This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Global existence of solutions in two-species chemotaxis system with two chemicals with sub-logistic sources in 2d

Minh Le
Department of Mathematics
Michigan State University
Michigan, MI, 48823
leminh2@msu.edu
(September 30, 2025)
Abstract

This paper investigates the global existence and boundedness of solutions in a two-species chemotaxis system with two chemicals and sub-logistic sources. The presence of a sub-logistic source in only one cell density equation effectively prevents the occurrence of blow-up solutions, even in fully parabolic chemotaxis systems.

Keywords— Chemotaxis, partial differential equations, sub-logistic sources, global existence

1 Introduction

We consider a model involving the interaction of two species through chemotaxis, where each species emits a signal that influences the movement of the other species. Specifically, we study the following PDE in a open bounded domain Ω2\Omega\subset\mathbb{R}^{2}

{ut=Δu(uv)+f(u)τvt=Δvv+w,wt=Δw(wz)τzt=Δzz+u\begin{cases}u_{t}=\Delta u-\nabla\cdot(u\nabla v)+f(u)\\ \tau v_{t}=\Delta v-v+w,\\ w_{t}=\Delta w-\nabla\cdot(w\nabla z)\\ \tau z_{t}=\Delta z-z+u\end{cases} (1.1)

where τ{0,1}\tau\in\left\{0,1\right\}, and f(u)=ruμu2lnp(u+e)f(u)=ru-\frac{\mu u^{2}}{\ln^{p}(u+e)}, with rr\in\mathbb{R}, μ0\mu\geq 0, and p0p\geq 0, under the homogeneous Neumann boundary condition

uν=vν=0,(x,t)Ω×(0,Tmax),\frac{\partial u}{\partial\nu}=\frac{\partial v}{\partial\nu}=0,\qquad(x,t)\in\partial\Omega\times(0,T_{\rm max}), (1.2)

where Tmax(0,]T_{\rm max}\in(0,\infty] is the maximal existence time for classical solutions. Chemotaxis system, which describes the movement of organisms in response to chemical stimuli has been intensively studied since the mathematical equations were first introduced in [5]. The simplest chemotaxis model, known as Keller Segel system, in two spatial dimension has attracted many researchers in the field partly because of its intriguing phenomenon called critical mass. This principle states that if the mass of solutions is less than a certain critical number, called the critical mass, solutions remain global and bounded, whereas if the mass exceeds this critical threshold, solutions may blow-up in finite time. For more details about this topic, readers are referred to [4, 2, 7, 10, 11] for some global existence results and [8, 9, 12, 13] for blow-up results.

In the context of one-species chemotaxis systems, the presence of logistic sources, ruμu2ru-\mu u^{2}, can avoid blow-up (see [21, 17]) in high dimension n3n\geq 3. In two dimensional bounded domain, the sub-logistic, ruμu2lnp(u+e)ru-\frac{\mu u^{2}}{\ln^{p}(u+e)} with p[0,1]p\in[0,1], is sufficient to guarantee the global existence and boundedness of solutions (see [22] when p(0,1)p\in(0,1) with τ=1\tau=1 and [23] p=1p=1 with τ=0\tau=0). Moreover, the logistic sources is even adequate to prevent blow-up for degenerate chemotaxis system [20]. This was later improved in [6] by replacing the logistic sources by sub-logistic ones.

The effect of logistic sources or sub-logistic sources on blow-up prevention in two-species chemotaxis models is quite limited, especially when the logistic sources appear only in the first equation of the system (1.1). In [19], the authors study the global existence and long time behavior of solutions to the following system

{ut=Δu(uv)+r1uμ1u2vt=Δvv+w,wt=Δw(wz)+r2wμ2w20=Δzz+u,\begin{cases}u_{t}=\Delta u-\nabla\cdot(u\nabla v)+r_{1}u-\mu_{1}u^{2}\\ v_{t}=\Delta v-v+w,\\ w_{t}=\Delta w-\nabla\cdot(w\nabla z)+r_{2}w-\mu_{2}w^{2}\\ 0=\Delta z-z+u,\end{cases} (1.3)

with r1,r2r_{1},r_{2}\in\mathbb{R} and μ1,μ2>0.\mu_{1},\mu_{2}>0. It was shown that if μ1μ2\mu_{1}\mu_{2} is sufficiently large then all solutions to (1.3) are global and bounded for any n1n\geq 1. For further studies on global existence and equilibrium solutions for two species with logistic sources appearing in two cell density equations, readers can refer to [1, 16, 3]. In fact, the analysis framework to prove the global existence of solutions to (1.3) for sufficiently large μ1μ2\mu_{1}\mu_{2} is similar to the one for one species [21]. However, there has no result so far considering the presence of a logistic source in only one species. Our purpose is to address that the appearance of the sub-logistic sources in one species can effectively eliminate the occurrence of finite time or infinite time blow-up solutions in two dimensional domains. Precisely, we have the following theorem:

Theorem 1.1.

Assume that f(u)=ruμu2lnp(u+e)f(u)=ru-\frac{\mu u^{2}}{\ln^{p}(u+e)}, where r,μ>0r,\mu>0, and p[0,1)p\in[0,1), and nonnegative initial data u0,w0C0(Ω¯)u_{0},w_{0}\in C^{0}(\bar{\Omega}). Then there exists a unique quadruple (u,v,w,z)(u,v,w,z) of nonnegative functions

u\displaystyle u C0(Ω¯×[0,))C2,1(Ω¯×(0,)),\displaystyle\in C^{0}\left(\bar{\Omega}\times[0,\infty)\right)\cap C^{2,1}\left(\bar{\Omega}\times(0,\infty)\right),
v\displaystyle v C2,0(Ω¯×(0,)),\displaystyle\in C^{2,0}\left(\bar{\Omega}\times(0,\infty)\right),
w\displaystyle w C0(Ω¯×[0,))C2,1(Ω¯×(0,)) and\displaystyle\in C^{0}\left(\bar{\Omega}\times[0,\infty)\right)\cap C^{2,1}\left(\bar{\Omega}\times(0,\infty)\right)\qquad\text{ and}
z\displaystyle z C2,0(Ω¯×(0,)),\displaystyle\in C^{2,0}\left(\bar{\Omega}\times(0,\infty)\right),

which solve the system (1.1) in the classical pointwise sense in Ω×(0,)\Omega\times(0,\infty). Moreover,

supt(0,){u(,t)L(Ω)+v(,t)L(Ω)+w(,t)L(Ω)+z(,t)L(Ω)}<.\sup_{t\in(0,\infty)}\left\{\left\|u(\cdot,t)\right\|_{L^{\infty}(\Omega)}+\left\|v(\cdot,t)\right\|_{L^{\infty}(\Omega)}+\left\|w(\cdot,t)\right\|_{L^{\infty}(\Omega)}+\left\|z(\cdot,t)\right\|_{L^{\infty}(\Omega)}\right\}<\infty. (1.4)
Remark 1.1.

Theorem 1.1 works for both parabolic-elliptic systems when τ=0\tau=0 and fully parabolic systems when τ=1\tau=1.

In the following sections, we will briefly recall the local well-posedness results for solutions to the system (1.1) in Section 2, and explore the mechanisms behind blow-up prevention by sub-logistic sources in Section 3.

2 Local existence

The local existence of solutions to the system (1.1) under homogeneous Neumann boundary conditions can be proved by adapting approaches that are well-established in the context chemotaxis models with logistic sources (see [18][Theorem 2.1] for parabolic-elliptic models and [14][Lemma 1.1] for fully parabolic models).

Lemma 2.1.

Suppose that u0u_{0} and v0v_{0} are in C0((¯Ω))C^{0}(\bar{(}\Omega)) are nonnegative. Then there exist Tmax(0,]T_{\rm max}\in(0,\infty] and a unique quadruple (u,v,w,z)(u,v,w,z) of nonnegative functions from C0(Ω¯×(0,Tmax))C2,1(Ω¯×(0,Tmax))C^{0}(\bar{\Omega}\times(0,T_{\rm max}))\cap C^{2,1}(\bar{\Omega}\times(0,T_{\rm max})) solving (1.1) under boundary condition (1.2) classically in Ω×(0,Tmax)\Omega\times(0,T_{\rm max}). Moreover, if Tmax<T_{\rm max}<\infty, then

lim suptTmax(u(,t)L(Ω)+w(,t)L(Ω))=.\limsup_{t\to T_{\rm max}}\left(\left\|u(\cdot,t)\right\|_{L^{\infty}(\Omega)}+\left\|w(\cdot,t)\right\|_{L^{\infty}(\Omega)}\right)=\infty. (2.1)

3 Global boundedness with sub-logistic sources. Proof of Theorem 1.1

The subsequent lemma holds a central position in this paper, serving as a cornerstone of our work. A noteworthy innovation introduced herein is the functional described by (3.2), with the specific values of the positive parameters AA and BB to be determined subsequently in the analysis. It is notable that, within the context of inequality (3.17), we identify a unique choice for AA that depends on the parameter ϵ\epsilon, resulting in the nonpositivity of the first term on the right-hand side of (3.17).

Lemma 3.1.

Under the assumptions as in Theorem 1.1, there exists a positive constant CC such that

Ωu(,t)ln(u(,t)+e)+Ωw(,t)ln(w(,t)+e)+τΩ|v(,t)|2+τΩ|z(,t)|2<C,\int_{\Omega}u(\cdot,t)\ln(u(\cdot,t)+e)+\int_{\Omega}w(\cdot,t)\ln(w(\cdot,t)+e)+\tau\int_{\Omega}|\nabla v(\cdot,t)|^{2}+\tau\int_{\Omega}|\nabla z(\cdot,t)|^{2}<C, (3.1)

for all t(0,Tmax)t\in(0,T_{\rm max}).

Proof.

We define

y(t):=Ωuln(u+e)+Ωwln(w+e)+A2Ω|v|2+B2Ω|z|2,\displaystyle y(t):=\int_{\Omega}u\ln(u+e)+\int_{\Omega}w\ln(w+e)+\frac{A}{2}\int_{\Omega}|\nabla v|^{2}+\frac{B}{2}\int_{\Omega}|\nabla z|^{2}, (3.2)

where A,B>0A,B>0 will be determined later. Differentiating yy in time, we obtain

y(t)+y(t)\displaystyle y^{\prime}(t)+y(t) =Ω(ln(u+e)+uu+e)(Δu(uv)+ruμu2lnp(u+e))\displaystyle=\int_{\Omega}\left(\ln(u+e)+\frac{u}{u+e}\right)\left(\Delta u-\nabla\cdot(u\nabla v)+ru-\frac{\mu u^{2}}{\ln^{p}(u+e)}\right)
Ω(ln(w+e)+ww+e)(Δw(wz))\displaystyle\int_{\Omega}\left(\ln(w+e)+\frac{w}{w+e}\right)\left(\Delta w-\nabla\cdot(w\nabla z)\right)
+τAΩv(Δvv+w)\displaystyle+\tau A\int_{\Omega}\nabla v\cdot\nabla\left(\Delta v-v+w\right)
+τBΩz(Δzz+u)\displaystyle+\tau B\int_{\Omega}\nabla z\cdot\nabla\left(\Delta z-z+u\right)
:=I1+I2+I3+I4.\displaystyle:=I_{1}+I_{2}+I_{3}+I_{4}. (3.3)

In case τ=1\tau=1, we use integration by parts to obtain:

I1\displaystyle I_{1} =Ω|u|2u+eΩe|u|2(u+e)2+Ω(uu+e+eu(u+e)2)uv\displaystyle=-\int_{\Omega}\frac{|\nabla u|^{2}}{u+e}-\int_{\Omega}\frac{e|\nabla u|^{2}}{(u+e)^{2}}+\int_{\Omega}\left(\frac{u}{u+e}+\frac{eu}{(u+e)^{2}}\right)\nabla u\cdot\nabla v
+Ω(ln(u+e)+uu+e)(ruμu2lnp(u+e)).\displaystyle+\int_{\Omega}\left(\ln(u+e)+\frac{u}{u+e}\right)\left(ru-\frac{\mu u^{2}}{\ln^{p}(u+e)}\right). (3.4)

Let us define

ϕ(u):=0uss+e+es(s+e)2ds,\phi(u):=\int_{0}^{u}\frac{s}{s+e}+\frac{es}{(s+e)^{2}}\,ds,

we see that ϕ(u)u\phi(u)\leq u. When τ=0\tau=0, by integration by parts and elementary inequality, we make use of the second equations to obtain that:

Ω(uu+e+eu(u+e)2)uv\displaystyle\int_{\Omega}\left(\frac{u}{u+e}+\frac{eu}{(u+e)^{2}}\right)\nabla u\cdot\nabla v =Ωϕ(u)v=Ωϕ(u)Δv\displaystyle=\int_{\Omega}\nabla\phi(u)\cdot\nabla v=-\int_{\Omega}\phi(u)\Delta v
=Ωϕ(u)(wv)Ωuw\displaystyle=\int_{\Omega}\phi(u)(w-v)\leq\int_{\Omega}uw
ϵΩw2+14ϵΩu2\displaystyle\leq\epsilon\int_{\Omega}w^{2}+\frac{1}{4\epsilon}\int_{\Omega}u^{2}
ϵΩw2+ϵΩu2ln1p(u+e)+c,\displaystyle\leq\epsilon\int_{\Omega}w^{2}+\epsilon\int_{\Omega}u^{2}\ln^{1-p}(u+e)+c, (3.5)

where the last inequality comes from the fact that for any δ>0\delta>0, there exists C>0C>0 depending on δ\delta such that

u2δu2ln1p(u+e)+C(δ),0p<1.\displaystyle u^{2}\leq\delta u^{2}\ln^{1-p}(u+e)+C(\delta),\qquad 0\leq p<1.

We apply similar argument in case τ=1\tau=1 to obtain

Ω(uu+e+eu(u+e)2)uv\displaystyle\int_{\Omega}\left(\frac{u}{u+e}+\frac{eu}{(u+e)^{2}}\right)\nabla u\cdot\nabla v =Ωϕ(u)Δv\displaystyle=-\int_{\Omega}\phi(u)\Delta v
ϵΩ(Δv)2+14ϵΩϕ2(u)\displaystyle\leq\epsilon\int_{\Omega}(\Delta v)^{2}+\frac{1}{4\epsilon}\int_{\Omega}\phi^{2}(u)
ϵΩ(Δv)2+14ϵΩu2\displaystyle\leq\epsilon\int_{\Omega}(\Delta v)^{2}+\frac{1}{4\epsilon}\int_{\Omega}u^{2}
ϵΩ(Δv)2+ϵΩu2ln1p(u+e)+c,\displaystyle\leq\epsilon\int_{\Omega}(\Delta v)^{2}+\epsilon\int_{\Omega}u^{2}\ln^{1-p}(u+e)+c, (3.6)

One can verify that for any ϵ>0\epsilon>0, there exists c>0c>0 depending on ϵ\epsilon such that

Ω(ln(u+e)+uu+e)(ruμu2lnp(u+e))(ϵμ)Ωu2ln1p(u+e)+c.\displaystyle\int_{\Omega}\left(\ln(u+e)+\frac{u}{u+e}\right)\left(ru-\frac{\mu u^{2}}{\ln^{p}(u+e)}\right)\leq(\epsilon-\mu)\int_{\Omega}u^{2}\ln^{1-p}(u+e)+c. (3.7)

From (3) to (3.7), we obtain that

I1(2ϵμ)Ωu2ln1p(u+e)+ϵΩw2+c,for τ=0,\displaystyle I_{1}\leq(2\epsilon-\mu)\int_{\Omega}u^{2}\ln^{1-p}(u+e)+\epsilon\int_{\Omega}w^{2}+c,\quad\text{for }\tau=0, (3.8)

and,

I1(2ϵμ)Ωu2ln1p(u+e)+ϵΩ(Δv)2+c,for τ=1.\displaystyle I_{1}\leq(2\epsilon-\mu)\int_{\Omega}u^{2}\ln^{1-p}(u+e)+\epsilon\int_{\Omega}(\Delta v)^{2}+c,\quad\text{for }\tau=1. (3.9)

By similar arguments, one can also obtain that

I2Ω|w|2w+e+ϵΩw2+ϵΩu2ln1p(u+e)+c,for τ=0,\displaystyle I_{2}\leq-\int_{\Omega}\frac{|\nabla w|^{2}}{w+e}+\epsilon\int_{\Omega}w^{2}+\epsilon\int_{\Omega}u^{2}\ln^{1-p}(u+e)+c,\quad\text{for }\tau=0, (3.10)

and

I2Ω|w|2w+e+ϵΩw2+14ϵΩ(Δz)2,for τ=1.\displaystyle I_{2}\leq-\int_{\Omega}\frac{|\nabla w|^{2}}{w+e}+\epsilon\int_{\Omega}w^{2}+\frac{1}{4\epsilon}\int_{\Omega}(\Delta z)^{2},\quad\text{for }\tau=1. (3.11)

By integration by parts and elementary inequalities, we have

I3\displaystyle I_{3} =τAΩ(Δv)2τAΩ|v|2τAΩwΔv\displaystyle=-\tau A\int_{\Omega}(\Delta v)^{2}-\tau A\int_{\Omega}|\nabla v|^{2}-\tau A\int_{\Omega}w\Delta v
τ(A24ϵA)Ω(Δv)2τAΩ|v|2+ϵτΩw2,\displaystyle\leq\tau(\frac{A^{2}}{4\epsilon}-A)\int_{\Omega}(\Delta v)^{2}-\tau A\int_{\Omega}|\nabla v|^{2}+\epsilon\tau\int_{\Omega}w^{2}, (3.12)

and

I4\displaystyle I_{4} =τBΩ(Δz)2τBΩ|z|2τBΩuΔz\displaystyle=-\tau B\int_{\Omega}(\Delta z)^{2}-\tau B\int_{\Omega}|\nabla z|^{2}-\tau B\int_{\Omega}u\Delta z
τ(ϵB)Ω(Δz)2τBΩ|z|2+τB24ϵΩu2\displaystyle\leq\tau(\epsilon-B)\int_{\Omega}(\Delta z)^{2}-\tau B\int_{\Omega}|\nabla z|^{2}+\tau\frac{B^{2}}{4\epsilon}\int_{\Omega}u^{2}
τ(ϵB)Ω(Δz)2τBΩ|z|2+τϵΩu2ln1p(u+e)+c.\displaystyle\leq\tau(\epsilon-B)\int_{\Omega}(\Delta z)^{2}-\tau B\int_{\Omega}|\nabla z|^{2}+\tau\epsilon\int_{\Omega}u^{2}\ln^{1-p}(u+e)+c. (3.13)

One can verify that

Ωuln(u+e)+Ωwln(w+e)ϵΩu2ln1p(u+e)+ϵΩw2+c.\displaystyle\int_{\Omega}u\ln(u+e)+\int_{\Omega}w\ln(w+e)\leq\epsilon\int_{\Omega}u^{2}\ln^{1-p}(u+e)+\epsilon\int_{\Omega}w^{2}+c. (3.14)

From (3.8) to (3.14), we have

y(t)+y(t)\displaystyle y^{\prime}(t)+y(t) Ω|w|2w+e+(4ϵμ)Ωu2ln1p(u+e)+3ϵΩw2\displaystyle\leq-\int_{\Omega}\frac{|\nabla w|^{2}}{w+e}+(4\epsilon-\mu)\int_{\Omega}u^{2}\ln^{1-p}(u+e)+3\epsilon\int_{\Omega}w^{2}
+τ(A24ϵ+ϵA)Ω(Δv)2+τ(ϵ+14ϵB)Ω(Δz)2+c.\displaystyle+\tau\left(\frac{A^{2}}{4\epsilon}+\epsilon-A\right)\int_{\Omega}(\Delta v)^{2}+\tau\left(\epsilon+\frac{1}{4\epsilon}-B\right)\int_{\Omega}(\Delta z)^{2}+c. (3.15)

The third term can be controlled by Gagliardo–Nirenberg interpolation inequality

3ϵΩw2\displaystyle 3\epsilon\int_{\Omega}w^{2} 3CGNϵΩ|w|2w+eΩ(w+e)+3CGNϵ(Ω(w+e))2\displaystyle\leq 3C_{GN}\epsilon\int_{\Omega}\frac{|\nabla w|^{2}}{w+e}\int_{\Omega}(w+e)+3C_{GN}\epsilon\left(\int_{\Omega}(w+e)\right)^{2}
3CGNϵ(Ωw0+e|Ω|)Ω|w|2w+e+3CGNϵ(Ωw0+e|Ω|)2.\displaystyle\leq 3C_{GN}\epsilon\left(\int_{\Omega}w_{0}+e|\Omega|\right)\int_{\Omega}\frac{|\nabla w|^{2}}{w+e}+3C_{GN}\epsilon\left(\int_{\Omega}w_{0}+e|\Omega|\right)^{2}. (3.16)

We substitute ϵ=min{μ4,13GGN(Ωw0+e|Ω|)1}\epsilon=\min\left\{\frac{\mu}{4},\frac{1}{3G_{GN}}\left(\int_{\Omega}w_{0}+e|\Omega|\right)^{-1}\right\} into (3) and (3) to obtain

y(t)+y(t)τ(A24ϵ+ϵA)Ω(Δv)2+τ(ϵ+14ϵB)Ω(Δz)2+c.\displaystyle y^{\prime}(t)+y(t)\leq\tau\left(\frac{A^{2}}{4\epsilon}+\epsilon-A\right)\int_{\Omega}(\Delta v)^{2}+\tau\left(\epsilon+\frac{1}{4\epsilon}-B\right)\int_{\Omega}(\Delta z)^{2}+c. (3.17)

Now we can choose A=2ϵA=2\epsilon and B=ϵ+14ϵB=\epsilon+\frac{1}{4\epsilon} and make use of Gronwall inequality to complete the proof. ∎

We are now ready to prove the main theorem.

Proof of Theorem 1.1.

We employ the arguments from [15][Lemma 4.2] with some modifications, and leverage Lemma 3.1 to derive the following inequality for all t(0,Tmax)t\in(0,T_{\rm max})

u(,t)L2(Ω)+w(,t)L2(Ω)<C.\left\|u(\cdot,t)\right\|_{L^{2}(\Omega)}+\left\|w(\cdot,t)\right\|_{L^{2}(\Omega)}<C.

Subsequently, we apply Moser-type iterations, akin to [16][Lemma 3.2] to establish the boundedness of uu and ww in Ω×(0,Tmax)\Omega\times(0,T_{\rm max}). Combining this with (2.1), we conclude that Tmax=T_{\rm max}=\infty. Employing elliptic regularity for τ=0\tau=0, and parabolic regularity for τ=1\tau=1, we ascertain the global boundedness of vv and zz in Ω×(0,)\Omega\times(0,\infty). Consequently, we derive (1.4), thereby completing the proof. ∎

References

  • [1] X. Bai and M. Winkler “Equilibration in a Fully Parabolic Two-Species Chemotaxis System with Competitive Kinetics” In Indiana University Mathematics Journal 65, 2016, pp. 553–583
  • [2] Adrien Blanchet, Jean Dolbeault and Benoît Perthame “Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions” In Electronic Journal of Differential Equations,, 2006
  • [3] E. Cruz, M. Negreanu and J.. Tello “Asymptotic behavior and global existence of solutions to a two-species chemotaxis system with two chemicals” In Z. Angew. Math. Phys. 69, 2018
  • [4] Jean Dolbeault and Benoît Perthame “A Optimal critical mass in the two dimensional Keller–Segel model in R2” In C. R. Acad. Sci. Paris, Ser. I 339, 2004, pp. 611–616
  • [5] E.. Keller and L.. Segel “Initiation of Slime Mold Aggregation Viewed as an Instability” In Journal of Theoretical Biology 26, 1970, pp. 399–415
  • [6] Minh Le “Blow-up prevention by sub-logistic sources in Keller-Segel cross diffusion type system” In Discrete and Continuous Dynamical Systems - Series B, 2023
  • [7] Noriko Mizoguchi “Global existence for the Cauchy problem of the parabolic–parabolic Keller–Segel system on the plane” In Calculus of Variations and Partial Differential Equations 48, 2013, pp. 491–505
  • [8] T. Nagai “Blow-up of radially symmetric solutions to a chemotaxis system” In Adv. Math. Sci. Appl. 5, 1995, pp. 581–601
  • [9] T. Nagai “Global existence and blowup of solutions to a chemotaxis system” In Nonlinear Analysis 47, 2001, pp. 777–787
  • [10] Toshitaka Nagai, Takasi Senba and Kiyoshi Yoshida “Application of the Trudinger-Moser inequality to a Parabolic System of Chemotaxis,” In Funkcilaj Ekvacioj 40, 1997, pp. 411–433
  • [11] K. Osaki and A. Yagi “Global existence for a chemotaxis-growth system in 2\mathbb{R}^{2} In Adv. Math. Sci. Appl. 2, 2002, pp. 587–606
  • [12] T. T. and T. Suzuki “Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains” In J. Inequal. Appl. 6, 2001, pp. 37–55
  • [13] T. T. and T. Suzuki “Chemotaxis collapse in a parabolic system of mathematical biology” In HiroshimaMath. J. 20, 2000, pp. 463–497
  • [14] Y. Tao and M. Winkler “Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity” In Journal of Differential Equations 252, 2011
  • [15] Y. Tao and M. Winkler “Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals” In Discrete and Continuous Dynamical Systems - Series B 20, 2015, pp. 3165–3183
  • [16] Y. Tao and M. Winkler “Dominance of chemotaxis in a chemotaxis–haptotaxis model” In Nonlinearity 27, 2014, pp. 1225–1239
  • [17] J. Tello and M. Winkler “A chemotaxis system with logistic source,” In Comm. Partial Differential Equations 32, 2007, pp. 849–877
  • [18] J. Tello and Michael Winkler “A Chemotaxis System with Logistic Source” In Communications in Partial Differential Equations 32, 2007, pp. 849–877
  • [19] M. Tian, X. He and S. Zheng “Global attractors in a two-species chemotaxis system with two chemicals and logistic sources” In Journal of Mathematical Analysis and Applications 508, 2022, pp. 125861
  • [20] M. Winkler “A result on parabolic gradient regularity in Orlicz spaces and application to absorption-induced blow-up prevention in a Keller-Segel type cross-diffusion system” In International Mathematics Research Notices 1, 2022, pp. rnac286
  • [21] M. Winkler “Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source” In Communications in Partial Differential Equations 35, 2010, pp. 1516–1537
  • [22] Tian Xiang “Sub-logistic source can prevent blow-up in the 2D minimal Keller-Segel chemotaxis system” In J. Math. Phys. 59, 2018, pp. 081502
  • [23] Tian Xiang and Jiashan Zheng “A new result for 2D boundedness of solutions to a chemotaxis–haptotaxis model with/without sub-logistic source” In Nonlinearity 32, 2019, pp. 4890–4911