^{2}u_{-}^{\gamma-1}\ln\frac{s_{c}}{u_{-}}\Big{)},{~{}~{}\rm for~{}~{}}\alpha=-\gamma. (2.13)

We can get the similar results with the case 1, we omit the details here.
From the above discussion, we have the following Lemma.

Lemma 2.1.

If u>0,c>0u_{-}>0,c_{-}>0 and the duct length L<LmL<L_{m}, where LmL_{m} is a positive constant only depending on α,β,γ,c\alpha,\beta,\gamma,c_{-} and uu_{-} (See (2.7),(2.12),(2.13)), then the Cauchy problem (2.2) admits a unique smooth positive solution (c~(x),u~(x))(\tilde{c}(x),\tilde{u}(x))^{\top} which satisfies the following properties:

  1. 1)

    0<u~(x)<u<c<c~(x)0<\tilde{u}(x)<u_{-}<c_{-}<\tilde{c}(x),    if β>0\beta>0 and c>uc_{-}>u_{-};

  2. 2)

    0<c~(x)<c<u<u~(x)0<\tilde{c}(x)<c_{-}<u_{-}<\tilde{u}(x),    if β>0\beta>0 and c<uc_{-}<u_{-};

  3. 3)

    0<u<u~(x)<c~(x)<c0<u_{-}<\tilde{u}(x)<\tilde{c}(x)<c_{-},    if β<0\beta<0 and c>uc_{-}>u_{-};

  4. 4)

    0<c<c~(x)<u~(x)<u0<c_{-}<\tilde{c}(x)<\tilde{u}(x)<u_{-},    if β<0\beta<0 and c<uc_{-}<u_{-}.

This result means that a subsonic flow entering a duct with friction (β<0)(\beta<0) will have an increase in its Mach number until the flow is choked at M=1M=1, i.e. u~=c~\tilde{u}=\tilde{c}. Conversely, the Mach number of a supersonic flow will decrease until the flow is choked. However, if a flow entering a duct with acceleration (β>0)(\beta>0), the Mach number of a subsonic flow will decrease and the Mach number of a supersonic flow will increase (i.e. accelerating the initial subsonic or supersonic state). It is worthy to be pointed out that the theoretic calculations are consistent with its experiment. Different from the calculations in [28], where the authors consider a differential equation that relates the change in Mach number with respect to the length of the duct dMdx{dM}\over{dx}, we rewrite the dominating equations by the relations between the sound speed and flow speeds. Fortunately, the resulting equations can be decoupled easily. Therefore, we can show the maximal duct length which makes the flow choke assuming the upstream Mach number is supersonic or subsonic. Thus by Lemma 2.1 and c~=γρ~γ12\tilde{c}=\sqrt{\gamma}\tilde{\rho}^{\frac{\gamma-1}{2}}, we can directly get Theorem 1.1.
From the result, we observe that no matter what the constant number α\alpha is, the Mach number of a supersonic (subsonic) flow will increase (decrease) when β>0\beta>0. While when β<0\beta<0, the Mach number of a supersonic flow will decrease until the flow is choked; conversely, a subsonic flow will have an increase in its Mach number until the flow is choked.

3 Reformulation of Problem and Wave Decomposition

For the supersonic flow, we should have u>0u>0. Then, we can write the system (1.1) as

{ρt+ρxu+ρux=0,ut+uux+γργ2ρx=βuα+1.\displaystyle\left\{\begin{aligned} &\rho_{t}+\rho_{x}u+\rho u_{x}=0,\\ &u_{t}+uu_{x}+\gamma\rho^{\gamma-2}\rho_{x}=\beta u^{\alpha+1}.\end{aligned}\right. (3.1)

Letting

ρ(t,x)=ρ¯(t,x)+ρ~(x),u(t,x)=u¯(t,x)+u~(x),\displaystyle\rho(t,x)=\bar{\rho}(t,x)+\tilde{\rho}(x),\quad u(t,x)=\bar{u}(t,x)+\tilde{u}(x), (3.2)

where (ρ¯(t,x),u¯(t,x))(\bar{\rho}(t,x),\bar{u}(t,x))^{\top} is the perturbation of the supersonic Fanno flow. Substituting  (3.2) into  (3.1), we get

{ρ¯t+ρ¯xu+ρu¯x+ρ~u¯+ρ¯u~+ρ~u~+ρ~u~=0,u¯t+uu¯x+u¯u~+u~u~+γργ2ρ¯x+γργ2ρ~=β(u¯+u~)α+1.\displaystyle\left\{\begin{aligned} &\bar{\rho}_{t}+\bar{\rho}_{x}u+\rho\bar{u}_{x}+\tilde{\rho}^{\prime}\bar{u}+\bar{\rho}\tilde{u}^{\prime}+\tilde{\rho}^{\prime}\tilde{u}+\tilde{\rho}\tilde{u}^{\prime}=0,\\ &\bar{u}_{t}+u\bar{u}_{x}+\bar{u}\tilde{u}^{\prime}+\tilde{u}\tilde{u}^{\prime}+\gamma\rho^{\gamma-2}\bar{\rho}_{x}+\gamma\rho^{\gamma-2}\tilde{\rho}^{\prime}=\beta(\bar{u}+\tilde{u})^{\alpha+1}.\end{aligned}\right. (3.3)

Moreover, the system  (3.3) can be further written into

{ρ¯t+ρ¯xu+ρu¯x=ρ~u¯ρ¯u~,u¯t+uu¯x+γργ2ρ¯x=F(ρ,ρ~)ρ¯ρ~u¯u~G(u,u~)u¯,\displaystyle\left\{\begin{aligned} &\bar{\rho}_{t}+\bar{\rho}_{x}u+\rho\bar{u}_{x}=-\tilde{\rho}^{\prime}\bar{u}-\bar{\rho}\tilde{u}^{\prime},\\ &\bar{u}_{t}+u\bar{u}_{x}+\gamma\rho^{\gamma-2}\bar{\rho}_{x}=-F(\rho,\tilde{\rho})\bar{\rho}\tilde{\rho}^{\prime}-\bar{u}\tilde{u}^{\prime}-G(u,\tilde{u})\bar{u},\end{aligned}\right. (3.4)

where F(ρ,ρ~)ρ¯=γ(ργ2ρ~γ2)F(\rho,\tilde{\rho})\bar{\rho}=\gamma(\rho^{\gamma-2}-\tilde{\rho}^{\gamma-2}), G(u,u~)u¯=β[uα+1u~α+1]G(u,\tilde{u})\bar{u}=-\beta[u^{\alpha+1}-\tilde{u}^{\alpha+1}] and F(ρ,ρ~)F(\rho,\tilde{\rho}) and G(u,u~)G(u,\tilde{u}) can be taken the following expressions

F(ρ,ρ~)=γ(γ2)01(θρ¯+ρ~)γ3𝑑θ,G(u,u~)=β(α+1)01(θu¯+u~)α𝑑θ.\displaystyle F(\rho,\tilde{\rho})=\gamma(\gamma-2)\int_{0}^{1}(\theta\bar{\rho}+\tilde{\rho})^{\gamma-3}d\theta,\quad G(u,\tilde{u})=-\beta(\alpha+1)\int_{0}^{1}(\theta\bar{u}+\tilde{u})^{\alpha}d\theta. (3.5)

We also consider the perturbations of the initial and boundary conditions. The initial data is reformulated as

t=0:{ρ0(x)=ρ¯0(x)+ρ~(x),x[0,L],u0(x)=u¯0(x)+u~(x),x[0,L],\displaystyle t=0:\left\{\begin{aligned} \rho_{0}(x)=\bar{\rho}_{0}(x)+\tilde{\rho}(x),\quad x\in[0,L],\\ \ u_{0}(x)=\bar{u}_{0}(x)+\tilde{u}(x),\quad x\in[0,L],\end{aligned}\right. (3.6)

where L<LmL<L_{m}, and boundary condition is

x=0:{ρl(t)=ρ¯l(t)+ρ~(0),t0,ul(t)=u¯l(t)+u~(0),t0,\displaystyle x=0:\left\{\begin{aligned} &\rho_{l}(t)=\bar{\rho}_{l}(t)+\tilde{\rho}(0),\quad t\geq 0,\\ &u_{l}(t)=\bar{u}_{l}(t)+\tilde{u}(0),\quad t\geq 0,\end{aligned}\right. (3.7)

where ρ¯0,u¯0,ρ¯l,u¯l\bar{\rho}_{0},\bar{u}_{0},\bar{\rho}_{l},\bar{u}_{l} are C1C^{1} functions.

Let V¯=(ρ¯,u¯)\bar{V}=(\bar{\rho},\bar{u})^{\top}, the system (3.4) can be rewritten as the following quasi-linear form

V¯t+A(V)V¯x+D(V~)V¯=0\bar{V}_{t}+A(V)\bar{V}_{x}+D(\tilde{V})\bar{V}=0 (3.8)

with the initial data

V¯|t=0=V¯0=(ρ¯0,u¯0),\displaystyle\bar{V}|_{t=0}=\bar{V}_{0}=(\bar{\rho}_{0},\bar{u}_{0})^{\top}, (3.9)

and the boundary condition

V|x=0=Vl\displaystyle V|_{x=0}=V_{l} =(ρl,ul),\displaystyle=(\rho_{l},u_{l})^{\top}, (3.10)

where V(t,x)=V¯(t,x)+V~(x)V(t,x)=\bar{V}(t,x)+\tilde{V}(x), and

A(V)=(uργργ2u),D(V~)=(u~ρ~F(ρ,ρ~)ρ~u~+G(u,u~)).A(V)=\left(\begin{matrix}u&\rho\\ \gamma\rho^{\gamma-2}&u\end{matrix}\right),\quad D(\tilde{V})=\left(\begin{matrix}\tilde{u}^{\prime}&\tilde{\rho}^{\prime}\\ F(\rho,\tilde{\rho})\tilde{\rho}^{\prime}&\tilde{u}^{\prime}+G(u,\tilde{u})\end{matrix}\right).

We next introduce a wave decomposition of the solution V¯\bar{V} to the system (3.8). We can easily get the following two eigenvalues of the coefficient matrix A(V)A(V)

λ1(V)=uc,λ2(V)=u+c,\lambda_{1}(V)=u-c,\quad\lambda_{2}(V)=u+c,

where c=γργ12c=\sqrt{\gamma}\rho^{\frac{\gamma-1}{2}}. The corresponding two right eigenvectors ri,i=1,2r_{i},i=1,2 are

r1(V)=1ρ2+c2(ρ,c),r2(V)=1ρ2+c2(ρ,c).\displaystyle r_{1}(V)=\frac{1}{\sqrt{\rho^{2}+c^{2}}}(\rho,-c)^{\top},\quad r_{2}(V)=\frac{1}{\sqrt{\rho^{2}+c^{2}}}(\rho,c)^{\top}. (3.11)

The left eigenvectors li(V),i=1,2l_{i}(V),i=1,2 are determined by

li(V)rj(V)δij,ri(V)ri(V)1,i,j=1,2,\displaystyle l_{i}(V)r_{j}(V)\equiv\delta_{ij},\quad r_{i}^{\top}(V)r_{i}(V)\equiv 1,\quad i,j=1,2, (3.12)

where δij\delta_{ij} stands for the Kronecker’s symbol. Then, li,i=1,2l_{i},i=1,2 have the following expressions

l1(V)=ρ2+c22(ρ1,c1),l2(V)=ρ2+c22(ρ1,c1),\displaystyle l_{1}(V)=\frac{\sqrt{\rho^{2}+c^{2}}}{2}(\rho^{-1},-c^{-1}),\quad l_{2}(V)=\frac{\sqrt{\rho^{2}+c^{2}}}{2}(\rho^{-1},c^{-1}), (3.13)

which have the same regularity as ri(V)r_{i}(V).
Let

mi=li(V)V¯,ni=li(V)V¯x,m=(m1,m2),n=(n1,n2),\displaystyle m_{i}=l_{i}(V)\bar{V},\quad n_{i}=l_{i}(V)\bar{V}_{x},\quad m=(m_{1},m_{2})^{\top},\quad n=(n_{1},n_{2})^{\top}, (3.14)

then

V¯\displaystyle\bar{V} =k=12mkrk(V),V¯x=k=12nkrk(V),\displaystyle=\sum_{k=1}^{2}m_{k}r_{k}(V),\quad\frac{\partial\bar{V}}{\partial x}=\sum_{k=1}^{2}n_{k}r_{k}(V), (3.15)
V¯t\displaystyle\frac{\partial\bar{V}}{\partial t} =D(V~)V¯k=12λk(V)nkrk(V).\displaystyle=-D(\tilde{V})\bar{V}-\sum_{k=1}^{2}\lambda_{k}(V)n_{k}r_{k}(V). (3.16)

Thus, we have

dV¯dit=V¯t+λi(V)V¯x=k=12(λi(V)λk(V))nkrk(V)D(V~)V¯.\begin{split}\frac{d\bar{V}}{d_{i}t}&=\frac{\partial\bar{V}}{\partial t}+\lambda_{i}(V)\frac{\partial\bar{V}}{\partial x}\\ &=\sum_{k=1}^{2}(\lambda_{i}(V)-\lambda_{k}(V))n_{k}r_{k}(V)-D(\tilde{V})\bar{V}.\end{split} (3.17)

By (3.12)- (3.17), one has

dmidit=mit+λi(V)mix=j,k=12Ψijk(V)njmk+j,k=12Ψ~ijk(V)mjmkk=12Ψ~~ik(V)mk,\begin{split}\frac{dm_{i}}{d_{i}t}=&\frac{\partial m_{i}}{\partial t}+\lambda_{i}(V)\frac{\partial m_{i}}{\partial x}\\ =&\sum_{j,k=1}^{2}\Psi_{ijk}(V)n_{j}m_{k}+\sum_{j,k=1}^{2}\tilde{\Psi}_{ijk}(V)m_{j}m_{k}-\sum_{k=1}^{2}\tilde{\tilde{\Psi}}_{ik}(V)m_{k},\end{split} (3.18)

where

Ψijk(V)\displaystyle\Psi_{ijk}(V) =(λj(V)λi(V))li(V)rj(V)Vrk(V),\displaystyle=(\lambda_{j}(V)-\lambda_{i}(V))l_{i}(V)r_{j}(V)\cdot\nabla_{V}r_{k}(V), (3.19)
Ψ~ijk(V)\displaystyle\tilde{\Psi}_{ijk}(V) =li(V)D(V~)rj(V)Vrk(V),\displaystyle=l_{i}(V)D(\tilde{V})r_{j}(V)\cdot\nabla_{V}r_{k}(V), (3.20)
Ψ~~ik(V)\displaystyle\tilde{\tilde{\Psi}}_{ik}(V) =λi(V)li(V)V~Vrk(V)+li(V)D(V~)rk(V).\displaystyle=\lambda_{i}(V)l_{i}(V)\tilde{V}^{\prime}\cdot\nabla_{V}r_{k}(V)+l_{i}(V)D(\tilde{V})r_{k}(V). (3.21)

Similarly, using (3.8) and  (3.12)- (3.17), we also get

dnidit=nit+λi(V)nix=j,k=12Φijk(V)njnk+j,k=12Φ~ijk(V)nkk=12li(V)Dx(V~)rk(V)mk,\begin{split}\frac{dn_{i}}{d_{i}t}=&\frac{\partial n_{i}}{\partial t}+\lambda_{i}(V)\frac{\partial n_{i}}{\partial x}\\ =&\sum_{j,k=1}^{2}\Phi_{ijk}(V)n_{j}n_{k}+\sum_{j,k=1}^{2}\tilde{\Phi}_{ijk}(V)n_{k}-\sum_{k=1}^{2}l_{i}(V)D_{x}(\tilde{V})r_{k}(V)m_{k},\end{split} (3.22)

where the term Dx(V~)D_{x}(\tilde{V}) makes sense if V~\tilde{V} is a C2C^{2} function, and

Φijk(V)=\displaystyle\Phi_{ijk}(V)= (λj(V)λk(V))li(V)rj(V)Vrk(V)\displaystyle(\lambda_{j}(V)-\lambda_{k}(V))l_{i}(V)r_{j}(V)\cdot\nabla_{V}r_{k}(V)
rj(V)Vλk(V)δik,\displaystyle-r_{j}(V)\cdot\nabla_{V}\lambda_{k}(V)\delta_{ik}, (3.23)
Φ~ijk(V)=\displaystyle\tilde{\Phi}_{ijk}(V)= λk(V)li(V)V~Vrk(V)+li(V)D(V~)rj(V)Vrk(V)mj(V)\displaystyle-\lambda_{k}(V)l_{i}(V)\tilde{V}^{\prime}\cdot\nabla_{V}r_{k}(V)+l_{i}(V)D(\tilde{V})r_{j}(V)\cdot\nabla_{V}r_{k}(V)m_{j}(V)
li(V)D(V~)rk(V)V~Vλk(V)δik.\displaystyle-l_{i}(V)D(\tilde{V})r_{k}(V)-\tilde{V}^{\prime}\cdot\nabla_{V}\lambda_{k}(V)\delta_{ik}. (3.24)

For later use, we rewrite the system  (3.4) by exchanging the variable tt and xx as follows

V¯x+A1(V)V¯t+A1(V)D(V~)V¯=0.\bar{V}_{x}+A^{-1}(V)\bar{V}_{t}+A^{-1}(V)D(\tilde{V})\bar{V}=0.

Denote λ^i(V),i=1,2\hat{\lambda}_{i}(V),i=1,2 are eigenvalues of the matrix A1(V)A^{-1}(V), l^i(V),i=1,2\hat{l}_{i}(V),i=1,2 and r^i(V),i=1,2\hat{r}_{i}(V),i=1,2 are the left and right eigenvectors respectively. They can be determined in terms of λi(V),ri(V)\lambda_{i}(V),r_{i}(V) and li(V)l_{i}(V) as follows

λ^i(V)=λi(V)1,r^i(V)=ri(V),l^i(V)=li(V).\displaystyle\hat{\lambda}_{i}(V)=\lambda_{i}(V)^{-1},\quad\hat{r}_{i}(V)=r_{i}(V),\quad\hat{l}_{i}(V)=l_{i}(V). (3.25)

Therefore, r^i(V)\hat{r}_{i}(V) and l^i(V)\hat{l}_{i}(V) also satisfy (3.12).

Let

m^i=l^i(V)V¯,n^i=l^i(V)V¯t,m^=(m^1,m^2),n^=(n^1,n^2).\displaystyle\hat{m}_{i}=\hat{l}_{i}(V)\bar{V},\quad\hat{n}_{i}=\hat{l}_{i}(V)\bar{V}_{t},\quad\hat{m}=(\hat{m}_{1},\hat{m}_{2})^{\top},\quad\hat{n}=(\hat{n}_{1},\hat{n}_{2})^{\top}. (3.26)

By applying the similar arguments as in (3.18)- (3.24), we can get

dm^idix=m^ix+λ^i(V)m^it=j,k=12Ψ^ijk(V)n^jm^k+j,k=12Ψ~^ijk(V)m^jm^kk=12Ψ~~^ik(V)m^k\begin{split}\frac{d\hat{m}_{i}}{d_{i}x}=&\frac{\partial\hat{m}_{i}}{\partial x}+\hat{\lambda}_{i}(V)\frac{\partial\hat{m}_{i}}{\partial t}\\ =&\sum_{j,k=1}^{2}\hat{\Psi}_{ijk}(V)\hat{n}_{j}\hat{m}_{k}+\sum_{j,k=1}^{2}\hat{\tilde{\Psi}}_{ijk}(V)\hat{m}_{j}\hat{m}_{k}-\sum_{k=1}^{2}\hat{\tilde{\tilde{\Psi}}}_{ik}(V)\hat{m}_{k}\end{split} (3.27)

with

Ψ^ijk(V)=\displaystyle\hat{\Psi}_{ijk}(V)= (λ^j(V)λ^i(V))l^i(V)r^j(V)Vr^k(V),\displaystyle(\hat{\lambda}_{j}(V)-\hat{\lambda}_{i}(V))\hat{l}_{i}(V)\hat{r}_{j}(V)\cdot\nabla_{V}\hat{r}_{k}(V), (3.28)
Ψ~^ijk(V)=\displaystyle\hat{\tilde{\Psi}}_{ijk}(V)= λ^i(V)l^i(V)D(V~)r^j(V)Vr^k(V),\displaystyle\hat{\lambda}_{i}(V)\hat{l}_{i}(V)D(\tilde{V})\hat{r}_{j}(V)\cdot\nabla_{V}\hat{r}_{k}(V), (3.29)
Ψ~~^ik(V)=\displaystyle\hat{\tilde{\tilde{\Psi}}}_{ik}(V)= l^i(V)V~Vr^k(V)+λ^i(V)l^i(V)D(V~)r^k(V),\displaystyle\hat{l}_{i}(V)\tilde{V}^{\prime}\cdot\nabla_{V}\hat{r}_{k}(V)+\hat{\lambda}_{i}(V)\hat{l}_{i}(V)D(\tilde{V})\hat{r}_{k}(V), (3.30)

and

dn^idix=n^ix+λ^i(V)n^it=j,k=12Φ^ijk(V)n^jn^k+j,k=12Φ~^ijk(V)n^kk=12l^i(V)(A1(V)D(V~))tr^k(V)m^k(V)\begin{split}\frac{d\hat{n}_{i}}{d_{i}x}=&\frac{\partial\hat{n}_{i}}{\partial x}+\hat{\lambda}_{i}(V)\frac{\partial\hat{n}_{i}}{\partial t}\\ =&\sum_{j,k=1}^{2}\hat{\Phi}_{ijk}(V)\hat{n}_{j}\hat{n}_{k}+\sum_{j,k=1}^{2}\hat{\tilde{\Phi}}_{ijk}(V)\hat{n}_{k}-\sum_{k=1}^{2}\hat{l}_{i}(V)(A^{-1}(V)D(\tilde{V}))_{t}\hat{r}_{k}(V)\hat{m}_{k}(V)\end{split} (3.31)

with

Φ^ijk(V)=\displaystyle\hat{\Phi}_{ijk}(V)= (λ^j(V)λ^k(V))l^i(V)r^j(V)Vr^k(V)r^j(V)Vλ^k(V)δik,\displaystyle(\hat{\lambda}_{j}(V)-\hat{\lambda}_{k}(V))\hat{l}_{i}(V)\hat{r}_{j}(V)\cdot\nabla_{V}\hat{r}_{k}(V)-\hat{r}_{j}(V)\cdot\nabla_{V}\hat{\lambda}_{k}(V)\delta_{ik},
Φ~^ijk(V)=\displaystyle\hat{\tilde{\Phi}}_{ijk}(V)= l^i(V)V~Vr^k(V)+λ^i(V)l^i(V)D(V~)r^j(V)Vr^k(V)m^j(V)\displaystyle-\hat{l}_{i}(V)\tilde{V}^{\prime}\cdot\nabla_{V}\hat{r}_{k}(V)+\hat{\lambda}_{i}(V)\hat{l}_{i}(V)D(\tilde{V})\hat{r}_{j}(V)\cdot\nabla_{V}\hat{r}_{k}(V)\hat{m}_{j}(V)
λ^i(V)l^i(V)D(V~)r^k(V).\displaystyle-\hat{\lambda}_{i}(V)\hat{l}_{i}(V)D(\tilde{V})\hat{r}_{k}(V).

We also provide the wave decomposition of the initial and boundary data as follows

m0=(m10,m20),n0=(n10,n20)\displaystyle m_{0}=(m_{10},m_{20})^{\top},\quad n_{0}=(n_{10},n_{20})^{\top} (3.32)

with

mi0=li(V0)V¯0,ni0=li(V0)V¯0,m_{i0}=l_{i}(V_{0})\bar{V}_{0},\quad n_{i0}=l_{i}(V_{0})\bar{V}^{\prime}_{0},

and

m^l=(m^1l,m^2l),n^l=(n^1l,n^2l).\displaystyle\hat{m}_{l}=(\hat{m}_{1l},\hat{m}_{2l})^{\top},\quad\hat{n}_{l}=(\hat{n}_{1l},\hat{n}_{2l})^{\top}. (3.33)

with

m^il=l^i(Vl)V¯l,n^il=l^i(Vl)V¯l,\hat{m}_{il}=\hat{l}_{i}(V_{l})\bar{V}_{l},\quad\hat{n}_{il}=\hat{l}_{i}(V_{l})\bar{V}^{\prime}_{l},

where V¯0\bar{V}_{0} and V¯l\bar{V}_{l} are defined by (3.9) and (3.10) respectively, and

V0\displaystyle V_{0} =(ρ0,u0),V¯0=(ρ¯0,u¯0),\displaystyle=(\rho_{0},u_{0})^{\top},\quad\bar{V}^{\prime}_{0}=(\bar{\rho}^{\prime}_{0},\bar{u}^{\prime}_{0})^{\top}, (3.34)
Vl\displaystyle V_{l} =(ρl,ul),V¯l=(ρ¯l,u¯l).\displaystyle=(\rho_{l},u_{l})^{\top},\quad\bar{V}^{\prime}_{l}=(\bar{\rho}^{\prime}_{l},\bar{u}^{\prime}_{l})^{\top}. (3.35)

4 Existence of Global Solutions

In this section, we will prove the existence of global solution V¯=(ρ¯(t,x),u¯(t,x))\bar{V}=(\bar{\rho}(t,x),\bar{u}(t,x))^{\top} to the initial-boundary value problem (3.8) and (3.9)-(3.10) in the domain E={(t,x)|t>0,x(0,L]}E=\{(t,x)|t>0,x\in(0,L]\}.
The local existence and uniqueness of the C1C^{1} solution to the mixed initial-boundary value problem (3.8) and (3.9)-(3.10) is guaranteed by the classical theory in [13], which can be extended globally in terms of a uniform a-priori estimate of the global C1C^{1} solutions (see [28, 10, 14, 27, 12, 11]).

Next we will establish a uniform a-priori estimate of the classical solution to help us to extend globally the local solution. Let us first give the following assumption

|mi(t,x)|,|ni(t,x)|Cε,i=1,2,(t,x)E\displaystyle|m_{i}(t,x)|,\,|n_{i}(t,x)|\leq C\varepsilon,\quad\forall i=1,2,\quad(t,x)\in E (4.1)

for a suitably small positive constant ε\varepsilon, which will be determined later.

From(3.11), (3.15)and (4.1), we have

|V¯(t,x)|,|V¯x(t,x)|Cε,(t,x)E.\displaystyle|\bar{V}(t,x)|,\,|\frac{\partial\bar{V}}{\partial x}(t,x)|\leq C\varepsilon,\quad\forall(t,x)\in E. (4.2)

Combining Theorem 2.1 with (4.2), we obtain the following results. The details of the proof are omitted here.

Lemma 4.1.

For sufficiently small ε\varepsilon, it holds that

|D(V~)(t,x)|,|xD(V~)(t,x)|,|Vri(V)(t,x)|,|V~|,T1C,\displaystyle|D(\tilde{V})(t,x)|,|\partial_{x}D(\tilde{V})(t,x)|,|\nabla_{V}r_{i}(V)(t,x)|,|\tilde{V}^{\prime}|,T_{1}\leq C, (4.3)
C1|λi(V)(t,x)|,|Vλ^i(V)(t,x)|,|li(V)(t,x)|C,\displaystyle C^{-1}\leq|\lambda_{i}(V)(t,x)|,|\nabla_{V}\hat{\lambda}_{i}(V)(t,x)|,|l_{i}(V)(t,x)|\leq C, (4.4)
|V¯t(t,x)|,|tA1(V)(t,x)|,|tD(V~)(t,x)|Cε\displaystyle|\frac{\partial\bar{V}}{\partial t}(t,x)|,|\partial_{t}A^{-1}(V)(t,x)|,|\partial_{t}D(\tilde{V})(t,x)|\leq C\varepsilon (4.5)

for any (t,x)E(t,x)\in E, where the positive constant CC only depends on c,u,c~(L)c_{-},u_{-},\tilde{c}(L), u~(L),γ,α\tilde{u}(L),\gamma,\alpha and β\beta.

We observe from (4.2) and (4.4) that it suffices to prove (4.1) for a uniform a-priori estimate of the global C1C^{1} solution.

Write x=xi(t),i=1,2x=x_{i}^{*}(t),i=1,2 as the characteristic curve of λi\lambda_{i} passing a point (0,0)(0,0), which satisfy

dxi(t)dt=λi(V(t,xi(t))),xi(0)=0.\displaystyle\frac{dx_{i}^{*}(t)}{dt}=\lambda_{i}(V(t,x_{i}^{*}(t))),\quad x_{i}^{*}(0)=0.

Noting that x=x2(t)x=x_{2}^{*}(t) lies below x=x1(t)x=x_{1}^{*}(t) since λ2(V)>λ1(V)\lambda_{2}(V)>\lambda_{1}(V).
We divide the region EE into three small regions and discuss the uniform a-priori estimate of the classical solutions in each small region separately.
Region 1: the region E1={(t,x)|0tT1,0xL,xx2(t)}E_{1}=\{(t,x)|0\leq t\leq T_{1},0\leq x\leq L,x\geq x_{2}^{*}(t)\}.
For any point (t,x)E1(t,x)\in E_{1}, integrating the i-th equation in  (3.18) along the i-characteristic curve with respect to τ\tau from 0 to tt which intersects the xx-axis at a point (0,bi)(0,b_{i}), we obtain from (3.18), (3.19)-(3.21), (4.1), (4.3) and (4.4) that

|mi(t,x(t))|\displaystyle|m_{i}(t,x(t))|\leq |mi(0,bi)|+0tj,k=12|Ψijk(V)njmk|dτ\displaystyle|m_{i}(0,b_{i})|+\int_{0}^{t}\sum_{j,k=1}^{2}|\Psi_{ijk}(V)n_{j}m_{k}|d\tau (4.6)
+0tj,k=12|Ψ~ijk(V)mjmk|dτ+0tk=12|Ψ~~ik(V)mk|dτ\displaystyle+\int_{0}^{t}\sum_{j,k=1}^{2}|\tilde{\Psi}_{ijk}(V)m_{j}m_{k}|d\tau+\int_{0}^{t}\sum_{k=1}^{2}|\tilde{\tilde{\Psi}}_{ik}(V)m_{k}|d\tau
\displaystyle\leq |mi0(bi)|+C0t|m(τ,x(τ))|𝑑τ.\displaystyle|m_{i0}(b_{i})|+C\int_{0}^{t}|m(\tau,x(\tau))|d\tau.

Applying the same procedures as above for (3.22), from (3.23), (3.24), (4.1), (4.3) and (4.4), we have

|ni(t,x(t))||ni(0,bi)|+0tj,k=12|Φijk(V)njnk|dτ+0tj,k=12|Φ~ijk(V)nk|dτ+0tk=12|li(V)Dx(V~)rk(V)mk|dτ|ni0(bi)|+C(0t|n(τ,x(τ))|𝑑τ+0t|m(τ,x(τ))|𝑑τ).\begin{split}|n_{i}(t,x(t))|\leq&|n_{i}(0,b_{i})|+\int_{0}^{t}\sum_{j,k=1}^{2}|\Phi_{ijk}(V)n_{j}n_{k}|d\tau\\ &+\int_{0}^{t}\sum_{j,k=1}^{2}|\tilde{\Phi}_{ijk}(V)n_{k}|d\tau+\int_{0}^{t}\sum_{k=1}^{2}|l_{i}(V)D_{x}(\tilde{V})r_{k}(V)m_{k}|d\tau\\ \leq&|n_{i0}(b_{i})|+C(\int_{0}^{t}|n(\tau,x(\tau))|d\tau+\int_{0}^{t}|m(\tau,x(\tau))|d\tau).\end{split} (4.7)

Putting (4.6)-(4.7) together, summing up i=1,2i=1,2 and applying the Gronwall’s inequality, we have

|m(t,x)|+|n(t,x)|(m0C0([0,L])+n0C0([0,L]))(1+CT1).|m(t,x)|+|n(t,x)|\leq(\|m_{0}\|_{C^{0}([0,L])}+\|n_{0}\|_{C^{0}([0,L])})(1+CT_{1}). (4.8)

Because of the arbitrariness of (t,x)E1(t,x)\in E_{1} and the boundedness of T1T_{1} in (4.3), we obtain from (4.8) that

max(t,x)E1|m(t,x)|+|n(t,x)|C(m0C0([0,L])+n0C0([0,L])).\displaystyle\max_{(t,x)\in E_{1}}|m(t,x)|+|n(t,x)|\leq C(\|m_{0}\|_{C^{0}([0,L])}+\|n_{0}\|_{C^{0}([0,L])}). (4.9)

Region 2: the region E2={(t,x)|t0,0xL,0xx1(t)}E_{2}=\{(t,x)|t\geq 0,0\leq x\leq L,0\leq x\leq x_{1}^{*}(t)\}.
For any point (t,x)E2(t,x)\in E_{2}, integrating in (3.27) with respect to xx along the ii-th characteristic curve, which is assumed to intersect the tt-axis at a point (τi,0)(\tau_{i},0), we have from (3.28)-(3.30), (4.1), (4.3) and (4.4) that

|m^i(t(x),x)|\displaystyle|\hat{m}_{i}(t(x),x)|\leq |m^il(τi)|+C0x|m^(t(y),y)|𝑑y.\displaystyle|\hat{m}_{il}(\tau_{i})|+C\int_{0}^{x}|\hat{m}(t(y),y)|dy. (4.10)

For (3.31), applying the same procedures as above, we further use (4.5) to obtain

|n^i(t(x),x)|\displaystyle|\hat{n}_{i}(t(x),x)|\leq |n^il(τi)|+C(0x|n^(t(y),y)|𝑑y+0x|m^(t(y),y)|𝑑y).\displaystyle|\hat{n}_{il}(\tau_{i})|+C(\int_{0}^{x}|\hat{n}(t(y),y)|dy+\int_{0}^{x}|\hat{m}(t(y),y)|dy). (4.11)

Taking the summation of (4.10) and (4.11) and the summation for i=1,2i=1,2, applying the Gronwall’s inequality, we have

max(t,x)E2|m^(t,x)|+|n^(t,x)|C(m^lC0([0,+))+n^lC0([0,+))),\displaystyle\max_{(t,x)\in E_{2}}|\hat{m}(t,x)|+|\hat{n}(t,x)|\leq C(\|\hat{m}_{l}\|_{C^{0}([0,+\infty))}+\|\hat{n}_{l}\|_{C^{0}([0,+\infty))}), (4.12)

where we have used the arbitrariness of (t,x)E2(t,x)\in E_{2}.
Region 3: in the remaining region

E3={(t,x)|0tT1,0xL,x1(t)xx2(t)}.E_{3}=\{(t,x)|0\leq t\leq T_{1},0\leq x\leq L,x_{1}^{*}(t)\leq x\leq x_{2}^{*}(t)\}.

For any point (t,x)E3(t,x)\in E_{3}, integrating the first equation in  (3.18) and (3.22) along the first characteristic curve that intersects the x2(t)x_{2}^{*}(t) at a point (t1,x1)(t_{1},x_{1}), we get from (3.19)-(3.21), (3.23), (3.24), (4.1), (4.3) and (4.4) that

|m1(t,x(t))|\displaystyle|m_{1}(t,x(t))|\leq |m1(t1,x1)|+Ct1t|m(τ,x(τ))|𝑑τ\displaystyle|m_{1}(t_{1},x_{1})|+C\int_{t_{1}}^{t}|m(\tau,x(\tau))|d\tau
\displaystyle\leq |m1(t1,x1)|+C0t|m(τ,x(τ))|𝑑τ,\displaystyle|m_{1}(t_{1},x_{1})|+C\int_{0}^{t}|m(\tau,x(\tau))|d\tau, (4.13)
|n1(t,x(t))|\displaystyle|n_{1}(t,x(t))|\leq |n1(t1,x1)|+C(0t|n(τ,x(τ))|𝑑τ+0t|m(τ,x(τ))|𝑑τ).\displaystyle|n_{1}(t_{1},x_{1})|+C(\int_{0}^{t}|n(\tau,x(\tau))|d\tau+\int_{0}^{t}|m(\tau,x(\tau))|d\tau). (4.14)

Similarly, for any point (t,x)E3(t,x)\in E_{3}, integrating the second equation in (3.18) and (3.22) along the second characteristic curve that intersects x1(t)x_{1}^{*}(t) at a point (t2,x2)(t_{2},x_{2}), we have

|m2(t,x(t))|\displaystyle|m_{2}(t,x(t))|\leq |m2(t2,x2)|+C0t|m(τ,x(τ))|𝑑τ,\displaystyle|m_{2}(t_{2},x_{2})|+C\int_{0}^{t}|m(\tau,x(\tau))|d\tau, (4.15)
|n2(t,x(t))|\displaystyle|n_{2}(t,x(t))|\leq |n2(t2,x2)|+C(0t|n(τ,x(τ))|𝑑τ+0t|m(τ,x(τ))|𝑑τ).\displaystyle|n_{2}(t_{2},x_{2})|+C(\int_{0}^{t}|n(\tau,x(\tau))|d\tau+\int_{0}^{t}|m(\tau,x(\tau))|d\tau). (4.16)

By applying the Gronwall’s inequality, the combination of (4.13)-(4.16) gives rise to

max(t,x)E3(|m(t,x)|+|n(t,x)|)C(m0C0([0,L])+n0C0([0,L])+m^lC0([0,+))+n^lC0([0,+))),\begin{split}\max_{(t,x)\in E_{3}}(|m(t,x)|+|n(t,x)|)\leq&C(\|m_{0}\|_{C^{0}([0,L])}+\|n_{0}\|_{C^{0}([0,L])}\\ &+\|\hat{m}_{l}\|_{C^{0}([0,+\infty))}+\|\hat{n}_{l}\|_{C^{0}([0,+\infty))}),\end{split} (4.17)

where we have used (4.9) and (4.12) and the arbitrariness of (t,x)E3(t,x)\in E_{3}.
We notice from (4.9), (4.12), (4.17), (3.14) and (3.26) that under the initial and boundary conditions (1.5)-(1.6) for a sufficiently small ε>0\varepsilon>0 and the assumption (4.4), we can check the validity of hypothesis  (4.1) for some constant C>0C>0. Therefore, we obtain a uniform a-priori estimate for the global C1C^{1} solution. The global existence of solution to the initial-boundary value problem (3.8) and (3.9)-(3.10) can be checked by the standard continuity method, the details are omitted here.

5 Periodic Solution

In this section, we will prove global solution V=(ρ(t,x),u(t,x))V=(\rho(t,x),u(t,x))^{\top} is a time-periodic function with a period P>0P>0.
Using a Riemann invariant of system  (1.1)

r=12(u2γ1c),s=12(u+2γ1c),\displaystyle r=\frac{1}{2}(u-\frac{2}{\gamma-1}c),~{}~{}~{}s=\frac{1}{2}(u+\frac{2}{\gamma-1}c), (5.1)

(1.1) can be converted into the following form

{rt+λ1(r,s)rx=β(r+s)α+12,st+λ2(r,s)sx=β(r+s)α+12,\displaystyle\left\{\begin{aligned} r_{t}+\lambda_{1}(r,s)r_{x}=\frac{\beta(r+s)^{\alpha+1}}{2},\\ s_{t}+\lambda_{2}(r,s)s_{x}=\frac{\beta(r+s)^{\alpha+1}}{2},\end{aligned}\right. (5.2)

where

λ1=uc=γ+12rγ32s,λ2=u+c=3γ2r+γ+12s.\displaystyle\lambda_{1}=u-c=\frac{\gamma+1}{2}r-\frac{\gamma-3}{2}s,\quad\lambda_{2}=u+c=\frac{3-\gamma}{2}r+\frac{\gamma+1}{2}s.

Correspondingly, the initial data and boundary conditions become

r(0,x)=r0(x),s(0,x)=s0(x),x[0,L],\displaystyle r(0,x)=r_{0}(x),~{}~{}s(0,x)=s_{0}(x),~{}~{}x\in[0,L], (5.3)
r(t,0)=rl(t),s(t,0)=sl(t),t0,\displaystyle r(t,0)=r_{l}(t),~{}~{}~{}~{}s(t,0)=s_{l}(t),~{}~{}~{}\quad t\geq 0, (5.4)

where rl(t),sl(t)r_{l}(t),s_{l}(t) are time-periodic with the period P>0P>0.
For the convenience of later proof, we exchange tt and xx, then problem  (5.2) and  (5.3)- (5.4) becomes the following Cauchy problem in the domain EE

{rx+1λ1rt=β(r+s)α+12λ1,sx+1λ2st=β(r+s)α+12λ2,r(t,0)=rl(t),s(t,0)=sl(t).\left\{\begin{aligned} &r_{x}+\frac{1}{\lambda_{1}}r_{t}=\frac{\beta(r+s)^{\alpha+1}}{2\lambda_{1}},\\ &s_{x}+\frac{1}{\lambda_{2}}s_{t}=\frac{\beta(r+s)^{\alpha+1}}{2\lambda_{2}},\\ &r(t,0)=r_{l}(t),\\ &s(t,0)=s_{l}(t).\end{aligned}\right. (5.5)

Furthermore, setting

W=(rr~,ss~),Λ(t,x)=(1λ1(r(t,x),s(t,x))001λ2(r(t,x),s(t,x))),W=(r-\tilde{r},s-\tilde{s})^{\top},\quad\Lambda(t,x)=\left(\begin{array}[]{cc}\frac{1}{\lambda_{1}(r(t,x),s(t,x))}&0\\ 0&\frac{1}{\lambda_{2}(r(t,x),s(t,x))}\\ \end{array}\right),

then  (5.5) can be rewritten as

Wx+Λ(t,x)Wt=β2Λ(t,x)((r+s)α+1(r+s)α+1)β2((r~+s~)α+1λ~1(r~+s~)α+1λ~2),\displaystyle W_{x}+\Lambda(t,x)W_{t}=\frac{\beta}{2}\Lambda(t,x)\left(\begin{aligned} (r+s)^{\alpha+1}\\ (r+s)^{\alpha+1}\\ \end{aligned}\right)-\frac{\beta}{2}\left(\begin{aligned} \frac{(\tilde{r}+\tilde{s})^{\alpha+1}}{\tilde{\lambda}_{1}}\\ \frac{(\tilde{r}+\tilde{s})^{\alpha+1}}{\tilde{\lambda}_{2}}\\ \end{aligned}\right), (5.6)

where

r~=12(u~2γ1c~),s~=12(u~+2γ1c~),\tilde{r}=\frac{1}{2}(\tilde{u}-\frac{2}{\gamma-1}\tilde{c}),\quad\tilde{s}=\frac{1}{2}(\tilde{u}+\frac{2}{\gamma-1}\tilde{c}),
λ~1=λ1(r~,s~)=γ+12r~γ32s~,\displaystyle\tilde{\lambda}_{1}=\lambda_{1}(\tilde{r},\tilde{s})=\frac{\gamma+1}{2}\tilde{r}-\frac{\gamma-3}{2}\tilde{s},
λ~2=λ2(r~,s~)=3γ2r~+γ+12s~.\displaystyle\tilde{\lambda}_{2}=\lambda_{2}(\tilde{r},\tilde{s})=\frac{3-\gamma}{2}\tilde{r}+\frac{\gamma+1}{2}\tilde{s}.

By

ρρ~C1(E)+uu~C1(E)<Cε,\displaystyle\|\rho-\tilde{\rho}\|_{C^{1}(E)}+\|u-\tilde{u}\|_{C^{1}(E)}<C\varepsilon,

and (5.1), we can get

r(t,x)r~(x)C1(E)+s(t,x)s~(x)C1(E)<K1ε\displaystyle\|r(t,x)-\tilde{r}(x)\|_{C^{1}(E)}+\|s(t,x)-\tilde{s}(x)\|_{C^{1}(E)}<K_{1}\varepsilon (5.7)

with K1>0K_{1}>0 a constant that depending only on ρ~,u~,γ\tilde{\rho},\tilde{u},\gamma and LL.
Next we will show that the following conclusion holds

r(t+P,x)=r(t,x),s(t+P,x)=s(t,x),t>T1,x[0,L],\displaystyle r(t+P,x)=r(t,x),~{}~{}s(t+P,x)=s(t,x),\quad\forall t>T_{1},x\in[0,L], (5.8)

where T1T_{1} is defined by (1.7).
Letting

U(t,x)=W(t+P,x)W(t,x),U(t,x)=W(t+P,x)-W(t,x),

then by  (5.6), we can get

{Ux+Λ(t,x)Ut=G(t,x),U(t,0)=0,t>0,\displaystyle\left\{\begin{aligned} &U_{x}+\Lambda(t,x)U_{t}=G(t,x),\\ &U(t,0)=0,\quad t>0,\end{aligned}\right. (5.9)

where

G(t,x)=\displaystyle G(t,x)= β2Λ(t+P,x)((r(t+P,x)+s(t+P,x))α+1(r(t+P,x)+s(t+P,x))α+1)\displaystyle\frac{\beta}{2}\Lambda(t+P,x)\left(\begin{aligned} (r(t+P,x)+s(t+P,x))^{\alpha+1}\\ (r(t+P,x)+s(t+P,x))^{\alpha+1}\\ \end{aligned}\right)
β2Λ(t,x)((r(t,x)+s(t,x))α+1(r(t,x)+s(t,x))α+1)\displaystyle-\frac{\beta}{2}\Lambda(t,x)\left(\begin{aligned} (r(t,x)+s(t,x))^{\alpha+1}\\ (r(t,x)+s(t,x))^{\alpha+1}\\ \end{aligned}\right)
[Λ(t+P,x)Λ(t,x)]Wt(t+P,x).\displaystyle-[\Lambda(t+P,x)-\Lambda(t,x)]W_{t}(t+P,x).

Noting that λ1,λ2\lambda_{1},\lambda_{2} are continuous functions of (r,s)(r,s), then by  (5.7), we can get the following estimates

|Wt(t+p,x)|K1ε,\displaystyle|W_{t}(t+p,x)|\leq K_{1}\varepsilon, (5.10)
|r(t+P,x)+s(t+P,x)|K2,\displaystyle|r(t+P,x)+s(t+P,x)|\leq K_{2}, (5.11)
|Λt(r(t,x),s(t,x))|K3ε,\displaystyle|\Lambda_{t}(r(t,x),s(t,x))|\leq K_{3}\varepsilon, (5.12)
|Λ(t+P,x)Λ(t,x)|K4|U(t,x)|,\displaystyle|\Lambda(t+P,x)-\Lambda(t,x)|\leq K_{4}|U(t,x)|, (5.13)
|Λ(t,x)|K5,\displaystyle|\Lambda(t,x)|\leq K_{5}, (5.14)

where constants K2,K3,K4,K5K_{2},K_{3},K_{4},K_{5} depend only on ρ~,u~,γ\tilde{\rho},\tilde{u},\gamma and LL.
It follows from  (5.10)-(5.11), (5.13)-(5.14) that

|G(t,x)||β|2|Λ(t,x)|((α+1)|η|α|U(t,x)|(α+1)|η|α|U(t,x)|)+|β|2|Λ(t+P,x)Λ(t,x)|(|r(t+P,x)+s(t+P,x)|α+1|r(t+P,x)+s(t+P,x)|α+1)+|Λ(t+P,x)Λ(t,x)||Wt(t+P,x)|K6|U(t,x)|,\begin{split}|G(t,x)|\leq&\frac{|\beta|}{2}|\Lambda(t,x)|\left(\begin{aligned} (\alpha+1)|\eta|^{\alpha}|U(t,x)|\\ (\alpha+1)|\eta|^{\alpha}|U(t,x)|\\ \end{aligned}\right)\\ &+\frac{|\beta|}{2}|\Lambda(t+P,x)-\Lambda(t,x)|\left(\begin{aligned} |r(t+P,x)+s(t+P,x)|^{\alpha+1}\\ |r(t+P,x)+s(t+P,x)|^{\alpha+1}\\ \end{aligned}\right)\\ &+|\Lambda(t+P,x)-\Lambda(t,x)||W_{t}(t+P,x)|\\ \leq&K_{6}|U(t,x)|,\end{split} (5.15)

where η\eta lies between u(t,x)u(t,x) and u(t+p,x)u(t+p,x), the definition of K6K_{6} is the same as above.
For a fixed point (t0,x0)(t_{0},x_{0}) with t0>T1,0<x0<Lt_{0}>T_{1},0<x_{0}<L, we can draw two characteristic curves Γ1:t=t1(x)\Gamma_{1}:t=t_{1}^{*}(x) and Γ2:t=t2(x)\Gamma_{2}:t=t_{2}^{*}(x), namely,

dt1dx=1λ1(r(t1,x),s(t1,x)),t1(x0)=t0\displaystyle\frac{dt_{1}^{*}}{dx}=\frac{1}{\lambda_{1}(r(t_{1}^{*},x),s(t_{1}^{*},x))},t_{1}^{*}(x_{0})=t_{0}

and

dt2dx=1λ2(r(t2,x),s(t2,x)),t2(x0)=t0\displaystyle\frac{dt_{2}^{*}}{dx}=\frac{1}{\lambda_{2}(r(t_{2}^{*},x),s(t_{2}^{*},x))},t_{2}^{*}(x_{0})=t_{0}

for 0<x<x00<x<x_{0}. And we can easily see that Γ1\Gamma_{1} lies below Γ2\Gamma_{2}.
Setting

I(x)=12t1(x)t2(x)|U(t,x)|2𝑑t,\displaystyle I(x)=\frac{1}{2}\int_{t_{1}^{*}(x)}^{t_{2}^{*}(x)}|U(t,x)|^{2}dt, (5.16)

where 0x<x00\leq x<x_{0}.
By the definition of T1T_{1} and t0>T1t_{0}>T_{1}, we can get that (t1(0),t2(0))(0,+)(t_{1}^{*}(0),t_{2}^{*}(0))\subset(0,+\infty), then by  (5.9), we have U(t,0)0U(t,0)\equiv 0 in this interval.
Therefore,

I(0)=0.\displaystyle I(0)=0.

Taking derivative of I(x)I(x) with respect to xx, we get

I(x)=\displaystyle I^{{}^{\prime}}(x)= t1(x)t2(x)U(t,x)TUx(t,x)𝑑t+12|U(t2(x),x)|21λ2(r(t2(x),x),s(t2(x),x))\displaystyle\int_{t_{1}^{*}(x)}^{t_{2}^{*}(x)}{U(t,x)^{T}U_{x}(t,x)}dt+\frac{1}{2}|{U(t_{2}^{*}(x),x)}|^{2}{\frac{1}{\lambda_{2}(r(t_{2}^{*}(x),x),s(t_{2}^{*}(x),x))}}
12|U(t1(x),x)|21λ1(r(t1(x),x),s(t1(x),x))\displaystyle-\frac{1}{2}|{U(t_{1}^{*}(x),x)}|^{2}{\frac{1}{\lambda_{1}(r(t_{1}^{*}(x),x),s(t_{1}^{*}(x),x))}}
\displaystyle\leq t1(x)t2(x)U(t,x)TΛ(t,x)Ut(t,x)𝑑t+t1(x)t2(x)U(t,x)TG(t,x)𝑑t\displaystyle-\int_{t_{1}^{*}(x)}^{t_{2}*(x)}U(t,x)^{T}\Lambda(t,x)U_{t}(t,x)dt+\int_{t_{1}^{*}(x)}^{t_{2}^{*}(x)}U(t,x)^{T}G(t,x)dt
+12U(t,x)TΛ(t,x)U(t,x)|t=t1(x)t=t2(x)\displaystyle+\frac{1}{2}U(t,x)^{T}\Lambda(t,x)U(t,x)|_{t=t_{1}^{*}(x)}^{t=t_{2}^{*}(x)}
=\displaystyle= 12t1(x)t2(x)(U(t,x)TΛ(t,x)U(t,x))tU(t,x)TΛt(t,x)U(t,x)dt\displaystyle-\frac{1}{2}\int_{t_{1}^{*}(x)}^{t_{2}^{*}(x)}(U(t,x)^{T}\Lambda(t,x)U(t,x))_{t}-U(t,x)^{T}\Lambda_{t}(t,x)U(t,x)dt
+t1(x)t2(x)U(t,x)TG(t,x)𝑑t+12U(t,x)TΛ(t,x)U(t,x)|t=t1(x)t=t2(x)\displaystyle+\int_{t_{1}^{*}(x)}^{t_{2}^{*}(x)}U(t,x)^{T}G(t,x)dt+\frac{1}{2}U(t,x)^{T}\Lambda(t,x)U(t,x)|_{t=t_{1}^{*}(x)}^{t=t_{2}^{*}(x)}
=\displaystyle= 12t1(x)t2(x)U(t,x)TΛt(t,x)U(t,x)𝑑t+t1(x)t2(x)U(t,x)TG(t,x)𝑑t\displaystyle\frac{1}{2}\int_{t_{1}^{*}(x)}^{t_{2}^{*}(x)}U(t,x)^{T}\Lambda_{t}(t,x)U(t,x)dt+\int_{t_{1}^{*}(x)}^{t_{2}^{*}(x)}U(t,x)^{T}G(t,x)dt
\displaystyle\leq (K3ε+2K6)I(x).\displaystyle(K_{3}\varepsilon+2K_{6})I(x).

In the last inequality we have used (5.12) and (5.15).
Hence, by Gronwall’s inequality, we can get that I(x)0I(x)\equiv 0. Furthermore, by continuity of I(x)I(x), we have I(x0)=0I(x_{0})=0, then U(t0,x0)=0U(t_{0},x_{0})=0.
Since (t0,x0)(t_{0},x_{0}) is arbitrary, so we have

U(t,x)0,t>T1,x[0,L],U(t,x)\equiv 0,\quad\forall t>T_{1},x\in[0,L],

that is, we complete the proof of  (5.8). Then, using (5.1) and c=γργ12c=\sqrt{\gamma}\rho^{\frac{\gamma-1}{2}}, we can get (ρ,u)(\rho,u)^{\top} is also a periodic function with a period P>0P>0.

References

  • [1] H. Cai, Z. Tan, Time periodic solutions to the compressible Navier-Stokes-Poisson system with damping, Commun. Math. Sci., 15(3)(2017), 789-812.
  • [2] S. Chen, H. Li, J. Li, M. Mei, K. Zhang, Global and blow-up solutions for compressible Euler equations with time-dependent damping, J. Differ. Equ., 268(9)(2020), 5035-5077.
  • [3] X. Ding, G. Chen and P. Luo, Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for isentropic system of gas dynamics, Commun. Math. Phys., 121(1989), 63-84.
  • [4] J. Greenberg, M. Rascle, Time-periodic solutions to systems of conservation laws, Arch. Rational Mech. Anal., 115(4)(1991), 395-407.
  • [5] F. Hou, H. Yin, On the global existence and blowup of smooth solutions to the multi-dimensional compressible Euler equations with time-depending damping, Nonlinearity, 30(6)(2017), 2485-2517.
  • [6] L. Hsiao, T. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Commun. Math. Phys., 143(3)(1992), 599-605.
  • [7] L. Hsiao, T. Yang, Asymptotics of initial boundary value problems for hydrodynamic and drift diffusion models for semiconductors, J. Differ. Equ., 170(2)(2001), 472-493.
  • [8] L. Hsiao, T. Luo, T. Yang, Global BV solutions of compressible Euler equations with spherical symmetry and damping, J. Differ. Equ., 146(1)(1998), 203-225.
  • [9] F. Huang, R. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166(4)(2003), 359-376.
  • [10] T. Li, Global classical solutions for quasilinear hyperbolic systems, Reasearch in App. Math., vol.34, Wiley/Masson, New York/Paris, 1994.
  • [11] T. Li, Y. Jin, Semi-global C1C^{1} solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems, Chin. Ann. Math., 22(3)(2001), 325-336.
  • [12] T. Li, B. Rao, Local exact boundary cotrollability for a class of quasilinear hyperbolic systems, Chin. Ann. Math. Series B, 23(2)(2002), 209-218.
  • [13] T. Li, W. Yu, Boundary value problem for quasilinear hyperbolic systems, Duke University Math. Series, vol.5, 1985.
  • [14] T. Li, Y. Zhou, D. Kong, Global classical solutions for general quasilinear hyperbolic systems with decay initial data, Nonlinear Anal.: Theory Methods Appl., 28(8)(1997), 1299-1332.
  • [15] T. Luo, Bounded solutions and periodic solutions of viscous polytropic gas equations, Chin. Ann. Math. Ser. B, 18(1)(1997), 99-112.
  • [16] T. Luo, R. Natalini, Z. Xin, Large time behavior of the solutions to a hydrodynamic model for semiconsuctors, SIAM J. Appl. Math., 59(3)(1998), 810-830.
  • [17] H. Ma, S. Ukai, T. Yang, Time periodic solutions of compressible Navier-Stokes equations, J. Differ. Equ., 248(9)(2010), 2275-2293.
  • [18] A. Matsumura, T. Nishida, Periodic solutions of a viscous gas equation, North-Holland Math. Stud., 160(1989), 49-82.
  • [19] T. Naoki, Existence of a time periodic solution for the compressible Euler equations with a time periodic outer force, Nonlinear Anal. Real World Appl., 53(2020), 103080, 22 pp.
  • [20] M. Ohnawa, M. Suzuki, Time-periodic solutions of symmetric hyperbolic systems, J. Hyperbolic Differ. Equ., 17(4)(2020), 707-726.
  • [21] R. Pan, K. Zhao, The 33D compressible Euler equations with damping in a bounded domain, J. Differ. Equ., 246(2)(2009), 581-596.
  • [22] P. Qu, Time-periodic solutions to quasilinear hyperbolic systems with time-periodic boundary conditions, J. Math. Pures Appl., 139(9)(2020), 356-382.
  • [23] Y. Sui, H. Yu, Singularity formation for compressible Euler equations with time-dependent damping, Discrete Contin. Dyn. Syst., 41(10)(2021), 4921-4941.
  • [24] S. Takeno, Time-periodic solutions for a scalar conservation law, Nonlinear Anal., 45(8)(2001), 1039-1060.
  • [25] B. Temple, R. Young, A Nash-Moser framework for finding periodic solutions of the compressible Euler equations, J. Sci. Comput., 64(3)(2015), 761-772.
  • [26] D. Wang, G. Chen, Formation of singularities in compressible Euler-Poisson fluids with heat diffusion and damping relaxation, J. Differ. Equ., 144(1)(1998), 44-65.
  • [27] Z. Wang, L. Yu, Exact boundary controllability for one-dimensional adiabatic flow system, Appl. Math. J. Chinese Univ. Ser. A, 23(2008), 35-40.
  • [28] F. Wei, J. Liu, H. Yuan, Global stability to steady supersonic solutions of the 1-D compressible Euler equations with frictions, J. Math. Anal. Appl., 495(2)(2021), 124761, 14 pp.
  • [29] H. Yuan, Time-periodic isentropic supersonic Euler flows in one-dimensional ducts driving by periodic boundary conditions, Acta. Math. Sci. Ser. B (Engl. Ed.), 39(2)(2019), 403-412.