This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Global regularity for the 3D compressible magnetohydrodynamics with general pressure

Anthony Suen Department of Mathematics and Information Technology
The Education University of Hong Kong, Hong Kong
acksuen@eduhk.hk
Abstract.

We address the compressible magnetohydrodynamics (MHD) equations in 3\mathbb{R}^{3} and establish a blow-up criterion for the local strong solutions in terms of the density only. Namely, if the density is away from vacuum (ρ=0\rho=0) and the concentration of mass (ρ=\rho=\infty), then a local strong solution can be continued globally in time. The results generalise and strengthen the previous ones in the sense that there is no magnetic field present in the criterion and the assumption on the pressure is significantly relaxed. The proof is based on some new a priori estimates for three-dimensional compressible MHD equations.

Key words and phrases:
Regularity, blow-up criteria, compressible magnetohydrodynamics
2000 Mathematics Subject Classification:
35Q35, 35Q80

1. Introduction

In this paper, we are concerned with the compressible magnetohydrodynamics (MHD) in three space dimensions. The fluid motion is described in the following system of partial differential equations (see Cabannes [Cab70] for a more comprehensive discussion on the system):

(1.1) ρt+div(ρu)\displaystyle\rho_{t}+\text{\rm div}(\rho u) =0,\displaystyle=0,
(1.2) (ρuj)t+div(ρuju)+P(ρ)xj+(12|B|2)xjdiv(BjB)\displaystyle(\rho u^{j})_{t}+\text{\rm div}(\rho u^{j}u)+P(\rho)_{x_{j}}+({\textstyle\frac{1}{2}}|B|^{2})_{x_{j}}-\text{\rm div}(B^{j}B) =μΔuj+λdivuxj,\displaystyle=\mu\Delta u^{j}+\lambda\,\text{\rm div}\,u_{x_{j}},
(1.3) Btj+div(BjuujB)\displaystyle B^{j}_{t}+\text{\rm div}(B^{j}u-u^{j}B) =νΔBj,\displaystyle=\nu\Delta B^{j},
(1.4) divB\displaystyle\text{\rm div}\,B =0.\displaystyle=0.

Here ρ\rho, u=(u1,u2,u3)u=(u^{1},u^{2},u^{3}) and B=(B1,B2,B3)B=(B^{1},B^{2},B^{3}) are functions of x3x\in\mathbb{R}^{3} and t0t\geq 0 representing density, velocity and magnetic field; P=P(ρ)P=P(\rho) is the pressure; μ\mu, λ\lambda, ν\nu are viscous constants. The system (1.1)-(1.4) is solved subjected to some given initial data:

(1.5) (ρ,u,B)(x,0)\displaystyle(\rho,u,B)(x,0) =(ρ0,u0,B0)(x).\displaystyle=(\rho_{0},u_{0},B_{0})(x).

The well-posedness of the MHD system (1.1)-(1.4) have been studied by many mathematicians in decades (see for example [CT10, HW10, HW08, Kaw84, LSW11, LSX16, LY11, Sar09, SH12, Sue20b] and the references therein), and we now give a brief review on the related results. When the initial data is taken to be close to a constant state in H3H^{3}, Kawashima [Kaw84] proved the existence of global-in-time H3H^{3} solutions to the MHD system. Later, Hoff and Suen [SH12] generalised Kawashima’s results to obtain global smooth solutions when the initial data is taken to be H3H^{3} but only close to a constant state in L2L^{2}. The existence of global weak solutions with large initial data was proved by Hu and Wang [HW10, HW08] and Sart [Sar09], which are extensions of Lions-type weak solutions [Lio98] for the Navier-Stokes system. With initial L2L^{2} data close to a constant state, Hoff and Suen [SH12, Sue12, Sue20b] generalised Hoff-type intermediate weak solutions [Hof95, Hof05, Hof06, LS16, Sue13b, Sue14, CS16, Sue20a] to obtain global solutions to the MHD system.

On the other hand, the global existence of smooth solution to (1.1)-(1.4) with arbitrary smooth data is still unknown, hence it is reasonable to consider the possibilities of blowing up of smooth solution. For the corresponding Navier-Stokes system, Xin [Xin98] proved that smooth solution will blow up in finite time in the whole space when the initial density has compact support, while Rozanova [Roz08] showed similar results for rapidly decreasing initial density. Fan-Jiang-Ou [FJO10], Sun-Wang-Zhang [SWZ11] and Suen [Sue20c] established some blow-up criteria for the classical solutions to 3D compressible flows, which were further extended by Lu-Du-Yao [LDY12] for MHD system. For the isothermal case when P(ρ)=KρP(\rho)=K\rho for some K>0K>0, it was proved in [Sue13a, Sue15] that without vacuum in the initial density, when the density and magnetic field are essential bounded, the smooth solutions to (1.1)-(1.4) can be extended globally in time.

The main goal of the present paper is to generalise and strengthen the corresponding results of [Sue13a, Sue15]. The main novelties of this current work can be summarised as follows:

  • We introduce some new type of estimates on functionals which are used for decoupling the velocity and magnetic field;

  • We obtain a blow-up criterion for (1.1)-(1.4) for general pressure term P(ρ)P(\rho) which is not restricted to the isothermal case;

  • We assure that the blow-up criterion dependsds only on density, which is an improvement for the results obtained from [Sue13a, Sue15] in which the magnetic field was present in the criterion;

  • We do not impose any extra compatibility condition on the initial data, which is required in the work [SWZ11, HLX11, Sue20c].

We give a brief description on the analysis applied in this work. To extract the “hidden regularity” from the velocity uu and magnetic field BB, we introduce an important canonical variable associated with the system (1.1)-(1.4), which is known as the effective viscous flux. To see how it works, by the Helmholtz decomposition of the mechanical forces, we can rewrite the momentum equation (1.2) as follows (summation over kk is understood):

(1.6) ρu˙j+(12|B|2)xjdiv(BjB)=Fxj+μωxkj,k,\rho\dot{u}^{j}+({\textstyle\frac{1}{2}}|B|^{2})_{x_{j}}-\text{\rm div}(B^{j}B)=F_{x_{j}}+\mu\omega^{j,k}_{x_{k}},

where u˙j=utj+uuj\dot{u}^{j}=u^{j}_{t}+u\cdot u^{j} is the material derivative on uju^{j} and the effective viscous flux FF is defined by

(1.7) F=(μ+λ)div(u)P(ρ)+P(ρ~).F=(\mu+\lambda){\rm div}(u)-P(\rho)+P(\tilde{\rho}).

Differentiating (1.6), we obtain the following Poisson equation

(1.8) ΔF=div(g),\Delta F=\text{\rm div}(g),

where gj=ρu˙j+(12|B|2)xjdiv(BjB)g^{j}=\rho\dot{u}^{j}+(\frac{1}{2}|B|^{2})_{x_{j}}-\text{\rm div}(B^{j}B). The Poisson equation (1.8) can be viewed as the analog for compressible MHD of the well-known elliptic equation for pressure in incompressible flow. By exploring the Rankine-Hugoniot condition (see [SH12]), one can deduce that the effective viscous flux FF is relatively more regular than div(u)\text{\rm div}(u) or P(ρ)P(\rho), and it turns out to be crucial for the overall analysis in the following ways:

  1. (i)

    The equation (1.6) allows us to decompose the acceleration density ρu˙\rho\dot{u} as the sum of the gradient of the scalar FF and the divergence-free vector field ωxk,k\omega^{\cdot,k}_{x_{k}} (we ignore those lower-order terms involving BB). The skew-symmetry of ω\omega insures that these two vector fields are orthogonal in L2(3)L^{2}(\mathbb{R}^{3}), so that L2L^{2}-bounds for the terms on the left side of (1.6) immediately give L2L^{2} bounds for the gradients of both FF and ω\omega. These in turn will be used for controlling u\nabla u in L4L^{4} when u(,t)H2u(\cdot,t)\notin H^{2}, which are crucial for estimating different functionals in uu and BB; see section 3 and the proof of Theorem 3.2.

  2. (ii)

    One of the key step in obtaining higher order estimates on the solutions is to bound the time integral of u(,t)L\|\nabla u(\cdot,t)\|_{L^{\infty}}. The key observation is to decompose uu as u=uF+uPu=u_{F}+u_{P}, where uFu_{F}, uPu_{P} satisfy

    {(μ+λ)ΔuFj=Fxj+(μ+λ)ωxkj,k(μ+λ)ΔuPj=(PP(ρ~))xj.\displaystyle\left\{\begin{array}[]{lr}(\mu+\lambda)\Delta u_{F}^{j}=F_{x_{j}}+(\mu+\lambda)\omega^{j,k}_{x_{k}}\\ (\mu+\lambda)\Delta u_{P}^{j}=(P-P(\tilde{\rho}))_{x_{j}}.\\ \end{array}\right.

    Using the a priori bounds on the effective viscous flux FF, the time integral of uF(,t)L\|\nabla u_{F}(\cdot,t)\|_{L^{\infty}} can be estimated in terms of FF, which can be further estimated in terms of some a priori bounds on u˙\dot{u} and BB. On the other hand, to control 0tuP(,s)𝑑s\int_{0}^{t}||\nabla u_{P}(\cdot,s)||_{\infty}ds, by applying the analysis on Newtonian potentials given in [BC94], one can show that if Γ\Gamma is the fundamental solution for the Laplace operator on 3\mathbb{R}^{3}, then uPj(,t)=(μ+λ)1Γxj(P(ρ(,t))P~)u^{j}_{P}(\cdot,t)=(\mu+\lambda)^{-1}\Gamma_{x_{j}}*(P(\rho(\cdot,t))-\tilde{P}) is log-Lipschitz provided that P(ρ(,t))LP(\rho(\cdot,t))\in L^{\infty} holds. This is sufficient to guarantee that the integral curve x(,t)x(\cdot,t) of u=uF+uPu=u_{F}+u_{P} is Hölder continuous under the assumption that uFu_{F} has enough regularity as claimed. If we assume that the initial density is Hölder continuous, then using the mass equation (1.1), it implies that the density is also Hölder continuous for positive time. Hence with such improved regularity on the density, it allows us to obtain the desired bound on uPu_{P}; see section 4 and the proof of Theorem 4.1. Such method was also exploited in [Sue20b] for proving global-in-time existence and uniqueness of weak solutions to (1.1)-(1.4).

We now give a precise formulation of our results. First concerning the assumptions on the parameters, we have:

(1.9) P()P(\cdot) is a C2C^{2}-function in ρ\rho with P(ρ)>0P^{\prime}(\rho)>0 for all ρ>0\rho>0;
(1.10) μ\mu, λ\lambda, ν>0\nu>0 with μ>4λ\mu>4\lambda.

Given ρ~>0\tilde{\rho}>0, for the initial data, we assume that

(1.11) ρ0ρ~,u0,B0H3(3)\rho_{0}-\tilde{\rho},u_{0},B_{0}\in H^{3}(\mathbb{R}^{3}) with inf(ρ0)>0\inf(\rho_{0})>0 and div(B0)=0\text{\rm div}(B_{0})=0.

The following is the main result of this paper:

Theorem 1.1.

Assume that the system parameters satisfy (1.9)-(1.10). Given ρ~>0\tilde{\rho}>0, suppose (ρ0ρ~,u0,B0)(\rho_{0}-\tilde{\rho},u_{0},B_{0}) satisfies (1.11). Assume that (ρρ~,u,B)(\rho-\tilde{\rho},u,B) is the smooth solution local-in-time solution to (1.1)-(1.4) as defined on 3×[0,T]\mathbb{R}^{3}\times[0,T], and let TTT^{*}\geq T be the maximal existence time of the solution. If T<T^{*}<\infty, then we have

limtT(ρL((0,t)×3)+ρ1L((0,t)×3))=+.\displaystyle\lim_{t\rightarrow T^{*}}(||\rho||_{L^{\infty}((0,t)\times\mathbb{R}^{3})}+||\rho^{-1}||_{L^{\infty}((0,t)\times\mathbb{R}^{3})})=+\infty.

The rest of the paper is organised as follows. In section 2, we recall some known facts and inequalities which will be useful for later analysis. In section 3, we begin the proof of Theorem 1.1 with a number of a priori bounds for smooth solutions, which are summarised in Theorem 3.2. Finally in section 4, we complete the proof of Theorem 1.1 via a contradiction argument by deriving higher order H3H^{3}-bounds for smooth solutions.

2. Preliminaries

In this section, we recall some known facts and useful inequalities for our analysis. We first state a local existence theorem for (1.1)-(1.4) proved by Kawashima [Kaw84, pg. 34–35 and pg. 52–53]:

Theorem 2.1.

Assume that the system parameters satisfy (1.9)-(1.10). Then given ρ~>0\tilde{\rho}>0 and C~>0\tilde{C}>0, there is a positive time TT depending on ρ~\tilde{\rho}, C~\tilde{C} and the parameters ε,λ,ν,P\varepsilon,\lambda,\nu,P such that if the initial data (ρ0,u0,B0)(\rho_{0},u_{0},B_{0}) is given satisfying (1.11) and

C0<C~,\displaystyle C_{0}<\tilde{C},

then there is a solution (ρρ~,u,B)(\rho-\tilde{\rho},u,B) to (1.1)-(1.4) defined on 3×[0,T]\mathbb{R}^{3}\times[0,T] satisfying

(2.1) ρρ~C([0,T];H3(3))C1([0,T];H2(3))\rho-\tilde{\rho}\in C([0,T];H^{3}(\mathbb{R}^{3}))\cap C^{1}([0,T];H^{2}(\mathbb{R}^{3}))

and

(2.2) u,BC([0,T];H3(3))C1([0,T];H1(3))L2([0,T];H4(3)).u,B\in C([0,T];H^{3}(\mathbb{R}^{3}))\cap C^{1}([0,T];H^{1}(\mathbb{R}^{3}))\cap L^{2}([0,T];H^{4}(\mathbb{R}^{3})).

We make use of the following standard facts (see Ziemer [Zie89, Theorem 2.1.4, Remark 2.4.3, and Theorem 2.4.4] for example). First, given r[2,6]r\in[2,6] there is a constant C(r)C(r) such that for wH1(3)w\in H^{1}(\mathbb{R}^{3}),

(2.3) wLr(3)C(r)(wL2(3)(6r)/2rwL2(3)(3r6)/2r).\|w\|_{L^{r}(\mathbb{R}^{3})}\leq C(r)\left(\|w\|_{L^{2}(\mathbb{R}^{3})}^{(6-r)/2r}\|\nabla w\|_{L^{2}(\mathbb{R}^{3})}^{(3r-6)/2r}\right).

For any r(1,)r\in(1,\infty) there is a constant C(r)C(r) such that for wW1,r(3)w\in W^{1,r}(\mathbb{R}^{3}),

(2.4) wL(3)C(r)wW1,r(3).\|w\|_{L^{\infty}(\mathbb{R}^{3})}\leq C(r)\|w\|_{W^{1,r}(\mathbb{R}^{3})}.

3. A priori estimates

In this section we derive a priori estimates for the local solution (ρρ~,u,B)(\rho-\tilde{\rho},u,B) on [0,t][0,t] with t[0,T)t\in[0,T^{*}) as described by Theorem 1.1. Here TT^{*} is the maximal time of existence which is defined in the following sense:

Definition 3.1.

We call T(0,)T^{*}\in(0,\infty) to be the maximal time of existence of a smooth solution (ρρ~,u,B)(\rho-\tilde{\rho},u,B) to (1.1)-(1.4) if for any t[0,T)t\in[0,T^{*}), (ρρ~,u,B)(\rho-\tilde{\rho},u,B) solves (1.1)-(1.4) in [0,t]×3[0,t]\times\mathbb{R}^{3} and satisfies (2.1)-(2.2); moreover, the conditions (2.1)-(2.2) fail to hold when t=Tt=T^{*}.

We will prove Theorem 1.1 using a contradiction argument. Therefore, for the sake of contradiction, we assume that

(3.1) ρL((0,T)×3)+ρ1L((0,T)×3)M0.\displaystyle||\rho||_{L^{\infty}((0,T^{*})\times\mathbb{R}^{3})}+||\rho^{-1}||_{L^{\infty}((0,T^{*})\times\mathbb{R}^{3})}\leq M_{0}.

To facilitate our exposition, we first define some auxiliary functionals for t[0,T)t\in[0,T^{*}):

Φ1(t)=sup0st3(|u|2+|B|2)+0t3(|u˙|2+|Bt|2),\displaystyle\Phi_{1}(t)=\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}(|\nabla u|^{2}+|\nabla B|^{2})+\int_{0}^{t}\int_{\mathbb{R}^{3}}(|\dot{u}|^{2}+|B_{t}|^{2}),
Φ2(t)=sup0st3(|u˙|2+|Bt|2)+0t3(|u˙|2+|Bt|2),\displaystyle\Phi_{2}(t)=\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}(|\dot{u}|^{2}+|B_{t}|^{2})+\int_{0}^{t}\int_{\mathbb{R}^{3}}(|\nabla\dot{u}|^{2}+|\nabla B_{t}|^{2}),
Φ3(t)=0t3(|u|4+|B|4),Φ4(t)=0t3(|u|3+|B|3).\displaystyle\Phi_{3}(t)=\int_{0}^{t}\int_{\mathbb{R}^{3}}(|\nabla u|^{4}+|\nabla B|^{4}),\qquad\Phi_{4}(t)=\int_{0}^{t}\int_{\mathbb{R}^{3}}(|\nabla u|^{3}+|\nabla B|^{3}).
Φ5(t)=sup0st3(|B|2|B|2+|u|2|B|2+|B|2|u|2).\displaystyle\Phi_{5}(t)=\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}(|\nabla B|^{2}|B|^{2}+|\nabla u|^{2}|B|^{2}+|\nabla B|^{2}|u|^{2}).

The following is the main theorem of this section:

Theorem 3.2.

Assume that the hypotheses and notations in Theorem 1.1 are in force. Given M0>0M_{0}>0 and ρ~>0\tilde{\rho}>0, assume further that (ρρ~,u,B)(\rho-\tilde{\rho},u,B) satisfies (3.1). Then for each t[0,T)t\in[0,T^{*}), there exists a positive constant CC which depends on M0M_{0}, tt, ρ~\tilde{\rho} and the system parameters PP, μ\mu, λ\lambda, ν\nu such that

(3.2) Φ1(t)+Φ2(t)C.\displaystyle\Phi_{1}(t)+\Phi_{2}(t)\leq C.

We prove Theorem 3.2 in a sequence of lemmas. Throughout this section, for t[0,T)t\in[0,T^{*}), CC always denotes a generic constant which depends only on μ\mu, λ\lambda, aa, ν\nu, ρ~\tilde{\rho}, M0M_{0}, tt and the initial data. For simplicity, we drop the symbols dxdx, dsds or dxdsdxds from the integrals.

We first give the following estimates on the effective vicious flux FF which is defined in (1.7).

Lemma 3.3.

Assume that ρ\rho satisfies (3.1). For each p>1p>1, there is a constant C>0C>0 such that for all t>0t>0, we have

(3.3) F(,t)Lp[u(,t)Lp+(ρρ~)(,t)Lp],\|F(\cdot,t)\|_{L^{p}}\leq\Big{[}\|\nabla u(\cdot,t)\|_{L^{p}}+\|(\rho-\tilde{\rho})(\cdot,t)\|_{L^{p}}\Big{]},

and

(3.4) F(,t)Lp[u˙(,t)Lp+BB(,t)Lp].\|\nabla F(\cdot,t)\|_{L^{p}}\leq\Big{[}\|\dot{u}(\cdot,t)\|_{L^{p}}+\|B\nabla B(\cdot,t)\|_{L^{p}}\Big{]}.
Proof.

The assertion (3.3) follows immediately from the definition of FF, and the proof of (3.4) relies on the Poisson equation (1.8) and the Marcinkiewicz multiplier theorem (refer to Stein [Ste70], pg. 96). ∎

Using the estimates (3.3)-(3.4) on FF, we have the following estimates on u\nabla u and ω\nabla\omega:

Lemma 3.4.

Assume that ρ\rho satisfies (3.1). For each p>1p>1, there is a constant C>0C>0 depends on pp such that for all t>0t>0, we have

(3.5) u(,t)LpC[F(,t)Lp+ω(,t)Lp+(PP~)(,t)Lp],\displaystyle\|\nabla u(\cdot,t)\|_{L^{p}}\leq C\Big{[}\|F(\cdot,t)\|_{L^{p}}+\|\omega(\cdot,t)\|_{L^{p}}+\|(P-\tilde{P})(\cdot,t)\|_{L^{p}}\Big{]},
(3.6) ω(,t)LpC[u˙(,t)Lp+BB(,t)Lp].\displaystyle\|\nabla\omega(\cdot,t)\|_{L^{p}}\leq C\Big{[}\|\dot{u}(\cdot,t)\|_{L^{p}}+\|B\nabla B(\cdot,t)\|_{L^{p}}\Big{]}.
Proof.

By the definition (1.7) of FF,

(μ+λ)Δuj=Fxj+(μ+λ)ωxkj,k+(PP~)xj.(\mu+\lambda)\Delta u^{j}=F_{x_{j}}+(\mu+\lambda)\omega^{j,k}_{x_{k}}+(P-\tilde{P})_{x_{j}}.

Hence by differentiating and taking the Fourier transform on the above equation, we can apply Marcinkiewicz multiplier theorem and (3.5) follows.

For the case of ω\nabla\omega, by direct computation, we have

μΔω=(ρu˙j)xk(ρu˙k)xj(BjB)xk+(BkB)xj,\mu\Delta\omega=(\rho\dot{u}^{j})_{x_{k}}-(\rho\dot{u}^{k})_{x_{j}}-(\nabla B^{j}\cdot B)_{x_{k}}+(\nabla B^{k}\cdot B)_{x_{j}},

and using the same argument as for u\nabla u, (3.6) follows immediately. ∎

We are now ready for giving the estimates for proving Theorem 3.2. We begin with the following L2L^{2} estimates on (ρ,u,B)(\rho,u,B) for all t[0,T)t\in[0,T^{*}):

Lemma 3.5.

Assume that ρ\rho satisfies (3.1). For t[0,T)t\in[0,T^{*}), we have

(3.7) sup0st3(|ρρ~|2+ρ|u|2+|B|2)+0t3(|u|2+|B|2)C.\displaystyle\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}(|\rho-\tilde{\rho}|^{2}+\rho|u|^{2}+|B|^{2})+\int_{0}^{t}\int_{\mathbb{R}^{3}}(|\nabla u|^{2}+|\nabla B|^{2})\leq C.
Proof.

The bound (3.7) follows from the standard energy balance equation and we refer to [Hof95] or [Sue20a] for related discussions. ∎

Next we derive the following L6L^{6} bounds for uu and BB. Such bounds are crucial for obtaining higher order estimates on uu and BB.

Lemma 3.6.

Assume that the hypotheses and notations of Theorem 3.2 are in force. Then for any 0t<T0\leq t<T^{*},

(3.8) sup0st3(|u|6+|B|6)C.\displaystyle\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}(|u|^{6}+|B|^{6})\leq C.
Proof.

We follow the computations given in [SH12, Sue20b] and obtain, for t[0,T)t\in[0,T^{*}),

3(|u|6+|B|6)|s=0t+60t3(μ|u|2|u|2+ν|B|2|B|2)\displaystyle\int_{\mathbb{R}^{3}}(|u|^{6}+|B|^{6})\Big{|}_{s=0}^{t}+6\int_{0}^{t}\int_{\mathbb{R}^{3}}(\mu|u|^{2}|\nabla u|^{2}+\nu|B|^{2}|\nabla B|^{2})
+(24λ+6μ)0t3|u|2|(|u|2)|2+6ν0t3|B|2|)|B|2)|2\displaystyle\qquad+(-24\lambda+6\mu)\int_{0}^{t}\int_{\mathbb{R}^{3}}|u|^{2}|\nabla(|u|^{2})|^{2}+6\nu\int_{0}^{t}\int_{\mathbb{R}^{3}}|B|^{2}|\nabla)|B|^{2})|^{2}
C[0t3|ρρ~||div(|u|4u)|+0t3|u|4|u||div(BBT)|]\displaystyle\leq C\Big{[}\int_{0}^{t}\int_{\mathbb{R}^{3}}|\rho-\tilde{\rho}||\text{\rm div}(|u|^{4}u)|+\int_{0}^{t}\int_{\mathbb{R}^{3}}|u|^{4}|u||\text{\rm div}(BB^{T})|\Big{]}
+C[0t3|u|4|u||(12|B|2)|+0t3|B|4|Bdiv(BuTuBT)|].\displaystyle\qquad+C\Big{[}\int_{0}^{t}\int_{\mathbb{R}^{3}}|u|^{4}|u||\nabla(\frac{1}{2}|B|^{2})|+\int_{0}^{t}\int_{\mathbb{R}^{3}}|B|^{4}|B\cdot\text{\rm div}(Bu^{T}-uB^{T})|\Big{]}.

By the assumption (1.10), the term involving (24λ+6μ)(-24\lambda+6\mu) is positive. The rest of the analysis follows by a Grönwall-type argument and we omit the details here. ∎

With the help of (3.7) and (3.8), we can start estimating the functionals Φ1\Phi_{1} and Φ2\Phi_{2} appeared in (3.2). We first consider Φ1\Phi_{1} and Φ4\Phi_{4}:

Lemma 3.7.

Assume that the hypotheses and notations of Theorem 3.2 are in force. Then for any 0t<T0\leq t<T^{*},

(3.9) Φ1(t)+Φ4(t)C.\displaystyle\Phi_{1}(t)+\Phi_{4}(t)\leq C.
Proof.

We multiply (1.2) by u˙j\dot{u}^{j}, sum over jj and integrate to get

3|u|2+0t3ρ|u˙|2\displaystyle\int_{\mathbb{R}^{3}}|\nabla u|^{2}+\int_{0}^{t}\int_{\mathbb{R}^{3}}\rho|\dot{u}|^{2}
(3.10) C+|0t3[u˙(12|B|2)u˙div(BBT)]|+0t3|u|3.\displaystyle\qquad\leq C+\left|\int_{0}^{t}\int_{\mathbb{R}^{3}}[\dot{u}\cdot\nabla(\frac{1}{2}|B|^{2})-\dot{u}\cdot\text{\rm div}(BB^{T})]\right|+\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla u|^{3}.

Niext we multiply (1.3) by BtB_{t} and integrate,

(3.11) 3|B|2+0t3|Bt|2C+|0t3Btdiv(uBTuTB)|.\displaystyle\int_{\mathbb{R}^{3}}|\nabla B|^{2}+\int_{0}^{t}\int_{\mathbb{R}^{3}}|B_{t}|^{2}\leq C+\left|\int_{0}^{t}\int_{\mathbb{R}^{3}}B_{t}\cdot\text{\rm div}(uB^{T}-u^{T}B)\right|.

Adding (3) and (3.11), we obtain

3(|u|2+|B|2)+0t3(ρ|u˙|2+|Bt|2)\displaystyle\int_{\mathbb{R}^{3}}(|\nabla u|^{2}+|\nabla B|^{2})+\int_{0}^{t}\int_{\mathbb{R}^{3}}(\rho|\dot{u}|^{2}+|B_{t}|^{2})
(3.12) C+CΦ4+C0t3(|B|2|B|2+|u|2|B|2+|B|2|u|2).\displaystyle\leq C+C\Phi_{4}+C\int_{0}^{t}\int_{\mathbb{R}^{3}}(|\nabla B|^{2}|B|^{2}+|\nabla u|^{2}|B|^{2}+|\nabla B|^{2}|u|^{2}).

To bound the last inequality on the right side of (3), we bound the term 0t3|B|2|B|2d\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla B|^{2}|B|^{2}d as an example. Using (2.3) and the bound (3.8), we arrive at

0t3|B|2|B|2\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla B|^{2}|B|^{2} (0t3|B|3)23(0t3|B|6)13\displaystyle\leq\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla B|^{3}\Big{)}^{\frac{2}{3}}\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}|B|^{6}\Big{)}^{\frac{1}{3}}
C(0t(3|ΔB|2)34(3|B|2)34)23\displaystyle\leq C\Big{(}\int_{0}^{t}\Big{(}\int_{\mathbb{R}^{3}}|\Delta B|^{2}\Big{)}^{\frac{3}{4}}\Big{(}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}^{\frac{3}{4}}\Big{)}^{\frac{2}{3}}
C(0t(3(|Bt|2+|B|2|u|2+|u|2|B|2))34(3|B|2)34)23\displaystyle\leq C\Big{(}\int_{0}^{t}\Big{(}\int_{\mathbb{R}^{3}}(|B_{t}|^{2}+|\nabla B|^{2}|u|^{2}+|\nabla u|^{2}|B|^{2})\Big{)}^{\frac{3}{4}}\Big{(}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}^{\frac{3}{4}}\Big{)}^{\frac{2}{3}}
C(sup0st3|B|2)13(0t3|Bt|2)12(0t3|B|2)16\displaystyle\leq C\Big{(}\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}^{\frac{1}{3}}\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}|B_{t}|^{2}\Big{)}^{\frac{1}{2}}\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}^{\frac{1}{6}}
+C(0t(3|B|3)12(3|u|6)14(3|B|2)34)23\displaystyle\qquad+C\Big{(}\int_{0}^{t}\Big{(}\int_{\mathbb{R}^{3}}|\nabla B|^{3}\Big{)}^{\frac{1}{2}}\Big{(}\int_{\mathbb{R}^{3}}|u|^{6}\Big{)}^{\frac{1}{4}}\Big{(}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}^{\frac{3}{4}}\Big{)}^{\frac{2}{3}}
+C(0t(3|u|3)12(3|B|6)14(3|B|2)34)23\displaystyle\qquad+C\Big{(}\int_{0}^{t}\Big{(}\int_{\mathbb{R}^{3}}|\nabla u|^{3}\Big{)}^{\frac{1}{2}}\Big{(}\int_{\mathbb{R}^{3}}|B|^{6}\Big{)}^{\frac{1}{4}}\Big{(}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}^{\frac{3}{4}}\Big{)}^{\frac{2}{3}}
CΦ156+CΦ116Φ413.\displaystyle\leq C\Phi_{1}^{\frac{5}{6}}+C\Phi_{1}^{\frac{1}{6}}\Phi_{4}^{\frac{1}{3}}.

The estimates on 0t3|u|2|B|2\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla u|^{2}|B|^{2} and 0t3|B|2|u|2\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla B|^{2}|u|^{2} are just similar, and we deduce that

(3.13) Φ1CΦ156+CΦ116Φ413.\displaystyle\Phi_{1}\leq C\Phi_{1}^{\frac{5}{6}}+C\Phi_{1}^{\frac{1}{6}}\Phi_{4}^{\frac{1}{3}}.

It remains to estimate the functional Φ4\Phi_{4}. Using (2.3), we can estimate the integral of |B|3|\nabla B|^{3} as follows.

0t3|B|3\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla B|^{3} C0t(3|ΔB|2)34(3|B|2)34\displaystyle\leq C\int_{0}^{t}\Big{(}\int_{\mathbb{R}^{3}}|\Delta B|^{2}\Big{)}^{\frac{3}{4}}\Big{(}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}^{\frac{3}{4}}
C0t(3(|Bt|2+|B|2|u|2+|u|2|B|2))34(3|B|2)34\displaystyle\leq C\int_{0}^{t}\Big{(}\int_{\mathbb{R}^{3}}(|B_{t}|^{2}+|\nabla B|^{2}|u|^{2}+|\nabla u|^{2}|B|^{2})\Big{)}^{\frac{3}{4}}\Big{(}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}^{\frac{3}{4}}
C(sup0st3|B|2)12(0t3|Bt|2)34(0t3|B|2)14\displaystyle\leq C\Big{(}\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}^{\frac{1}{2}}\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}|B_{t}|^{2}\Big{)}^{\frac{3}{4}}\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}^{\frac{1}{4}}
+C0t(3|B|3)12(3|u|6)14(3|B|2)34\displaystyle\qquad+C\int_{0}^{t}\Big{(}\int_{\mathbb{R}^{3}}|\nabla B|^{3}\Big{)}^{\frac{1}{2}}\Big{(}\int_{\mathbb{R}^{3}}|u|^{6}\Big{)}^{\frac{1}{4}}\Big{(}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}^{\frac{3}{4}}
+C0t(3|u|3)12(3|B|6)14(3|B|2)34\displaystyle\qquad+C\int_{0}^{t}\Big{(}\int_{\mathbb{R}^{3}}|\nabla u|^{3}\Big{)}^{\frac{1}{2}}\Big{(}\int_{\mathbb{R}^{3}}|B|^{6}\Big{)}^{\frac{1}{4}}\Big{(}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}^{\frac{3}{4}}
CΦ154+CΦ114Φ412.\displaystyle\leq C\Phi_{1}^{\frac{5}{4}}+C\Phi_{1}^{\frac{1}{4}}\Phi_{4}^{\frac{1}{2}}.

On the other hand, using (2.3), (3.5), (3.6) and (3.7), the integral of |u|3|\nabla u|^{3} can be estimated as follows.

0t3|u|3\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla u|^{3}
C0t3(|F|3+|ω|3+|PP~|3)\displaystyle\leq C\int_{0}^{t}\int_{\mathbb{R}^{3}}(|F|^{3}+|\omega|^{3}+|P-\tilde{P}|^{3})
C0t(3|F|2)34(3|F|2)34+C0t(3|ω|2)34(3|ω|2)34+C\displaystyle\leq C\int_{0}^{t}\Big{(}\int_{\mathbb{R}^{3}}|F|^{2}\Big{)}^{\frac{3}{4}}\Big{(}\int_{\mathbb{R}^{3}}|\nabla F|^{2}\Big{)}^{\frac{3}{4}}+C\int_{0}^{t}\Big{(}\int_{\mathbb{R}^{3}}|\omega|^{2}\Big{)}^{\frac{3}{4}}\Big{(}\int_{\mathbb{R}^{3}}|\nabla\omega|^{2}\Big{)}^{\frac{3}{4}}+C
C(sup0st3|u|2)12(0t3|u˙|2)34+C(0t3|u˙|2)34\displaystyle\leq C\Big{(}\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}|\nabla u|^{2}\Big{)}^{\frac{1}{2}}\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}|\dot{u}|^{2}\Big{)}^{\frac{3}{4}}+C\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}|\dot{u}|^{2}\Big{)}^{\frac{3}{4}}
+C(sup0st3|u|2)14(0t3|B|3)12\displaystyle\qquad+C\Big{(}\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}|\nabla u|^{2}\Big{)}^{\frac{1}{4}}\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla B|^{3}\Big{)}^{\frac{1}{2}}
+C(0t3|B|3)12+C\displaystyle\qquad+C\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla B|^{3}\Big{)}^{\frac{1}{2}}+C
CΦ154+CΦ134+CΦ114Φ412+CΦ412+C.\displaystyle\leq C\Phi_{1}^{\frac{5}{4}}+C\Phi_{1}^{\frac{3}{4}}+C\Phi_{1}^{\frac{1}{4}}\Phi_{4}^{\frac{1}{2}}+C\Phi_{4}^{\frac{1}{2}}+C.

Therefore, we obtain the following bound on Φ4\Phi_{4} in terms of Φ1\Phi_{1}:

(3.14) Φ4CΦ154+CΦ134+CΦ112+C\displaystyle\Phi_{4}\leq C\Phi_{1}^{\frac{5}{4}}+C\Phi_{1}^{\frac{3}{4}}+C\Phi_{1}^{\frac{1}{2}}+C

Combining (3.13) with (3.14), the result (3.9) follows. ∎

Next, we derive the following estimates for Φ2\Phi_{2} in terms of Φ3\Phi_{3} and Φ5\Phi_{5}:

Lemma 3.8.

Assume that the hypotheses and notations of Theorem 3.2 are in force. Then for any 0t<T0\leq t<T^{*},

(3.15) Φ2(t)+Φ3(t)+Φ5(t)C.\displaystyle\Phi_{2}(t)+\Phi_{3}(t)+\Phi_{5}(t)\leq C.
Proof.

Taking the convective derivative in the momentum equation (1.2), multiplying it by u˙j\dot{u}^{j}, summing over jj and integrating, we obtain

sup0st3|u˙|2+0t3|u˙|2\displaystyle\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}|\dot{u}|^{2}+\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla\dot{u}|^{2}
(3.16) C+CΦ3+C0t3|B|2(|Bt|2+|u|2|B|2).\displaystyle\qquad\qquad\leq C+C\Phi_{3}+C\int_{0}^{t}\int_{\mathbb{R}^{3}}|B|^{2}(|B_{t}|^{2}+|u|^{2}|\nabla B|^{2}).

Next we differentiate the magnetic field equation (1.3) with respect to tt, multiply by BtB_{t} and integrate,

123|Bt|2|0t+ν0t3|Bt|2\displaystyle\left.\frac{1}{2}\int_{\mathbb{R}^{3}}|B_{t}|^{2}\right|_{0}^{t}+\nu\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla B_{t}|^{2}
=0t3Bt[div(BuTuBT)]t.\displaystyle\qquad\qquad\qquad=-\int_{0}^{t}\int_{\mathbb{R}^{3}}B_{t}\cdot[\text{\rm div}(Bu^{T}-uB^{T})]_{t}.

Adding the above to (3) and absorbing terms,

Φ2C[Φ3+0t3|B|2|u|2(|u|2+|B|2)+1]\displaystyle\Phi_{2}\leq C\left[\Phi_{3}+\int_{0}^{t}\int_{\mathbb{R}^{3}}|B|^{2}|u|^{2}(|\nabla u|^{2}+|\nabla B|^{2})+1\right]
(3.17) +C0t3(|B|2|Bt|2+|B|2|u˙|2+|Bt|2|u|2).\displaystyle\qquad\qquad\qquad\qquad+C\int_{0}^{t}\int_{\mathbb{R}^{3}}(|B|^{2}|B_{t}|^{2}+|B|^{2}|\dot{u}|^{2}+|B_{t}|^{2}|u|^{2}).

We first consider the last integral on the right side of (3). To bound the term 0t3|B|2|Bt|2\int_{0}^{t}\int_{\mathbb{R}^{3}}|B|^{2}|B_{t}|^{2}, using the bound (3.9), we have

0t3|B|2|Bt|2\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{3}}|B|^{2}|B_{t}|^{2}
(0t3|B|6)13(0t3|Bt|3)23\displaystyle\leq\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}|B|^{6}\Big{)}^{\frac{1}{3}}\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}|B_{t}|^{3}\Big{)}^{\frac{2}{3}}
C(sup0st3|Bt|2)13(0t3|Bt|2)16(0t3|Bt|2)12\displaystyle\leq C\Big{(}\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}|B_{t}|^{2}\Big{)}^{\frac{1}{3}}\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}|B_{t}|^{2}\Big{)}^{\frac{1}{6}}\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla B_{t}|^{2}\Big{)}^{\frac{1}{2}}
CΦ116Φ256CΦ256,\displaystyle\leq C\Phi_{1}^{\frac{1}{6}}\Phi_{2}^{\frac{5}{6}}\leq C\Phi_{2}^{\frac{5}{6}},

and the terms 0t3|u|2|Bt|2\int_{0}^{t}\int_{\mathbb{R}^{3}}|u|^{2}|B_{t}|^{2} and 0t3|B|2|u˙|2\int_{0}^{t}\int_{\mathbb{R}^{3}}|B|^{2}|\dot{u}|^{2} can be treated in a similar way. To bound the third integral on the right side of (3), we have

0t3|B|2|u|2(|u|2+|B|2)\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{3}}|B|^{2}|u|^{2}(|\nabla u|^{2}+|\nabla B|^{2})
0t3(|u|4+|B|4)+0t3(|B|8+|u|8)\displaystyle\leq\int_{0}^{t}\int_{\mathbb{R}^{3}}(|\nabla u|^{4}+|\nabla B|^{4})+\int_{0}^{t}\int_{\mathbb{R}^{3}}(|B|^{8}+|u|^{8})
Φ3+0t3(|B|8+|u|8).\displaystyle\leq\Phi_{3}+\int_{0}^{t}\int_{\mathbb{R}^{3}}(|B|^{8}+|u|^{8}).

Using the bounds (2.3) and (2.4), the term 0t3|u|8\int_{0}^{t}\int_{\mathbb{R}^{3}}|u|^{8} can be estimated as follows.

0t3|u|8\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{3}}|u|^{8}
(sup0st3|u|4)(0tu|L4)\displaystyle\leq\Big{(}\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}|u|^{4}\Big{)}\Big{(}\int_{0}^{t}\|u|^{4}_{L^{\infty}}\Big{)}
C(sup0st3|u|2)12(sup0st3|u|6)12(0t3(|u|4+|u|4))\displaystyle\leq C\Big{(}\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}|u|^{2}\Big{)}^{\frac{1}{2}}\Big{(}\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}|u|^{6}\Big{)}^{\frac{1}{2}}\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}(|u|^{4}+|\nabla u|^{4})\Big{)}
C[0t(3|u|2)12(3|u|2)32+Φ3]\displaystyle\leq C\Big{[}\int_{0}^{t}\Big{(}\int_{\mathbb{R}^{3}}|u|^{2}\Big{)}^{\frac{1}{2}}\Big{(}\int_{\mathbb{R}^{3}}|\nabla u|^{2}\Big{)}^{\frac{3}{2}}+\Phi_{3}\Big{]}
C(Φ3+1).\displaystyle\leq C\Big{(}\Phi_{3}+1\Big{)}.

The term 0t3|B|8\int_{0}^{t}\int_{\mathbb{R}^{3}}|B|^{8} can be estimated in a similar way to get

0t3|B|2|u|2(|u|2+|B|2)C(Φ3+1),\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{3}}|B|^{2}|u|^{2}(|\nabla u|^{2}+|\nabla B|^{2})\leq C\Big{(}\Phi_{3}+1\Big{)},

and we obtain from (3) that

(3.18) Φ2C(Φ3+1)+CΦ256.\displaystyle\Phi_{2}\leq C\left(\Phi_{3}+1\right)+C\Phi_{2}^{\frac{5}{6}}.

It remains to estimate the functionals Φ3\Phi_{3} and Φ5\Phi_{5}. Using (3.5) and (3.7), we have

(3.19) 0t3|u|4C0t3(|F|4+|ω|4)+C.\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla u|^{4}\leq C\int_{0}^{t}\int_{\mathbb{R}^{3}}(|F|^{4}+|\omega|^{4})+C.

Using (3.9), the integral on |F|4|F|^{4} can be bounded by

0t3|F|4\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{3}}|F|^{4} C(sup0st3|F|2)12(sup0st3|F|2)12(0t3|F|2)\displaystyle\leq C\Big{(}\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}|F|^{2}\Big{)}^{\frac{1}{2}}\Big{(}\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}|\nabla F|^{2}\Big{)}^{\frac{1}{2}}\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla F|^{2}\Big{)}
C(sup0st3(|u˙|2+|B|2|B|2)12(0t3(|u˙|2+|B|2|B|2))12\displaystyle\leq C\Big{(}\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}(|\dot{u}|^{2}+|\nabla B|^{2}|B|^{2}\Big{)}^{\frac{1}{2}}\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}(|\dot{u}|^{2}+|\nabla B|^{2}|B|^{2})\Big{)}^{\frac{1}{2}}
C(Φ2+Φ5)12,\displaystyle\leq C(\Phi_{2}+\Phi_{5})^{\frac{1}{2}},

and the estimates on ω\omega is just similar. For 0t3|B|4\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla B|^{4}, we estimate it as follows.

0t3|B|4\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla B|^{4} C0t(3|B|2)12(3|ΔB|2)32\displaystyle\leq C\int_{0}^{t}\Big{(}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}^{\frac{1}{2}}\Big{(}\int_{\mathbb{R}^{3}}|\Delta B|^{2}\Big{)}^{\frac{3}{2}}
C(sup0st3|ΔB|2)12(sup0st3|B|2)12(0t3|ΔB|2)\displaystyle\leq C\Big{(}\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}|\Delta B|^{2}\Big{)}^{\frac{1}{2}}\Big{(}\sup_{0\leq s\leq t}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}^{\frac{1}{2}}\Big{(}\int_{0}^{t}\int_{\mathbb{R}^{3}}|\Delta B|^{2}\Big{)}
C(Φ2+Φ5)12.\displaystyle\leq C\Big{(}\Phi_{2}+\Phi_{5}\Big{)}^{\frac{1}{2}}.

Hence we have

(3.20) Φ3C(Φ2+Φ5)12+C.\displaystyle\Phi_{3}\leq C(\Phi_{2}+\Phi_{5})^{\frac{1}{2}}+C.

To bound Φ5\Phi_{5}, for r(3,6)r\in(3,6), we apply (2.4) to obtain

3|u|2|B|2\displaystyle\int_{\mathbb{R}^{3}}|\nabla u|^{2}|B|^{2}
CB(,t)L2(3|u|2)\displaystyle\leq C\|B(\cdot,t)\|^{2}_{L^{\infty}}\Big{(}\int_{\mathbb{R}^{3}}|\nabla u|^{2}\Big{)}
C(3|B|r+3|B|r)2r(3|u|2).\displaystyle\leq C\Big{(}\int_{\mathbb{R}^{3}}|B|^{r}+\int_{\mathbb{R}^{3}}|\nabla B|^{r}\Big{)}^{\frac{2}{r}}\Big{(}\int_{\mathbb{R}^{3}}|\nabla u|^{2}\Big{)}.

The term BLr\|B\|_{L^{r}} can be bounded by the L2L6L^{2}-L^{6} interpolation on BB. Hence using (2.3) and the bound (3.9), we obtain

3|u|2|B|2\displaystyle\int_{\mathbb{R}^{3}}|\nabla u|^{2}|B|^{2} C+C(3|u|2)(3|B|2)6r2r(3|ΔB|2)3r62r\displaystyle\leq C+C\Big{(}\int_{\mathbb{R}^{3}}|\nabla u|^{2}\Big{)}\Big{(}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}^{\frac{6-r}{2r}}\Big{(}\int_{\mathbb{R}^{3}}|\Delta B|^{2}\Big{)}^{\frac{3r-6}{2r}}
C+C(3|u|2)(3|B|2)1s(3|ΔB|2)s\displaystyle\leq C+C\Big{(}\int_{\mathbb{R}^{3}}|\nabla u|^{2}\Big{)}\Big{(}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}^{1-s^{\prime}}\Big{(}\int_{\mathbb{R}^{3}}|\Delta B|^{2}\Big{)}^{s^{\prime}}
C+C(3|Bt|2+3(|B|2|u|2+|u|2|B|2))s\displaystyle\leq C+C\Big{(}\int_{\mathbb{R}^{3}}|B_{t}|^{2}+\int_{\mathbb{R}^{3}}(|\nabla B|^{2}|u|^{2}+|\nabla u|^{2}|B|^{2})\Big{)}^{s^{\prime}}
C+C(Φ2+Φ5)s,\displaystyle\leq C+C\Big{(}\Phi_{2}+\Phi_{5}\Big{)}^{s^{\prime}},

where s:=3r62rs^{\prime}:=\frac{3r-6}{2r} and s(0,1)s^{\prime}\in(0,1). By similar method, we obtain

3|B|2|B|2\displaystyle\int_{\mathbb{R}^{3}}|\nabla B|^{2}|B|^{2} (3|B|2)B(,t)L2\displaystyle\leq\Big{(}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}\|B(\cdot,t)\|^{2}_{L^{\infty}}
C+C(Φ2+Φ5)s.\displaystyle\leq C+C\Big{(}\Phi_{2}+\Phi_{5}\Big{)}^{s^{\prime}}.

For the term 3|B|2|u|2\int_{\mathbb{R}^{3}}|\nabla B|^{2}|u|^{2}, we have

3|B|2|u|2\displaystyle\int_{\mathbb{R}^{3}}|\nabla B|^{2}|u|^{2} (3|B|2)u(,t)L2\displaystyle\leq\Big{(}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}\|u(\cdot,t)\|^{2}_{L^{\infty}}
C(3|B|2)(3|u|r+3|u|r)2r.\displaystyle\leq C\Big{(}\int_{\mathbb{R}^{3}}|\nabla B|^{2}\Big{)}\Big{(}\int_{\mathbb{R}^{3}}|u|^{r}+\int_{\mathbb{R}^{3}}|\nabla u|^{r}\Big{)}^{\frac{2}{r}}.

Similar to the case for BB, the term uLr\|u\|_{L^{r}} can be bounded by the L2L6L^{2}-L^{6} interpolation on uu. For the term uLr\|\nabla u\|_{L^{r}}, we can apply (3.5) with the bounds (3.3)-(3.4) to get

(3|u|r)2r\displaystyle\Big{(}\int_{\mathbb{R}^{3}}|\nabla u|^{r}\Big{)}^{\frac{2}{r}} C(3(|F|r+|ω|r+|ρρ~|r))2r\displaystyle\leq C\Big{(}\int_{\mathbb{R}^{3}}(|F|^{r}+|\omega|^{r}+|\rho-\tilde{\rho}|^{r})\Big{)}^{\frac{2}{r}}
C(3|F|2)1s(3|F|2)s\displaystyle\leq C\Big{(}\int_{\mathbb{R}^{3}}|F|^{2}\Big{)}^{1-s^{\prime}}\Big{(}\int_{\mathbb{R}^{3}}|\nabla F|^{2}\Big{)}^{s^{\prime}}
+C(3|ω|2)1s(3|ω|2)s+C(3|ρρ~|r)2r\displaystyle\qquad+C\Big{(}\int_{\mathbb{R}^{3}}|\omega|^{2}\Big{)}^{1-s^{\prime}}\Big{(}\int_{\mathbb{R}^{3}}|\nabla\omega|^{2}\Big{)}^{s^{\prime}}+C\Big{(}\int_{\mathbb{R}^{3}}|\rho-\tilde{\rho}|^{r}\Big{)}^{\frac{2}{r}}
C+C(Φ2+Φ5)s.\displaystyle\leq C+C\Big{(}\Phi_{2}+\Phi_{5}\Big{)}^{s^{\prime}}.

Therefore, we obtain the following bound on Φ5\Phi_{5}:

(3.21) Φ5C+C(Φ2+Φ5)s.\displaystyle\Phi_{5}\leq C+C\Big{(}\Phi_{2}+\Phi_{5}\Big{)}^{s^{\prime}}.

We combine (3.18), (3.20) and (3.21) to conclude that

Φ2C,\displaystyle\Phi_{2}\leq C,

which can be further applied on (3.20) and (3.21) to give

Φ3+Φ5C.\displaystyle\Phi_{3}+\Phi_{5}\leq C.

Hence the result (3.15) follows. ∎

Proof of Theorem 3.2.

Using the results obtained from Lemma 3.7 and Lemma 3.8, the bound (3.2) follows immediately from the estimates (3.9) and (3.15). ∎

4. Higher Order Estimates and proof of Theorem 1.1

In this section we continue to obtain higher order estimates on the smooth local solution (ρρ~,u,B)(\rho-\tilde{\rho},u,B) as described in section 3. Together with Theorem 3.2, we show that, under the assumption (3.1), the smooth local solution to (1.1)-(1.4) can be extended beyond the maximal time of existence TT^{*} as defined in the previous section, thereby contradicting the maximality of TT^{*}. The following is the main theorem of this section:

Theorem 4.1.

Assume that the hypotheses and notations in Theorem 3.2 are in force. Given M0>0M_{0}>0 and ρ~>0\tilde{\rho}>0, assume further that (ρρ~,u,B)(\rho-\tilde{\rho},u,B) satisfies (3.1). If C>0C>0 is the constant as obtained in Theorem 3.2, then for each t[0,T)t\in[0,T^{*}), there exists a positive number MM which depends on CC, M0M_{0}, tt, ρ~\tilde{\rho} and the system parameters PP, μ\mu, λ\lambda, ν\nu such that

(4.1) sup0st(ρρ~,u,B)H3(3)+0t(u,B)(,s)H4(3)2M.\displaystyle\sup_{0\leq s\leq t}||(\rho-\tilde{\rho},u,B)||_{H^{3}(\mathbb{R}^{3})}+\int_{0}^{t}||(u,B)(\cdot,s)||^{2}_{H^{4}(\mathbb{R}^{3})}\leq M.

We give the proof of Theorem 4.1 in a sequence of steps. Most of the details are reminiscent of [SH12] and [Sue20a], hence we omit some of those which are identical to arguments given in [SH12] or [Sue20a]. Throughout this section, MM denotes a generic constant which depends on M0M_{0}, tt, ρ~\tilde{\rho}, PP, μ\mu, λ\lambda, ν\nu, and it may be changed from line to line.

We first begin with the following estimates on the time integral of the velocity gradient u\nabla u:

Step 1: The velocity gradient satisfies the following bound

(4.2) 0tu(,s)LM.\displaystyle\int_{0}^{t}||\nabla u(\cdot,s)||_{L^{\infty}}\leq M.
Proof of Step 1.

The proof is similar to the one given in [Sue20a], and we only sketch here. The key is to decompose uu as u=uF+uPu=u_{F}+u_{P}, where uFu_{F}, uPu_{P} satisfy

(4.5) {(μ+λ)Δ(uF)j=Fxj+(μ+λ)(ω)xkj,k(μ+λ)Δ(uP)j=(PP(ρ~))xj.\displaystyle\left\{\begin{array}[]{lr}(\mu+\lambda)\Delta(u_{F})^{j}=F_{x_{j}}+(\mu+\lambda)(\omega)^{j,k}_{x_{k}}\\ (\mu+\lambda)\Delta(u_{P})^{j}=(P-P(\tilde{\rho}))_{x_{j}}.\\ \end{array}\right.

In view of the decomposition (4.5), it suffices to bound the time integral of uFL\|\nabla u_{F}\|_{L^{\infty}} and uPL\|\nabla u_{P}\|_{L^{\infty}}. Using (2.4), for r>3r>3, we have

0tuF(,s)C(r)0t[uF(,s)Lr+Dx2uF(,s)Lr].\displaystyle\int_{0}^{t}||\nabla u_{F}(\cdot,s)||_{\infty}\leq C(r)\int_{0}^{t}\left[||\nabla u_{F}(\cdot,s)||_{L^{r}}+||D_{x}^{2}u_{F}(\cdot,s)||_{L^{r}}\right].

and with the help of the bound (3.2), the right side of the above can be bounded by MM. On the other hand, to bound the time integral of uP\nabla u_{P}, by the pointwise bound (3.1) on ρ\rho, one can show that uP(,t)u_{P}(\cdot,t) is, in fact, log-Lipschitz with bounded log-Lipschitz seminorm. This is crucial for proving that, the integral curve x(y,t)x(y,t) as defined by

{x˙(t)=u(x(t),t)x(0)=y,\displaystyle\left\{\begin{array}[]{lr}\dot{x}(t)=u(x(t),t)\\ x(0)=y,\end{array}\right.

is Hölder-continuous in yy. Upon integrating the mass equation along integral curves x(t,y)x(t,y) and x(t,z)x(t,z), subtracting and recalling the definition (1.7) of FF, we obtain that

|logρ\displaystyle|\log\rho (x(t,y),t)logρ(x(t,z),t)|\displaystyle(x(t,y),t)-\log\rho(x(t,z),t)|
|logρ0(y)logρ0(z)|+0t|P(ρ0(x(s,y),s))P(ρ(x(s,z),s)|\displaystyle\leq|\log\rho_{0}(y)-\log\rho_{0}(z)|+\int_{0}^{t}|P(\rho_{0}(x(s,y),s))-P(\rho(x(s,z),s)|
(4.6) +0t|F(x(s,y),s)F(x(s,z),s)|.\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\quad+\int_{0}^{t}|F(x(s,y),s)-F(x(s,z),s)|.

Since PP is increasing, the second term of the above is dissipative and can be dropped out. Moreover, with the help of the estimate (3.4) on FF and the Hölder-continuity of x(y,t)x(y,t), the third term can be bounded by MM. Hence we can conclude from (4) that ρ(,t)\rho(\cdot,t) is Cβ(t)C^{\beta(t)} for some β(t)>0\beta(t)>0 with bounded modulus. Finally, with the improved regularity on ρ(,t)\rho(\cdot,t), we can now make use of (4.5)2 again and apply properties of Newtonian potentials to conclude that the C1+β(t)(3)C^{1+\beta(t)}(\mathbb{R}^{3}) norm of uPu_{P} remains finite in finite time, thereby giving the required bound on 0tuPL\int_{0}^{t}\|\nabla u_{P}\|_{L\infty}. ∎

Step 2: We further obtain

(4.7) Dx2u(,t)L2\displaystyle||D^{2}_{x}u(\cdot,t)||_{L^{2}} M[ρu˙(,t)L2+BB(,t)L2+P(,t)L2],\displaystyle\leq M\left[||\rho\dot{u}(\cdot,t)||_{L^{2}}+||\nabla B\cdot B(\cdot,t)||_{L^{2}}+||\nabla P(\cdot,t)||_{L^{2}}\right],
Dx3u(,t)L2\displaystyle||D^{3}_{x}u(\cdot,t)||_{L^{2}} M[ρu˙(,t)L2+ρu˙(,t)L2+BDx2B(,t)L2]\displaystyle\leq M\left[||\nabla\rho\cdot\dot{u}(\cdot,t)||_{L^{2}}+||\rho\nabla\dot{u}(\cdot,t)||_{L^{2}}+||B\cdot D^{2}_{x}B(\cdot,t)||_{L^{2}}\right]
(4.8) +M[|B|2(,t)L2+Dx2P(,t)L2].\displaystyle\qquad+M\left[|||\nabla B|^{2}(\cdot,t)||_{L^{2}}+||D^{2}_{x}P(\cdot,t)||_{L^{2}}\right].
Proof of Step 2.

These follow immediately from the momentum equation (1.2) and the ellipticity of the Lamé operator εΔ+(ε+λ)div\varepsilon\Delta+(\varepsilon+\lambda)\nabla\text{\rm div}; see [SWZ11] for related discussion. ∎

Step 3: The following H2H^{2} bound for density hol

(4.9) sup0st(ρρ~)(,s)H2M.\displaystyle\sup_{0\leq s\leq t}||(\rho-\tilde{\rho})(\cdot,s)||_{H^{2}}\leq M.
Proof of Step 3.

We take the spatial gradient of the mass equation (1.1), multiply by ρ\nabla\rho and integrate by parts to obtain

(4.10) t3|ρ|2M[3|ρ|2+3|Dx2u|2]\displaystyle\frac{\partial}{\partial t}\int_{\mathbb{R}^{3}}|\nabla\rho|^{2}\leq M\left[\int_{\mathbb{R}^{3}}|\nabla\rho|^{2}+\int_{\mathbb{R}^{3}}|D^{2}_{x}u|^{2}\right]

Thanks to (4.7), we have

0t3|Dx2u|2\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{3}}|D^{2}_{x}u|^{2} 0t3(|u˙|2+|BB|2+|ρ|2)\displaystyle\leq\int_{0}^{t}\int_{\mathbb{R}^{3}}(|\dot{u}|^{2}+|\nabla B\cdot B|^{2}+|\nabla\rho|^{2})
M+0t3|ρ|2,\displaystyle\leq M+\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla\rho|^{2},

hence by applying the above to (4.10) and using the bound (4.2) on the time integral of uL\|\nabla u\|_{L^{\infty}}, we conclude that

sup0stρ(,s)L2M.\displaystyle\sup_{0\leq s\leq t}||\nabla\rho(\cdot,s)||_{L^{2}}\leq M.

By repeating the argument, one can prove that sup0stDx2ρ(,s)L2M\displaystyle\sup_{0\leq s\leq t}||D^{2}_{x}\rho(\cdot,s)||_{L^{2}}\leq M and (4.9) follows. ∎

Step 4: The velocity and magnetic field satisfy

(4.11) sup0st(u(,s)H3+B(,s)H3)M.\displaystyle\sup_{0\leq s\leq t}\left(||u(\cdot,s)||_{H^{3}}+||B(\cdot,s)||_{H^{3}}\right)\leq M.
Proof of Step 4.

Define the forward difference of quotient DthD^{h}_{t} by

Dth(f)(t)=(f(t+h)f(t))h1\displaystyle D^{h}_{t}(f)(t)=(f(t+h)-f(t))h^{-1}

and let Ej=Dth(uj)+uujE^{j}=D^{h}_{t}(u^{j})+u\cdot\nabla u^{j}. By applying EjE^{j} on the momentum equation (1.2) and differentiating, it gives

3ρ|Exj|2+0t3(|Exj|2+|Dth(div(uxj)+u(div(uxj)|2)\displaystyle\int_{\mathbb{R}^{3}}\rho|E_{x_{j}}|^{2}+\int_{0}^{t}\int_{\mathbb{R}^{3}}\left(|\nabla E_{x_{j}}|^{2}+|D^{h}_{t}(\text{\rm div}(u_{x_{j}})+u\cdot\nabla(\text{\rm div}(u_{x_{j}})|^{2}\right)
M+0t3|E|2+𝒪(h),\displaystyle\qquad\qquad\qquad\leq M+\int_{0}^{t}\int_{\mathbb{R}^{3}}|\nabla E|^{2}+\mathcal{O}(h),

where 𝒪(h)0\mathcal{O}(h)\rightarrow 0 as h0h\rightarrow 0. Therefore by choosing h0h\rightarrow 0, we conclude

sup0stu˙(,s)L2+0t3|Dx2u˙|2M,\displaystyle\sup_{0\leq s\leq t}||\nabla\dot{u}(\cdot,s)||_{L^{2}}+\int_{0}^{t}\int_{\mathbb{R}^{3}}|D^{2}_{x}\dot{u}|^{2}\leq M,

and the bound for Bt\nabla B_{t} can be derived in a similar way. ∎

Step 5: Finally we have the following boun

(4.12) 0t3(|Dx4u|2+|Dx4B|2)M[1+0t3|Dx3ρ|2],\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{3}}(|D^{4}_{x}u|^{2}+|D^{4}_{x}B|^{2})\leq M\left[1+\int_{0}^{t}\int_{\mathbb{R}^{3}}|D^{3}_{x}\rho|^{2}\right],
(4.13) sup0st(Dx3ρ(,s)L2+Dx3B(,s)L2)+0t3|Dx4u|2M.\displaystyle\sup_{0\leq s\leq t}\left(||D^{3}_{x}\rho(\cdot,s)||_{L^{2}}+||D^{3}_{x}B(\cdot,s)||_{L^{2}}\right)+\int_{0}^{t}\int_{\mathbb{R}^{3}}|D^{4}_{x}u|^{2}\leq M.
Proof of Step 5.

To prove (4.12), we differentiate (1.2) and (1.3) twice with respect to space, express the fourth derivatives of uu and BB in the terms second derivatives of u˙\dot{u}, BtB_{t}, ρ\nabla\rho and lower order terms, and apply the bounds in (3.1) and (4.11).

On the other hand, to prove (4.13), we apply two space derivatives and one spatial difference operator DxjhD^{h}_{x_{j}} defined by

Dxjh(f)(t)=(f(x+hej)f(x))h1\displaystyle D^{h}_{x_{j}}(f)(t)=(f(x+he_{j})-f(x))h^{-1}

such that

3|DxjhDxiDxkρ|2\displaystyle\int_{\mathbb{R}^{3}}|D^{h}_{x_{j}}D_{x_{i}}D_{x_{k}}\rho|^{2} M+0t3(|Dx4u|2+|DxjhDxiDxkρ|2)\displaystyle\leq M+\int_{0}^{t}\int_{\mathbb{R}^{3}}(|D^{4}_{x}u|^{2}+|D^{h}_{x_{j}}D_{x_{i}}D_{x_{k}}\rho|^{2})
M+0t3|Dx3ρ|2.\displaystyle\leq M+\int_{0}^{t}\int_{\mathbb{R}^{3}}|D^{3}_{x}\rho|^{2}.

Taking h0h\rightarrow 0 and applying Gronwall’s inequality, we obtain the required bound for the term Dx3ρ(,s)L2\displaystyle||D^{3}_{x}\rho(\cdot,s)||_{L^{2}}. ∎

Proof of Theorem 1.1.

Using Theorem 4.1, we can apply an open-closed argument on the time interval which is identical to the one given in Hoff and Suen [SH12] pp. 31 to extend the local solution (ρρ~,u,B)(\rho-\tilde{\rho},u,B) beyond TT^{*}, which contradicts the maximality of TT^{*}. Therefore the assumption (3.1) does not hold and this completes the proof of Theorem 1.1. ∎

References

  • [BC94] H. Bahouri and J.-Y. Chemin, Équations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides, Arch. Rational Mech. Anal. 127 (1994), no. 2, 159–181. MR 1288809
  • [Cab70] Henri Cabannes, Theoretical magnetofluiddynamics, Applied mathematics and mechanics ; vol.13, Academic Press, New York ; London, 1970.
  • [CS16] Ka Luen Cheung and Anthony Suen, Existence and uniqueness of small energy weak solution to multi-dimensional compressible Navier-Stokes equations with large external potential force, J. Math. Phys. 57 (2016), no. 8, 081513, 19. MR 3536916
  • [CT10] Qing Chen and Zhong Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations, Nonlinear Anal. 72 (2010), no. 12, 4438–4451. MR 2639192
  • [FJO10] Jishan Fan, Song Jiang, and Yaobin Ou, A blow-up criterion for compressible viscous heat-conductive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 1, 337–350. MR 2580513
  • [HLX11] Xiangdi Huang, Jing Li, and Zhouping Xin, Serrin-type criterion for the three-dimensional viscous compressible flows, SIAM J. Math. Anal. 43 (2011), no. 4, 1872–1886. MR 2831252
  • [Hof95] David Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential Equations 120 (1995), no. 1, 215–254. MR 1339675
  • [Hof05] David Hoff, Compressible flow in a half-space with Navier boundary conditions, J. Math. Fluid Mech. 7 (2005), no. 3, 315–338. MR 2166979
  • [Hof06] David Hoff, Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional, compressible flow, SIAM J. Math. Anal. 37 (2006), no. 6, 1742–1760. MR 2213392
  • [HW08] Xianpeng Hu and Dehua Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys. 283 (2008), no. 1, 255–284. MR 2430634
  • [HW10] Xianpeng Hu and Dehua Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal. 197 (2010), no. 1, 203–238. MR 2646819
  • [Kaw84] Shuichi Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Ph.D. thesis, Kyoto University, 9 1984.
  • [LDY12] Ming Lu, Yi Du, and Zheng-An Yao, Blow-up phenomena for the 3D compressible MHD equations, Discrete Contin. Dyn. Syst. 32 (2012), no. 5, 1835–1855. MR 2871338
  • [Lio98] Pierre-Louis Lions, Mathematical topics in fluid mechanics. Vol. 2, Oxford Lecture Series in Mathematics and its Applications, vol. 10, The Clarendon Press, Oxford University Press, New York, 1998, Compressible models, Oxford Science Publications. MR 1637634
  • [LS16] Tong Li and Anthony Suen, Existence of intermediate weak solution to the equations of multi-dimensional chemotaxis systems, Discrete Contin. Dyn. Syst. 36 (2016), no. 2, 861–875. MR 3392908
  • [LSW11] Xiaoli Li, Ning Su, and Dehua Wang, Local strong solution to the compressible magnetohydrodynamic flow with large data, J. Hyperbolic Differ. Equ. 8 (2011), no. 3, 415–436. MR 2831269
  • [LSX16] Boqiang Lv, Xiaoding Shi, and Xinying Xu, Global existence and large-time asymptotic behavior of strong solutions to the compressible magnetohydrodynamic equations with vacuum, Indiana Univ. Math. J. 65 (2016), no. 3, 925–975. MR 3528824
  • [LY11] Fucai Li and Hongjun Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations, Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), no. 1, 109–126. MR 2773442
  • [Roz08] Olga Rozanova, Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations, J. Differential Equations 245 (2008), no. 7, 1762–1774. MR 2433485
  • [Sar09] Rémy Sart, Existence of finite energy weak solutions for the equations MHD of compressible fluids, Appl. Anal. 88 (2009), no. 3, 357–379. MR 2537426
  • [SH12] Anthony Suen and David Hoff, Global low-energy weak solutions of the equations of three-dimensional compressible magnetohydrodynamics, Arch. Ration. Mech. Anal. 205 (2012), no. 1, 27–58. MR 2927617
  • [Ste70] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • [Sue12] Anthony Suen, Global low-energy weak solutions of the equations of 3D magnetohydrodynamics, ProQuest LLC, Ann Arbor, MI, 2012, Thesis (Ph.D.)–Indiana University. MR 3047180
  • [Sue13a] Anthony Suen, A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density, Discrete Contin. Dyn. Syst. 33 (2013), no. 8, 3791–3805. MR 3021381
  • [Sue13b] Anthony Suen, Global solutions of the Navier-Stokes equations for isentropic flow with large external potential force, Z. Angew. Math. Phys. 64 (2013), no. 3, 767–784. MR 3068849
  • [Sue14] Anthony Suen, Global existence of weak solution to Navier-Stokes equations with large external force and general pressure, Math. Methods Appl. Sci. 37 (2014), no. 17, 2716–2727. MR 3271118
  • [Sue15] Anthony Suen, Corrigendum: A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density [mr3021381], Discrete Contin. Dyn. Syst. 35 (2015), no. 3, 1387–1390. MR 3277198
  • [Sue20a] Anthony Suen, Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy, Discrete Contin. Dyn. Syst. 40 (2020), no. 3, 1775–1798. MR 4063944
  • [Sue20b] Anthony Suen, Existence and uniqueness of low-energy weak solutions to the compressible 3D magnetohydrodynamics equations, J. Differential Equations 268 (2020), no. 6, 2622–2671. MR 4047965
  • [Sue20c] Anthony Suen, Some serrin type blow-up criteria for the three-dimensional viscous compressible flows with large external potential force, 2020.
  • [SWZ11] Yongzhong Sun, Chao Wang, and Zhifei Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl. (9) 95 (2011), no. 1, 36–47. MR 2746435
  • [Xin98] Zhouping Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math. 51 (1998), no. 3, 229–240. MR 1488513
  • [Zie89] William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989, Sobolev spaces and functions of bounded variation. MR 1014685