This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Global well-posedness of the quantum Boltzmann equation for bosons interacting via inverse power law potentials

Yu-long Zhou School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, P. R. China. zhouyulong@mail.sysu.edu.cn
Abstract.

We consider the spatially inhomogeneous quantum Boltzmann equation for bosons with a singular collision kernel, the weak-coupling limit of a large system of Bose-Einstein particles interacting through inverse power law. Global well-posedness of the corresponding Cauchy problem is proved in a periodic box near equilibrium for initial data satisfying high temperature condition.

AMS Subject Classification (2020): 35Q20, 82C40.

1. Introduction

Quantum Boltzmann equations are proposed to describe the time evolution of a dilute system of weakly interacting bosons or fermions. The derivation of such equations dates back to as early as 1920s by Nordheim [43] and 1933 by Uehling-Uhlenbeck [47]. As a result, the quantum Boltzmann equations are also called Boltzmann-Nordheim equations or Uehling-Uhlenbeck equations. Later on, further developments were made by Erdős-Salmhofer-Yau [17], Benedetto-Castella-Esposito-Pulvirenti [6], [10], [7], [9] and [8], Lukkarinen-Spohn [41]. One can refer the classical book [13] for physical backgrounds.

In this article, we consider the Cauchy problem of the quantum Boltzmann equation for bosons

tF+vxF=QΦ,(F,F),t>0,x𝕋3,v3;F|t=0(x,v)=F0(x,v).\displaystyle\partial_{t}F+v\cdot\nabla_{x}F=Q_{\Phi,\hbar}(F,F),~{}~{}t>0,x\in\mathbb{T}^{3},v\in\mathop{\mathbb{R}\kern 0.0pt}\nolimits^{3};\quad F|_{t=0}(x,v)=F_{0}(x,v). (1.1)

Here F(t,x,v)0F(t,x,v)\geq 0 is the density function of particles with velocity v3v\in\mathop{\mathbb{R}\kern 0.0pt}\nolimits^{3} at time t0t\geq 0 in position x𝕋3x\in\mathbb{T}^{3}. Here 𝕋3\colonequals[0,1]3\mathbb{T}^{3}\colonequals[0,1]^{3} is the periodic box with unit volume |𝕋3|=1|\mathbb{T}^{3}|=1. The quantum Boltzmann operator QΦ,Q_{\Phi,\hbar} acting only on velocity variable vv is defined by

QΦ,(g,h)(v)\colonequals𝕊2×3BΦ,(vv,σ)D(gh(1+3g)(1+3h))dσdv,\displaystyle Q_{\Phi,\hbar}(g,h)(v)\colonequals\int_{{\mathbb{S}}^{2}\times{\mathbb{R}}^{3}}B_{\Phi,\hbar}(v-v_{*},\sigma)\mathrm{D}\big{(}g_{*}^{\prime}h^{\prime}(1+\hbar^{3}g_{*})(1+\hbar^{3}h)\big{)}\mathrm{d}\sigma\mathrm{d}v_{*}, (1.2)

where according to [17] and [10] the Boltzmann kernel BΦ,(vv,σ)B_{\Phi,\hbar}(v-v_{*},\sigma) has the following form

BΦ,(vv,σ)\colonequals4|vv|(Φ^(1|vv|)+Φ^(1|vv|))2.\displaystyle B_{\Phi,\hbar}(v-v_{*},\sigma)\colonequals\hbar^{-4}|v-v_{*}|\big{(}\hat{\Phi}(\hbar^{-1}|v-v^{\prime}|)+\hat{\Phi}(\hbar^{-1}|v-v^{\prime}_{*}|)\big{)}^{2}. (1.3)

Here \hbar is the Plank constant. In (1.3), the radial function Φ^(|ξ|)\colonequalsΦ^(ξ)=3eixξΦ(x)dx\hat{\Phi}(|\xi|)\colonequals\hat{\Phi}(\xi)=\int_{\mathbb{R}^{3}}e^{-\mathrm{i}x\cdot\xi}\Phi(x)\mathrm{d}x is the Fourier transform of a radial potential function Φ\Phi.

In (1.2) and the rest of the article, we use the convenient shorthand h=h(v)h=h(v), g=g(v)g_{*}=g(v_{*}), h=h(v)h^{\prime}=h(v^{\prime}), g=g(v)g^{\prime}_{*}=g(v^{\prime}_{*}) where vv^{\prime}, vv_{*}^{\prime} are given by

v=v+v2+|vv|2σ,v=v+v2|vv|2σ,σSS2.\displaystyle v^{\prime}=\frac{v+v_{*}}{2}+\frac{|v-v_{*}|}{2}\sigma,\quad v^{\prime}_{*}=\frac{v+v_{*}}{2}-\frac{|v-v_{*}|}{2}\sigma,\quad\sigma\in\SS^{2}. (1.4)

Now it remains to see the notation D()\mathrm{D}(\cdot) in (1.2). For n=1n=1 or n=2n=2, we denote

Dn(f(v,v,v,v))\colonequals(f(v,v,v,v)f(v,v,v,v))n.\displaystyle\mathrm{D}^{n}(f(v,v_{*},v^{\prime},v^{\prime}_{*}))\colonequals\left(f(v,v_{*},v^{\prime},v^{\prime}_{*})-f(v^{\prime},v^{\prime}_{*},v,v_{*})\right)^{n}. (1.5)

If n=1n=1, we write D()=D1()\mathrm{D}(\cdot)=\mathrm{D}^{1}(\cdot). The term D\mathrm{D} is interpreted as “difference” before and after collision. We will consider a singular kernel and always need some function difference to remove the singularity. The notation D()\mathrm{D}(\cdot) or D2()\mathrm{D}^{2}(\cdot) indicates which function is offering help to cancel the singularity.

By the following scaling

F~(t,x,v)=3F(3t,x,3v),ϕ(|x|)=4Φ(4|x|),\displaystyle\tilde{F}(t,x,v)=\hbar^{3}F(\hbar^{3}t,x,\hbar^{-3}v),\quad\phi(|x|)=\hbar^{4}\Phi(\hbar^{4}|x|), (1.6)

we can normalize the Plank constant \hbar. Indeed, it is easy to check FF is a solution to (1.1) if and only if F~\tilde{F} is a solution of the following normalized equation

tF+vxF=Qϕ(F,F),t>0,x𝕋3,v3;F|t=0(x,v)=3F0(x,3v),\displaystyle\partial_{t}F+v\cdot\nabla_{x}F=Q_{\phi}(F,F),~{}~{}t>0,x\in\mathbb{T}^{3},v\in\mathop{\mathbb{R}\kern 0.0pt}\nolimits^{3};\quad F|_{t=0}(x,v)=\hbar^{3}F_{0}(x,\hbar^{-3}v), (1.7)

where the operator QϕQ_{\phi} is defined by

Qϕ(g,h)(v)\colonequals𝕊2×3Bϕ(vv,σ)D(gh(1+g)(1+h))dσdv\displaystyle Q_{\phi}(g,h)(v)\colonequals\int_{{\mathbb{S}}^{2}\times{\mathbb{R}}^{3}}B_{\phi}(v-v_{*},\sigma)\mathrm{D}\big{(}g_{*}^{\prime}h^{\prime}(1+g_{*})(1+h)\big{)}\mathrm{d}\sigma\mathrm{d}v_{*} (1.8)

with the kernel Bϕ(vv,σ)B_{\phi}(v-v_{*},\sigma) given by

Bϕ(vv,σ)\colonequals|vv|(ϕ^(|vv|)+ϕ^(|vv|))2.\displaystyle B_{\phi}(v-v_{*},\sigma)\colonequals|v-v_{*}|\big{(}\hat{\phi}(|v-v^{\prime}|)+\hat{\phi}(|v-v^{\prime}_{*}|)\big{)}^{2}. (1.9)

In this article, we will take the inverse power law potential ϕ(x)=|x|p\phi(x)=|x|^{-p}. Before that, we give a short review on some relevant mathematical research of the quantum Boltzmann equation.

1.1. Existing results

We recall some existing mathematical results on the quantum Boltzmann equation in this subsection. The quantum Boltzmann equations include two models: one for bosons or Bose-Einstein(B-E) particles, the other for fermions or Fermi-Dirac(F-D) particles. The quantum Boltzmann equation for B-E particles is written by (1.7), (1.8) and (1.9) and usually referred as “BBE equation”. If the four “++” in (1.8) and the one “++” in (1.9) are replaced by minus sign “-”, we will get the quantum Boltzmann equation for F-D particles which is usually referred as “BFD equation”.

We begin with the mathematical results on BFD equations. In spatially homogeneous case F=F(t,v)F=F(t,v), we refer the monograph Escobedo-Mischler-Valle [18] for global existence and weak convergence to equilibrium. We also refer Lu [31] and Lu-Wennberg [40] for weak and strong convergence to equilibrium of mild solutions. On the whole space x3x\in\mathbb{R}^{3}, Dolbeault [14] established global existence and uniqueness of mild solutions for globally integrable kernels. Lions [29] proved global existence of distributional solutions for locally integrable kernels. Alexandre [1] proved global existence of H-solutions for non-cutoff kernels that allow angular singularity given by inverse power law potentials. Based on the averaging compactness result in [34], on the torus x𝕋3x\in\mathbb{T}^{3}, Lu [35] proved global existence of weak solutions for kernels with very soft potentials. Recently in a perturbation framework, on the whole space x3x\in\mathbb{R}^{3}, Jiang-Xiong-Zhou [27] went further to consider the incompressible Navier-Stokes-Fourier limit from the BFD equation with hard sphere collisions.

Unlike Fermi-Dirac particles whose density has a natural bound 0F10\leq F\leq 1 due to Pauli’s exclusion principle, density of Bose-Einstein particles may blow up in finite time, which corresponds to the intriguing phenomenon: Bose-Einstein condensation(BEC) in low temperature. As a consequence, the mathematical study of BBE equations is much more difficult than BFD equations. As a result, most of existing results on BBE equations are concerned with isotropic solutions F(t,v)=F(t,|v|)F(t,v)=F(t,|v|) in the homogeneous case with non-singular kernel, for instance hard sphere model or hard potentials with some cutoff. Lu [30] proved global existence of L1L^{1} solutions for some kernels with strong cutoff assumption (not satisfied by the hard sphere model). Based on the results in [30], Lu [32] further established global existence of conservative distributional (measure-valued) isotropic solutions for some kernels including the hard sphere model. Also see Escobedo-Mischler-Velázquez [19] and Escobedo-Mischler-Velázquez [20] for some singular (near |v|=0|v|=0) solutions.

In terms of long time behavior of the conservative measure-valued isotropic solutions, we refer Lu [33] for strong convergence to equilibrium and single point concentration. With some local condition on the initial datum, long time strong convergence to equilibrium was proved in [38] and [39]. Remarkably for any temperature and without any local condition on the initial datum, Cai-Lu [12] provided algebraic rate of strong convergence to equilibrium.

BEC is an interesting physical phenomenon that deserves deep mathematical understanding. It is fortunate to see many excellent mathematical results (for instance, Spohn [45], Lu [36, 37], Escobedo-Velázquez [21, 22]) on this topic.

Note that all the above results on BBE equations are concerned with isotropic solutions F(t,v)=F(t,|v|)F(t,v)=F(t,|v|). In the homogeneous case, local existence of anisotropic solutions was first proved in Briant-Einav [11], while global existence was first proved in Li-Lu [28] for very high temperature.

Note that all the above results on BBE equations are obtained in the homogeneous case. In the inhomogeneous case, there are at least two recent results: Bae-Jang-Yun [5] and Ouyang-Wu [44]. These two works have different focuses and will be revisited later.

1.2. Potential function and Boltzmann kernel

In weak-coupling regime for bosons, the Boltzmann kernel BϕB_{\phi} depends on the potential function ϕ\phi via (1.9). As mentioned before, existing results on BBE equations are mostly concerned with the hard sphere model. This amounts to taking the Dirac delta function as the potential function ϕ(x)=δ(x)\phi(x)=\delta(x) and thus Bϕ=(vv,σ)=C|vv|B_{\phi}=(v-v_{*},\sigma)=C|v-v_{*}| for some universal constant C>0C>0. Observe that the kernel in the quantum case is the same as that in the classical case. Another physically relevant potential is the inverse power law ϕ(x)=|x|p\phi(x)=|x|^{-p} which has been extensively studied in the research of classical Boltzmann equations but has rarely been considered in the quantum case. To our best knowledge, this article seems to be the first to study BBE equation with inverse power law.

Note that p=1p=1 corresponds to the famous Coulomb potential which is the critical case for Boltzmann equation to be meaningful. In this article, we work in dimension 3 where p=3p=3 is the critical value such that |x|p|x|^{-p} is locally integrable near |x|=0|x|=0. Fix 1<p<31<p<3, then the Fourier transform of ϕ(x)=|x|p\phi(x)=|x|^{-p} is ϕ^(ξ)=ϕ^(|ξ|)=C|ξ|p3.\hat{\phi}(\xi)=\hat{\phi}(|\xi|)=C|\xi|^{p-3}. Let θ\theta be the angle between vvv-v_{*} and σ\sigma, then |vv|sinθ2=|vv|,|vv|cosθ2=|vv||v-v_{*}|\sin\frac{\theta}{2}=|v-v^{\prime}|,|v-v_{*}|\cos\frac{\theta}{2}=|v-v^{\prime}_{*}|. As a result, the Boltzmann kernel given by (1.9) is

Bϕ(vv,σ)=C|vv|2p5(sinp3θ2+cosp3θ2)2.\displaystyle B_{\phi}(v-v_{*},\sigma)=C|v-v_{*}|^{2p-5}(\sin^{p-3}\frac{\theta}{2}+\cos^{p-3}\frac{\theta}{2})^{2}.

Here and in the rest of the article CC denotes a constant that depends only on fixed parameters and could change from line to line. Due the symmetry structure of (1.9), we can always assume 0θπ/20\leq\theta\leq\pi/2. Then sinθ2cosθ2\sin\frac{\theta}{2}\leq\cos\frac{\theta}{2}, since p<3p<3, we get

Bϕ(vv,σ)C|vv|2p5sin2p6θ2.\displaystyle B_{\phi}(v-v_{*},\sigma)\leq C|v-v_{*}|^{2p-5}\sin^{2p-6}\frac{\theta}{2}.

Since p>1p>1, the following integral over 𝕊2\mathbb{S}^{2} is bounded,

Bϕ(vv,σ)sin2θ2dσC|vv|2p5.\displaystyle\int B_{\phi}(v-v_{*},\sigma)\sin^{2}\frac{\theta}{2}\mathrm{d}\sigma\leq C|v-v_{*}|^{2p-5}. (1.10)

As in (1.10), in the rest of the article, when taking integration, the range of some frequently used variables will be omitted if there is no ambiguity. For instance, the usual ranges σ𝕊2,x𝕋3,v,v3\sigma\in\mathbb{S}^{2},x\in\mathbb{T}^{3},v,v_{*}\in\mathbb{R}^{3} will be consistently used unless otherwise specified. Whenever a new variable appears, we will specify its range once and then omit it thereafter.

By (1.10), for 1<p<31<p<3 the kernel BϕB_{\phi} has finite momentum transfer which is a basic condition for the classical Boltzmann equation to be well-posed. The constant CC in (1.10) blows up as p1+p\rightarrow 1^{+} since 02/2t2p3dt1p1\int_{0}^{\sqrt{2}/{2}}t^{2p-3}\mathrm{d}t\sim\frac{1}{p-1} for 1<p<31<p<3. If p>2p>2, the angular function sin2p6θ2\sin^{2p-6}\frac{\theta}{2} satisfies Grad’s angular cutoff assumption

sin2p6θ2dσ1p2.\displaystyle\int\sin^{2p-6}\frac{\theta}{2}\mathrm{d}\sigma\lesssim\frac{1}{p-2}.

Note that p=2p=2 is the critical value such that Grad’s cutoff assumption fails. To summarize, 2<p<32<p<3 can be seen as angular cutoff while 1<p<21<p<2 can be seen as angular non-cutoff. We consider the much harder case 1<p<21<p<2 in this article. By taking s=2p,γ=2p5s=2-p,\gamma=2p-5, it suffices to consider the more general kernel,

B(vv,σ)\colonequalsC|vv|γ(sin1sθ2+cos1sθ2)210θπ/2,3<γ<0<s<1,γ+2s0.\displaystyle B(v-v_{*},\sigma)\colonequals C|v-v_{*}|^{\gamma}(\sin^{-1-s}\frac{\theta}{2}+\cos^{-1-s}\frac{\theta}{2})^{2}\mathrm{1}_{0\leq\theta\leq\pi/2},\quad-3<\gamma<0<s<1,\gamma+2s\leq 0. (1.11)

The parameter pair (γ,s)(\gamma,s) is commonly used in the study of classical Boltzmann equations with inverse power law. We find the resulting kernel (1.11) has close relation (see (2.18) for details) to the Boltzmann kernel Bipl(vv,σ)B^{ipl}(v-v_{*},\sigma) defined in (2.16). The condition γ+2s0\gamma+2s\leq 0 is referred as (very) soft potentials. From now on, the notation B(vv,σ)B(v-v_{*},\sigma) or BB stands for the kernel in (1.11) unless otherwise specified.

To reiterate, in this article we will study the following Cauchy problem

tF+vxF=Q(F,F),t>0,x𝕋3,v3;F|t=0(x,v)=F0(x,v),\displaystyle\partial_{t}F+v\cdot\nabla_{x}F=Q(F,F),~{}~{}t>0,x\in\mathbb{T}^{3},v\in\mathop{\mathbb{R}\kern 0.0pt}\nolimits^{3};\quad F|_{t=0}(x,v)=F_{0}(x,v), (1.12)

where the operator QQ is defined through (1.8) with BϕB_{\phi} replaced by BB in (1.11). Here F0F_{0} is a given initial datum satisfying some high temperature condition which will be given in the next subsection.

1.3. Temperature and initial datum

Temperature plays an important role in the study of quantum Boltzmann equation. For example, for B-E particles, BEC will happen in low temperature. We now introduce some basic knowledge about temperature in the quantum context. Let us consider a homogeneous density f=f(v)0f=f(v)\geq 0 with zero mean vf(v)dv=0\int vf(v)\mathrm{d}v=0. For k0k\geq 0, we recall the moment function

Mk(f)\colonequals|v|kf(v)dv.\displaystyle M_{k}(f)\colonequals\int|v|^{k}f(v)\mathrm{d}v.

Let M0=M0(f),M2=M2(f)M_{0}=M_{0}(f),M_{2}=M_{2}(f) for simplicity. Let mm be the mass of a particle, then mM0mM_{0} and 12mM2\frac{1}{2}mM_{2} are the total mass and kinetic energy per unit space volume. Referring [32], the kinetic temperature T¯\bar{T} and the critical temperature T¯c\bar{T}_{c} of the particle system are defined by

T¯=13kBmM2M0,T¯c=mζ(5/2)2πkBζ(3/2)(M0ζ(3/2))23,\displaystyle\bar{T}=\frac{1}{3k_{B}}\frac{mM_{2}}{M_{0}},\quad\bar{T}_{c}=\frac{m\zeta(5/2)}{2\pi k_{B}\zeta(3/2)}\big{(}\frac{M_{0}}{\zeta(3/2)}\big{)}^{\frac{2}{3}}, (1.13)

where kBk_{B} is the Boltzmann constant and ζ(s)=n=11ns\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^{s}} is the Riemann zeta function.

We now recall some known facts about equilibrium distribution. The equilibrium of the classical Boltzmann equation is the Maxwellian distribution with density μρ,v0,T\mu_{\rho,v_{0},T} function defined by

μρ,v0,T(v)\colonequalsρ(2πT)32e12T|vv0|2,ρ,T>0,v03.\displaystyle\mu_{\rho,v_{0},T}(v)\colonequals\rho(2\pi T)^{-\frac{3}{2}}e^{-\frac{1}{2T}|v-v_{0}|^{2}},\quad\rho,T>0,v_{0}\in\mathbb{R}^{3}.

Here ρ\rho is density, v0v_{0} is mean velocity and TT is temperature. The famous Bose-Einstein distribution has density function

ρ,v0,T\colonequalsμρ,v0,T1μρ,v0,T,ρ(2πT)321.\displaystyle\mathcal{M}_{\rho,v_{0},T}\colonequals\frac{\mu_{\rho,v_{0},T}}{1-\mu_{\rho,v_{0},T}},\quad\rho(2\pi T)^{-\frac{3}{2}}\leq 1. (1.14)

Now ρ,v0\rho,v_{0} and TT do not represent density, mean velocity and temperature anymore, but only three parameters. The ratio T¯/T¯c\bar{T}/\bar{T}_{c} quantifies high and low temperature. In high temperature T¯/T¯c>1\bar{T}/\bar{T}_{c}>1, the equilibrium of BBE equation is the Bose-Einstein distribution (1.14) with ρ(2πT)32<1\rho(2\pi T)^{-\frac{3}{2}}<1. In low temperature T¯/T¯c<1\bar{T}/\bar{T}_{c}<1, the equilibrium of BBE equation is the Bose-Einstein distribution (1.14) with ρ(2πT)32=1\rho(2\pi T)^{-\frac{3}{2}}=1 plus some Dirac delta function. That is, the equilibrium contains a Dirac measure. In the critical case T¯/T¯c=1\bar{T}/\bar{T}_{c}=1, the equilibrium is (1.14) with ρ(2πT)32=1\rho(2\pi T)^{-\frac{3}{2}}=1. One can refer to [33] for the classification of equilibria.

In this article, we work with high temperature and thus the equilibrium of (1.1) is ρ,v0,T\mathcal{M}_{\rho,v_{0},T} defined in (1.14). For perturbation around equilibrium, we define

𝒩ρ,v0,T\colonequalsρ,v0,T12(1+ρ,v0,T)12=μρ,v0,T121μρ,v0,T.\displaystyle\mathcal{N}_{\rho,v_{0},T}\colonequals\mathcal{M}_{\rho,v_{0},T}^{\frac{1}{2}}(1+\mathcal{M}_{\rho,v_{0},T})^{\frac{1}{2}}=\frac{\mu_{\rho,v_{0},T}^{\frac{1}{2}}}{1-\mu_{\rho,v_{0},T}}. (1.15)

We remark that the function 𝒩ρ,v0,T\mathcal{N}_{\rho,v_{0},T} serves as the multiplier in the expansion F=ρ,v0,T+𝒩ρ,v0,TfF=\mathcal{M}_{\rho,v_{0},T}+\mathcal{N}_{\rho,v_{0},T}f.

Recall that the solution of (1.1) conserves mass, momentum and energy. That is, for any t0t\geq 0,

(1,v,|v|2)F(t,x,v)dxdv=(1,v,|v|2)F0(x,v)dxdv.\displaystyle\int(1,v,|v|^{2})F(t,x,v)\mathrm{d}x\mathrm{d}v=\int(1,v,|v|^{2})F_{0}(x,v)\mathrm{d}x\mathrm{d}v. (1.16)

Once F0F_{0} is appropriately given, the constants ρ,T>0,v03\rho,T>0,v_{0}\in\mathbb{R}^{3} in (1.14) are uniquely determined through

(1,v,|v|2)F0(x,v)dxdv=(1,v,|v|2)ρ,v0,T(v)dxdv.\displaystyle\int(1,v,|v|^{2})F_{0}(x,v)\mathrm{d}x\mathrm{d}v=\int(1,v,|v|^{2})\mathcal{M}_{\rho,v_{0},T}(v)\mathrm{d}x\mathrm{d}v. (1.17)

Without any loss of generality, we assume that F0F_{0} has zero mean and thus gives v0=0v_{0}=0 from now on. Also without any loss of generality, we assume that F0F_{0} gives T=1T=1 in this article. Indeed, we can make the transform f(v)f(T1/2v)f(v)\to f(T^{1/2}v) to reduce the general T1T\neq 1 case to the special case T=1T=1. As a result, we only keep ρ\rho as a parameter. That is, we only consider those initial data with T=1,v0=0T=1,v_{0}=0 according to (1.17). Taking μ(v)\colonequals(2π)32e12|v|2,\mu(v)\colonequals(2\pi)^{-\frac{3}{2}}e^{-\frac{1}{2}|v|^{2}}, the equilibrium ρ,v0,T\mathcal{M}_{\rho,v_{0},T} and the multiplier function 𝒩ρ,v0,T\mathcal{N}_{\rho,v_{0},T} reduce to

ρ\colonequalsρμ1ρμ,𝒩ρ\colonequalsρ12μ121ρμ.\displaystyle\mathcal{M}_{\rho}\colonequals\frac{\rho\mu}{1-\rho\mu},\quad\mathcal{N}_{\rho}\colonequals\frac{\rho^{\frac{1}{2}}\mu^{\frac{1}{2}}}{1-\rho\mu}. (1.18)

When ρ\rho is small, it is easy to see M2(ρ)ρ,M0(ρ)ρM_{2}(\mathcal{M}_{\rho})\sim\rho,M_{0}(\mathcal{M}_{\rho})\sim\rho and so by recalling (1.13),

T¯T¯cρ23.\displaystyle\frac{\bar{T}}{\bar{T}_{c}}\sim\rho^{-\frac{2}{3}}.

In our main result Theorem 1.1, we will assume 0<ρρ0<\rho\leq\rho_{*} for some small constant 0<ρ10<\rho_{*}\ll 1 which means

T¯T¯cρ231.\displaystyle\frac{\bar{T}}{\bar{T}_{c}}\gtrsim\rho_{*}^{-\frac{2}{3}}\gg 1. (1.19)

That is, we need high temperature assumption. Note that high temperature assumption is also imposed in [28] to prove global well-posedness of homogeneous BBE equation with (slightly general than) hard sphere collisions.

1.4. Perturbation around equilibrium and main result

For simplicity, let \colonequalsρ,𝒩\colonequals𝒩ρ\mathcal{M}\colonequals\mathcal{M}_{\rho},\mathcal{N}\colonequals\mathcal{N}_{\rho}. With the expansion F=+𝒩fF=\mathcal{M}+\mathcal{N}f, the linearized quantum Boltzmann equation corresponding to (1.12) reads

{tf+vxf+ρf=Γ2ρ(f,f)+Γ3ρ(f,f,f),t>0,x𝕋3,v3;f|t=0=f0=(1ρμ)F0ρμρ12μ12.\displaystyle\left\{\begin{aligned} &\partial_{t}f+v\cdot\nabla_{x}f+\mathcal{L}^{\rho}f=\Gamma_{2}^{\rho}(f,f)+\Gamma_{3}^{\rho}(f,f,f),~{}~{}t>0,x\in\mathbb{T}^{3},v\in\mathop{\mathbb{R}\kern 0.0pt}\nolimits^{3};\\ &f|_{t=0}=f_{0}=\frac{(1-\rho\mu)F_{0}-\rho\mu}{\rho^{\frac{1}{2}}\mu^{\frac{1}{2}}}.\end{aligned}\right. (1.20)

Here the linearized quantum Boltzmann operator ρ\mathcal{L}^{\rho} is define by

(ρf)(v)\colonequalsB𝒩𝒩𝒩S(𝒩1f)dσdv,\displaystyle(\mathcal{L}^{\rho}f)(v)\colonequals\int B\mathcal{N}_{*}\mathcal{N}^{\prime}\mathcal{N}^{\prime}_{*}\mathrm{S}(\mathcal{N}^{-1}f)\mathrm{d}\sigma\mathrm{d}v_{*}, (1.21)

where S()\mathrm{S}(\cdot) is defined by

S(g)\colonequalsg+ggg.\displaystyle\mathrm{S}(g)\colonequals g+g_{*}-g^{\prime}-g^{\prime}_{*}. (1.22)

The bilinear term Γ2ρ(,)\Gamma_{2}^{\rho}(\cdot,\cdot) and the trilinear term Γ3ρ(,,)\Gamma_{3}^{\rho}(\cdot,\cdot,\cdot) are defined by

Γ2ρ(g,h)\displaystyle\Gamma_{2}^{\rho}(g,h) \colonequals\displaystyle\colonequals 𝒩1BΠ2(g,h)dσdv.\displaystyle\mathcal{N}^{-1}\int B\Pi_{2}(g,h)\mathrm{d}\sigma\mathrm{d}v_{*}. (1.23)
Γ3ρ(g,h,ϱ)\displaystyle\Gamma_{3}^{\rho}(g,h,\varrho) \colonequals\displaystyle\colonequals 𝒩1BD((𝒩g)(𝒩h)((𝒩ϱ)+𝒩ϱ))dσdv.\displaystyle\mathcal{N}^{-1}\int B\mathrm{D}\big{(}(\mathcal{N}g)_{*}^{\prime}(\mathcal{N}h)^{\prime}((\mathcal{N}\varrho)_{*}+\mathcal{N}\varrho)\big{)}\mathrm{d}\sigma\mathrm{d}v_{*}.\quad\quad (1.24)

The notation Π2\Pi_{2} in (1.23) is defined by

Π2(g,h)\displaystyle\Pi_{2}(g,h) \colonequals\displaystyle\colonequals D((𝒩g)(𝒩h))\displaystyle\mathrm{D}\big{(}(\mathcal{N}g)^{\prime}_{*}(\mathcal{N}h)^{\prime}\big{)} (1.28)
+D((𝒩g)(𝒩h)(+))\displaystyle+\mathrm{D}\big{(}(\mathcal{N}g)^{\prime}_{*}(\mathcal{N}h)^{\prime}(\mathcal{M}+\mathcal{M}_{*})\big{)}
+D((𝒩g)(𝒩h)())\displaystyle+\mathrm{D}\big{(}(\mathcal{N}g)_{*}(\mathcal{N}h)^{\prime}(\mathcal{M}^{\prime}_{*}-\mathcal{M})\big{)}
+((𝒩g)(𝒩h)D()+(𝒩g)(𝒩h)D()).\displaystyle+\big{(}(\mathcal{N}g)^{\prime}(\mathcal{N}h)\mathrm{D}(\mathcal{M}^{\prime}_{*})+(\mathcal{N}g)^{\prime}_{*}(\mathcal{N}h)_{*}\mathrm{D}(\mathcal{M}^{\prime})\big{)}.

Remark that the three operators ρ\mathcal{L}^{\rho}, Γ2ρ(,)\Gamma_{2}^{\rho}(\cdot,\cdot) and Γ3ρ(,,)\Gamma_{3}^{\rho}(\cdot,\cdot,\cdot) depends on ρ\rho through =ρ,𝒩=𝒩ρ\mathcal{M}=\mathcal{M}_{\rho},\mathcal{N}=\mathcal{N}_{\rho}.

Our goal is to prove global well-posedness of (1.20) in some weighted Sobolev space. More precisely, we use the following energy and dissipation functional

N(f)\colonequals|α|+|β|NWl|α|,|β|βαfLx2L22,𝒟N(f)\colonequals|α|+|β|NWl|α|,|β|βαfLx2γ/2s2,\displaystyle\mathcal{E}_{N}(f)\colonequals\sum_{|\alpha|+|\beta|\leq N}\|W_{l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}L^{2}}^{2},\quad\mathcal{D}_{N}(f)\colonequals\sum_{|\alpha|+|\beta|\leq N}\|W_{l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{\gamma/2}}^{2}, (1.29)

where βα\colonequalsxαvβ\partial^{\alpha}_{\beta}\colonequals\partial^{\alpha}_{x}\partial^{\beta}_{v}. See subsection 1.8 for the definition of Lx2L2\|\cdot\|_{L^{2}_{x}L^{2}} and Lx2γ/2s\|\cdot\|_{L^{2}_{x}\mathcal{L}^{s}_{\gamma/2}}. See (1.51) for the definition of ||γ/2s|\cdot|_{\mathcal{L}^{s}_{\gamma/2}}. For the moment, just keep in mind Lx2γ/2s\|\cdot\|_{L^{2}_{x}\mathcal{L}^{s}_{\gamma/2}} is the dissipation corresponding to the energy Lx2L2\|\cdot\|_{L^{2}_{x}L^{2}}. Here Wl(v)\colonequals(1+|v|2)l2W_{l}(v)\colonequals(1+|v|^{2})^{\frac{l}{2}} is a polynomial weight on the velocity variable vv. The weight order l|α|,|β|0l_{|\alpha|,|\beta|}\geq 0 depends on the derivative order |α|,|β||\alpha|,|\beta| and the sequence {l|α|,|β|}|α|+|β|N\{l_{|\alpha|,|\beta|}\}_{|\alpha|+|\beta|\leq N} verifies

l|α|,|β|+|γ+2s|l|α|+1,|β|1, for |α|N1,1|β|N,|α|+|β|N.\displaystyle l_{|\alpha|,|\beta|}+|\gamma+2s|\leq l_{|\alpha|+1,|\beta|-1},\quad\text{ for }|\alpha|\leq N-1,1\leq|\beta|\leq N,|\alpha|+|\beta|\leq N. (1.30)
l|α|,0l0,|α|1, for 1|α|N.\displaystyle l_{|\alpha|,0}\leq l_{0,|\alpha|-1},\quad\text{ for }1\leq|\alpha|\leq N. (1.31)

The condition (1.30) is used to deal with linear streaming term vxfv\cdot\nabla_{x}f as γ+2s0\gamma+2s\leq 0 (see (1.44) below). The two conditions (1.30) and (1.31) together ensure that l|α|,|β|l_{|\alpha|,|\beta|} increases as |α|+|β||\alpha|+|\beta| decreases (see (5.49)).

Now we are ready to give global well-posedness of (1.20) in the following theorem.

Theorem 1.1.

Let N9N\geq 9. There exist two universal constants ρ,δ>0\rho_{*},\delta_{*}>0 such that the following global well-posedness is valid. Let 0<ρρ0<\rho\leq\rho_{*}. If

ρμ1ρμ+ρ12μ121ρμf00,N(f0)δρ2N+1,\displaystyle\frac{\rho\mu}{1-\rho\mu}+\frac{\rho^{\frac{1}{2}}\mu^{\frac{1}{2}}}{1-\rho\mu}f_{0}\geq 0,\quad\mathcal{E}_{N}(f_{0})\leq\delta_{*}\rho^{2N+1}, (1.32)

then the Cauchy problem (1.20) has a unique global solution fρL([0,);N)f^{\rho}\in L^{\infty}([0,\infty);\mathcal{E}_{N}) satisfying for some universal constant CC,

supt0N(fρ(t))+ρ0𝒟N(fρ(t))dtCρ2NN(f0),\displaystyle\sup_{t\geq 0}\mathcal{E}_{N}(f^{\rho}(t))+\rho\int_{0}^{\infty}\mathcal{D}_{N}(f^{\rho}(t))\mathrm{d}t\leq C\rho^{-2N}\mathcal{E}_{N}(f_{0}), (1.33)

and for all t0t\geq 0,

ρμ1ρμ+ρ12μ121ρμfρ(t)0.\displaystyle\frac{\rho\mu}{1-\rho\mu}+\frac{\rho^{\frac{1}{2}}\mu^{\frac{1}{2}}}{1-\rho\mu}f^{\rho}(t)\geq 0.

We give some explanations and comments on Theorem 1.1 in the rest of this subsection and the next two subsections.

We emphasize that the constants ρ,δ,C\rho_{*},\delta_{*},C in Theorem 1.1 could depend on N,l0,0,s,γN,l_{0,0},s,\gamma. In Theorem 1.1 and the rest of the article, if a constant depends only on the given parameters N,l0,0,s,γN,l_{0,0},s,\gamma, we say it is a universal constant. In particular, the two constants δ,C\delta_{*},C are independent of 0<ρρ0<\rho\leq\rho_{*}.

The condition N9N\geq 9 owes to Theorem 5.8. Understandably, a certain high order is required to deal with the singular kernel (1.11) and the trilinear operator Γ3ρ(,,)\Gamma_{3}^{\rho}(\cdot,\cdot,\cdot). Recall that the hard sphere model in [44] needs N8N\geq 8.

Note that Theorem 1.1 gives global well-posedness under the condition

0<ρ1,ρ=ρμ1ρμρμ,𝒩ρ=ρ12μ121ρμρ12μ12,N((1ρμ)F0ρμρ12μ12)ρ2N+1.\displaystyle 0<\rho\ll 1,\quad\mathcal{M}_{\rho}=\frac{\rho\mu}{1-\rho\mu}\sim\rho\mu,\quad\mathcal{N}_{\rho}=\frac{\rho^{\frac{1}{2}}\mu^{\frac{1}{2}}}{1-\rho\mu}\sim\rho^{\frac{1}{2}}\mu^{\frac{1}{2}},\quad\mathcal{E}_{N}\big{(}\frac{(1-\rho\mu)F_{0}-\rho\mu}{\rho^{\frac{1}{2}}\mu^{\frac{1}{2}}}\big{)}\ll\rho^{2N+1}.

Roughly speaking, these conditions mean

F0ρμ+o(ρN+1)μ12.\displaystyle F_{0}\approx\rho\mu+\mathrm{o}(\rho^{N+1})\mu^{\frac{1}{2}}.

Note that this ρ\rho-related smallness did not appear in previous works where the parameter ρ\rho was regarded as a fixed constant. Other effects of viewing ρ\rho as a variable parameter will be pointed out later.

By (1.32) and (1.33), we have N(fρ(t))ρ\mathcal{E}_{N}(f^{\rho}(t))\lesssim\rho for any t0t\geq 0. This estimate is consistent with the trivial case ρ=0\rho=0 where F(t)0F(t)\equiv 0 is the solution to problem (1.12) starting with a zero initial datum F00F_{0}\equiv 0.

In terms of physical relevance of Theorem 5.8, we give the following two remarks.

Remark 1.1.

Note that fρ(t)Lx,v2N(fρ(t))ρ\|f^{\rho}(t)\|_{L^{\infty}_{x,v}}^{2}\lesssim\mathcal{E}_{N}(f^{\rho}(t))\lesssim\rho and thus ρμ1ρμ+ρ12μ121ρμfρ(t)Lx,vρ\|\frac{\rho\mu}{1-\rho\mu}+\frac{\rho^{\frac{1}{2}}\mu^{\frac{1}{2}}}{1-\rho\mu}f^{\rho}(t)\|_{L^{\infty}_{x,v}}\lesssim\rho for any t0t\geq 0. Theorem 1.1 shows that BEC will not happen if the initial datum is close enough to an equilibrium with high temperature, which is reasonable and consistent with physical observation.

Remark 1.2.

By the scaling (1.6), Theorem 1.1 ensures the global well-posedness of (1.1) with Φ(x)=4p4|x|p\Phi(x)=\hbar^{4p-4}|x|^{-p} and initial datum F0F_{0} close enough to the equilibrium ρ,\mathcal{M}_{\rho,\hbar} where ρ,(v)=3ρ(3v)\mathcal{M}_{\rho,\hbar}(v)=\hbar^{-3}\mathcal{M}_{\rho}(\hbar^{3}v). Simply looking at the equilibrium ρ,\mathcal{M}_{\rho,\hbar}, we have ρ,Lx,v3ρ,ρ,Lx2L2152ρ.\|\mathcal{M}_{\rho,\hbar}\|_{L^{\infty}_{x,v}}\sim\hbar^{-3}\rho,\|\mathcal{M}_{\rho,\hbar}\|_{L^{2}_{x}L^{2}}\sim\hbar^{-\frac{15}{2}}\rho. Since \hbar is a relatively small constant, the magnitude of the solution to the problem (1.1) can be relatively large.

1.5. Feature of our result

In terms of condition and conclusion, Theorem 1.1 is the closest to the main result (Theorem 1.4) of [28]. More precisely, both of these two results validate global existence of anisotropic solutions under very high temperature condition, see (1.19) and Remark 1.6 of [28] for more details. The main differences of these two results are also obvious. To reiterate, [28] considers spatially homogeneous case and (slightly general than) hard sphere model, while we work with the inhomogeneous case and non-cutoff kernels.

In terms of mathematical methods, this article is closer to [5], [44] and [27] since all of these works fall into the close-to-equilibrium framework well established for the classical Boltzmann equation. There are many great works that contribute to this mathematically satisfactory theory for global well-posedness of the classical Boltzmann equation. For reference, we mention [48, 24] for angular cutoff kernels and [23, 4] for non-cutoff kernels.

Each of [5], [44] and [27] has its own features and focuses. The work [5] is the first to investigate both relativistic and quantum effects. The article [27] studies the hydro dynamic limit from BFD (but not BBE) to incompressible Navier-Stokes-Fourier equation. The work [44] includes three cases: torus near equilibrium, whole space near equilibrium and whole space near vacuum. These novel works contribute to the literature of quantum Boltzmann equation from different aspects.

Like the above works, our main result Theorem 1.1 also has some unique features that may better our understanding of quantum Boltzmann equation. In particular, this article may be the first in the spatially inhomogeneous case to

  • study the quantum Boltzmann equation with inverse power law potentials;

  • incorporate high temperature condition into global well-posedness;

  • rule out BEC globally in time.

Different from the three works ([5], [44] and [27]), we keep the parameter ρ\rho along our derivation throughout the article. This intentional choice enables us to relate the high temperature condition to the smallness of ρ\rho quantitatively in (1.19). As a result, BEC is rigorously ruled out globally.

1.6. Possible improvements

Compared to the well-established global well-posedness theory for classical Boltzmann equations with inverse power law potentials, our Theorem 1.1 has much room to improve. In this subsection, some possible improvements of Theorem 1.1 are given based on the author’s limited knowledge. To keep the present article in a reasonable length, we leave these improvements in future works.

Recall N\mathcal{E}_{N} is defined in (1.29) with the weight order {l|α|,|β|}|α|+|β|N\{l_{|\alpha|,|\beta|}\}_{|\alpha|+|\beta|\leq N} satisfying (1.30) and (1.31). Let N\mathcal{E}_{N}^{*} be the space with the minimal weight order {l|α|,|β|}|α|+|β|N\{l^{*}_{|\alpha|,|\beta|}\}_{|\alpha|+|\beta|\leq N} where l0,N=0l^{*}_{0,N}=0 and {l|α|,|β|}|α|+|β|N\{l^{*}_{|\alpha|,|\beta|}\}_{|\alpha|+|\beta|\leq N} verifies the two conditions (1.30) and (1.31) with identities. To illustrate, we give an example of the weight order {l|α|,|β|}|α|+|β|N\{l^{*}_{|\alpha|,|\beta|}\}_{|\alpha|+|\beta|\leq N}. Recall for the inverse power law ϕ(x)=|x|p\phi(x)=|x|^{-p}, γ=2p,s=2p5\gamma=2-p,s=2p-5 and thus γ+2s=1\gamma+2s=-1. Let us take N=9N=9, the corresponding {l|α|,|β|}|α|+|β|9\{l^{*}_{|\alpha|,|\beta|}\}_{|\alpha|+|\beta|\leq 9} with γ+2s=1\gamma+2s=-1 is shown in Table 1. In Table 1, the column index represents derivative order |α||\alpha| of space variable xx and the row index represents derivative order |β||\beta| of velocity variable vv. For example l0,9=0,l1,8=1,l0,8=9,l0,1=44,l1,0=l0,0=45l_{0,9}=0,l_{1,8}=1,l_{0,8}=9,l_{0,1}=44,l_{1,0}=l_{0,0}=45.

Table 1. Minimal weight order when N=9,γ+2s=1N=9,\gamma+2s=-1
9 0 ×\times ×\times ×\times ×\times ×\times ×\times ×\times ×\times ×\times ×\times
8 9 1 ×\times ×\times ×\times ×\times ×\times ×\times ×\times ×\times ×\times
7 17 10 2 ×\times ×\times ×\times ×\times ×\times ×\times ×\times ×\times
6 24 18 11 3 ×\times ×\times ×\times ×\times ×\times ×\times ×\times
5 30 25 19 12 4 ×\times ×\times ×\times ×\times ×\times ×\times
4 35 31 26 20 13 5 ×\times ×\times ×\times ×\times ×\times
3 39 36 32 27 21 14 6 ×\times ×\times ×\times ×\times
2 42 40 37 33 28 22 15 7 ×\times ×\times ×\times
1 44 43 41 38 34 29 23 16 8 ×\times ×\times
0 45 45 44 42 39 35 30 24 17 9 ×\times
(|β|/|α|)(|\beta|/|\alpha|) 0 1 2 3 4 5 6 7 8 9 10

Note that in Theorem 1.1, smallness of N(f0)\mathcal{E}_{N}(f_{0}) is imposed to prove well-posedness in L([0,);N)L^{\infty}([0,\infty);\mathcal{E}_{N}). We may try to prove well-posedness in L([0,);N)L^{\infty}([0,\infty);\mathcal{E}_{N}) under the condition 9(f0)ρ19,N(f0)<\mathcal{E}_{9}^{*}(f_{0})\ll\rho^{19},\mathcal{E}_{N}(f_{0})<\infty. That is, smallness assumption is only imposed on 9\mathcal{E}_{9}^{*}. Such kind better result was derived by Guo in [25] for the Vlasov-Possion-Landau system.

Theorem 1.1 does not consider relaxation to equilibrium. Using the methods in [46] and [16] for classical Boltzmann equations, it is very promising to derive similar long time behaviors for the solution fρf^{\rho} obtained in Theorem 1.1. For example, we can derive almost exponential decay like in [46] by recalling (1.51) ||γ/2s||Ls+γ/22|\cdot|_{\mathcal{L}^{s}_{\gamma/2}}\geq|\cdot|_{L^{2}_{s+\gamma/2}} and using some interpolation inequality to deal with soft potential γ+2s<0\gamma+2s<0. In this regard, a possible result may be as follows. Let N9,l2>l10N\geq 9,l_{2}>l_{1}\geq 0 and assume 9(f0)ρ19,N(Wl2f0)<\mathcal{E}_{9}^{*}(f_{0})\ll\rho^{19},\mathcal{E}_{N}(W_{l_{2}}f_{0})<\infty. Try to prove for any t0t\geq 0,

N(Wl2fρ(t))ρ2NC(N(Wl2f0)),N(Wl1fρ(t))(1+t)qρ2NN(Wl1f0).\displaystyle\mathcal{E}_{N}(W_{l_{2}}f^{\rho}(t))\lesssim\rho^{-2N}C(\mathcal{E}_{N}(W_{l_{2}}f_{0})),\quad\mathcal{E}_{N}(W_{l_{1}}f^{\rho}(t))\lesssim(1+t)^{-q}\rho^{-2N}\mathcal{E}_{N}(W_{l_{1}}f_{0}).

The first upper bound estimate on N(Wl2fρ(t))\mathcal{E}_{N}(W_{l_{2}}f^{\rho}(t)) is used together with interpolation method to derive the polynomial decay of N(Wl1fρ(t))\mathcal{E}_{N}(W_{l_{1}}f^{\rho}(t)). By interpolation, we should have q=l2l1s+γ/2q=-\frac{l_{2}-l_{1}}{s+\gamma/2}.

We may try to derive sub-exponential decay rate under more assumption on initial data like in [16]. Roughly speaking, we could get something as follows. Let λ>0\lambda>0 be small enough and assume N(e2λvf0)ρ2N+1\mathcal{E}_{N}(e^{2\lambda\langle v\rangle}f_{0})\ll\rho^{2N+1}. Try to prove for any t0t\geq 0,

N(e2λvfρ(t))ρ2NN(e2λvf0),N(fρ(t))eλtκρ2NN(e2λvf0),\displaystyle\mathcal{E}_{N}(e^{2\lambda\langle v\rangle}f^{\rho}(t))\lesssim\rho^{-2N}\mathcal{E}_{N}(e^{2\lambda\langle v\rangle}f_{0}),\quad\mathcal{E}_{N}(f^{\rho}(t))\lesssim e^{-\lambda t^{\kappa}}\rho^{-2N}\mathcal{E}_{N}(e^{2\lambda\langle v\rangle}f_{0}),

where κ=11+|γ+2s|\kappa=\frac{1}{1+|\gamma+2s|}.

Another topic is to prove global well-posedness in a larger space than 9\mathcal{E}_{9}^{*}. Note that for classical Boltzmann equation with inverse power law potential, see [16] for global well-posedness in the up-to-date largest space Lk1L2L^{1}_{k}L^{2} (containing Hx32+δL2\supset H^{\frac{3}{2}+\delta}_{x}L^{2} for any δ>0\delta>0). One may try to establish global well-posedness in such kind low regularity space.

1.7. Strategy of proof

The proof of Theorem 1.1 will be given in subsection 7.3 by a rigorous continuity argument based on the local well-posedness result in Theorem 6.1 and the a priori estimate in Theorem 7.1. We spend this subsection to outline the procedure and give the key points in deriving Theorem 6.1 and Theorem 7.1. The best way is to glance over this subsection first and come back to read it carefully when appropriate.

1.7.1. An auxiliary Cauchy problem

In order to prove local well-posedness of (1.12) or (1.20), we study the following linear problem

tF+vxF=Q~(G,F),t>0,x𝕋3,v3;F|t=0=F0.\displaystyle\partial_{t}F+v\cdot\nabla_{x}F=\tilde{Q}(G,F),~{}~{}t>0,x\in\mathbb{T}^{3},v\in\mathop{\mathbb{R}\kern 0.0pt}\nolimits^{3};\quad F|_{t=0}=F_{0}. (1.34)

Here GG is a given function and FF is unknown. The operator Q~(,)\tilde{Q}(\cdot,\cdot) is defined by

Q~(g,h)(v)\colonequalsB(vv,σ)D(gh(1+g+g))dσdv.\displaystyle\tilde{Q}(g,h)(v)\colonequals\int B(v-v_{*},\sigma)\mathrm{D}\big{(}g_{*}^{\prime}h^{\prime}(1+g_{*}+g)\big{)}\mathrm{d}\sigma\mathrm{d}v_{*}. (1.35)

Since GG is a given function, the operator Q~(G,F)\tilde{Q}(G,F) is linear in FF. Using the expansion F=+𝒩f,G=+𝒩gF=\mathcal{M}+\mathcal{N}f,G=\mathcal{M}+\mathcal{N}g, the equation (1.34) is equivalent to

{tf+vxf+ρf=rρf+𝒞ρf+ρ12Γ2,mρ(g,f+ρ12μ12)+Γ3ρ(g,f+ρ12μ12,g);f|t=0=f0=(1ρμ)F0ρμρ12μ12.\displaystyle\left\{\begin{aligned} &\partial_{t}f+v\cdot\nabla_{x}f+\mathcal{L}^{\rho}f=\mathcal{L}^{\rho}_{r}f+\mathcal{C}^{\rho}f+\rho^{\frac{1}{2}}\Gamma_{2,m}^{\rho}(g,f+\rho^{\frac{1}{2}}\mu^{\frac{1}{2}})+\Gamma_{3}^{\rho}(g,f+\rho^{\frac{1}{2}}\mu^{\frac{1}{2}},g);\\ &f|_{t=0}=f_{0}=\frac{(1-\rho\mu)F_{0}-\rho\mu}{\rho^{\frac{1}{2}}\mu^{\frac{1}{2}}}.\end{aligned}\right. (1.36)

where the linear operators rρ,𝒞ρ\mathcal{L}^{\rho}_{r},\mathcal{C}^{\rho} are defined by

(𝒞ρf)(v)\colonequalsρ12B𝒩𝒩𝒩D((μ12f))dσdv,\displaystyle(\mathcal{C}^{\rho}f)(v)\colonequals\rho^{\frac{1}{2}}\int B\mathcal{N}_{*}\mathcal{N}^{\prime}\mathcal{N}^{\prime}_{*}\mathrm{D}\big{(}(\mu^{\frac{1}{2}}f)^{\prime}\big{)}\mathrm{d}\sigma\mathrm{d}v_{*}, (1.37)
(rρf)(v)\colonequalsB𝒩𝒩𝒩D((𝒩1f))dσdv,\displaystyle(\mathcal{L}^{\rho}_{r}f)(v)\colonequals\int B\mathcal{N}_{*}\mathcal{N}^{\prime}\mathcal{N}^{\prime}_{*}\mathrm{D}\big{(}(\mathcal{N}^{-1}f)_{*}\big{)}\mathrm{d}\sigma\mathrm{d}v_{*}, (1.38)

and the operator Γ2,mρ\Gamma_{2,m}^{\rho} is defined in (3.2). In this article, the subscripts “mm” and “rr” are referred to “main” and “remaining” respectively. For example, Γ2,mρ\Gamma_{2,m}^{\rho} is the main part of Γ2ρ\Gamma_{2}^{\rho}. Corresponding to the remaining part rρ\mathcal{L}^{\rho}_{r} of ρ\mathcal{L}^{\rho}, we also have the main part mρ\mathcal{L}^{\rho}_{m} defined in (5.10). Note that ρ=mρ+rρ\mathcal{L}^{\rho}=\mathcal{L}^{\rho}_{m}+\mathcal{L}^{\rho}_{r}.

Local well-posedness of (1.20) is proved by iterating on equation (1.36). In order to implement energy method on equations (1.20) and (1.36), we first give necessary estimates on the linear operators ρ,rρ,𝒞ρ,Q~(g,)\mathcal{L}^{\rho},\mathcal{L}^{\rho}_{r},\mathcal{C}^{\rho},\tilde{Q}(g,\cdot), the bilinear operators Γ2,mρ,Γ2ρ\Gamma_{2,m}^{\rho},\Gamma_{2}^{\rho} and the trilinear operator Γ3ρ\Gamma_{3}^{\rho} in Section 2, 3 and 4 respectively. We now give some keys ideas of these estimates.

1.7.2. Linear operators

In this sequel, we consider the four linear operators: ρ,rρ,𝒞ρ,Q~(g,)\mathcal{L}^{\rho},\mathcal{L}^{\rho}_{r},\mathcal{C}^{\rho},\tilde{Q}(g,\cdot).

Coercivity estimate of ρ\mathcal{L}^{\rho}. Coercivity estimate of ρ\mathcal{L}^{\rho} plays a central role in the close-to-equilibrium framework. Note that ρ\mathcal{L}^{\rho} is a self-joint operator. Indeed,

ρg,h=14B𝒩𝒩𝒩𝒩S(𝒩1g)S(𝒩1h)dσdvdv=g,ρh.\displaystyle\langle\mathcal{L}^{\rho}g,h\rangle=\frac{1}{4}\int B\mathcal{N}\mathcal{N}_{*}\mathcal{N}^{\prime}\mathcal{N}^{\prime}_{*}\mathrm{S}(\mathcal{N}^{-1}g)\mathrm{S}(\mathcal{N}^{-1}h)\mathrm{d}\sigma\mathrm{d}v_{*}\mathrm{d}v=\langle g,\mathcal{L}^{\rho}h\rangle. (1.39)

The null space of ρ\mathcal{L}^{\rho} is

Nullρ=span{𝒩ρ,𝒩ρv1,𝒩ρv2,𝒩ρv3,𝒩ρ|v|2}.\displaystyle\mathrm{Null}^{\rho}=\mathrm{span}\{\mathcal{N}_{\rho},\mathcal{N}_{\rho}v_{1},\mathcal{N}_{\rho}v_{2},\mathcal{N}_{\rho}v_{3},\mathcal{N}_{\rho}|v|^{2}\}. (1.40)

Let ρ\mathbb{P}_{\rho}(see (2.11) for its precise definition) be the projection operator on the null space Nullρ\mathrm{Null}^{\rho}. Then ρ\mathcal{L}^{\rho} enjoys the following estimate (see Theorem 2.2 for the precise statement)

ρf,fρ|(𝕀ρ)f|γ/2s2,\displaystyle\langle\mathcal{L}^{\rho}f,f\rangle\sim\rho|(\mathbb{I}-\mathbb{P}_{\rho})f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}, (1.41)

where the norm ||γ/2s|\cdot|_{\mathcal{L}^{s}_{\gamma/2}} is defined in (1.51). We use 𝕀\mathbb{I} to denote the identity operator. Note that ρ\mathcal{L}^{\rho} vanishes with order-1 as ρ0\rho\rightarrow 0. There are two key points in deriving (1.41).

  • The first one is to reduce quantum case to classical case. Let us recall the classical (non-quantum) linearized Boltzmann operator with kernel BB in (1.11),

    (cf)(v)\colonequalsBμμ12S(μ12f)dσdv,\displaystyle(\mathcal{L}_{c}f)(v)\colonequals\int B\mu_{*}\mu^{\frac{1}{2}}\mathrm{S}(\mu^{-\frac{1}{2}}f)\mathrm{d}\sigma\mathrm{d}v_{*}, (1.42)

    where we use S()\mathrm{S}(\cdot) defined in (1.22). In this article, the subscript “cc” is referred to “classical”. When ρ\rho is small, we reduce ρf,f\langle\mathcal{L}^{\rho}f,f\rangle to ρcf,f\langle\rho\mathcal{L}_{c}f,f\rangle with some small correction term. See Lemma 2.2 for details.

  • The second one is to give an estimate of ρ0\mathbb{P}_{\rho}-\mathbb{P}_{0} where 0\mathbb{P}_{0} is the projection operator on the null space (Null0\mathrm{Null}^{0} defined in (2.8)) of classical operator c\mathcal{L}_{c}. Roughly speaking, |ρ0|=O(ρ)|\mathbb{P}_{\rho}-\mathbb{P}_{0}|=O(\rho), see Lemma 2.3 for details.

With these two key observations, using the coercivity estimate of c\mathcal{L}_{c} in Theorem 2.1, we get Theorem 2.2 for the coercivity estimate of ρ\mathcal{L}^{\rho}.

Some preliminary formulas. We collect some preliminary formulas for Boltzmann type integrals in subsection 2.2. We first give two commonly used changes of variable in (2.27) and (2.28). When estimating integrals, we have to deal with singularity in the kernel BB. To cancel angular singularity, we give Lemma 2.4 (based on Taylor expansion) and Lemma 2.5(based on the cancelation lemma in [2]) for integrals that have particular structures. To cancel velocity singularity, we prepare Lemma 2.6. In order to retain negative exponential weight, we give Lemma 2.7 and Remark 2.2.

Upper bound of rρ\mathcal{L}^{\rho}_{r}. We make several rearrangements to rρg,h\langle\mathcal{L}^{\rho}_{r}g,h\rangle and then use the formulas in subsection 2.2 to get |rρg,h|ρ|μ164g|L2|μ164h|L2|\langle\mathcal{L}^{\rho}_{r}g,h\rangle|\lesssim\rho|\mu^{\frac{1}{64}}g|_{L^{2}}|\mu^{\frac{1}{64}}h|_{L^{2}} in Proposition 2.1. Note that we succeed in obtaining an upper bound only involving L2L^{2}-norm with negative exponential weight. This result is comparable to the classical case, see Lemma 2.15 in [4].

Upper bound of 𝒞ρ\mathcal{C}^{\rho}. Using the upper bound for functionals 𝒩ipl(μa,f)\mathcal{N}^{ipl}(\mu^{a},f) and 𝒩ipl(f,μa)\mathcal{N}^{ipl}(f,\mu^{a}) involving classical Boltzmann kernel BiplB^{ipl} defined in (2.16), we prove in Theorem 2.3 that the two functionals 𝒩(μa,f)\mathcal{N}(\mu^{a},f) and 𝒩(f,μa)\mathcal{N}(f,\mu^{a}) are bounded from up by |f|γ/2s2|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}. See (2.48) for the definition of these functionals. We make several rearrangements to 𝒞ρg,h\langle\mathcal{C}^{\rho}g,h\rangle such that it can be controlled by the two functionals, which enables us to apply Theorem 2.3 to get |𝒞ρh,f|ρ2|μ14h|γ/2s|μ14f|γ/2s|\langle\mathcal{C}^{\rho}h,f\rangle|\lesssim\rho^{2}|\mu^{\frac{1}{4}}h|_{\mathcal{L}^{s}_{\gamma/2}}|\mu^{\frac{1}{4}}f|_{\mathcal{L}^{s}_{\gamma/2}}. See Proposition 2.2 for details.

Upper bound of Q~(g,f),f\langle\tilde{Q}(g,f),f\rangle. We prove Q~(g,f),f|μ14g|H4(1+|μ14g|H4)|f|L22\langle\tilde{Q}(g,f),f\rangle\lesssim|\mu^{-\frac{1}{4}}g|_{H^{4}}(1+|\mu^{-\frac{1}{4}}g|_{H^{4}})|f|_{L^{2}}^{2} in Proposition 2.3 which is used in Proposition 6.1 to derive non-negativity of solutions to the linear problem (1.34). The key idea in the proof of Proposition 2.3 is to put all regularity and weight on gg through those preliminary formulas mentioned before.

1.7.3. Nonlinear operators

To analyze the nonlinear operators Γ2,mρ,Γ2ρ,Γ3ρ\Gamma_{2,m}^{\rho},\Gamma_{2}^{\rho},\Gamma_{3}^{\rho}, we will make use of the classical (non-quantum) Boltzmann operator with kernel BB in (1.11),

Qc(g,h)(v)\colonequalsB(vv,σ)D(gh)dσdv.\displaystyle Q_{c}(g,h)(v)\colonequals\int B(v-v_{*},\sigma)\mathrm{D}(g_{*}^{\prime}h^{\prime})\mathrm{d}\sigma\mathrm{d}v_{*}. (1.43)

By some rearrangement, we find

Γ2ρ(g,h)=ρ12(Qc(Nρg,h)+Iρ(g,h))+ρ32Γ2,rρ(g,h),Γ2,mρ(g,h)=Qc(Nρg,h)+Iρ(g,h),\displaystyle\Gamma_{2}^{\rho}(g,h)=\rho^{\frac{1}{2}}\big{(}Q_{c}(N_{\rho}g,h)+I^{\rho}(g,h)\big{)}+\rho^{\frac{3}{2}}\Gamma_{2,r}^{\rho}(g,h),\quad\Gamma_{2,m}^{\rho}(g,h)=Q_{c}(N_{\rho}g,h)+I^{\rho}(g,h),

where IρI^{\rho} is defined in (3.3) and Γ2,rρ(g,h)\Gamma_{2,r}^{\rho}(g,h) is defined in (3.4). Here Nρ=(1ρμ)1μ12N_{\rho}=(1-\rho\mu)^{-1}\mu^{\frac{1}{2}}. In order to estimate Γ2ρ(g,h)\Gamma_{2}^{\rho}(g,h), we need to consider Qc(Nρg,h),Iρ(g,h),Γ2,rρ(g,h)Q_{c}(N_{\rho}g,h),I^{\rho}(g,h),\Gamma_{2,r}^{\rho}(g,h). We now give some keys points.

Upper bound of Qc(Nρg,h),f\langle Q_{c}(N_{\rho}g,h),f\rangle. Observing (2.18), we first get an upper bound of Qc(g,h),f\langle Q_{c}(g,h),f\rangle in Corollary 3.1 by using some known estimates of classical Boltzmann operator with BiplB^{ipl} defined in (2.16). Then noting that Nρμ12N_{\rho}\sim\mu^{\frac{1}{2}} and using the elementary Lemma 3.1, we get the upper bound of Qc(Nρg,h),f\langle Q_{c}(N_{\rho}g,h),f\rangle in Proposition 3.2.

Upper bound of Iρ(g,h),f\langle I^{\rho}(g,h),f\rangle. See from (3.24), (3.25) and (3.26) that Iρ(g,h),f\langle I^{\rho}(g,h),f\rangle contains differences D(μ12)\mathrm{D}(\mu^{\frac{1}{2}}_{*}) and D(μ12)\mathrm{D}(\mu^{\frac{1}{2}}). To deal with functionals containing such differences, we introduce Lemma 3.2 and Remark 3.1. We then make suitable rearrangements and use some basic tools (such as Cauchy-Schwartz inequality, changes of variable in (2.27) and (2.28)) to bound Iρ(g,h),f\langle I^{\rho}(g,h),f\rangle from up by the functionals in Lemma 3.2 and Theorem 2.3. See Proposition 3.3 for more details.

Upper bounds of Γ2,rρ,Γ3ρ\Gamma_{2,r}^{\rho},\Gamma_{3}^{\rho}. Lemma 3.3 and Remark 3.4 are introduced to deal with various functionals containing D2(g)\mathrm{D}^{2}(g_{*}). For the upper bound of Γ2,rρ\Gamma_{2,r}^{\rho} and Γ3ρ\Gamma_{3}^{\rho}, we make a variety of rearrangements and use some basic tools (such as Cauchy-Schwartz inequality, changes of variable in (2.27) and (2.28), weight retainment (2.37), the imbedding H2LH^{2}\hookrightarrow L^{\infty}, the usual change of variable vvv\to v^{\prime} or vvv_{*}\to v^{\prime}_{*} ) to bound Γ2,rρ(g,h),f\langle\Gamma_{2,r}^{\rho}(g,h),f\rangle and Γ3ρ(g,h,ϱ),f\langle\Gamma_{3}^{\rho}(g,h,\varrho),f\rangle from up by Qc(g,h),f,Iρ(g,h),f\langle Q_{c}(g,h),f\rangle,\langle I^{\rho}(g,h),f\rangle and the functionals in Lemma 3.2(Remark 3.1), Lemma 3.3(Remark 3.4) and Theorem 2.3. keep in mind that the ending upper bounds will be used in later energy estimate of the equations (1.20) and (1.36) and so they must be sharp enough. We illustrate this point by looking at Γ3ρ\Gamma_{3}^{\rho}. We use β\colonequalsvβ\partial_{\beta}\colonequals\partial^{\beta}_{v} to denote vv-derivative. In later energy estimate of βf\partial_{\beta}f, we will encounter

Γ3ρ(β1f,β2f,β3f),βf,\displaystyle\langle\Gamma_{3}^{\rho}(\partial_{\beta_{1}}f,\partial_{\beta_{2}}f,\partial_{\beta_{3}}f),\partial_{\beta}f\rangle,

where β=β1+β2+β3\beta=\beta_{1}+\beta_{2}+\beta_{3}. The most dangerous term appears when all the derivatives fall on a single function. There are three cases

Γ3ρ(βf,f,f),βf,Γ3ρ(f,βf,f),βf,Γ3ρ(f,f,βf),βf.\displaystyle\langle\Gamma_{3}^{\rho}(\partial_{\beta}f,f,f),\partial_{\beta}f\rangle,\quad\langle\Gamma_{3}^{\rho}(f,\partial_{\beta}f,f),\partial_{\beta}f\rangle,\quad\langle\Gamma_{3}^{\rho}(f,f,\partial_{\beta}f),\partial_{\beta}f\rangle.\quad

To deal with these terms, the upper bound of Γ3ρ(g,h,ϱ),f\langle\Gamma_{3}^{\rho}(g,h,\varrho),f\rangle must only involve L2L^{2} or γ/2s\mathcal{L}^{s}_{\gamma/2} for at least one of g,h,ϱg,h,\varrho. To achieve such flexibility, we try hard to figure out suitable rearrangements. See Theorem 4.1 for the three final estimates of Γ3ρ(g,h,ϱ),f\langle\Gamma_{3}^{\rho}(g,h,\varrho),f\rangle. Applicable estimates of Γ2,rρ(g,h),f\langle\Gamma_{2,r}^{\rho}(g,h),f\rangle are given in Propositions 3.4, 3.5 and 3.6 corresponding to the three terms in (3.4).

1.7.4. Commutator estimates

To implement energy method in weighted Sobolev space, we need to consider commutators between the weight function WlW_{l} and the above operators. Such commutators always contain the difference D(Wl)\mathrm{D}(W_{l}). To deal with functionals containing such difference, we introduce Lemma 5.1 and Remark 5.1. Then estimates of commutators like [Wl,ρ],[Wl,Γ2ρ(g,)],[Wl,Γ3ρ(g,,ϱ)][W_{l},\mathcal{L}^{\rho}],[W_{l},\Gamma_{2}^{\rho}(g,\cdot)],[W_{l},\Gamma_{3}^{\rho}(g,\cdot,\varrho)] are derived by using Lemma 5.1(Remark 5.1) and some other known results. With these commutator estimates and the operator estimates in Section 2, 3 and 4, we give weighted inner product estimates first in L2(3)L^{2}(\mathop{\mathbb{R}\kern 0.0pt}\nolimits^{3}) space and then in L2(𝕋3×3)L^{2}(\mathbb{T}^{3}\times\mathop{\mathbb{R}\kern 0.0pt}\nolimits^{3}) space. Finally, some useful energy estimates are derived in Theorem 5.2, 5.5 and 5.8. See Section 5 for details.

1.7.5. Local well-posedness

We first prove well-posedness of the equation (1.36) in Proposition 6.2 under suitable smallness assumption on the given function gg. In addition, some continuity (see (6.4)) to initial datum is provided. Based on these results on equation (1.36), we construct a function sequence through iteration. More concretely, we start with f00f^{0}\equiv 0 and take (g,f)=(fn1,fn)(g,f)=(f^{n-1},f^{n}) in (1.36) to construct a function sequence {fn}n0\{f^{n}\}_{n\geq 0}. Then using the continuity result (6.4), the sequence {fn}n0\{f^{n}\}_{n\geq 0} is proved to be a Cauchy sequence generating a local solution to the nonlinear equation (1.20). See Theorem 6.1 and its proof for more details.

1.7.6. A priori estimate

The standard macro-micro decomposition method is used in this step. The decomposition reads f=ρf+(fρf)f=\mathbb{P}_{\rho}f+(f-\mathbb{P}_{\rho}f). Recall that ρf\mathbb{P}_{\rho}f and (fρf)(f-\mathbb{P}_{\rho}f) are referred as “macroscopic” and “microscopic” parts respectively. For the “macroscopic” part, we first derive a system of macroscopic equations (7.6) and some local conservation laws (7.9). With these equations and some other elementary estimates, the dissipation on ρf\mathbb{P}_{\rho}f can be derived as in [15]. See Lemma 7.3 and 7.4 for the precise results. Full dissipation functional 𝒟N(f)\mathcal{D}_{N}(f) in (1.29) is derived in Proposition 7.1 for the equation tf+vxf+ρf=g\partial_{t}f+v\cdot\nabla_{x}f+\mathcal{L}^{\rho}f=g where gg is a general source term.

Let us see a key point in the proof of Proposition 7.1. The most difficult term is the free streaming term vxfv\cdot\nabla_{x}f when taking vv-derivative. More precisely, we need to deal with the commutator [vx,βα][v\cdot\nabla_{x},\partial^{\alpha}_{\beta}]. By the condition (1.30), in Lemma 6.2 for any η>0\eta>0 we get

|([vx,βα]f,W2l|α|,|β|βαf)|ηWl|α|,|β|βαfLx2γ/2s2+1ηj=13|βj|2Wl|α|+1,|β|1βejα+ejfLx2γ/2s2.\displaystyle|([v\cdot\nabla_{x},\partial^{\alpha}_{\beta}]f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\leq\eta\|W_{l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{\gamma/2}}^{2}+\frac{1}{\eta}\sum_{j=1}^{3}|\beta^{j}|^{2}\|W_{l_{|\alpha|+1,|\beta|-1}}\partial^{\alpha+e^{j}}_{\beta-e^{j}}f\|_{L^{2}_{x}\mathcal{L}^{s}_{\gamma/2}}^{2}. (1.44)

Here β=(β1,β2,β3),e1=(1,0,0),e2=(0,1,0),e3=(0,0,1)\beta=(\beta^{1},\beta^{2},\beta^{3}),e^{1}=(1,0,0),e^{2}=(0,1,0),e^{3}=(0,0,1). Observe that there is a factor ρ\rho before the dissipation (see (1.41) or Theorem 2.2) for the corresponding energy. Here we have

Wl|α|,|β|βαfLx2L22ρWl|α|,|β|βαfLx2γ/2s2,\displaystyle\|W_{l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}L^{2}}^{2}\to\rho\|W_{l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{\gamma/2}}^{2},
Wl|α|+1,|β|1βejα+ejfLx2L22ρWl|α|+1,|β|1βejα+ejfLx2γ/2s2.\displaystyle\|W_{l_{|\alpha|+1,|\beta|-1}}\partial^{\alpha+e^{j}}_{\beta-e^{j}}f\|_{L^{2}_{x}L^{2}}^{2}\to\rho\|W_{l_{|\alpha|+1,|\beta|-1}}\partial^{\alpha+e^{j}}_{\beta-e^{j}}f\|_{L^{2}_{x}\mathcal{L}^{s}_{\gamma/2}}^{2}.

For this reason, in (1.44) we should take η=δρ\eta=\delta\rho for some sufficiently small δ>0\delta>0. The resulting latter term δ1ρ1j=13|βj|2Wl|α|+1,|β|1βejα+ejfLx2γ/2s2\delta^{-1}\rho^{-1}\sum_{j=1}^{3}|\beta^{j}|^{2}\|W_{l_{|\alpha|+1,|\beta|-1}}\partial^{\alpha+e^{j}}_{\beta-e^{j}}f\|_{L^{2}_{x}\mathcal{L}^{s}_{\gamma/2}}^{2} needs the dissipation in the energy estimate of Mδ1ρ2j=13Wl|α|+1,|β|1βejα+ejfLx2L22M\delta^{-1}\rho^{-2}\sum_{j=1}^{3}\|W_{l_{|\alpha|+1,|\beta|-1}}\partial^{\alpha+e^{j}}_{\beta-e^{j}}f\|_{L^{2}_{x}L^{2}}^{2} for some large constant MM. Such kind of treatment results in the following combination

j=0NKjρ2j2N|α|Nj,|β|=jWl|α|,|β|βαfLx2L22\displaystyle\sum_{j=0}^{N}K_{j}\rho^{2j-2N}\sum_{|\alpha|\leq N-j,|\beta|=j}\|W_{l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}L^{2}} (1.45)

for some constants {Kj}0jN\{K_{j}\}_{0\leq j\leq N}. Note that the power 2j2N2j-2N of ρ\rho depends on the vv-derivative order |β|=j|\beta|=j. See the proof of Proposition 7.1 for a detailed and rigourous derivation. A comparison of (1.45) and the energy functional N\mathcal{E}_{N} in (1.29) explains the factor ρ2N\rho^{-2N} in Theorem 1.1.

A priori estimate of the problem (1.20) is proved in Theorem 7.1 by applying Proposition 7.1 with g=Γ2ρ(f,f)+Γ3ρ(f,f,f)g=\Gamma_{2}^{\rho}(f,f)+\Gamma_{3}^{\rho}(f,f,f) and using the energy estimates ((5.47) for Γ2ρ\Gamma_{2}^{\rho} and Theorem 5.8 for Γ3ρ\Gamma_{3}^{\rho}) prepared in Section 5.

1.7.7. Global well-posedness and smallness of parameter ρ\rho

Global well-posedness (Theorem 1.1) is proved in subsection 7.3 by a continuity argument based on Theorem 6.1 and Theorem 7.1 for 0<ρρ0<\rho\leq\rho_{*}. Let us see the places where smallness condition appears.

  1. (1)

    In Lemma 2.1, we need ρ12(2π)32\rho\leq\frac{1}{2}(2\pi)^{\frac{3}{2}} in order to bound from below the denominator 1ρμ121-\rho\mu\geq\frac{1}{2}.

  2. (2)

    In Lemma 2.3, we need ρ1160\rho\leq\frac{1}{160} to estimate the operator difference ρ0\mathbb{P}_{\rho}-\mathbb{P}_{0}.

  3. (3)

    In Theorem 2.2, we need ρρ0\rho\leq\rho_{0} to get the coercivity estimate of ρ\mathcal{L}^{\rho}.

  4. (4)

    In Proposition 6.2, we need ρρ1\rho\leq\rho_{1} to prove well-posedness of the linear equation (1.36). More precisely, smallness is used to cancel out the linear term 𝒞ρ\mathcal{C}^{\rho}.

  5. (5)

    In Theorem 6.1, we need ρρ2\rho\leq\rho_{2} to prove the local well-posedness of the nonlinear equation (1.20).

As 0<ρ2ρ1ρ0116012(2π)320<\rho_{2}\leq\rho_{1}\leq\rho_{0}\leq\frac{1}{160}\leq\frac{1}{2}(2\pi)^{\frac{3}{2}}, we finally take ρ=ρ2\rho_{*}=\rho_{2} in Theorem 1.1.

1.8. Notations

In this subsection, we give a list of notations.

\bullet Given a set AA, 1A\mathrm{1}_{A} is the characteristic function of AA.

\bullet Given two operator T1,T2T_{1},T_{2}, their commutator is denoted by [T1,T2]\colonequalsT1T2T2T1[T_{1},T_{2}]\colonequals T_{1}T_{2}-T_{2}T_{1}.

\bullet The notation aba\lesssim b means that there is a universal constant CC such that aCba\leq Cb. The constant CC could depend on the kernel parameters γ,s\gamma,s and the energy space index N,l0,0N,l_{0,0}.

\bullet If both aba\lesssim b and bab\lesssim a, we write aba\sim b.

\bullet We denote C(λ1,λ2,,λn)C(\lambda_{1},\lambda_{2},\cdots,\lambda_{n}) or Cλ1,λ2,,λnC_{\lambda_{1},\lambda_{2},\cdots,\lambda_{n}} by a constant depending on λ1,λ2,,λn\lambda_{1},\lambda_{2},\cdots,\lambda_{n}.

\bullet The bracket \langle\cdot\rangle is defined by v\colonequals(1+|v|2)12\langle v\rangle\colonequals(1+|v|^{2})^{\frac{1}{2}}. The weight function Wl(v)\colonequalsvlW_{l}(v)\colonequals\langle v\rangle^{l}.

\bullet For f,gL2(3)f,g\in L^{2}({\mathop{\mathbb{R}\kern 0.0pt}\nolimits^{3}}), f,g\colonequals3f(v)g(v)dv\langle f,g\rangle\colonequals\int_{\mathop{\mathbb{R}\kern 0.0pt}\nolimits^{3}}f(v)g(v)\mathrm{d}v and |f|L22\colonequalsf,f|f|_{L^{2}}^{2}\colonequals\langle f,f\rangle.

\bullet For f,gL2(𝕋3)f,g\in L^{2}({\mathop{\mathbb{T}\kern 0.0pt}\nolimits^{3}}), f,gx\colonequals𝕋3f(x)g(x)dx\langle f,g\rangle_{x}\colonequals\int_{\mathop{\mathbb{T}\kern 0.0pt}\nolimits^{3}}f(x)g(x)\mathrm{d}x and |f|Lx22\colonequalsf,fx|f|_{L^{2}_{x}}^{2}\colonequals\langle f,f\rangle_{x}.

\bullet For f,gL2(𝕋3×3)f,g\in L^{2}({\mathop{\mathbb{T}\kern 0.0pt}\nolimits^{3}\times\mathop{\mathbb{R}\kern 0.0pt}\nolimits^{3}}), (f,g)\colonequals𝕋3×3f(x,v)g(x,v)dxdv(f,g)\colonequals\int_{\mathop{\mathbb{T}\kern 0.0pt}\nolimits^{3}\times\mathop{\mathbb{R}\kern 0.0pt}\nolimits^{3}}f(x,v)g(x,v)\mathrm{d}x\mathrm{d}v and fLx2L22\colonequals(f,f)\|f\|_{L^{2}_{x}L^{2}}^{2}\colonequals(f,f).

\bullet For a multi-index α=(α1,α2,α3)3\alpha=(\alpha_{1},\alpha_{2},\alpha_{3})\in\mathbb{N}^{3}, define |α|\colonequalsα1+α2+α3|\alpha|\colonequals\alpha_{1}+\alpha_{2}+\alpha_{3}.

\bullet For α,β3\alpha,\beta\in\mathbb{N}^{3}, denote α\colonequalsxα,β\colonequalsvβ,βα\colonequalsxαvβ\partial^{\alpha}\colonequals\partial^{\alpha}_{x},\partial_{\beta}\colonequals\partial^{\beta}_{v},\partial^{\alpha}_{\beta}\colonequals\partial^{\alpha}_{x}\partial^{\beta}_{v}.

We now introduce some norm.

\bullet For n,ln\in\mathbb{N},l\in\mathbb{R} and a function f(v)f(v) on 3\mathbb{R}^{3}, define

|f|Hln2\colonequals|β|n|Wlβf|L22,|f|Ll2\colonequals|f|Hl0,|f|Ll\colonequalsesssupv3|Wl(v)f(v)|.\displaystyle|f|_{H^{n}_{l}}^{2}\colonequals\sum_{|\beta|\leq n}|W_{l}\partial_{\beta}f|_{L^{2}}^{2},\quad|f|_{L^{2}_{l}}\colonequals|f|_{H^{0}_{l}},\quad|f|_{L^{\infty}_{l}}\colonequals\operatorname*{ess\,sup}_{v\in\mathbb{R}^{3}}|W_{l}(v)f(v)|. (1.46)

Note that |f|L2=|f|L02|f|_{L^{2}}=|f|_{L^{2}_{0}}.

\bullet For nn\in\mathbb{N} and a function f(x)f(x) on 𝕋3\mathbb{T}^{3}, define

|f|Hxn2\colonequals|α|n|αf|Lx22,|f|Lx:=esssupx𝕋3|f(x)|.\displaystyle|f|_{H^{n}_{x}}^{2}\colonequals\sum_{|\alpha|\leq n}|\partial^{\alpha}f|_{L^{2}_{x}}^{2},\quad|f|_{L^{\infty}_{x}}:=\operatorname*{ess\,sup}_{x\in\mathbb{T}^{3}}|f(x)|.

Note that |f|Lx2=|f|Hx0|f|_{L^{2}_{x}}=|f|_{H^{0}_{x}}.

\bullet For m,n,lm,n\in\mathbb{N},l\in\mathbb{R} and a function f(x,v)f(x,v) on 𝕋3×3\mathbb{T}^{3}\times\mathbb{R}^{3}, define

fHxmHln2\colonequals|α|m,|β|nWlβαfLx2L22,fLx2Ll2\colonequalsfHx0Hl0,fHxmHn\colonequalsfHxmH0n,\displaystyle\|f\|_{H^{m}_{x}H^{n}_{l}}^{2}\colonequals\sum_{|\alpha|\leq m,|\beta|\leq n}\|W_{l}\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}L^{2}}^{2},\quad\|f\|_{L^{2}_{x}L^{2}_{l}}\colonequals\|f\|_{H^{0}_{x}H^{0}_{l}},\quad\|f\|_{H^{m}_{x}H^{n}}\colonequals\|f\|_{H^{m}_{x}H^{n}_{0}}, (1.47)
fHx,vn2\colonequals|α|+|β|nβαfLx2L22,fLx,v\colonequalsesssupx𝕋3,v3|f(x,v)|.\displaystyle\|f\|_{H^{n}_{x,v}}^{2}\colonequals\sum_{|\alpha|+|\beta|\leq n}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}L^{2}}^{2},\quad\|f\|_{L^{\infty}_{x,v}}\colonequals\operatorname*{ess\,sup}_{x\in\mathbb{T}^{3},v\in\mathbb{R}^{3}}|f(x,v)|. (1.48)

\bullet For n,ln,l\in\mathbb{R} and a function f(v)f(v) on 3\mathbb{R}^{3}, define

|f|Hn2\colonequals3(1+|ξ|2)n|f^(ξ)|2dξ,|f|Hln2\colonequals|Wlf|Hn2,\displaystyle|f|_{H^{n}}^{2}\colonequals\int_{\mathbb{R}^{3}}(1+|\xi|^{2})^{n}|\hat{f}(\xi)|^{2}\mathrm{d}\xi,\quad|f|_{H^{n}_{l}}^{2}\colonequals|W_{l}f|_{H^{n}}^{2}, (1.49)

where f^\hat{f} is the Fourier transform.

\bullet For nn\in\mathbb{R} and a function f(v)f(v) on 3\mathbb{R}^{3}, define

|f|An2\colonequalsl=0m=ll0(1+l(l+1))n(flm(r))2r2dr.\displaystyle|f|_{A^{n}}^{2}\colonequals\sum_{l=0}^{\infty}\sum_{m=-l}^{l}\int_{0}^{\infty}\big{(}1+l(l+1)\big{)}^{n}(f^{m}_{l}(r))^{2}r^{2}\mathrm{d}r. (1.50)

where l,m,lml,flm(r)=Ylm(σ)f(rσ)dσl\in\mathbb{N},m\in\mathbb{Z},-l\leq m\leq l,f^{m}_{l}(r)=\int Y^{m}_{l}(\sigma)f(r\sigma)\mathrm{d}\sigma. Here YlmY_{l}^{m} are the real spherical harmonics verifying that (𝕊2)Ylm=l(l+1)Ylm(-\triangle_{\mathbb{S}^{2}})Y_{l}^{m}=l(l+1)Y_{l}^{m} where 𝕊2-\triangle_{\mathbb{S}^{2}} is the Laplacian operator on the unit sphere 𝕊2\mathbb{S}^{2}. Note that {Ylm}l0,lml\{Y_{l}^{m}\}_{l\geq 0,-l\leq m\leq l} is an orthonormal basis of L2(𝕊2)L^{2}(\mathbb{S}^{2}). Here the notation AA refers to “anisotropic regularity”.

\bullet For l,0<s<1l\in\mathbb{R},0<s<1, we define

|f|ls2\colonequals|Wlf|Ls22+|Wlf|Hs2+|Wlf|As2.\displaystyle|f|_{\mathcal{L}^{s}_{l}}^{2}\colonequals|W_{l}f|^{2}_{L^{2}_{s}}+|W_{l}f|_{H^{s}}^{2}+|W_{l}f|_{A^{s}}^{2}. (1.51)

Recalling (1.46), (1.49) and (1.50), the three norms on the right-hand of (1.51) share a common weight function Ws(r)=(1+|r|2)s2W_{s}(r)=(1+|r|^{2})^{\frac{s}{2}} for |v|,|ξ|,(l(l+1))12|v|,|\xi|,(l(l+1))^{\frac{1}{2}}.

\bullet For n,ln\in\mathbb{N},l\in\mathbb{R} and a function f(v)f(v) on 3\mathbb{R}^{3}, define

|f|ln,s2\colonequals|β|n|βf|ls2.\displaystyle|f|_{\mathcal{L}^{n,s}_{l}}^{2}\colonequals\sum_{|\beta|\leq n}|\partial_{\beta}f|_{\mathcal{L}^{s}_{l}}^{2}. (1.52)

Note that |f|ls=|f|l0,s|f|_{\mathcal{L}^{s}_{l}}=|f|_{\mathcal{L}^{0,s}_{l}}.

\bullet For m,n,lm,n\in\mathbb{N},l\in\mathbb{R} and a function f(x,v)f(x,v) on 𝕋3×3\mathbb{T}^{3}\times\mathbb{R}^{3}, define

fLx2ls2\colonequals|f(x,)|ls2dx,gHxnlm,s2\colonequals|α|n,|β|mβαgLx2ls2.\displaystyle\|f\|_{L^{2}_{x}\mathcal{L}^{s}_{l}}^{2}\colonequals\int|f(x,\cdot)|_{\mathcal{L}^{s}_{l}}^{2}\mathrm{d}x,\quad\|g\|_{H^{n}_{x}\mathcal{L}^{m,s}_{l}}^{2}\colonequals\sum_{|\alpha|\leq n,|\beta|\leq m}\|\partial^{\alpha}_{\beta}g\|_{L^{2}_{x}\mathcal{L}^{s}_{l}}^{2}. (1.53)

1.9. Plan of the article

Section 2 contains estimates of linear operators, including coercivity estimate of ρ\mathcal{L}^{\rho} and upper bounds of rρ,𝒞ρ,Q~(g,)\mathcal{L}^{\rho}_{r},\mathcal{C}^{\rho},\tilde{Q}(g,\cdot). Section 3 and 4 are devoted to upper bounds of the bilinear operator Γ2ρ\Gamma_{2}^{\rho} and the trilinear operator Γ3ρ\Gamma_{3}^{\rho} respectively. In Section 5, various functionals that will appear in later energy method are estimated after necessary commutator estimates. In Section 6, we derive local well-posedness. In Section 7, we first prove a priori estimate and then establish global well-posedness. Section 8 is an appendix in which we put some elementary proof for the sake of completeness.

2. Linear operator estimate

In the rest of the article, in the various functional estimates, the involved functions g,h,ϱ,fg,h,\varrho,f are assumed to be functions on 3\mathop{\mathbb{R}\kern 0.0pt}\nolimits^{3} or 𝕋3×3\mathbb{T}^{3}\times\mathop{\mathbb{R}\kern 0.0pt}\nolimits^{3} such that the corresponding norms of them are well-defined. For simplicity, we use the notation dV\colonequalsdσdvdv\mathrm{d}V\colonequals\mathrm{d}\sigma\mathrm{d}v_{*}\mathrm{d}v.

2.1. Coercivity estimate of ρ\mathcal{L}^{\rho}

Recall (1.18), (1.21) and (1.42). The operator ρ\mathcal{L}^{\rho} will vanish as ρ0\rho\rightarrow 0. However, formally it is easy to see ρ1ρc\rho^{-1}\mathcal{L}^{\rho}\rightarrow\mathcal{L}_{c} as ρ0\rho\rightarrow 0. We define

Mρ\colonequalsμ1ρμ,Nρ\colonequalsμ121ρμ.\displaystyle M_{\rho}\colonequals\frac{\mu}{1-\rho\mu},\quad N_{\rho}\colonequals\frac{\mu^{\frac{1}{2}}}{1-\rho\mu}. (2.1)

Recalling (1.18), we can see that

ρ=ρMρ,𝒩ρ=ρ12Nρ.\displaystyle\mathcal{M}_{\rho}=\rho M_{\rho},\quad\mathcal{N}_{\rho}=\rho^{\frac{1}{2}}N_{\rho}. (2.2)

When ρ\rho is small and close to 0, it is obvious that Mρμ,Nρμ12M_{\rho}\sim\mu,N_{\rho}\sim\mu^{\frac{1}{2}}. More precisely, we have

Lemma 2.1.

If 0ρ12(2π)320\leq\rho\leq\frac{1}{2}(2\pi)^{\frac{3}{2}}, then

μMρ2μ,μ12Nρ2μ12.\displaystyle\mu\leq M_{\rho}\leq 2\mu,\quad\mu^{\frac{1}{2}}\leq N_{\rho}\leq 2\mu^{\frac{1}{2}}. (2.3)

As a direct result, there holds

μμNρ(Nρ)(Nρ)(Nρ)24μμ.\displaystyle\mu\mu_{*}\leq N_{\rho}(N_{\rho})_{*}(N_{\rho})^{\prime}(N_{\rho})^{\prime}_{*}\leq 2^{4}\mu\mu_{*}. (2.4)
Proof.

If 0ρ12(2π)320\leq\rho\leq\frac{1}{2}(2\pi)^{\frac{3}{2}}, then 0ρμ120\leq\rho\mu\leq\frac{1}{2} and so 121ρμ1\frac{1}{2}\leq 1-\rho\mu\leq 1, which gives (2.3) by recalling the definition of MρM_{\rho} and NρN_{\rho} in (2.1). As a direct result, we get (2.4) since μμ=μμ\mu\mu_{*}=\mu^{\prime}\mu^{\prime}_{*}. ∎

In the rest of the article, we always assume 0ρ12(2π)320\leq\rho\leq\frac{1}{2}(2\pi)^{\frac{3}{2}} which enables us to use the results in Lemma 2.1. Other smallness condition on ρ\rho will be specified as we go further.

We relate ρ\mathcal{L}^{\rho} and c\mathcal{L}_{c} in the following lemma.

Lemma 2.2.

It holds that

ρ(12cf,fρ2cμf,μf)ρf,f25ρ(cf,f+ρ2cμf,μf).\displaystyle\rho(\frac{1}{2}\langle\mathcal{L}_{c}f,f\rangle-\rho^{2}\langle\mathcal{L}_{c}\mu f,\mu f\rangle)\leq\langle\mathcal{L}^{\rho}f,f\rangle\leq 2^{5}\rho(\langle\mathcal{L}_{c}f,f\rangle+\rho^{2}\langle\mathcal{L}_{c}\mu f,\mu f\rangle).
Proof.

Recalling (1.39) and (2.2), we have

ρf,f=ρ4BNρ(Nρ)(Nρ)(Nρ)S2(Nρ1f)dV.\displaystyle\langle\mathcal{L}^{\rho}f,f\rangle=\frac{\rho}{4}\int BN_{\rho}(N_{\rho})_{*}(N_{\rho})^{\prime}(N_{\rho})^{\prime}_{*}\mathrm{S}^{2}(N_{\rho}^{-1}f)\mathrm{d}V.

Thanks to (2.4), we have

ρ4BμμS2(Nρ1f)dVρf,f24×ρ4BμμS2(Nρ1f)dV.\displaystyle\frac{\rho}{4}\int B\mu\mu_{*}\mathrm{S}^{2}(N_{\rho}^{-1}f)\mathrm{d}V\leq\langle\mathcal{L}^{\rho}f,f\rangle\leq 2^{4}\times\frac{\rho}{4}\int B\mu\mu_{*}\mathrm{S}^{2}(N_{\rho}^{-1}f)\mathrm{d}V. (2.5)

Recalling (2.1), we have Nρ1=μ12ρμ12N_{\rho}^{-1}=\mu^{-\frac{1}{2}}-\rho\mu^{\frac{1}{2}} and thus

12S2(μ12f)ρ2S2(μ12f)S2(Nρ1f)=(S(μ12f)ρS(μ12f))22S2(μ12f)+2ρ2S2(μ12f).\displaystyle\frac{1}{2}\mathrm{S}^{2}(\mu^{-\frac{1}{2}}f)-\rho^{2}\mathrm{S}^{2}(\mu^{\frac{1}{2}}f)\leq\mathrm{S}^{2}(N_{\rho}^{-1}f)=\big{(}\mathrm{S}(\mu^{-\frac{1}{2}}f)-\rho\mathrm{S}(\mu^{\frac{1}{2}}f)\big{)}^{2}\leq 2\mathrm{S}^{2}(\mu^{-\frac{1}{2}}f)+2\rho^{2}\mathrm{S}^{2}(\mu^{\frac{1}{2}}f).

Plugging which into (2.5), we have

ρ(121ρ22)ρf,f25ρ(1+ρ22),\displaystyle\rho(\frac{1}{2}\mathcal{I}_{1}-\rho^{2}\mathcal{I}_{2})\leq\langle\mathcal{L}^{\rho}f,f\rangle\leq 2^{5}\rho(\mathcal{I}_{1}+\rho^{2}\mathcal{I}_{2}),

where

1\colonequals14BμμS2(μ12f)dV,2\colonequals14BμμS2(μ12f)dV.\displaystyle\mathcal{I}_{1}\colonequals\frac{1}{4}\int B\mu\mu_{*}\mathrm{S}^{2}(\mu^{-\frac{1}{2}}f)\mathrm{d}V,\quad\mathcal{I}_{2}\colonequals\frac{1}{4}\int B\mu\mu_{*}\mathrm{S}^{2}(\mu^{\frac{1}{2}}f)\mathrm{d}V.

Similar to (1.39), there holds

cg,h=14BμμS(μ12g)S(μ12h)dV=g,ch,\displaystyle\langle\mathcal{L}_{c}g,h\rangle=\frac{1}{4}\int B\mu\mu_{*}\mathrm{S}(\mu^{-\frac{1}{2}}g)\mathrm{S}(\mu^{-\frac{1}{2}}h)\mathrm{d}V=\langle g,\mathcal{L}_{c}h\rangle, (2.6)

By (2.6), we observe 1=cf,f,2=cμf,μf\mathcal{I}_{1}=\langle\mathcal{L}_{c}f,f\rangle,\mathcal{I}_{2}=\langle\mathcal{L}_{c}\mu f,\mu f\rangle and get the desired result. ∎

Recalling (1.40), since 𝒩ρ=ρ12Nρ\mathcal{N}_{\rho}=\rho^{\frac{1}{2}}N_{\rho}, for ρ>0\rho>0, we can also write

Nullρ=span{Nρ,Nρv1,Nρv2,Nρv3,Nρ|v|2}.\displaystyle\mathrm{Null}^{\rho}=\mathrm{span}\{N_{\rho},N_{\rho}v_{1},N_{\rho}v_{2},N_{\rho}v_{3},N_{\rho}|v|^{2}\}. (2.7)

Note that based on (2.7), Null0\mathrm{Null}^{0} is well-defined by

Null0\colonequalsspan{μ12,μ12v1,μ12v2,μ12v3,μ12|v|2}.\displaystyle\mathrm{Null}^{0}\colonequals\mathrm{span}\{\mu^{\frac{1}{2}},\mu^{\frac{1}{2}}v_{1},\mu^{\frac{1}{2}}v_{2},\mu^{\frac{1}{2}}v_{3},\mu^{\frac{1}{2}}|v|^{2}\}. (2.8)

Observe that Null0\mathrm{Null}^{0} is the null space of c\mathcal{L}_{c}.

We construct an orthogonal basis for Nullρ\mathrm{Null}^{\rho} for ρ0\rho\geq 0 as follows

{diρ}1i5\colonequals{Nρ,Nρv1,Nρv2,Nρv3,Nρ|v|2Nρ|v|2,Nρ|Nρ|L22Nρ}.\displaystyle\{d^{\rho}_{i}\}_{1\leq i\leq 5}\colonequals\{N_{\rho},N_{\rho}v_{1},N_{\rho}v_{2},N_{\rho}v_{3},N_{\rho}|v|^{2}-\langle N_{\rho}|v|^{2},N_{\rho}\rangle|N_{\rho}|^{-2}_{L^{2}}N_{\rho}\}. (2.9)

Note that Nρ|v|2,Nρ|Nρ|L22Nρ\langle N_{\rho}|v|^{2},N_{\rho}\rangle|N_{\rho}|^{-2}_{L^{2}}N_{\rho} is the projection of Nρ|v|2N_{\rho}|v|^{2} on NρN_{\rho}. We denote the coefficient C5,1ρ\colonequalsNρ|v|2,Nρ|Nρ|L22C^{\rho}_{5,1}\colonequals\langle N_{\rho}|v|^{2},N_{\rho}\rangle|N_{\rho}|^{-2}_{L^{2}} which depends only on ρ\rho. Then d5ρ=d1ρ|v|2C5,1ρd1ρd^{\rho}_{5}=d^{\rho}_{1}|v|^{2}-C^{\rho}_{5,1}d^{\rho}_{1}. By normalizing {diρ}1i5\{d^{\rho}_{i}\}_{1\leq i\leq 5}, an orthonormal basis of Nullρ\mathrm{Null}^{\rho} can be obtained as

{eiρ}1i5\colonequals{diρ|diρ|L2}1i5.\displaystyle\{e^{\rho}_{i}\}_{1\leq i\leq 5}\colonequals\{\frac{d^{\rho}_{i}}{|d^{\rho}_{i}|_{L^{2}}}\}_{1\leq i\leq 5}. (2.10)

With this orthonormal basis, the projection operator ρ\mathbb{P}_{\rho} on the null space Nullρ\mathrm{Null}^{\rho} is defined by

ρf\colonequalsi=15f,eiρeiρ.\displaystyle\mathbb{P}_{\rho}f\colonequals\sum_{i=1}^{5}\langle f,e^{\rho}_{i}\rangle e^{\rho}_{i}. (2.11)

Let us see ρ\mathbb{P}_{\rho} more clearly. Let us define

mρ,0\colonequals|d1ρ|L2,mρ,1\colonequals|d2ρ|L2=|d3ρ|L2=|d4ρ|L2,mρ,2\colonequals|d5ρ|L2.\displaystyle m_{\rho,0}\colonequals|d^{\rho}_{1}|_{L^{2}},\quad m_{\rho,1}\colonequals|d^{\rho}_{2}|_{L^{2}}=|d^{\rho}_{3}|_{L^{2}}=|d^{\rho}_{4}|_{L^{2}},\quad m_{\rho,2}\colonequals|d^{\rho}_{5}|_{L^{2}}. (2.12)

For simplicity, we set mi=mρ,im_{i}=m_{\rho,i} for i=0,1,2i=0,1,2 and N=NρN=N_{\rho}. Then by direct derivation and rearrangement, we have

ρf\displaystyle\mathbb{P}_{\rho}f =\displaystyle= f,Nm0Nm0+i=13f,Nvim1Nvim1+f,N(|v|2C5,1ρ)m2N(|v|2C5,1ρ)m2\displaystyle\langle f,\frac{N}{m_{0}}\rangle\frac{N}{m_{0}}+\sum_{i=1}^{3}\langle f,\frac{Nv_{i}}{m_{1}}\rangle\frac{Nv_{i}}{m_{1}}+\langle f,\frac{N(|v|^{2}-C^{\rho}_{5,1})}{m_{2}}\rangle\frac{N(|v|^{2}-C^{\rho}_{5,1})}{m_{2}} (2.13)
=\displaystyle= (aρf+bρfv+cρf|v|2)N,\displaystyle(a^{f}_{\rho}+b^{f}_{\rho}\cdot v+c^{f}_{\rho}|v|^{2})N,

where

aρf\colonequalsf,(1m02+(C5,1ρ)2m22)NC5,1ρm22N|v|2,bρf\colonequalsf,Nvm12,cρf\colonequalsf,1m22N|v|2C5,1ρm22N.\displaystyle a^{f}_{\rho}\colonequals\langle f,(\frac{1}{m_{0}^{2}}+\frac{(C^{\rho}_{5,1})^{2}}{m_{2}^{2}})N-\frac{C^{\rho}_{5,1}}{m_{2}^{2}}N|v|^{2}\rangle,\quad b^{f}_{\rho}\colonequals\langle f,\frac{Nv}{m_{1}^{2}}\rangle,\quad c^{f}_{\rho}\colonequals\langle f,\frac{1}{m_{2}^{2}}N|v|^{2}-\frac{C^{\rho}_{5,1}}{m_{2}^{2}}N\rangle.

Note that bρfb^{f}_{\rho} is a vector of length 3. Let us define

lρ,1\colonequals1m02+(C5,1ρ)2m22,lρ,2\colonequalsC5,1ρm22,lρ,3\colonequals1m12,lρ,4\colonequals1m22.\displaystyle l_{\rho,1}\colonequals\frac{1}{m_{0}^{2}}+\frac{(C^{\rho}_{5,1})^{2}}{m_{2}^{2}},\quad l_{\rho,2}\colonequals\frac{C^{\rho}_{5,1}}{m_{2}^{2}},\quad l_{\rho,3}\colonequals\frac{1}{m_{1}^{2}},\quad l_{\rho,4}\colonequals\frac{1}{m_{2}^{2}}. (2.14)

For simplicity, let li=lρ,il_{i}=l_{\rho,i}. Then there holds

aρf=f,l1Nl2N|v|2,bρf=f,l3Nv,cρf=f,l4N|v|2l2N.\displaystyle a^{f}_{\rho}=\langle f,l_{1}N-l_{2}N|v|^{2}\rangle,\quad b^{f}_{\rho}=\langle f,l_{3}Nv\rangle,\quad c^{f}_{\rho}=\langle f,l_{4}N|v|^{2}-l_{2}N\rangle. (2.15)

The next lemma shows that ρ0\mathbb{P}_{\rho}-\mathbb{P}_{0} is of order O(ρ)O(\rho) when ρ\rho is small.

Lemma 2.3.

Let m0,l,0ρ1160m\geq 0,l\in\mathbb{R},0\leq\rho\leq\frac{1}{160}. There holds

|ρf0f|HlmCm,lρ|μ14f|L2,\displaystyle|\mathbb{P}_{\rho}f-\mathbb{P}_{0}f|_{H^{m}_{l}}\leq C_{m,l}\rho|\mu^{\frac{1}{4}}f|_{L^{2}},

where Cm,lC_{m,l} is defined in (8.21).

The proof of Lemma 2.3 will be given in the appendix.

We now give the coercivity estimate of c\mathcal{L}_{c} based on some known result on the classical linearized Boltzmann operator with inverse power law potential. For inverse power law potential, it suffices to consider the following Boltzmann kernel

Bipl(vv,σ)\colonequals|vv|γsin22sθ210θπ/2.\displaystyle B^{ipl}(v-v_{*},\sigma)\colonequals|v-v_{*}|^{\gamma}\sin^{-2-2s}\frac{\theta}{2}\mathrm{1}_{0\leq\theta\leq\pi/2}. (2.16)

Note that the superscript “iplipl” is short for “inverse power law potential”. Let cipl\mathcal{L}^{ipl}_{c} be the associated classical linearized Boltzmann operator, i.e., cipl\mathcal{L}^{ipl}_{c} is defined through (1.42) by replacing BB with BiplB^{ipl}. By [26], it turns out that

ciplf,f|(𝕀0)f|γ/2s2,\displaystyle\langle\mathcal{L}^{ipl}_{c}f,f\rangle\sim|(\mathbb{I}-\mathbb{P}_{0})f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}, (2.17)

where the norm ||γ/2s|\cdot|_{\mathcal{L}^{s}_{\gamma/2}} is defined in (1.51). We remind that the norm ||γ/2s|\cdot|_{\mathcal{L}^{s}_{\gamma/2}} is equivalent to 𝒩s,γ\mathcal{N}^{s,\gamma} in [23] and |||||||||\cdot||| in [4].

Since sinθ2cosθ2\sin\frac{\theta}{2}\leq\cos\frac{\theta}{2} for 0θπ20\leq\theta\leq\frac{\pi}{2}, recalling (2.16) and (1.11), there holds

CBipl(vv,σ)B(vv,σ)4CBipl(vv,σ).\displaystyle CB^{ipl}(v-v_{*},\sigma)\leq B(v-v_{*},\sigma)\leq 4CB^{ipl}(v-v_{*},\sigma). (2.18)

Recalling (2.6) and using (2.18), we get

cf,f=c(𝕀0)f,(𝕀0)fcipl(𝕀0)f,(𝕀0)f=ciplf,f.\displaystyle\langle\mathcal{L}_{c}f,f\rangle=\langle\mathcal{L}_{c}(\mathbb{I}-\mathbb{P}_{0})f,(\mathbb{I}-\mathbb{P}_{0})f\rangle\sim\langle\mathcal{L}^{ipl}_{c}(\mathbb{I}-\mathbb{P}_{0})f,(\mathbb{I}-\mathbb{P}_{0})f\rangle=\langle\mathcal{L}^{ipl}_{c}f,f\rangle.

By using (2.17), we get the following theorem.

Theorem 2.1.

It holds that

cf,f|(𝕀0)f|γ/2s2.\displaystyle\langle\mathcal{L}_{c}f,f\rangle\sim|(\mathbb{I}-\mathbb{P}_{0})f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}.

For later reference, let λ,C\lambda_{*},C_{*} be the two optimal universal constants such that

λ|(𝕀0)f|γ/2s2cf,fC|(𝕀0)f|γ/2s2.\displaystyle\lambda_{*}|(\mathbb{I}-\mathbb{P}_{0})f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}\leq\langle\mathcal{L}_{c}f,f\rangle\leq C_{*}|(\mathbb{I}-\mathbb{P}_{0})f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}. (2.19)

We now prove the following the following coercivity estimate of ρ\mathcal{L}^{\rho} by using Theorem 2.1, Lemma 2.2 and Lemma 2.3.

Theorem 2.2.

There are three universal constants ρ0,λ0,C0>0\rho_{0},\lambda_{0},C_{0}>0 such that for any ρ\rho verifying 0ρρ00\leq\rho\leq\rho_{0}, it holds that

λ0ρ|(𝕀ρ)f|γ/2s2ρf,fC0ρ|(𝕀ρ)f|γ/2s2.\displaystyle\lambda_{0}\rho|(\mathbb{I}-\mathbb{P}_{\rho})f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}\leq\langle\mathcal{L}^{\rho}f,f\rangle\leq C_{0}\rho|(\mathbb{I}-\mathbb{P}_{\rho})f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}.

The constants ρ0,λ0,C0>0\rho_{0},\lambda_{0},C_{0}>0 are explicitly given in (2.26).

Proof.

Since ρf,f=ρ(𝕀ρ)f,(𝕀ρ)f\langle\mathcal{L}^{\rho}f,f\rangle=\langle\mathcal{L}^{\rho}(\mathbb{I}-\mathbb{P}_{\rho})f,(\mathbb{I}-\mathbb{P}_{\rho})f\rangle, it suffices to prove ρf,fρ|f|γ/2s2\langle\mathcal{L}^{\rho}f,f\rangle\sim\rho|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2} for ff verifying ρf=0\mathbb{P}_{\rho}f=0. From now on, we assume ρf=0\mathbb{P}_{\rho}f=0. By Lemma 2.2, for 0ρ12(2π)320\leq\rho\leq\frac{1}{2}(2\pi)^{\frac{3}{2}}, we have

ρ(12cf,fρ2cμf,μf)ρf,f25ρ(cf,f+ρ2cμf,μf).\displaystyle\rho(\frac{1}{2}\langle\mathcal{L}_{c}f,f\rangle-\rho^{2}\langle\mathcal{L}_{c}\mu f,\mu f\rangle)\leq\langle\mathcal{L}^{\rho}f,f\rangle\leq 2^{5}\rho(\langle\mathcal{L}_{c}f,f\rangle+\rho^{2}\langle\mathcal{L}_{c}\mu f,\mu f\rangle). (2.20)

By (2.19) in Theorem 2.1, we have

λ|(𝕀0)f|γ/2s2cf,fC|(𝕀0)f|γ/2s2CC1|f|γ/2s2.\displaystyle\lambda_{*}|(\mathbb{I}-\mathbb{P}_{0})f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}\leq\langle\mathcal{L}_{c}f,f\rangle\leq C_{*}|(\mathbb{I}-\mathbb{P}_{0})f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}\leq C_{*}C_{1}|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}. (2.21)
cμf,μfC|(𝕀0)μf|γ/2s2CC2|f|γ/2s2.\displaystyle\langle\mathcal{L}_{c}\mu f,\mu f\rangle\leq C_{*}|(\mathbb{I}-\mathbb{P}_{0})\mu f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}\leq C_{*}C_{2}|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}. (2.22)

Here C1C_{1} is the optimal constant such that |(𝕀0)f|γ/2s2C1|f|γ/2s2|(\mathbb{I}-\mathbb{P}_{0})f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}\leq C_{1}|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2} for any ff and C2C_{2} is the optimal constant such |(𝕀0)μf|γ/2s2C2|f|γ/2s2|(\mathbb{I}-\mathbb{P}_{0})\mu f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}\leq C_{2}|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2} for any ff. The existence of C2C_{2} is ensured by (3.12). We remark that C1,C2C_{1},C_{2} are universal constants independent of ρ,s,γ\rho,s,\gamma.

Then plugging (2.21) and (2.22) into (2.20), we first have

ρf,f25C(C1+C2ρ2)ρ|f|γ/2s2.\displaystyle\langle\mathcal{L}^{\rho}f,f\rangle\leq 2^{5}C_{*}(C_{1}+C_{2}\rho^{2})\rho|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}. (2.23)

Since ρf=0\mathbb{P}_{\rho}f=0, then by Lemma 2.3 if ρ1160\rho\leq\frac{1}{160}, we have

|0f|γ/2sC3|0f|Hs+γ/2sC3|0f|H11C3C1,1ρ|μ14f|L2C3C1,1|μ14|L3/2ρ|f|γ/2s.\displaystyle|\mathbb{P}_{0}f|_{\mathcal{L}^{s}_{\gamma/2}}\leq C_{3}|\mathbb{P}_{0}f|_{H^{s}_{s+\gamma/2}}\leq C_{3}|\mathbb{P}_{0}f|_{H^{1}_{1}}\leq C_{3}C_{1,1}\rho|\mu^{\frac{1}{4}}f|_{L^{2}}\leq C_{3}C_{1,1}|\mu^{\frac{1}{4}}|_{L^{\infty}_{3/2}}\rho|f|_{\mathcal{L}^{s}_{\gamma/2}}.

Here C3C_{3} is the optimal constant such that |f|γ/2sC3|f|Hs+γ/2s|f|_{\mathcal{L}^{s}_{\gamma/2}}\leq C_{3}|f|_{H^{s}_{s+\gamma/2}} for any ff. Note that |f|γ/2s|f|L3/22|f|_{\mathcal{L}^{s}_{\gamma/2}}\geq|f|_{L^{2}_{-3/2}} is used. Let C4\colonequalsC3C1,1|μ14|L3/2C_{4}\colonequals C_{3}C_{1,1}|\mu^{\frac{1}{4}}|_{L^{\infty}_{3/2}}. If C42ρ214C^{2}_{4}\rho^{2}\leq\frac{1}{4}, then

|(𝕀0)f|γ/2s212|f|γ/2s2|0f|γ/2s212|f|γ/2s2C42ρ2|f|γ/2s214|f|γ/2s2.\displaystyle|(\mathbb{I}-\mathbb{P}_{0})f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}\geq\frac{1}{2}|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}-|\mathbb{P}_{0}f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}\geq\frac{1}{2}|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}-C^{2}_{4}\rho^{2}|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}\geq\frac{1}{4}|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}. (2.24)

Plugging (2.21), (2.22) and (2.24) into (2.20), if CC2ρ2116λC_{*}C_{2}\rho^{2}\leq\frac{1}{16}\lambda_{*}, we have

ρf,f\displaystyle\langle\mathcal{L}^{\rho}f,f\rangle \displaystyle\geq ρ(12λ|(𝕀0)f|γ/2s2CC2ρ2|f|γ/2s2)\displaystyle\rho(\frac{1}{2}\lambda_{*}|(\mathbb{I}-\mathbb{P}_{0})f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}-C_{*}C_{2}\rho^{2}|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}) (2.25)
\displaystyle\geq ρ(18λCC2ρ2)|f|γ/2s2λ16ρ|f|γ/2s2.\displaystyle\rho(\frac{1}{8}\lambda_{*}-C_{*}C_{2}\rho^{2})|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}\geq\frac{\lambda_{*}}{16}\rho|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}.

Define

ρ0\colonequalsmin{1160,12C4,λ16CC2},λ0\colonequals116λ,C0\colonequals25C(C1+14(2π)3C2).\displaystyle\rho_{0}\colonequals\min\{\frac{1}{160},\frac{1}{2C_{4}},\sqrt{\frac{\lambda_{*}}{16C_{*}C_{2}}}\},\quad\lambda_{0}\colonequals\frac{1}{16}\lambda_{*},\quad C_{0}\colonequals 2^{5}C_{*}(C_{1}+\frac{1}{4}(2\pi)^{3}C_{2}). (2.26)

Patching together (2.23) and (2.25), we finish the proof. ∎

For the upper bound estimate in Theorem 2.2 we only need ρ12(2π)32\rho\leq\frac{1}{2}(2\pi)^{\frac{3}{2}}. Indeed, based on the proof, we only need Lemma 2.2 and Theorem 2.1 to get (2.23). With the constant C0C_{0} defined in (2.26), we have

Remark 2.1.

For 0ρ12(2π)320\leq\rho\leq\frac{1}{2}(2\pi)^{\frac{3}{2}}, we have ρf,fC0ρ|(𝕀ρ)f|γ/2s2\langle\mathcal{L}^{\rho}f,f\rangle\leq C_{0}\rho|(\mathbb{I}-\mathbb{P}_{\rho})f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}.

2.2. Some preliminary formulas

In this subsection, we recall some useful formulas for the computation of integrals involving B=B(vv,σ)B=B(v-v_{*},\sigma) defined in (1.11). It is obvious that the change of variable (v,v,σ)(v,v,σ)(v,v_{*},\sigma)\rightarrow(v_{*},v,-\sigma) has unit Jacobian and thus

B(vv,σ)f(v,v,v,v)dV=B(vv,σ)f(v,v,v,v)dV,\displaystyle\int B(v-v_{*},\sigma)f(v,v_{*},v^{\prime},v^{\prime}_{*})\mathrm{d}V=\int B(v-v_{*},\sigma)f(v_{*},v,v^{\prime}_{*},v^{\prime})\mathrm{d}V, (2.27)

where ff is a general function such that the integral exists. Thanks to the symmetry of elastic collision formula (1.4), the change of variable (v,v,σ)(v,v,vv|vv|)(v,v_{*},\sigma)\rightarrow(v^{\prime},v^{\prime}_{*},\frac{v-v_{*}}{|v-v_{*}|}) has unit Jacobian and thus

B(vv,σ)f(v,v,v,v)dV=B(vv,σ)f(v,v,v,v)dV.\displaystyle\int B(v-v_{*},\sigma)f(v,v_{*},v^{\prime},v^{\prime}_{*})\mathrm{d}V=\int B(v-v_{*},\sigma)f(v^{\prime},v^{\prime}_{*},v,v_{*})\mathrm{d}V. (2.28)

From now on, we will frequently use the notation (1.5). By (1.5) and the shorthand f=f(v),f=f(v),f=f(v),f=f(v)f=f(v),f^{\prime}=f(v^{\prime}),f_{*}=f(v_{*}),f^{\prime}_{*}=f(v^{\prime}_{*}), it is easy to see

D(f)=f(v)f(v)=D(f),D(f)=f(v)f(v)=D(f),\displaystyle\mathrm{D}(f)=f(v)-f(v^{\prime})=-\mathrm{D}(f^{\prime}),\quad\mathrm{D}(f_{*})=f(v_{*})-f(v^{\prime}_{*})=-\mathrm{D}(f^{\prime}_{*}),
D2(f)=D2(f),D2(f)=D2(f).\displaystyle\mathrm{D}^{2}(f)=\mathrm{D}^{2}(f^{\prime}),\quad\mathrm{D}^{2}(f_{*})=\mathrm{D}^{2}(f^{\prime}_{*}).

Similar to (1.5), we introduce

A(f(v,v,v,v))\colonequalsf(v,v,v,v)+f(v,v,v,v).\displaystyle\mathrm{A}(f(v,v_{*},v^{\prime},v^{\prime}_{*}))\colonequals f(v,v_{*},v^{\prime},v^{\prime}_{*})+f(v^{\prime},v^{\prime}_{*},v,v_{*}). (2.29)

The term A\mathrm{A} is interpreted as “addition” before and after collision.

In upper bound estimate, we frequently encounter quantities like B(vv,σ)ghD(f)dV\int B(v-v_{*},\sigma)g_{*}h\mathrm{D}(f)\mathrm{d}V and B(vv,σ)ghD(f)dV\int B(v-v_{*},\sigma)g_{*}h^{\prime}\mathrm{D}(f)\mathrm{d}V. Thanks to (2.18), it suffices to consider the kernel BiplB^{ipl} defined (2.16) for upper bound estimates involving BB. To cancel the angular singularity of sin22sθ2\sin^{-2-2s}\frac{\theta}{2} near θ=0\theta=0, one usually relies on the order-2 factor sin2θ2\sin^{2}\frac{\theta}{2} and the following fact for 0<s<10<s<1,

sin2sθ2dσ11s,B(vv,σ)sin2θ2dσ|vv|γ1s.\displaystyle\int\sin^{-2s}\frac{\theta}{2}\mathrm{d}\sigma\lesssim\frac{1}{1-s},\quad\int B(v-v_{*},\sigma)\sin^{2}\frac{\theta}{2}\mathrm{d}\sigma\lesssim\frac{|v-v_{*}|^{\gamma}}{1-s}. (2.30)

Thanks to the symmetry of σ\sigma-integral, the factor sin2θ2\sin^{2}\frac{\theta}{2} will appear if we appropriately apply Taylor expansion to D(f)\mathrm{D}(f). By Taylor expansion, we have the following two candidates.

D(f)=f(v)(vv)+01(1κ)2f(v(κ)):(vv)(vv)dκ.\displaystyle-\mathrm{D}(f)=\nabla f(v)\cdot(v^{\prime}-v)+\int_{0}^{1}(1-\kappa)\nabla^{2}f(v(\kappa)):(v^{\prime}-v)\otimes(v^{\prime}-v)\mathrm{d}\kappa. (2.31)
D(f)=f(v)(vv)01κ2f(v(κ)):(vv)(vv)dκ.\displaystyle-\mathrm{D}(f)=\nabla f(v^{\prime})\cdot(v^{\prime}-v)-\int_{0}^{1}\kappa\nabla^{2}f(v(\kappa)):(v^{\prime}-v)\otimes(v^{\prime}-v)\mathrm{d}\kappa. (2.32)

Here v(κ)\colonequalsv+κ(vv)v(\kappa)\colonequals v+\kappa(v^{\prime}-v). Since |vv|=|vv|sinθ2|v^{\prime}-v|=|v-v_{*}|\sin\frac{\theta}{2}, the second order contains sin2θ2\sin^{2}\frac{\theta}{2}. So it remains to deal with the first order term. Fortunately we have the following two identities,

B(vv,σ)(vv)dσ=B(vv,σ)sin2θ2(vv)dσ.\displaystyle\int B(v-v_{*},\sigma)(v^{\prime}-v)\mathrm{d}\sigma=\int B(v-v_{*},\sigma)\sin^{2}\frac{\theta}{2}(v_{*}-v)\mathrm{d}\sigma. (2.33)
B(vv,σ)h(vv)dvdσ=0.\displaystyle\int B(v-v_{*},\sigma)h^{\prime}(v^{\prime}-v)\mathrm{d}v\mathrm{d}\sigma=0. (2.34)

We remark that (2.34) holds for any fixed vv_{*}.

Note that the right-hand side of (2.33) contains sin2θ2\sin^{2}\frac{\theta}{2} and so we can use (2.31) and (2.33) to cancel the angular singularity in BghD(f)dV\int Bg_{*}h\mathrm{D}(f)\mathrm{d}V. We can use (2.32) and (2.34) to cancel the angular singularity in BghD(f)dV\int Bg_{*}h^{\prime}\mathrm{D}(f)\mathrm{d}V since the first order term vanishes by (2.34). As a result, we have

Lemma 2.4.

The following two estimates are valid.

|BghD(f)dV|\displaystyle|\int Bg_{*}h\mathrm{D}(f)\mathrm{d}V| \displaystyle\lesssim |vv|γ+1|ghf|dvdv\displaystyle\int|v-v_{*}|^{\gamma+1}|g_{*}h\nabla f|\mathrm{d}v_{*}\mathrm{d}v
+|vv|γ+210θπ/2sin2sθ2|gh2f(v(κ))|dκdV.\displaystyle+\int|v-v_{*}|^{\gamma+2}\mathrm{1}_{0\leq\theta\leq\pi/2}\sin^{-2s}\frac{\theta}{2}|g_{*}h\nabla^{2}f(v(\kappa))|\mathrm{d}\kappa\mathrm{d}V.
|BghD(f)dV|\displaystyle|\int Bg_{*}h^{\prime}\mathrm{D}(f)\mathrm{d}V| \displaystyle\lesssim |vv|γ+210θπ/2sin2sθ2|gh2f(v(κ))|dκdV.\displaystyle\int|v-v_{*}|^{\gamma+2}\mathrm{1}_{0\leq\theta\leq\pi/2}\sin^{-2s}\frac{\theta}{2}|g_{*}h^{\prime}\nabla^{2}f(v(\kappa))|\mathrm{d}\kappa\mathrm{d}V. (2.36)

The following lemma is a direct consequence of Cancelation Lemma 1 in [2] and (2.30).

Lemma 2.5.

There holds |BgD(h)dV||vv|γ|gh|dvdv.|\int Bg_{*}\mathrm{D}(h)\mathrm{d}V|\lesssim\int|v-v_{*}|^{\gamma}|g_{*}h|\mathrm{d}v_{*}\mathrm{d}v.

The following Lemma 2.6 is used to cancel singularity near |vv|=0|v-v_{*}|=0 when γ<0\gamma<0.

Lemma 2.6.

For γ>3,a>0\gamma>-3,a>0, there holds |vv|γμa(v)dvCγ,avγ.\int|v-v_{*}|^{\gamma}\mu^{a}(v)\mathrm{d}v\leq C_{\gamma,a}\langle v_{*}\rangle^{\gamma}.

One can refer to Lemma 2.5 in [4] for a general version and a short proof to Lemma 2.6.

Note that the points v(κ)v(\kappa) for 0κ10\leq\kappa\leq 1 connecting vv and vv^{\prime} appear in the formulas (2.31) and (2.32) . If we apply Taylor expansion to D(f)\mathrm{D}(f_{*}), the points v(ι)\colonequalsv+ι(vv)v_{*}(\iota)\colonequals v_{*}+\iota(v^{\prime}_{*}-v_{*}) for 0ι10\leq\iota\leq 1 will appear. Thanks to the symmetry of elastic collision formula (1.4), we have

Lemma 2.7.

For any 0κ,ι10\leq\kappa,\iota\leq 1, there holds

(122)(|v|2+|v|2)|v(κ)|2+|v(ι)|2(1+22)(|v|2+|v|2).\displaystyle(1-\frac{\sqrt{2}}{2})(|v|^{2}+|v_{*}|^{2})\leq|v(\kappa)|^{2}+|v_{*}(\iota)|^{2}\leq(1+\frac{\sqrt{2}}{2})(|v|^{2}+|v_{*}|^{2}).

We omit the proof of Lemma 2.7 as it is elementary. We next give a remark on Lemma 2.7.

Remark 2.2.

Since

141220.29313,321+221.7072,\displaystyle\frac{1}{4}\leq 1-\frac{\sqrt{2}}{2}\approx 0.293\leq\frac{1}{3},\quad\frac{3}{2}\leq 1+\frac{\sqrt{2}}{2}\approx 1.707\leq 2,

for simplicity in the rest of the article we will use

14(|v|2+|v|2)|v(κ)|2+|v(ι)|22(|v|2+|v|2).\displaystyle\frac{1}{4}(|v|^{2}+|v_{*}|^{2})\leq|v(\kappa)|^{2}+|v_{*}(\iota)|^{2}\leq 2(|v|^{2}+|v_{*}|^{2}).

As a result, recalling μ(v)=(2π)32e12|v|2\mu(v)=(2\pi)^{-\frac{3}{2}}e^{-\frac{1}{2}|v|^{2}}, for any 0κ,ι10\leq\kappa,\iota\leq 1, there holds

μ2(v)μ2(v)μ(v(κ))μ(v(ι))μ14(v)μ14(v).\displaystyle\mu^{2}(v)\mu^{2}(v_{*})\leq\mu(v(\kappa))\mu(v_{*}(\iota))\leq\mu^{\frac{1}{4}}(v)\mu^{\frac{1}{4}}(v_{*}). (2.37)

We will frequently use (2.37) to retain the good negative exponential (μ\mu-type) weight.

2.3. Estimate of rρ\mathcal{L}^{\rho}_{r}

After the preliminary preparation in subsection 2.2, we are ready to give upper bound estimate of the operator rρ\mathcal{L}^{\rho}_{r}.

Proposition 2.1.

There holds |rρg,h|ρ|μ164g|L2|μ164h|L2.|\langle\mathcal{L}^{\rho}_{r}g,h\rangle|\lesssim\rho|\mu^{\frac{1}{64}}g|_{L^{2}}|\mu^{\frac{1}{64}}h|_{L^{2}}.

Proof.

Recalling (1.38) and (2.2), we have

(rρf)(v)=ρBNNND((N1f))dσdv.\displaystyle(\mathcal{L}^{\rho}_{r}f)(v)=\rho\int BN_{*}N^{\prime}N^{\prime}_{*}\mathrm{D}((N^{-1}f)_{*})\mathrm{d}\sigma\mathrm{d}v_{*}. (2.38)

By (2.38) and (2.28), using the identity D(N1h)=N1D(h)+hD(N1)\mathrm{D}(N^{-1}h)=N^{-1}\mathrm{D}(h)+h^{\prime}\mathrm{D}(N^{-1}), we have

rρg,h=ρBNNND((N1g))hdV=ρBNNNgD(N1h)dV=1+2,\displaystyle\langle\mathcal{L}^{\rho}_{r}g,h\rangle=\rho\int BN_{*}N^{\prime}N^{\prime}_{*}\mathrm{D}((N^{-1}g)_{*})h\mathrm{d}V=\rho\int BNN^{\prime}N^{\prime}_{*}g_{*}\mathrm{D}(N^{-1}h)\mathrm{d}V=\mathcal{I}_{1}+\mathcal{I}_{2},
1\colonequalsρBNNgD(h)dV,2\colonequalsρBNghD(N)dV.\displaystyle\mathcal{I}_{1}\colonequals\rho\int BN^{\prime}N^{\prime}_{*}g_{*}\mathrm{D}(h)\mathrm{d}V,\quad\mathcal{I}_{2}\colonequals\rho\int BN^{\prime}_{*}g_{*}h^{\prime}\mathrm{D}(N^{\prime})\mathrm{d}V.

We now go to see 1\mathcal{I}_{1}. Note that

NND(h)\displaystyle N^{\prime}N^{\prime}_{*}\mathrm{D}(h) =\displaystyle= D(N)ND(h)+NND(h)\displaystyle\mathrm{D}(N^{\prime}_{*})N^{\prime}\mathrm{D}(h)+N_{*}N^{\prime}\mathrm{D}(h)
=\displaystyle= D(N)(Nh)+D(N)D(N)h+D(N)Nh+ND(N)h+ND(Nh),\displaystyle-\mathrm{D}(N^{\prime}_{*})(Nh)^{\prime}+\mathrm{D}(N^{\prime}_{*})\mathrm{D}(N^{\prime})h+\mathrm{D}(N^{\prime}_{*})Nh+N_{*}\mathrm{D}(N^{\prime})h+N_{*}\mathrm{D}(Nh),

which gives 1=1,1+1,2+1,3+1,4+1,5,\mathcal{I}_{1}=\mathcal{I}_{1,1}+\mathcal{I}_{1,2}+\mathcal{I}_{1,3}+\mathcal{I}_{1,4}+\mathcal{I}_{1,5}, where

1,1\colonequalsρBD(N)g(Nh)dV=ρBD(N)g(Nh)dV,\displaystyle\mathcal{I}_{1,1}\colonequals-\rho\int B\mathrm{D}(N^{\prime}_{*})g_{*}(Nh)^{\prime}\mathrm{d}V=\rho\int B\mathrm{D}(N^{\prime})g^{\prime}(Nh)_{*}\mathrm{d}V, (2.39)
1,2\colonequalsρBD(N)D(N)ghdV,1,3\colonequalsρBD(N)gNhdV,\displaystyle\mathcal{I}_{1,2}\colonequals\rho\int B\mathrm{D}(N^{\prime}_{*})\mathrm{D}(N^{\prime})g_{*}h\mathrm{d}V,\quad\mathcal{I}_{1,3}\colonequals\rho\int B\mathrm{D}(N^{\prime}_{*})g_{*}Nh\mathrm{d}V,
1,4\colonequalsρBNgD(N)hdV,1,5\colonequalsρBNgD(Nh)dV.\displaystyle\mathcal{I}_{1,4}\colonequals\rho\int BN_{*}g_{*}\mathrm{D}(N^{\prime})h\mathrm{d}V,\quad\mathcal{I}_{1,5}\colonequals\rho\int BN_{*}g_{*}\mathrm{D}(Nh)\mathrm{d}V.

Here we use (2.27) and (2.28) in (2.39).

In what follows, we derive the estimates of 1,1\mathcal{I}_{1,1} and 1,2\mathcal{I}_{1,2} with full details because the tricks used here will be used later. Recalling (2.1), it is easy to see

Nμ12,|N|μ14,|2N|μ14.\displaystyle N\lesssim\mu^{\frac{1}{2}},\quad|\nabla N|\lesssim\mu^{\frac{1}{4}},\quad|\nabla^{2}N|\lesssim\mu^{\frac{1}{4}}. (2.40)

Using (2.36) and (2.40), we have

|1,1|ρ|vv|γ+210θπ/2sin2sθ2μ14(v(κ))μ12|gh|dκdV.\displaystyle|\mathcal{I}_{1,1}|\lesssim\rho\int|v-v_{*}|^{\gamma+2}\mathrm{1}_{0\leq\theta\leq\pi/2}\sin^{-2s}\frac{\theta}{2}\mu^{\frac{1}{4}}(v(\kappa))\mu^{\frac{1}{2}}_{*}|g^{\prime}h_{*}|\mathrm{d}\kappa\mathrm{d}V.

By (2.37), we have |vv|2μ14(v(κ))μ12|vv|2μ116μ116μ14μ132μ132μ14(μ132)μ14|v-v_{*}|^{2}\mu^{\frac{1}{4}}(v(\kappa))\mu^{\frac{1}{2}}_{*}\lesssim|v-v_{*}|^{2}\mu^{\frac{1}{16}}\mu^{\frac{1}{16}}_{*}\mu^{\frac{1}{4}}_{*}\lesssim\mu^{\frac{1}{32}}\mu^{\frac{1}{32}}_{*}\mu^{\frac{1}{4}}_{*}\lesssim(\mu^{\frac{1}{32}})^{\prime}\mu^{\frac{1}{4}}_{*} and thus

|1,1|\displaystyle|\mathcal{I}_{1,1}| \displaystyle\lesssim ρ|vv|γ10θπ/2sin2sθ2(μ132)μ14|gh|dV\displaystyle\rho\int|v-v_{*}|^{\gamma}\mathrm{1}_{0\leq\theta\leq\pi/2}\sin^{-2s}\frac{\theta}{2}(\mu^{\frac{1}{32}})^{\prime}\mu^{\frac{1}{4}}_{*}|g^{\prime}h_{*}|\mathrm{d}V (2.41)
\displaystyle\lesssim ρ|vv|γ10θπ/4sin2sθ(μ132)μ14|gh|dV\displaystyle\rho\int|v^{\prime}-v_{*}|^{\gamma}\mathrm{1}_{0\leq\theta^{\prime}\leq\pi/4}\sin^{-2s}\theta^{\prime}(\mu^{\frac{1}{32}})^{\prime}\mu^{\frac{1}{4}}_{*}|g^{\prime}h_{*}|\mathrm{d}V^{\prime}
\displaystyle\lesssim ρ|vv|γ(μ132)μ14|gh|dvdvρ|μ164g|L2|μ164h|L2,\displaystyle\rho\int|v^{\prime}-v_{*}|^{\gamma}(\mu^{\frac{1}{32}})^{\prime}\mu^{\frac{1}{4}}_{*}|g^{\prime}h_{*}|\mathrm{d}v_{*}\mathrm{d}v^{\prime}\lesssim\rho|\mu^{\frac{1}{64}}g|_{L^{2}}|\mu^{\frac{1}{64}}h|_{L^{2}},

where from the first to the second line we use the following change of variable (see Lemma 1 in [2] for details)

vv,|vv|1,θ=θ2,cosθ=vv|vv|σ.\displaystyle v\to v^{\prime},\quad|\frac{\partial v}{\partial v^{\prime}}|\lesssim 1,\quad\theta^{\prime}=\frac{\theta}{2},\quad\cos\theta^{\prime}=\frac{v^{\prime}-v_{*}}{|v^{\prime}-v_{*}|}\cdot\sigma. (2.42)

From the second to the third line we use the fact 10θπ/4sin2sθdσ=2π0π/4sin12sθdθ11s\int\mathrm{1}_{0\leq\theta^{\prime}\leq\pi/4}\sin^{-2s}\theta^{\prime}\mathrm{d}\sigma=2\pi\int_{0}^{\pi/4}\sin^{1-2s}\theta^{\prime}d\theta^{\prime}\lesssim\frac{1}{1-s}. The last inequality in (2.41) follows Cauchy-Schwartz inequality and Lemma 2.6. More precisely, we deduce that

|vv|γ(μ132)μ14|gh|dvdv\displaystyle\int|v^{\prime}-v_{*}|^{\gamma}(\mu^{\frac{1}{32}})^{\prime}\mu^{\frac{1}{4}}_{*}|g^{\prime}h_{*}|\mathrm{d}v_{*}\mathrm{d}v^{\prime}
\displaystyle\lesssim (|vv|γ(μ132)μ14|g|2dvdv)12(|vv|γ(μ132)μ14|h|2dvdv)12\displaystyle\big{(}\int|v^{\prime}-v_{*}|^{\gamma}(\mu^{\frac{1}{32}})^{\prime}\mu^{\frac{1}{4}}_{*}|g^{\prime}|^{2}\mathrm{d}v_{*}\mathrm{d}v^{\prime}\big{)}^{\frac{1}{2}}\big{(}\int|v^{\prime}-v_{*}|^{\gamma}(\mu^{\frac{1}{32}})^{\prime}\mu^{\frac{1}{4}}_{*}|h_{*}|^{2}\mathrm{d}v_{*}\mathrm{d}v^{\prime}\big{)}^{\frac{1}{2}}
\displaystyle\lesssim (vγ(μ132)|g|2dv)12(vγμ14|h|2dv)12|μ164g|L2|μ164h|L2,\displaystyle\big{(}\int\langle v^{\prime}\rangle^{\gamma}(\mu^{\frac{1}{32}})^{\prime}|g^{\prime}|^{2}\mathrm{d}v^{\prime}\big{)}^{\frac{1}{2}}\big{(}\int\langle v_{*}\rangle^{\gamma}\mu^{\frac{1}{4}}_{*}|h_{*}|^{2}\mathrm{d}v_{*}\big{)}^{\frac{1}{2}}\lesssim|\mu^{\frac{1}{64}}g|_{L^{2}}|\mu^{\frac{1}{64}}h|_{L^{2}},

where γ0\gamma\leq 0 is used to in the last inequality.

We now go to see 1,2\mathcal{I}_{1,2}. Recalling Nμ12N\sim\mu^{\frac{1}{2}} by (2.3), recalling (1.5) and (2.29), using |N12|1|\nabla N^{\frac{1}{2}}|\lesssim 1, we get

|D(N)|=|D(N)|=|D(N12)A(N12)||vv|sinθ2A(μ14).\displaystyle|\mathrm{D}(N^{\prime})|=|\mathrm{D}(N)|=|\mathrm{D}(N^{\frac{1}{2}})\mathrm{A}(N^{\frac{1}{2}})|\lesssim|v-v_{*}|\sin\frac{\theta}{2}\mathrm{A}(\mu^{\frac{1}{4}}). (2.44)

Here the role of D(N12)\mathrm{D}(N^{\frac{1}{2}}) is to produce sinθ2\sin\frac{\theta}{2} to cancel angular singularity later. The factor A(μ14)\mathrm{A}(\mu^{\frac{1}{4}}) is kept to retain μ\mu-type weight. Such a treatment will be used frequently in the rest of the article. Similar to (2.44), we have

|D(N)||vv|sinθ2A(μ14).\displaystyle|\mathrm{D}(N^{\prime}_{*})|\lesssim|v-v_{*}|\sin\frac{\theta}{2}\mathrm{A}(\mu^{\frac{1}{4}}_{*}). (2.45)

Patching together (2.44) and (2.45), using (2.37), we have

|D(N)D(N)|μ116(v)μ116(v)|vv|2sin2θ2μ132(v)μ132(v)sin2θ2.\displaystyle|\mathrm{D}(N^{\prime}_{*})\mathrm{D}(N^{\prime})|\lesssim\mu^{\frac{1}{16}}(v)\mu^{\frac{1}{16}}(v_{*})|v-v_{*}|^{2}\sin^{2}\frac{\theta}{2}\lesssim\mu^{\frac{1}{32}}(v)\mu^{\frac{1}{32}}(v_{*})\sin^{2}\frac{\theta}{2}.

Note that we get the factor sin2θ2\sin^{2}\frac{\theta}{2} to cancel singularity and also the good μ\mu-type weight factor μ132(v)μ132(v)\mu^{\frac{1}{32}}(v)\mu^{\frac{1}{32}}(v_{*}). As a result, by (2.30), using (2.3), we get

|1,2|ρ|vv|γμ132μ132|gh|dvdvρ|μ164g|L2|μ164h|L2.\displaystyle|\mathcal{I}_{1,2}|\lesssim\rho\int|v-v_{*}|^{\gamma}\mu^{\frac{1}{32}}\mu^{\frac{1}{32}}_{*}|g_{*}h|\mathrm{d}v_{*}\mathrm{d}v\lesssim\rho|\mu^{\frac{1}{64}}g|_{L^{2}}|\mu^{\frac{1}{64}}h|_{L^{2}}.

By Lemma 2.5, using (2.3), we get

|1,5|ρ|vv|γμ12μ12|gh|dvdvρ|μ164g|L2|μ164h|L2.\displaystyle|\mathcal{I}_{1,5}|\lesssim\rho\int|v-v_{*}|^{\gamma}\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}|g_{*}h|\mathrm{d}v_{*}\mathrm{d}v\lesssim\rho|\mu^{\frac{1}{64}}g|_{L^{2}}|\mu^{\frac{1}{64}}h|_{L^{2}}.

Applying (2.4) to 1,4\mathcal{I}_{1,4}, using (2.40), (2.37) and (2.30), we get

|1,4|ρ|vv|γμ132μ132|gh|dvdvρ|μ164g|L2|μ164h|L2.\displaystyle|\mathcal{I}_{1,4}|\lesssim\rho\int|v-v_{*}|^{\gamma}\mu^{\frac{1}{32}}\mu^{\frac{1}{32}}_{*}|g_{*}h|\mathrm{d}v_{*}\mathrm{d}v\lesssim\rho|\mu^{\frac{1}{64}}g|_{L^{2}}|\mu^{\frac{1}{64}}h|_{L^{2}}.

Using (2.27), we have 1,3=ρBD(N)g(Nh)dV\mathcal{I}_{1,3}=\rho\int B\mathrm{D}(N^{\prime})g(Nh)_{*}\mathrm{d}V which is the same as 1,4\mathcal{I}_{1,4} if we exchange gg and hh. Therefore we also have |1,3|ρ|μ164g|L2|μ164h|L2.|\mathcal{I}_{1,3}|\lesssim\rho|\mu^{\frac{1}{64}}g|_{L^{2}}|\mu^{\frac{1}{64}}h|_{L^{2}}.

Patching together the above estimates of 1,i\mathcal{I}_{1,i} for 1i51\leq i\leq 5, we get

|1|ρ|μ164g|L2|μ164h|L2.\displaystyle|\mathcal{I}_{1}|\lesssim\rho|\mu^{\frac{1}{64}}g|_{L^{2}}|\mu^{\frac{1}{64}}h|_{L^{2}}. (2.46)

We next go to see 2\mathcal{I}_{2}. It is further decomposed into two terms 2=2,1+2,2,\mathcal{I}_{2}=\mathcal{I}_{2,1}+\mathcal{I}_{2,2}, where

2,1\colonequalsρBD(N)ghD(N)dV,2,2\colonequalsρBNghD(N)dV.\displaystyle\mathcal{I}_{2,1}\colonequals\rho\int B\mathrm{D}(N^{\prime}_{*})g_{*}h^{\prime}\mathrm{D}(N^{\prime})\mathrm{d}V,\quad\mathcal{I}_{2,2}\colonequals\rho\int BN_{*}g_{*}h^{\prime}\mathrm{D}(N^{\prime})\mathrm{d}V.

Comparing 2,1\mathcal{I}_{2,1} and 1,2\mathcal{I}_{1,2}, we can use the same arguments for 1,2\mathcal{I}_{1,2} and (2.42) to get |2,1|ρ|μ164g|L2|μ164h|L2.|\mathcal{I}_{2,1}|\lesssim\rho|\mu^{\frac{1}{64}}g|_{L^{2}}|\mu^{\frac{1}{64}}h|_{L^{2}}. Note that 2,2\mathcal{I}_{2,2} is the same as 1,1\mathcal{I}_{1,1} if we exchange gg and hh. Therefore we also have |2,2|ρ|μ164g|L2|μ164h|L2.|\mathcal{I}_{2,2}|\lesssim\rho|\mu^{\frac{1}{64}}g|_{L^{2}}|\mu^{\frac{1}{64}}h|_{L^{2}}. Patching together the above estimates of 2,1\mathcal{I}_{2,1} and 2,2\mathcal{I}_{2,2}, we get

|2|ρ|μ164g|L2|μ164h|L2.\displaystyle|\mathcal{I}_{2}|\lesssim\rho|\mu^{\frac{1}{64}}g|_{L^{2}}|\mu^{\frac{1}{64}}h|_{L^{2}}. (2.47)

Patching together (2.46) and (2.47), we finish the proof. ∎

2.4. Estimate of 𝒞ρ\mathcal{C}^{\rho}

Based on BB(see (1.11)) and BiplB^{ipl}(see (2.16)), we define

𝒩(g,h)\colonequalsBg2D2(h)dV,𝒩ipl(g,h)\colonequalsBiplg2D2(h)dV.\displaystyle\mathcal{N}(g,h)\colonequals\int Bg_{*}^{2}\mathrm{D}^{2}(h)\mathrm{d}V,\quad\mathcal{N}^{ipl}(g,h)\colonequals\int B^{ipl}g_{*}^{2}\mathrm{D}^{2}(h)\mathrm{d}V. (2.48)
Theorem 2.3.

For 116a1\frac{1}{16}\leq a\leq 1, there holds

𝒩(μa,f)+𝒩(f,μa)|f|γ/2s2.\displaystyle\mathcal{N}(\mu^{a},f)+\mathcal{N}(f,\mu^{a})\lesssim|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}.
Proof.

By (2.18), we have 𝒩(μa,f)+𝒩(f,μa)𝒩ipl(μa,f)+𝒩ipl(f,μa).\mathcal{N}(\mu^{a},f)+\mathcal{N}(f,\mu^{a})\lesssim\mathcal{N}^{ipl}(\mu^{a},f)+\mathcal{N}^{ipl}(f,\mu^{a}). Then the desired estimate is a direct result of 𝒩ipl(μa,f)+𝒩ipl(f,μa)|f|γ/2s2\mathcal{N}^{ipl}(\mu^{a},f)+\mathcal{N}^{ipl}(f,\mu^{a})\lesssim|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2} by [26](Theorem 1.1 and the proof of Theorem 2.1). We remark that notations in [26] and this article are different. ∎

Recalling (2.3) and following the proof of Theorem 1.1 and Theorem 2.1 in [26], we give the following remark.

Remark 2.3.

If μ\mu is replaced by N2N^{2} or MM in Theorem 2.3, the result is still valid.

We now derive an upper bound estimate for the linear operator 𝒞ρ\mathcal{C}^{\rho} defined in (1.37).

Proposition 2.2.

There holds |𝒞ρh,f|ρ2|μ14h|γ/2s|μ14f|γ/2s.|\langle\mathcal{C}^{\rho}h,f\rangle|\lesssim\rho^{2}|\mu^{\frac{1}{4}}h|_{\mathcal{L}^{s}_{\gamma/2}}|\mu^{\frac{1}{4}}f|_{\mathcal{L}^{s}_{\gamma/2}}.

Proof.

Recalling (2.1) and (2.2), we rewrite the operator 𝒞ρ\mathcal{C}^{\rho} in (1.37) as

𝒞ρh=ρ2BNNND(μ12h)dσdv.\displaystyle\mathcal{C}^{\rho}h=-\rho^{2}\int BN_{*}N^{\prime}N^{\prime}_{*}\mathrm{D}(\mu^{\frac{1}{2}}h)\mathrm{d}\sigma\mathrm{d}v_{*}.

Taking inner product with ff, we have

𝒞ρh,f=ρ2BNNNND(μ12h)N1fdV=12ρ2BNNNND(μ12h)D(N1f)dV,\displaystyle\langle\mathcal{C}^{\rho}h,f\rangle=-\rho^{2}\int BNN_{*}N^{\prime}N^{\prime}_{*}\mathrm{D}(\mu^{\frac{1}{2}}h)N^{-1}f\mathrm{d}V=-\frac{1}{2}\rho^{2}\int BNN_{*}N^{\prime}N^{\prime}_{*}\mathrm{D}(\mu^{\frac{1}{2}}h)\mathrm{D}(N^{-1}f)\mathrm{d}V,

where we use (2.28) in the second line. Then by Cauchy-Schwartz inequality and (2.4), we get

|𝒞ρh,f|\displaystyle|\langle\mathcal{C}^{\rho}h,f\rangle| \displaystyle\lesssim ρ2(Bμ12μ12D2(μ12h)dV)12(Bμ32μ32D2(N1f)dV)12\displaystyle\rho^{2}\big{(}\int B\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(\mu^{\frac{1}{2}}h)\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{3}{2}}\mu^{\frac{3}{2}}_{*}\mathrm{D}^{2}(N^{-1}f)\mathrm{d}V\big{)}^{\frac{1}{2}}
\displaystyle\lesssim ρ2|μ12h|γ/2s(Bμ32μ32D2(N1f)dV)12,\displaystyle\rho^{2}|\mu^{\frac{1}{2}}h|_{\mathcal{L}^{s}_{\gamma/2}}\big{(}\int B\mu^{\frac{3}{2}}\mu^{\frac{3}{2}}_{*}\mathrm{D}^{2}(N^{-1}f)\mathrm{d}V\big{)}^{\frac{1}{2}},

where we use Theorem 2.3 in the second line. Noting that N1=μ12ρμ12N^{-1}=\mu^{-\frac{1}{2}}-\rho\mu^{\frac{1}{2}} by (2.1), we get

D(N1f)=D(μ12f)ρD(μ12f),\displaystyle\mathrm{D}(N^{-1}f)=\mathrm{D}(\mu^{-\frac{1}{2}}f)-\rho\mathrm{D}(\mu^{\frac{1}{2}}f),

which gives Bμ32μ32D2(N1f)dV1+2,\int B\mu^{\frac{3}{2}}\mu^{\frac{3}{2}}_{*}\mathrm{D}^{2}(N^{-1}f)\mathrm{d}V\lesssim\mathcal{I}_{1}+\mathcal{I}_{2}, where

1\colonequalsBμ32μ32D2(μ12f)dV=BD2(μ34μ14f)dV,2\colonequalsBμ32μ32D2(μ12f)dV.\displaystyle\mathcal{I}_{1}\colonequals\int B\mu^{\frac{3}{2}}\mu^{\frac{3}{2}}_{*}\mathrm{D}^{2}(\mu^{-\frac{1}{2}}f)\mathrm{d}V=\int B\mathrm{D}^{2}(\mu^{\frac{3}{4}}_{*}\mu^{\frac{1}{4}}f)\mathrm{d}V,\quad\mathcal{I}_{2}\colonequals\int B\mu^{\frac{3}{2}}\mu^{\frac{3}{2}}_{*}\mathrm{D}^{2}(\mu^{\frac{1}{2}}f)\mathrm{d}V.

By Theorem 2.3, we have 2|μ12f|γ/2s2.\mathcal{I}_{2}\lesssim|\mu^{\frac{1}{2}}f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}. Since D(μ34μ14f)=μ34D(μ14f)+D(μ34)(μ14f)\mathrm{D}(\mu^{\frac{3}{4}}_{*}\mu^{\frac{1}{4}}f)=\mu^{\frac{3}{4}}_{*}\mathrm{D}(\mu^{\frac{1}{4}}f)+\mathrm{D}(\mu^{\frac{3}{4}}_{*})(\mu^{\frac{1}{4}}f)^{\prime}, we get

12Bμ32D2(μ14f)dV+2BD2(μ34)(μ12f2)dV|μ14f|γ/2s2,\displaystyle\mathcal{I}_{1}\leq 2\int B\mu^{\frac{3}{2}}_{*}\mathrm{D}^{2}(\mu^{\frac{1}{4}}f)\mathrm{d}V+2\int B\mathrm{D}^{2}(\mu^{\frac{3}{4}}_{*})(\mu^{\frac{1}{2}}f^{2})^{\prime}\mathrm{d}V\lesssim|\mu^{\frac{1}{4}}f|_{\mathcal{L}^{s}_{\gamma/2}}^{2},

where we use (2.27), (2.28) and Theorem 2.3. Patching together the above estimates, we finish the proof. ∎

2.5. Estimate of Q~\tilde{Q}

We now derive a result about Q~\tilde{Q} which will be used in Proposition 6.1 to derive non-negativity of solutions to the linear equation (1.34).

Proposition 2.3.

If g0g\geq 0, then Q~(g,f),f|μ14g|H4(1+|μ14g|H4)|f|L22.\langle\tilde{Q}(g,f),f\rangle\lesssim|\mu^{-\frac{1}{4}}g|_{H^{4}}(1+|\mu^{-\frac{1}{4}}g|_{H^{4}})|f|_{L^{2}}^{2}.

Proof.

Recalling (1.35), using fD(f)=12D2(f)12D(f2)f\mathrm{D}(f^{\prime})=-\frac{1}{2}\mathrm{D}^{2}(f)-\frac{1}{2}\mathrm{D}(f^{2}) and g(1+g+g)0g_{*}(1+g_{*}^{\prime}+g^{\prime})\geq 0, we have

Q~(g,f),f\displaystyle\langle\tilde{Q}(g,f),f\rangle =\displaystyle= Bgf(1+g+g)D(f)dV\displaystyle\int Bg_{*}f(1+g_{*}^{\prime}+g^{\prime})\mathrm{D}(f^{\prime})\mathrm{d}V
=\displaystyle= 12Bg(1+g+g)D2(f)dV12Bg(1+g+g)D(f2)dV\displaystyle-\frac{1}{2}\int Bg_{*}(1+g_{*}^{\prime}+g^{\prime})\mathrm{D}^{2}(f)\mathrm{d}V-\frac{1}{2}\int Bg_{*}(1+g_{*}^{\prime}+g^{\prime})\mathrm{D}(f^{2})\mathrm{d}V
\displaystyle\leq 12Bg(1+g+g)D(f2)dV=12(1+2+3),\displaystyle-\frac{1}{2}\int Bg_{*}(1+g_{*}^{\prime}+g^{\prime})\mathrm{D}(f^{2})\mathrm{d}V=-\frac{1}{2}(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}),

where

1\colonequalsBgD(f2)dV,2\colonequalsBggD(f2)dV,3\colonequalsBggD(f2)dV.\displaystyle\mathcal{I}_{1}\colonequals\int Bg_{*}\mathrm{D}(f^{2})\mathrm{d}V,\quad\mathcal{I}_{2}\colonequals\int Bg_{*}g_{*}^{\prime}\mathrm{D}(f^{2})\mathrm{d}V,\quad\mathcal{I}_{3}\colonequals\int Bg_{*}g^{\prime}\mathrm{D}(f^{2})\mathrm{d}V.

By Lemma 2.5, the imbedding H2LH^{2}\hookrightarrow L^{\infty} and Lemma 2.6, we get

|1||vv|γgf2dvdv|μ14g|L|vv|γμ14f2dvdv|μ14g|H2|f|Lγ/222|μ14g|H2|f|L22.\displaystyle|\mathcal{I}_{1}|\lesssim\int|v-v_{*}|^{\gamma}g_{*}f^{2}\mathrm{d}v_{*}\mathrm{d}v\lesssim|\mu^{-\frac{1}{4}}g|_{L^{\infty}}\int|v-v_{*}|^{\gamma}\mu^{\frac{1}{4}}_{*}f^{2}\mathrm{d}v_{*}\mathrm{d}v\lesssim|\mu^{-\frac{1}{4}}g|_{H^{2}}|f|_{L^{2}_{\gamma/2}}^{2}\lesssim|\mu^{-\frac{1}{4}}g|_{H^{2}}|f|_{L^{2}}^{2}.

By (2.28), we have 2=0\mathcal{I}_{2}=0 and 3=BD(gg)f2dV=BD(g)gf2dV+BgD(g)f2dV\mathcal{I}_{3}=\int B\mathrm{D}(g_{*}g^{\prime})f^{2}\mathrm{d}V=\int B\mathrm{D}(g_{*})gf^{2}\mathrm{d}V+\int Bg_{*}\mathrm{D}(g^{\prime})f^{2}\mathrm{d}V. By (2.27), Lemma 2.5, the imbedding H2LH^{2}\hookrightarrow L^{\infty} and Lemma 2.6, we get

|BD(g)gf2dV|=|BD(g)(gf2)dV||vv|γ|g(gf2)|dvdv|μ14g|H22|f|L22.\displaystyle|\int B\mathrm{D}(g_{*})gf^{2}\mathrm{d}V|=|\int B\mathrm{D}(g)(gf^{2})_{*}\mathrm{d}V|\lesssim\int|v-v_{*}|^{\gamma}|g(gf^{2})_{*}|\mathrm{d}v_{*}\mathrm{d}v\lesssim|\mu^{-\frac{1}{4}}g|_{H^{2}}^{2}|f|_{L^{2}}^{2}.

By (2.4), we get

|BgD(g)f2dV||vv|γ+1|gf2g|dvdv+|vv|γ+2sin2sθ2|gf22g(v(κ))|dκdV.\displaystyle|\int Bg_{*}\mathrm{D}(g^{\prime})f^{2}\mathrm{d}V|\lesssim\int|v-v_{*}|^{\gamma+1}|g_{*}f^{2}\nabla g|\mathrm{d}v_{*}\mathrm{d}v+\int|v-v_{*}|^{\gamma+2}\sin^{-2s}\frac{\theta}{2}|g_{*}f^{2}\nabla^{2}g(v(\kappa))|\mathrm{d}\kappa\mathrm{d}V.

Noting the following fact

|g|=|(μ14μ14g)||μ14gμ14|+|μ14(μ14g)|μ18(|μ14g|L+|(μ14g)|L)μ18|μ14g|H3,\displaystyle|\nabla g|=|\nabla(\mu^{\frac{1}{4}}\mu^{-\frac{1}{4}}g)|\lesssim|\mu^{-\frac{1}{4}}g\nabla\mu^{\frac{1}{4}}|+|\mu^{\frac{1}{4}}\nabla(\mu^{-\frac{1}{4}}g)|\lesssim\mu^{\frac{1}{8}}(|\mu^{-\frac{1}{4}}g|_{L^{\infty}}+|\nabla(\mu^{-\frac{1}{4}}g)|_{L^{\infty}})\lesssim\mu^{\frac{1}{8}}|\mu^{-\frac{1}{4}}g|_{H^{3}},

and similarly |2g|μ18|μ14g|H4|\nabla^{2}g|\lesssim\mu^{\frac{1}{8}}|\mu^{-\frac{1}{4}}g|_{H^{4}}, using (2.37), (2.30) and Lemma 2.6, we get

|BgD(g)f2dV||μ14g|H42(|vv|γ+1+|vv|γ+2)μ18μ132μ132f2dvdv|μ14g|H24|f|L22.\displaystyle|\int Bg_{*}\mathrm{D}(g^{\prime})f^{2}\mathrm{d}V|\lesssim|\mu^{-\frac{1}{4}}g|_{H^{4}}^{2}\int(|v-v_{*}|^{\gamma+1}+|v-v_{*}|^{\gamma+2})\mu^{\frac{1}{8}}_{*}\mu^{\frac{1}{32}}\mu^{\frac{1}{32}}_{*}f^{2}\mathrm{d}v_{*}\mathrm{d}v\lesssim|\mu^{-\frac{1}{4}}g|_{H^{2}}^{4}|f|_{L^{2}}^{2}.

Patching together the above estimates, we finish the proof. ∎

3. Bilinear operator estimate

Recall (2.1). For simplicity we continue to write N=Nρ,M=MρN=N_{\rho},M=M_{\rho}. Recalling the relation (2.2) between N,MN,M and 𝒩,\mathcal{N},\mathcal{M}, the definition of Γ2ρ\Gamma_{2}^{\rho} in (1.23) and Π2\Pi_{2} in (1.28), we have

Γ2ρ(g,h)=ρ12Γ2,mρ(g,h)+ρ32Γ2,rρ(g,h).\displaystyle\Gamma_{2}^{\rho}(g,h)=\rho^{\frac{1}{2}}\Gamma_{2,m}^{\rho}(g,h)+\rho^{\frac{3}{2}}\Gamma_{2,r}^{\rho}(g,h). (3.1)

Here Γ2,mρ\Gamma_{2,m}^{\rho} stands for the main term (“mm” is referred to “main”) defined by

Γ2,mρ(g,h)\colonequalsN1Qc(Ng,Nh)=Qc(Ng,h)+Iρ(g,h),\displaystyle\Gamma_{2,m}^{\rho}(g,h)\colonequals N^{-1}Q_{c}(Ng,Nh)=Q_{c}(Ng,h)+I^{\rho}(g,h), (3.2)

where QcQ_{c} is defined in (1.43) and IρI^{\rho} is defined by

Iρ(g,h)\colonequalsBD(N1)(Ng)(Nh)dσdv.\displaystyle I^{\rho}(g,h)\colonequals\int B\mathrm{D}(N^{-1})(Ng)^{\prime}_{*}(Nh)^{\prime}\mathrm{d}\sigma\mathrm{d}v_{*}. (3.3)

Here Γ2,rρ\Gamma_{2,r}^{\rho} represents the remaining term (“rr” is referred to “remaining”). This term consists of three parts Γ2,r,1ρ,Γ2,r,2ρ,Γ2,r,3ρ\Gamma_{2,r,1}^{\rho},\Gamma_{2,r,2}^{\rho},\Gamma_{2,r,3}^{\rho} corresponding to (1.28), (1.28), (1.28) respectively,

Γ2,rρ(g,h)\displaystyle\Gamma_{2,r}^{\rho}(g,h) \colonequals\displaystyle\colonequals Γ2,r,1ρ(g,h)+Γ2,r,2ρ(g,h)+Γ2,r,3ρ(g,h).\displaystyle\Gamma_{2,r,1}^{\rho}(g,h)+\Gamma_{2,r,2}^{\rho}(g,h)+\Gamma_{2,r,3}^{\rho}(g,h). (3.4)
Γ2,r,1ρ(g,h)\displaystyle\Gamma_{2,r,1}^{\rho}(g,h) \colonequals\displaystyle\colonequals N1BD((Ng)(Nh)(M+M))dσdv.\displaystyle N^{-1}\int B\mathrm{D}\big{(}(Ng)^{\prime}_{*}(Nh)^{\prime}(M+M_{*})\big{)}\mathrm{d}\sigma\mathrm{d}v_{*}. (3.5)
Γ2,r,2ρ(g,h)\displaystyle\Gamma_{2,r,2}^{\rho}(g,h) \colonequals\displaystyle\colonequals N1BD((Ng)(Nh)(MM))dσdv.\displaystyle N^{-1}\int B\mathrm{D}\big{(}(Ng)_{*}(Nh)^{\prime}(M^{\prime}_{*}-M)\big{)}\mathrm{d}\sigma\mathrm{d}v_{*}. (3.6)
Γ2,r,3ρ(g,h)\displaystyle\Gamma_{2,r,3}^{\rho}(g,h) \colonequals\displaystyle\colonequals N1B((Ng)(Nh)D(M)+(Ng)(Nh)D(M))dσdv.\displaystyle N^{-1}\int B\big{(}(Ng)^{\prime}(Nh)\mathrm{D}(M^{\prime}_{*})+(Ng)^{\prime}_{*}(Nh)_{*}\mathrm{D}(M^{\prime})\big{)}\mathrm{d}\sigma\mathrm{d}v_{*}. (3.7)

We call Γ2,mρ\Gamma_{2,m}^{\rho} the main term for two reasons. First, the factor before Γ2,mρ\Gamma_{2,m}^{\rho} is ρ12\rho^{\frac{1}{2}}, while the factor before Γ2,rρ(g,h)\Gamma_{2,r}^{\rho}(g,h) is ρ32\rho^{\frac{3}{2}}. Second, when ρ=0\rho=0, the term Γ2,mρ\Gamma_{2,m}^{\rho} corresponds to the nonlinear term μ12Qc(μ12g,μ12h)\mu^{-\frac{1}{2}}Q_{c}(\mu^{\frac{1}{2}}g,\mu^{\frac{1}{2}}h) in the classical linearized Boltzmann equation.

3.1. The main operator Γ2,mρ\Gamma_{2,m}^{\rho}

As a result of Theorem 2.2 in [26] and (2.18), we have

Proposition 3.1.

It holds that

|Qc(g,h),f|\displaystyle|\langle Q_{c}(g,h),f\rangle| \displaystyle\lesssim |g|H72|h|γ/2s|f|γ/2s,\displaystyle|g|_{H^{2}_{7}}|h|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}, (3.8)
|Qc(g,h),f|\displaystyle|\langle Q_{c}(g,h),f\rangle| \displaystyle\lesssim |g|L72(|h|γ/2s+|h|Hγ/2s+2)|f|γ/2s.\displaystyle|g|_{L^{2}_{7}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}})|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.9)

For the convenience of later reference, we write Proposition 3.1 as

Corollary 3.1.

There holds

|Qc(g,h),f|min{|g|H72|h|γ/2s,|g|L72(|h|γ/2s+|h|Hγ/2s+2)}|f|γ/2s.\displaystyle|\langle Q_{c}(g,h),f\rangle|\lesssim\min\{|g|_{H^{2}_{7}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}_{7}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

The following lemma is used to deal with the norm of the product of two functions.

Lemma 3.1.

Let 0a2b0\leq a\leq 2\leq b. Then

|gh|Ha|g|H2|h|Ha,|gh|Hb|g|Hb|h|Hb.\displaystyle|gh|_{H^{a}}\lesssim|g|_{H^{2}}|h|_{H^{a}},\quad|gh|_{H^{b}}\lesssim|g|_{H^{b}}|h|_{H^{b}}. (3.10)

Let n0,l,c>0n\geq 0,l\in\mathbb{R},c>0. There exists a constant C(n,l,c)C(n,l,c) such that

|μcWl|HnC(n,l,c),|μ2cf|HlnC(n,l,c)|μcf|Hn.\displaystyle|\mu^{c}W_{l}|_{H^{n}}\leq C(n,l,c),\quad|\mu^{2c}f|_{H^{n}_{l}}\leq C(n,l,c)|\mu^{c}f|_{H^{n}}. (3.11)

Recall 3<γ<0<s<1-3<\gamma<0<s<1. There holds

|gh|γ/2s|g|H12|h|γ/2s.\displaystyle|gh|_{\mathcal{L}^{s}_{\gamma/2}}\lesssim|g|_{H^{2}_{1}}|h|_{\mathcal{L}^{s}_{\gamma/2}}. (3.12)
Proof.

The two results (3.10) and (3.11) are standard. We now prove (3.12). Recalling (1.51) and using (3.10), we have

|gh|γ/2s|gh|Hs+γ/2s|g|Hs2|h|Hγ/2s|g|H12|h|γ/2s.\displaystyle|gh|_{\mathcal{L}^{s}_{\gamma/2}}\lesssim|gh|_{H^{s}_{s+\gamma/2}}\lesssim|g|_{H^{2}_{s}}|h|_{H^{s}_{\gamma/2}}\lesssim|g|_{H^{2}_{1}}|h|_{\mathcal{L}^{s}_{\gamma/2}}.

As a direct application of Corollary 3.1, using (3.10) and the fact |μ18N|H721|\mu^{-\frac{1}{8}}N|_{H^{2}_{7}}\lesssim 1, we have

Proposition 3.2.

There holds

|Qc(Ng,h),f|min{|μ18g|H2|h|γ/2s,|μ18g|L2(|h|γ/2s+|h|Hγ/2s+2)}|f|γ/2s.\displaystyle|\langle Q_{c}(Ng,h),f\rangle|\lesssim\min\{|\mu^{\frac{1}{8}}g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|\mu^{\frac{1}{8}}g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

Note that Proposition 3.2 has the flexibility to balance the regularity between gg and hh. Such flexibility allows us to close energy estimate in high order Sobolev spaces.

Now we set to consider Iρ(g,h).I^{\rho}(g,h). We first prepare some intermediate estimates.

Lemma 3.2.

Let 116a,b1\frac{1}{16}\leq a,b\leq 1. Let s1,s2,s30,s1+s2+s3=12s_{1},s_{2},s_{3}\geq 0,s_{1}+s_{2}+s_{3}=\frac{1}{2}, then the following four estimates are valid.

|BD(μa)ghfdV|\displaystyle|\int B\mathrm{D}(\mu^{a}_{*})g_{*}hf\mathrm{d}V| \displaystyle\lesssim |g|L1|h|Lγ/2+s2|f|Lγ/2+s2+|μ1256g|Hs1|μ1256h|Hs2|μ1256f|Hs3.\displaystyle|g|_{L^{1}}|h|_{L^{2}_{\gamma/2+s}}|f|_{L^{2}_{\gamma/2+s}}+|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}f|_{H^{s_{3}}}. (3.13)
|BD(μa)μbghfdV|\displaystyle|\int B\mathrm{D}(\mu^{a}_{*})\mu^{b}g_{*}hf\mathrm{d}V| \displaystyle\lesssim |μ1256g|Hs1|μ1256h|Hs2|μ1256f|Hs3.\displaystyle|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}f|_{H^{s_{3}}}. (3.14)
|BD(μa)μbg(hf)dV|\displaystyle|\int B\mathrm{D}(\mu^{a}_{*})\mu^{b}g(hf)_{*}\mathrm{d}V| \displaystyle\lesssim |μ1256g|Hs1|μ1256h|Hs2|μ1256f|Hs3.\displaystyle|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}f|_{H^{s_{3}}}. (3.15)
|BD(μa)μbghfdV|\displaystyle|\int B\mathrm{D}(\mu^{a}_{*})\mu^{b}ghf\mathrm{d}V| \displaystyle\lesssim |μ1256g|H2|μ1256h|L2|μ1256f|L2.\displaystyle|\mu^{\frac{1}{256}}g|_{H^{2}}|\mu^{\frac{1}{256}}h|_{L^{2}}|\mu^{\frac{1}{256}}f|_{L^{2}}. (3.16)

Let s1,s20,s1+s2=12s_{1},s_{2}\geq 0,s_{1}+s_{2}=\frac{1}{2}, then the following two estimates are valid.

BD2(μa)g2h2dV\displaystyle\int B\mathrm{D}^{2}(\mu^{a}_{*})g_{*}^{2}h^{2}\mathrm{d}V \displaystyle\lesssim |g|Hs12|h|Hγ/2+ss22.\displaystyle|g|_{H^{s_{1}}}^{2}|h|_{H^{s_{2}}_{\gamma/2+s}}^{2}. (3.17)
BD2(μa)μbg2h2dV\displaystyle\int B\mathrm{D}^{2}(\mu^{a}_{*})\mu^{b}g_{*}^{2}h^{2}\mathrm{d}V \displaystyle\lesssim |μ1256g|Hs12|μ1256h|Hs22.\displaystyle|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}^{2}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}^{2}. (3.18)

Let {a1,a2,a3}={0,12,2}\{a_{1},a_{2},a_{3}\}=\{0,\frac{1}{2},2\}(which means the two sets are equal) and s1,s20,s1+s2=12s_{1},s_{2}\geq 0,s_{1}+s_{2}=\frac{1}{2}, then the following four estimates are valid.

|BD(μa)ghϱfdV|\displaystyle|\int B\mathrm{D}(\mu^{a}_{*})g_{*}h\varrho_{*}f\mathrm{d}V| \displaystyle\lesssim |g|Ha1|h|Hγ/2+sa2|ϱ|Ha3|f|Lγ/2+s2.\displaystyle|g|_{H^{a_{1}}}|h|_{H^{a_{2}}_{\gamma/2+s}}|\varrho|_{H^{a_{3}}}|f|_{L^{2}_{\gamma/2+s}}. (3.19)
|BD(μa)μbghϱfdV|\displaystyle|\int B\mathrm{D}(\mu^{a}_{*})\mu^{b}g_{*}h\varrho_{*}f\mathrm{d}V| \displaystyle\lesssim |μ1256g|Ha1|μ1256h|Ha2|μ1256ϱ|Ha3|μ1256f|L2.\displaystyle|\mu^{\frac{1}{256}}g|_{H^{a_{1}}}|\mu^{\frac{1}{256}}h|_{H^{a_{2}}}|\mu^{\frac{1}{256}}\varrho|_{H^{a_{3}}}|\mu^{\frac{1}{256}}f|_{L^{2}}. (3.20)
|BD(μa)μbghϱfdV|\displaystyle|\int B\mathrm{D}(\mu^{a}_{*})\mu^{b}g_{*}h\varrho f\mathrm{d}V| \displaystyle\lesssim |μ1256g|Hs1|μ1256h|Hs2|μ1256ϱ|H2|μ1256f|L2.\displaystyle|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}\varrho|_{H^{2}}|\mu^{\frac{1}{256}}f|_{L^{2}}. (3.21)
|BD(μa)μbg(hϱf)dV|\displaystyle|\int B\mathrm{D}(\mu^{a}_{*})\mu^{b}g(h\varrho f)_{*}\mathrm{d}V| \displaystyle\lesssim |μ1256g|Hs1|μ1256h|Hs2|μ1256ϱ|H2|μ1256f|L2.\displaystyle|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}\varrho|_{H^{2}}|\mu^{\frac{1}{256}}f|_{L^{2}}. (3.22)

The proof of Lemma 3.2 is given in the Appendix 8. Thanks to Remark 8.1, we have

Remark 3.1.

If we replace μ\mu with N2N^{2} or MM in Lemma 3.2, all the results are still valid. Let P1,P2P_{1},P_{2} be two polynomials on 3\mathbb{R}^{3}. If we replace μa\mu^{a} and μb\mu^{b} with P1μaP_{1}\mu^{a} and P2μbP_{2}\mu^{b} respectively in Lemma 3.2, all the results are still valid. Moreover, if we replace μa\mu^{a} and μb\mu^{b} with P1N2aP_{1}N^{2a}(or P1MaP_{1}M^{a}) and P2N2bP_{2}N^{2b}(or P2MbP_{2}M^{b}) respectively in Lemma 3.2, all the results are still valid. Since |vv||vv||v-v_{*}|\sim|v^{\prime}-v_{*}|, if we replace h2h^{2} with (h2)(h^{2})^{\prime} in (3.17), the result is still valid.

Remark 3.1 says that Lemma 3.2 have a more general version. This flexibility allows us to deal with various similar integrals. For example, we will use Remark 3.1 to deal with integrals involving derivatives of μ\mu in subsection 3.2.

Now we are ready to prove the following upper bound estimate for the operator IρI^{\rho}.

Proposition 3.3.

Let s1,s20,s1+s2=12s_{1},s_{2}\geq 0,s_{1}+s_{2}=\frac{1}{2}. There holds |Iρ(g,h),f||g|Hs1|h|Hγ/2+ss2|f|γ/2s.|\langle I^{\rho}(g,h),f\rangle|\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

Proof.

Note that D(N1)=D(μ12)ρD(μ12)\mathrm{D}(N^{-1})=\mathrm{D}(\mu^{-\frac{1}{2}})-\rho\mathrm{D}(\mu^{\frac{1}{2}}) by recalling (2.1). From which together with μ12μ12=(μ12)(μ12)\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}=(\mu^{\frac{1}{2}})^{\prime}(\mu^{\frac{1}{2}})^{\prime}_{*}, we have

D(N1)NN=(D(μ12)ρD(μ12)μ12μ12)(11ρμ)(11ρμ).\displaystyle\mathrm{D}(N^{-1})N^{\prime}_{*}N^{\prime}=\big{(}\mathrm{D}(\mu^{\frac{1}{2}}_{*})-\rho\mathrm{D}(\mu^{\frac{1}{2}})\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}\big{)}(\frac{1}{1-\rho\mu})^{\prime}_{*}(\frac{1}{1-\rho\mu})^{\prime}. (3.23)

Plugging (3.23) into (3.3), we have

Iρ(g,h)\displaystyle I^{\rho}(g,h) =\displaystyle= Imρ(g,h)+Irρ(g,h),\displaystyle I^{\rho}_{m}(g,h)+I^{\rho}_{r}(g,h), (3.24)
Imρ(g,h)\displaystyle I^{\rho}_{m}(g,h) \colonequals\displaystyle\colonequals BD(μ12)(g1ρμ)(h1ρμ)dσdv,\displaystyle\int B\mathrm{D}(\mu^{\frac{1}{2}}_{*})(\frac{g}{1-\rho\mu})^{\prime}_{*}(\frac{h}{1-\rho\mu})^{\prime}\mathrm{d}\sigma\mathrm{d}v_{*}, (3.25)
Irρ(g,h)\displaystyle I^{\rho}_{r}(g,h) \colonequals\displaystyle\colonequals ρBD(μ12)μ12μ12(g1ρμ)(h1ρμ)dσdv.\displaystyle-\rho\int B\mathrm{D}(\mu^{\frac{1}{2}})\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}(\frac{g}{1-\rho\mu})^{\prime}_{*}(\frac{h}{1-\rho\mu})^{\prime}\mathrm{d}\sigma\mathrm{d}v_{*}. (3.26)

Now it suffices to estimate Imρ(g,h),f\langle I^{\rho}_{m}(g,h),f\rangle and Irρ(g,h),f\langle I^{\rho}_{r}(g,h),f\rangle.

Estimate of Imρ(g,h),f\langle I^{\rho}_{m}(g,h),f\rangle. Recalling (3.25) and using (2.28), we have

Imρ(g,h),f=BD((μ12))(g1ρμ)(h1ρμ)fdV.\displaystyle\langle I^{\rho}_{m}(g,h),f\rangle=\int B\mathrm{D}((\mu^{\frac{1}{2}})^{\prime}_{*})(\frac{g}{1-\rho\mu})_{*}(\frac{h}{1-\rho\mu})f^{\prime}\mathrm{d}V.

Using f=D(f)+ff^{\prime}=\mathrm{D}(f^{\prime})+f and D((μ12))=D2(μ14)+2μ14D((μ14)),\mathrm{D}((\mu^{\frac{1}{2}})^{\prime}_{*})=\mathrm{D}^{2}(\mu^{\frac{1}{4}}_{*})+2\mu_{*}^{\frac{1}{4}}\mathrm{D}((\mu^{\frac{1}{4}})^{\prime}_{*}), we get Imρ(g,h),f=m,1ρ+m,2ρ+m,3ρ\langle I^{\rho}_{m}(g,h),f\rangle=\mathcal{I}^{\rho}_{m,1}+\mathcal{I}^{\rho}_{m,2}+\mathcal{I}^{\rho}_{m,3} where

m,1ρ\displaystyle\mathcal{I}^{\rho}_{m,1} \colonequals\displaystyle\colonequals BD2(μ14)(g1ρμ)(h1ρμ)fdV,\displaystyle\int B\mathrm{D}^{2}(\mu^{\frac{1}{4}}_{*})(\frac{g}{1-\rho\mu})_{*}(\frac{h}{1-\rho\mu})f^{\prime}\mathrm{d}V,
m,2ρ\displaystyle\mathcal{I}^{\rho}_{m,2} \colonequals\displaystyle\colonequals 2Bμ14D((μ14))(g1ρμ)(h1ρμ)D(f)dV,\displaystyle 2\int B\mu_{*}^{\frac{1}{4}}\mathrm{D}((\mu^{\frac{1}{4}})^{\prime}_{*})(\frac{g}{1-\rho\mu})_{*}(\frac{h}{1-\rho\mu})\mathrm{D}(f^{\prime})\mathrm{d}V, (3.27)
m,3ρ\displaystyle\mathcal{I}^{\rho}_{m,3} \colonequals\displaystyle\colonequals 2Bμ14D((μ14))(g1ρμ)(h1ρμ)fdV.\displaystyle 2\int B\mu_{*}^{\frac{1}{4}}\mathrm{D}((\mu^{\frac{1}{4}})^{\prime}_{*})(\frac{g}{1-\rho\mu})_{*}(\frac{h}{1-\rho\mu})f\mathrm{d}V. (3.28)

Since 0ρ12(2π)320\leq\rho\leq\frac{1}{2}(2\pi)^{\frac{3}{2}}, there holds 111ρμ21\leq\frac{1}{1-\rho\mu}\leq 2. By Cauchy-Schwartz inequality, (2.27) and (2.28), recalling (2.48), using (3.17) and Theorem 2.3, we get

|m,1ρ|(BD2(μ14)g2h2dV)12(Bf2D2(μ14)dV)12|g|Hs1|h|Hγ/2+ss2|f|γ/2s.\displaystyle|\mathcal{I}^{\rho}_{m,1}|\lesssim\big{(}\int B\mathrm{D}^{2}(\mu^{\frac{1}{4}}_{*})g_{*}^{2}h^{2}\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int Bf_{*}^{2}\mathrm{D}^{2}(\mu^{\frac{1}{4}})\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.29)

Recalling (3.27), by Cauchy-Schwartz inequality, recalling (2.48), using (3.17) and Theorem 2.3, we have

|m,2ρ|(BD2(μ14)g2h2dV)12(Bμ12D2(f)dV)12|g|Hs1|h|Hγ/2+ss2|f|γ/2s.\displaystyle|\mathcal{I}^{\rho}_{m,2}|\lesssim\big{(}\int B\mathrm{D}^{2}(\mu^{\frac{1}{4}}_{*})g_{*}^{2}h^{2}\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu_{*}^{\frac{1}{2}}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.30)

Recalling (3.28), applying (3.13) and Lemma 3.1, we get

|m,3ρ|(|μ141ρμg|L1|h1ρμ|Lγ/2+s2+|μ1256μ141ρμg|Hs1|μ12561ρμh|Hs2)|f|Lγ/2+s2|g|Hs1|h|Hγ/2+ss2|f|Lγ/2+s2.\displaystyle|\mathcal{I}^{\rho}_{m,3}|\lesssim(|\frac{\mu^{\frac{1}{4}}}{1-\rho\mu}g|_{L^{1}}|\frac{h}{1-\rho\mu}|_{L^{2}_{\gamma/2+s}}+|\frac{\mu^{\frac{1}{256}}\mu^{\frac{1}{4}}}{1-\rho\mu}g|_{H^{s_{1}}}|\frac{\mu^{\frac{1}{256}}}{1-\rho\mu}h|_{H^{s_{2}}})|f|_{L^{2}_{\gamma/2+s}}\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|f|_{L^{2}_{\gamma/2+s}}.

Patching together the estimates of m,iρ\mathcal{I}^{\rho}_{m,i} for 1i31\leq i\leq 3, we get

|Imρ(g,h),f||g|Hs1|h|Hγ/2+ss2|f|γ/2s.\displaystyle|\langle I^{\rho}_{m}(g,h),f\rangle|\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.31)

Recalling (3.26) and using (2.28), we get

Irρ(g,h),f\displaystyle\langle I^{\rho}_{r}(g,h),f\rangle =\displaystyle= ρBD(μ12)μ12μ12(g1ρμ)(h1ρμ)fdV=r,1ρ+r,2ρ,\displaystyle\rho\int B\mathrm{D}(\mu^{\frac{1}{2}})\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}(\frac{g}{1-\rho\mu})_{*}(\frac{h}{1-\rho\mu})f^{\prime}\mathrm{d}V=\mathcal{I}^{\rho}_{r,1}+\mathcal{I}^{\rho}_{r,2},
r,1ρ\displaystyle\mathcal{I}^{\rho}_{r,1} \colonequals\displaystyle\colonequals ρBD(μ12)μ12μ12(g1ρμ)(h1ρμ)D(f)dV,\displaystyle\rho\int B\mathrm{D}(\mu^{\frac{1}{2}})\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}(\frac{g}{1-\rho\mu})_{*}(\frac{h}{1-\rho\mu})\mathrm{D}(f^{\prime})\mathrm{d}V,
r,2ρ\displaystyle\mathcal{I}^{\rho}_{r,2} \colonequals\displaystyle\colonequals ρBD(μ12)μ12μ12(g1ρμ)(h1ρμ)fdV.\displaystyle\rho\int B\mathrm{D}(\mu^{\frac{1}{2}})\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}(\frac{g}{1-\rho\mu})_{*}(\frac{h}{1-\rho\mu})f\mathrm{d}V.

By Cauchy-Schwartz inequality and (2.27), using (3.18) and Theorem 2.3, we have

|r,1ρ|(BD2(μ12)μ12g2h2dV)12(Bμ12D2(f)dV)12|μ1256g|Hs1|μ1256h|Hs2|f|γ/2s\displaystyle|\mathcal{I}^{\rho}_{r,1}|\lesssim\big{(}\int B\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})\mu^{\frac{1}{2}}g^{2}h_{*}^{2}\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu_{*}^{\frac{1}{2}}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|f|_{\mathcal{L}^{s}_{\gamma/2}}

By (2.27), using the estimate (3.15) and Lemma 3.1, we have

|r,2ρ|\displaystyle|\mathcal{I}^{\rho}_{r,2}| =\displaystyle= |ρBD(μ12)μ14μ14g1ρμ(μ12h1ρμ)fdV|\displaystyle|\rho\int B\mathrm{D}(\mu^{\frac{1}{2}}_{*})\mu^{\frac{1}{4}}\frac{\mu^{\frac{1}{4}}g}{1-\rho\mu}(\frac{\mu^{\frac{1}{2}}h}{1-\rho\mu})_{*}f_{*}\mathrm{d}V|
\displaystyle\lesssim |μ1256μ141ρμg|Hs1|μ1256μ121ρμh|Hs2|μ1256f|L2|μ1256g|Hs1|μ1256h|Hs2|f|γ/2s.\displaystyle|\frac{\mu^{\frac{1}{256}}\mu^{\frac{1}{4}}}{1-\rho\mu}g|_{H^{s_{1}}}|\frac{\mu^{\frac{1}{256}}\mu^{\frac{1}{2}}}{1-\rho\mu}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}f|_{L^{2}}\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

Patching together the estimates of r,1ρ\mathcal{I}^{\rho}_{r,1} and r,2ρ\mathcal{I}^{\rho}_{r,2}, using Lemma 3.1, we have

|Irρ(g,h),f||μ1256g|Hs1|μ1256h|Hs2|f|γ/2s|g|Hs1|h|Hγ/2+ss2|f|γ/2s.\displaystyle|\langle I^{\rho}_{r}(g,h),f\rangle|\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|f|_{\mathcal{L}^{s}_{\gamma/2}}\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.32)

Patching together (3.31) and (3.32), we finish the proof. ∎

Recalling (3.2), patching together Proposition 3.2 and Proposition 3.3, we get

Theorem 3.1.

It holds that

|Γ2,mρ(g,h),f|min{|g|H2|h|γ/2s,|g|L2(|h|γ/2s+|h|Hγ/22+s+|h|Hγ/2+s12)}|f|γ/2s.\displaystyle|\langle\Gamma_{2,m}^{\rho}(g,h),f\rangle|\lesssim\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{2+s}_{\gamma/2}}+|h|_{H^{\frac{1}{2}}_{\gamma/2+s}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

3.2. Some remark on derivative before operator

In this subsection, we address the issue of taking derivative β\partial_{\beta} w.r.t. variable vv of various Boltzmann type operators appeared in this article. The conclusion is that we can focus on derivatives of the involved functions g,h,ϱ,fg,h,\varrho,f and safely ignore the derivatives on those good functions like μ,N,M\mu,N,M appearing in the operators. We begin with the following fact about Boltzmann type operator

βBghϱfdσdv=β1+β2+β3+β4=βCβ1,β2,β3,β4βB(β1g)(β2h)(β3ϱ)(β4f)dσdv.\displaystyle\partial_{\beta}\int Bg_{*}h\varrho^{\prime}_{*}f^{\prime}\mathrm{d}\sigma\mathrm{d}v_{*}=\sum_{\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}=\beta}C^{\beta}_{\beta_{1},\beta_{2},\beta_{3},\beta_{4}}\int B(\partial_{\beta_{1}}g)_{*}(\partial_{\beta_{2}}h)(\partial_{\beta_{3}}\varrho)^{\prime}_{*}(\partial_{\beta_{4}}f)^{\prime}\mathrm{d}\sigma\mathrm{d}v_{*}. (3.33)

That is, when taking derivative w.r.t. vv, we can use the binomial formula for the product ghϱfgh\varrho f first and then take integral.

Recalling (3.2) and (3.24), we have Γ2,mρ(g,h)=Qc(Ng,h)+Imρ(g,h)+Irρ(g,h).\Gamma_{2,m}^{\rho}(g,h)=Q_{c}(Ng,h)+I^{\rho}_{m}(g,h)+I^{\rho}_{r}(g,h). Therefore

βΓ2,mρ(g,h)=βQc(Ng,h)+βImρ(g,h)+βIrρ(g,h).\displaystyle\partial_{\beta}\Gamma_{2,m}^{\rho}(g,h)=\partial_{\beta}Q_{c}(Ng,h)+\partial_{\beta}I^{\rho}_{m}(g,h)+\partial_{\beta}I^{\rho}_{r}(g,h). (3.34)

Thanks to (3.33), we have

βQc(Ng,h)=β1+β2+β3=βCβ1,β2,β3βQc(β3Nβ1g,β2h).\displaystyle\partial_{\beta}Q_{c}(Ng,h)=\sum_{\beta_{1}+\beta_{2}+\beta_{3}=\beta}C^{\beta}_{\beta_{1},\beta_{2},\beta_{3}}Q_{c}(\partial_{\beta_{3}}N\partial_{\beta_{1}}g,\partial_{\beta_{2}}h).

Note that |μ18β3N|H721|\mu^{-\frac{1}{8}}\partial_{\beta_{3}}N|_{H^{2}_{7}}\lesssim 1. Then by Corollary 3.1 and Lemma 3.1, we have

|Qc(β3Nβ1g,β2h),f|min{|μ18β1g|H2|β2h|γ/2s,|μ18β1g|L2(|β2h|γ/2s+|β2h|Hγ/2s+2)}|f|γ/2s.\displaystyle|\langle Q_{c}(\partial_{\beta_{3}}N\partial_{\beta_{1}}g,\partial_{\beta_{2}}h),f\rangle|\lesssim\min\{|\mu^{\frac{1}{8}}\partial_{\beta_{1}}g|_{H^{2}}|\partial_{\beta_{2}}h|_{\mathcal{L}^{s}_{\gamma/2}},|\mu^{\frac{1}{8}}\partial_{\beta_{1}}g|_{L^{2}}(|\partial_{\beta_{2}}h|_{\mathcal{L}^{s}_{\gamma/2}}+|\partial_{\beta_{2}}h|_{H^{s+2}_{\gamma/2}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.35)

Note that if we use Proposition 3.2 to estimate Qc(Nβ1g,β2h),f\langle Q_{c}(N\partial_{\beta_{1}}g,\partial_{\beta_{2}}h),f\rangle, we will get the same result as (3.35). Therefore we conclude that to estimate βQc(Ng,h),f\langle\partial_{\beta}Q_{c}(Ng,h),f\rangle, it suffices to estimate Qc(Nβ1g,β2h),f\langle Q_{c}(N\partial_{\beta_{1}}g,\partial_{\beta_{2}}h),f\rangle using Proposition 3.2 for all β1,β2\beta_{1},\beta_{2} such that β1+β2β\beta_{1}+\beta_{2}\leq\beta. That is, we can safely regard β30\beta_{3}\neq 0 as β3=0\beta_{3}=0.

Now we visit βImρ(g,h)\partial_{\beta}I^{\rho}_{m}(g,h). Recalling (3.25) and using (3.33), we have

βImρ(g,h)\displaystyle\partial_{\beta}I^{\rho}_{m}(g,h) =\displaystyle= β1+β2+β3+β4+β5=βCβ1,β2,β3,β4,β5βImρ(β1g,β2h;β3,β4,β5),\displaystyle\sum_{\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}+\beta_{5}=\beta}C^{\beta}_{\beta_{1},\beta_{2},\beta_{3},\beta_{4},\beta_{5}}I^{\rho}_{m}(\partial_{\beta_{1}}g,\partial_{\beta_{2}}h;\beta_{3},\beta_{4},\beta_{5}),
Imρ(G,H;β3,β4,β5)\displaystyle I^{\rho}_{m}(G,H;\beta_{3},\beta_{4},\beta_{5}) \colonequals\displaystyle\colonequals BD(β3μ12))(Gβ4(1ρμ)1)(Hβ5(1ρμ)1)dσdv.\displaystyle\int B\mathrm{D}(\partial_{\beta_{3}}\mu^{\frac{1}{2}})_{*})(G\partial_{\beta_{4}}(1-\rho\mu)^{-1})^{\prime}_{*}(H\partial_{\beta_{5}}(1-\rho\mu)^{-1})^{\prime}\mathrm{d}\sigma\mathrm{d}v_{*}.

Note that Imρ(G,H;0,0,0)=Imρ(G,H)I^{\rho}_{m}(G,H;0,0,0)=I^{\rho}_{m}(G,H) when β3=β4=β5=0\beta_{3}=\beta_{4}=\beta_{5}=0. For index β3\beta\in\mathbb{N}^{3}, there is a polynomial PβP_{\beta} such that βμ12=μ12Pβ\partial_{\beta}\mu^{\frac{1}{2}}=\mu^{\frac{1}{2}}P_{\beta}. Observe

D((μ12Pβ))=D((μ14))D((μ14Pβ))+μ14D((μ14Pβ))+(μ14Pβ)D((μ14)).\displaystyle\mathrm{D}((\mu^{\frac{1}{2}}P_{\beta})_{*}^{\prime})=\mathrm{D}((\mu^{\frac{1}{4}})^{\prime}_{*})\mathrm{D}((\mu^{\frac{1}{4}}P_{\beta})_{*}^{\prime})+\mu^{\frac{1}{4}}_{*}\mathrm{D}((\mu^{\frac{1}{4}}P_{\beta})_{*}^{\prime})+(\mu^{\frac{1}{4}}P_{\beta})_{*}\mathrm{D}((\mu^{\frac{1}{4}})^{\prime}_{*}). (3.36)

Using (2.28) and (3.36), setting 𝒦(G,H,f)\colonequals(Gβ4(1ρμ)1)(Hβ5(1ρμ)1)f\mathcal{K}(G,H,f)\colonequals(G\partial_{\beta_{4}}(1-\rho\mu)^{-1})_{*}(H\partial_{\beta_{5}}(1-\rho\mu)^{-1})f^{\prime} for simplicity, we have

Imρ(G,H;β3,β4,β5),f\displaystyle\langle I^{\rho}_{m}(G,H;\beta_{3},\beta_{4},\beta_{5}),f\rangle =\displaystyle= BD((μ12Pβ3))𝒦(G,H,f)dV\displaystyle\int B\mathrm{D}((\mu^{\frac{1}{2}}P_{\beta_{3}})^{\prime}_{*})\mathcal{K}(G,H,f)\mathrm{d}V
=\displaystyle= 1(G,H,f)+2(G,H,f)+3(G,H,f),\displaystyle\mathcal{I}_{1}(G,H,f)+\mathcal{I}_{2}(G,H,f)+\mathcal{I}_{3}(G,H,f),
1(G,H,f)\displaystyle\mathcal{I}_{1}(G,H,f) \colonequals\displaystyle\colonequals BD((μ14))D((μ14Pβ3))𝒦(G,H,f)dV,\displaystyle\int B\mathrm{D}((\mu^{\frac{1}{4}})^{\prime}_{*})\mathrm{D}((\mu^{\frac{1}{4}}P_{\beta_{3}})_{*}^{\prime})\mathcal{K}(G,H,f)\mathrm{d}V,
2(G,H,f)\displaystyle\mathcal{I}_{2}(G,H,f) \colonequals\displaystyle\colonequals Bμ14D((μ14Pβ3))𝒦(G,H,f)dV,\displaystyle\int B\mu^{\frac{1}{4}}_{*}\mathrm{D}((\mu^{\frac{1}{4}}P_{\beta_{3}})_{*}^{\prime})\mathcal{K}(G,H,f)\mathrm{d}V,
3(G,H,f)\displaystyle\mathcal{I}_{3}(G,H,f) \colonequals\displaystyle\colonequals B(μ14Pβ3)D((μ14))𝒦(G,H,f)dV.\displaystyle\int B(\mu^{\frac{1}{4}}P_{\beta_{3}})_{*}\mathrm{D}((\mu^{\frac{1}{4}})^{\prime}_{*})\mathcal{K}(G,H,f)\mathrm{d}V.

Recall 0ρ12(2π)320\leq\rho\leq\frac{1}{2}(2\pi)^{\frac{3}{2}}. Therefore for any index β3\beta\in\mathbb{N}^{3}, there exists some constant CβC_{\beta} such that

|β(1ρμ)1|Cβ.\displaystyle|\partial_{\beta}(1-\rho\mu)^{-1}|\leq C_{\beta}. (3.37)

Then by Cauchy-Schwartz inequality, using (2.27) and (2.28), we have

|1(G,H,f)|(BD2((μ14Pβ3))G2H2dV)12(BD2(μ14)f2dV)12,\displaystyle|\mathcal{I}_{1}(G,H,f)|\lesssim\big{(}\int B\mathrm{D}^{2}((\mu^{\frac{1}{4}}P_{\beta_{3}})_{*})G^{2}_{*}H^{2}\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mathrm{D}^{2}(\mu^{\frac{1}{4}})f^{2}_{*}\mathrm{d}V\big{)}^{\frac{1}{2}},

which can be handled like in (3.29) thanks to Remark 3.1. With the identity f=D(f)+ff^{\prime}=\mathrm{D}(f^{\prime})+f, both 2(G,H,f)\mathcal{I}_{2}(G,H,f) and 3(G,H,f)\mathcal{I}_{3}(G,H,f) can be split into two terms like (3.27) and (3.28). Then by following the estimate of m,2ρ\mathcal{I}^{\rho}_{m,2} and m,3ρ\mathcal{I}^{\rho}_{m,3} in Proposition 3.3, thanks to Remark 3.1, using (3.37), we will get the same upper bound. In a word, Imρ(G,H;β3,β4,β5),f\langle I^{\rho}_{m}(G,H;\beta_{3},\beta_{4},\beta_{5}),f\rangle shares the same upper bound as (3.31) for Imρ(G,H),f\langle I^{\rho}_{m}(G,H),f\rangle. Therefore we conclude that to estimate βImρ(g,h)\partial_{\beta}I^{\rho}_{m}(g,h), it suffices to consider Imρ(β1g,β2h)I^{\rho}_{m}(\partial_{\beta_{1}}g,\partial_{\beta_{2}}h) for all β1,β2\beta_{1},\beta_{2} such that β1+β2β\beta_{1}+\beta_{2}\leq\beta. That is, we can safely regard general β3,β4,β5\beta_{3},\beta_{4},\beta_{5} as β3=β4=β5=0\beta_{3}=\beta_{4}=\beta_{5}=0. By nearly the same analysis, the same conclusion holds for βIrρ(g,h)\partial_{\beta}I^{\rho}_{r}(g,h). Recalling (3.34), we arrive at the following remark.

Remark 3.2.

In order to estimate βΓ2,mρ(g,h),f\langle\partial_{\beta}\Gamma_{2,m}^{\rho}(g,h),f\rangle, it suffices to consider Γ2,mρ(β1g,β2h),f\langle\Gamma_{2,m}^{\rho}(\partial_{\beta_{1}}g,\partial_{\beta_{2}}h),f\rangle for all β1,β2\beta_{1},\beta_{2} such that β1+β2β\beta_{1}+\beta_{2}\leq\beta.

Following the proof of upper bound estimates in Section 2, 3 and 4, we can go further to conclude that

Remark 3.3.

To estimate upper bound concerning βΓ2ρ(g,h)\partial_{\beta}\Gamma_{2}^{\rho}(g,h), it suffices to consider Γ2ρ(β1g,β2h)\Gamma_{2}^{\rho}(\partial_{\beta_{1}}g,\partial_{\beta_{2}}h) for all β1,β2\beta_{1},\beta_{2} such that β1+β2β\beta_{1}+\beta_{2}\leq\beta. To estimate upper bound concerning βΓ3ρ(g,h,ϱ)\partial_{\beta}\Gamma_{3}^{\rho}(g,h,\varrho), it suffices to consider Γ2ρ(β1g,β2h,β3ϱ)\Gamma_{2}^{\rho}(\partial_{\beta_{1}}g,\partial_{\beta_{2}}h,\partial_{\beta_{3}}\varrho) for all β1,β2,β3\beta_{1},\beta_{2},\beta_{3} such that β1+β2+β3β\beta_{1}+\beta_{2}+\beta_{3}\leq\beta. To estimate upper bound concerning βρg,βrρg\partial_{\beta}\mathcal{L}^{\rho}g,\partial_{\beta}\mathcal{L}^{\rho}_{r}g and β𝒞ρg\partial_{\beta}\mathcal{C}^{\rho}g, it suffices to consider ρβ1g,rρβ1g\mathcal{L}^{\rho}\partial_{\beta_{1}}g,\mathcal{L}^{\rho}_{r}\partial_{\beta_{1}}g and 𝒞ρβ1g\mathcal{C}^{\rho}\partial_{\beta_{1}}g for all β1\beta_{1} such that β1β\beta_{1}\leq\beta.

3.3. The remaining operator Γ2,rρ\Gamma_{2,r}^{\rho}

We first prepare some intermediate estimates.

Lemma 3.3.

Let s1,s20,s1+s2=12s_{1},s_{2}\geq 0,s_{1}+s_{2}=\frac{1}{2}. The following four estimates are valid.

Bμ116D2(g)h2dV\displaystyle\int B\mu^{\frac{1}{16}}_{*}\mathrm{D}^{2}(g_{*})h^{2}\mathrm{d}V \displaystyle\lesssim |g|Hs1+12|h|Hγ/2+ss22.\displaystyle|g|_{H^{s_{1}+1}}^{2}|h|_{H^{s_{2}}_{\gamma/2+s}}^{2}. (3.38)
Bμ116D2(g)f2h2dV\displaystyle\int B\mu^{\frac{1}{16}}_{*}\mathrm{D}^{2}(g_{*})f_{*}^{2}h^{2}\mathrm{d}V \displaystyle\lesssim |g|H32|μ1128f|Hs12|h|Hγ/2+ss22.\displaystyle|g|_{H^{3}}^{2}|\mu^{\frac{1}{128}}f|_{H^{s_{1}}}^{2}|h|_{H^{s_{2}}_{\gamma/2+s}}^{2}. (3.39)
Bμ116μ116D2(g)f2h2dV\displaystyle\int B\mu^{\frac{1}{16}}_{*}\mu^{\frac{1}{16}}\mathrm{D}^{2}(g_{*})f_{*}^{2}h^{2}\mathrm{d}V \displaystyle\lesssim |μ1256g|H32|μ1256f|Hs12|μ1256h|Hs22.\displaystyle|\mu^{\frac{1}{256}}g|_{H^{3}}^{2}|\mu^{\frac{1}{256}}f|_{H^{s_{1}}}^{2}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}^{2}. (3.40)
BD2(g)μ116h2dV\displaystyle\int B\mathrm{D}^{2}(g_{*})\mu^{\frac{1}{16}}h^{2}\mathrm{d}V \displaystyle\lesssim |g|Hγ/2+ss1+12|μ164h|Hs22.\displaystyle|g|_{H^{s_{1}+1}_{\gamma/2+s}}^{2}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}}^{2}. (3.41)

We will only use (3.41) in this subsection. The proof of Lemma 3.3 is given in the Appendix 8. Appropriately revising the proof of Lemma 3.3, we have

Remark 3.4.

Since |vv||vv||vv(ι)||v-v_{*}|\sim|v-v_{*}^{\prime}|\sim|v-v_{*}(\iota)|, if we replace μ116\mu^{\frac{1}{16}}_{*} with (μ116)(\mu^{\frac{1}{16}})_{*}^{\prime} in (3.38), the result is still valid. Since |vv||vv||v-v_{*}|\sim|v^{\prime}-v_{*}|, if we replace h2h^{2} with (h2)(h^{2})^{\prime} in (3.39), the result is still valid.

In the rest of the article, s1,s2s_{1},s_{2} are two constants verifying s1,s20,s1+s2=12s_{1},s_{2}\geq 0,s_{1}+s_{2}=\frac{1}{2} unless otherwise specified.

Recalling (3.4), there holds Γ2,rρ=Γ2,r,1ρ+Γ2,r,2ρ+Γ2,r,3ρ\Gamma_{2,r}^{\rho}=\Gamma_{2,r,1}^{\rho}+\Gamma_{2,r,2}^{\rho}+\Gamma_{2,r,3}^{\rho}. We will give estimates of Γ2,r,1ρ,Γ2,r,2ρ,Γ2,r,3ρ\Gamma_{2,r,1}^{\rho},\Gamma_{2,r,2}^{\rho},\Gamma_{2,r,3}^{\rho} in Propositions 3.4, 3.5, 3.6 respectively.

Proposition 3.4.

It holds that

|Γ2,r,1ρ(g,h),f|min{|g|H2|h|γ/2s,|g|L2(|h|γ/2s+|h|Hγ/22+s+|h|Hγ/2+s12)}|f|γ/2s.\displaystyle|\langle\Gamma_{2,r,1}^{\rho}(g,h),f\rangle|\lesssim\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{2+s}_{\gamma/2}}+|h|_{H^{\frac{1}{2}}_{\gamma/2+s}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}.
Proof.

Recalling (3.5), we have

Γ2,r,1ρ(g,h),f=B(Nh)(Ng)D((N1f))(M+M)dV.\displaystyle\langle\Gamma_{2,r,1}^{\rho}(g,h),f\rangle=\int B(Nh)(Ng)_{*}\mathrm{D}((N^{-1}f)^{\prime})(M^{\prime}+M^{\prime}_{*})\mathrm{d}V. (3.42)

We need to make rearrangement in order to use previous results. By the following identity

D((N1f))=D((N1))f+N1D(f),\displaystyle\mathrm{D}((N^{-1}f)^{\prime})=\mathrm{D}((N^{-1})^{\prime})f^{\prime}+N^{-1}\mathrm{D}(f^{\prime}), (3.43)

we have

Γ2,r,1ρ(g,h),f=𝒯1+𝒯2+𝒯3+𝒯4,\displaystyle\langle\Gamma_{2,r,1}^{\rho}(g,h),f\rangle=\mathcal{T}_{1}+\mathcal{T}_{2}+\mathcal{T}_{3}+\mathcal{T}_{4}, (3.44)
𝒯1\colonequalsB(Ng)(Nh)(Mf)D((N1))dV,𝒯2\colonequalsB(Ng)(Nh)fMD((N1))dV,\displaystyle\mathcal{T}_{1}\colonequals\int B(Ng)_{*}(Nh)(Mf)^{\prime}\mathrm{D}((N^{-1})^{\prime})\mathrm{d}V,\quad\mathcal{T}_{2}\colonequals\int B(Ng)_{*}(Nh)f^{\prime}M^{\prime}_{*}\mathrm{D}((N^{-1})^{\prime})\mathrm{d}V,
𝒯3\colonequalsB(Ng)hD(f)MdV,𝒯4\colonequalsB(Ng)hD(f)MdV.\displaystyle\mathcal{T}_{3}\colonequals\int B(Ng)_{*}h\mathrm{D}(f^{\prime})M^{\prime}\mathrm{d}V,\quad\mathcal{T}_{4}\colonequals\int B(Ng)_{*}h\mathrm{D}(f^{\prime})M^{\prime}_{*}\mathrm{d}V.

Estimate of 𝒯1\mathcal{T}_{1}. By (2.28) and recalling (3.3), using Proposition 3.3 and Lemma 3.1, we have

|𝒯1|\displaystyle|\mathcal{T}_{1}| =\displaystyle= |B(Ng)(Nh)MfD(N1)dV|=|Iρ(g,h),Mf|\displaystyle|\int B(Ng)^{\prime}_{*}(Nh)^{\prime}Mf\mathrm{D}(N^{-1})\mathrm{d}V|=|\langle I^{\rho}(g,h),Mf\rangle| (3.45)
\displaystyle\lesssim |g|Hs1|h|Hγ/2+ss2|Mf|γ/2s|g|Hs1|h|Hγ/2+ss2|f|γ/2s.\displaystyle|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|Mf|_{\mathcal{L}^{s}_{\gamma/2}}\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

Estimate of 𝒯2\mathcal{T}_{2}. Using the identity M=D(M)+MM^{\prime}_{*}=\mathrm{D}(M^{\prime}_{*})+M_{*}, we have 𝒯2=𝒯2,1+𝒯2,2\mathcal{T}_{2}=\mathcal{T}_{2,1}+\mathcal{T}_{2,2} where

𝒯2,1\colonequalsB(MNg)(Nh)fD((N1))dV,𝒯2,2\colonequalsB(Ng)(Nh)fD(M)D((N1))dV.\displaystyle\mathcal{T}_{2,1}\colonequals\int B(MNg)_{*}(Nh)f^{\prime}\mathrm{D}((N^{-1})^{\prime})\mathrm{d}V,\quad\mathcal{T}_{2,2}\colonequals\int B(Ng)_{*}(Nh)f^{\prime}\mathrm{D}(M^{\prime}_{*})\mathrm{D}((N^{-1})^{\prime})\mathrm{d}V.

Recalling (3.3), using Proposition 3.3 and Lemma 3.1, we have

|𝒯2,1|=|Iρ(Mg,h),f||g|Hs1|h|Hγ/2+ss2|f|γ/2s.\displaystyle|\mathcal{T}_{2,1}|=|\langle I^{\rho}(Mg,h),f\rangle|\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.46)

By Cauchy-Schwartz inequality, have

|𝒯2,2|(B|(Ng)(Nh)|2D2(N1)dV)12(B(f2)D2(M)dV)12.\displaystyle|\mathcal{T}_{2,2}|\lesssim\big{(}\int B|(Ng)_{*}(Nh)|^{2}\mathrm{D}^{2}(N^{-1})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B(f^{2})^{\prime}\mathrm{D}^{2}(M_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}. (3.47)

By (2.27) and (2.28), we observe

B(f2)D2(M)dV=Bf2D2(M)dV=𝒩(f,M12)|f|γ/2s2,\displaystyle\int B(f^{2})^{\prime}\mathrm{D}^{2}(M_{*})\mathrm{d}V=\int Bf^{2}_{*}\mathrm{D}^{2}(M)\mathrm{d}V=\mathcal{N}(f,M^{\frac{1}{2}})\lesssim|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}, (3.48)

where we use Theorem 2.3 and Remark 2.3. Similar to (3.23), we have

D(N1)NN=(D(μ12)ρD(μ12)μ12μ12)(11ρμ)(11ρμ),\displaystyle\mathrm{D}(N^{-1})N_{*}N=\big{(}\mathrm{D}(\mu^{\frac{1}{2}}_{*})-\rho\mathrm{D}(\mu^{\frac{1}{2}})\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}\big{)}(\frac{1}{1-\rho\mu})_{*}(\frac{1}{1-\rho\mu}),

which yields |D(N1)NN|2D2(μ12)+μμD2(μ12)|\mathrm{D}(N^{-1})N_{*}N|^{2}\lesssim\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})+\mu\mu_{*}\mathrm{D}^{2}(\mu^{\frac{1}{2}}) and thus

B|(Ng)(Nh)|2D2(N1)dV\displaystyle\int B|(Ng)_{*}(Nh)|^{2}\mathrm{D}^{2}(N^{-1})\mathrm{d}V
\displaystyle\lesssim BD2(μ12)g2h2dV+BD2(μ12)g2h2μμdV|g|Hs12|h|Hγ/2+ss22,\displaystyle\int B\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})g_{*}^{2}h^{2}\mathrm{d}V+\int B\mathrm{D}^{2}(\mu^{\frac{1}{2}})g_{*}^{2}h^{2}\mu\mu_{*}\mathrm{d}V\lesssim|g|_{H^{s_{1}}}^{2}|h|_{H^{s_{2}}_{\gamma/2+s}}^{2},

where we use (2.27) for the latter integral and then get the final estimate by using (3.17). Plugging (3.48) and (3.3) into (3.47), we get

|𝒯2,2||g|Hs1|h|Hγ/2+ss2|f|γ/2s.\displaystyle|\mathcal{T}_{2,2}|\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.50)

Patching together (3.46) and (3.50), recalling 𝒯2=𝒯2,1+𝒯2,2\mathcal{T}_{2}=\mathcal{T}_{2,1}+\mathcal{T}_{2,2}, we have

|𝒯2||g|Hs1|h|Hγ/2+ss2|f|γ/2s.\displaystyle|\mathcal{T}_{2}|\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.51)

Estimate of 𝒯3\mathcal{T}_{3}. Using the identity M=D(M)+MM^{\prime}=\mathrm{D}(M^{\prime})+M, we have 𝒯3=𝒯3,1+𝒯3,2\mathcal{T}_{3}=\mathcal{T}_{3,1}+\mathcal{T}_{3,2} where

𝒯3,1\colonequalsB(Ng)MhD(f)dV,𝒯3,2\colonequalsB(Ng)hD(f)D(M)dV.\displaystyle\mathcal{T}_{3,1}\colonequals\int B(Ng)_{*}Mh\mathrm{D}(f^{\prime})\mathrm{d}V,\quad\mathcal{T}_{3,2}\colonequals\int B(Ng)_{*}h\mathrm{D}(f^{\prime})\mathrm{D}(M^{\prime})\mathrm{d}V.

Observe 𝒯3,1=Qc(Ng,Mh),f\mathcal{T}_{3,1}=\langle Q_{c}(Ng,Mh),f\rangle. Then Corollary 3.1 and Lemma 3.1 yield

|𝒯3,1|\displaystyle|\mathcal{T}_{3,1}| \displaystyle\lesssim min{|Ng|H72|Mh|γ/2s,|Ng|L72(|Mh|γ/2s+|Mh|Hγ/2s+2)}|f|γ/2s\displaystyle\min\{|Ng|_{H^{2}_{7}}|Mh|_{\mathcal{L}^{s}_{\gamma/2}},|Ng|_{L^{2}_{7}}(|Mh|_{\mathcal{L}^{s}_{\gamma/2}}+|Mh|_{H^{s+2}_{\gamma/2}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}} (3.52)
\displaystyle\lesssim min{|g|H2|h|γ/2s,|g|L2(|h|γ/2s+|h|Hγ/2s+2)}|f|γ/2s.\displaystyle\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

By Cauchy-Schwartz inequality, (2.3) and (2.27), have

|𝒯3,2|(Bμ12g2h2D2(M)dV)12(Bμ12D2(f)dV)12|μ1256g|Hs1|μ1256h|Hs2|f|γ/2s.\displaystyle|\mathcal{T}_{3,2}|\lesssim\big{(}\int B\mu^{\frac{1}{2}}g^{2}h_{*}^{2}\mathrm{D}^{2}(M_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.53)

where we use (3.18), Remark 3.1 and Theorem 2.3. Patching together (3.52) and (3.53), we have

|𝒯3|min{|g|H2|h|γ/2s,|g|L2(|h|γ/2s+|h|Hγ/2s+2)}|f|γ/2s.\displaystyle|\mathcal{T}_{3}|\lesssim\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.54)

Estimate of 𝒯4\mathcal{T}_{4}. Using the identity M=D(M)+MM^{\prime}_{*}=\mathrm{D}(M^{\prime}_{*})+M_{*}, we have 𝒯4=𝒯4,1+𝒯4,2\mathcal{T}_{4}=\mathcal{T}_{4,1}+\mathcal{T}_{4,2} where

𝒯4,1\colonequalsB(MNg)hD(f)dV,𝒯4,2\colonequalsB(Ng)hD(f)D(M)dV.\displaystyle\mathcal{T}_{4,1}\colonequals\int B(MNg)_{*}h\mathrm{D}(f^{\prime})\mathrm{d}V,\quad\mathcal{T}_{4,2}\colonequals\int B(Ng)_{*}h\mathrm{D}(f^{\prime})\mathrm{D}(M^{\prime}_{*})\mathrm{d}V. (3.55)

Observe 𝒯4,1=Qc(MNg,h),f\mathcal{T}_{4,1}=\langle Q_{c}(MNg,h),f\rangle. Then Corollary 3.1 and Lemma 3.1 yield

|𝒯4,1|min{|g|H2|h|γ/2s,|g|L2(|h|γ/2s+|h|Hγ/2s+2)}|f|γ/2s.\displaystyle|\mathcal{T}_{4,1}|\lesssim\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

Note that 𝒯4,2\mathcal{T}_{4,2} has the same structure as m,2ρ\mathcal{I}^{\rho}_{m,2} defined in (3.27). Then similar to (3.30), we get

|𝒯4,2||g|Hs1|h|Hγ/2+ss2|f|γ/2s.\displaystyle|\mathcal{T}_{4,2}|\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.56)

Patching together the previous two estimates, we get

|𝒯4|min{|g|H2|h|γ/2s,|g|L2(|h|γ/2s+|h|Hγ/2s+2+|h|Hγ/2+s12)}|f|γ/2s.\displaystyle|\mathcal{T}_{4}|\lesssim\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}}+|h|_{H^{\frac{1}{2}}_{\gamma/2+s}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.57)

Patching together (3.45), (3.51), (3.54) and (3.57), recalling (3.44), we finish the proof. ∎

Proposition 3.5.

It holds that

|Γ2,r,2ρ(g,h),f|min{|g|H2|h|γ/2s,|g|L2(|h|γ/2s+|h|Hγ/2s+2+|h|Hγ/2+s32)}|f|γ/2s.\displaystyle|\langle\Gamma_{2,r,2}^{\rho}(g,h),f\rangle|\lesssim\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}}+|h|_{H^{\frac{3}{2}}_{\gamma/2+s}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}.
Proof.

Recalling the definition of Γ2,r,2ρ\Gamma_{2,r,2}^{\rho} in (3.6), we have

Γ2,r,2ρ(g,h),f=B(Nh)(Ng)D((N1f))(MM)dV.\displaystyle\langle\Gamma_{2,r,2}^{\rho}(g,h),f\rangle=\int B(Nh)(Ng)^{\prime}_{*}\mathrm{D}((N^{-1}f)^{\prime})(M_{*}-M^{\prime})\mathrm{d}V. (3.58)

Using the identity (3.43), we get

Γ2,r,2ρ(g,h),f\displaystyle\langle\Gamma_{2,r,2}^{\rho}(g,h),f\rangle =\displaystyle= B(Ng)(Nh)f(MM)D((N1))dV\displaystyle\int B(Ng)^{\prime}_{*}(Nh)f^{\prime}(M_{*}-M^{\prime})\mathrm{D}((N^{-1})^{\prime})\mathrm{d}V (3.59)
+B(Ng)hD(f)(MM)dV=𝒰1+𝒰2+𝒰3+𝒰4,\displaystyle+\int B(Ng)^{\prime}_{*}h\mathrm{D}(f^{\prime})(M_{*}-M^{\prime})\mathrm{d}V=\mathcal{U}_{1}+\mathcal{U}_{2}+\mathcal{U}_{3}+\mathcal{U}_{4},
𝒰1\displaystyle\mathcal{U}_{1} \colonequals\displaystyle\colonequals B(Ng)(Nh)fMD((N1))dV,\displaystyle\int B(Ng)^{\prime}_{*}(Nh)f^{\prime}M_{*}\mathrm{D}((N^{-1})^{\prime})\mathrm{d}V, (3.60)
𝒰2\displaystyle\mathcal{U}_{2} \colonequals\displaystyle\colonequals B(Ng)(Nh)(Mf)D(N1)dV,\displaystyle\int B(Ng)^{\prime}_{*}(Nh)(Mf)^{\prime}\mathrm{D}(N^{-1})\mathrm{d}V, (3.61)
𝒰3\displaystyle\mathcal{U}_{3} \colonequals\displaystyle\colonequals B(Ng)(hh)D(f)(MM)dV,\displaystyle\int B(Ng)^{\prime}_{*}(h-h^{\prime})\mathrm{D}(f^{\prime})(M_{*}-M^{\prime})\mathrm{d}V, (3.62)
𝒰4\displaystyle\mathcal{U}_{4} \colonequals\displaystyle\colonequals B(Ng)hD(f)(MM)dV.\displaystyle\int B(Ng)^{\prime}_{*}h^{\prime}\mathrm{D}(f^{\prime})(M_{*}-M^{\prime})\mathrm{d}V. (3.63)

Estimate of 𝒰1\mathcal{U}_{1}. Using (2.28) to (3.60), we have

𝒰1=B(Ng)(Nh)fMD(N1)dV.\displaystyle\mathcal{U}_{1}=\int B(Ng)_{*}(Nh)^{\prime}fM^{\prime}_{*}\mathrm{D}(N^{-1})\mathrm{d}V. (3.64)

Recalling (2.1), there holds M=μ12N.M=\mu^{\frac{1}{2}}N. Similar to (3.23), we have

NMD(N1)=(D(μ12)ρD(μ12)μ12μ12)N(11ρμ).\displaystyle N^{\prime}M^{\prime}_{*}\mathrm{D}(N^{-1})=\big{(}\mathrm{D}(\mu^{\frac{1}{2}}_{*})-\rho\mathrm{D}(\mu^{\frac{1}{2}})\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}\big{)}N^{\prime}_{*}(\frac{1}{1-\rho\mu})^{\prime}. (3.65)

Plugging (3.65) into (3.64), using N=D(N)+NN^{\prime}_{*}=\mathrm{D}(N^{\prime}_{*})+N_{*} and (h1ρμ)=D((h1ρμ))+h1ρμ(\frac{h}{1-\rho\mu})^{\prime}=\mathrm{D}((\frac{h}{1-\rho\mu})^{\prime})+\frac{h}{1-\rho\mu}, we have

𝒰1\displaystyle\mathcal{U}_{1} =\displaystyle= 𝒰1,1+𝒰1,2+𝒰1,3,\displaystyle\mathcal{U}_{1,1}+\mathcal{U}_{1,2}+\mathcal{U}_{1,3}, (3.66)
𝒰1,1\displaystyle\mathcal{U}_{1,1} \colonequals\displaystyle\colonequals B(Ng)(h1ρμ)fD(N)(D(μ12)ρD(μ12)μ12μ12)dV,\displaystyle\int B(Ng)_{*}(\frac{h}{1-\rho\mu})^{\prime}f\mathrm{D}(N^{\prime}_{*})\big{(}\mathrm{D}(\mu^{\frac{1}{2}}_{*})-\rho\mathrm{D}(\mu^{\frac{1}{2}})\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}\big{)}\mathrm{d}V,
𝒰1,2\displaystyle\mathcal{U}_{1,2} \colonequals\displaystyle\colonequals B(N2g)D((h1ρμ))f(D(μ12)ρD(μ12)μ12μ12)dV,\displaystyle\int B(N^{2}g)_{*}\mathrm{D}((\frac{h}{1-\rho\mu})^{\prime})f\big{(}\mathrm{D}(\mu^{\frac{1}{2}}_{*})-\rho\mathrm{D}(\mu^{\frac{1}{2}})\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}\big{)}\mathrm{d}V,
𝒰1,3\displaystyle\mathcal{U}_{1,3} \colonequals\displaystyle\colonequals B(N2g)h1ρμf(D(μ12)ρD(μ12)μ12μ12)dV.\displaystyle\int B(N^{2}g)_{*}\frac{h}{1-\rho\mu}f\big{(}\mathrm{D}(\mu^{\frac{1}{2}}_{*})-\rho\mathrm{D}(\mu^{\frac{1}{2}})\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}\big{)}\mathrm{d}V.

Estimate of 𝒰1,1\mathcal{U}_{1,1}. By Cauchy-Schwartz inequality and (2.3), we have

|𝒰1,1|\displaystyle|\mathcal{U}_{1,1}| \displaystyle\lesssim (B(μ12g)2(h2)D2(N)dV)12(Bf2D2(μ12)dV+Bμμf2D2(μ12)dV)12.\displaystyle\big{(}\int B(\mu^{\frac{1}{2}}g)^{2}_{*}(h^{2})^{\prime}\mathrm{D}^{2}(N_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int Bf^{2}\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V+\int B\mu\mu_{*}f^{2}\mathrm{D}^{2}(\mu^{\frac{1}{2}})\mathrm{d}V\big{)}^{\frac{1}{2}}.

By (3.17) and Remark 3.1, we have

B(μ12g)2(h2)D2(N)dV|g|Hs12|h|Hγ/2+ss22.\displaystyle\int B(\mu^{\frac{1}{2}}g)^{2}_{*}(h^{2})^{\prime}\mathrm{D}^{2}(N_{*})\mathrm{d}V\lesssim|g|_{H^{s_{1}}}^{2}|h|_{H^{s_{2}}_{\gamma/2+s}}^{2}.

By (2.27) and Theorem 2.3, we get

Bf2D2(μ12)dV=Bf2D2(μ12)dV=𝒩(f,μ12)|f|γ/2s2.\displaystyle\int Bf^{2}\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V=\int Bf_{*}^{2}\mathrm{D}^{2}(\mu^{\frac{1}{2}})\mathrm{d}V=\mathcal{N}(f,\mu^{\frac{1}{2}})\lesssim|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}.

By (2.27) and the estimate (3.18), we get

Bμμf2D2(μ12)dV=Bμμf2D2(μ12)dV|μ12f|L22.\displaystyle\int B\mu\mu_{*}f^{2}\mathrm{D}^{2}(\mu^{\frac{1}{2}})\mathrm{d}V=\int B\mu\mu_{*}f_{*}^{2}\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V\lesssim|\mu^{\frac{1}{2}}f|_{L^{2}}^{2}.

Patching together the previous three estimates, we have

|𝒰1,1||g|Hs1|h|Hγ/2+ss2|f|γ/2s.\displaystyle|\mathcal{U}_{1,1}|\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.67)

Estimate of 𝒰1,2\mathcal{U}_{1,2}. By Cauchy-Schwartz inequality and (2.3), we have

|𝒰1,2|(Bμg2f2(D2(μ12)+D2(μ12)μμ)dV)12(BμD2(h1ρμ)dV)12.\displaystyle|\mathcal{U}_{1,2}|\lesssim\big{(}\int B\mu_{*}g^{2}_{*}f^{2}\big{(}\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})+\mathrm{D}^{2}(\mu^{\frac{1}{2}})\mu\mu_{*}\big{)}\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu_{*}\mathrm{D}^{2}(\frac{h}{1-\rho\mu})\mathrm{d}V\big{)}^{\frac{1}{2}}. (3.68)

By (3.17), we have

Bμg2f2D2(μ12)dV|g|H122|f|Lγ/2+s22.\displaystyle\int B\mu_{*}g^{2}_{*}f^{2}\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V\lesssim|g|_{H^{\frac{1}{2}}}^{2}|f|_{L^{2}_{\gamma/2+s}}^{2}. (3.69)

By (2.27) and the estimate (3.18), we get

Bμg2f2D2(μ12)μμdV=Bμg2f2D2(μ12)μμdV|μ1256g|H122|μ1256f|L22.\displaystyle\int B\mu_{*}g^{2}_{*}f^{2}\mathrm{D}^{2}(\mu^{\frac{1}{2}})\mu\mu_{*}\mathrm{d}V=\int B\mu g^{2}f_{*}^{2}\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})\mu\mu_{*}\mathrm{d}V\lesssim|\mu^{\frac{1}{256}}g|_{H^{\frac{1}{2}}}^{2}|\mu^{\frac{1}{256}}f|_{L^{2}}^{2}. (3.70)

Observe D((h1ρμ))=D(h)(1ρμ)ρD(μ)h(1ρμ)(1ρμ)\mathrm{D}((\frac{h}{1-\rho\mu})^{\prime})=\frac{\mathrm{D}(h^{\prime})}{(1-\rho\mu)^{\prime}}-\frac{\rho\mathrm{D}(\mu)h}{(1-\rho\mu)^{\prime}(1-\rho\mu)} and thus

D2(h1ρμ)D2(h)+D2(μ)h2,\displaystyle\mathrm{D}^{2}(\frac{h}{1-\rho\mu})\lesssim\mathrm{D}^{2}(h)+\mathrm{D}^{2}(\mu)h^{2}, (3.71)

which gives

BμD2(h1ρμ)dVBμD2(h)dV+BμD2(μ)h2dV|h|γ/2s2,\displaystyle\int B\mu_{*}\mathrm{D}^{2}(\frac{h}{1-\rho\mu})\mathrm{d}V\lesssim\int B\mu_{*}\mathrm{D}^{2}(h)\mathrm{d}V+\int B\mu\mathrm{D}^{2}(\mu_{*})h_{*}^{2}\mathrm{d}V\lesssim|h|_{\mathcal{L}^{s}_{\gamma/2}}^{2}, (3.72)

where we use (2.27), Theorem 2.3 and the estimate (3.18). Plugging (3.69), (3.70) and (3.72) into (3.68), we get

|𝒰1,2||g|H12|h|γ/2s|f|γ/2s.\displaystyle|\mathcal{U}_{1,2}|\lesssim|g|_{H^{\frac{1}{2}}}|h|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.73)

Another estimate of 𝒰1,2\mathcal{U}_{1,2}. We now give another estimate of 𝒰1,2\mathcal{U}_{1,2} to put more regularity on hh. By Cauchy-Schwartz inequality and (2.3), we have

|𝒰1,2|(Bμf2(D2(μ12)+D2(μ12)μμ)dV)12(Bμg2D2(h1ρμ)dV)12.\displaystyle|\mathcal{U}_{1,2}|\lesssim\big{(}\int B\mu_{*}f^{2}\big{(}\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})+\mathrm{D}^{2}(\mu^{\frac{1}{2}})\mu\mu_{*}\big{)}\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu_{*}g^{2}_{*}\mathrm{D}^{2}(\frac{h}{1-\rho\mu})\mathrm{d}V\big{)}^{\frac{1}{2}}. (3.74)

By (3.17), we have Bμf2D2(μ12)dV|f|Lγ/2+s22.\int B\mu_{*}f^{2}\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V\lesssim|f|_{L^{2}_{\gamma/2+s}}^{2}. By (2.27) and the estimate (3.18), we get

Bμf2D2(μ12)μμdV=Bμf2D2(μ12)μμdV|μ1256f|L22.\displaystyle\int B\mu_{*}f^{2}\mathrm{D}^{2}(\mu^{\frac{1}{2}})\mu\mu_{*}\mathrm{d}V=\int B\mu f_{*}^{2}\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})\mu\mu_{*}\mathrm{d}V\lesssim|\mu^{\frac{1}{256}}f|_{L^{2}}^{2}.

By (3.71) and (2.27), using (3.41) and (3.18), we have

Bμg2D2(h1ρμ)dV\displaystyle\int B\mu_{*}g^{2}_{*}\mathrm{D}^{2}(\frac{h}{1-\rho\mu})\mathrm{d}V \displaystyle\lesssim Bμg2D2(h)dV+Bμg2D2(μ)h2dV\displaystyle\int B\mu g^{2}\mathrm{D}^{2}(h_{*})\mathrm{d}V+\int B\mu g^{2}\mathrm{D}^{2}(\mu_{*})h^{2}_{*}\mathrm{d}V
\displaystyle\lesssim |μ164g|Hs12|h|Hγ/2+ss2+12+|μ1256g|Hs12|μ1256h|Hs22.\displaystyle|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}^{2}|h|_{H^{s_{2}+1}_{\gamma/2+s}}^{2}+|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}^{2}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}^{2}.

Plugging the previous three estimates into (3.74), we get

|𝒰1,2||μ1256g|Hs1|h|Hγ/2+ss2+1|f|Lγ/2+s2.\displaystyle|\mathcal{U}_{1,2}|\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|h|_{H^{s_{2}+1}_{\gamma/2+s}}|f|_{L^{2}_{\gamma/2+s}}. (3.75)

Estimate of 𝒰1,3\mathcal{U}_{1,3}. Now we set to estimate 𝒰1,3\mathcal{U}_{1,3}. By (2.27), using (3.13) and (3.15), we have

|𝒰1,3|\displaystyle|\mathcal{U}_{1,3}| \displaystyle\leq |B(N2g)h1ρμfD(μ12)dV|\displaystyle|\int B(N^{2}g)_{*}\frac{h}{1-\rho\mu}f\mathrm{D}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V| (3.76)
+|ρBN2g(μ12hf1ρμ)D(μ12)μ12dV||g|Hs1|h|Hγ/2+ss2|f|Lγ/2+s2.\displaystyle+|\rho\int BN^{2}g(\frac{\mu^{\frac{1}{2}}hf}{1-\rho\mu})_{*}\mathrm{D}(\mu^{\frac{1}{2}}_{*})\mu^{\frac{1}{2}}\mathrm{d}V|\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|f|_{L^{2}_{\gamma/2+s}}.

Patching together (3.67), (3.73) and (3.76), recalling (3.66), we get

|𝒰1||g|H12|h|γ/2s|f|γ/2s.\displaystyle|\mathcal{U}_{1}|\lesssim|g|_{H^{\frac{1}{2}}}|h|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.77)

Patching together (3.67), (3.75) and (3.76), recalling (3.66), we get

|𝒰1||g|Hs1|h|Hγ/2+ss2+1|f|γ/2s.\displaystyle|\mathcal{U}_{1}|\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}+1}_{\gamma/2+s}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.78)

Estimate of 𝒰2\mathcal{U}_{2}. Recalling (3.61) and M=μ12NM=\mu^{\frac{1}{2}}N, using (2.28), we have

𝒰2=B(Ng)h(μ12f)D(N)dV=B(Ng)hμ12fD(N)dV=𝒰2,1+𝒰2,2,\displaystyle\mathcal{U}_{2}=\int B(Ng)^{\prime}_{*}h(\mu^{\frac{1}{2}}f)^{\prime}\mathrm{D}(N^{\prime})\mathrm{d}V=\int B(Ng)_{*}h^{\prime}\mu^{\frac{1}{2}}f\mathrm{D}(N)\mathrm{d}V=\mathcal{U}_{2,1}+\mathcal{U}_{2,2}, (3.79)
𝒰2,1\colonequalsB(Ng)D(h)μ12fD(N)dV,𝒰2,2\colonequalsB(Ng)hμ12fD(N)dV.\displaystyle\mathcal{U}_{2,1}\colonequals\int B(Ng)_{*}\mathrm{D}(h^{\prime})\mu^{\frac{1}{2}}f\mathrm{D}(N)\mathrm{d}V,\quad\mathcal{U}_{2,2}\colonequals\int B(Ng)_{*}h\mu^{\frac{1}{2}}f\mathrm{D}(N)\mathrm{d}V.

By Cauchy-Schwartz inequality, (2.3) and (2.27), we have

|𝒰2,1|\displaystyle|\mathcal{U}_{2,1}| \displaystyle\lesssim (Bμ12D2(h)dV)12(Bμ12g2(μf2)D2(N)dV)12\displaystyle\big{(}\int B\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(h)\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}g^{2}(\mu f^{2})_{*}\mathrm{D}^{2}(N_{*})\mathrm{d}V\big{)}^{\frac{1}{2}} (3.80)
\displaystyle\lesssim |μ1256g|H12|h|γ/2s|μ1256f|L2|g|H12|h|γ/2s|f|γ/2s,\displaystyle|\mu^{\frac{1}{256}}g|_{H^{\frac{1}{2}}}|h|_{\mathcal{L}^{s}_{\gamma/2}}|\mu^{\frac{1}{256}}f|_{L^{2}}\lesssim|g|_{H^{\frac{1}{2}}}|h|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}},

where we use Theorem 2.3, the estimate (3.18) and Remark 3.1.

We now give another estimate of 𝒰2,1\mathcal{U}_{2,1}. By Cauchy-Schwartz inequality, (2.3) and (2.27), we have

|𝒰2,1|\displaystyle|\mathcal{U}_{2,1}| \displaystyle\lesssim (Bμ12g2D2(h)dV)12(Bμ12(μf2)D2(N)dV)12\displaystyle\big{(}\int B\mu^{\frac{1}{2}}g^{2}\mathrm{D}^{2}(h_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}(\mu f^{2})_{*}\mathrm{D}^{2}(N_{*})\mathrm{d}V\big{)}^{\frac{1}{2}} (3.81)
\displaystyle\lesssim |μ164g|Hs1|h|Hγ/2+ss2+1|μ1256f|L2|g|Hs1|h|Hγ/2+ss2+1|f|γ/2s,\displaystyle|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|h|_{H^{s_{2}+1}_{\gamma/2+s}}|\mu^{\frac{1}{256}}f|_{L^{2}}\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}+1}_{\gamma/2+s}}|f|_{\mathcal{L}^{s}_{\gamma/2}},

where we use (3.41), the estimate (3.18) and Remark 3.1.

By (2.27), the estimate (3.15) and Remark 3.1, we have

|𝒰2,2|=|BNg(hμ12f)D(N)dV||μ1256g|Hs1|μ1256h|Hs2|μ1256f|L2.\displaystyle|\mathcal{U}_{2,2}|=|\int BNg(h\mu^{\frac{1}{2}}f)_{*}\mathrm{D}(N_{*})\mathrm{d}V|\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}f|_{L^{2}}. (3.82)

Patching together (3.80) and (3.82), recalling (3.79), we get

|𝒰2||g|H12|h|γ/2s|f|γ/2s.\displaystyle|\mathcal{U}_{2}|\lesssim|g|_{H^{\frac{1}{2}}}|h|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.83)

Patching together (3.81) and (3.82), recalling (3.79), we get

|𝒰2||g|Hs1|h|Hγ/2+ss2+1|f|γ/2s.\displaystyle|\mathcal{U}_{2}|\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}+1}_{\gamma/2+s}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.84)

Estimate of 𝒰3\mathcal{U}_{3}. Recalling (3.62), by Cauchy-Schwartz inequality, the imbedding H2LH^{2}\hookrightarrow L^{\infty}, (2.3), (2.28) and Theorem 2.3, we have

|𝒰3|\displaystyle|\mathcal{U}_{3}| \displaystyle\lesssim |g|L(BND2(h)dV)12(BND2(f)dV)12\displaystyle|g|_{L^{\infty}}\big{(}\int BN^{\prime}_{*}\mathrm{D}^{2}(h)\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int BN^{\prime}_{*}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}} (3.85)
\displaystyle\lesssim |g|H2(Bμ12D2(h)dV)12(Bμ12D2(f)dV)12|g|H2|h|γ/2s|f|γ/2s.\displaystyle|g|_{H^{2}}\big{(}\int B\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(h)\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.\quad

By Cauchy-Schwartz inequality, (2.3), (2.27), (2.28), the estimate (3.41) and Theorem 2.3, we have

|𝒰3|\displaystyle|\mathcal{U}_{3}| \displaystyle\lesssim (BN(g2)D2(h)dV)12(BND2(f)dV)12\displaystyle\big{(}\int BN^{\prime}_{*}(g^{2})^{\prime}_{*}\mathrm{D}^{2}(h)\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int BN^{\prime}_{*}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}} (3.86)
\displaystyle\lesssim (Bμ12g2D2(h)dV)12(Bμ12D2(f)dV)12|g|Hs1|h|Hγ/2+ss2+1|f|γ/2s.\displaystyle\big{(}\int B\mu^{\frac{1}{2}}g^{2}\mathrm{D}^{2}(h_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}+1}_{\gamma/2+s}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.\quad\quad

Estimate of 𝒰4\mathcal{U}_{4}. Recalling (3.63) and using (2.28), we have

𝒰4\displaystyle\mathcal{U}_{4} =\displaystyle= B(Ng)hD(f)(MM)dV\displaystyle\int B(Ng)_{*}h\mathrm{D}(f)(M_{*}^{\prime}-M)\mathrm{d}V
=\displaystyle= B(Ng)MhD(f)dV+B(MNg)hD(f)dV+B(Ng)hD(f)D(M)dV\displaystyle\int B(Ng)_{*}Mh\mathrm{D}(f^{\prime})\mathrm{d}V+\int B(MNg)_{*}h\mathrm{D}(f)\mathrm{d}V+\int B(Ng)_{*}h\mathrm{D}(f)\mathrm{D}(M_{*}^{\prime})\mathrm{d}V
=\displaystyle= Qc(Ng,Mh),fQc(MNg,h),f𝒯4,2,\displaystyle\langle Q_{c}(Ng,Mh),f\rangle-\langle Q_{c}(MNg,h),f\rangle-\mathcal{T}_{4,2},

where we recall (3.55) for the notation 𝒯4,2\mathcal{T}_{4,2}. By Corollary 3.1 and Lemma 3.1, we have

|Qc(Ng,Mh),f|+|Qc(MNg,h),f|min{|g|H2|h|γ/2s,|g|L2(|h|γ/2s+|h|Hγ/2s+2)}|f|γ/2s.\displaystyle|\langle Q_{c}(Ng,Mh),f\rangle|+|\langle Q_{c}(MNg,h),f\rangle|\lesssim\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

From which together with (3.56), we get

|𝒰4|min{|g|H2|h|γ/2s,|g|L2(|h|γ/2s+|h|Hγ/2s+2+|h|Hγ/2+s12)}|f|γ/2s.\displaystyle|\mathcal{U}_{4}|\lesssim\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}}+|h|_{H^{\frac{1}{2}}_{\gamma/2+s}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.87)

Patching together (3.77), (3.83), (3.85) and (3.87), recalling (3.59), we get

|Γ2,r,2ρ(g,h),f||g|H2|h|γ/2s|f|γ/2s.\displaystyle|\langle\Gamma_{2,r,2}^{\rho}(g,h),f\rangle|\lesssim|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.88)

Patching together (3.78), (3.84), (3.86) and (3.87), by taking s1=0,s2=12s_{1}=0,s_{2}=\frac{1}{2}, recalling (3.59), we get

|Γ2,r,2ρ(g,h),f||g|L2(|h|γ/2s+|h|Hγ/2s+2+|h|Hγ/2+s32)|f|γ/2s.\displaystyle|\langle\Gamma_{2,r,2}^{\rho}(g,h),f\rangle|\lesssim|g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}}+|h|_{H^{\frac{3}{2}}_{\gamma/2+s}})|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.89)

Patching together (3.88) and (3.89), we finish the proof. ∎

Proposition 3.6.

It holds that

|Γ2,r,3ρ(g,h),f|min{|g|H2|h|γ/2s,|g|L2(|μ1256h|H2+|h|Hγ/2+s32)}|f|γ/2s.\displaystyle|\langle\Gamma_{2,r,3}^{\rho}(g,h),f\rangle|\lesssim\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|\mu^{\frac{1}{256}}h|_{H^{2}}+|h|_{H^{\frac{3}{2}}_{\gamma/2+s}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}.
Proof.

Recalling the definition of Γ2,r,3ρ\Gamma_{2,r,3}^{\rho} in (3.7), we have

Γ2,r,3ρ(g,h)\displaystyle\Gamma_{2,r,3}^{\rho}(g,h) =\displaystyle= Γ2,r,3,1ρ(g,h)+Γ2,r,3,2ρ(g,h),\displaystyle\Gamma_{2,r,3,1}^{\rho}(g,h)+\Gamma_{2,r,3,2}^{\rho}(g,h), (3.90)
Γ2,r,3,1ρ(g,h)\displaystyle\Gamma_{2,r,3,1}^{\rho}(g,h) \colonequals\displaystyle\colonequals N1B(Ng)(Nh)D(M)dσdv,\displaystyle N^{-1}\int B(Ng)^{\prime}(Nh)\mathrm{D}(M^{\prime}_{*})\mathrm{d}\sigma\mathrm{d}v_{*}, (3.91)
Γ2,r,3,2ρ(g,h)\displaystyle\Gamma_{2,r,3,2}^{\rho}(g,h) \colonequals\displaystyle\colonequals N1B(Ng)(Nh)D(M)dσdv.\displaystyle N^{-1}\int B(Ng)^{\prime}_{*}(Nh)_{*}\mathrm{D}(M^{\prime})\mathrm{d}\sigma\mathrm{d}v_{*}. (3.92)

Then it suffices to consider Γ2,r,3,1ρ(g,h),f\langle\Gamma_{2,r,3,1}^{\rho}(g,h),f\rangle and Γ2,r,3,2ρ(g,h),f\langle\Gamma_{2,r,3,2}^{\rho}(g,h),f\rangle.

Estimate of Γ2,r,3,1ρ(g,h),f\langle\Gamma_{2,r,3,1}^{\rho}(g,h),f\rangle. Recalling (3.91), using (2.28), we have

Γ2,r,3,1ρ(g,h),f=B(Ng)hfD(M)dV=B(Ng)(hf)D(M)dV=𝒱1+𝒱2+𝒱3,\displaystyle\langle\Gamma_{2,r,3,1}^{\rho}(g,h),f\rangle=\int B(Ng)^{\prime}hf\mathrm{D}(M^{\prime}_{*})\mathrm{d}V=\int B(Ng)(hf)^{\prime}\mathrm{D}(M_{*})\mathrm{d}V=\mathcal{V}_{1}+\mathcal{V}_{2}+\mathcal{V}_{3}, (3.93)
𝒱1\colonequalsB(Ng)hD(f)D(M)dV,𝒱2\colonequalsB(Ng)D(h)fD(M)dV,𝒱3\colonequalsB(Ng)hfD(M)dV.\displaystyle\mathcal{V}_{1}\colonequals\int B(Ng)h^{\prime}\mathrm{D}(f^{\prime})\mathrm{D}(M_{*})\mathrm{d}V,\quad\mathcal{V}_{2}\colonequals\int B(Ng)\mathrm{D}(h^{\prime})f\mathrm{D}(M_{*})\mathrm{d}V,\quad\mathcal{V}_{3}\colonequals\int B(Ng)hf\mathrm{D}(M_{*})\mathrm{d}V. (3.94)

By Cauchy-Schwartz inequality, the imbedding H2LH^{2}\hookrightarrow L^{\infty}, (2.28), (2.3) and (2.37), we get

|𝒱1|\displaystyle|\mathcal{V}_{1}| \displaystyle\lesssim |g|L(BN2(h2)D2(M12)dV)12(BD2(f)A(M)dV)12\displaystyle|g|_{L^{\infty}}\big{(}\int BN^{2}(h^{2})^{\prime}\mathrm{D}^{2}(M^{\frac{1}{2}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mathrm{D}^{2}(f)\mathrm{A}(M_{*})\mathrm{d}V\big{)}^{\frac{1}{2}} (3.95)
\displaystyle\lesssim |g|H2(Bμ18μ18h2D2(M14)dV)12(BμD2(f)dV)12|g|H2|μ1256h|L2|f|γ/2s,\displaystyle|g|_{H^{2}}\big{(}\int B\mu^{\frac{1}{8}}\mu^{\frac{1}{8}}_{*}h^{2}\mathrm{D}^{2}(M^{\frac{1}{4}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu_{*}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|g|_{H^{2}}|\mu^{\frac{1}{256}}h|_{L^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}},

where we use Theorem 2.3, the estimate (3.18) and Remark 3.1 in the last line. By the same derivation, we have

|𝒱2||g|L(BD2(h)A(M)dV)12(BN2f2D2(M12)dV)12|g|H2|h|γ/2s|μ1256f|L2.\displaystyle|\mathcal{V}_{2}|\lesssim|g|_{L^{\infty}}\big{(}\int B\mathrm{D}^{2}(h)\mathrm{A}(M_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int BN^{2}f^{2}\mathrm{D}^{2}(M^{\frac{1}{2}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}}|\mu^{\frac{1}{256}}f|_{L^{2}}. (3.96)

By (3.16)(in which g,h,fg,h,f play the same role) and Remark 3.1, we have

|𝒱3||g|Hs3|μ1256h|Hs4|μ1256f|L2.\displaystyle|\mathcal{V}_{3}|\lesssim|g|_{H^{s_{3}}}|\mu^{\frac{1}{256}}h|_{H^{s_{4}}}|\mu^{\frac{1}{256}}f|_{L^{2}}. (3.97)

Here and in the rest of the article, (s3,s4)=(2,0)(s_{3},s_{4})=(2,0) or (s3,s4)=(0,2)(s_{3},s_{4})=(0,2) unless otherwise specified.

Patching together (3.95), (3.96) and (3.97), recalling (3.93), by taking (s3,s4)=(2,0)(s_{3},s_{4})=(2,0), we get

|Γ2,r,3,1ρ(g,h),f||g|H2|h|γ/2s|f|γ/2s.\displaystyle|\langle\Gamma_{2,r,3,1}^{\rho}(g,h),f\rangle|\lesssim|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.98)

Another estimate of Γ2,r,3,1ρ(g,h),f\langle\Gamma_{2,r,3,1}^{\rho}(g,h),f\rangle. Recalling (3.94) for 𝒱3\mathcal{V}_{3}, we have

Γ2,r,3,1ρ(g,h),f=B(Ng)(hf)D(M)dV=𝒲1+𝒲2+𝒱3,\displaystyle\langle\Gamma_{2,r,3,1}^{\rho}(g,h),f\rangle=\int B(Ng)(hf)^{\prime}\mathrm{D}(M_{*})\mathrm{d}V=\mathcal{W}_{1}+\mathcal{W}_{2}+\mathcal{V}_{3}, (3.99)
𝒲1\colonequalsBμ14NgD(μ14)(hf)D(M)dV,𝒲2\colonequalsBμ14NgD((μ14hf))D(M)dV.\displaystyle\mathcal{W}_{1}\colonequals\int B\mu^{-\frac{1}{4}}Ng\mathrm{D}(\mu^{\frac{1}{4}})(hf)^{\prime}\mathrm{D}(M_{*})\mathrm{d}V,\quad\mathcal{W}_{2}\colonequals\int B\mu^{-\frac{1}{4}}Ng\mathrm{D}((\mu^{\frac{1}{4}}hf)^{\prime})\mathrm{D}(M_{*})\mathrm{d}V.

By Cauchy-Schwartz inequality, (2.3), (2.28), (2.27), the estimate (2.37), we get

|𝒲1|\displaystyle|\mathcal{W}_{1}| \displaystyle\lesssim (Bμ14g2D2(M12)dV)12(Bμ14D2(μ14)(h2f2)A(M)dV)12\displaystyle\big{(}\int B\mu^{\frac{1}{4}}g^{2}\mathrm{D}^{2}(M^{\frac{1}{2}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{4}}\mathrm{D}^{2}(\mu^{\frac{1}{4}})(h^{2}f^{2})^{\prime}\mathrm{A}(M_{*})\mathrm{d}V\big{)}^{\frac{1}{2}} (3.100)
\displaystyle\lesssim (Bμ116μ116g2D2(M14)dV)12(Bμ116μ116h2f2D2(μ14)dV)12\displaystyle\big{(}\int B\mu^{\frac{1}{16}}\mu^{\frac{1}{16}}_{*}g^{2}\mathrm{D}^{2}(M^{\frac{1}{4}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{16}}\mu^{\frac{1}{16}}_{*}h^{2}_{*}f^{2}_{*}\mathrm{D}^{2}(\mu^{\frac{1}{4}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}
\displaystyle\lesssim |μ1256g|L2|μ1256h|H2|μ1256f|L2,\displaystyle|\mu^{\frac{1}{256}}g|_{L^{2}}|\mu^{\frac{1}{256}}h|_{H^{2}}|\mu^{\frac{1}{256}}f|_{L^{2}},

where we use the imbedding H2LH^{2}\hookrightarrow L^{\infty}, the estimate (3.18) and Remark 3.1 in the last line. By Cauchy-Schwartz inequality, (2.28), the estimate (2.37), Theorem 2.3, the estimate (3.18) and Remark 3.1, we get

|𝒲2|\displaystyle|\mathcal{W}_{2}| \displaystyle\lesssim (Bμ12g2D2(M12)dV)12(BD2(μ14hf)A(M)dV)12\displaystyle\big{(}\int B\mu^{\frac{1}{2}}g^{2}\mathrm{D}^{2}(M^{\frac{1}{2}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mathrm{D}^{2}(\mu^{\frac{1}{4}}hf)\mathrm{A}(M_{*})\mathrm{d}V\big{)}^{\frac{1}{2}} (3.101)
\displaystyle\lesssim (Bμ18μ18g2D2(M14)dV)12(BμD2(μ14hf)dV)12\displaystyle\big{(}\int B\mu^{\frac{1}{8}}\mu^{\frac{1}{8}}_{*}g^{2}\mathrm{D}^{2}(M^{\frac{1}{4}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu_{*}\mathrm{D}^{2}(\mu^{\frac{1}{4}}hf)\mathrm{d}V\big{)}^{\frac{1}{2}}
\displaystyle\lesssim |μ1256g|L2|μ14hf|γ/2s|μ1256g|L2|μ116h|H2|f|γ/2s,\displaystyle|\mu^{\frac{1}{256}}g|_{L^{2}}|\mu^{\frac{1}{4}}hf|_{\mathcal{L}^{s}_{\gamma/2}}\lesssim|\mu^{\frac{1}{256}}g|_{L^{2}}|\mu^{\frac{1}{16}}h|_{H^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}},

where we use (3.12) in the last inequality. Patching together (3.100), (3.101) and (3.97), recalling (3.99), by taking (s3,s4)=(0,2)(s_{3},s_{4})=(0,2), we get

|Γ2,r,3,1ρ(g,h),f||g|L2|μ1256h|H2|f|γ/2s.\displaystyle|\langle\Gamma_{2,r,3,1}^{\rho}(g,h),f\rangle|\lesssim|g|_{L^{2}}|\mu^{\frac{1}{256}}h|_{H^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.102)

Patching together (3.98) and (3.102), we get

|Γ2,r,3,1ρ(g,h),f|min{|g|H2|h|γ/2s,|g|L2|μ1256h|H2}|f|γ/2s.\displaystyle|\langle\Gamma_{2,r,3,1}^{\rho}(g,h),f\rangle|\lesssim\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}|\mu^{\frac{1}{256}}h|_{H^{2}}\}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.103)

Estimate of Γ2,r,3,2ρ(g,h),f\langle\Gamma_{2,r,3,2}^{\rho}(g,h),f\rangle. Recalling (3.92), taking inner product, we have

Γ2,r,3,2ρ(g,h),f=B(Ng)(Nh)D(M)N1fdV.\displaystyle\langle\Gamma_{2,r,3,2}^{\rho}(g,h),f\rangle=\int B(Ng)^{\prime}_{*}(Nh)_{*}\mathrm{D}(M^{\prime})N^{-1}f\mathrm{d}V. (3.104)

Recalling M=μ12NM=\mu^{\frac{1}{2}}N, we have D(M)=D((μ12N))=(μ12)D(N)+D((μ12))N\mathrm{D}(M^{\prime})=\mathrm{D}((\mu^{\frac{1}{2}}N)^{\prime})=(\mu^{\frac{1}{2}})^{\prime}\mathrm{D}(N^{\prime})+\mathrm{D}((\mu^{\frac{1}{2}})^{\prime})N which gives

NND(M)N1\displaystyle N^{\prime}_{*}N_{*}\mathrm{D}(M^{\prime})N^{-1} =\displaystyle= NN(μ12)D(N)N1+NND((μ12))\displaystyle N^{\prime}_{*}N_{*}(\mu^{\frac{1}{2}})^{\prime}\mathrm{D}(N^{\prime})N^{-1}+N^{\prime}_{*}N_{*}\mathrm{D}((\mu^{\frac{1}{2}})^{\prime})
=\displaystyle= (11ρμ)MD(N)(1ρμ)+NND((μ12)).\displaystyle(\frac{1}{1-\rho\mu})^{\prime}_{*}M_{*}\mathrm{D}(N^{\prime})(1-\rho\mu)+N^{\prime}_{*}N_{*}\mathrm{D}((\mu^{\frac{1}{2}})^{\prime}).

Plugging which into (3.104), we get

Γ2,r,3,2ρ(g,h),f\displaystyle\langle\Gamma_{2,r,3,2}^{\rho}(g,h),f\rangle =\displaystyle= 𝒳1+𝒳2,\displaystyle\mathcal{X}_{1}+\mathcal{X}_{2}, (3.105)
𝒳1\displaystyle\mathcal{X}_{1} \colonequals\displaystyle\colonequals B(g1ρμ)(Mh)(1ρμ)fD(N)dV,\displaystyle\int B(\frac{g}{1-\rho\mu})^{\prime}_{*}(Mh)_{*}(1-\rho\mu)f\mathrm{D}(N^{\prime})\mathrm{d}V, (3.106)
𝒳2\displaystyle\mathcal{X}_{2} \colonequals\displaystyle\colonequals B(Ng)(Nh)fD((μ12))dV.\displaystyle\int B(Ng)^{\prime}_{*}(Nh)_{*}f\mathrm{D}((\mu^{\frac{1}{2}})^{\prime})\mathrm{d}V. (3.107)

Since the two quantities have a similar structure, we only consider 𝒳2\mathcal{X}_{2}. Indeed, we will not use the factor NN before gg in 𝒳2\mathcal{X}_{2} and so the estimate of 𝒳1\mathcal{X}_{1} is similar. Using (2.28), note that

𝒳2=B(Ng)(Nh)fD(μ12)dV=𝒳2,1+𝒳2,2+𝒳2,3+𝒳2,4,\displaystyle\mathcal{X}_{2}=\int B(Ng)_{*}(Nh)^{\prime}_{*}f^{\prime}\mathrm{D}(\mu^{\frac{1}{2}})\mathrm{d}V=\mathcal{X}_{2,1}+\mathcal{X}_{2,2}+\mathcal{X}_{2,3}+\mathcal{X}_{2,4}, (3.108)
𝒳2,1\colonequalsB(Ng)(Nh)D(f)D(μ12)dV,𝒳2,2\colonequalsB(Ng)ND(h)fD(μ12)dV,\displaystyle\mathcal{X}_{2,1}\colonequals\int B(Ng)_{*}(Nh)^{\prime}_{*}\mathrm{D}(f^{\prime})\mathrm{D}(\mu^{\frac{1}{2}})\mathrm{d}V,\quad\mathcal{X}_{2,2}\colonequals\int B(Ng)_{*}N^{\prime}_{*}\mathrm{D}(h^{\prime}_{*})f\mathrm{D}(\mu^{\frac{1}{2}})\mathrm{d}V,
𝒳2,3\colonequalsB(Ng)D(N)hfD(μ12)dV,𝒳2,4\colonequalsB(Ng)(Nh)fD(μ12)dV.\displaystyle\mathcal{X}_{2,3}\colonequals\int B(Ng)_{*}\mathrm{D}(N^{\prime}_{*})h_{*}f\mathrm{D}(\mu^{\frac{1}{2}})\mathrm{d}V,\quad\mathcal{X}_{2,4}\colonequals\int B(Ng)_{*}(Nh)_{*}f\mathrm{D}(\mu^{\frac{1}{2}})\mathrm{d}V.

By Cauchy-Schwartz inequality, (2.3), (2.28), (2.27), the estimate (2.37), the imbedding H2LH^{2}\hookrightarrow L^{\infty}, the estimate (3.18), Remark 3.1 and Theorem 2.3, we have

|𝒳2,1|\displaystyle|\mathcal{X}_{2,1}| \displaystyle\lesssim (Bg2(h2)(μ12)D2(μ12)dV)12(B(μ12)D2(f)dV)12\displaystyle\big{(}\int Bg^{2}_{*}(h^{2})^{\prime}_{*}(\mu^{\frac{1}{2}})^{\prime}_{*}\mathrm{D}^{2}(\mu^{\frac{1}{2}})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B(\mu^{\frac{1}{2}})^{\prime}_{*}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}}
\displaystyle\lesssim (Bg2(h2)μ18μ18D2(μ14)dV)12(Bμ12D2(f)dV)12|μ1256g|Hs3|μ1256h|Hs4|f|γ/2s.\displaystyle\big{(}\int Bg^{2}(h^{2})^{\prime}\mu^{\frac{1}{8}}\mu^{\frac{1}{8}}_{*}\mathrm{D}^{2}(\mu^{\frac{1}{4}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{3}}}|\mu^{\frac{1}{256}}h|_{H^{s_{4}}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

We will deal with 𝒳2,2\mathcal{X}_{2,2} in two ways. On one hand, by Cauchy-Schwartz inequality, (2.3), (2.28), (2.27), the estimate (2.37), Theorem 2.3 and the estimate (3.18), we have

|𝒳2,2|\displaystyle|\mathcal{X}_{2,2}| \displaystyle\lesssim (BD2(h)A(μ12)dV)12(Bμg2f2D2(μ14)dV)12\displaystyle\big{(}\int B\mathrm{D}^{2}(h_{*})\mathrm{A}(\mu^{\frac{1}{2}})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\prime}_{*}g^{2}_{*}f^{2}\mathrm{D}^{2}(\mu^{\frac{1}{4}})\mathrm{d}V\big{)}^{\frac{1}{2}}
\displaystyle\lesssim (Bμ12D2(h)dV)12(Bμ116μ116g2f2D2(μ18)dV)12|μ1256g|H12|h|γ/2s|μ1256f|L2.\displaystyle\big{(}\int B\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(h)\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{16}}\mu^{\frac{1}{16}}_{*}g^{2}f^{2}_{*}\mathrm{D}^{2}(\mu^{\frac{1}{8}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|\mu^{\frac{1}{256}}g|_{H^{\frac{1}{2}}}|h|_{\mathcal{L}^{s}_{\gamma/2}}|\mu^{\frac{1}{256}}f|_{L^{2}}.

On the other hand, by Cauchy-Schwartz inequality, (2.3), (2.27), the estimate (2.37), the estimate (3.18) and the estimate (3.41), we have

|𝒳2,2|\displaystyle|\mathcal{X}_{2,2}| \displaystyle\lesssim (Bg2(μ12)D2(μ14)dV)12(B(μ12)D2(h)f2A(μ12)dV)12\displaystyle\big{(}\int Bg^{2}_{*}(\mu^{\frac{1}{2}})^{\prime}_{*}\mathrm{D}^{2}(\mu^{\frac{1}{4}})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B(\mu^{\frac{1}{2}})^{\prime}_{*}\mathrm{D}^{2}(h_{*})f^{2}\mathrm{A}(\mu^{\frac{1}{2}})\mathrm{d}V\big{)}^{\frac{1}{2}}
\displaystyle\lesssim (Bg2μ116μ116D2(μ18)dV)12(Bμ18μ18D2(h)f2dV)12|μ1256g|L2|h|Hγ/2+s32|μ164f|L2.\displaystyle\big{(}\int Bg^{2}\mu^{\frac{1}{16}}\mu^{\frac{1}{16}}_{*}\mathrm{D}^{2}(\mu^{\frac{1}{8}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{8}}\mu^{\frac{1}{8}}_{*}\mathrm{D}^{2}(h_{*})f^{2}\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|\mu^{\frac{1}{256}}g|_{L^{2}}|h|_{H^{\frac{3}{2}}_{\gamma/2+s}}|\mu^{\frac{1}{64}}f|_{L^{2}}.

Now we set to estimate 𝒳2,3\mathcal{X}_{2,3}. By Cauchy-Schwartz inequality, (2.3), (2.27), the estimate (2.37), the imbedding H2LH^{2}\hookrightarrow L^{\infty}, the estimate (3.18), Theorem 2.3 and Remark 2.3, we have

|𝒳2,3|\displaystyle|\mathcal{X}_{2,3}| \displaystyle\lesssim (Bg2h2A(μ12)D2(μ12)dV)12(BD2(N12)f2dV)12\displaystyle\big{(}\int Bg^{2}_{*}h^{2}_{*}\mathrm{A}(\mu^{\frac{1}{2}}_{*})\mathrm{D}^{2}(\mu^{\frac{1}{2}})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mathrm{D}^{2}(N^{\frac{1}{2}}_{*})f^{2}\mathrm{d}V\big{)}^{\frac{1}{2}}
\displaystyle\lesssim (Bg2h2μ18μ18D2(μ14)dV)12(Bf2D2(N12)dV)12|μ1256g|Hs3|μ1256h|Hs4|f|γ/2s.\displaystyle\big{(}\int Bg^{2}h^{2}\mu^{\frac{1}{8}}\mu^{\frac{1}{8}}_{*}\mathrm{D}^{2}(\mu^{\frac{1}{4}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int Bf^{2}_{*}\mathrm{D}^{2}(N^{\frac{1}{2}})\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{3}}}|\mu^{\frac{1}{256}}h|_{H^{s_{4}}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

By (2.27), using (3.14) and Remark 3.1, we have

|𝒳2,4|=|BghfN2(μ12(μ12))dV||μ1256g|Hs1|μ1256h|Hs2|μ1256f|L2.\displaystyle|\mathcal{X}_{2,4}|=|\int Bghf_{*}N^{2}(\mu^{\frac{1}{2}}_{*}-(\mu^{\frac{1}{2}})^{\prime}_{*})\mathrm{d}V|\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}f|_{L^{2}}.

Patching together the above estimates of 𝒳2,1,𝒳2,2,𝒳2,3,𝒳2,4\mathcal{X}_{2,1},\mathcal{X}_{2,2},\mathcal{X}_{2,3},\mathcal{X}_{2,4}, recalling (3.108), we have

|𝒳2|min{|g|H2|h|γ/2s,|g|L2(|μ1256h|H2+|h|Hγ/2+s32)}|f|γ/2s.\displaystyle|\mathcal{X}_{2}|\lesssim\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|\mu^{\frac{1}{256}}h|_{H^{2}}+|h|_{H^{\frac{3}{2}}_{\gamma/2+s}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.109)

We emphasize that 𝒳1\mathcal{X}_{1} enjoys the same upper bound as that of 𝒳2\mathcal{X}_{2}. By recalling (3.105), we have

|Γ2,r,3,2ρ(g,h),f|min{|g|H2|h|γ/2s,|g|L2(|μ1256h|H2+|h|Hγ/2+s32)}|f|γ/2s.\displaystyle|\langle\Gamma_{2,r,3,2}^{\rho}(g,h),f\rangle|\lesssim\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|\mu^{\frac{1}{256}}h|_{H^{2}}+|h|_{H^{\frac{3}{2}}_{\gamma/2+s}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (3.110)

Patching together (3.103) and (3.110), we finish the proof. ∎

Recalling (3.1) and (3.4), patching together Theorem 3.1, Propositions 3.4, 3.5 and 3.6, since |μ1256h|H2|h|Hγ/22|\mu^{\frac{1}{256}}h|_{H^{2}}\lesssim|h|_{H^{2}_{\gamma/2}}, we get

Theorem 3.2.

It holds that

|Γ2ρ(g,h),f|ρ12min{|g|H2|h|γ/2s,|g|L2(|h|γ/2s+|h|Hγ/2s+2+|h|Hγ/2+s32)}|f|γ/2s.\displaystyle|\langle\Gamma_{2}^{\rho}(g,h),f\rangle|\lesssim\rho^{\frac{1}{2}}\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}}+|h|_{H^{\frac{3}{2}}_{\gamma/2+s}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

4. Trilinear operator estimate

In this section, we estimate the trilinear operator Γ3ρ\Gamma_{3}^{\rho} defined in (1.24). Recalling the relation (2.2) between NN and 𝒩\mathcal{N}, we have

Γ3ρ(g,h,ϱ)\displaystyle\Gamma_{3}^{\rho}(g,h,\varrho) =\displaystyle= ρΓ3,1ρ(g,h,ϱ)+ρΓ3,2ρ(g,h,ϱ),\displaystyle\rho\Gamma_{3,1}^{\rho}(g,h,\varrho)+\rho\Gamma_{3,2}^{\rho}(g,h,\varrho), (4.1)
Γ3,1ρ(g,h,ϱ)\displaystyle\Gamma_{3,1}^{\rho}(g,h,\varrho) \colonequals\displaystyle\colonequals N1BD((Ng)(Nh)(Nϱ))dσdv,\displaystyle N^{-1}\int B\mathrm{D}\big{(}(Ng)_{*}^{\prime}(Nh)^{\prime}(N\varrho)_{*}\big{)}\mathrm{d}\sigma\mathrm{d}v_{*}, (4.2)
Γ3,2ρ(g,h,ϱ)\displaystyle\Gamma_{3,2}^{\rho}(g,h,\varrho) \colonequals\displaystyle\colonequals N1BD((Ng)(Nh)Nϱ)dσdv.\displaystyle N^{-1}\int B\mathrm{D}\big{(}(Ng)_{*}^{\prime}(Nh)^{\prime}N\varrho\big{)}\mathrm{d}\sigma\mathrm{d}v_{*}. (4.3)

The whole section is devoted to prove

Theorem 4.1.

The following functional estimates are valid.

|Γ3ρ(g,h,ϱ),f|\displaystyle|\langle\Gamma_{3}^{\rho}(g,h,\varrho),f\rangle| \displaystyle\lesssim ρ|g|H2|μ1256h|H2|ϱ|γ/2s|f|γ/2s\displaystyle\rho|g|_{H^{2}}|\mu^{\frac{1}{256}}h|_{H^{2}}|\varrho|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}
+ρ|g|H3(|h|γ/2s+|h|Hγ/2s+2+|h|Hγ/2+s32)|μ1256ϱ|L2|f|γ/2s.\displaystyle+\rho|g|_{H^{3}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}}+|h|_{H^{\frac{3}{2}}_{\gamma/2+s}})|\mu^{\frac{1}{256}}\varrho|_{L^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.
|Γ3ρ(g,h,ϱ),f|\displaystyle|\langle\Gamma_{3}^{\rho}(g,h,\varrho),f\rangle| \displaystyle\lesssim ρ|g|H2|h|γ/2s|μ1256ϱ|H3|f|γ/2s.\displaystyle\rho|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}}|\mu^{\frac{1}{256}}\varrho|_{H^{3}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (4.5)
|Γ3ρ(g,h,ϱ),f|\displaystyle|\langle\Gamma_{3}^{\rho}(g,h,\varrho),f\rangle| \displaystyle\lesssim ρ|g|L2(|h|γ/2s+|h|Hγ/2s+2+|h|Hγ/2+s12)|μ1256ϱ|H3|f|γ/2s.\displaystyle\rho|g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}}+|h|_{H^{\frac{1}{2}}_{\gamma/2+s}})|\mu^{\frac{1}{256}}\varrho|_{H^{3}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (4.6)
Proof of (4.1)..

Recalling (4.2), using (3.43), we have

Γ3,1ρ(g,h,ϱ),f\displaystyle\langle\Gamma_{3,1}^{\rho}(g,h,\varrho),f\rangle =\displaystyle= B(Ng)(Nh)(Nϱ)D((N1f))dV=𝒜1+𝒜2,\displaystyle\int B(Ng)_{*}(Nh)(N\varrho)^{\prime}_{*}\mathrm{D}((N^{-1}f)^{\prime})\mathrm{d}V=\mathcal{A}_{1}+\mathcal{A}_{2}, (4.7)
𝒜1\displaystyle\mathcal{A}_{1} \colonequals\displaystyle\colonequals B(Ng)h(Nϱ)D(f)dV,\displaystyle\int B(Ng)_{*}h(N\varrho)^{\prime}_{*}\mathrm{D}(f^{\prime})\mathrm{d}V, (4.8)
𝒜2\displaystyle\mathcal{A}_{2} \colonequals\displaystyle\colonequals B(Ng)(Nh)(Nϱ)fD((N1))dV.\displaystyle\int B(Ng)_{*}(Nh)(N\varrho)^{\prime}_{*}f^{\prime}\mathrm{D}((N^{-1})^{\prime})\mathrm{d}V. (4.9)

Estimate of 𝒜1\mathcal{A}_{1}. Using (2.28), (Ng)=D((Ng))+(Ng)(Ng)^{\prime}_{*}=\mathrm{D}((Ng)^{\prime}_{*})+(Ng)_{*} and h=D(h)+hh^{\prime}=\mathrm{D}(h^{\prime})+h, we get

𝒜1\displaystyle\mathcal{A}_{1} =\displaystyle= B(Ng)h(Nϱ)D(f)dV=𝒜1,1+𝒜1,2+𝒜1,3,\displaystyle\int B(Ng)^{\prime}_{*}h^{\prime}(N\varrho)_{*}\mathrm{D}(f)\mathrm{d}V=\mathcal{A}_{1,1}+\mathcal{A}_{1,2}+\mathcal{A}_{1,3}, (4.10)
𝒜1,1\displaystyle\mathcal{A}_{1,1} \colonequals\displaystyle\colonequals BD((Ng))h(Nϱ)D(f)dV,\displaystyle\int B\mathrm{D}((Ng)^{\prime}_{*})h^{\prime}(N\varrho)_{*}\mathrm{D}(f)\mathrm{d}V,
𝒜1,2\displaystyle\mathcal{A}_{1,2} \colonequals\displaystyle\colonequals B(N2gϱ)D(h)D(f)dV,\displaystyle\int B(N^{2}g\varrho)_{*}\mathrm{D}(h^{\prime})\mathrm{D}(f)\mathrm{d}V,
𝒜1,3\displaystyle\mathcal{A}_{1,3} \colonequals\displaystyle\colonequals B(N2gϱ)hD(f)dV.\displaystyle\int B(N^{2}g\varrho)_{*}h\mathrm{D}(f)\mathrm{d}V.

By Cauchy-Schwartz inequality and (2.3), using (3.39), Remark 3.4 and Theorem 2.3, we have

|𝒜1,1|\displaystyle|\mathcal{A}_{1,1}| \displaystyle\lesssim (BD2((Ng))(h2)(μ12ϱ2)dV)12(Bμ12D2(f)dV)12\displaystyle\big{(}\int B\mathrm{D}^{2}((Ng)_{*})(h^{2})^{\prime}(\mu^{\frac{1}{2}}\varrho^{2})_{*}\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}} (4.11)
\displaystyle\lesssim |Ng|H3|h|Hγ/2+s12|μ1128ϱ|L2|f|γ/2s|g|H3|h|Hγ/2+s12|μ1128ϱ|L2|f|γ/2s.\displaystyle|Ng|_{H^{3}}|h|_{H^{\frac{1}{2}}_{\gamma/2+s}}|\mu^{\frac{1}{128}}\varrho|_{L^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}\lesssim|g|_{H^{3}}|h|_{H^{\frac{1}{2}}_{\gamma/2+s}}|\mu^{\frac{1}{128}}\varrho|_{L^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

By Cauchy-Schwartz inequality, the imbedding H2LH^{2}\hookrightarrow L^{\infty}, (2.3), (2.27), the estimate (3.41) and Theorem 2.3, we have

|𝒜1,2||g|L(Bμϱ2D2(h)dV)12(BμD2(f)dV)12|g|H2|h|Hγ/2+s32|μ1256ϱ|L2|f|γ/2s.\displaystyle|\mathcal{A}_{1,2}|\lesssim|g|_{L^{\infty}}\big{(}\int B\mu\varrho^{2}\mathrm{D}^{2}(h_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu_{*}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|g|_{H^{2}}|h|_{H^{\frac{3}{2}}_{\gamma/2+s}}|\mu^{\frac{1}{256}}\varrho|_{L^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (4.12)

Note that |𝒜1,3|=|Qc(N2gϱ,h),f||\mathcal{A}_{1,3}|=|\langle Q_{c}(N^{2}g\varrho,h),f\rangle|. Then by Corollary 3.1 and Lemma 3.1, we have

|𝒜1,3||N2gϱ|L72(|h|γ/2s+|h|Hγ/2s+2)|f|γ/2s|g|H2(|h|γ/2s+|h|Hγ/2s+2)|μ12ϱ|L2|f|γ/2s.\displaystyle|\mathcal{A}_{1,3}|\lesssim|N^{2}g\varrho|_{L^{2}_{7}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}})|f|_{\mathcal{L}^{s}_{\gamma/2}}\lesssim|g|_{H^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}})|\mu^{\frac{1}{2}}\varrho|_{L^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (4.13)

Recalling (4.10), patching together (4.11), (4.12) and (4.13), we get

|𝒜1||g|H3(|h|γ/2s+|h|Hγ/2s+2+|h|Hγ/2+s32)|μ1256ϱ|L2|f|γ/2s.\displaystyle|\mathcal{A}_{1}|\lesssim|g|_{H^{3}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}}+|h|_{H^{\frac{3}{2}}_{\gamma/2+s}})|\mu^{\frac{1}{256}}\varrho|_{L^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (4.14)

Estimate of 𝒜2\mathcal{A}_{2}. Using (2.28), we get

𝒜2=B(Ng)(Nh)(Nϱ)fD(N1)dV.\displaystyle\mathcal{A}_{2}=\int B(Ng)^{\prime}_{*}(Nh)^{\prime}(N\varrho)_{*}f\mathrm{D}(N^{-1})\mathrm{d}V. (4.15)

Plugging the following two identities

(g1ρμ)(h1ρμ)\displaystyle(\frac{g}{1-\rho\mu})^{\prime}_{*}(\frac{h}{1-\rho\mu})^{\prime} =\displaystyle= (g1ρμ)D((h1ρμ))+D((g1ρμ))h1ρμ+(g1ρμ)h1ρμ,\displaystyle(\frac{g}{1-\rho\mu})^{\prime}_{*}\mathrm{D}((\frac{h}{1-\rho\mu})^{\prime})+\mathrm{D}((\frac{g}{1-\rho\mu})^{\prime}_{*})\frac{h}{1-\rho\mu}+(\frac{g}{1-\rho\mu})_{*}\frac{h}{1-\rho\mu},
μ12μ12D(N1)\displaystyle\mu^{\frac{1}{2}}_{*}\mu^{\frac{1}{2}}\mathrm{D}(N^{-1}) =\displaystyle= D(μ12)ρμ12μ12D(μ12),\displaystyle\mathrm{D}(\mu^{\frac{1}{2}}_{*})-\rho\mu^{\frac{1}{2}}_{*}\mu^{\frac{1}{2}}\mathrm{D}(\mu^{\frac{1}{2}}), (4.16)

into (4.15), we have

𝒜2\displaystyle\mathcal{A}_{2} =\displaystyle= B(g1ρμ)(h1ρμ)(Nϱ)fμ12μ12D(N1)dV=i=16𝒜2,i,\displaystyle\int B(\frac{g}{1-\rho\mu})^{\prime}_{*}(\frac{h}{1-\rho\mu})^{\prime}(N\varrho)_{*}f\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}\mathrm{D}(N^{-1})\mathrm{d}V=\sum_{i=1}^{6}\mathcal{A}_{2,i}, (4.17)

where

𝒜2,1\displaystyle\mathcal{A}_{2,1} \colonequals\displaystyle\colonequals B(g1ρμ)D((h1ρμ))(Nϱ)fD(μ12)dV,\displaystyle\int B(\frac{g}{1-\rho\mu})^{\prime}_{*}\mathrm{D}((\frac{h}{1-\rho\mu})^{\prime})(N\varrho)_{*}f\mathrm{D}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V,
𝒜2,2\displaystyle\mathcal{A}_{2,2} \colonequals\displaystyle\colonequals ρB(g1ρμ)D((h1ρμ))(Nϱ)fμ12μ12D(μ12)dV,\displaystyle-\rho\int B(\frac{g}{1-\rho\mu})^{\prime}_{*}\mathrm{D}((\frac{h}{1-\rho\mu})^{\prime})(N\varrho)_{*}f\mu^{\frac{1}{2}}_{*}\mu^{\frac{1}{2}}\mathrm{D}(\mu^{\frac{1}{2}})\mathrm{d}V,
𝒜2,3\displaystyle\mathcal{A}_{2,3} \colonequals\displaystyle\colonequals BD((g1ρμ))h1ρμ(Nϱ)fD(μ12)dV,\displaystyle\int B\mathrm{D}((\frac{g}{1-\rho\mu})^{\prime}_{*})\frac{h}{1-\rho\mu}(N\varrho)_{*}f\mathrm{D}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V,
𝒜2,4\displaystyle\mathcal{A}_{2,4} \colonequals\displaystyle\colonequals ρBD((g1ρμ))h1ρμ(Nϱ)fμ12μ12D(μ12)dV,\displaystyle-\rho\int B\mathrm{D}((\frac{g}{1-\rho\mu})^{\prime}_{*})\frac{h}{1-\rho\mu}(N\varrho)_{*}f\mu^{\frac{1}{2}}_{*}\mu^{\frac{1}{2}}\mathrm{D}(\mu^{\frac{1}{2}})\mathrm{d}V,
𝒜2,5\displaystyle\mathcal{A}_{2,5} \colonequals\displaystyle\colonequals B(gNϱ1ρμ)hf1ρμD(μ12)dV,\displaystyle\int B(\frac{gN\varrho}{1-\rho\mu})_{*}\frac{hf}{1-\rho\mu}\mathrm{D}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V, (4.18)
𝒜2,6\displaystyle\mathcal{A}_{2,6} \colonequals\displaystyle\colonequals ρB(gNϱ1ρμ)hf1ρμμ12μ12D(μ12)dV.\displaystyle-\rho\int B(\frac{gN\varrho}{1-\rho\mu})_{*}\frac{hf}{1-\rho\mu}\mu^{\frac{1}{2}}_{*}\mu^{\frac{1}{2}}\mathrm{D}(\mu^{\frac{1}{2}})\mathrm{d}V. (4.19)

By Cauchy-Schwartz inequality and (2.3), we have

|𝒜2,1|(B(g2)f2D2(μ12)dV)12(BD2(h1ρμ)μϱ2dV)12.\displaystyle|\mathcal{A}_{2,1}|\lesssim\big{(}\int B(g^{2})^{\prime}_{*}f^{2}\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mathrm{D}^{2}(\frac{h}{1-\rho\mu})\mu_{*}\varrho^{2}_{*}\mathrm{d}V\big{)}^{\frac{1}{2}}.

By the change of variable vvv_{*}\rightarrow v^{\prime}_{*} and the estimate (3.17), we get

B(g2)f2D2(μ12)dV|g|H122|f|Lγ/2+s22.\displaystyle\int B(g^{2})^{\prime}_{*}f^{2}\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V\lesssim|g|_{H^{\frac{1}{2}}}^{2}|f|_{L^{2}_{\gamma/2+s}}^{2}.

Recalling (3.71) and (2.27), using (3.41) and (3.18) we get

BD2(h1ρμ)μϱ2dVBD2(h)μϱ2dV+BD2(μ)h2μϱ2dV|h|Hγ/2+s322|μ1256ϱ|L22.\displaystyle\int B\mathrm{D}^{2}(\frac{h}{1-\rho\mu})\mu_{*}\varrho^{2}_{*}\mathrm{d}V\lesssim\int B\mathrm{D}^{2}(h_{*})\mu\varrho^{2}\mathrm{d}V+\int B\mathrm{D}^{2}(\mu_{*})h^{2}_{*}\mu\varrho^{2}\mathrm{d}V\lesssim|h|_{H^{\frac{3}{2}}_{\gamma/2+s}}^{2}|\mu^{\frac{1}{256}}\varrho|_{L^{2}}^{2}.

Patching together the previous two estimates, we get

|𝒜2,1||g|H12|h|Hγ/2+s32|μ1256ϱ|L2|f|Lγ/2+s2.\displaystyle|\mathcal{A}_{2,1}|\lesssim|g|_{H^{\frac{1}{2}}}|h|_{H^{\frac{3}{2}}_{\gamma/2+s}}|\mu^{\frac{1}{256}}\varrho|_{L^{2}}|f|_{L^{2}_{\gamma/2+s}}.

By nearly the same argument as that for 𝒜2,1\mathcal{A}_{2,1}, thanks to the factor μ12μ12\mu^{\frac{1}{2}}_{*}\mu^{\frac{1}{2}}, we can also get

|𝒜2,2||μ1256g|H12|μ1256h|H32|μ1256ϱ|L2|μ1256f|L2.\displaystyle|\mathcal{A}_{2,2}|\lesssim|\mu^{\frac{1}{256}}g|_{H^{\frac{1}{2}}}|\mu^{\frac{1}{256}}h|_{H^{\frac{3}{2}}}|\mu^{\frac{1}{256}}\varrho|_{L^{2}}|\mu^{\frac{1}{256}}f|_{L^{2}}.

By Cauchy-Schwartz inequality and (2.3), we have

|𝒜2,3|(BD2((g1ρμ))μ12f2dV)12(Bh2(μ12ϱ2)D2(μ12)dV)12.\displaystyle|\mathcal{A}_{2,3}|\lesssim\big{(}\int B\mathrm{D}^{2}((\frac{g}{1-\rho\mu})_{*})\mu^{\frac{1}{2}}_{*}f^{2}\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int Bh^{2}(\mu^{\frac{1}{2}}\varrho^{2})_{*}\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}.

By the estimate (3.17), we get

Bh2(μ12ϱ2)D2(μ12)dV|h|Hγ/2+s122|μ14ϱ|L22.\displaystyle\int Bh^{2}(\mu^{\frac{1}{2}}\varrho^{2})_{*}\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V\lesssim|h|_{H^{\frac{1}{2}}_{\gamma/2+s}}^{2}|\mu^{\frac{1}{4}}\varrho|_{L^{2}}^{2}. (4.20)

Recalling (3.71), we have

D2((g1ρμ))(gg)2+D2(μ)g2.\displaystyle\mathrm{D}^{2}((\frac{g}{1-\rho\mu})_{*})\lesssim(g^{\prime}_{*}-g_{*})^{2}+\mathrm{D}^{2}(\mu_{*})g^{2}_{*}. (4.21)

By (4.21), using (3.38) and (3.17), we get

BD2((g1ρμ))μ12f2dVB(gg)2μ12f2dV+BD2(μ)g2μ12f2dV|g|H322|f|Lγ/2+s22.\displaystyle\int B\mathrm{D}^{2}((\frac{g}{1-\rho\mu})_{*})\mu^{\frac{1}{2}}_{*}f^{2}\mathrm{d}V\lesssim\int B(g^{\prime}_{*}-g_{*})^{2}\mu^{\frac{1}{2}}_{*}f^{2}\mathrm{d}V+\int B\mathrm{D}^{2}(\mu_{*})g^{2}_{*}\mu^{\frac{1}{2}}_{*}f^{2}\mathrm{d}V\lesssim|g|_{H^{\frac{3}{2}}}^{2}|f|_{L^{2}_{\gamma/2+s}}^{2}. (4.22)

Patching together (4.20) and (4.22), we get |𝒜2,3||g|H32|h|Hγ/2+s12|μ14ϱ|L2|f|Lγ/2+s2.|\mathcal{A}_{2,3}|\lesssim|g|_{H^{\frac{3}{2}}}|h|_{H^{\frac{1}{2}}_{\gamma/2+s}}|\mu^{\frac{1}{4}}\varrho|_{L^{2}}|f|_{L^{2}_{\gamma/2+s}}. By nearly the same argument as that for 𝒜2,3\mathcal{A}_{2,3}, we can also get |𝒜2,4||g|H32|h|Hγ/2+s12|μ14ϱ|L2|f|Lγ/2+s2.|\mathcal{A}_{2,4}|\lesssim|g|_{H^{\frac{3}{2}}}|h|_{H^{\frac{1}{2}}_{\gamma/2+s}}|\mu^{\frac{1}{4}}\varrho|_{L^{2}}|f|_{L^{2}_{\gamma/2+s}}. Using (3.19), for {a1,a2,a3}={2,12,0}\{a_{1},a_{2},a_{3}\}=\{2,\frac{1}{2},0\}, we get

|𝒜2,5||μ18g|Ha1|h|Hγ/2+sa2|μ18ϱ|Ha3|f|Lγ/2+s2.\displaystyle|\mathcal{A}_{2,5}|\lesssim|\mu^{\frac{1}{8}}g|_{H^{a_{1}}}|h|_{H^{a_{2}}_{\gamma/2+s}}|\mu^{\frac{1}{8}}\varrho|_{H^{a_{3}}}|f|_{L^{2}_{\gamma/2+s}}. (4.23)

By (2.27) and (3.20), we have

|𝒜2,6||μ1256g|Ha1|μ1256h|Ha2|μ1256ϱ|Ha3|μ1256f|L2.\displaystyle|\mathcal{A}_{2,6}|\lesssim|\mu^{\frac{1}{256}}g|_{H^{a_{1}}}|\mu^{\frac{1}{256}}h|_{H^{a_{2}}}|\mu^{\frac{1}{256}}\varrho|_{H^{a_{3}}}|\mu^{\frac{1}{256}}f|_{L^{2}}. (4.24)

Recalling (4.17), patching together the above estimates of 𝒜2,i(1i6)\mathcal{A}_{2,i}(1\leq i\leq 6), taking (a1,a2,a3)=(2,12,0)(a_{1},a_{2},a_{3})=(2,\frac{1}{2},0), we get

|𝒜2||g|H2|h|Hγ/2+s32|μ1256ϱ|L2|f|Lγ/2+s2.\displaystyle|\mathcal{A}_{2}|\lesssim|g|_{H^{2}}|h|_{H^{\frac{3}{2}}_{\gamma/2+s}}|\mu^{\frac{1}{256}}\varrho|_{L^{2}}|f|_{L^{2}_{\gamma/2+s}}. (4.25)

Recalling (4.7), patching together (4.14) and (4.25), we have

|Γ3,1ρ(g,h,ϱ),f||g|H3(|h|γ/2s+|h|Hγ/2s+2+|h|Hγ/2+s32)|μ1256ϱ|L2|f|γ/2s.\displaystyle|\langle\Gamma_{3,1}^{\rho}(g,h,\varrho),f\rangle|\lesssim|g|_{H^{3}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}}+|h|_{H^{\frac{3}{2}}_{\gamma/2+s}})|\mu^{\frac{1}{256}}\varrho|_{L^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (4.26)

We set to estimate Γ3,2ρ(g,h,ϱ),f\langle\Gamma_{3,2}^{\rho}(g,h,\varrho),f\rangle. Recalling (4.3), using the following identity

D((N1f))=(N1)D(f)+D((N1))f,\displaystyle\mathrm{D}((N^{-1}f)^{\prime})=(N^{-1})^{\prime}\mathrm{D}(f^{\prime})+\mathrm{D}((N^{-1})^{\prime})f, (4.27)

we have

Γ3,2ρ(g,h,ϱ),f=B(Ng)(Nh)(Nϱ)D((N1f))dV=1+2,\displaystyle\langle\Gamma_{3,2}^{\rho}(g,h,\varrho),f\rangle=\int B(Ng)_{*}(Nh)(N\varrho)^{\prime}\mathrm{D}((N^{-1}f)^{\prime})\mathrm{d}V=\mathcal{B}_{1}+\mathcal{B}_{2}, (4.28)
1\colonequalsB(Ng)(Nh)ϱD(f)dV,2\colonequalsB(Ng)(Nh)(Nϱ)D((N1))fdV.\displaystyle\mathcal{B}_{1}\colonequals\int B(Ng)_{*}(Nh)\varrho^{\prime}\mathrm{D}(f^{\prime})\mathrm{d}V,\quad\mathcal{B}_{2}\colonequals\int B(Ng)_{*}(Nh)(N\varrho)^{\prime}\mathrm{D}((N^{-1})^{\prime})f\mathrm{d}V. (4.29)

We now divide 1\mathcal{B}_{1} into two terms. Using ϱ=D(ϱ)+ϱ\varrho^{\prime}=\mathrm{D}(\varrho^{\prime})+\varrho, we get 1=1,1+1,2\mathcal{B}_{1}=\mathcal{B}_{1,1}+\mathcal{B}_{1,2} where

1,1\colonequalsB(Ng)(Nh)D(ϱ)D(f)dV,1,2\colonequalsB(Ng)(Nhϱ)D(f)dV.\displaystyle\mathcal{B}_{1,1}\colonequals\int B(Ng)_{*}(Nh)\mathrm{D}(\varrho^{\prime})\mathrm{D}(f^{\prime})\mathrm{d}V,\quad\mathcal{B}_{1,2}\colonequals\int B(Ng)_{*}(Nh\varrho)\mathrm{D}(f^{\prime})\mathrm{d}V. (4.30)

By Cauchy-Schwartz inequality, (2.3), the imbedding H2LH^{2}\hookrightarrow L^{\infty} and Theorem 2.3, we have

|1,1||g|L|μ12h|L(Bμ12D2(ϱ)dV)12(Bμ12D2(f)dV)12|g|H2|μ12h|H2|ϱ|γ/2s|f|γ/2s.\displaystyle|\mathcal{B}_{1,1}|\lesssim|g|_{L^{\infty}}|\mu^{\frac{1}{2}}h|_{L^{\infty}}\big{(}\int B\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(\varrho)\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|g|_{H^{2}}|\mu^{\frac{1}{2}}h|_{H^{2}}|\varrho|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

Using Corollary 3.1 and Lemma 3.1, we have

|1,2|=|Qc(Ng,Nhϱ),f||Ng|H72|Nhϱ|γ/2s|f|γ/2s|g|H2|μ18h|H2|ϱ|γ/2s|f|γ/2s.\displaystyle|\mathcal{B}_{1,2}|=|\langle Q_{c}(Ng,Nh\varrho),f\rangle|\lesssim|Ng|_{H^{2}_{7}}|Nh\varrho|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}\lesssim|g|_{H^{2}}|\mu^{\frac{1}{8}}h|_{H^{2}}|\varrho|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

We now divide 2\mathcal{B}_{2} into two terms. Using NND((N1))=D(N)NN^{\prime}\mathrm{D}((N^{-1})^{\prime})=\mathrm{D}(N) and ϱ=D(ϱ)+ϱ\varrho^{\prime}=\mathrm{D}(\varrho^{\prime})+\varrho, we get 2=2,1+2,2\mathcal{B}_{2}=\mathcal{B}_{2,1}+\mathcal{B}_{2,2} where

2,1\colonequalsB(Ng)hD(ϱ)fD(N)dV,2,2\colonequalsB(Ng)hϱfD(N)dV.\displaystyle\mathcal{B}_{2,1}\colonequals\int B(Ng)_{*}h\mathrm{D}(\varrho^{\prime})f\mathrm{D}(N)\mathrm{d}V,\quad\mathcal{B}_{2,2}\colonequals\int B(Ng)_{*}h\varrho f\mathrm{D}(N)\mathrm{d}V.

By Cauchy-Schwartz inequality, (2.3), (2.27), the estimate (2.37), the imbedding H2LH^{2}\hookrightarrow L^{\infty}, Theorem 2.3, the estimate (3.18) and Remark 3.1, we have

|2,1|\displaystyle|\mathcal{B}_{2,1}| \displaystyle\lesssim (Bμ12g2h2A(N)D2(ϱ)dV)12(Bμ12f2D2(N12)dV)12\displaystyle\big{(}\int B\mu^{\frac{1}{2}}_{*}g_{*}^{2}h^{2}\mathrm{A}(N)\mathrm{D}^{2}(\varrho)\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}_{*}f^{2}\mathrm{D}^{2}(N^{\frac{1}{2}})\mathrm{d}V\big{)}^{\frac{1}{2}}
\displaystyle\lesssim (Bg2h2μ18μ18D2(ϱ)dV)12(Bμ12f2D2(N12)dV)12|g|H2|μ116h|H2|ϱ|γ/2s|μ1256f|L2.\displaystyle\big{(}\int Bg_{*}^{2}h^{2}\mu^{\frac{1}{8}}\mu^{\frac{1}{8}}_{*}\mathrm{D}^{2}(\varrho)\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}f^{2}_{*}\mathrm{D}^{2}(N^{\frac{1}{2}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|g|_{H^{2}}|\mu^{\frac{1}{16}}h|_{H^{2}}|\varrho|_{\mathcal{L}^{s}_{\gamma/2}}|\mu^{\frac{1}{256}}f|_{L^{2}}.

By (2.27), using (3.22)(in which h,ϱ,fh,\varrho,f play the same role), we have

|2,2|=|BNg(hϱf)D(N)dV||μ1256g|H12|μ1256h|H2|μ1256ϱ|L2|μ1256f|L2.\displaystyle|\mathcal{B}_{2,2}|=|\int BNg(h\varrho f)_{*}\mathrm{D}(N_{*})\mathrm{d}V|\lesssim|\mu^{\frac{1}{256}}g|_{H^{\frac{1}{2}}}|\mu^{\frac{1}{256}}h|_{H^{2}}|\mu^{\frac{1}{256}}\varrho|_{L^{2}}|\mu^{\frac{1}{256}}f|_{L^{2}}.

Recalling (4.28), patching together the above estimates of 1,1,1,2,2,1,2,2\mathcal{B}_{1,1},\mathcal{B}_{1,2},\mathcal{B}_{2,1},\mathcal{B}_{2,2}, we have

|Γ3,2ρ(g,h,ϱ),f|=|1,1+1,2+2,1+2,2||g|H2|μ1256h|H2|ϱ|γ/2s|f|γ/2s.\displaystyle|\langle\Gamma_{3,2}^{\rho}(g,h,\varrho),f\rangle|=|\mathcal{B}_{1,1}+\mathcal{B}_{1,2}+\mathcal{B}_{2,1}+\mathcal{B}_{2,2}|\lesssim|g|_{H^{2}}|\mu^{\frac{1}{256}}h|_{H^{2}}|\varrho|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (4.31)

Recalling (4.1), patching together (4.26) and (4.31), we arrive at (4.1). ∎

Proof of (4.5) and (4.6)..

Estimate of Γ3,1ρ(g,h,ϱ),f.\langle\Gamma_{3,1}^{\rho}(g,h,\varrho),f\rangle. Recalling (4.7), (4.8) and (4.9). We need give new estimates of 𝒜1\mathcal{A}_{1} and 𝒜2\mathcal{A}_{2}.

We first estimate 𝒜1\mathcal{A}_{1}. Recalling (4.8), using (Nϱ)=D((Nϱ))+(Nϱ)(N\varrho)^{\prime}_{*}=\mathrm{D}((N\varrho)^{\prime}_{*})+(N\varrho)_{*}, we get

𝒜1=𝒜~1,1+𝒜~1,2,𝒜~1,1\colonequalsB(Ng)hD((Nϱ))D(f)dV,𝒜~1,2\colonequalsB(N2gϱ)hD(f)dV.\displaystyle\mathcal{A}_{1}=\tilde{\mathcal{A}}_{1,1}+\tilde{\mathcal{A}}_{1,2},\quad\tilde{\mathcal{A}}_{1,1}\colonequals\int B(Ng)_{*}h\mathrm{D}((N\varrho)^{\prime}_{*})\mathrm{D}(f^{\prime})\mathrm{d}V,\quad\tilde{\mathcal{A}}_{1,2}\colonequals\int B(N^{2}g\varrho)_{*}h\mathrm{D}(f^{\prime})\mathrm{d}V. (4.32)

By Cauchy-Schwartz inequality, (2.3), (3.39) and Theorem 2.3, we have

|𝒜~1,1|\displaystyle|\tilde{\mathcal{A}}_{1,1}| \displaystyle\lesssim (B(μ12g2)h2D2((Nϱ))dV)12(Bμ12D2(f)dV)12\displaystyle\big{(}\int B(\mu^{\frac{1}{2}}g^{2})_{*}h^{2}\mathrm{D}^{2}((N\varrho)_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}} (4.33)
\displaystyle\lesssim |μ1128g|Hs1|h|Hγ/2+ss2|μ14ϱ|H3|f|γ/2s.\displaystyle|\mu^{\frac{1}{128}}g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|\mu^{\frac{1}{4}}\varrho|_{H^{3}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

Observe |𝒜~1,2|=|Qc(N2gϱ,h),f||\tilde{\mathcal{A}}_{1,2}|=|\langle Q_{c}(N^{2}g\varrho,h),f\rangle|. Then by Corollary 3.1 and Lemma 3.1, we have

|𝒜~1,2|\displaystyle|\tilde{\mathcal{A}}_{1,2}| \displaystyle\lesssim min{|N2gϱ|H72|h|γ/2s,|N2gϱ|L72(|h|γ/2s+|h|Hγ/2s+2)}|f|γ/2s.\displaystyle\min\{|N^{2}g\varrho|_{H^{2}_{7}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|N^{2}g\varrho|_{L^{2}_{7}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (4.34)
min{|μ14g|H2|h|γ/2s,|μ14g|L2(|h|γ/2s+|h|Hγ/2s+2)}|μ14ϱ|H2|f|γ/2s.\displaystyle\min\{|\mu^{\frac{1}{4}}g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|\mu^{\frac{1}{4}}g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}})\}|\mu^{\frac{1}{4}}\varrho|_{H^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

Recalling (4.32), patching together (4.33) and (4.34), we get

|𝒜1|min{|g|H2|h|γ/2s,|g|L2(|h|γ/2s+|h|Hγ/2s+2+|h|Hγ/2+s12)}|μ14ϱ|H3|f|γ/2s.\displaystyle|\mathcal{A}_{1}|\lesssim\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}}+|h|_{H^{\frac{1}{2}}_{\gamma/2+s}})\}|\mu^{\frac{1}{4}}\varrho|_{H^{3}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (4.35)

We then estimate 𝒜2\mathcal{A}_{2}. Recalling (4.9), using (4.16) and (Nϱ)f=D((Nϱ))f+(Nϱ)D(f)+(Nϱ)f,(N\varrho)^{\prime}_{*}f^{\prime}=\mathrm{D}((N\varrho)^{\prime}_{*})f^{\prime}+(N\varrho)_{*}\mathrm{D}(f^{\prime})+(N\varrho)_{*}f, we have

𝒜2\displaystyle\mathcal{A}_{2} =\displaystyle= B(g1ρμ)h1ρμ(Nϱ)fμ12μ12D(N1)dV=i=16𝒜~2,i,\displaystyle-\int B(\frac{g}{1-\rho\mu})_{*}\frac{h}{1-\rho\mu}(N\varrho)^{\prime}_{*}f^{\prime}\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}\mathrm{D}(N^{-1})\mathrm{d}V=\sum_{i=1}^{6}\tilde{\mathcal{A}}_{2,i}, (4.36)
𝒜~2,1\displaystyle\tilde{\mathcal{A}}_{2,1} \colonequals\displaystyle\colonequals B(g1ρμ)h1ρμD((Nϱ))fD(μ12)dV,\displaystyle-\int B(\frac{g}{1-\rho\mu})_{*}\frac{h}{1-\rho\mu}\mathrm{D}((N\varrho)^{\prime}_{*})f^{\prime}\mathrm{D}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V,
𝒜~2,2\displaystyle\tilde{\mathcal{A}}_{2,2} \colonequals\displaystyle\colonequals ρB(g1ρμ)h1ρμD((Nϱ))fμ12μ12D(μ12)dV,\displaystyle\rho\int B(\frac{g}{1-\rho\mu})_{*}\frac{h}{1-\rho\mu}\mathrm{D}((N\varrho)^{\prime}_{*})f^{\prime}\mu^{\frac{1}{2}}_{*}\mu^{\frac{1}{2}}\mathrm{D}(\mu^{\frac{1}{2}})\mathrm{d}V,
𝒜~2,3\displaystyle\tilde{\mathcal{A}}_{2,3} \colonequals\displaystyle\colonequals B(gNϱ1ρμ)h1ρμD(f)D(μ12)dV,\displaystyle-\int B(\frac{gN\varrho}{1-\rho\mu})_{*}\frac{h}{1-\rho\mu}\mathrm{D}(f^{\prime})\mathrm{D}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V,
𝒜~2,4\displaystyle\tilde{\mathcal{A}}_{2,4} \colonequals\displaystyle\colonequals ρB(gNϱ1ρμ)h1ρμD(f)μ12μ12D(μ12)dV,\displaystyle\rho\int B(\frac{gN\varrho}{1-\rho\mu})_{*}\frac{h}{1-\rho\mu}\mathrm{D}(f^{\prime})\mu^{\frac{1}{2}}_{*}\mu^{\frac{1}{2}}\mathrm{D}(\mu^{\frac{1}{2}})\mathrm{d}V,
𝒜~2,5\displaystyle\tilde{\mathcal{A}}_{2,5} \colonequals\displaystyle\colonequals B(gNϱ1ρμ)hf1ρμD(μ12)dV,\displaystyle-\int B(\frac{gN\varrho}{1-\rho\mu})_{*}\frac{hf}{1-\rho\mu}\mathrm{D}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V,
𝒜~2,6\displaystyle\tilde{\mathcal{A}}_{2,6} \colonequals\displaystyle\colonequals ρB(gNϱ1ρμ)hf1ρμμ12μ12D(μ12)dV.\displaystyle\rho\int B(\frac{gN\varrho}{1-\rho\mu})_{*}\frac{hf}{1-\rho\mu}\mu^{\frac{1}{2}}_{*}\mu^{\frac{1}{2}}\mathrm{D}(\mu^{\frac{1}{2}})\mathrm{d}V.

By Cauchy-Schwartz inequality, (3.17), (3.38) and Remark 3.4, we have

|𝒜~2,1|(Bg2h2D2(μ14)dV)12(BD2((Nϱ))f2A(μ12)dV)12|g|Hs1|h|Hγ/2+ss2|μ14ϱ|H32|f|Lγ/2+s2.\displaystyle|\tilde{\mathcal{A}}_{2,1}|\lesssim\big{(}\int Bg^{2}_{*}h^{2}\mathrm{D}^{2}(\mu^{\frac{1}{4}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mathrm{D}^{2}((N\varrho)_{*})f^{2}\mathrm{A}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|\mu^{\frac{1}{4}}\varrho|_{H^{\frac{3}{2}}}|f|_{L^{2}_{\gamma/2+s}}.

By nearly the same argument as that for 𝒜~2,1\tilde{\mathcal{A}}_{2,1}, thanks to the factor μ12μ12\mu^{\frac{1}{2}}_{*}\mu^{\frac{1}{2}}, we can get

|𝒜~2,2||μ1256g|Hs1|μ1256h|Hs2|μ14ϱ|H32|μ1256f|L2.\displaystyle|\tilde{\mathcal{A}}_{2,2}|\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{4}}\varrho|_{H^{\frac{3}{2}}}|\mu^{\frac{1}{256}}f|_{L^{2}}.

By Cauchy-Schwartz inequality, (2.3), the imbedding H2LH^{2}\hookrightarrow L^{\infty}, the estimate (3.17) and Theorem 2.3, we have

|𝒜~2,3|(B(g2μ12ϱ2)h2D2(μ12)dV)12(Bμ12D2(f)dV)12|μ18g|Hs1|h|Hγ/2+ss2|μ18ϱ|H2|f|γ/2s.\displaystyle|\tilde{\mathcal{A}}_{2,3}|\lesssim\big{(}\int B(g^{2}\mu^{\frac{1}{2}}\varrho^{2})_{*}h^{2}\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|\mu^{\frac{1}{8}}g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|\mu^{\frac{1}{8}}\varrho|_{H^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

By nearly the same argument as that for 𝒜~2,3\tilde{\mathcal{A}}_{2,3}, thanks to the factor μ12μ12\mu^{\frac{1}{2}}_{*}\mu^{\frac{1}{2}}, we get

|𝒜~2,4||μ1256g|Hs1|μ1256h|Hs2|μ18ϱ|H2|f|γ/2s.\displaystyle|\tilde{\mathcal{A}}_{2,4}|\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{8}}\varrho|_{H^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

Note that |𝒜~2,5|=|𝒜2,5||\tilde{\mathcal{A}}_{2,5}|=|\mathcal{A}_{2,5}| where 𝒜2,5\mathcal{A}_{2,5} is defined in (4.18). Then by taking (a1,a2,a3)=(12,0,2)(a_{1},a_{2},a_{3})=(\frac{1}{2},0,2) or (a1,a2,a3)=(0,12,2)(a_{1},a_{2},a_{3})=(0,\frac{1}{2},2) in (4.23), we get

|𝒜~2,5||μ14g|Hs1|h|Hγ/2+ss2|μ14ϱ|H2|f|Lγ/2+s2.\displaystyle|\tilde{\mathcal{A}}_{2,5}|\lesssim|\mu^{\frac{1}{4}}g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|\mu^{\frac{1}{4}}\varrho|_{H^{2}}|f|_{L^{2}_{\gamma/2+s}}.

Note that |𝒜~2,6|=|𝒜2,6||\tilde{\mathcal{A}}_{2,6}|=|\mathcal{A}_{2,6}| where 𝒜2,6\mathcal{A}_{2,6} is defined in (4.19). Then by taking (a1,a2,a3)=(12,0,2)(a_{1},a_{2},a_{3})=(\frac{1}{2},0,2) or (a1,a2,a3)=(0,12,2)(a_{1},a_{2},a_{3})=(0,\frac{1}{2},2) in (4.24), we get

|𝒜~2,6||μ1256g|Hs1|μ1256h|Hs2|μ1256ϱ|H2|μ1256f|L2.\displaystyle|\tilde{\mathcal{A}}_{2,6}|\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}\varrho|_{H^{2}}|\mu^{\frac{1}{256}}f|_{L^{2}}.

Recalling (4.36), patching together the above estimates of 𝒜~2,i(1i6)\tilde{\mathcal{A}}_{2,i}(1\leq i\leq 6), we get

|𝒜2||g|Hs1|h|Hγ/2+ss2|μ1256ϱ|H2|f|γ/2s.\displaystyle|\mathcal{A}_{2}|\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{\gamma/2+s}}|\mu^{\frac{1}{256}}\varrho|_{H^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (4.37)

Recalling (4.7), patching together (4.35) and (4.37), we have

|Γ3,1ρ(g,h,ϱ),f|min{|g|H2|h|γ/2s,|g|L2(|h|γ/2s+|h|Hγ/2s+2+|h|Hγ/2+s12)}|μ1256ϱ|H3|f|γ/2s.\displaystyle|\langle\Gamma_{3,1}^{\rho}(g,h,\varrho),f\rangle|\lesssim\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}}+|h|_{H^{\frac{1}{2}}_{\gamma/2+s}})\}|\mu^{\frac{1}{256}}\varrho|_{H^{3}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (4.38)

Estimate of Γ3,2ρ(g,h,ϱ),f.\langle\Gamma_{3,2}^{\rho}(g,h,\varrho),f\rangle. Recall from (4.28) and (4.29) that Γ3,2ρ(g,h,ϱ),f=1+2\langle\Gamma_{3,2}^{\rho}(g,h,\varrho),f\rangle=\mathcal{B}_{1}+\mathcal{B}_{2}.

We first deal with 1\mathcal{B}_{1}. Recall 1=1,1+1,2\mathcal{B}_{1}=\mathcal{B}_{1,1}+\mathcal{B}_{1,2} where 1,1\mathcal{B}_{1,1} and 1,2\mathcal{B}_{1,2} are defined in (4.30). We now give new estimates to 1,1\mathcal{B}_{1,1} and 1,2\mathcal{B}_{1,2}. By Cauchy-Schwartz inequality, (2.3), (2.27), (3.40) and Theorem 2.3, we have

|1,1|(Bμ12g2(μh2)D2(ϱ)dV)12(Bμ12D2(f)dV)12|μ1256g|Hs1|μ1256h|Hs2|μ1256ϱ|H3|f|γ/2s.\displaystyle|\mathcal{B}_{1,1}|\lesssim\big{(}\int B\mu^{\frac{1}{2}}g^{2}(\mu h^{2})_{*}\mathrm{D}^{2}(\varrho_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}\varrho|_{H^{3}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

Observe |1,2|=|Qc(Ng,Nhϱ),f||\mathcal{B}_{1,2}|=|\langle Q_{c}(Ng,Nh\varrho),f\rangle|. Then by Corollary 3.1 and Lemma 3.1, we have

|1,2|\displaystyle|\mathcal{B}_{1,2}| \displaystyle\lesssim min{|Ng|H72|Nhϱ|γ/2s,|Ng|L72(|Nhϱ|γ/2s+|Nhϱ|Hγ/2s+2)}|f|γ/2s.\displaystyle\min\{|Ng|_{H^{2}_{7}}|Nh\varrho|_{\mathcal{L}^{s}_{\gamma/2}},|Ng|_{L^{2}_{7}}(|Nh\varrho|_{\mathcal{L}^{s}_{\gamma/2}}+|Nh\varrho|_{H^{s+2}_{\gamma/2}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}.
\displaystyle\lesssim min{|g|H2|h|γ/2s,|g|L2(|h|γ/2s+|h|Hγ/2s+2)}|μ164ϱ|H3|f|γ/2s.\displaystyle\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}})\}|\mu^{\frac{1}{64}}\varrho|_{H^{3}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

We then consider 2\mathcal{B}_{2}. Recalling (4.29), using (Nϱ)=ND(ϱ)+D(N)ϱ+Nϱ(N\varrho)^{\prime}=N^{\prime}\mathrm{D}(\varrho^{\prime})+\mathrm{D}(N^{\prime})\varrho+N\varrho and the identity (4.16), we have

2\displaystyle\mathcal{B}_{2} =\displaystyle= B(g1ρμ)hf1ρμ(Nϱ)μ12μ12D(N1)dV=i=16~2,i,\displaystyle-\int B(\frac{g}{1-\rho\mu})_{*}\frac{hf}{1-\rho\mu}(N\varrho)^{\prime}\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}\mathrm{D}(N^{-1})\mathrm{d}V=\sum_{i=1}^{6}\tilde{\mathcal{B}}_{2,i}, (4.39)
~2,1\displaystyle\tilde{\mathcal{B}}_{2,1} \colonequals\displaystyle\colonequals B(g1ρμ)hf1ρμND(ϱ)D(μ12)dV,\displaystyle-\int B(\frac{g}{1-\rho\mu})_{*}\frac{hf}{1-\rho\mu}N^{\prime}\mathrm{D}(\varrho^{\prime})\mathrm{D}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V,
~2,2\displaystyle\tilde{\mathcal{B}}_{2,2} \colonequals\displaystyle\colonequals ρB(g1ρμ)hf1ρμND(ϱ)μ12μ12D(μ12)dV,\displaystyle\rho\int B(\frac{g}{1-\rho\mu})_{*}\frac{hf}{1-\rho\mu}N^{\prime}\mathrm{D}(\varrho^{\prime})\mu^{\frac{1}{2}}_{*}\mu^{\frac{1}{2}}\mathrm{D}(\mu^{\frac{1}{2}})\mathrm{d}V,
~2,3\displaystyle\tilde{\mathcal{B}}_{2,3} \colonequals\displaystyle\colonequals B(g1ρμ)hϱf1ρμD(N)D(μ12)dV,\displaystyle-\int B(\frac{g}{1-\rho\mu})_{*}\frac{h\varrho f}{1-\rho\mu}\mathrm{D}(N^{\prime})\mathrm{D}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V,
~2,4\displaystyle\tilde{\mathcal{B}}_{2,4} \colonequals\displaystyle\colonequals ρB(g1ρμ)hϱf1ρμD(N)μ12μ12D(μ12)dV,\displaystyle\rho\int B(\frac{g}{1-\rho\mu})_{*}\frac{h\varrho f}{1-\rho\mu}\mathrm{D}(N^{\prime})\mu^{\frac{1}{2}}_{*}\mu^{\frac{1}{2}}\mathrm{D}(\mu^{\frac{1}{2}})\mathrm{d}V,
~2,5\displaystyle\tilde{\mathcal{B}}_{2,5} \colonequals\displaystyle\colonequals B(g1ρμ)Nhϱf1ρμD(μ12)dV,\displaystyle-\int B(\frac{g}{1-\rho\mu})_{*}\frac{Nh\varrho f}{1-\rho\mu}\mathrm{D}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V,
~2,6\displaystyle\tilde{\mathcal{B}}_{2,6} \colonequals\displaystyle\colonequals ρB(g1ρμ)Nhϱf1ρμμ12μ12D(μ12)dV.\displaystyle\rho\int B(\frac{g}{1-\rho\mu})_{*}\frac{Nh\varrho f}{1-\rho\mu}\mu^{\frac{1}{2}}_{*}\mu^{\frac{1}{2}}\mathrm{D}(\mu^{\frac{1}{2}})\mathrm{d}V.

By Cauchy-Schwartz inequality, (2.3), (2.27), (2.37), using (3.18) and (3.40)(by regarding μ18=μ116μ116\mu^{\frac{1}{8}}=\mu^{\frac{1}{16}}\mu^{\frac{1}{16}}), we have

|~2,1|\displaystyle|\tilde{\mathcal{B}}_{2,1}| \displaystyle\lesssim (Bg2h2(μ12)D2(μ14)dV)12(BD2(ϱ)f2(μ12)A(μ12)dV)12\displaystyle\big{(}\int Bg^{2}_{*}h^{2}(\mu^{\frac{1}{2}})^{\prime}\mathrm{D}^{2}(\mu^{\frac{1}{4}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mathrm{D}^{2}(\varrho)f^{2}(\mu^{\frac{1}{2}})^{\prime}\mathrm{A}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}
\displaystyle\lesssim (Bg2h2μ116μ116D2(μ18)dV)12(BD2(ϱ)f2μ18μ18dV)12\displaystyle\big{(}\int Bg^{2}_{*}h^{2}\mu^{\frac{1}{16}}_{*}\mu^{\frac{1}{16}}\mathrm{D}^{2}(\mu^{\frac{1}{8}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mathrm{D}^{2}(\varrho_{*})f^{2}_{*}\mu^{\frac{1}{8}}_{*}\mu^{\frac{1}{8}}\mathrm{d}V\big{)}^{\frac{1}{2}}
\displaystyle\lesssim |μ1256g|Hs1|μ1256h|Hs2|μ1256ϱ|H3|μ1256f|L2.\displaystyle|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}\varrho|_{H^{3}}|\mu^{\frac{1}{256}}f|_{L^{2}}.

By nearly the same argument as that for ~2,1\tilde{\mathcal{B}}_{2,1}, using the factor μ12μ12\mu^{\frac{1}{2}}_{*}\mu^{\frac{1}{2}}, we get

|~2,2||μ1256g|Hs1|μ1256h|Hs2|μ1256ϱ|H3|μ1256f|L2.\displaystyle|\tilde{\mathcal{B}}_{2,2}|\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}\varrho|_{H^{3}}|\mu^{\frac{1}{256}}f|_{L^{2}}.

By Cauchy-Schwartz inequality, (2.3), (2.27), (2.37), the imbedding H2LH^{2}\hookrightarrow L^{\infty} for μ116ρ\mu^{\frac{1}{16}}\rho, Theorem 2.3, the estimate (3.18) and Remark 3.1, we have

|~2,3|\displaystyle|\tilde{\mathcal{B}}_{2,3}| \displaystyle\lesssim (Bg2h2ϱ2D2(N12)A(N)A(μ12)dV)12(Bf2D2(μ14)dV)12\displaystyle\big{(}\int Bg^{2}_{*}h^{2}\varrho^{2}\mathrm{D}^{2}(N^{\frac{1}{2}})\mathrm{A}(N)\mathrm{A}(\mu^{\frac{1}{2}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int Bf^{2}\mathrm{D}^{2}(\mu^{\frac{1}{4}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}
\displaystyle\lesssim (Bg2h2ϱ2μ18μ18D2(N12)dV)12(Bf2D2(μ14)dV)12|μ1256g|Hs1|μ1256h|Hs2|μ116ϱ|H2|f|γ/2s.\displaystyle\big{(}\int Bg^{2}h^{2}_{*}\varrho^{2}_{*}\mu^{\frac{1}{8}}_{*}\mu^{\frac{1}{8}}\mathrm{D}^{2}(N^{\frac{1}{2}}_{*})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int Bf^{2}_{*}\mathrm{D}^{2}(\mu^{\frac{1}{4}})\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{16}}\varrho|_{H^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

By nearly the same argument as that for ~2,3\tilde{\mathcal{B}}_{2,3}, using the factor μ12μ12\mu^{\frac{1}{2}}_{*}\mu^{\frac{1}{2}}, we get

|~2,4||μ1256g|Hs1|μ1256h|Hs2|μ1256ϱ|H2|f|γ/2s.\displaystyle|\tilde{\mathcal{B}}_{2,4}|\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}\varrho|_{H^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

By (3.21), we have |~2,5||g|Hs1|μ1256h|Hs2|μ1256ϱ|H2|μ1256f|L2.|\tilde{\mathcal{B}}_{2,5}|\lesssim|g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}\varrho|_{H^{2}}|\mu^{\frac{1}{256}}f|_{L^{2}}. Using (2.27) and (3.22), we get |~2,6||g|Hs1|μ1256h|Hs2|μ1256ϱ|H2|μ1256f|L2.|\tilde{\mathcal{B}}_{2,6}|\lesssim|g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}\varrho|_{H^{2}}|\mu^{\frac{1}{256}}f|_{L^{2}}. Recalling Γ3,2ρ(g,h,ϱ),f=1+2=1,1+1,2+i=16~2,i\langle\Gamma_{3,2}^{\rho}(g,h,\varrho),f\rangle=\mathcal{B}_{1}+\mathcal{B}_{2}=\mathcal{B}_{1,1}+\mathcal{B}_{1,2}+\sum_{i=1}^{6}\tilde{\mathcal{B}}_{2,i}. Patching together the above estimates of 1,1,1,2,~2,i(1i6)\mathcal{B}_{1,1},\mathcal{B}_{1,2},\tilde{\mathcal{B}}_{2,i}(1\leq i\leq 6), we have

|Γ3,2ρ(g,h,ϱ),f|min{|g|H2|h|γ/2s,|g|L2(|h|γ/2s+|h|Hγ/2s+2)}|μ1256ϱ|H3|f|γ/2s.\displaystyle|\langle\Gamma_{3,2}^{\rho}(g,h,\varrho),f\rangle|\lesssim\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|h|_{\mathcal{L}^{s}_{\gamma/2}}+|h|_{H^{s+2}_{\gamma/2}})\}|\mu^{\frac{1}{256}}\varrho|_{H^{3}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (4.40)

Recalling (4.1), patching together (4.38) and (4.40), we get (4.5) and (4.6). ∎

5. Commutator estimate and weighted energy estimate

In this section, we derive some estimates for the commutators between the weight function WlW_{l} and the various linear, bilinear and trilinear operators whose un-weighted estimates are already given in Section 2, 3 and 4. These estimates together produce some weighted energy estimates that will be used in the next two sections.

Direct computation shows that the various commutators share a common term D(Wl)\mathrm{D}(W_{l}). We collect estimates of various functionals involving D(Wl)\mathrm{D}(W_{l}) in the following lemma. In all the estimates for functionals involving WlW_{l} in the article, the “\lesssim” could bring a constant ClC_{l} depending on ll on the righthand side of “\lesssim”. We do not specify this dependence for brevity.

Lemma 5.1.

Let l0l\geq 0. Let {a1,a2,a3}={0,12,2}\{a_{1},a_{2},a_{3}\}=\{0,\frac{1}{2},2\} and s1,s20,s1+s2=12s_{1},s_{2}\geq 0,s_{1}+s_{2}=\frac{1}{2}. The following estimates are valid.

BD2(Wl)μ14g2h2dV\displaystyle\int B\mathrm{D}^{2}(W_{l})\mu^{\frac{1}{4}}_{*}g^{2}_{*}h^{2}\mathrm{d}V \displaystyle\lesssim |μ164g|L22|h|Ll+γ/222+|μ164g|Hs12|μ164h|Hs22.\displaystyle|\mu^{\frac{1}{64}}g|_{L^{2}}^{2}|h|_{L^{2}_{l+\gamma/2}}^{2}+|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}^{2}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}}^{2}. (5.1)
BD2(Wl)(μ14)g2h2dV\displaystyle\int B\mathrm{D}^{2}(W_{l})(\mu^{\frac{1}{4}})^{\prime}_{*}g^{2}_{*}h^{2}\mathrm{d}V \displaystyle\lesssim |g|L22|h|Ll+γ/222+|μ164g|Hs12|μ164h|Hs22.\displaystyle|g|_{L^{2}}^{2}|h|_{L^{2}_{l+\gamma/2}}^{2}+|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}^{2}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}}^{2}. (5.2)
|BD(Wl)μ14ghfdV|\displaystyle|\int B\mathrm{D}(W_{l})\mu^{\frac{1}{4}}_{*}g_{*}hf\mathrm{d}V| \displaystyle\lesssim |μ164g|L2|h|Ll+γ/22|f|Lγ/22+|μ164g|Hs1|μ164h|Hs2|μ164f|L2.\displaystyle|\mu^{\frac{1}{64}}g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}|f|_{L^{2}_{\gamma/2}}+|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}}|\mu^{\frac{1}{64}}f|_{L^{2}}. (5.3)
|BD(Wl)μ14g(hf)dV|\displaystyle|\int B\mathrm{D}(W_{l})\mu^{\frac{1}{4}}_{*}g_{*}(hf)^{\prime}\mathrm{d}V| \displaystyle\lesssim |μ164g|L2|h|Ll+γ/22|f|Lγ/22.\displaystyle|\mu^{\frac{1}{64}}g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}|f|_{L^{2}_{\gamma/2}}. (5.4)
|BghϱfD(Wl)μ14μ14dV|\displaystyle|\int Bg_{*}h\varrho f\mathrm{D}(W_{l})\mu^{\frac{1}{4}}\mu^{\frac{1}{4}}_{*}\mathrm{d}V| \displaystyle\lesssim |μ164g|Ha1|μ164h|Ha2|μ164ϱ|Ha3|μ164f|L2.\displaystyle|\mu^{\frac{1}{64}}g|_{H^{a_{1}}}|\mu^{\frac{1}{64}}h|_{H^{a_{2}}}|\mu^{\frac{1}{64}}\varrho|_{H^{a_{3}}}|\mu^{\frac{1}{64}}f|_{L^{2}}. (5.5)
|BghϱfD(Wl)μ14dV|\displaystyle|\int Bg_{*}h\varrho_{*}f\mathrm{D}(W_{l})\mu^{\frac{1}{4}}_{*}\mathrm{d}V| \displaystyle\lesssim |μ164g|Ha1|h|Hl+γ/2a2|μ164ϱ|Ha3|f|Lγ/22.\displaystyle|\mu^{\frac{1}{64}}g|_{H^{a_{1}}}|h|_{H^{a_{2}}_{l+\gamma/2}}|\mu^{\frac{1}{64}}\varrho|_{H^{a_{3}}}|f|_{L^{2}_{\gamma/2}}. (5.6)

The proof of Lemma 5.1 is given in the Appendix 8. Based on the proof, we give a remark to make Lemma 5.1 more applicable.

Remark 5.1.

In Lemma 5.1, if the exponent 14\frac{1}{4} is changed to some constant a14a\geq\frac{1}{4}, the results are still valid. If we replace μ\mu with N2N^{2} in (5.3), (5.4), (5.5) and (5.6), the results are still valid. Estimates (5.1) and (5.2) are still valid if h2h^{2} is replaced by (h2)(h^{2})^{\prime}.

5.1. Commutator estimate between WlW_{l} and ρ\mathcal{L}^{\rho}

In the following proposition, we give an estimate of the commutator between WlW_{l} and ρ\mathcal{L}^{\rho}.

Proposition 5.1.

Let l0l\geq 0. The following two estimates are valid.

|[Wl,ρ]f,Wlf|ρ|f|Ll+γ/222.\displaystyle|\langle[W_{l},\mathcal{L}^{\rho}]f,W_{l}f\rangle|\lesssim\rho|f|_{L^{2}_{l+\gamma/2}}^{2}. (5.7)
|[Wl,ρ]h,Wlf|ρ|h|Ll+γ/22|f|l+γ/2s.\displaystyle|\langle[W_{l},\mathcal{L}^{\rho}]h,W_{l}f\rangle|\lesssim\rho|h|_{L^{2}_{l+\gamma/2}}|f|_{\mathcal{L}^{s}_{l+\gamma/2}}. (5.8)
Proof.

Recalling (1.21), (2.2) and (2.38), we have

ρf\displaystyle\mathcal{L}^{\rho}f =\displaystyle= mρf+rρf,\displaystyle\mathcal{L}^{\rho}_{m}f+\mathcal{L}^{\rho}_{r}f, (5.9)
(mρf)(v)\displaystyle(\mathcal{L}^{\rho}_{m}f)(v) \colonequals\displaystyle\colonequals ρBNNND(N1f)dσdv.\displaystyle\rho\int BN_{*}N^{\prime}N^{\prime}_{*}\mathrm{D}(N^{-1}f)\mathrm{d}\sigma\mathrm{d}v_{*}. (5.10)

By (5.9), we need to consider mρ\mathcal{L}^{\rho}_{m} and rρ\mathcal{L}^{\rho}_{r}. For the operator mρ\mathcal{L}^{\rho}_{m}, using (2.28), we derive

[Wl,mρ]f,Wlf=ρBNNffWlD(Wl)dV=12ρBNNffD2(Wl)dV.\displaystyle\langle[W_{l},\mathcal{L}^{\rho}_{m}]f,W_{l}f\rangle=\rho\int BN_{*}N^{\prime}_{*}ff^{\prime}W_{l}\mathrm{D}(W_{l}^{\prime})\mathrm{d}V=-\frac{1}{2}\rho\int BN_{*}N^{\prime}_{*}ff^{\prime}\mathrm{D}^{2}(W_{l})\mathrm{d}V.

Using NN|ff|12(N2f2+(N2)(f2))N_{*}N^{\prime}_{*}|ff^{\prime}|\leq\frac{1}{2}(N_{*}^{2}f^{2}+(N^{2})^{\prime}_{*}(f^{2})^{\prime}), (2.28), (2.3), we get

|[Wl,mρ]f,Wlf|12ρBN2f2D2(Wl)dVρBμf2D2(Wl)dVρ|f|Ll+γ/222.\displaystyle|\langle[W_{l},\mathcal{L}^{\rho}_{m}]f,W_{l}f\rangle|\leq\frac{1}{2}\rho\int BN_{*}^{2}f^{2}\mathrm{D}^{2}(W_{l})\mathrm{d}V\lesssim\rho\int B\mu_{*}f^{2}\mathrm{D}^{2}(W_{l})\mathrm{d}V\lesssim\rho|f|_{L^{2}_{l+\gamma/2}}^{2}.

where we use (5.1)(writing μ=μ14μ34\mu_{*}=\mu^{\frac{1}{4}}_{*}\mu^{\frac{3}{4}}_{*}). By Proposition 2.1 and (3.11), we have

|[Wl,rρ]h,Wlf|ρ|μ1128h|L2|μ1128f|L2.\displaystyle|\langle[W_{l},\mathcal{L}^{\rho}_{r}]h,W_{l}f\rangle|\lesssim\rho|\mu^{\frac{1}{128}}h|_{L^{2}}|\mu^{\frac{1}{128}}f|_{L^{2}}. (5.11)

Patching together the previous two estimates, we get (5.7).

We now set to prove (5.8). Recalling (5.9), we need to consider mρ\mathcal{L}^{\rho}_{m} and rρ\mathcal{L}^{\rho}_{r}. For the operator rρ\mathcal{L}^{\rho}_{r}, we already have (5.11). For the operator mρ\mathcal{L}^{\rho}_{m}, recalling (5.10), using (2.28), we deduce

[Wl,mρ]h,Wlf=ρBNNfhWlD(Wl)dV=ρBNNh(Wlf)D(Wl)dV=1+2,\displaystyle\langle[W_{l},\mathcal{L}^{\rho}_{m}]h,W_{l}f\rangle=-\rho\int BN_{*}N^{\prime}_{*}fh^{\prime}W_{l}\mathrm{D}(W_{l})\mathrm{d}V=\rho\int BN_{*}N^{\prime}_{*}h(W_{l}f)^{\prime}\mathrm{D}(W_{l})\mathrm{d}V=\mathcal{I}_{1}+\mathcal{I}_{2},
1\colonequalsρBN2h(Wlf)D(Wl)dV,2\colonequalsρBND(N)h(Wlf)D(Wl)dV.\displaystyle\mathcal{I}_{1}\colonequals\rho\int BN^{2}_{*}h(W_{l}f)^{\prime}\mathrm{D}(W_{l})\mathrm{d}V,\quad\mathcal{I}_{2}\colonequals\rho\int BN_{*}\mathrm{D}(N^{\prime}_{*})h(W_{l}f)^{\prime}\mathrm{D}(W_{l})\mathrm{d}V.

Note that 1=ρWlQc(N2,h)Qc(N2,Wlh),Wlf\mathcal{I}_{1}=-\rho\langle W_{l}Q_{c}(N^{2},h)-Q_{c}(N^{2},W_{l}h),W_{l}f\rangle by using (5.21). Then by Proposition 5.2(which will be proved soon), we have |1|ρ|h|Ll+γ/22|f|l+γ/2s.|\mathcal{I}_{1}|\lesssim\rho|h|_{L^{2}_{l+\gamma/2}}|f|_{\mathcal{L}^{s}_{l+\gamma/2}}. By Cauchy-Schwartz inequality, (2.3), (2.28) and (2.27), we have

|2|ρ(Bμh2D2(Wl)dV)12(BD2(N)(Wlf)2dV)12ρ|h|Ll+γ/22|f|l+γ/2s.\displaystyle|\mathcal{I}_{2}|\lesssim\rho\big{(}\int B\mu_{*}h^{2}\mathrm{D}^{2}(W_{l})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mathrm{D}^{2}(N)(W_{l}f)^{2}_{*}\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim\rho|h|_{L^{2}_{l+\gamma/2}}|f|_{\mathcal{L}^{s}_{l+\gamma/2}}.

where we use (5.1), Theorem 2.3 and Remark 2.3. Patching together the estimates of 1,2\mathcal{I}_{1},\mathcal{I}_{2} and (5.11), we get (5.8). ∎

Applying Theorem 2.2 and Proposition 5.1, we get

Theorem 5.1.

Let l0l\geq 0. If 0ρρ00\leq\rho\leq\rho_{0}, there holds

ρf,W2lfλ04ρ|f|l+γ/2s2Cρ|f|Lγ/222,\displaystyle\langle\mathcal{L}^{\rho}f,W_{2l}f\rangle\geq\frac{\lambda_{0}}{4}\rho|f|_{\mathcal{L}^{s}_{l+\gamma/2}}^{2}-C\rho|f|_{L^{2}_{\gamma/2}}^{2}, (5.12)

where λ0\lambda_{0} is the constant appearing in Theorem 2.2. As a direct consequence, in the full (x,v)(x,v) space, there holds

(ρf,W2lf)λ04ρfLx2l+γ/2s2CρfLx2Lγ/222.\displaystyle(\mathcal{L}^{\rho}f,W_{2l}f)\geq\frac{\lambda_{0}}{4}\rho\|f\|_{L^{2}_{x}\mathcal{L}^{s}_{l+\gamma/2}}^{2}-C\rho\|f\|_{L^{2}_{x}L^{2}_{\gamma/2}}^{2}. (5.13)
Proof.

Recalling (2.13) and (2.15), since Nμ12N\lesssim\mu^{\frac{1}{2}}, it is easy to see |ρf|γ/2s|μ18f|L2|f|Lγ/22|\mathbb{P}_{\rho}f|_{\mathcal{L}^{s}_{\gamma/2}}\lesssim|\mu^{\frac{1}{8}}f|_{L^{2}}\lesssim|f|_{L^{2}_{\gamma/2}}. Then by the lower bound in Theorem 2.2, we have

ρf,fλ0ρ(12|f|γ/2s2|ρf|γ/2s2)12λ0ρ|f|γ/2s2C|f|Lγ/222.\displaystyle\langle\mathcal{L}^{\rho}f,f\rangle\geq\lambda_{0}\rho(\frac{1}{2}|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}-|\mathbb{P}_{\rho}f|_{\mathcal{L}^{s}_{\gamma/2}}^{2})\geq\frac{1}{2}\lambda_{0}\rho|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}-C|f|_{L^{2}_{\gamma/2}}^{2}.

From which together with Proposition 5.1, we have

ρf,W2lf=ρWlf,Wlf+[Wl,ρ]f,Wlf12λ0ρ|f|l+γ/2s2Cρ|f|Ll+γ/222.\displaystyle\langle\mathcal{L}^{\rho}f,W_{2l}f\rangle=\langle\mathcal{L}^{\rho}W_{l}f,W_{l}f\rangle+\langle[W_{l},\mathcal{L}^{\rho}]f,W_{l}f\rangle\geq\frac{1}{2}\lambda_{0}\rho|f|_{\mathcal{L}^{s}_{l+\gamma/2}}^{2}-C\rho|f|_{L^{2}_{l+\gamma/2}}^{2}.

Using the interpolation |f|Ll+γ/222η|f|Ll+γ/2+s22+Cη|f|Lγ/222η|f|l+γ/2s2+Cη|f|Lγ/222|f|_{L^{2}_{l+\gamma/2}}^{2}\leq\eta|f|_{L^{2}_{l+\gamma/2+s}}^{2}+C_{\eta}|f|_{L^{2}_{\gamma/2}}^{2}\leq\eta|f|_{\mathcal{L}^{s}_{l+\gamma/2}}^{2}+C_{\eta}|f|_{L^{2}_{\gamma/2}}^{2} and taking η=λ04C\eta=\frac{\lambda_{0}}{4C}, we finish the proof of (5.12). Further taking integration over x𝕋3x\in\mathbb{T}^{3}, we get (5.13). ∎

In the (x,v)(x,v) space, we have the following lower bound estimates which yield the dissipation functional in later energy estimates.

Theorem 5.2.

Recall α=xα,βα=xαvβ\partial^{\alpha}=\partial^{\alpha}_{x},\partial^{\alpha}_{\beta}=\partial^{\alpha}_{x}\partial^{\beta}_{v}. If 0ρρ00\leq\rho\leq\rho_{0}, the following statements are valid. When there is only xx derivative, it holds that

(αρf,W2l|α|,0αf)λ04ραfLx2l|α|,0+γ/2s2CραfLx2Lγ/222.\displaystyle(\partial^{\alpha}\mathcal{L}^{\rho}f,W_{2l_{|\alpha|,0}}\partial^{\alpha}f)\geq\frac{\lambda_{0}}{4}\rho\|\partial^{\alpha}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,0}+\gamma/2}}^{2}-C\rho\|\partial^{\alpha}f\|_{L^{2}_{x}L^{2}_{\gamma/2}}^{2}. (5.14)

If |β|1|\beta|\geq 1, it holds that

(βαρf,W2l|α|,|β|βαf)\displaystyle(\partial^{\alpha}_{\beta}\mathcal{L}^{\rho}f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)
\displaystyle\geq λ08ρβαfLx2l|α|,|β|+γ/2s2CρβαfLx2Ll|α|,|β|+γ/222Cρβ1<ββ1αfLx2l|α|,|β|+γ/2s2.\displaystyle\frac{\lambda_{0}}{8}\rho\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}-C\rho\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}-C\rho\sum_{\beta_{1}<\beta}\|\partial^{\alpha}_{\beta_{1}}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}.
Proof.

Since αρf=ραf\partial^{\alpha}\mathcal{L}^{\rho}f=\mathcal{L}^{\rho}\partial^{\alpha}f, (5.14) is a direct result of (5.13).

Note that (βαρf,W2l|α|,|β|βαf)=1+2(\partial^{\alpha}_{\beta}\mathcal{L}^{\rho}f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)=\mathcal{I}_{1}+\mathcal{I}_{2} where

1\colonequals(ρβαf,W2l|α|,|β|βαf),2\colonequals([β,ρ]αf,W2l|α|,|β|βαf).\displaystyle\mathcal{I}_{1}\colonequals(\mathcal{L}^{\rho}\partial^{\alpha}_{\beta}f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f),\quad\mathcal{I}_{2}\colonequals([\partial_{\beta},\mathcal{L}^{\rho}]\partial^{\alpha}f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f).

We use (5.13) to get

1λ04ρβαfLx2l|α|,|β|+γ/2s2CρβαfLx2Ll|α|,|β|+γ/222.\displaystyle\mathcal{I}_{1}\geq\frac{\lambda_{0}}{4}\rho\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}-C\rho\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}.

By binomial formula and Remark 3.3, to estimate ([β,ρ]αf,W2l|α|,|β|βαf)([\partial_{\beta},\mathcal{L}^{\rho}]\partial^{\alpha}f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f), it suffices to consider

(ρβ1αf,W2l|α|,|β|βαf)=(ρWl|α|,|β|β1αf,Wl|α|,|β|βαf)+([Wl|α|,|β|,ρ]β1αf,Wl|α|,|β|βαf),\displaystyle(\mathcal{L}^{\rho}\partial^{\alpha}_{\beta_{1}}f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)=(\mathcal{L}^{\rho}W_{l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta_{1}}f,W_{l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)+([W_{l_{|\alpha|,|\beta|}},\mathcal{L}^{\rho}]\partial^{\alpha}_{\beta_{1}}f,W_{l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f),

for all β1<β\beta_{1}<\beta.

Recalling (2.13) and (2.15), it is easy to see |ρf|γ/2s|μ18f|L2|f|γ/2s|\mathbb{P}_{\rho}f|_{\mathcal{L}^{s}_{\gamma/2}}\lesssim|\mu^{\frac{1}{8}}f|_{L^{2}}\lesssim|f|_{\mathcal{L}^{s}_{\gamma/2}}. Then by the upper bound in Theorem 2.2 and Remark 2.1, for ρ12(2π)32\rho\leq\frac{1}{2}(2\pi)^{\frac{3}{2}}, we have

ρf,fρ(|f|γ/2s2+|ρf|γ/2s2)ρ|f|γ/2s2.\displaystyle\langle\mathcal{L}^{\rho}f,f\rangle\lesssim\rho(|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}+|\mathbb{P}_{\rho}f|_{\mathcal{L}^{s}_{\gamma/2}}^{2})\lesssim\rho|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2}. (5.16)

Recalling (1.39), using Cauchy-Schwartz inequality and (5.16), for ρ12(2π)32\rho\leq\frac{1}{2}(2\pi)^{\frac{3}{2}}, we have

|ρg,h|(ρg,g)12(ρh,h)12ρ|g|γ/2s|h|γ/2s,\displaystyle|\langle\mathcal{L}^{\rho}g,h\rangle|\leq\big{(}\langle\mathcal{L}^{\rho}g,g\rangle\big{)}^{\frac{1}{2}}\big{(}\langle\mathcal{L}^{\rho}h,h\rangle\big{)}^{\frac{1}{2}}\lesssim\rho|g|_{\mathcal{L}^{s}_{\gamma/2}}|h|_{\mathcal{L}^{s}_{\gamma/2}}, (5.17)

which gives

|(ρWl|α|,|β|β1αf,Wl|α|,|β|βαf)|ρβ1αfLx2l|α|,|β|+γ/2sβαfLx2l|α|,|β|+γ/2s.\displaystyle|(\mathcal{L}^{\rho}W_{l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta_{1}}f,W_{l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\lesssim\rho\|\partial^{\alpha}_{\beta_{1}}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}. (5.18)

By (5.8), we have

|([Wl|α|,|β|,ρ]β1αf,Wl|α|,|β|βαf)|ρβ1αfLx2Ll|α|,|β|+γ/22βαfLx2l|α|,|β|+γ/2s.\displaystyle|([W_{l_{|\alpha|,|\beta|}},\mathcal{L}^{\rho}]\partial^{\alpha}_{\beta_{1}}f,W_{l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\lesssim\rho\|\partial^{\alpha}_{\beta_{1}}f\|_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}+\gamma/2}}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}. (5.19)

Patching together (5.18) and (5.19), using the basic inequality 2abηa2+η1b22ab\leq\eta a^{2}+\eta^{-1}b^{2}, we have

|(ρβ1αf,W2l|α|,|β|βαf)|ηρβαfLx2l|α|,|β|+γ/2s2+η1ρβ1αfLx2l|α|,|β|+γ/2s2.\displaystyle|(\mathcal{L}^{\rho}\partial^{\alpha}_{\beta_{1}}f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\lesssim\eta\rho\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}+\eta^{-1}\rho\|\partial^{\alpha}_{\beta_{1}}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}.

Taking sum over β1<β\beta_{1}<\beta and taking η\eta suitably small, we finish the proof. ∎

5.2. Estimate of the commutator [Wl,Γ2ρ(g,)][W_{l},\Gamma_{2}^{\rho}(g,\cdot)]

In this subsection, we derive an estimate of the commutator between WlW_{l} and the operator Γ2ρ(g,)\Gamma_{2}^{\rho}(g,\cdot). That is, we want to estimate WlΓ2ρ(g,h)Γ2ρ(g,Wlh),f.\langle W_{l}\Gamma_{2}^{\rho}(g,h)-\Gamma_{2}^{\rho}(g,W_{l}h),f\rangle. Recalling (3.1), (3.2) and (3.4), we have

Γ2ρ(g,h)=ρ12(Qc(Ng,h)+Iρ(g,h))+ρ32(Γ2,r,1ρ(g,h)+Γ2,r,2ρ(g,h)+Γ2,r,3ρ(g,h)).\displaystyle\Gamma_{2}^{\rho}(g,h)=\rho^{\frac{1}{2}}\big{(}Q_{c}(Ng,h)+I^{\rho}(g,h)\big{)}+\rho^{\frac{3}{2}}\big{(}\Gamma_{2,r,1}^{\rho}(g,h)+\Gamma_{2,r,2}^{\rho}(g,h)+\Gamma_{2,r,3}^{\rho}(g,h)\big{)}. (5.20)

We will estimate the five terms on the right-hand side of (5.20) in the following five propositions. First, we give an estimate for the commutator [Wl,Qc(Ng,)][W_{l},Q_{c}(Ng,\cdot)] in the following proposition.

Proposition 5.2.

Let l,s1,s20l,s_{1},s_{2}\geq 0 and s1+s2=12s_{1}+s_{2}=\frac{1}{2}. It holds that

|WlQc(Ng,h)Qc(Ng,Wlh),f|(|μ164g|L2|h|Ll+γ/22+|μ164g|Hs1|μ164h|Hs2)|f|γ/2s.\displaystyle|\langle W_{l}Q_{c}(Ng,h)-Q_{c}(Ng,W_{l}h),f\rangle|\lesssim(|\mu^{\frac{1}{64}}g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}+|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}})|f|_{\mathcal{L}^{s}_{\gamma/2}}.
Proof.

We observe that

WlQc(Ng,h)Qc(Ng,Wlh),f=BD(Wl)(Ng)hfdV=1+2,\displaystyle\langle W_{l}Q_{c}(Ng,h)-Q_{c}(Ng,W_{l}h),f\rangle=\int B\mathrm{D}(W_{l}^{\prime})(Ng)_{*}hf^{\prime}\mathrm{d}V=\mathcal{I}_{1}+\mathcal{I}_{2}, (5.21)
1\colonequalsBD(Wl)(Ng)hD(f)dV,2\colonequalsBD(Wl)(Ng)hfdV.\displaystyle\mathcal{I}_{1}\colonequals\int B\mathrm{D}(W_{l}^{\prime})(Ng)_{*}h\mathrm{D}(f^{\prime})\mathrm{d}V,\quad\mathcal{I}_{2}\colonequals\int B\mathrm{D}(W_{l}^{\prime})(Ng)_{*}hf\mathrm{d}V.

By Cauchy-Schwartz inequality and (2.3), using (5.1) and Theorem 2.3, we have

|1|\displaystyle|\mathcal{I}_{1}| \displaystyle\lesssim (BD2(Wl)μ12g2h2dV)12(Bμ12D2(f)dV)12\displaystyle\big{(}\int B\mathrm{D}^{2}(W_{l})\mu^{\frac{1}{2}}_{*}g^{2}_{*}h^{2}\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}}
\displaystyle\lesssim (|μ164g|L2|h|Ll+γ/22+|μ164g|Hs1|μ164h|Hs2)|f|γ/2s.\displaystyle(|\mu^{\frac{1}{64}}g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}+|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}})|f|_{\mathcal{L}^{s}_{\gamma/2}}.

By (5.3) and Remark 5.1, we have

|2||μ164g|L2|h|Ll+γ/22|f|Lγ/22+|μ164g|Hs1|μ164h|Hs2|μ164f|L2.\displaystyle|\mathcal{I}_{2}|\lesssim|\mu^{\frac{1}{64}}g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}|f|_{L^{2}_{\gamma/2}}+|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}}|\mu^{\frac{1}{64}}f|_{L^{2}}.

Recalling (5.21), patching together the estimates of 1\mathcal{I}_{1} and 2\mathcal{I}_{2}, we finish the proof. ∎

The following proposition gives an estimate for the commutator [Wl,Iρ(g,)][W_{l},I^{\rho}(g,\cdot)].

Proposition 5.3.

Let l,s1,s20l,s_{1},s_{2}\geq 0 and s1+s2=12s_{1}+s_{2}=\frac{1}{2}. It holds that

|WlIρ(g,h)Iρ(g,Wlh),f|(|g|L2|h|Ll+γ/22+|μ164g|Hs1|μ164h|Hs2)|f|γ/2s.\displaystyle|\langle W_{l}I^{\rho}(g,h)-I^{\rho}(g,W_{l}h),f\rangle|\lesssim(|g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}+|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}})|f|_{\mathcal{L}^{s}_{\gamma/2}}.
Proof.

Recalling (3.24), (3.25), (3.26), we have

[Wl,Iρ(g,)]h,f\displaystyle\langle[W_{l},I^{\rho}(g,\cdot)]h,f\rangle =\displaystyle= [Wl,Imρ(g,)]h,f+[Wl,Irρ(g,)]h,f,\displaystyle\langle[W_{l},I^{\rho}_{m}(g,\cdot)]h,f\rangle+\langle[W_{l},I^{\rho}_{r}(g,\cdot)]h,f\rangle, (5.22)
[Wl,Imρ(g,)]h,f\displaystyle\langle[W_{l},I^{\rho}_{m}(g,\cdot)]h,f\rangle =\displaystyle= BD(μ12)D(Wl)(g1ρμ)(h1ρμ)fdV,\displaystyle-\int B\mathrm{D}(\mu^{\frac{1}{2}}_{*})\mathrm{D}(W_{l}^{\prime})(\frac{g}{1-\rho\mu})_{*}(\frac{h}{1-\rho\mu})f^{\prime}\mathrm{d}V, (5.23)
[Wl,Irρ(g,)]h,f\displaystyle\langle[W_{l},I^{\rho}_{r}(g,\cdot)]h,f\rangle =\displaystyle= ρBD(μ12)μ12μ12D(Wl)(g1ρμ)(h1ρμ)fdV.\displaystyle\rho\int B\mathrm{D}(\mu^{\frac{1}{2}})\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}\mathrm{D}(W_{l}^{\prime})(\frac{g}{1-\rho\mu})_{*}(\frac{h}{1-\rho\mu})f^{\prime}\mathrm{d}V.

By Cauchy-Schwartz inequality, (2.27) and (2.28), using (5.1), (5.2) and Theorem 2.3, we have

|[Wl,Imρ(g,)]h,f|\displaystyle|\langle[W_{l},I^{\rho}_{m}(g,\cdot)]h,f\rangle| \displaystyle\lesssim (D2(Wl)A(μ12)g2h2dV)12(f2D2(μ14)dV)12\displaystyle\big{(}\int\mathrm{D}^{2}(W_{l})\mathrm{A}(\mu^{\frac{1}{2}}_{*})g^{2}_{*}h^{2}\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int f^{2}_{*}\mathrm{D}^{2}(\mu^{\frac{1}{4}})\mathrm{d}V\big{)}^{\frac{1}{2}} (5.24)
\displaystyle\lesssim (|g|L2|h|Ll+γ/22+|μ164g|Hs1|μ164h|Hs2)|f|γ/2s.\displaystyle(|g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}+|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}})|f|_{\mathcal{L}^{s}_{\gamma/2}}.

By Cauchy-Schwartz inequality, (2.27) and (2.28), using (5.1) and (3.18), we have

|[Wl,Irρ(g,)]h,f|\displaystyle|\langle[W_{l},I^{\rho}_{r}(g,\cdot)]h,f\rangle| \displaystyle\lesssim (BD2(Wl)μ12μ12g2h2dV)12(BD2(μ12)μ12μ12f2dV)12\displaystyle\big{(}\int B\mathrm{D}^{2}(W_{l})\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}g_{*}^{2}h^{2}\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mathrm{D}^{2}(\mu^{\frac{1}{2}}_{*})\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}f^{2}_{*}\mathrm{d}V\big{)}^{\frac{1}{2}} (5.25)
\displaystyle\lesssim (|μ164g|L2|h|Ll+γ/22+|μ164g|Hs1|μ164h|Hs2)|μ14f|L2.\displaystyle(|\mu^{\frac{1}{64}}g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}+|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}})|\mu^{\frac{1}{4}}f|_{L^{2}}.

Recalling (5.22), patching together (5.24) and (5.25), we finish the proof. ∎

The next proposition gives an estimate for the commutator [Wl,Γ2,r,1ρ(g,)][W_{l},\Gamma_{2,r,1}^{\rho}(g,\cdot)].

Proposition 5.4.

Let l,s1,s20l,s_{1},s_{2}\geq 0 and s1+s2=12s_{1}+s_{2}=\frac{1}{2}. It holds that

|[Wl,Γ2,r,1ρ(g,)]h,f|(|g|L2|h|Ll+γ/22+|μ164g|Hs1|μ164h|Hs2)|f|γ/2s.\displaystyle|\langle[W_{l},\Gamma_{2,r,1}^{\rho}(g,\cdot)]h,f\rangle|\lesssim(|g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}+|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}})|f|_{\mathcal{L}^{s}_{\gamma/2}}.
Proof.

Recalling (3.42), we have [Wl,Γ2,r,1ρ(g,)]h,f=1+2\langle[W_{l},\Gamma_{2,r,1}^{\rho}(g,\cdot)]h,f\rangle=\mathcal{F}_{1}+\mathcal{F}_{2} where

1\colonequalsB(Ng)(Nh)(N1f)D(Wl)MdV,2\colonequalsB(Ng)(Nh)(N1f)D(Wl)MdV.\displaystyle\mathcal{F}_{1}\colonequals\int B(Ng)_{*}(Nh)(N^{-1}f)^{\prime}\mathrm{D}(W_{l}^{\prime})M^{\prime}\mathrm{d}V,\quad\mathcal{F}_{2}\colonequals\int B(Ng)_{*}(Nh)(N^{-1}f)^{\prime}\mathrm{D}(W_{l}^{\prime})M^{\prime}_{*}\mathrm{d}V.

Recalling M=μ12NM=\mu^{\frac{1}{2}}N and (5.21), we observe

1=B(Nh)(Ng)(μ12f)D(Wl)dV=WlQc(Ng,Nh)Qc(Ng,WlNh),μ12f.\displaystyle\mathcal{F}_{1}=\int B(Nh)(Ng)_{*}(\mu^{\frac{1}{2}}f)^{\prime}\mathrm{D}(W_{l}^{\prime})\mathrm{d}V=\langle W_{l}Q_{c}(Ng,Nh)-Q_{c}(Ng,W_{l}Nh),\mu^{\frac{1}{2}}f\rangle.

Then by Proposition 5.2, we get

|1|(|μ164g|L2|h|Ll+γ/22+|μ164g|Hs1|μ164h|Hs2)|f|γ/2s.\displaystyle|\mathcal{F}_{1}|\lesssim(|\mu^{\frac{1}{64}}g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}+|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}})|f|_{\mathcal{L}^{s}_{\gamma/2}}. (5.26)

Note that N1=μ12ρμ12N^{-1}=\mu^{-\frac{1}{2}}-\rho\mu^{\frac{1}{2}} and μμ=μμ\mu\mu_{*}=\mu^{\prime}\mu_{*}^{\prime}, we get

NN(N1)M\displaystyle NN_{*}(N^{-1})^{\prime}M^{\prime}_{*} =\displaystyle= μ121ρμ(μ121ρμ)(μ12)ρ(μ12))M\displaystyle\frac{\mu^{\frac{1}{2}}}{1-\rho\mu}(\frac{\mu^{\frac{1}{2}}}{1-\rho\mu})_{*}(\mu^{-\frac{1}{2}})^{\prime}-\rho(\mu^{\frac{1}{2}})^{\prime})M^{\prime}_{*}
=\displaystyle= 11ρμ(11ρμ)(μ12M)ρMMN\displaystyle\frac{1}{1-\rho\mu}(\frac{1}{1-\rho\mu})_{*}(\mu^{\frac{1}{2}}M)^{\prime}_{*}-\rho MM_{*}N^{\prime}_{*}
=\displaystyle= 11ρμ(11ρμ)D((μ12M))+11ρμ(NM)ρMMD(N)ρM(NM),\displaystyle\frac{1}{1-\rho\mu}(\frac{1}{1-\rho\mu})_{*}\mathrm{D}((\mu^{\frac{1}{2}}M)^{\prime}_{*})+\frac{1}{1-\rho\mu}(NM)_{*}-\rho MM_{*}\mathrm{D}(N^{\prime}_{*})-\rho M(NM)_{*},

which gives 2=i=142,i\mathcal{F}_{2}=\sum_{i=1}^{4}\mathcal{F}_{2,i} where

2,1\displaystyle\mathcal{F}_{2,1} \colonequals\displaystyle\colonequals B(g1ρμ)h1ρμfD((μ12M))D(Wl)dV,\displaystyle\int B(\frac{g}{1-\rho\mu})_{*}\frac{h}{1-\rho\mu}f^{\prime}\mathrm{D}((\mu^{\frac{1}{2}}M)^{\prime}_{*})\mathrm{D}(W_{l}^{\prime})\mathrm{d}V, (5.27)
2,2\displaystyle\mathcal{F}_{2,2} \colonequals\displaystyle\colonequals B(NMg)h1ρμfD(Wl)dV,\displaystyle\int B(NMg)_{*}\frac{h}{1-\rho\mu}f^{\prime}\mathrm{D}(W_{l}^{\prime})\mathrm{d}V, (5.28)
2,3\displaystyle\mathcal{F}_{2,3} \colonequals\displaystyle\colonequals ρB(Mg)MhfD(N)D(Wl)dV,\displaystyle-\rho\int B(Mg)_{*}Mhf^{\prime}\mathrm{D}(N^{\prime}_{*})\mathrm{D}(W_{l}^{\prime})\mathrm{d}V, (5.29)
2,4\displaystyle\mathcal{F}_{2,4} \colonequals\displaystyle\colonequals ρB(NMg)MhfD(Wl)dV.\displaystyle-\rho\int B(NMg)_{*}Mhf^{\prime}\mathrm{D}(W_{l}^{\prime})\mathrm{d}V. (5.30)

Note that the two lines (5.27) and (5.29) resemble the line (5.23). Then by (5.24) we get

|2,1|+|2,3|(|g|L2|h|Ll+γ/22+|μ164g|Hs1|μ164h|Hs2)|f|γ/2s.\displaystyle|\mathcal{F}_{2,1}|+|\mathcal{F}_{2,3}|\lesssim(|g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}+|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}})|f|_{\mathcal{L}^{s}_{\gamma/2}}. (5.31)

Note that the two lines (5.28) and (5.30) resemble (5.21). Then by Proposition 5.2, we get

|2,2|+|2,4|(|μ164g|L2|h|Ll+γ/22+|μ164g|Hs1|μ164h|Hs2)|f|γ/2s.\displaystyle|\mathcal{F}_{2,2}|+|\mathcal{F}_{2,4}|\lesssim(|\mu^{\frac{1}{64}}g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}+|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}})|f|_{\mathcal{L}^{s}_{\gamma/2}}. (5.32)

Recalling [Wl,Γ2,r,1ρ(g,)]h,f=1+i=142,i\langle[W_{l},\Gamma_{2,r,1}^{\rho}(g,\cdot)]h,f\rangle=\mathcal{F}_{1}+\sum_{i=1}^{4}\mathcal{F}_{2,i}, patching together (5.26), (5.31) and (5.32), we finish the proof. ∎

The next proposition gives an estimate for the commutator [Wl,Γ2,r,2ρ(g,)][W_{l},\Gamma_{2,r,2}^{\rho}(g,\cdot)].

Proposition 5.5.

Let l,s1,s20l,s_{1},s_{2}\geq 0 and s1+s2=12s_{1}+s_{2}=\frac{1}{2}. It holds that

|[Wl,Γ2,r,2ρ(g,)]h,f|(|μ164g|Hs1|μ164h|Hs2+|g|L2|h|Ll+γ/22)|f|γ/2s.\displaystyle|\langle[W_{l},\Gamma_{2,r,2}^{\rho}(g,\cdot)]h,f\rangle|\lesssim(|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}}+|g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}})|f|_{\mathcal{L}^{s}_{\gamma/2}}.
Proof.

Recalling (3.58), we have [Wl,Γ2,r,2ρ(g,)]h,f=𝒢1+𝒢2\langle[\langle W_{l},\Gamma_{2,r,2}^{\rho}(g,\cdot)]h,f\rangle=\mathcal{G}_{1}+\mathcal{G}_{2} where

𝒢1\colonequalsB(Nh)(Ng)(N1f)D(Wl)MdV,𝒢2\colonequalsB(Nh)(Ng)(N1f)D(Wl)MdV.\displaystyle\mathcal{G}_{1}\colonequals\int B(Nh)(Ng)^{\prime}_{*}(N^{-1}f)^{\prime}\mathrm{D}(W_{l}^{\prime})M_{*}\mathrm{d}V,\quad\mathcal{G}_{2}\colonequals-\int B(Nh)(Ng)^{\prime}_{*}(N^{-1}f)^{\prime}\mathrm{D}(W_{l}^{\prime})M^{\prime}\mathrm{d}V.

We first visit 𝒢1\mathcal{G}_{1}. By (2.28) and the identity NNN1M=M(1ρμ)N(11ρμ)N_{*}N^{\prime}N^{-1}M_{*}^{\prime}=M_{*}(1-\rho\mu)N_{*}^{\prime}(\frac{1}{1-\rho\mu})^{\prime}, we get

𝒢1\displaystyle\mathcal{G}_{1} =\displaystyle= B(Ng)(Nh)(N1f)MD(Wl)dV\displaystyle\int B(Ng)_{*}(Nh)^{\prime}(N^{-1}f)M_{*}^{\prime}\mathrm{D}(W_{l})\mathrm{d}V (5.33)
=\displaystyle= B(Mg)(h1ρμ)(1ρμ)fND(Wl)dV=𝒢1,1+𝒢1,2+𝒢1,3,\displaystyle\int B(Mg)_{*}(\frac{h}{1-\rho\mu})^{\prime}(1-\rho\mu)fN_{*}^{\prime}\mathrm{D}(W_{l})\mathrm{d}V=\mathcal{G}_{1,1}+\mathcal{G}_{1,2}+\mathcal{G}_{1,3},
𝒢1,1\displaystyle\mathcal{G}_{1,1} \colonequals\displaystyle\colonequals B(Mg)(h1ρμ)D((1ρμ)f)ND(Wl)dV,\displaystyle\int B(Mg)_{*}(\frac{h}{1-\rho\mu})^{\prime}\mathrm{D}((1-\rho\mu)f)N_{*}^{\prime}\mathrm{D}(W_{l})\mathrm{d}V, (5.34)
𝒢1,2\displaystyle\mathcal{G}_{1,2} \colonequals\displaystyle\colonequals B(Mg)(hf)D(N)D(Wl)dV,\displaystyle\int B(Mg)_{*}(hf)^{\prime}\mathrm{D}(N_{*}^{\prime})\mathrm{D}(W_{l})\mathrm{d}V,
𝒢1,3\displaystyle\mathcal{G}_{1,3} \colonequals\displaystyle\colonequals B(NMg)(hf)D(Wl)dV.\displaystyle\int B(NMg)_{*}(hf)^{\prime}\mathrm{D}(W_{l})\mathrm{d}V.

By Cauchy-Schwartz inequality and (2.3), using (5.1), Remark 5.1 and Theorem 2.3, we get

|𝒢1,1|\displaystyle|\mathcal{G}_{1,1}| \displaystyle\lesssim (B(μg2)(h2)D2(Wl)dV)12(BμD2((1ρμ)f)dV)12\displaystyle\big{(}\int B(\mu g^{2})_{*}(h^{2})^{\prime}\mathrm{D}^{2}(W_{l})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu_{*}\mathrm{D}^{2}((1-\rho\mu)f)\mathrm{d}V\big{)}^{\frac{1}{2}} (5.35)
\displaystyle\lesssim (|μ164g|L2|h|Ll+γ/22+|μ164g|Hs1|μ164h|Hs2)|f|γ/2s.\displaystyle(|\mu^{\frac{1}{64}}g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}+|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}})|f|_{\mathcal{L}^{s}_{\gamma/2}}.

By Cauchy-Schwartz inequality, (2.3), (2.27) and (2.28), we have

|𝒢1,2|\displaystyle|\mathcal{G}_{1,2}| \displaystyle\lesssim (B(μg)2(h2)D2(Wl)dV)12(Bf2D2(N)dV)12\displaystyle\big{(}\int B(\mu g)^{2}_{*}(h^{2})^{\prime}\mathrm{D}^{2}(W_{l})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int Bf^{2}_{*}\mathrm{D}^{2}(N)\mathrm{d}V\big{)}^{\frac{1}{2}} (5.36)
\displaystyle\lesssim (|μ164g|L2|h|Ll+γ/22+|μ164g|Hs1|μ164h|Hs2)|f|γ/2s.\displaystyle(|\mu^{\frac{1}{64}}g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}+|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}})|f|_{\mathcal{L}^{s}_{\gamma/2}}.

where in the last line we use (5.1), Remark 5.1, Theorem 2.3 and Remark 2.3. By (5.4) and Remark 5.1, we have

|𝒢1,3||μ164g|L2|h|Ll+γ/22|f|Lγ/22.\displaystyle|\mathcal{G}_{1,3}|\lesssim|\mu^{\frac{1}{64}}g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}|f|_{L^{2}_{\gamma/2}}. (5.37)

We now go to see 𝒢2\mathcal{G}_{2}. Recalling M=μ12NM=\mu^{\frac{1}{2}}N and using (2.28), we have

𝒢2=B(Nh)(Ng)(μ12f)D(Wl)dV=B(Ng)(Nh)(μ12f)D(Wl)dV=𝒢2,1+𝒢2,2,\displaystyle\mathcal{G}_{2}=-\int B(Nh)(Ng)^{\prime}_{*}(\mu^{\frac{1}{2}}f)^{\prime}\mathrm{D}(W_{l}^{\prime})\mathrm{d}V=\int B(Ng)_{*}(Nh)^{\prime}(\mu^{\frac{1}{2}}f)\mathrm{D}(W_{l}^{\prime})\mathrm{d}V=\mathcal{G}_{2,1}+\mathcal{G}_{2,2}, (5.38)
𝒢2,1\colonequalsB(Ng)(Nh)D(μ12f)D(Wl)dV,𝒢2,2\colonequalsB(Ng)(μ12Nhf)D(Wl)dV.\displaystyle\mathcal{G}_{2,1}\colonequals\int B(Ng)_{*}(Nh)^{\prime}\mathrm{D}(\mu^{\frac{1}{2}}f)\mathrm{D}(W_{l}^{\prime})\mathrm{d}V,\quad\mathcal{G}_{2,2}\colonequals\int B(Ng)_{*}(\mu^{\frac{1}{2}}Nhf)^{\prime}\mathrm{D}(W_{l}^{\prime})\mathrm{d}V.

Note that the term 𝒢2,1\mathcal{G}_{2,1} resembles 𝒢1,1\mathcal{G}_{1,1} in (5.34). Similar to (5.35), we have

|𝒢2,1|(|μ164g|L2|h|Ll+γ/22+|μ164g|Hs1|μ164h|Hs2)|f|γ/2s.\displaystyle|\mathcal{G}_{2,1}|\lesssim(|\mu^{\frac{1}{64}}g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}+|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}})|f|_{\mathcal{L}^{s}_{\gamma/2}}. (5.39)

By (5.4) and Remark 5.1, we have

|𝒢2,2||μ164g|L2|h|Ll+γ/22|f|Lγ/22.\displaystyle|\mathcal{G}_{2,2}|\lesssim|\mu^{\frac{1}{64}}g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}|f|_{L^{2}_{\gamma/2}}. (5.40)

Recalling (5.33) and (5.38) to see [Wl,Γ2,r,2ρ(g,)]h,f=𝒢1+𝒢2=𝒢1,1+𝒢1,2+𝒢1,3+𝒢2,1+𝒢2,2\langle[\langle W_{l},\Gamma_{2,r,2}^{\rho}(g,\cdot)]h,f\rangle=\mathcal{G}_{1}+\mathcal{G}_{2}=\mathcal{G}_{1,1}+\mathcal{G}_{1,2}+\mathcal{G}_{1,3}+\mathcal{G}_{2,1}+\mathcal{G}_{2,2}, patching together (5.35), (5.36), (5.37), (5.39) and (5.40), we finish the proof. ∎

The next proposition gives an estimate for the commutator [Wl,Γ2,r,3ρ(g,)][W_{l},\Gamma_{2,r,3}^{\rho}(g,\cdot)].

Proposition 5.6.

Let l0l\geq 0. It holds that

|[Wl,Γ2,r,3ρ(g,)]h,f|min{|g|H2|h|γ/2s,|g|L2(|μ1256h|H2+|h|Hγ/2+s32)}|f|γ/2s.\displaystyle|\langle[W_{l},\Gamma_{2,r,3}^{\rho}(g,\cdot)]h,f\rangle|\lesssim\min\{|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}},|g|_{L^{2}}(|\mu^{\frac{1}{256}}h|_{H^{2}}+|h|_{H^{\frac{3}{2}}_{\gamma/2+s}})\}|f|_{\mathcal{L}^{s}_{\gamma/2}}.
Proof.

Recalling (3.90), we have [Wl,Γ2,r,3ρ(g,)]h,f=[Wl,Γ2,r,3,1ρ(g,)]h,f+[Wl,Γ2,r,3,2ρ(g,)]h,f\langle[W_{l},\Gamma_{2,r,3}^{\rho}(g,\cdot)]h,f\rangle=\langle[W_{l},\Gamma_{2,r,3,1}^{\rho}(g,\cdot)]h,f\rangle+\langle[W_{l},\Gamma_{2,r,3,2}^{\rho}(g,\cdot)]h,f\rangle. Recalling (3.91), it is easy to see [Wl,Γ2,r,3,1ρ(g,)]=0[W_{l},\Gamma_{2,r,3,1}^{\rho}(g,\cdot)]=0. For the term involving Γ2,r,3,2ρ\Gamma_{2,r,3,2}^{\rho}, it suffices to consider Γ2,r,3,2ρ(g,Wl1h),Wl2f\langle\Gamma_{2,r,3,2}^{\rho}(g,W_{l_{1}}h),W_{l_{2}}f\rangle for l1,l20l_{1},l_{2}\geq 0. By (3.105), (3.106) and (3.107), we have Γ2,r,3,2ρ(g,Wl1h),Wl2f=1+2\langle\Gamma_{2,r,3,2}^{\rho}(g,W_{l_{1}}h),W_{l_{2}}f\rangle=\mathcal{H}_{1}+\mathcal{H}_{2} where

1\displaystyle\mathcal{H}_{1} \colonequals\displaystyle\colonequals B(g1ρμ)(MWl1h)(1ρμ)Wl2fD(N)dV,\displaystyle\int B(\frac{g}{1-\rho\mu})^{\prime}_{*}(MW_{l_{1}}h)_{*}(1-\rho\mu)W_{l_{2}}f\mathrm{D}(N^{\prime})\mathrm{d}V,
2\displaystyle\mathcal{H}_{2} \colonequals\displaystyle\colonequals B(Ng)(NWl1h)Wl2fD((μ12))dV.\displaystyle\int B(Ng)^{\prime}_{*}(NW_{l_{1}}h)_{*}W_{l_{2}}f\mathrm{D}((\mu^{\frac{1}{2}})^{\prime})\mathrm{d}V.

Since the two quantities have a similar structure, it suffices to consider 2\mathcal{H}_{2}. Note that 2\mathcal{H}_{2} only differs from 𝒳2\mathcal{X}_{2} in (3.107) by the two weight functions (Wl1)(W_{l_{1}})_{*} and Wl2W_{l_{2}}. We can follow the derivation of the estimate (3.109) for 𝒳2\mathcal{X}_{2}. Observing that in the derivation there is a factor μ116μ116\mu^{\frac{1}{16}}_{*}\mu^{\frac{1}{16}}. By using the fact μ116μ116(Wl1)Wl2C(l1,l2)μ132μ132\mu^{\frac{1}{16}}_{*}\mu^{\frac{1}{16}}(W_{l_{1}})_{*}W_{l_{2}}\lesssim C(l_{1},l_{2})\mu^{\frac{1}{32}}_{*}\mu^{\frac{1}{32}}, we can get the same upper bound as that in (3.109). ∎

By the above commutator estimates and the upper bound estimates in Section 3, weighted upper bounds of Γ2,mρ(,)\Gamma_{2,m}^{\rho}(\cdot,\cdot) and Γ2ρ(,)\Gamma_{2}^{\rho}(\cdot,\cdot) are given in the following theorem.

Theorem 5.3.

Let (s3,s4)=(2,0)(s_{3},s_{4})=(2,0) or (s3,s4)=(0,2)(s_{3},s_{4})=(0,2). The following two estimates are valid.

|Γ2,mρ(g,h),W2lf|\displaystyle|\langle\Gamma_{2,m}^{\rho}(g,h),W_{2l}f\rangle| \displaystyle\lesssim |g|Hs3|h|l+γ/2s4,s|f|l+γ/2s.\displaystyle|g|_{H^{s_{3}}}|h|_{\mathcal{L}^{s_{4},s}_{l+\gamma/2}}|f|_{\mathcal{L}^{s}_{l+\gamma/2}}. (5.41)
|Γ2ρ(g,h),W2lf|\displaystyle|\langle\Gamma_{2}^{\rho}(g,h),W_{2l}f\rangle| \displaystyle\lesssim ρ12|g|Hs3|h|l+γ/2s4,s|f|l+γ/2s.\displaystyle\rho^{\frac{1}{2}}|g|_{H^{s_{3}}}|h|_{\mathcal{L}^{s_{4},s}_{l+\gamma/2}}|f|_{\mathcal{L}^{s}_{l+\gamma/2}}. (5.42)
Proof.

Recall (1.52) for the definition of ||ln,s|\cdot|_{\mathcal{L}^{n,s}_{l}}. Recalling (1.51), we have

|h|Hl+sn|h|ln,s,|h|Hln+s|h|ln,s.\displaystyle|h|_{H^{n}_{l+s}}\lesssim|h|_{\mathcal{L}^{n,s}_{l}},\quad|h|_{H^{n+s}_{l}}\lesssim|h|_{\mathcal{L}^{n,s}_{l}}. (5.43)

Recalling (3.2), by Proposition 5.2, Proposition 5.3 and Theorem 3.1, using (5.43), we get (5.41).

Recalling (5.20), by Proposition 5.2, Proposition 5.3, Proposition 5.4, Proposition 5.5, Proposition 5.6 and Theorem 3.2, using (5.43), we get (5.42). ∎

Recall (1.47) and (1.53) for the definition of HxnHm\|\cdot\|_{H^{n}_{x}H^{m}} and Hxnlm,s\|\cdot\|_{H^{n}_{x}\mathcal{L}^{m,s}_{l}}.

In the 3-dimensional space 𝕋3\mathbb{T}^{3}, by imbedding LxHx2L^{\infty}_{x}\hookrightarrow H^{2}_{x} or LxpHxsL^{p}_{x}\hookrightarrow H^{s}_{x} with s3=121p\frac{s}{3}=\frac{1}{2}-\frac{1}{p}, based on Theorem 5.3, estimates of inner product in the full space (x,v)(x,v) are given in the following theorem.

Theorem 5.4.

Let a,b,a+b=2,(s3,s4)=(2,0)a,b\in\mathbb{N},a+b=2,(s_{3},s_{4})=(2,0) or (s3,s4)=(0,2)(s_{3},s_{4})=(0,2). The following two estimates are valid.

|(Γ2,mρ(g,h),W2lf)|\displaystyle|(\Gamma_{2,m}^{\rho}(g,h),W_{2l}f)| \displaystyle\lesssim gHxaHs3hHxbl+γ/2s4,sfLx2l+γ/2s.\displaystyle\|g\|_{H^{a}_{x}H^{s_{3}}}\|h\|_{H^{b}_{x}\mathcal{L}^{s_{4},s}_{l+\gamma/2}}\|f\|_{L^{2}_{x}\mathcal{L}^{s}_{l+\gamma/2}}. (5.44)
|(Γ2ρ(g,h),W2lf)|\displaystyle|(\Gamma_{2}^{\rho}(g,h),W_{2l}f)| \displaystyle\lesssim ρ12gHxaHs3hHxbl+γ/2s4,sfLx2l+γ/2s.\displaystyle\rho^{\frac{1}{2}}\|g\|_{H^{a}_{x}H^{s_{3}}}\|h\|_{H^{b}_{x}\mathcal{L}^{s_{4},s}_{l+\gamma/2}}\|f\|_{L^{2}_{x}\mathcal{L}^{s}_{l+\gamma/2}}. (5.45)

Based on Theorem 5.4, by making a suitable choice of parameters a,b,s3,s4a,b,s_{3},s_{4} to deal with different distribution of derivative order, we get

Theorem 5.5.

Let N5N\geq 5. The following two estimates are valid.

||α|+|β|N(αβΓ2,mρ(g,h),W2l|α|,|β|αβf)|12N(g)𝒟12N(h)𝒟12N(f).\displaystyle|\sum_{|\alpha|+|\beta|\leq N}(\partial^{\alpha}_{\beta}\Gamma_{2,m}^{\rho}(g,h),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\lesssim\mathcal{E}^{\frac{1}{2}}_{N}(g)\mathcal{D}^{\frac{1}{2}}_{N}(h)\mathcal{D}^{\frac{1}{2}}_{N}(f). (5.46)
||α|+|β|N(αβΓ2ρ(g,h),W2l|α|,|β|αβf)|ρ1212N(g)𝒟12N(h)𝒟12N(f).\displaystyle|\sum_{|\alpha|+|\beta|\leq N}(\partial^{\alpha}_{\beta}\Gamma_{2}^{\rho}(g,h),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\lesssim\rho^{\frac{1}{2}}\mathcal{E}^{\frac{1}{2}}_{N}(g)\mathcal{D}^{\frac{1}{2}}_{N}(h)\mathcal{D}^{\frac{1}{2}}_{N}(f). (5.47)
Proof.

By binomial formula and Remark 3.2, we need to consider (Γ2,mρ(α1β1g,α2β2h),W2l|α|,|β|αβf)(\Gamma_{2,m}^{\rho}(\partial^{\alpha_{1}}_{\beta_{1}}g,\partial^{\alpha_{2}}_{\beta_{2}}h),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f) for all combinations of α1+α2=α,β1+β2β\alpha_{1}+\alpha_{2}=\alpha,\beta_{1}+\beta_{2}\leq\beta with |α|+|β|N|\alpha|+|\beta|\leq N. By (5.44), it suffices to prove that the following inequality

α1β1gHaxHs3α2β2hHbxs4,sl|α|,|β|+γ/2αβfL2xsl|α|,|β|+γ/212N(g)𝒟12N(h)𝒟12N(f).\displaystyle\|\partial^{\alpha_{1}}_{\beta_{1}}g\|_{H^{a}_{x}H^{s_{3}}}\|\partial^{\alpha_{2}}_{\beta_{2}}h\|_{H^{b}_{x}\mathcal{L}^{s_{4},s}_{l_{|\alpha|,|\beta|}+\gamma/2}}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}\lesssim\mathcal{E}^{\frac{1}{2}}_{N}(g)\mathcal{D}^{\frac{1}{2}}_{N}(h)\mathcal{D}^{\frac{1}{2}}_{N}(f).

holds for some a,b,s3,s4a,b,s_{3},s_{4} verifying a,b,a+b=2,(s3,s4)=(2,0)a,b\in\mathbb{N},a+b=2,(s_{3},s_{4})=(2,0) or (s3,s4)=(0,2)(s_{3},s_{4})=(0,2).

The following is divided into two cases: |α|+|β|N4|\alpha|+|\beta|\leq N-4 and |α|+|β|=Nk|\alpha|+|\beta|=N-k for k{0,1,2,3}k\in\{0,1,2,3\}.

Case 1: |α|+|β|N4|\alpha|+|\beta|\leq N-4. In this case, there holds |α1|+|β1|+4N|\alpha_{1}|+|\beta_{1}|+4\leq N and we take a=2,b=0,s3=2,s4=0a=2,b=0,s_{3}=2,s_{4}=0 and use l|α|,|β|l|α2|,|β2|l_{|\alpha|,|\beta|}\leq l_{|\alpha_{2}|,|\beta_{2}|} to get

α1β1gH2xH2α2β2hL2xsl|α|,|β|+γ/2αβfL2xsl|α|,|β|+γ/2\displaystyle\|\partial^{\alpha_{1}}_{\beta_{1}}g\|_{H^{2}_{x}H^{2}}\|\partial^{\alpha_{2}}_{\beta_{2}}h\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}
\displaystyle\lesssim gHNx,vα2β2hL2xsl|α2|,|β2|+γ/2αβfL2xsl|α|,|β|+γ/212N(g)𝒟12N(h)𝒟12N(f).\displaystyle\|g\|_{H^{N}_{x,v}}\|\partial^{\alpha_{2}}_{\beta_{2}}h\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha_{2}|,|\beta_{2}|}+\gamma/2}}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}\lesssim\mathcal{E}^{\frac{1}{2}}_{N}(g)\mathcal{D}^{\frac{1}{2}}_{N}(h)\mathcal{D}^{\frac{1}{2}}_{N}(f).

Here we recall (1.48) for the definition of Hnx,v\|\cdot\|_{H^{n}_{x,v}}.

Case 2: |α|+|β|=Nk|\alpha|+|\beta|=N-k for k{0,1,2,3}k\in\{0,1,2,3\}. We consider two subcases: |α1|+|β1|N4|\alpha_{1}|+|\beta_{1}|\leq N-4 and |α1|+|β1|=Nj|\alpha_{1}|+|\beta_{1}|=N-j for kj3k\leq j\leq 3. In the first subcase |α1|+|β1|N4|\alpha_{1}|+|\beta_{1}|\leq N-4, there holds |α1|+|β1|+4N|\alpha_{1}|+|\beta_{1}|+4\leq N. As the same as (5.2), we get

α1β1gH2xH2α2β2hL2xsl|α|,|β|+γ/2αβfL2xsl|α|,|β|+γ/212N(g)𝒟12N(h)𝒟12N(f).\displaystyle\|\partial^{\alpha_{1}}_{\beta_{1}}g\|_{H^{2}_{x}H^{2}}\|\partial^{\alpha_{2}}_{\beta_{2}}h\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}\lesssim\mathcal{E}^{\frac{1}{2}}_{N}(g)\mathcal{D}^{\frac{1}{2}}_{N}(h)\mathcal{D}^{\frac{1}{2}}_{N}(f).

Recall that the order sequence {l|α|,|β|}|α|+|β|N\{l_{|\alpha|,|\beta|}\}_{|\alpha|+|\beta|\leq N} satisfies (1.30) and (1.31). As a result,

|α1|+|β1||α2|+|β2|+1l|α1|,|β1|l|α2|,|β2|.\displaystyle|\alpha_{1}|+|\beta_{1}|\geq|\alpha_{2}|+|\beta_{2}|+1\quad\Rightarrow\quad l_{|\alpha_{1}|,|\beta_{1}|}\leq l_{|\alpha_{2}|,|\beta_{2}|}. (5.49)

Now we go to consider the other subcase |α1|+|β1|=Nj|\alpha_{1}|+|\beta_{1}|=N-j for kj3k\leq j\leq 3. Note that |α1|+|β1|+j=N,|α2|+|β2|(Nk)(Nj)=jk|\alpha_{1}|+|\beta_{1}|+j=N,|\alpha_{2}|+|\beta_{2}|\leq(N-k)-(N-j)=j-k. By taking a+s3=j,b+s4=4ja+s_{3}=j,b+s_{4}=4-j, there holds |α1|+|β1|+a+s3=N,|α2|+|β2|+b+s44k|\alpha_{1}|+|\beta_{1}|+a+s_{3}=N,|\alpha_{2}|+|\beta_{2}|+b+s_{4}\leq 4-k. Since N5N\geq 5, then |α|+|β|5k|\alpha|+|\beta|\geq 5-k and thus (by (5.49)) l|α|,|β|l|α2|+b,|β2|+s4l_{|\alpha|,|\beta|}\leq l_{|\alpha_{2}|+b,|\beta_{2}|+s_{4}} which gives

α1β1gHaxHs3α2β2hHbxs4,sl|α|,|β|+γ/2αβfL2xsl|α|,|β|+γ/2\displaystyle\|\partial^{\alpha_{1}}_{\beta_{1}}g\|_{H^{a}_{x}H^{s_{3}}}\|\partial^{\alpha_{2}}_{\beta_{2}}h\|_{H^{b}_{x}\mathcal{L}^{s_{4},s}_{l_{|\alpha|,|\beta|}+\gamma/2}}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}
\displaystyle\lesssim gHNx,vα2β2hHbxs4,sl|α2|+b,|β2|+s4+γ/2αβfL2xsl|α|,|β|+γ/212N(g)𝒟12N(h)𝒟12N(f).\displaystyle\|g\|_{H^{N}_{x,v}}\|\partial^{\alpha_{2}}_{\beta_{2}}h\|_{H^{b}_{x}\mathcal{L}^{s_{4},s}_{l_{|\alpha_{2}|+b,|\beta_{2}|+s_{4}}+\gamma/2}}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}\lesssim\mathcal{E}^{\frac{1}{2}}_{N}(g)\mathcal{D}^{\frac{1}{2}}_{N}(h)\mathcal{D}^{\frac{1}{2}}_{N}(f).

Patching together all the above estimates, we obtain (5.46). By (5.45) and the same derivation, we also have (5.47). ∎

5.3. Estimate of the commutator [Wl,Γ3ρ(g,,ϱ)][W_{l},\Gamma_{3}^{\rho}(g,\cdot,\varrho)]

In this subsection, we derive a commutator estimate between WlW_{l} and the operator Γ3ρ(g,,ϱ)\Gamma_{3}^{\rho}(g,\cdot,\varrho). More precisely, we will give some upper bound for the quantity WlΓ3ρ(g,h,ϱ)Γ3ρ(g,Wlh,ϱ),f.\langle W_{l}\Gamma_{3}^{\rho}(g,h,\varrho)-\Gamma_{3}^{\rho}(g,W_{l}h,\varrho),f\rangle. Recalling (4.1), it suffices to estimate [Wl,Γ3,1ρ(g,,ϱ)]h,f\langle[W_{l},\Gamma_{3,1}^{\rho}(g,\cdot,\varrho)]h,f\rangle and [Wl,Γ3,2ρ(g,,ϱ)]h,f\langle[W_{l},\Gamma_{3,2}^{\rho}(g,\cdot,\varrho)]h,f\rangle. We will estimate [Wl,Γ3,1ρ(g,,ϱ)]h,f\langle[W_{l},\Gamma_{3,1}^{\rho}(g,\cdot,\varrho)]h,f\rangle in Proposition 5.7 and [Wl,Γ3,2ρ(g,,ϱ)]h,f\langle[W_{l},\Gamma_{3,2}^{\rho}(g,\cdot,\varrho)]h,f\rangle in Proposition 5.8.

Proposition 5.7.

The following two estimates are valid.

|[Wl,Γ3,1ρ(g,,ϱ)]h,f|\displaystyle|\langle[W_{l},\Gamma_{3,1}^{\rho}(g,\cdot,\varrho)]h,f\rangle| \displaystyle\lesssim |g|H2|h|H12l+γ/2|ϱ|sγ/2|f|sγ/2.\displaystyle|g|_{H^{2}}|h|_{H^{\frac{1}{2}}_{l+\gamma/2}}|\varrho|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (5.50)
|[Wl,Γ3,1ρ(g,,ϱ)]h,f|\displaystyle|\langle[W_{l},\Gamma_{3,1}^{\rho}(g,\cdot,\varrho)]h,f\rangle| \displaystyle\lesssim |g|Hs1|h|Hs2l+γ/2|μ164ϱ|H2|f|sγ/2.\displaystyle|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{l+\gamma/2}}|\mu^{\frac{1}{64}}\varrho|_{H^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (5.51)
Proof.

We first prove (5.50). Recalling (4.7), using NN(N)(N1)=(11ρμ)11ρμM(1ρμ)N_{*}N(N)^{\prime}_{*}(N^{-1})^{\prime}=(\frac{1}{1-\rho\mu})_{*}\frac{1}{1-\rho\mu}M^{\prime}_{*}(1-\rho\mu)^{\prime} and (2.27), we have

[Wl,Γ3,1ρ(g,,ϱ)]h,f\displaystyle\langle[W_{l},\Gamma_{3,1}^{\rho}(g,\cdot,\varrho)]h,f\rangle =\displaystyle= B(Ng)(Nh)(Nϱ)(N1f)D(Wl)dV\displaystyle\int B(Ng)_{*}(Nh)(N\varrho)^{\prime}_{*}(N^{-1}f)^{\prime}\mathrm{D}(W_{l}^{\prime})\mathrm{d}V
=\displaystyle= B(g1ρμ)h1ρμ(Mϱ)((1ρμ)f)D(Wl)dV\displaystyle\int B(\frac{g}{1-\rho\mu})_{*}\frac{h}{1-\rho\mu}(M\varrho)^{\prime}_{*}((1-\rho\mu)f)^{\prime}\mathrm{D}(W_{l}^{\prime})\mathrm{d}V
=\displaystyle= B(g1ρμ)(h1ρμ)(Mϱ)(1ρμ)fD(Wl)dV.\displaystyle\int B(\frac{g}{1-\rho\mu})^{\prime}_{*}(\frac{h}{1-\rho\mu})^{\prime}(M\varrho)_{*}(1-\rho\mu)f\mathrm{D}(W_{l})\mathrm{d}V.

By rearrangement, we have [Wl,Γ3,1ρ(g,,ϱ)]h,f=𝒥1+𝒥2+𝒥3\langle[W_{l},\Gamma_{3,1}^{\rho}(g,\cdot,\varrho)]h,f\rangle=\mathcal{J}_{1}+\mathcal{J}_{2}+\mathcal{J}_{3} where

𝒥1\displaystyle\mathcal{J}_{1} \colonequals\displaystyle\colonequals BD((g1ρμ))(h1ρμ)(Mϱ)(1ρμ)fD(Wl)dV,\displaystyle\int B\mathrm{D}((\frac{g}{1-\rho\mu})^{\prime}_{*})(\frac{h}{1-\rho\mu})^{\prime}(M\varrho)_{*}(1-\rho\mu)f\mathrm{D}(W_{l})\mathrm{d}V, (5.53)
𝒥2\displaystyle\mathcal{J}_{2} \colonequals\displaystyle\colonequals B(Mϱg1ρμ)(h1ρμ)D((1ρμ)f)D(Wl)dV,\displaystyle\int B(\frac{M\varrho g}{1-\rho\mu})_{*}(\frac{h}{1-\rho\mu})^{\prime}\mathrm{D}((1-\rho\mu)f)\mathrm{D}(W_{l})\mathrm{d}V,
𝒥3\displaystyle\mathcal{J}_{3} \colonequals\displaystyle\colonequals B(Mϱg1ρμ)(hf)D(Wl)dV.\displaystyle\int B(\frac{M\varrho g}{1-\rho\mu})_{*}(hf)^{\prime}\mathrm{D}(W_{l})\mathrm{d}V.

Recalling (2.3), we have MμM\lesssim\mu. By Cauchy-Schwartz inequality, using (4.21), (3.38), (3.17), (5.1) and Remark 5.1, we have

|𝒥1|(BD2((g1ρμ))μf2dV)12(B(h2)(μϱ2)D2(Wl)dV)12|g|H32|h|H12l+γ/2|μ14ϱ|L2|f|L2γ/2+s.\displaystyle|\mathcal{J}_{1}|\lesssim\big{(}\int B\mathrm{D}^{2}((\frac{g}{1-\rho\mu})_{*})\mu_{*}f^{2}\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B(h^{2})^{\prime}(\mu\varrho^{2})_{*}\mathrm{D}^{2}(W_{l})\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|g|_{H^{\frac{3}{2}}}|h|_{H^{\frac{1}{2}}_{l+\gamma/2}}|\mu^{\frac{1}{4}}\varrho|_{L^{2}}|f|_{L^{2}_{\gamma/2+s}}. (5.54)

By Cauchy-Schwartz inequality, use the imbedding H2LH^{2}\hookrightarrow L^{\infty} for gg, the estimate (5.1), Remark 5.1, Theorem 2.3 and (3.12), we have

|𝒥2|(Bμg2(h2)ϱ2D2(Wl)dV)12(BμD2((1ρμ)f)dV)12|g|H2|h|H12l+γ/2|μ14ϱ|L2|f|sγ/2.\displaystyle|\mathcal{J}_{2}|\lesssim\big{(}\int B\mu_{*}g^{2}_{*}(h^{2})^{\prime}\varrho^{2}_{*}\mathrm{D}^{2}(W_{l})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu_{*}\mathrm{D}^{2}((1-\rho\mu)f)\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|g|_{H^{2}}|h|_{H^{\frac{1}{2}}_{l+\gamma/2}}|\mu^{\frac{1}{4}}\varrho|_{L^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (5.55)

By (5.4) and Remark 5.1, using (3.10), we have

|𝒥3||μ164gϱ|L2|h|L2l+γ/2|f|L2γ/2|g|H2|h|L2l+γ/2|μ164ϱ|L2|f|L2γ/2.\displaystyle|\mathcal{J}_{3}|\lesssim|\mu^{\frac{1}{64}}g\varrho|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}|f|_{L^{2}_{\gamma/2}}\lesssim|g|_{H^{2}}|h|_{L^{2}_{l+\gamma/2}}|\mu^{\frac{1}{64}}\varrho|_{L^{2}}|f|_{L^{2}_{\gamma/2}}. (5.56)

Recalling [Wl,Γ3,1ρ(g,,ϱ)]h,f=𝒥1+𝒥2+𝒥3\langle[W_{l},\Gamma_{3,1}^{\rho}(g,\cdot,\varrho)]h,f\rangle=\mathcal{J}_{1}+\mathcal{J}_{2}+\mathcal{J}_{3}, patching together (5.54), (5.55) and (5.56), we arrive at (5.50).

We now prove (5.51). Recalling the line (5.3) and M=Nμ12M=N\mu^{\frac{1}{2}}, we have [Wl,Γ3,1ρ(g,,ϱ)]h,f=𝒦1+𝒦2+𝒦3+𝒦4\langle[W_{l},\Gamma_{3,1}^{\rho}(g,\cdot,\varrho)]h,f\rangle=\mathcal{K}_{1}+\mathcal{K}_{2}+\mathcal{K}_{3}+\mathcal{K}_{4} where

𝒦1\displaystyle\mathcal{K}_{1} \colonequals\displaystyle\colonequals B(g1ρμ)h1ρμND((μ12ϱ))((1ρμ)f)D(Wl)dV,\displaystyle\int B(\frac{g}{1-\rho\mu})_{*}\frac{h}{1-\rho\mu}N^{\prime}_{*}\mathrm{D}((\mu^{\frac{1}{2}}\varrho)_{*})((1-\rho\mu)f)^{\prime}\mathrm{D}(W_{l})\mathrm{d}V,
𝒦2\displaystyle\mathcal{K}_{2} \colonequals\displaystyle\colonequals B(g1ρμ)h1ρμ(μ12ϱ)D(N)((1ρμ)f)D(Wl)dV,\displaystyle\int B(\frac{g}{1-\rho\mu})_{*}\frac{h}{1-\rho\mu}(\mu^{\frac{1}{2}}\varrho)_{*}\mathrm{D}(N_{*})((1-\rho\mu)f)^{\prime}\mathrm{D}(W_{l})\mathrm{d}V,
𝒦3\displaystyle\mathcal{K}_{3} \colonequals\displaystyle\colonequals B(gMϱ1ρμ)h1ρμD((1ρμ)f)D(Wl)dV,\displaystyle\int B(\frac{gM\varrho}{1-\rho\mu})_{*}\frac{h}{1-\rho\mu}\mathrm{D}((1-\rho\mu)f)\mathrm{D}(W_{l})\mathrm{d}V,
𝒦4\displaystyle\mathcal{K}_{4} \colonequals\displaystyle\colonequals B(gMϱ1ρμ)hfD(Wl)dV.\displaystyle-\int B(\frac{gM\varrho}{1-\rho\mu})_{*}hf\mathrm{D}(W_{l})\mathrm{d}V.

Recalling (2.3), we have Nμ12N\lesssim\mu^{\frac{1}{2}}. By Cauchy-Schwartz inequality and (2.28), using (5.2) and (3.38), we have

𝒦1(Bg2h2(μ12)D2(Wl)dV)12(BD2((μ12ϱ))μ12f2dV)12|g|Hs1|h|Hs2l+γ/2|μ12ϱ|H32|f|L2γ/2+s.\displaystyle\mathcal{K}_{1}\lesssim\big{(}\int Bg^{2}_{*}h^{2}(\mu^{\frac{1}{2}})^{\prime}_{*}\mathrm{D}^{2}(W_{l})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mathrm{D}^{2}((\mu^{\frac{1}{2}}\varrho)_{*})\mu^{\frac{1}{2}}_{*}f^{2}\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{l+\gamma/2}}|\mu^{\frac{1}{2}}\varrho|_{H^{\frac{3}{2}}}|f|_{L^{2}_{\gamma/2+s}}. (5.57)

By Cauchy-Schwartz inequality, using (5.1), (3.17) and Remark 3.1. we have

𝒦2(Bg2h2μ12D2(Wl)dV)12(BD2(N)μ12ϱ2(f2)dV)12|g|Hs1|h|Hs2l+γ/2|μ18ϱ|H12|f|L2γ/2+s.\displaystyle\mathcal{K}_{2}\lesssim\big{(}\int Bg^{2}_{*}h^{2}\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(W_{l})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mathrm{D}^{2}(N_{*})\mu^{\frac{1}{2}}_{*}\varrho_{*}^{2}(f^{2})^{\prime}\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{l+\gamma/2}}|\mu^{\frac{1}{8}}\varrho|_{H^{\frac{1}{2}}}|f|_{L^{2}_{\gamma/2+s}}. (5.58)

By Cauchy-Schwartz inequality, we have

𝒦3(Bμg2ϱ2h2D2(Wl)dV)12(BμD2((1ρμ)f)dV)12|g|Hs1|h|Hs2l+γ/2|μ18ϱ|H2|f|sγ/2.\displaystyle\mathcal{K}_{3}\lesssim\big{(}\int B\mu_{*}g^{2}_{*}\varrho_{*}^{2}h^{2}\mathrm{D}^{2}(W_{l})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu_{*}\mathrm{D}^{2}((1-\rho\mu)f)\mathrm{d}V\big{)}^{\frac{1}{2}}\lesssim|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{l+\gamma/2}}|\mu^{\frac{1}{8}}\varrho|_{H^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (5.59)

Here we use the imbedding H2LH^{2}\hookrightarrow L^{\infty} for μ18ϱ\mu^{\frac{1}{8}}\varrho and the estimate (5.1) to deal with the former bracket. The latter bracket is estimated by using Theorem 2.3 and (3.12). By (5.6) and (3.10), we get

|𝒦4||μ164g|Hs1|h|Hs2l+γ/2|μ164ϱ|H2|f|L2γ/2.\displaystyle|\mathcal{K}_{4}|\lesssim|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{l+\gamma/2}}|\mu^{\frac{1}{64}}\varrho|_{H^{2}}|f|_{L^{2}_{\gamma/2}}. (5.60)

Recalling [Wl,Γ3,1ρ(g,,ϱ)]h,f=𝒦1+𝒦2+𝒦3+𝒦4\langle[W_{l},\Gamma_{3,1}^{\rho}(g,\cdot,\varrho)]h,f\rangle=\mathcal{K}_{1}+\mathcal{K}_{2}+\mathcal{K}_{3}+\mathcal{K}_{4}, patching together (5.57), (5.58), (5.59) and (5.60), we arrive at (5.51). ∎

Proposition 5.8.

The following two estimates are valid.

|[Wl,Γ3,2ρ(g,,ϱ)]h,f|\displaystyle|\langle[W_{l},\Gamma_{3,2}^{\rho}(g,\cdot,\varrho)]h,f\rangle| \displaystyle\lesssim |μ1256g|H2|μ1256h|H2|ϱ|sγ/2|f|sγ/2.\displaystyle|\mu^{\frac{1}{256}}g|_{H^{2}}|\mu^{\frac{1}{256}}h|_{H^{2}}|\varrho|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.
|[Wl,Γ3,2ρ(g,,ϱ)]h,f|\displaystyle|\langle[W_{l},\Gamma_{3,2}^{\rho}(g,\cdot,\varrho)]h,f\rangle| \displaystyle\lesssim |μ1256g|Hs1|μ1256h|Hs2|μ1256ϱ|H3|f|sγ/2.\displaystyle|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}\varrho|_{H^{3}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.
Proof.

Recalling (4.28), we have

[Wl,Γ3,2ρ(g,,ϱ)]h,f=B(Ng)(Nh)(ϱf)D(Wl)dV=𝒪1+𝒪2+𝒪3,\displaystyle\langle[W_{l},\Gamma_{3,2}^{\rho}(g,\cdot,\varrho)]h,f\rangle=\int B(Ng)_{*}(Nh)(\varrho f)^{\prime}\mathrm{D}(W_{l}^{\prime})\mathrm{d}V=\mathcal{O}_{1}+\mathcal{O}_{2}+\mathcal{O}_{3}, (5.61)
𝒪1\colonequalsB(Ng)(Nh)ϱD(f)D(Wl)dV,𝒪2\colonequalsB(Ng)(Nh)D(ϱ)fD(Wl)dV,\displaystyle\mathcal{O}_{1}\colonequals\int B(Ng)_{*}(Nh)\varrho^{\prime}\mathrm{D}(f^{\prime})\mathrm{D}(W_{l}^{\prime})\mathrm{d}V,\quad\mathcal{O}_{2}\colonequals\int B(Ng)_{*}(Nh)\mathrm{D}(\varrho^{\prime})f\mathrm{D}(W_{l}^{\prime})\mathrm{d}V,
𝒪3\colonequalsB(Ng)(Nh)ϱfD(Wl)dV.\displaystyle\mathcal{O}_{3}\colonequals\int B(Ng)_{*}(Nh)\varrho f\mathrm{D}(W_{l}^{\prime})\mathrm{d}V.

Recalling (2.3), we have NNμ12μ12N_{*}N\lesssim\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}. We first consider 𝒪1\mathcal{O}_{1}. By Cauchy-Schwartz inequality, we have

|𝒪1|(Bμ12μ12g2h2(ϱ2)D2(Wl)dV)12(Bμ12μ12D2(f)dV)12.\displaystyle|\mathcal{O}_{1}|\lesssim\big{(}\int B\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}g^{2}_{*}h^{2}(\varrho^{2})^{\prime}\mathrm{D}^{2}(W_{l})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(f)\mathrm{d}V\big{)}^{\frac{1}{2}}.

The latter bracket is bounded by |f|sγ/22|f|_{\mathcal{L}^{s}_{\gamma/2}}^{2} according to Theorem 2.3. On one hand, using the imbedding H2LH^{2}\hookrightarrow L^{\infty} for μ14h\mu^{\frac{1}{4}}h, the estimate (5.1) and Remark 5.1, we estimate the former bracket as

Bμ12μ12g2h2(ϱ2)D2(Wl)dV|μ164g|H122|μ14h|H22|ϱ|L2γ/2+s2.\displaystyle\int B\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}g^{2}_{*}h^{2}(\varrho^{2})^{\prime}\mathrm{D}^{2}(W_{l})\mathrm{d}V\lesssim|\mu^{\frac{1}{64}}g|_{H^{\frac{1}{2}}}^{2}|\mu^{\frac{1}{4}}h|_{H^{2}}^{2}|\varrho|_{L^{2}_{\gamma/2+s}}^{2}.

On the other hand, since μμ=μμ\mu\mu_{*}=\mu^{\prime}\mu_{*}^{\prime}, using the imbedding H2LH^{2}\hookrightarrow L^{\infty} for μ18ϱ\mu^{\frac{1}{8}}\varrho and the estimate (5.1), we get

Bμ12μ12g2h2(ϱ2)D2(Wl)dV|μ164g|Hs12|μ164h|Hs22|μ18ϱ|H22.\displaystyle\int B\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}g^{2}_{*}h^{2}(\varrho^{2})^{\prime}\mathrm{D}^{2}(W_{l})\mathrm{d}V\lesssim|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}^{2}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}}^{2}|\mu^{\frac{1}{8}}\varrho|_{H^{2}}^{2}.

Therefore we have two estimates

|𝒪1||μ164g|H2|μ14h|H2|h|sγ/2|f|sγ/2,|𝒪1||μ164g|Hs1|μ164h|Hs2|μ18ϱ|H2|f|sγ/2.\displaystyle|\mathcal{O}_{1}|\lesssim|\mu^{\frac{1}{64}}g|_{H^{2}}|\mu^{\frac{1}{4}}h|_{H^{2}}|h|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}},\quad|\mathcal{O}_{1}|\lesssim|\mu^{\frac{1}{64}}g|_{H^{s_{1}}}|\mu^{\frac{1}{64}}h|_{H^{s_{2}}}|\mu^{\frac{1}{8}}\varrho|_{H^{2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (5.62)

We next consider 𝒪2\mathcal{O}_{2}. By Cauchy-Schwartz inequality, on one hand, we have

|𝒪2|(Bμ12μ12g2h2f2D2(Wl)dV)12(Bμ12μ12D2(ϱ)dV)12.\displaystyle|\mathcal{O}_{2}|\lesssim\big{(}\int B\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}g^{2}_{*}h^{2}f^{2}\mathrm{D}^{2}(W_{l})\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}\mathrm{D}^{2}(\varrho)\mathrm{d}V\big{)}^{\frac{1}{2}}.

The latter bracket is bounded by |ϱ|sγ/22|\varrho|_{\mathcal{L}^{s}_{\gamma/2}}^{2} according to Theorem 2.3. Using the imbedding H2LH^{2}\hookrightarrow L^{\infty} for μ14h\mu^{\frac{1}{4}}h and the estimate (5.1), the former bracket is bounded by |μ164g|H122|μ14h|H22|f|L2γ/2+s2.|\mu^{\frac{1}{64}}g|_{H^{\frac{1}{2}}}^{2}|\mu^{\frac{1}{4}}h|_{H^{2}}^{2}|f|_{L^{2}_{\gamma/2+s}}^{2}. Patching together the two estimates, we get

|𝒪2||μ164g|H12|μ14h|H2|ϱ|sγ/2|f|sγ/2.\displaystyle|\mathcal{O}_{2}|\lesssim|\mu^{\frac{1}{64}}g|_{H^{\frac{1}{2}}}|\mu^{\frac{1}{4}}h|_{H^{2}}|\varrho|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}. (5.63)

By Cauchy-Schwartz inequality, on the other hand, we have

|𝒪2|(Bμ12μ12g2h2D2(ϱ)dV)12(Bμ12μ12f2D2(Wl)dV)12.\displaystyle|\mathcal{O}_{2}|\lesssim\big{(}\int B\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}g^{2}_{*}h^{2}\mathrm{D}^{2}(\varrho)\mathrm{d}V\big{)}^{\frac{1}{2}}\big{(}\int B\mu^{\frac{1}{2}}\mu^{\frac{1}{2}}_{*}f^{2}\mathrm{D}^{2}(W_{l})\mathrm{d}V\big{)}^{\frac{1}{2}}.

The latter bracket is bounded by |μ116f|L22|\mu^{\frac{1}{16}}f|_{L^{2}}^{2} according to the estimate (5.1) and (3.11). Using (2.27) and (3.40), the former bracket is bounded by |μ1256g|Hs12|μ1256h|Hs22|μ1256ϱ|H32.|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}^{2}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}^{2}|\mu^{\frac{1}{256}}\varrho|_{H^{3}}^{2}. Patching together the two estimates, we get

|𝒪2||μ1256g|Hs1|μ1256h|Hs2|μ1256ϱ|H3|μ116f|L2.\displaystyle|\mathcal{O}_{2}|\lesssim|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}\varrho|_{H^{3}}|\mu^{\frac{1}{16}}f|_{L^{2}}. (5.64)

By (5.5) and Remark 5.1, for {a1,a2,a3}={2,12,0}\{a_{1},a_{2},a_{3}\}=\{2,\frac{1}{2},0\}, we get

|𝒪3||μ164g|Ha1|μ164h|Ha2|μ164ϱ|Ha3|μ164f|L2.\displaystyle|\mathcal{O}_{3}|\lesssim|\mu^{\frac{1}{64}}g|_{H^{a_{1}}}|\mu^{\frac{1}{64}}h|_{H^{a_{2}}}|\mu^{\frac{1}{64}}\varrho|_{H^{a_{3}}}|\mu^{\frac{1}{64}}f|_{L^{2}}. (5.65)

Recalling (5.61), patching together (5.62), (5.63), (5.64) and (5.65), we finish the proof. ∎

Patching together Proposition 5.7 and Proposition 5.8, recalling (4.1), we get the following proposition.

Proposition 5.9.

The following functional estimates are valid.

|[Wl,Γ3ρ(g,,ϱ)]h,f|\displaystyle|\langle[W_{l},\Gamma_{3}^{\rho}(g,\cdot,\varrho)]h,f\rangle| \displaystyle\lesssim ρ|g|H2|h|H2l+γ/2|ϱ|sγ/2|f|sγ/2.\displaystyle\rho|g|_{H^{2}}|h|_{H^{2}_{l+\gamma/2}}|\varrho|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.
|[Wl,Γ3ρ(g,,ϱ)]h,f|\displaystyle|\langle[W_{l},\Gamma_{3}^{\rho}(g,\cdot,\varrho)]h,f\rangle| \displaystyle\lesssim ρ|g|Hs1|h|Hs2l+γ/2|μ1256ϱ|H3|f|sγ/2.\displaystyle\rho|g|_{H^{s_{1}}}|h|_{H^{s_{2}}_{l+\gamma/2}}|\mu^{\frac{1}{256}}\varrho|_{H^{3}}|f|_{\mathcal{L}^{s}_{\gamma/2}}.

Patching together Proposition 5.9 and Theorem 4.1, using (3.11), we arrive at the following theorem for the weighted upper bound of the trilinear term.

Theorem 5.6.

The following functional estimates are valid.

|Γ3ρ(g,h,ϱ),W2lf|\displaystyle|\langle\Gamma_{3}^{\rho}(g,h,\varrho),W_{2l}f\rangle| \displaystyle\lesssim ρ|g|H2|h|H2|ϱ|sγ/2|f|sl+γ/2+ρ|g|H3|h|2,sl+γ/2|μ1256ϱ|L2|f|sl+γ/2.\displaystyle\rho|g|_{H^{2}}|h|_{H^{2}}|\varrho|_{\mathcal{L}^{s}_{\gamma/2}}|f|_{\mathcal{L}^{s}_{l+\gamma/2}}+\rho|g|_{H^{3}}|h|_{\mathcal{L}^{2,s}_{l+\gamma/2}}|\mu^{\frac{1}{256}}\varrho|_{L^{2}}|f|_{\mathcal{L}^{s}_{l+\gamma/2}}.
|Γ3ρ(g,h,ϱ),W2lf|\displaystyle|\langle\Gamma_{3}^{\rho}(g,h,\varrho),W_{2l}f\rangle| \displaystyle\lesssim ρ|g|H2|h|sl+γ/2|μ1256ϱ|H3|f|sl+γ/2.\displaystyle\rho|g|_{H^{2}}|h|_{\mathcal{L}^{s}_{l+\gamma/2}}|\mu^{\frac{1}{256}}\varrho|_{H^{3}}|f|_{\mathcal{L}^{s}_{l+\gamma/2}}.
|Γ3ρ(g,h,ϱ),W2lf|\displaystyle|\langle\Gamma_{3}^{\rho}(g,h,\varrho),W_{2l}f\rangle| \displaystyle\lesssim ρ|g|L2|h|2,sl+γ/2|μ1256ϱ|H3|f|sl+γ/2.\displaystyle\rho|g|_{L^{2}}|h|_{\mathcal{L}^{2,s}_{l+\gamma/2}}|\mu^{\frac{1}{256}}\varrho|_{H^{3}}|f|_{\mathcal{L}^{s}_{l+\gamma/2}}.

By Sobolev imbedding LxH2xL^{\infty}_{x}\hookrightarrow H^{2}_{x} in the 3-dimensional space 𝕋3\mathbb{T}^{3}, based on Theorem 5.6, we have the following result in the full space (x,v)(x,v).

Theorem 5.7.

The following functional estimates are valid.

|(Γ3ρ(g,h,ϱ),W2lf)|\displaystyle|(\Gamma_{3}^{\rho}(g,h,\varrho),W_{2l}f)| \displaystyle\lesssim ρgH2xH3(hH2xH2ϱL2xsγ/2+hH2x2,sl+γ/2ϱL2xL2)fL2xsl+γ/2.\displaystyle\rho\|g\|_{H^{2}_{x}H^{3}}(\|h\|_{H^{2}_{x}H^{2}}\|\varrho\|_{L^{2}_{x}\mathcal{L}^{s}_{\gamma/2}}+\|h\|_{H^{2}_{x}\mathcal{L}^{2,s}_{l+\gamma/2}}\|\varrho\|_{L^{2}_{x}L^{2}})\|f\|_{L^{2}_{x}\mathcal{L}^{s}_{l+\gamma/2}}. (5.66)
|(Γ3ρ(g,h,ϱ),W2lf)|\displaystyle|(\Gamma_{3}^{\rho}(g,h,\varrho),W_{2l}f)| \displaystyle\lesssim ρgH2xH2hL2xsl+γ/2ϱH2xH3fL2xsl+γ/2.\displaystyle\rho\|g\|_{H^{2}_{x}H^{2}}\|h\|_{L^{2}_{x}\mathcal{L}^{s}_{l+\gamma/2}}\|\varrho\|_{H^{2}_{x}H^{3}}\|f\|_{L^{2}_{x}\mathcal{L}^{s}_{l+\gamma/2}}. (5.67)
|(Γ3ρ(g,h,ϱ),W2lf)|\displaystyle|(\Gamma_{3}^{\rho}(g,h,\varrho),W_{2l}f)| \displaystyle\lesssim ρgL2xL2hH2x2,sl+γ/2ϱH2xH3fL2xsl+γ/2.\displaystyle\rho\|g\|_{L^{2}_{x}L^{2}}\|h\|_{H^{2}_{x}\mathcal{L}^{2,s}_{l+\gamma/2}}\|\varrho\|_{H^{2}_{x}H^{3}}\|f\|_{L^{2}_{x}\mathcal{L}^{s}_{l+\gamma/2}}. (5.68)

Theorem 5.7 allows us to derive the following weighted energy estimate.

Theorem 5.8.

Let N9N\geq 9, then

||α|+|β|N(αβΓ3ρ(g,h,ϱ),W2l|α|,|β|αβf)|ρ12N(g)(12N(h)𝒟12N(ϱ)+𝒟12N(h)12N(ϱ))𝒟12N(f).\displaystyle|\sum_{|\alpha|+|\beta|\leq N}(\partial^{\alpha}_{\beta}\Gamma_{3}^{\rho}(g,h,\varrho),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\lesssim\rho\mathcal{E}^{\frac{1}{2}}_{N}(g)\big{(}\mathcal{E}^{\frac{1}{2}}_{N}(h)\mathcal{D}^{\frac{1}{2}}_{N}(\varrho)+\mathcal{D}^{\frac{1}{2}}_{N}(h)\mathcal{E}^{\frac{1}{2}}_{N}(\varrho)\big{)}\mathcal{D}^{\frac{1}{2}}_{N}(f).
Proof.

By binomial formula and Remark 3.3, it suffices to establish the following estimate for all combinations of α1+α2+α3=α,β1+β2+β3β\alpha_{1}+\alpha_{2}+\alpha_{3}=\alpha,\beta_{1}+\beta_{2}+\beta_{3}\leq\beta with |α|+|β|N|\alpha|+|\beta|\leq N,

|(Γ3ρ(α1β1g,α2β2h,α3β3ϱ),W2l|α|,|β|αβf)|ρ12N(g)(12N(h)𝒟12N(ϱ)+𝒟12N(h)12N(ϱ))𝒟12N(f).\displaystyle|(\Gamma_{3}^{\rho}(\partial^{\alpha_{1}}_{\beta_{1}}g,\partial^{\alpha_{2}}_{\beta_{2}}h,\partial^{\alpha_{3}}_{\beta_{3}}\varrho),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\lesssim\rho\mathcal{E}^{\frac{1}{2}}_{N}(g)\big{(}\mathcal{E}^{\frac{1}{2}}_{N}(h)\mathcal{D}^{\frac{1}{2}}_{N}(\varrho)+\mathcal{D}^{\frac{1}{2}}_{N}(h)\mathcal{E}^{\frac{1}{2}}_{N}(\varrho)\big{)}\mathcal{D}^{\frac{1}{2}}_{N}(f). (5.69)

The following is divided into three cases: |α|+|β|N5;|α|+|β|=N4;|α|+|β|=Nj,j=0,1,2,3|\alpha|+|\beta|\leq N-5;|\alpha|+|\beta|=N-4;|\alpha|+|\beta|=N-j,j=0,1,2,3.

Case 1: |α|+|β|N5|\alpha|+|\beta|\leq N-5. In this case, |α1|+|β1|+4N1,|α3|+|β3|+5N.|\alpha_{1}|+|\beta_{1}|+4\leq N-1,|\alpha_{3}|+|\beta_{3}|+5\leq N. We use (5.67) and the condition l|α|,|β|l|α2|,|β2|l_{|\alpha|,|\beta|}\leq l_{|\alpha_{2}|,|\beta_{2}|} to get

|(Γ3ρ(α1β1g,α2β2h,α3β3ϱ),W2l|α|,|β|αβf)|\displaystyle|(\Gamma_{3}^{\rho}(\partial^{\alpha_{1}}_{\beta_{1}}g,\partial^{\alpha_{2}}_{\beta_{2}}h,\partial^{\alpha_{3}}_{\beta_{3}}\varrho),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|
\displaystyle\lesssim ρα1β1gH2xH2α2β2hL2xsl|α|,|β|+γ/2α3β3ϱH2xH3αβfL2xsl|α|,|β|+γ/2\displaystyle\rho\|\partial^{\alpha_{1}}_{\beta_{1}}g\|_{H^{2}_{x}H^{2}}\|\partial^{\alpha_{2}}_{\beta_{2}}h\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}\|\partial^{\alpha_{3}}_{\beta_{3}}\varrho\|_{H^{2}_{x}H^{3}}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}
\displaystyle\lesssim ρgHNx,vα2β2hL2xsl|α2|,|β2|+γ/2ϱHNx,vαβfL2xsl|α|,|β|+γ/2\displaystyle\rho\|g\|_{H^{N}_{x,v}}\|\partial^{\alpha_{2}}_{\beta_{2}}h\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha_{2}|,|\beta_{2}|}+\gamma/2}}\|\varrho\|_{H^{N}_{x,v}}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}
\displaystyle\lesssim ρ12N(g)𝒟12N(h)12N(ϱ)𝒟12N(f).\displaystyle\rho\mathcal{E}^{\frac{1}{2}}_{N}(g)\mathcal{D}^{\frac{1}{2}}_{N}(h)\mathcal{E}^{\frac{1}{2}}_{N}(\varrho)\mathcal{D}^{\frac{1}{2}}_{N}(f).

Case 2: |α|+|β|=N4|\alpha|+|\beta|=N-4. In this case, |α1|+|β1|+4N|\alpha_{1}|+|\beta_{1}|+4\leq N. We consider two subcases: |α3|+|β3|N5|\alpha_{3}|+|\beta_{3}|\leq N-5 and |α3|+|β3|=N4|\alpha_{3}|+|\beta_{3}|=N-4. In the first subcase, |α3|+|β3|+5N|\alpha_{3}|+|\beta_{3}|+5\leq N. As the same as (5.3), we use (5.67) and the condition l|α|,|β|l|α2|,|β2|l_{|\alpha|,|\beta|}\leq l_{|\alpha_{2}|,|\beta_{2}|} to get (5.69).

In the second subcase, |α3|+|β3|=|α|+|β||\alpha_{3}|+|\beta_{3}|=|\alpha|+|\beta| gives |α1|=|α2|=|β1|=|β2|=0|\alpha_{1}|=|\alpha_{2}|=|\beta_{1}|=|\beta_{2}|=0. Since N9N\geq 9, then |α|+|β|5|\alpha|+|\beta|\geq 5 and so l|α|,|β|l2,2l_{|\alpha|,|\beta|}\leq l_{2,2} by (5.49). Then we use (5.66) to get

|(Γ3ρ(α1β1g,α2β2h,α3β3ϱ),W2l|α|,|β|αβf)|\displaystyle|(\Gamma_{3}^{\rho}(\partial^{\alpha_{1}}_{\beta_{1}}g,\partial^{\alpha_{2}}_{\beta_{2}}h,\partial^{\alpha_{3}}_{\beta_{3}}\varrho),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|
\displaystyle\lesssim ρgH2xH3(hH2xH2αβϱL2xsγ/2+hH2x2,sl|α|,|β|+γ/2αβϱL2xL2)αβfL2xsl|α|,|β|+γ/2,\displaystyle\rho\|g\|_{H^{2}_{x}H^{3}}(\|h\|_{H^{2}_{x}H^{2}}\|\partial^{\alpha}_{\beta}\varrho\|_{L^{2}_{x}\mathcal{L}^{s}_{\gamma/2}}+\|h\|_{H^{2}_{x}\mathcal{L}^{2,s}_{l_{|\alpha|,|\beta|}+\gamma/2}}\|\partial^{\alpha}_{\beta}\varrho\|_{L^{2}_{x}L^{2}})\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}},
\displaystyle\lesssim ρgHNx,v(hHNx,vαβϱL2xsγ/2+hH2x2,sl2,2+γ/2ϱHNx,v)αβfL2xsl|α|,|β|+γ/2\displaystyle\rho\|g\|_{H^{N}_{x,v}}(\|h\|_{H^{N}_{x,v}}\|\partial^{\alpha}_{\beta}\varrho\|_{L^{2}_{x}\mathcal{L}^{s}_{\gamma/2}}+\|h\|_{H^{2}_{x}\mathcal{L}^{2,s}_{l_{2,2}+\gamma/2}}\|\varrho\|_{H^{N}_{x,v}})\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}
\displaystyle\lesssim ρ12N(g)(12N(h)𝒟12N(ϱ)+𝒟12N(h)12N(ϱ))𝒟12N(f).\displaystyle\rho\mathcal{E}^{\frac{1}{2}}_{N}(g)\big{(}\mathcal{E}^{\frac{1}{2}}_{N}(h)\mathcal{D}^{\frac{1}{2}}_{N}(\varrho)+\mathcal{D}^{\frac{1}{2}}_{N}(h)\mathcal{E}^{\frac{1}{2}}_{N}(\varrho)\big{)}\mathcal{D}^{\frac{1}{2}}_{N}(f).

Case 3: |α|+|β|=Nj|\alpha|+|\beta|=N-j for j=0,1,2,3j=0,1,2,3. We consider three subcases: |α3|+|β3|N5,|α1|+|β1|N4|\alpha_{3}|+|\beta_{3}|\leq N-5,|\alpha_{1}|+|\beta_{1}|\leq N-4; |α3|+|β3|N5,|α1|+|β1|N3|\alpha_{3}|+|\beta_{3}|\leq N-5,|\alpha_{1}|+|\beta_{1}|\geq N-3; |α3|+|β3|N4|\alpha_{3}|+|\beta_{3}|\geq N-4. In the first subcase, |α1|+|β1|+4N,|α3|+|β3|+5N|\alpha_{1}|+|\beta_{1}|+4\leq N,|\alpha_{3}|+|\beta_{3}|+5\leq N. As the same as (5.3), we use (5.67) and the condition l|α|,|β|l|α2|,|β2|l_{|\alpha|,|\beta|}\leq l_{|\alpha_{2}|,|\beta_{2}|} to get (5.69).

In the second subcase, |α1|+|β1|N3|\alpha_{1}|+|\beta_{1}|\geq N-3 implies |α2|+|α3|+|β2|+|β3|3j|\alpha_{2}|+|\alpha_{3}|+|\beta_{2}|+|\beta_{3}|\leq 3-j and so |α2|+|β2|+47j,|α3|+|β3|+58jN|\alpha_{2}|+|\beta_{2}|+4\leq 7-j,|\alpha_{3}|+|\beta_{3}|+5\leq 8-j\leq N. Since N9N\geq 9, then |α|+|β|=Nj9j|\alpha|+|\beta|=N-j\geq 9-j and so l|α|,|β|l|α2|+2,|β2|+2l_{|\alpha|,|\beta|}\leq l_{|\alpha_{2}|+2,|\beta_{2}|+2} by (5.49). Therefore we use (5.68) to get

|(Γ3ρ(α1β1g,α2β2h,α3β3ϱ),W2l|α|,|β|αβf)|\displaystyle|(\Gamma_{3}^{\rho}(\partial^{\alpha_{1}}_{\beta_{1}}g,\partial^{\alpha_{2}}_{\beta_{2}}h,\partial^{\alpha_{3}}_{\beta_{3}}\varrho),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|
\displaystyle\lesssim ρα1β1gL2xL2α2β2hH2x2,sl|α|,|β|+γ/2α3β3ϱH2xH3αβfL2xsl|α|,|β|+γ/2\displaystyle\rho\|\partial^{\alpha_{1}}_{\beta_{1}}g\|_{L^{2}_{x}L^{2}}\|\partial^{\alpha_{2}}_{\beta_{2}}h\|_{H^{2}_{x}\mathcal{L}^{2,s}_{l_{|\alpha|,|\beta|}+\gamma/2}}\|\partial^{\alpha_{3}}_{\beta_{3}}\varrho\|_{H^{2}_{x}H^{3}}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}
\displaystyle\lesssim ρgHNx,vα2β2hH2x2,sl|α2|+2,|β2|+2+γ/2ϱHNx,vαβfL2xsl|α|,|β|+γ/2\displaystyle\rho\|g\|_{H^{N}_{x,v}}\|\partial^{\alpha_{2}}_{\beta_{2}}h\|_{H^{2}_{x}\mathcal{L}^{2,s}_{l_{|\alpha_{2}|+2,|\beta_{2}|+2}+\gamma/2}}\|\varrho\|_{H^{N}_{x,v}}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}
\displaystyle\lesssim ρ12N(g)𝒟12N(h)12N(ϱ)𝒟12N(f).\displaystyle\rho\mathcal{E}^{\frac{1}{2}}_{N}(g)\mathcal{D}^{\frac{1}{2}}_{N}(h)\mathcal{E}^{\frac{1}{2}}_{N}(\varrho)\mathcal{D}^{\frac{1}{2}}_{N}(f).

In the third subcase, note that |α3|+|β3|N4|\alpha_{3}|+|\beta_{3}|\geq N-4 gives |α1|+|α2|+|β1|+|β2|4j|\alpha_{1}|+|\alpha_{2}|+|\beta_{1}|+|\beta_{2}|\leq 4-j and so |α1|+|β1|+59jN,|α2|+|β2|+48j|\alpha_{1}|+|\beta_{1}|+5\leq 9-j\leq N,|\alpha_{2}|+|\beta_{2}|+4\leq 8-j. Since N9N\geq 9, then |α|+|β|9j|\alpha|+|\beta|\geq 9-j and so l|α|,|β|l|α2|+2,|β2|+2l_{|\alpha|,|\beta|}\leq l_{|\alpha_{2}|+2,|\beta_{2}|+2} by (5.49). Therefore we can use (5.66) to get

|(Γ3ρ(α1β1g,α2β2h,α3β3ϱ),W2l|α|,|β|αβf)|\displaystyle|(\Gamma_{3}^{\rho}(\partial^{\alpha_{1}}_{\beta_{1}}g,\partial^{\alpha_{2}}_{\beta_{2}}h,\partial^{\alpha_{3}}_{\beta_{3}}\varrho),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|
\displaystyle\lesssim ρα1β1g|H2xH3(α2β2hH2xH2α3β3ϱL2xsγ/2+α2β2hH2x2,sl|α|,|β|+γ/2α3β3ϱL2xL2)αβfL2xsl|α|,|β|+γ/2\displaystyle\rho\|\partial^{\alpha_{1}}_{\beta_{1}}g|_{H^{2}_{x}H^{3}}(\|\partial^{\alpha_{2}}_{\beta_{2}}h\|_{H^{2}_{x}H^{2}}\|\partial^{\alpha_{3}}_{\beta_{3}}\varrho\|_{L^{2}_{x}\mathcal{L}^{s}_{\gamma/2}}+\|\partial^{\alpha_{2}}_{\beta_{2}}h\|_{H^{2}_{x}\mathcal{L}^{2,s}_{l_{|\alpha|,|\beta|}+\gamma/2}}\|\partial^{\alpha_{3}}_{\beta_{3}}\varrho\|_{L^{2}_{x}L^{2}})\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}
\displaystyle\lesssim ρgHNx,v(hHNx,vα3β3ϱL2xsγ/2+α2β2hH2x2,sl|α2|+2,|β2|+2+γ/2ϱHNx,v)αβfL2xsl|α|,|β|+γ/2\displaystyle\rho\|g\|_{H^{N}_{x,v}}(\|h\|_{H^{N}_{x,v}}\|\partial^{\alpha_{3}}_{\beta_{3}}\varrho\|_{L^{2}_{x}\mathcal{L}^{s}_{\gamma/2}}+\|\partial^{\alpha_{2}}_{\beta_{2}}h\|_{H^{2}_{x}\mathcal{L}^{2,s}_{l_{|\alpha_{2}|+2,|\beta_{2}|+2}+\gamma/2}}\|\varrho\|_{H^{N}_{x,v}})\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}
\displaystyle\lesssim ρ12N(g)(12N(h)𝒟12N(ϱ)+𝒟12N(h)12N(ϱ))𝒟12N(f).\displaystyle\rho\mathcal{E}^{\frac{1}{2}}_{N}(g)\big{(}\mathcal{E}^{\frac{1}{2}}_{N}(h)\mathcal{D}^{\frac{1}{2}}_{N}(\varrho)+\mathcal{D}^{\frac{1}{2}}_{N}(h)\mathcal{E}^{\frac{1}{2}}_{N}(\varrho)\big{)}\mathcal{D}^{\frac{1}{2}}_{N}(f).

Patching together the three cases, we finish the proof. ∎

6. Local well-posedness

In this section, we will prove local existence of (1.12) or (1.20). To this end, we need local well-posedness of (1.34)(or (1.36)). We first apply Proposition 2.3 to show that the solution to (1.34) is non-negative.

Proposition 6.1.

Let T>0T>0. Let F00F_{0}\geq 0. If G0G\geq 0 and CT\colonequalssup0tTμ14G(t,,)H2xH4<C_{T}\colonequals\sup_{0\leq t\leq T}\|\mu^{-\frac{1}{4}}G(t,\cdot,\cdot)\|_{H^{2}_{x}H^{4}}<\infty. Let FL([0,T];L2xL2)F\in L^{\infty}([0,T];L^{2}_{x}L^{2}) be a solution to (1.34), then F0F\geq 0.

Proof.

Let F=min{0,F},F+=max{0,F}F_{-}=\min\{0,F\},F_{+}=\max\{0,F\}. Taking inner product with FF_{-}, we have

12ddtF2L2xL2=(Q~(G,F),F)\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|F_{-}\|^{2}_{L^{2}_{x}L^{2}}=(\tilde{Q}(G,F),F_{-}) =\displaystyle= BGF(1+G+G)D(F)dVdx\displaystyle\int BG_{*}F(1+G_{*}^{\prime}+G^{\prime})\mathrm{D}(F_{-}^{\prime})\mathrm{d}V\mathrm{d}x
\displaystyle\leq BGF(1+G+G)D(F)dVdx\displaystyle\int BG_{*}F_{-}(1+G_{*}^{\prime}+G^{\prime})\mathrm{D}(F_{-}^{\prime})\mathrm{d}V\mathrm{d}x
=\displaystyle= (Q~(G,F),F),\displaystyle(\tilde{Q}(G,F_{-}),F_{-}),

where we use G(1+G+G)0,FF=F2,FF=F+F+FFFFG_{*}(1+G_{*}^{\prime}+G^{\prime})\geq 0,FF_{-}=F_{-}^{2},FF_{-}^{\prime}=F_{+}F_{-}^{\prime}+F_{-}F_{-}^{\prime}\leq F_{-}F_{-}^{\prime} in the inequality. Since (Q~(G,F),F)=Q~(G,F),Fdx(\tilde{Q}(G,F_{-}),F_{-})=\int\langle\tilde{Q}(G,F_{-}),F_{-}\rangle\mathrm{d}x, by Proposition 2.3 and the imbedding H2xLxH^{2}_{x}\hookrightarrow L^{\infty}_{x}, we have

(Q~(G,F),F)μ14GH2xH4(1+μ14GH2xH4)FL2xL22,\displaystyle(\tilde{Q}(G,F_{-}),F_{-})\lesssim\|\mu^{-\frac{1}{4}}G\|_{H^{2}_{x}H^{4}}(1+\|\mu^{-\frac{1}{4}}G\|_{H^{2}_{x}H^{4}})\|F_{-}\|_{L^{2}_{x}L^{2}}^{2},

which yields

12ddtF2L2xL2CT(1+CT)F2L2xL2.\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|F_{-}\|^{2}_{L^{2}_{x}L^{2}}\lesssim C_{T}(1+C_{T})\|F_{-}\|^{2}_{L^{2}_{x}L^{2}}.

Therefore the initial condition F(0)L2xL2=0\|F_{-}(0)\|_{L^{2}_{x}L^{2}}=0 yields F(t)L2xL2=0\|F_{-}(t)\|_{L^{2}_{x}L^{2}}=0 for any 0tT0\leq t\leq T. ∎

We next prepare two lemmas. By Proposition 2.1, Proposition 2.2 and Remark 3.3, using Cauchy-Schwartz inequality, (3.11) and (3.12), we have the following lemma for energy estimates involving ρr\mathcal{L}^{\rho}_{r} and 𝒞ρ\mathcal{C}^{\rho}.

Lemma 6.1.

Let N0N\geq 0 and |α|+|β|N|\alpha|+|\beta|\leq N, then

|(αβρrh,W2l|α|,|β|αβf)|ρ12N(h)12N(f),|(αβ𝒞ρh,W2l|α|,|β|αβf)|ρ2𝒟12N(h)𝒟12N(f).\displaystyle|(\partial^{\alpha}_{\beta}\mathcal{L}^{\rho}_{r}h,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\lesssim\rho\mathcal{E}^{\frac{1}{2}}_{N}(h)\mathcal{E}^{\frac{1}{2}}_{N}(f),\quad|(\partial^{\alpha}_{\beta}\mathcal{C}^{\rho}h,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\lesssim\rho^{2}\mathcal{D}^{\frac{1}{2}}_{N}(h)\mathcal{D}^{\frac{1}{2}}_{N}(f).

The following lemma gives two standard results for energy estimate involving [vx,αβ][v\cdot\nabla_{x},\partial^{\alpha}_{\beta}]. One is controlled by dissipation, while the other is directly controlled by energy.

Lemma 6.2.

Let β=(β1,β2,β3),|β|1\beta=(\beta^{1},\beta^{2},\beta^{3}),|\beta|\geq 1. For any η>0\eta>0, it holds that

|([vx,αβ]f,W2l|α|,|β|αβf)|ηαβfL2xsl|α|,|β|+γ/22+1ηj=13|βj|2Wl|α|+1,|β|1α+ejβejfL2xsγ/22.\displaystyle|([v\cdot\nabla_{x},\partial^{\alpha}_{\beta}]f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\leq\eta\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}+\frac{1}{\eta}\sum_{j=1}^{3}|\beta^{j}|^{2}\|W_{l_{|\alpha|+1,|\beta|-1}}\partial^{\alpha+e^{j}}_{\beta-e^{j}}f\|_{L^{2}_{x}\mathcal{L}^{s}_{\gamma/2}}^{2}. (6.1)

Here e1=(1,0,0),e2=(0,1,0),e3=(0,0,1)e^{1}=(1,0,0),e^{2}=(0,1,0),e^{3}=(0,0,1). In addition,

|([vx,αβ]f,W2l|α|,|β|αβf)|N(f).\displaystyle|([v\cdot\nabla_{x},\partial^{\alpha}_{\beta}]f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\lesssim\mathcal{E}_{N}(f). (6.2)
Proof.

Note that [vx,αβ]f=j=13βjα+ejβejf.[v\cdot\nabla_{x},\partial^{\alpha}_{\beta}]f=-\sum_{j=1}^{3}\beta^{j}\partial^{\alpha+e^{j}}_{\beta-e^{j}}f. Then by Cauchy-Schwartz inequality, we have

|([vx,αβ]f,W2l|α|,|β|αβf)|j=13βjWl|α|,|β|(γ/2+s)α+ejβejfL2xL2Wl|α|,|β|+γ/2+sαβfL2xL2.\displaystyle|([v\cdot\nabla_{x},\partial^{\alpha}_{\beta}]f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\leq\sum_{j=1}^{3}\beta^{j}\|W_{l_{|\alpha|,|\beta|}-(\gamma/2+s)}\partial^{\alpha+e^{j}}_{\beta-e^{j}}f\|_{L^{2}_{x}L^{2}}\|W_{l_{|\alpha|,|\beta|}+\gamma/2+s}\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}L^{2}}.

Using the condition l|α|,|β|(γ/2+s)l|α|+1,|β|1+(γ/2+s)l_{|\alpha|,|\beta|}-(\gamma/2+s)\leq l_{|\alpha|+1,|\beta|-1}+(\gamma/2+s) by (1.30), the fact ||L2γ/2+s||sγ/2|\cdot|_{L^{2}_{\gamma/2+s}}\leq|\cdot|_{\mathcal{L}^{s}_{\gamma/2}}, and the basic inequality abηa2+b24ηab\leq\eta a^{2}+\frac{b^{2}}{4\eta}, we finish the proof of (6.1).

By (1.30), l|α|,|β|l|α|+1,|β|1l_{|\alpha|,|\beta|}\leq l_{|\alpha|+1,|\beta|-1}. Then by Cauchy-Schwartz inequality, we can derive (6.2). ∎

Now we are ready to prove well-posedness of the equation (1.36).

Proposition 6.2.

Let N9N\geq 9 and T>0T>0. There are universal constants 0<ρ1,δ0<10<\rho_{1},\delta_{0}<1 such that for 0<ρρ1,0<δδ00<\rho\leq\rho_{1},0<\delta\leq\delta_{0} the following statement is valid. Suppose the initial data f0f_{0} and the given function gg verifies

N(f0)<,+𝒩f00,\displaystyle\mathcal{E}_{N}(f_{0})<\infty,\quad\mathcal{M}+\mathcal{N}f_{0}\geq 0,
sup0tTN(g(t))+ρ0T𝒟N(g(t))dtδρ,inf0tT(+𝒩g(t))0,\displaystyle\sup_{0\leq t\leq T}\mathcal{E}_{N}(g(t))+\rho\int_{0}^{T}\mathcal{D}_{N}(g(t))\mathrm{d}t\leq\delta\rho,\quad\inf_{0\leq t\leq T}(\mathcal{M}+\mathcal{N}g(t))\geq 0, (6.3)

then (1.36) has a unique solution fρL([0,T];N)f^{\rho}\in L^{\infty}([0,T];\mathcal{E}_{N}) verifying +𝒩fρ(t)0\mathcal{M}+\mathcal{N}f^{\rho}(t)\geq 0 for any 0tT0\leq t\leq T and

sup0tTN(fρ(t))+ρ0T𝒟N(fρ(t))dtCexp(CT+Cδρ)(N(f0)+δρ2T+δρ2),\displaystyle\sup_{0\leq t\leq T}\mathcal{E}_{N}(f^{\rho}(t))+\rho\int_{0}^{T}\mathcal{D}_{N}(f^{\rho}(t))\mathrm{d}t\leq C\exp(CT+C\delta\rho)(\mathcal{E}_{N}(f_{0})+\delta\rho^{2}T+\delta\rho^{2}), (6.4)

for some universal constant CC(independent of δ,ρ,T\delta,\rho,T).

Proof.

Based on the operator estimates in Section 2, 3 and 4, we can use Hahn-Banach Theorem like in [3, 42] to prove existence.

Positivity is a direct consequence of Proposition 6.1. Indeed, note that F=+𝒩fρF=\mathcal{M}+\mathcal{N}f^{\rho} is the solution to (1.34) with the given function G=+𝒩gG=\mathcal{M}+\mathcal{N}g and initial data F0=+𝒩f0F_{0}=\mathcal{M}+\mathcal{N}f_{0}. Recall that =ρμ1ρμ,𝒩=ρ12μ121ρμ\mathcal{M}=\frac{\rho\mu}{1-\rho\mu},\mathcal{N}=\frac{\rho^{\frac{1}{2}}\mu^{\frac{1}{2}}}{1-\rho\mu}. Recall (1.29) and (1.48) for the definition of N()\mathcal{E}_{N}(\cdot) and HNx,v\|\cdot\|_{H^{N}_{x,v}}, we have

sup0tTg(t)HNx,v2sup0tTN(g(t))δρ,\displaystyle\sup_{0\leq t\leq T}\|g(t)\|_{H^{N}_{x,v}}^{2}\leq\sup_{0\leq t\leq T}\mathcal{E}_{N}(g(t))\leq\delta\rho,

which gives

μ14G(t)H2xH4=ρμ341ρμ+ρ12μ141ρμg(t)H2xH4ρ+ρ12g(t)HNx,vρ.\displaystyle\|\mu^{-\frac{1}{4}}G(t)\|_{H^{2}_{x}H^{4}}=\|\frac{\rho\mu^{\frac{3}{4}}}{1-\rho\mu}+\frac{\rho^{\frac{1}{2}}\mu^{\frac{1}{4}}}{1-\rho\mu}g(t)\|_{H^{2}_{x}H^{4}}\lesssim\rho+\rho^{\frac{1}{2}}\|g(t)\|_{H^{N}_{x,v}}\lesssim\rho.

The second inequality in (6.3) gives G0G\geq 0. By Proposition 6.1, we get F(t)=+𝒩fρ(t)0F(t)=\mathcal{M}+\mathcal{N}f^{\rho}(t)\geq 0 for any 0tT0\leq t\leq T.

As for uniqueness, it is standard to take difference and do energy estimate. Indeed, one can revise the following proof to get uniqueness naturally.

Now it remains to prove the a priori estimate (6.4). For simplicity, let f=fρf=f^{\rho} be the solution to (1.36). Fix 0kN0\leq k\leq N. Take two indexes α\alpha and β\beta such that |α|Nk|\alpha|\leq N-k and |β|=k|\beta|=k. Set q=l|α|,|β|q=l_{|\alpha|,|\beta|}. Applying αβ\partial^{\alpha}_{\beta} to both sides of (1.36), taking inner product with W2l|α|,|β|αβfW_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f over (x,v)(x,v), using periodic condition, we get

12ddtWl|α|,|β|αβf2L2xL2+(αβρf,W2l|α|,|β|αβf)=(,W2l|α|,|β|αβf),\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|W_{l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}L^{2}}+(\partial^{\alpha}_{\beta}\mathcal{L}^{\rho}f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)=(\mathcal{R},W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f), (6.5)

where for simplicity in this proof

\colonequals[vx,αβ]f+αβρrf+αβ𝒞ρf+ρ12αβΓ2,mρ(g,f+ρ12μ12)+αβΓ3ρ(g,f+ρ12μ12,g).\displaystyle\mathcal{R}\colonequals[v\cdot\nabla_{x},\partial^{\alpha}_{\beta}]f+\partial^{\alpha}_{\beta}\mathcal{L}^{\rho}_{r}f+\partial^{\alpha}_{\beta}\mathcal{C}^{\rho}f+\rho^{\frac{1}{2}}\partial^{\alpha}_{\beta}\Gamma_{2,m}^{\rho}(g,f+\rho^{\frac{1}{2}}\mu^{\frac{1}{2}})+\partial^{\alpha}_{\beta}\Gamma_{3}^{\rho}(g,f+\rho^{\frac{1}{2}}\mu^{\frac{1}{2}},g).

By (6.2), we have |([vx,αβ]f,W2l|α|,|β|αβf)|N(f).|([v\cdot\nabla_{x},\partial^{\alpha}_{\beta}]f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\lesssim\mathcal{E}_{N}(f). By Lemma 6.1, we have

|(αβρrf,W2l|α|,|β|αβf)|ρN(f),|(αβ𝒞ρf,W2l|α|,|β|αβf)|ρ2𝒟N(f).\displaystyle|(\partial^{\alpha}_{\beta}\mathcal{L}^{\rho}_{r}f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\lesssim\rho\mathcal{E}_{N}(f),\quad|(\partial^{\alpha}_{\beta}\mathcal{C}^{\rho}f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\lesssim\rho^{2}\mathcal{D}_{N}(f).

By (5.46) and the basic inequality abηa2+b24ηab\leq\eta a^{2}+\frac{b^{2}}{4\eta}, we have

|(ρ12αβΓ2,mρ(g,f+ρ12μ12),W2l|α|,|β|αβf)|\displaystyle|(\rho^{\frac{1}{2}}\partial^{\alpha}_{\beta}\Gamma_{2,m}^{\rho}(g,f+\rho^{\frac{1}{2}}\mu^{\frac{1}{2}}),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)| \displaystyle\lesssim ρ1212N(g)(𝒟12N(f)+ρ12)𝒟12N(f)\displaystyle\rho^{\frac{1}{2}}\mathcal{E}^{\frac{1}{2}}_{N}(g)\big{(}\mathcal{D}^{\frac{1}{2}}_{N}(f)+\rho^{\frac{1}{2}}\big{)}\mathcal{D}^{\frac{1}{2}}_{N}(f)
\displaystyle\lesssim ρ1212N(g)𝒟N(f)+ηρ𝒟N(f)+η1ρN(g).\displaystyle\rho^{\frac{1}{2}}\mathcal{E}^{\frac{1}{2}}_{N}(g)\mathcal{D}_{N}(f)+\eta\rho\mathcal{D}_{N}(f)+\eta^{-1}\rho\mathcal{E}_{N}(g).

By Theorem 5.8 and the basic inequality ab12a2+12b2ab\leq\frac{1}{2}a^{2}+\frac{1}{2}b^{2}, we have

|(αβΓ3ρ(g,f+ρ12μ12,g),W2l|α|,|β|αβf)|\displaystyle|(\partial^{\alpha}_{\beta}\Gamma_{3}^{\rho}(g,f+\rho^{\frac{1}{2}}\mu^{\frac{1}{2}},g),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|
\displaystyle\lesssim ρ12N(g)(12N(f)𝒟N12(g)+𝒟12N(f)12N(g))𝒟12N(f)\displaystyle\rho\mathcal{E}^{\frac{1}{2}}_{N}(g)\big{(}\mathcal{E}^{\frac{1}{2}}_{N}(f)\mathcal{D}_{N}^{\frac{1}{2}}(g)+\mathcal{D}^{\frac{1}{2}}_{N}(f)\mathcal{E}^{\frac{1}{2}}_{N}(g)\big{)}\mathcal{D}^{\frac{1}{2}}_{N}(f)
+ρ3212N(g)(𝒟N12(g)+12N(g))𝒟12N(f)\displaystyle+\rho^{\frac{3}{2}}\mathcal{E}^{\frac{1}{2}}_{N}(g)\big{(}\mathcal{D}_{N}^{\frac{1}{2}}(g)+\mathcal{E}^{\frac{1}{2}}_{N}(g)\big{)}\mathcal{D}^{\frac{1}{2}}_{N}(f)
\displaystyle\lesssim ρN(g)𝒟N(f)+ρ𝒟N(g)N(f)+ρ2N(g)+ρ2𝒟N(g).\displaystyle\rho\mathcal{E}_{N}(g)\mathcal{D}_{N}(f)+\rho\mathcal{D}_{N}(g)\mathcal{E}_{N}(f)+\rho^{2}\mathcal{E}_{N}(g)+\rho^{2}\mathcal{D}_{N}(g).

Patching together the above estimates, back to (6.5), we get

12ddtαβf2L2xL2l|α|,|β|+(αβρf,W2l|α|,|β|αβf)\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}}}+(\partial^{\alpha}_{\beta}\mathcal{L}^{\rho}f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)
\displaystyle\lesssim (ηρ+ρ2+ρ1212N(g)+ρN(g))𝒟N(f)+(1+ρ𝒟N(g))N(f)+(η1ρ+ρ2)N(g)+ρ2𝒟N(g).\displaystyle\big{(}\eta\rho+\rho^{2}+\rho^{\frac{1}{2}}\mathcal{E}^{\frac{1}{2}}_{N}(g)+\rho\mathcal{E}_{N}(g)\big{)}\mathcal{D}_{N}(f)+\big{(}1+\rho\mathcal{D}_{N}(g)\big{)}\mathcal{E}_{N}(f)+\big{(}\eta^{-1}\rho+\rho^{2}\big{)}\mathcal{E}_{N}(g)+\rho^{2}\mathcal{D}_{N}(g).

We now apply Theorem 5.2 to deal with the term involving ρ\mathcal{L}^{\rho}. From now on in this proof, we assume 0<ρρ00<\rho\leq\rho_{0}. When |β|=0|\beta|=0, by (5.14), since γ0\gamma\leq 0, we have

(αρf,W2l|α|,0αf)λ04ραfL2xsl|α|,0+γ/22CρN(f).\displaystyle(\partial^{\alpha}\mathcal{L}^{\rho}f,W_{2l_{|\alpha|,0}}\partial^{\alpha}f)\geq\frac{\lambda_{0}}{4}\rho\|\partial^{\alpha}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,0}+\gamma/2}}^{2}-C\rho\mathcal{E}_{N}(f). (6.6)

If |β|1|\beta|\geq 1, by (5.2), since γ0\gamma\leq 0, we have

(αβρf,W2l|α|,|β|αβf)λ08ραβfL2xsl|α|,|β|+γ/22CρN(f)Cρβ1<βαβ1fL2xsl|α|,|β|+γ/22.\displaystyle(\partial^{\alpha}_{\beta}\mathcal{L}^{\rho}f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)\geq\frac{\lambda_{0}}{8}\rho\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}-C\rho\mathcal{E}_{N}(f)-C\rho\sum_{\beta_{1}<\beta}\|\partial^{\alpha}_{\beta_{1}}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}. (6.7)

Note that the last term in (6.7) only involves the following term with index β1<β\beta_{1}<\beta. Since l|α|,|β|l|α|,|β1|l_{|\alpha|,|\beta|}\leq l_{|\alpha|,|\beta_{1}|}, there holds

αβ1fL2xsl|α|,|β|+γ/22αβ1fL2xsl|α|,|β1|+γ/22.\displaystyle\|\partial^{\alpha}_{\beta_{1}}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}\leq\|\partial^{\alpha}_{\beta_{1}}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta_{1}|}+\gamma/2}}^{2}.

Therefore, there are universal constants {Ck}0kN\{C_{k}\}_{0\leq k\leq N} with 1CkCk11\leq C_{k}\leq C_{k-1} for k=1,,Nk=1,\cdots,N and a large universal constant CC such that

ddtk=0NCk|α|Nk|β|=kαβf2L2xL2l|α|,|β|+λ016ρ𝒟N(f)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\sum_{k=0}^{N}C_{k}\sum_{|\alpha|\leq N-k}\sum_{|\beta|=k}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}}}+\frac{\lambda_{0}}{16}\rho\mathcal{D}_{N}(f)
\displaystyle\leq C(η+ρ+ρ1212N(g)+N(g))ρ𝒟N(f)+C(1+ρ𝒟N(g))N(f)+C(η1ρ+ρ2)N(g)+Cρ2𝒟N(g).\displaystyle C\big{(}\eta+\rho+\rho^{-\frac{1}{2}}\mathcal{E}^{\frac{1}{2}}_{N}(g)+\mathcal{E}_{N}(g)\big{)}\rho\mathcal{D}_{N}(f)+C\big{(}1+\rho\mathcal{D}_{N}(g)\big{)}\mathcal{E}_{N}(f)+C\big{(}\eta^{-1}\rho+\rho^{2}\big{)}\mathcal{E}_{N}(g)+C\rho^{2}\mathcal{D}_{N}(g).

Let us take η\eta such that Cη=λ0128C\eta=\frac{\lambda_{0}}{128}. Suppose ρ,δ\rho,\delta verify

Cρλ0128,C2δ(λ0128)2,Cδλ0128,\displaystyle C\rho\leq\frac{\lambda_{0}}{128},\quad C^{2}\delta\leq(\frac{\lambda_{0}}{128})^{2},\quad C\delta\leq\frac{\lambda_{0}}{128}, (6.8)

then by (6.3) there holds Cρ1212N(g)λ0128,CN(g)λ0128.C\rho^{-\frac{1}{2}}\mathcal{E}^{\frac{1}{2}}_{N}(g)\leq\frac{\lambda_{0}}{128},C\mathcal{E}_{N}(g)\leq\frac{\lambda_{0}}{128}. By these smallness conditions on ρ,δ\rho,\delta and the choice of η\eta, we have

ddtk=0NCk|α|Nk|β|=kαβf2L2xL2l|α|,|β|+λ032ρ𝒟N(f)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\sum_{k=0}^{N}C_{k}\sum_{|\alpha|\leq N-k}\sum_{|\beta|=k}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}}}+\frac{\lambda_{0}}{32}\rho\mathcal{D}_{N}(f)
\displaystyle\leq C(1+ρ𝒟N(g))N(f)+CρN(g)+Cρ2𝒟N(g).\displaystyle C\big{(}1+\rho\mathcal{D}_{N}(g)\big{)}\mathcal{E}_{N}(f)+C\rho\mathcal{E}_{N}(g)+C\rho^{2}\mathcal{D}_{N}(g).

Note that

N(f)~N(f)\colonequalsk=0NCk|α|Nk|β|=kαβf2L2xL2l|α|,|β|C~N(f),\displaystyle\mathcal{E}_{N}(f)\leq\tilde{\mathcal{E}}_{N}(f)\colonequals\sum_{k=0}^{N}C_{k}\sum_{|\alpha|\leq N-k}\sum_{|\beta|=k}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}}}\leq\tilde{C}\mathcal{E}_{N}(f), (6.9)

where C~\colonequalsmax0kN{Ck}\tilde{C}\colonequals\max_{0\leq k\leq N}\{C_{k}\}. We arrive at

ddt~N(f)+λ032ρ𝒟N(f)C(1+ρ𝒟N(g))~N(f)+CρN(g)+Cρ2𝒟N(g).\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\tilde{\mathcal{E}}_{N}(f)+\frac{\lambda_{0}}{32}\rho\mathcal{D}_{N}(f)\leq C\big{(}1+\rho\mathcal{D}_{N}(g)\big{)}\tilde{\mathcal{E}}_{N}(f)+C\rho\mathcal{E}_{N}(g)+C\rho^{2}\mathcal{D}_{N}(g).

By Grönwall’s lemma and the assumption (6.3), for any 0tT0\leq t\leq T, we have

~N(f(t))+λ032ρ0t𝒟N(f(τ))dτ\displaystyle\tilde{\mathcal{E}}_{N}(f(t))+\frac{\lambda_{0}}{32}\rho\int_{0}^{t}\mathcal{D}_{N}(f(\tau))\mathrm{d}\tau
\displaystyle\leq exp(C0t(1+ρ𝒟N(g))dτ)(~N(f0)+C0tρN(g)dτ+C0tρ2𝒟N(g)dτ)\displaystyle\exp(C\int_{0}^{t}(1+\rho\mathcal{D}_{N}(g))\mathrm{d}\tau)(\tilde{\mathcal{E}}_{N}(f_{0})+C\int_{0}^{t}\rho\mathcal{E}_{N}(g)\mathrm{d}\tau+C\int_{0}^{t}\rho^{2}\mathcal{D}_{N}(g)\mathrm{d}\tau)
\displaystyle\leq exp(Ct+Cδρ)(~N(f0)+Cδρ2t+Cδρ2).\displaystyle\exp(Ct+C\delta\rho)(\tilde{\mathcal{E}}_{N}(f_{0})+C\delta\rho^{2}t+C\delta\rho^{2}).

Recalling (6.9), since C~\tilde{C} and λ0\lambda_{0} are universal constants, we get the desired result (6.4) with a different constant CC.

Let CC be the largest constant appearing in the above proof. According to (6.8), we set

ρ1\colonequalsmin{ρ0,λ0128C},δ0\colonequals(λ0128C)2λ0128C.\displaystyle\rho_{1}\colonequals\min\{\rho_{0},\frac{\lambda_{0}}{128C}\},\quad\delta_{0}\colonequals(\frac{\lambda_{0}}{128C})^{2}\leq\frac{\lambda_{0}}{128C}.

Then if 0<ρρ10<\rho\leq\rho_{1} and 0<δδ00<\delta\leq\delta_{0}, the above proof is valid. ∎

By iteration on the equation (1.36), we derive local well-posedness of the Cauchy problem (1.20). The local well-posedness result can be concluded as follows:

Theorem 6.1.

Let N9N\geq 9. There are universal constants ρ2,δ1,T>0\rho_{2},\delta_{1},T^{*}>0 such that for 0<ρρ2,0<δδ10<\rho\leq\rho_{2},0<\delta\leq\delta_{1}, if

N(f0)δρ,+𝒩f00,\displaystyle\mathcal{E}_{N}(f_{0})\leq\delta\rho,\quad\mathcal{M}+\mathcal{N}f_{0}\geq 0,

then the Cauchy problem (1.20) admits a unique solution fρL([0,T];N)f^{\rho}\in L^{\infty}([0,T^{*}];\mathcal{E}_{N}) verifying

sup0tTN(fρ(t))+ρ0T𝒟N(fρ(t))dtCδρ,+𝒩fρ(t)0,\displaystyle\sup_{0\leq t\leq T^{*}}\mathcal{E}_{N}(f^{\rho}(t))+\rho\int_{0}^{T^{*}}\mathcal{D}_{N}(f^{\rho}(t))\mathrm{d}t\leq C\delta\rho,\quad\mathcal{M}+\mathcal{N}f^{\rho}(t)\geq 0, (6.10)

for some universal constant CC.

Proof.

Let fρ,00f^{\rho,0}\equiv 0 and for n1n\geq 1, fρ,nf^{\rho,n} is the solution to the following problem

tfn+vxfn+ρfn\displaystyle\partial_{t}f^{n}+v\cdot\nabla_{x}f^{n}+\mathcal{L}^{\rho}f^{n} =\displaystyle= ρrfn+𝒞ρfn+ρ12Γ2,mρ(fn1,fn+ρ12μ12)\displaystyle\mathcal{L}^{\rho}_{r}f^{n}+\mathcal{C}^{\rho}f^{n}+\rho^{\frac{1}{2}}\Gamma_{2,m}^{\rho}(f^{n-1},f^{n}+\rho^{\frac{1}{2}}\mu^{\frac{1}{2}})
+Γ3ρ(fn1,fn+ρ12μ12,fn1),\displaystyle+\Gamma_{3}^{\rho}(f^{n-1},f^{n}+\rho^{\frac{1}{2}}\mu^{\frac{1}{2}},f^{n-1}),

with the initial condition fn|t=0=f0.f^{n}|_{t=0}=f_{0}.

Let C~\colonequalsCexp(C+Cδ0ρ1)(1+2ρ1)1,δ~1\colonequalsδ0/C~,ρ~1\colonequalsρ1/C~\tilde{C}\colonequals C\exp(C+C\delta_{0}\rho_{1})(1+2\rho_{1})\geq 1,\tilde{\delta}_{1}\colonequals\delta_{0}/\tilde{C},\tilde{\rho}_{1}\colonequals\rho_{1}/\tilde{C}. Here and in the rest of this paragraph C,ρ1,δ0C,\rho_{1},\delta_{0} are the constants appearing in Proposition 6.2. We now set to prove the following statement. If 0<ρρ~1,0<δδ~10<\rho\leq\tilde{\rho}_{1},0<\delta\leq\tilde{\delta}_{1} and N(f0)δρ\mathcal{E}_{N}(f_{0})\leq\delta\rho, then the sequence {fρ,n}n0\{f^{\rho,n}\}_{n\geq 0} is well-defined on the time interval [0,1][0,1] and has uniform(in nn) estimate

sup0t1N(fρ,n(t))+ρ01𝒟N(fρ,n(t))dtC~δρ.\displaystyle\sup_{0\leq t\leq 1}\mathcal{E}_{N}(f^{\rho,n}(t))+\rho\int_{0}^{1}\mathcal{D}_{N}(f^{\rho,n}(t))\mathrm{d}t\leq\tilde{C}\delta\rho. (6.11)

Obviously (6.11) is valid when n=0n=0 since fρ,00f^{\rho,0}\equiv 0. We now use mathematical induction over nn. Let us assume that the partial sequence {fρ,n}0nk\{f^{\rho,n}\}_{0\leq n\leq k} is well-defined on the time interval [0,1][0,1] and satisfies the uniform estimate (6.11). In particular, for n=kn=k, it holds that

sup0t1N(fρ,k(t))+ρ01𝒟N(fρ,k(t))dtC~δρ.\displaystyle\sup_{0\leq t\leq 1}\mathcal{E}_{N}(f^{\rho,k}(t))+\rho\int_{0}^{1}\mathcal{D}_{N}(f^{\rho,k}(t))\mathrm{d}t\leq\tilde{C}\delta\rho.

Since 0<δδ~1,0<ρρ~10<\delta\leq\tilde{\delta}_{1},0<\rho\leq\tilde{\rho}_{1}, by the definition of C~,δ~1,ρ~1\tilde{C},\tilde{\delta}_{1},\tilde{\rho}_{1}, we have 0<C~δδ0,0<ρρ10<\tilde{C}\delta\leq\delta_{0},0<\rho\leq\rho_{1}. Now applying Proposition 6.2(in which δ\delta is replaced with C~δ\tilde{C}\delta), there is a unique solution fρ,k+1L([0,1];N)f^{\rho,k+1}\in L^{\infty}([0,1];\mathcal{E}_{N}) verifying

sup0t1N(fρ,k+1(t))+ρ01𝒟N(fρ,k+1(t))dt\displaystyle\sup_{0\leq t\leq 1}\mathcal{E}_{N}(f^{\rho,k+1}(t))+\rho\int_{0}^{1}\mathcal{D}_{N}(f^{\rho,k+1}(t))\mathrm{d}t
\displaystyle\leq Cexp(C+CC~δρ)(N(f0)+2C~δρ2)Cexp(C+Cδ0ρ1)(1+2ρ1)δρ=C~δρ,\displaystyle C\exp(C+C\tilde{C}\delta\rho)(\mathcal{E}_{N}(f_{0})+2\tilde{C}\delta\rho^{2})\leq C\exp(C+C\delta_{0}\rho_{1})(1+2\rho_{1})\delta\rho=\tilde{C}\delta\rho,

where we use C~ρρ1\tilde{C}\rho\leq\rho_{1} and δδ~1δ0\delta\leq\tilde{\delta}_{1}\leq\delta_{0} in the last inequality. Now the statement about the sequence {fρ,n}n0\{f^{\rho,n}\}_{n\geq 0} is proved.

Moreover by Proposition 6.2, we have for any n0n\geq 0 and 0t10\leq t\leq 1,

+𝒩fρ,n(t)0.\displaystyle\mathcal{M}+\mathcal{N}f^{\rho,n}(t)\geq 0. (6.12)

We now prove that {fρ,n}n0\{f^{\rho,n}\}_{n\geq 0} is a Cauchy sequence in L([0,T0];N)L^{\infty}([0,T_{0}];\mathcal{E}_{N}) for some 0<T010<T_{0}\leq 1. Let wn\colonequalsfρ,n+1fρ,nw^{n}\colonequals f^{\rho,n+1}-f^{\rho,n} for n0n\geq 0. Then for n1n\geq 1, the function wnw^{n} solves

twn+vxwn+ρwn=ρrwn+𝒞ρwn+𝒴,wn(0,x,v)0,\displaystyle\partial_{t}w^{n}+v\cdot\nabla_{x}w^{n}+\mathcal{L}^{\rho}w^{n}=\mathcal{L}^{\rho}_{r}w^{n}+\mathcal{C}^{\rho}w^{n}+\mathcal{Y},\quad w^{n}(0,x,v)\equiv 0,

where

𝒴\displaystyle\mathcal{Y} \colonequals\displaystyle\colonequals ρ12Γ2,mρ(fρ,n,wn)+ρ12Γ2,mρ(wn1,fρ,n)+ρΓ2,mρ(wn1,μ12)\displaystyle\rho^{\frac{1}{2}}\Gamma_{2,m}^{\rho}(f^{\rho,n},w^{n})+\rho^{\frac{1}{2}}\Gamma_{2,m}^{\rho}(w^{n-1},f^{\rho,n})+\rho\Gamma_{2,m}^{\rho}(w^{n-1},\mu^{\frac{1}{2}})
+Γ3ρ(fρ,n,wn,fρ,n)+Γ3ρ(wn1,fρ,n,fρ,n)+Γ3ρ(fρ,n1,fρ,n,wn1)\displaystyle+\Gamma_{3}^{\rho}(f^{\rho,n},w^{n},f^{\rho,n})+\Gamma_{3}^{\rho}(w^{n-1},f^{\rho,n},f^{\rho,n})+\Gamma_{3}^{\rho}(f^{\rho,n-1},f^{\rho,n},w^{n-1})
+ρ12Γ3ρ(wn1,μ12,fρ,n)+ρ12Γ3ρ(fρ,n1,μ12,wn1).\displaystyle+\rho^{\frac{1}{2}}\Gamma_{3}^{\rho}(w^{n-1},\mu^{\frac{1}{2}},f^{\rho,n})+\rho^{\frac{1}{2}}\Gamma_{3}^{\rho}(f^{\rho,n-1},\mu^{\frac{1}{2}},w^{n-1}).

By basic energy estimate(similar to (6.5)), we have

12ddtαβwn2L2xL2l|α|,|β|+(αβρwn,W2l|α|,|β|αβwn)=(,W2l|α|,|β|αβwn),\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\partial^{\alpha}_{\beta}w^{n}\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}}}+(\partial^{\alpha}_{\beta}\mathcal{L}^{\rho}w^{n},W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}w^{n})=(\mathcal{R},W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}w^{n}), (6.14)

where for simplicity in this proof

\colonequals[vx,αβ]wn+αβρrwn+αβ𝒞ρwn+αβ𝒴.\displaystyle\mathcal{R}\colonequals[v\cdot\nabla_{x},\partial^{\alpha}_{\beta}]w^{n}+\partial^{\alpha}_{\beta}\mathcal{L}^{\rho}_{r}w^{n}+\partial^{\alpha}_{\beta}\mathcal{C}^{\rho}w^{n}+\partial^{\alpha}_{\beta}\mathcal{Y}.

Let us first deal with the inner product involving \mathcal{R} on the right-hand side of (6.14). By (6.2), we have

|([vx,αβ]wn,W2l|α|,|β|αβwn)|N(wn).\displaystyle|([v\cdot\nabla_{x},\partial^{\alpha}_{\beta}]w^{n},W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}w^{n})|\lesssim\mathcal{E}_{N}(w^{n}).

By Lemma 6.1, we have

|(αβρrwn,W2l|α|,|β|αβwn)|ρN(wn),|(αβ𝒞ρwn,W2l|α|,|β|αβwn)|ρ2𝒟N(wn).\displaystyle|(\partial^{\alpha}_{\beta}\mathcal{L}^{\rho}_{r}w^{n},W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}w^{n})|\lesssim\rho\mathcal{E}_{N}(w^{n}),\quad|(\partial^{\alpha}_{\beta}\mathcal{C}^{\rho}w^{n},W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}w^{n})|\lesssim\rho^{2}\mathcal{D}_{N}(w^{n}).

Recalling (6), there are three terms involving Γ2,mρ\Gamma_{2,m}^{\rho} and five terms involving Γ3ρ\Gamma_{3}^{\rho}. For the three terms involving Γ2,mρ\Gamma_{2,m}^{\rho}, by (5.46), we have

|ρ12(αβΓ2,mρ(fρ,n,wn),W2l|α|,|β|αβwn)|\displaystyle|\rho^{\frac{1}{2}}(\partial^{\alpha}_{\beta}\Gamma_{2,m}^{\rho}(f^{\rho,n},w^{n}),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}w^{n})| \displaystyle\lesssim ρ1212N(fρ,n)𝒟N(wn),\displaystyle\rho^{\frac{1}{2}}\mathcal{E}^{\frac{1}{2}}_{N}(f^{\rho,n})\mathcal{D}_{N}(w^{n}),
|ρ12(αβΓ2,mρ(wn1,fρ,n),W2l|α|,|β|αβwn)|\displaystyle|\rho^{\frac{1}{2}}(\partial^{\alpha}_{\beta}\Gamma_{2,m}^{\rho}(w^{n-1},f^{\rho,n}),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}w^{n})| \displaystyle\lesssim ρ1212N(wn1)𝒟12N(fρ,n)𝒟12N(wn)\displaystyle\rho^{\frac{1}{2}}\mathcal{E}^{\frac{1}{2}}_{N}(w^{n-1})\mathcal{D}^{\frac{1}{2}}_{N}(f^{\rho,n})\mathcal{D}^{\frac{1}{2}}_{N}(w^{n})
\displaystyle\lesssim ηρ𝒟N(wn)+η1N(wn1)𝒟N(fρ,n),\displaystyle\eta\rho\mathcal{D}_{N}(w^{n})+\eta^{-1}\mathcal{E}_{N}(w^{n-1})\mathcal{D}_{N}(f^{\rho,n}),
|ρ(αβΓ2,mρ(wn1,μ12),W2l|α|,|β|αβwn)|\displaystyle|\rho(\partial^{\alpha}_{\beta}\Gamma_{2,m}^{\rho}(w^{n-1},\mu^{\frac{1}{2}}),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}w^{n})| \displaystyle\lesssim ρ12N(wn1)𝒟12N(wn)ηρ𝒟N(wn)+η1ρN(wn1).\displaystyle\rho\mathcal{E}^{\frac{1}{2}}_{N}(w^{n-1})\mathcal{D}^{\frac{1}{2}}_{N}(w^{n})\lesssim\eta\rho\mathcal{D}_{N}(w^{n})+\eta^{-1}\rho\mathcal{E}_{N}(w^{n-1}).

For the five terms involving Γ3ρ\Gamma_{3}^{\rho}, by Theorem 5.8, we have

|(αβΓ3ρ(fρ,n,wn,fρ,n),W2l|α|,|β|αβwn)|\displaystyle|(\partial^{\alpha}_{\beta}\Gamma_{3}^{\rho}(f^{\rho,n},w^{n},f^{\rho,n}),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}w^{n})|
\displaystyle\lesssim ρ12N(fρ,n)(12N(wn)𝒟12N(fρ,n)+𝒟12N(wn)12N(fρ,n))𝒟12N(wn)\displaystyle\rho\mathcal{E}^{\frac{1}{2}}_{N}(f^{\rho,n})\big{(}\mathcal{E}^{\frac{1}{2}}_{N}(w^{n})\mathcal{D}^{\frac{1}{2}}_{N}(f^{\rho,n})+\mathcal{D}^{\frac{1}{2}}_{N}(w^{n})\mathcal{E}^{\frac{1}{2}}_{N}(f^{\rho,n})\big{)}\mathcal{D}^{\frac{1}{2}}_{N}(w^{n})
\displaystyle\lesssim ρN(fρ,n)𝒟N(wn)+ρN(wn)𝒟N(fρ,n),\displaystyle\rho\mathcal{E}_{N}(f^{\rho,n})\mathcal{D}_{N}(w^{n})+\rho\mathcal{E}_{N}(w^{n})\mathcal{D}_{N}(f^{\rho,n}),
|(αβΓ3ρ(wn1,fρ,n,fρ,n),W2l|α|,|β|αβwn)|\displaystyle|(\partial^{\alpha}_{\beta}\Gamma_{3}^{\rho}(w^{n-1},f^{\rho,n},f^{\rho,n}),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}w^{n})|
\displaystyle\lesssim ρ12N(wn1)12N(fρ,n)𝒟12N(fρ,n)𝒟12N(wn)\displaystyle\rho\mathcal{E}^{\frac{1}{2}}_{N}(w^{n-1})\mathcal{E}^{\frac{1}{2}}_{N}(f^{\rho,n})\mathcal{D}^{\frac{1}{2}}_{N}(f^{\rho,n})\mathcal{D}^{\frac{1}{2}}_{N}(w^{n})
\displaystyle\lesssim ηρ𝒟N(wn)+η1ρN(fρ,n)N(wn1)𝒟N(fρ,n),\displaystyle\eta\rho\mathcal{D}_{N}(w^{n})+\eta^{-1}\rho\mathcal{E}_{N}(f^{\rho,n})\mathcal{E}_{N}(w^{n-1})\mathcal{D}_{N}(f^{\rho,n}),
|(αβΓ3ρ(fρ,n1,fρ,n,wn1),W2l|α|,|β|αβwn)|\displaystyle|(\partial^{\alpha}_{\beta}\Gamma_{3}^{\rho}(f^{\rho,n-1},f^{\rho,n},w^{n-1}),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}w^{n})|
\displaystyle\lesssim ρ12N(fρ,n1)(12N(fρ,n)𝒟12N(wn1)+𝒟12N(fρ,n)12N(wn1))𝒟12N(wn)\displaystyle\rho\mathcal{E}^{\frac{1}{2}}_{N}(f^{\rho,n-1})\big{(}\mathcal{E}^{\frac{1}{2}}_{N}(f^{\rho,n})\mathcal{D}^{\frac{1}{2}}_{N}(w^{n-1})+\mathcal{D}^{\frac{1}{2}}_{N}(f^{\rho,n})\mathcal{E}^{\frac{1}{2}}_{N}(w^{n-1})\big{)}\mathcal{D}^{\frac{1}{2}}_{N}(w^{n})
\displaystyle\lesssim ηρ𝒟N(wn)+η1ρN(fρ,n1)N(fρ,n)𝒟N(wn1)+η1ρN(fρ,n1)𝒟N(fρ,n)N(wn1),\displaystyle\eta\rho\mathcal{D}_{N}(w^{n})+\eta^{-1}\rho\mathcal{E}_{N}(f^{\rho,n-1})\mathcal{E}_{N}(f^{\rho,n})\mathcal{D}_{N}(w^{n-1})+\eta^{-1}\rho\mathcal{E}_{N}(f^{\rho,n-1})\mathcal{D}_{N}(f^{\rho,n})\mathcal{E}_{N}(w^{n-1}),
|(αβΓ3ρ(wn1,ρ12μ12,fρ,n),W2l|α|,|β|αβwn)|\displaystyle|(\partial^{\alpha}_{\beta}\Gamma_{3}^{\rho}(w^{n-1},\rho^{\frac{1}{2}}\mu^{\frac{1}{2}},f^{\rho,n}),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}w^{n})|
\displaystyle\lesssim ρ3212N(wn1)(12N(fρ,n)+𝒟12N(fρ,n))𝒟12N(wn)\displaystyle\rho^{\frac{3}{2}}\mathcal{E}^{\frac{1}{2}}_{N}(w^{n-1})\big{(}\mathcal{E}^{\frac{1}{2}}_{N}(f^{\rho,n})+\mathcal{D}^{\frac{1}{2}}_{N}(f^{\rho,n})\big{)}\mathcal{D}^{\frac{1}{2}}_{N}(w^{n})
\displaystyle\lesssim ηρ𝒟N(wn)+η1ρ2N(wn1)(N(fρ,n)+𝒟N(fρ,n)),\displaystyle\eta\rho\mathcal{D}_{N}(w^{n})+\eta^{-1}\rho^{2}\mathcal{E}_{N}(w^{n-1})(\mathcal{E}_{N}(f^{\rho,n})+\mathcal{D}_{N}(f^{\rho,n})),
|(αβΓ3ρ(fρ,n1,ρ12μ12,wn1),W2l|α|,|β|αβwn)|\displaystyle|(\partial^{\alpha}_{\beta}\Gamma_{3}^{\rho}(f^{\rho,n-1},\rho^{\frac{1}{2}}\mu^{\frac{1}{2}},w^{n-1}),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}w^{n})|
\displaystyle\lesssim ρ3212N(fρ,n1)(𝒟12N(wn1)+12N(wn1))𝒟12N(wn)\displaystyle\rho^{\frac{3}{2}}\mathcal{E}^{\frac{1}{2}}_{N}(f^{\rho,n-1})\big{(}\mathcal{D}^{\frac{1}{2}}_{N}(w^{n-1})+\mathcal{E}^{\frac{1}{2}}_{N}(w^{n-1})\big{)}\mathcal{D}^{\frac{1}{2}}_{N}(w^{n})
\displaystyle\lesssim ηρ𝒟N(wn)+η1ρ2N(fρ,n1)(N(wn1)+𝒟N(wn1)).\displaystyle\eta\rho\mathcal{D}_{N}(w^{n})+\eta^{-1}\rho^{2}\mathcal{E}_{N}(f^{\rho,n-1})(\mathcal{E}_{N}(w^{n-1})+\mathcal{D}_{N}(w^{n-1})).

Now let us deal with the inner product involving ρ\mathcal{L}^{\rho} on the left-hand side of (6.14). Since 0<ρρ~1ρ1ρ00<\rho\leq\tilde{\rho}_{1}\leq\rho_{1}\leq\rho_{0}, we can apply Theorem 5.2. As the same as (6.6) and (6.7), it holds that

(αρwn,W2l|α|,0αwn)λ04ραwnL2xsl|α|,0+γ/22CρN(wn),\displaystyle(\partial^{\alpha}\mathcal{L}^{\rho}w^{n},W_{2l_{|\alpha|,0}}\partial^{\alpha}w^{n})\geq\frac{\lambda_{0}}{4}\rho\|\partial^{\alpha}w^{n}\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,0}+\gamma/2}}^{2}-C\rho\mathcal{E}_{N}(w^{n}),
(αβρwn,W2l|α|,|β|αβwn)λ08ραβwnL2xsl|α|,|β|+γ/22CρN(wn)Cρβ1<βαβ1wnL2xsl|α|,|β|+γ/22.\displaystyle(\partial^{\alpha}_{\beta}\mathcal{L}^{\rho}w^{n},W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}w^{n})\geq\frac{\lambda_{0}}{8}\rho\|\partial^{\alpha}_{\beta}w^{n}\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}-C\rho\mathcal{E}_{N}(w^{n})-C\rho\sum_{\beta_{1}<\beta}\|\partial^{\alpha}_{\beta_{1}}w^{n}\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}.

Therefore as in the proof of Proposition 6.2 making a combination of the energy inequality of order |β|=0,1,,N|\beta|=0,1,\cdots,N, using the fact ρ1\rho\leq 1, we get

ddtk=0NCk|α|Nk|β|=kαβwn2L2xL2l|α|,|β|+λ016ρ𝒟N(wn)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\sum_{k=0}^{N}C_{k}\sum_{|\alpha|\leq N-k}\sum_{|\beta|=k}\|\partial^{\alpha}_{\beta}w^{n}\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}}}+\frac{\lambda_{0}}{16}\rho\mathcal{D}_{N}(w^{n})
\displaystyle\leq C(η+ρ+ρ1212N(fρ,n)+N(fρ,n))ρ𝒟N(wn)+C(1+ρ𝒟N(fρ,n))N(wn)\displaystyle C\big{(}\eta+\rho+\rho^{-\frac{1}{2}}\mathcal{E}^{\frac{1}{2}}_{N}(f^{\rho,n})+\mathcal{E}_{N}(f^{\rho,n})\big{)}\rho\mathcal{D}_{N}(w^{n})+C\big{(}1+\rho\mathcal{D}_{N}(f^{\rho,n})\big{)}\mathcal{E}_{N}(w^{n})
+C(η1ρN(fρ,n1)N(fρ,n)+η1ρ2N(fρ,n1))𝒟N(wn1)\displaystyle+C\big{(}\eta^{-1}\rho\mathcal{E}_{N}(f^{\rho,n-1})\mathcal{E}_{N}(f^{\rho,n})+\eta^{-1}\rho^{2}\mathcal{E}_{N}(f^{\rho,n-1})\big{)}\mathcal{D}_{N}(w^{n-1})
+Cη1(𝒟N(fρ,n)+ρ+ρN(fρ,n)𝒟N(fρ,n)+ρN(fρ,n1)𝒟N(fρ,n)\displaystyle+C\eta^{-1}\big{(}\mathcal{D}_{N}(f^{\rho,n})+\rho+\rho\mathcal{E}_{N}(f^{\rho,n})\mathcal{D}_{N}(f^{\rho,n})+\rho\mathcal{E}_{N}(f^{\rho,n-1})\mathcal{D}_{N}(f^{\rho,n})
+ρ2N(fρ,n)+ρ2N(fρ,n1))N(wn1),\displaystyle\quad\quad\quad\quad+\rho^{2}\mathcal{E}_{N}(f^{\rho,n})+\rho^{2}\mathcal{E}_{N}(f^{\rho,n-1})\big{)}\mathcal{E}_{N}(w^{n-1}),

where CC is a universal constant. Let us take η\eta such that Cη=λ0128C\eta=\frac{\lambda_{0}}{128}. Suppose ρ,δ\rho,\delta verify

Cρλ0128,C2C~δ(λ0128)2,\displaystyle C\rho\leq\frac{\lambda_{0}}{128},\quad C^{2}\tilde{C}\delta\leq(\frac{\lambda_{0}}{128})^{2}, (6.15)

then by (6.11) there holds Cρ1212N(fρ,n)λ0128,CN(fρ,n)λ0128.C\rho^{-\frac{1}{2}}\mathcal{E}^{\frac{1}{2}}_{N}(f^{\rho,n})\leq\frac{\lambda_{0}}{128},C\mathcal{E}_{N}(f^{\rho,n})\leq\frac{\lambda_{0}}{128}. By these smallness conditions on ρ,δ\rho,\delta and the choice of η\eta, we have

ddtk=0NCk|α|Nk|β|=kαβwn2L2xL2l|α|,|β|+λ032ρ𝒟N(wn)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\sum_{k=0}^{N}C_{k}\sum_{|\alpha|\leq N-k}\sum_{|\beta|=k}\|\partial^{\alpha}_{\beta}w^{n}\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}}}+\frac{\lambda_{0}}{32}\rho\mathcal{D}_{N}(w^{n})
\displaystyle\leq C(1+ρ𝒟N(fρ,n))N(wn)+C(ρ+𝒟N(fρ,n))N(wn1)+Cρ2N(fρ,n1)𝒟N(wn1),\displaystyle C(1+\rho\mathcal{D}_{N}(f^{\rho,n}))\mathcal{E}_{N}(w^{n})+C(\rho+\mathcal{D}_{N}(f^{\rho,n}))\mathcal{E}_{N}(w^{n-1})+C\rho^{2}\mathcal{E}_{N}(f^{\rho,n-1})\mathcal{D}_{N}(w^{n-1}),

where we use sup0t1,n0N(fρ,n(t))ρ\sup_{0\leq t\leq 1,n\geq 0}\mathcal{E}_{N}(f^{\rho,n}(t))\lesssim\rho and ρ1\rho\leq 1. Recalling (6.9), we have

ddt~N(wn)+λ032ρ𝒟N(wn)C(1+𝒟N(fρ,n))(~N(wn)+~N(wn1))+Cρ2N(fρ,n1)𝒟N(wn1).\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\tilde{\mathcal{E}}_{N}(w^{n})+\frac{\lambda_{0}}{32}\rho\mathcal{D}_{N}(w^{n})\leq C(1+\mathcal{D}_{N}(f^{\rho,n}))\big{(}\tilde{\mathcal{E}}_{N}(w^{n})+\tilde{\mathcal{E}}_{N}(w^{n-1})\big{)}+C\rho^{2}\mathcal{E}_{N}(f^{\rho,n-1})\mathcal{D}_{N}(w^{n-1}).

For simplicity, let us define yn(t)\colonequals~N(wn(t)),xn(t)\colonequals𝒟N(wn(t)),an(t)\colonequals1+𝒟N(fρ,n(t))y^{n}(t)\colonequals\tilde{\mathcal{E}}_{N}(w^{n}(t)),x^{n}(t)\colonequals\mathcal{D}_{N}(w^{n}(t)),a^{n}(t)\colonequals 1+\mathcal{D}_{N}(f^{\rho,n}(t)), then the above inequality is

ddtyn+λ032ρxnCan(yn+yn1)+Cρ2N(fρ,n1)xn1.\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}y^{n}+\frac{\lambda_{0}}{32}\rho x^{n}\leq Ca^{n}\big{(}y^{n}+y^{n-1}\big{)}+C\rho^{2}\mathcal{E}_{N}(f^{\rho,n-1})x^{n-1}.

Let gn(t)\colonequalsexp(C0tan(τ)dτ)g^{n}(t)\colonequals\exp(-C\int_{0}^{t}a^{n}(\tau)\mathrm{d}\tau), then ddtgn(t)\colonequalsCan(t)gn(t)\frac{\mathrm{d}}{\mathrm{d}t}g^{n}(t)\colonequals-Ca^{n}(t)g^{n}(t) and thus

ddt(gnyn)+λ032ρgnxnCangnyn1+Cρ2N(fρ,n1)gnxn1.\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}(g^{n}y^{n})+\frac{\lambda_{0}}{32}\rho g^{n}x^{n}\leq Ca^{n}g^{n}y^{n-1}+C\rho^{2}\mathcal{E}_{N}(f^{\rho,n-1})g^{n}x^{n-1}.

When n1n\geq 1, recall that yn(0)=0y^{n}(0)=0 and thus

gn(t)yn(t)+λ032ρ0tgnxndτC0tangnyn1dτ+Cρ20tN(fρ,n1)gnxn1dτ.\displaystyle g^{n}(t)y^{n}(t)+\frac{\lambda_{0}}{32}\rho\int_{0}^{t}g^{n}x^{n}\mathrm{d}\tau\leq C\int_{0}^{t}a^{n}g^{n}y^{n-1}\mathrm{d}\tau+C\rho^{2}\int_{0}^{t}\mathcal{E}_{N}(f^{\rho,n-1})g^{n}x^{n-1}\mathrm{d}\tau.

Note that 01an(τ)dτ1+C~δ1\int_{0}^{1}a^{n}(\tau)\mathrm{d}\tau\leq 1+\tilde{C}\delta\lesssim 1 by (6.11), then 1gn(t)11\lesssim g^{n}(t)\leq 1 for any 0t10\leq t\leq 1. Then with a different constant CC, we get for any 0t10\leq t\leq 1,

yn(t)+λ032ρ0txndτC0tanyn1dτ+Cρ20tN(fρ,n1)xn1dτ.\displaystyle y^{n}(t)+\frac{\lambda_{0}}{32}\rho\int_{0}^{t}x^{n}\mathrm{d}\tau\leq C\int_{0}^{t}a^{n}y^{n-1}\mathrm{d}\tau+C\rho^{2}\int_{0}^{t}\mathcal{E}_{N}(f^{\rho,n-1})x^{n-1}\mathrm{d}\tau.

With a different CC, we get for any 0t10\leq t\leq 1,

sup0τtyn(τ)+λ032ρ0txndτC0tandτsup0τtyn1(τ)+Cρ20tN(fρ,n1)xn1dτ.\displaystyle\sup_{0\leq\tau\leq t}y^{n}(\tau)+\frac{\lambda_{0}}{32}\rho\int_{0}^{t}x^{n}\mathrm{d}\tau\leq C\int_{0}^{t}a^{n}\mathrm{d}\tau\sup_{0\leq\tau\leq t}y^{n-1}(\tau)+C\rho^{2}\int_{0}^{t}\mathcal{E}_{N}(f^{\rho,n-1})x^{n-1}\mathrm{d}\tau.

If δ\delta is small enough such that

CC~δλ064,\displaystyle C\tilde{C}\delta\leq\frac{\lambda_{0}}{64}, (6.16)

then by (6.11) there holds Cρsup0t1N(fρ,n(t))CC~δρ2λ064,C\rho\sup_{0\leq t\leq 1}\mathcal{E}_{N}(f^{\rho,n}(t))\leq C\tilde{C}\delta\rho^{2}\leq\frac{\lambda_{0}}{64}, which gives

sup0τtyn(τ)+λ032ρ0txndτC0tandτsup0τtyn1(τ)+λ064ρ0txn1dτ.\displaystyle\sup_{0\leq\tau\leq t}y^{n}(\tau)+\frac{\lambda_{0}}{32}\rho\int_{0}^{t}x^{n}\mathrm{d}\tau\leq C\int_{0}^{t}a^{n}\mathrm{d}\tau\sup_{0\leq\tau\leq t}y^{n-1}(\tau)+\frac{\lambda_{0}}{64}\rho\int_{0}^{t}x^{n-1}\mathrm{d}\tau.

Suppose t,δt,\delta are small enough such that

Ct14,CC~δ14,\displaystyle Ct\leq\frac{1}{4},\quad C\tilde{C}\delta\leq\frac{1}{4}, (6.17)

then by (6.11) there holds

C0tandτ=C0t(1+𝒟N(fρ,n(τ)))dτC(t+C~δ)12.\displaystyle C\int_{0}^{t}a^{n}\mathrm{d}\tau=C\int_{0}^{t}\big{(}1+\mathcal{D}_{N}(f^{\rho,n}(\tau))\big{)}\mathrm{d}\tau\leq C(t+\tilde{C}\delta)\leq\frac{1}{2}.

Let T=14CT^{*}=\frac{1}{4C}, we get

sup0τTyn(τ)+λ032ρ0Txndτ12(sup0τTyn1(τ)+λ032ρ0Txn1dτ).\displaystyle\sup_{0\leq\tau\leq T^{*}}y^{n}(\tau)+\frac{\lambda_{0}}{32}\rho\int_{0}^{T^{*}}x^{n}\mathrm{d}\tau\leq\frac{1}{2}\bigg{(}\sup_{0\leq\tau\leq T^{*}}y^{n-1}(\tau)+\frac{\lambda_{0}}{32}\rho\int_{0}^{T^{*}}x^{n-1}\mathrm{d}\tau\bigg{)}.

Note that the above inequality is valid for all n1n\geq 1. As a result, we get for all n1n\geq 1,

sup0τTyn(τ)+λ032ρ0Txndτ12n(sup0τTy0(τ)+λ032ρ0Tx0dτ).\displaystyle\sup_{0\leq\tau\leq T^{*}}y^{n}(\tau)+\frac{\lambda_{0}}{32}\rho\int_{0}^{T^{*}}x^{n}\mathrm{d}\tau\leq\frac{1}{2^{n}}(\sup_{0\leq\tau\leq T^{*}}y^{0}(\tau)+\frac{\lambda_{0}}{32}\rho\int_{0}^{T^{*}}x^{0}\mathrm{d}\tau).

Note that w0=fρ,1fρ,0=fρ,1w^{0}=f^{\rho,1}-f^{\rho,0}=f^{\rho,1}. By (6.11), it holds that

y0=~N(w0)=~N(fρ,1)N(fρ,1)δρ,\displaystyle y^{0}=\tilde{\mathcal{E}}_{N}(w^{0})=\tilde{\mathcal{E}}_{N}(f^{\rho,1})\lesssim\mathcal{E}_{N}(f^{\rho,1})\lesssim\delta\rho,
ρ0Tx0dτ=ρ0T𝒟N(w0)dτ=ρ0T𝒟N(fρ,1)dτδρ.\displaystyle\rho\int_{0}^{T^{*}}x^{0}\mathrm{d}\tau=\rho\int_{0}^{T^{*}}\mathcal{D}_{N}(w^{0})\mathrm{d}\tau=\rho\int_{0}^{T^{*}}\mathcal{D}_{N}(f^{\rho,1})\mathrm{d}\tau\lesssim\delta\rho.

Recalling (6.9) and yn=~N(wn)=~N(fρ,n+1fρ,n)y^{n}=\tilde{\mathcal{E}}_{N}(w^{n})=\tilde{\mathcal{E}}_{N}(f^{\rho,n+1}-f^{\rho,n}), we arrive at

sup0τTN(fρ,n+1(τ)fρ,n(τ))sup0τTyn(τ)+λ032ρ0TxndτC2nδρ,\displaystyle\sup_{0\leq\tau\leq T^{*}}\mathcal{E}_{N}(f^{\rho,n+1}(\tau)-f^{\rho,n}(\tau))\leq\sup_{0\leq\tau\leq T^{*}}y^{n}(\tau)+\frac{\lambda_{0}}{32}\rho\int_{0}^{T^{*}}x^{n}\mathrm{d}\tau\leq\frac{C}{2^{n}}\delta\rho,

and so {fρ,n}n0\{f^{\rho,n}\}_{n\geq 0} is a Cauchy sequence in L([0,T];N)L^{\infty}([0,T^{*}];\mathcal{E}_{N}). The sequence {fρ,n}n0\{f^{\rho,n}\}_{n\geq 0} has a limit fρL([0,T];N)f^{\rho}\in L^{\infty}([0,T^{*}];\mathcal{E}_{N}) which is the solution of the Cauchy problem (1.20) verifying (6.10) thanks to (6.11) and (6.12). As for uniqueness, see the proof of Theorem 1.1 at the end of Section 7. Let CC be the largest constant in (6.15), (6.16) and (6.17), we set

ρ~2\colonequalsλ0128C,δ~2\colonequalsmin{1C2C~(λ0128)2,λ064CC~,14CC~}.\displaystyle\tilde{\rho}_{2}\colonequals\frac{\lambda_{0}}{128C},\quad\tilde{\delta}_{2}\colonequals\min\{\frac{1}{C^{2}\tilde{C}}(\frac{\lambda_{0}}{128})^{2},\frac{\lambda_{0}}{64C\tilde{C}},\frac{1}{4C\tilde{C}}\}.

Finally, set ρ2\colonequalsmin{ρ~1,ρ~2},δ1\colonequalsmin{δ~1,δ~2}\rho_{2}\colonequals\min\{\tilde{\rho}_{1},\tilde{\rho}_{2}\},\delta_{1}\colonequals\min\{\tilde{\delta}_{1},\tilde{\delta}_{2}\}. Then if 0<ρρ20<\rho\leq\rho_{2} and 0<δδ10<\delta\leq\delta_{1}, all the conditions in the proof are fulfilled. ∎

7. A priori estimate and global well-posedness

This section is devoted to the proof to Theorem 1.1. We first provide the a priori estimate for the equation (1.20) in Theorem 7.1. From which together with the local existence result in Theorem 6.1, the global well-posedness result Theorem 1.1 is constructively established by a standard continuity argument at the end of this section.

7.1. A priori estimate of a general equation

This subsection is devoted to some a priori estimate for the following equation

tf+vxf+ρf=g,t>0,x𝕋3,v3,\displaystyle\partial_{t}f+v\cdot\nabla_{x}f+\mathcal{L}^{\rho}f=g,\quad t>0,x\in\mathbb{T}^{3},v\in\mathbb{R}^{3}, (7.1)

where gg is a given function.

Let ff be a solution to (7.1). Recalling the formula (2.13) of projection operator ρ\mathbb{P}_{\rho}, we denote

(ρf)(t,x,v)=(a(t,x)+b(t,x)v+c(t,x)|v|2)N,\displaystyle(\mathbb{P}_{\rho}f)(t,x,v)=(a(t,x)+b(t,x)\cdot v+c(t,x)|v|^{2})N, (7.2)

where N=NρN=N_{\rho} and

(a(t,x),b(t,x),c(t,x))\colonequals(af(t,x,)ρ,bf(t,x,)ρ,cf(t,x,)ρ).\displaystyle(a(t,x),b(t,x),c(t,x))\colonequals(a^{f(t,x,\cdot)}_{\rho},b^{f(t,x,\cdot)}_{\rho},c^{f(t,x,\cdot)}_{\rho}). (7.3)

Here we recall (2.15) for the definition of (af(t,x,)ρ,bf(t,x,)ρ,cf(t,x,)ρ)(a^{f(t,x,\cdot)}_{\rho},b^{f(t,x,\cdot)}_{\rho},c^{f(t,x,\cdot)}_{\rho}) for fixed t,xt,x. Note that in (7.3) we omit f,ρf,\rho. However, we should always keep in mind that (a,b,c)(a,b,c) are functions of (t,x)(t,x) originating from the solution ff to (7.1) for fixed ρ\rho.

We set f1\colonequalsρff_{1}\colonequals\mathbb{P}_{\rho}f and f2\colonequalsfρff_{2}\colonequals f-\mathbb{P}_{\rho}f. We first recall some basics of macro-micro decomposition. Plugging the macro-micro decomposition f=f1+f2f=f_{1}+f_{2} into (7.1) and using the fact ρf1=0\mathcal{L}^{\rho}f_{1}=0, we get

tf1+vxf1=tf2vxf2ρf2+g.\displaystyle\partial_{t}f_{1}+v\cdot\nabla_{x}f_{1}=-\partial_{t}f_{2}-v\cdot\nabla_{x}f_{2}-\mathcal{L}^{\rho}f_{2}+g. (7.4)

Recalling (7.2), the left-hand of (7.4) is

tf1+vxf1=(ta+i=13tbivi+tc|v|2)N+(i=13iavi+ijibjvivj+i=13icvi|v|2)N.\displaystyle\partial_{t}f_{1}+v\cdot\nabla_{x}f_{1}=(\partial_{t}a+\sum_{i=1}^{3}\partial_{t}b_{i}v_{i}+\partial_{t}c|v|^{2})N+(\sum_{i=1}^{3}\partial_{i}av_{i}+\sum_{i\neq j}\partial_{i}b_{j}v_{i}v_{j}+\sum_{i=1}^{3}\partial_{i}cv_{i}|v|^{2})N. (7.5)

Here i=xi\partial_{i}=\partial_{x_{i}} for i=1,2,3,b=(b1,b2,b3)i=1,2,3,b=(b_{1},b_{2},b_{3}) and v=(v1,v2,v3)v=(v_{1},v_{2},v_{3}). We order the 13 functions of vv on the right-hand side of (7.5) as

e1=N,e2=v1N,e3=v2N,e4=v3N,e5=v12N,e6=v22N,e7=v32N,\displaystyle e_{1}=N,\quad e_{2}=v_{1}N,\quad e_{3}=v_{2}N,\quad e_{4}=v_{3}N,\quad e_{5}=v_{1}^{2}N,\quad e_{6}=v_{2}^{2}N,\quad e_{7}=v_{3}^{2}N,
e8=v1v2N,e9=v2v3N,e10=v3v1N,e11=|v|2v1N,e12=|v|2v2N,e13=|v|2v3N.\displaystyle e_{8}=v_{1}v_{2}N,\quad e_{9}=v_{2}v_{3}N,\quad e_{10}=v_{3}v_{1}N,\quad e_{11}=|v|^{2}v_{1}N,\quad e_{12}=|v|^{2}v_{2}N,\quad e_{13}=|v|^{2}v_{3}N.

We emphasize that eie_{i} depends on ρ\rho through N=NρN=N_{\rho}. We also order the 13 functions of (t,x)(t,x) on the right-hand side of (7.5) as

x1\colonequalsta,x2\colonequalstb1+1a,x3\colonequalstb2+2a,x4\colonequalstb3+3a,\displaystyle x_{1}\colonequals\partial_{t}a,\quad x_{2}\colonequals\partial_{t}b_{1}+\partial_{1}a,\quad x_{3}\colonequals\partial_{t}b_{2}+\partial_{2}a,\quad x_{4}\colonequals\partial_{t}b_{3}+\partial_{3}a,
x5\colonequalstc+1b1,x6\colonequalstc+2b2,x7\colonequalstc+3b3,\displaystyle x_{5}\colonequals\partial_{t}c+\partial_{1}b_{1},\quad x_{6}\colonequals\partial_{t}c+\partial_{2}b_{2},\quad x_{7}\colonequals\partial_{t}c+\partial_{3}b_{3},
x8\colonequals1b2+2b1,x9\colonequals2b3+3b2,x10\colonequals3b1+1b3,\displaystyle x_{8}\colonequals\partial_{1}b_{2}+\partial_{2}b_{1},\quad x_{9}\colonequals\partial_{2}b_{3}+\partial_{3}b_{2},\quad x_{10}\colonequals\partial_{3}b_{1}+\partial_{1}b_{3},
x11\colonequals1c,x12\colonequals2c,x13\colonequals3c.\displaystyle x_{11}\colonequals\partial_{1}c,\quad x_{12}\colonequals\partial_{2}c,\quad x_{13}\colonequals\partial_{3}c.

Use 𝖳\mathsf{T} to denote vector transpose. For simplicity, we define two column vectors

E\colonequals(e1,,e13)𝖳,X\colonequals(x1,,x13)𝖳.\displaystyle E\colonequals(e_{1},\cdots,e_{13})^{\mathsf{T}},\quad X\colonequals(x_{1},\cdots,x_{13})^{\mathsf{T}}.

With these two column vectors, (7.5) becomes tf1+vxf1=E𝖳X\partial_{t}f_{1}+v\cdot\nabla_{x}f_{1}=E^{\mathsf{T}}X and thus (7.4) can be written as

E𝖳X=tf2vxf2ρf2+g.\displaystyle E^{\mathsf{T}}X=-\partial_{t}f_{2}-v\cdot\nabla_{x}f_{2}-\mathcal{L}^{\rho}f_{2}+g.

Taking inner product with EE in the space L2(3)L^{2}(\mathbb{R}^{3}), since XX depends on (t,x)(t,x) but not on vv, we get

E,E𝖳X=E,tf2vxf2ρf2+g.\displaystyle\langle E,E^{\mathsf{T}}\rangle X=\langle E,-\partial_{t}f_{2}-v\cdot\nabla_{x}f_{2}-\mathcal{L}^{\rho}f_{2}+g\rangle.

The 13×1313\times 13 matrix E,E𝖳=(ei,ej)1i13,1j13\langle E,E^{\mathsf{T}}\rangle=(\langle e_{i},e_{j}\rangle)_{1\leq i\leq 13,1\leq j\leq 13} is invertible for small ρ\rho and so

X=(E,E𝖳)1E,tf2vxf2ρf2+g.\displaystyle X=(\langle E,E^{\mathsf{T}}\rangle)^{-1}\langle E,-\partial_{t}f_{2}-v\cdot\nabla_{x}f_{2}-\mathcal{L}^{\rho}f_{2}+g\rangle.

For simplicity, let us define

Y=(Y(0),{Y(1)i}1i3,{Y(2)i}1i3,{Y(2)ij}1i<j3,{Y(3)i}1i3)𝖳\colonequals(E,E𝖳)1E,f2,\displaystyle Y=(Y^{(0)},\{Y^{(1)}_{i}\}_{1\leq i\leq 3},\{Y^{(2)}_{i}\}_{1\leq i\leq 3},\{Y^{(2)}_{ij}\}_{1\leq i<j\leq 3},\{Y^{(3)}_{i}\}_{1\leq i\leq 3})^{\mathsf{T}}\colonequals(\langle E,E^{\mathsf{T}}\rangle)^{-1}\langle E,f_{2}\rangle,
Z\colonequals(E,E𝖳)1E,vxf2ρf2+g.\displaystyle Z\colonequals(\langle E,E^{\mathsf{T}}\rangle)^{-1}\langle E,-v\cdot\nabla_{x}f_{2}-\mathcal{L}^{\rho}f_{2}+g\rangle.

Then we get the following system that consists of 13 macroscopic equations

X=tY+Z.\displaystyle X=-\partial_{t}Y+Z. (7.6)

Observing |E|μ14|E|\lesssim\mu^{\frac{1}{4}} and using (5.17), the functions Y,ZY,Z can be controlled as:

Lemma 7.1.

Let 0<ρ12(2π)320<\rho\leq\frac{1}{2}(2\pi)^{\frac{3}{2}}. It holds that

|α|N|αY|2L2xf22HNxsγ/2,|α|N1|αZ|2L2xf22HNxsγ/2+|α|N1|E,αg|2L2x.\displaystyle\sum_{|\alpha|\leq N}|\partial^{\alpha}Y|^{2}_{L^{2}_{x}}\lesssim\|f_{2}\|^{2}_{H^{N}_{x}\mathcal{L}^{s}_{\gamma/2}},\quad\sum_{|\alpha|\leq N-1}|\partial^{\alpha}Z|^{2}_{L^{2}_{x}}\lesssim\|f_{2}\|^{2}_{H^{N}_{x}\mathcal{L}^{s}_{\gamma/2}}+\sum_{|\alpha|\leq N-1}|\langle E,\partial^{\alpha}g\rangle|^{2}_{L^{2}_{x}}.

We now estimate the dynamics of (a,b,c)(a,b,c) in the following lemma.

Lemma 7.2.

Let 0<ρ11600<\rho\leq\frac{1}{160}. It holds that

|α|N1|αta|2L2xf2HNxsγ/22+|α|N1|E,αg|2L2x,\displaystyle\sum_{|\alpha|\leq N-1}|\partial^{\alpha}\partial_{t}a|^{2}_{L^{2}_{x}}\lesssim\|f_{2}\|_{H^{N}_{x}\mathcal{L}^{s}_{\gamma/2}}^{2}+\sum_{|\alpha|\leq N-1}|\langle E,\partial^{\alpha}g\rangle|^{2}_{L^{2}_{x}}, (7.7)
|α|N1|αt(b,c)|2L2x|x(a,b,c)|2HN1x+f2HNxsγ/22+|α|N1|E,αg|2L2x.\displaystyle\sum_{|\alpha|\leq N-1}|\partial^{\alpha}\partial_{t}(b,c)|^{2}_{L^{2}_{x}}\lesssim|\nabla_{x}(a,b,c)|^{2}_{H^{N-1}_{x}}+\|f_{2}\|_{H^{N}_{x}\mathcal{L}^{s}_{\gamma/2}}^{2}+\sum_{|\alpha|\leq N-1}|\langle E,\partial^{\alpha}g\rangle|^{2}_{L^{2}_{x}}. (7.8)
Proof.

Recall (2.15). In L2(3)L^{2}(\mathbb{R}^{3}), taking inner products between equation (7.1) and the five functions l1Nl2N|v|2,l3Nvj,l4N|v|2l2Nl_{1}N-l_{2}N|v|^{2},l_{3}Nv_{j},l_{4}N|v|^{2}-l_{2}N respectively, using ρf,N=ρf,Nvj=ρf,N|v|2=0,\langle\mathcal{L}^{\rho}f,N\rangle=\langle\mathcal{L}^{\rho}f,Nv_{j}\rangle=\langle\mathcal{L}^{\rho}f,N|v|^{2}\rangle=0, we get

ta+vxf,l1Nl2N|v|2=g,l1Nl2N|v|2,tb+vxf,l3Nv=g,l3Nv,\displaystyle\partial_{t}a+\langle v\cdot\nabla_{x}f,l_{1}N-l_{2}N|v|^{2}\rangle=\langle g,l_{1}N-l_{2}N|v|^{2}\rangle,\quad\partial_{t}b+\langle v\cdot\nabla_{x}f,l_{3}Nv\rangle=\langle g,l_{3}Nv\rangle,
tc+vxf,l4N|v|2l2N=g,l4N|v|2l2N.\displaystyle\partial_{t}c+\langle v\cdot\nabla_{x}f,l_{4}N|v|^{2}-l_{2}N\rangle=\langle g,l_{4}N|v|^{2}-l_{2}N\rangle.

Since viN,N=vivjN,vkN=vi|v|2N,|v|2N=0\langle v_{i}N,N\rangle=\langle v_{i}v_{j}N,v_{k}N\rangle=\langle v_{i}|v|^{2}N,|v|^{2}N\rangle=0 for i,j,k{1,2,3}i,j,k\in\{1,2,3\}. Recalling the definition of l1,l2l_{1},l_{2} in (2.14), it is straightforward to see

vxf1,l1Nl2N|v|2=0,vxf1,l3Nv=vx(aN+cN|v|2),l3Nv,\displaystyle\langle v\cdot\nabla_{x}f_{1},l_{1}N-l_{2}N|v|^{2}\rangle=0,\quad\langle v\cdot\nabla_{x}f_{1},l_{3}Nv\rangle=\langle v\cdot\nabla_{x}(aN+cN|v|^{2}),l_{3}Nv\rangle,
vxf1,l4N|v|2l2N=vx(bvN),l4N|v|2l2N,\displaystyle\langle v\cdot\nabla_{x}f_{1},l_{4}N|v|^{2}-l_{2}N\rangle=\langle v\cdot\nabla_{x}(b\cdot vN),l_{4}N|v|^{2}-l_{2}N\rangle,

which gives the local conservation laws

{ta=gvxf2,l1Nl2N|v|2,tb+l3Nv1,Nv1xa+l3N|v|2v1,Nv1xc=gvxf2,l3Nv,tc+Nv12,l4N|v|2l2Nxb=gvxf2,l4N|v|2l2N.\displaystyle\left\{\begin{aligned} &\partial_{t}a=\langle g-v\cdot\nabla_{x}f_{2},l_{1}N-l_{2}N|v|^{2}\rangle,\\ &\partial_{t}b+l_{3}\langle Nv_{1},Nv_{1}\rangle\nabla_{x}a+l_{3}\langle N|v|^{2}v_{1},Nv_{1}\rangle\nabla_{x}c=\langle g-v\cdot\nabla_{x}f_{2},l_{3}Nv\rangle,\\ &\partial_{t}c+\langle Nv_{1}^{2},l_{4}N|v|^{2}-l_{2}N\rangle\nabla_{x}\cdot b=\langle g-v\cdot\nabla_{x}f_{2},l_{4}N|v|^{2}-l_{2}N\rangle.\end{aligned}\right. (7.9)

By (8.6), 0li10\leq l_{i}\lesssim 1 for i=1,2,3,4i=1,2,3,4. Recalling Nμ12N\lesssim\mu^{\frac{1}{2}}, we get (7.7) and (7.8) directly from (7.9). ∎

Let us recall the temporal energy functional N(f)\mathcal{I}_{N}(f) in [15] as

N(f)\displaystyle\mathcal{I}_{N}(f) \colonequals\displaystyle\colonequals |α|N1(aα(f)+j=13bjα(f)+cα(f)),\displaystyle\sum_{|\alpha|\leq N-1}(\mathcal{I}^{a}_{\alpha}(f)+\sum_{j=1}^{3}\mathcal{I}^{b_{j}}_{\alpha}(f)+\mathcal{I}^{c}_{\alpha}(f)), (7.10)
aα(f)\displaystyle\mathcal{I}^{a}_{\alpha}(f) \colonequals\displaystyle\colonequals j=13jαbj,αaxj=13jαY(1)j,αax,\displaystyle-\sum_{j=1}^{3}\langle\partial_{j}\partial^{\alpha}b_{j},\partial^{\alpha}a\rangle_{x}-\sum_{j=1}^{3}\langle\partial_{j}\partial^{\alpha}Y^{(1)}_{j},\partial^{\alpha}a\rangle_{x},
bjα(f)\displaystyle\mathcal{I}^{b_{j}}_{\alpha}(f) \colonequals\displaystyle\colonequals ij,i=13jαY(2)iij,i=13iαY(2)ij2jαY(2)j,αbjx,\displaystyle\langle\sum_{i\neq j,i=1}^{3}\partial_{j}\partial^{\alpha}Y^{(2)}_{i}-\sum_{i\neq j,i=1}^{3}\partial_{i}\partial^{\alpha}Y^{(2)}_{ij}-2\partial_{j}\partial^{\alpha}Y^{(2)}_{j},\partial^{\alpha}b_{j}\rangle_{x},
cα(f)\displaystyle\mathcal{I}^{c}_{\alpha}(f) \colonequals\displaystyle\colonequals j=13jαY(3)j,αcx.\displaystyle-\sum_{j=1}^{3}\langle\partial_{j}\partial^{\alpha}Y^{(3)}_{j},\partial^{\alpha}c\rangle_{x}.

With Lemma 7.1 and Lemma 7.2, based on the macroscopic system (7.6), using integration by parts to balance derivative it is standard to derive

Lemma 7.3.

Let N1,T>0,0<ρ1160N\geq 1,T>0,0<\rho\leq\frac{1}{160}. Let fL([0,T];HNxL2)f\in L^{\infty}([0,T];H^{N}_{x}L^{2}) be a solution to (7.1), then there exists a universal constant C>0C>0 such that

ddtN(f)+12|x(a,b,c)|2HN1xC(f2HNxsγ/22+|α|N1|E,αg|2L2x),\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{I}_{N}(f)+\frac{1}{2}|\nabla_{x}(a,b,c)|^{2}_{H^{N-1}_{x}}\leq C(\|f_{2}\|_{H^{N}_{x}\mathcal{L}^{s}_{\gamma/2}}^{2}+\sum_{|\alpha|\leq N-1}|\langle E,\partial^{\alpha}g\rangle|^{2}_{L^{2}_{x}}), (7.11)

where N(f)\mathcal{I}_{N}(f) is defined in (7.10) and satisfying

|N(f)|Cf2HNxL2.\displaystyle|\mathcal{I}^{N}(f)|\leq C\|f\|^{2}_{H^{N}_{x}L^{2}}. (7.12)

For a rigorous proof of Lemma 7.3, one can refer to [15]. As a result of the Poincaré inequality and Lemma 7.3, we have

Lemma 7.4.

Let N1,T>0,0<ρ1160N\geq 1,T>0,0<\rho\leq\frac{1}{160}. Let fL([0,T];HNxL2)f\in L^{\infty}([0,T];H^{N}_{x}L^{2}) be a solution to (7.1) verifying

(1,v,|v|2)Nρf(t,x,v)dxdv=0,\displaystyle\int(1,v,|v|^{2})N_{\rho}f(t,x,v)\mathrm{d}x\mathrm{d}v=0, (7.13)

then there exist two universal constant C0,C>0C_{0},C>0 such that

ddtN(f)+C0|(a,b,c)|2HNxC(f2HNxsγ/22+|α|N1|E,αg|2L2x).\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{I}_{N}(f)+C_{0}|(a,b,c)|^{2}_{H^{N}_{x}}\leq C(\|f_{2}\|_{H^{N}_{x}\mathcal{L}^{s}_{\gamma/2}}^{2}+\sum_{|\alpha|\leq N-1}|\langle E,\partial^{\alpha}g\rangle|^{2}_{L^{2}_{x}}). (7.14)
Proof.

Recalling (7.3) and (2.15), by (7.13), we have (a,b,c)dx=0.\int(a,b,c)\mathrm{d}x=0. Then by Poincaré inequality on the torus 𝕋3\mathbb{T}^{3}, there is a universal constant CC such that |(a,b,c)|L2xC|(a,b,c)|L2x|(a,b,c)|_{L^{2}_{x}}\leq C|\nabla(a,b,c)|_{L^{2}_{x}} and thus there is a universal constant C0>0C_{0}>0 such that

12|x(a,b,c)|2HN1xC0|(a,b,c)|2HNx.\displaystyle\frac{1}{2}|\nabla_{x}(a,b,c)|^{2}_{H^{N-1}_{x}}\geq C_{0}|(a,b,c)|^{2}_{H^{N}_{x}}. (7.15)

Plugging (7.15) into (7.11), we get the desired result. ∎

We now give an interpolation result.

Lemma 7.5.

Let l0,m1l\geq 0,m\geq 1. For any η>0\eta>0, there exists a constant CηC_{\eta} such that

|f|Hml2η|β|=m|βf|sl2+Cη|f|m1,sl2.\displaystyle|f|_{H^{m}_{l}}^{2}\leq\eta\sum_{|\beta|=m}|\partial_{\beta}f|_{\mathcal{L}^{s}_{l}}^{2}+C_{\eta}|f|_{\mathcal{L}^{m-1,s}_{l}}^{2}.
Proof.

By interpolation and using (5.43), we get

|f|Hml2η|f|Hm+sl2+Cη|f|Hm1+sl2η|f|m,sl2+Cη|f|m1,sl2.\displaystyle|f|_{H^{m}_{l}}^{2}\lesssim\eta|f|_{H^{m+s}_{l}}^{2}+C_{\eta}|f|_{H^{m-1+s}_{l}}^{2}\lesssim\eta|f|_{\mathcal{L}^{m,s}_{l}}^{2}+C_{\eta}|f|_{\mathcal{L}^{m-1,s}_{l}}^{2}.

Recalling (1.52), there holds |f|m,sl2=|β|=m|βf|sl2+|f|m1,sl2|f|_{\mathcal{L}^{m,s}_{l}}^{2}=\sum_{|\beta|=m}|\partial_{\beta}f|_{\mathcal{L}^{s}_{l}}^{2}+|f|_{\mathcal{L}^{m-1,s}_{l}}^{2} which ends the proof. ∎

We derive the following a priori estimate for equation (7.1).

Proposition 7.1.

Let N1,T>0,0<ρρ0N\geq 1,T>0,0<\rho\leq\rho_{0}. Let fL([0,T];N)f\in L^{\infty}([0,T];\mathcal{E}_{N}) be a solution to (7.1) verifying (7.13), then for any 0tT0\leq t\leq T there holds

ddtΞρN(f)+λ016ρ𝒟N(f)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\Xi^{\rho}_{N}(f)+\frac{\lambda_{0}}{16}\rho\mathcal{D}_{N}(f) \displaystyle\lesssim |α|N|(αg,αf)|+|α|+|β|N|(αβg,W2l|α|,|β|αβf)|\displaystyle\sum_{|\alpha|\leq N}|(\partial^{\alpha}g,\partial^{\alpha}f)|+\sum_{|\alpha|+|\beta|\leq N}|(\partial^{\alpha}_{\beta}g,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|
+|α|N1|E,αg|2L2x,\displaystyle+\sum_{|\alpha|\leq N-1}|\langle E,\partial^{\alpha}g\rangle|^{2}_{L^{2}_{x}},

where

ΞρN(f)\colonequalsK2ρ2N+1N(f)+K1ρ2Nf2HNxL2+j=0NKjρ2j2N|α|Nj,|β|=jαβf2L2xL2l|α|,|β|,\displaystyle\Xi^{\rho}_{N}(f)\colonequals K_{-2}\rho^{-2N+1}\mathcal{I}_{N}(f)+K_{-1}\rho^{-2N}\|f\|^{2}_{H^{N}_{x}L^{2}}+\sum_{j=0}^{N}K_{j}\rho^{2j-2N}\sum_{|\alpha|\leq N-j,|\beta|=j}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}}},

for some universal constants Kj1,2jNK_{j}\geq 1,-2\leq j\leq N. Recalling (1.29), it holds that

N(f)ΞρN(f)ρ2NN(f).\displaystyle\mathcal{E}_{N}(f)\leq\Xi^{\rho}_{N}(f)\lesssim\rho^{-2N}\mathcal{E}_{N}(f). (7.17)
Proof.

Note that ΞρN(f)\Xi^{\rho}_{N}(f) is a combination of several functionals. We already have N(f)\mathcal{I}_{N}(f) from Lemma 7.4. That is, the solution ff verifies (7.14). We add the other functionals step by step.

Step 1: Pure xx-derivative without weight f2HNxL2\|f\|^{2}_{H^{N}_{x}L^{2}}. Applying α\partial^{\alpha} to equation (7.1), taking inner product with αf\partial^{\alpha}f, we have

12ddtαf2L2+(ραf,αf)=(αg,αf).\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\partial^{\alpha}f\|^{2}_{L^{2}}+(\mathcal{L}^{\rho}\partial^{\alpha}f,\partial^{\alpha}f)=(\partial^{\alpha}g,\partial^{\alpha}f).

Recalling f2=(𝕀ρ)ff_{2}=(\mathbb{I}-\mathbb{P}_{\rho})f and (αf)2=αf2(\partial^{\alpha}f)_{2}=\partial^{\alpha}f_{2}. By the lower bound in Theorem 2.2, taking sum over |α|N|\alpha|\leq N, we have

12ddtf2HNxL2+λ0ρf22HNxsγ/2|α|N|(αg,αf)|.\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|f\|^{2}_{H^{N}_{x}L^{2}}+\lambda_{0}\rho\|f_{2}\|^{2}_{H^{N}_{x}\mathcal{L}^{s}_{\gamma/2}}\leq\sum_{|\alpha|\leq N}|(\partial^{\alpha}g,\partial^{\alpha}f)|. (7.18)

Then (7.18)×2C1+(7.14)×ρ\eqref{solution-property-part-g}\times 2C_{1}+\eqref{solution-property-part2-full}\times\rho gives

ddt(ρN(f)+C1f2HNxL2)+(C0ρ|(a,b,c)|2HNx+2C1λ0ρf22HNxsγ/2)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}(\rho\mathcal{I}_{N}(f)+C_{1}\|f\|^{2}_{H^{N}_{x}L^{2}})+(C_{0}\rho|(a,b,c)|^{2}_{H^{N}_{x}}+2C_{1}\lambda_{0}\rho\|f_{2}\|^{2}_{H^{N}_{x}\mathcal{L}^{s}_{\gamma/2}})
\displaystyle\leq 2C1|α|N|(αg,αf)|+Cρ(f2HNxsγ/22+|α|N1|E,αg|2L2x).\displaystyle 2C_{1}\sum_{|\alpha|\leq N}|(\partial^{\alpha}g,\partial^{\alpha}f)|+C\rho(\|f_{2}\|_{H^{N}_{x}\mathcal{L}^{s}_{\gamma/2}}^{2}+\sum_{|\alpha|\leq N-1}|\langle E,\partial^{\alpha}g\rangle|^{2}_{L^{2}_{x}}).

Thanks to (7.12), we can choose C1C_{1} large enough such that

12C1f2HNxL2ρN(f)+C1f2HNxL232C1f2HNxL2,C1λ0C,C1λ0C0,\displaystyle\frac{1}{2}C_{1}\|f\|^{2}_{H^{N}_{x}L^{2}}\leq\rho\mathcal{I}_{N}(f)+C_{1}\|f\|^{2}_{H^{N}_{x}L^{2}}\leq\frac{3}{2}C_{1}\|f\|^{2}_{H^{N}_{x}L^{2}},\quad C_{1}\lambda_{0}\geq C,\quad C_{1}\lambda_{0}\geq C_{0},

and then

ddt(ρN(f)+C1f2HNxL2)+C0ρ(|(a,b,c)|2HNx+f22HNxsγ/2)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}(\rho\mathcal{I}_{N}(f)+C_{1}\|f\|^{2}_{H^{N}_{x}L^{2}})+C_{0}\rho(|(a,b,c)|^{2}_{H^{N}_{x}}+\|f_{2}\|^{2}_{H^{N}_{x}\mathcal{L}^{s}_{\gamma/2}})
\displaystyle\lesssim |α|N|(αg,αf)|+|α|N1|E,αg|2L2x.\displaystyle\sum_{|\alpha|\leq N}|(\partial^{\alpha}g,\partial^{\alpha}f)|+\sum_{|\alpha|\leq N-1}|\langle E,\partial^{\alpha}g\rangle|^{2}_{L^{2}_{x}}.

Step 2: Pure xx-derivative with weight |α|Nαf2L2xL2l|α|,0\sum_{|\alpha|\leq N}\|\partial^{\alpha}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,0}}}. Applying α\partial^{\alpha} to equation (7.1), taking inner product with W2l|α|,0αfW_{2l_{|\alpha|,0}}\partial^{\alpha}f, taking sum over |α|N|\alpha|\leq N, we have

12ddt|α|Nαf2L2xL2l|α|,0+|α|N(ραf,W2l|α|,0αf)=|α|N(αg,W2l|α|,0αf).\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\sum_{|\alpha|\leq N}\|\partial^{\alpha}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,0}}}+\sum_{|\alpha|\leq N}(\mathcal{L}^{\rho}\partial^{\alpha}f,W_{2l_{|\alpha|,0}}\partial^{\alpha}f)=\sum_{|\alpha|\leq N}(\partial^{\alpha}g,W_{2l_{|\alpha|,0}}\partial^{\alpha}f).

By (5.14), we have

ddt|α|Nαf2L2xL2l|α|,0+λ02ρ|α|Nαf2L2xsl|α|,0+γ/2Cρf2HNxL2γ/2+2|α|N|(αg,W2l|α|,0αf)|.\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\sum_{|\alpha|\leq N}\|\partial^{\alpha}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,0}}}+\frac{\lambda_{0}}{2}\rho\sum_{|\alpha|\leq N}\|\partial^{\alpha}f\|^{2}_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,0}+\gamma/2}}\leq C\rho\|f\|^{2}_{H^{N}_{x}L^{2}_{\gamma/2}}+2\sum_{|\alpha|\leq N}|(\partial^{\alpha}g,W_{2l_{|\alpha|,0}}\partial^{\alpha}f)|. (7.20)

Note that f2HNxL2γ/2C(|(a,b,c)|2HNx+f22HNxsγ/2)\|f\|^{2}_{H^{N}_{x}L^{2}_{\gamma/2}}\leq C(|(a,b,c)|^{2}_{H^{N}_{x}}+\|f_{2}\|^{2}_{H^{N}_{x}\mathcal{L}^{s}_{\gamma/2}}) for some universal constant CC. Taking C2C_{2} large enough such that C0C22C2C_{0}C_{2}\geq 2C^{2} and 12C0C2λ016,\frac{1}{2}C_{0}C_{2}\geq\frac{\lambda_{0}}{16}, the combination (7.1)×C2+(7.20)\eqref{essential-micro-macro-result-2}\times C_{2}+\eqref{H-Nx-L2l} gives

ddt(C2ρN(f)+C1C2f2HNxL2+|α|Nαf2L2xL2l|α|,0)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\bigg{(}C_{2}\rho\mathcal{I}_{N}(f)+C_{1}C_{2}\|f\|^{2}_{H^{N}_{x}L^{2}}+\sum_{|\alpha|\leq N}\|\partial^{\alpha}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,0}}}\bigg{)}
+λ016ρ(|(a,b,c)|2HNx+f22HNxsγ/2+|α|Nαf2L2xsl|α|,0+γ/2)\displaystyle+\frac{\lambda_{0}}{16}\rho\bigg{(}|(a,b,c)|^{2}_{H^{N}_{x}}+\|f_{2}\|^{2}_{H^{N}_{x}\mathcal{L}^{s}_{\gamma/2}}+\sum_{|\alpha|\leq N}\|\partial^{\alpha}f\|^{2}_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,0}+\gamma/2}}\bigg{)}
\displaystyle\lesssim |α|N|(αg,αf)|+|α|N|(αg,W2l|α|,0αf)|+|α|N1|E,αg|2L2x.\displaystyle\sum_{|\alpha|\leq N}|(\partial^{\alpha}g,\partial^{\alpha}f)|+\sum_{|\alpha|\leq N}|(\partial^{\alpha}g,W_{2l_{|\alpha|,0}}\partial^{\alpha}f)|+\sum_{|\alpha|\leq N-1}|\langle E,\partial^{\alpha}g\rangle|^{2}_{L^{2}_{x}}.

Step 3: Weighted mixed derivatives. We prove by mathematical induction that for any 0iN0\leq i\leq N, there exist some constants Kij1,2jiK^{i}_{j}\geq 1,-2\leq j\leq i, such that

ddt(Ki2ρ2i+1N(f)+Ki1ρ2if2HNxL2+j=0iKijρ2j2i|α|Nj,|β|=jαβf2L2xL2l|α|,|β|)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\bigg{(}K^{i}_{-2}\rho^{-2i+1}\mathcal{I}_{N}(f)+K^{i}_{-1}\rho^{-2i}\|f\|^{2}_{H^{N}_{x}L^{2}}+\sum_{j=0}^{i}K^{i}_{j}\rho^{2j-2i}\sum_{|\alpha|\leq N-j,|\beta|=j}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}}}\bigg{)} (7.22)
+λ016ρ(|(a,b,c)|2HNx+f22HNxsγ/2+j=0i|α|Nj,|β|=jαβf2L2xsl|α|,|β|+γ/2)\displaystyle+\frac{\lambda_{0}}{16}\rho\bigg{(}|(a,b,c)|^{2}_{H^{N}_{x}}+\|f_{2}\|^{2}_{H^{N}_{x}\mathcal{L}^{s}_{\gamma/2}}+\sum_{j=0}^{i}\sum_{|\alpha|\leq N-j,|\beta|=j}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}\bigg{)}
|α|N|(αg,αf)|+j=0i|α|Nj,|β|=j|(αβg,W2l|α|,|β|αβf)|+|α|N1|E,αg|2L2x.\displaystyle\lesssim\sum_{|\alpha|\leq N}|(\partial^{\alpha}g,\partial^{\alpha}f)|+\sum_{j=0}^{i}\sum_{|\alpha|\leq N-j,|\beta|=j}|(\partial^{\alpha}_{\beta}g,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|+\sum_{|\alpha|\leq N-1}|\langle E,\partial^{\alpha}g\rangle|^{2}_{L^{2}_{x}}.

Recalling (1.29), our final goal (7.1) is a result of (7.22) by taking i=Ni=N.

Note that (7.22) is true when i=0i=0. Indeed, by (7.1) we can take K02=C2,K01=C1C2,K00=1K^{0}_{-2}=C_{2},K^{0}_{-1}=C_{1}C_{2},K^{0}_{0}=1.

We prove (7.22) by induction on ii. Suppose (7.22) is true when i=ki=k for some 0kN10\leq k\leq N-1, we prove it is also valid when i=k+1i=k+1.

Take two indexes α\alpha and β\beta such that |α|N(k+1)|\alpha|\leq N-(k+1) and |β|=k+11|\beta|=k+1\geq 1. Set q=l|α|,|β|q=l_{|\alpha|,|\beta|}. Applying αβ\partial^{\alpha}_{\beta} to both sides of (7.1), we have

tαβf+vxαβf+αβρf=[vx,αβ]f+αβg.\displaystyle\partial_{t}\partial^{\alpha}_{\beta}f+v\cdot\nabla_{x}\partial^{\alpha}_{\beta}f+\partial^{\alpha}_{\beta}\mathcal{L}^{\rho}f=[v\cdot\nabla_{x},\partial^{\alpha}_{\beta}]f+\partial^{\alpha}_{\beta}g.

Taking inner product with W2l|α|,|β|αβfW_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f, one has

12ddtαβf2L2xL2l|α|,|β|+(αβρf,W2l|α|,|β|αβf)=([vx,αβ]f,W2l|α|,|β|αβf)+(αβg,W2l|α|,|β|αβf).\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}}}+(\partial^{\alpha}_{\beta}\mathcal{L}^{\rho}f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)=([v\cdot\nabla_{x},\partial^{\alpha}_{\beta}]f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)+(\partial^{\alpha}_{\beta}g,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f). (7.23)

By (5.2), since l|α|,|β|l|α|,|β|1l|α|,|β1|l_{|\alpha|,|\beta|}\leq l_{|\alpha|,|\beta|-1}\leq l_{|\alpha|,|\beta_{1}|} if β1<β\beta_{1}<\beta, we get

(αβρf,W2l|α|,|β|αβf)\displaystyle(\partial^{\alpha}_{\beta}\mathcal{L}^{\rho}f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)
\displaystyle\geq λ08ραβfL2xsl|α|,|β|+γ/22CραβfL2xL2l|α|,|β|+γ/22Cρβ1<βαβ1fL2xsl|α|,|β1|+γ/22.\displaystyle\frac{\lambda_{0}}{8}\rho\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}-C\rho\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}-C\rho\sum_{\beta_{1}<\beta}\|\partial^{\alpha}_{\beta_{1}}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta_{1}|}+\gamma/2}}^{2}.

By (6.1), we have

|([vx,αβ]f,W2l|α|,|β|αβf)|ηραβfL2xsl|α|,|β|+γ/22+1ηρj=13|βj|2α+ejβejfL2xsl|α|+1,|β|1+γ/22.\displaystyle|([v\cdot\nabla_{x},\partial^{\alpha}_{\beta}]f,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|\leq\eta\rho\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}+\frac{1}{\eta\rho}\sum_{j=1}^{3}|\beta^{j}|^{2}\|\partial^{\alpha+e^{j}}_{\beta-e^{j}}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|+1,|\beta|-1}+\gamma/2}}^{2}.

Plugging the previous two inequalities into (7.23), by taking η=λ016\eta=\frac{\lambda_{0}}{16}, taking sum over |α|N(k+1)|\alpha|\leq N-(k+1) and |β|=k+1|\beta|=k+1, we get

12ddt|α|N(k+1),|β|=k+1αβf2L2xL2l|α|,|β|+λ016ρ|α|N(k+1),|β|=k+1αβfL2xsl|α|,|β|+γ/22\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\sum_{|\alpha|\leq N-(k+1),|\beta|=k+1}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}}}+\frac{\lambda_{0}}{16}\rho\sum_{|\alpha|\leq N-(k+1),|\beta|=k+1}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}
\displaystyle\leq Cρ1j=0k|α|Nj,|β|=jαβf2L2xsl|α|,|β|+γ/2+Cρ|α|N(k+1),|β|=k+1αβf2L2xL2l|α|,|β|+γ/2\displaystyle C\rho^{-1}\sum_{j=0}^{k}\sum_{|\alpha|\leq N-j,|\beta|=j}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}+C\rho\sum_{|\alpha|\leq N-(k+1),|\beta|=k+1}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}+\gamma/2}}
+|α|N(k+1),|β|=k+1(αβg,W2l|α|,|β|αβf).\displaystyle+\sum_{|\alpha|\leq N-(k+1),|\beta|=k+1}(\partial^{\alpha}_{\beta}g,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f).

By the interpolation Lemma 7.5, we have

|α|N(k+1),|β|=k+1αβf2L2xL2l|α|,|β|+γ/2\displaystyle\sum_{|\alpha|\leq N-(k+1),|\beta|=k+1}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}+\gamma/2}} \displaystyle\leq η|α|N(k+1),|β|=k+1αβfL2xsl|α|,|β|+γ/22\displaystyle\eta\sum_{|\alpha|\leq N-(k+1),|\beta|=k+1}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}
+Cη|α|N(k+1),|β|kαβfL2xsl|α|,|β|+γ/22.\displaystyle+C_{\eta}\sum_{|\alpha|\leq N-(k+1),|\beta|\leq k}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}.

By taking η\eta small, we have

ddt|α|N(k+1),|β|=k+1αβf2L2xL2l|α|,|β|+λ016ρ|α|N(k+1),|β|=k+1αβfL2xsl|α|,|β|+γ/22\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\sum_{|\alpha|\leq N-(k+1),|\beta|=k+1}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}}}+\frac{\lambda_{0}}{16}\rho\sum_{|\alpha|\leq N-(k+1),|\beta|=k+1}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}^{2}
\displaystyle\leq Cρ1j=0k|α|Nj,|β|=jαβf2L2xsl|α|,|β|+γ/2+2|α|N(k+1),|β|=k+1(αβg,W2l|α|,|β|αβf).\displaystyle C\rho^{-1}\sum_{j=0}^{k}\sum_{|\alpha|\leq N-j,|\beta|=j}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}}+2\sum_{|\alpha|\leq N-(k+1),|\beta|=k+1}(\partial^{\alpha}_{\beta}g,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f).

By our induction assumption, (7.22) is true when i=ki=k. That is,

ddt(Kk2ρ2k+1N(f)+Kk1ρ2kf2HNxL2+j=0kKkjρ2j2k|α|Nj,|β|=jαβf2L2xL2l|α|,|β|)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}(K^{k}_{-2}\rho^{-2k+1}\mathcal{I}_{N}(f)+K^{k}_{-1}\rho^{-2k}\|f\|^{2}_{H^{N}_{x}L^{2}}+\sum_{j=0}^{k}K^{k}_{j}\rho^{2j-2k}\sum_{|\alpha|\leq N-j,|\beta|=j}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}}}) (7.25)
+λ016ρ(|(a,b,c)|2HNx+f22HNxsγ/2+j=0k|α|Nj,|β|=jαβf2L2xsl|α|,|β|+γ/2)\displaystyle+\frac{\lambda_{0}}{16}\rho(|(a,b,c)|^{2}_{H^{N}_{x}}+\|f_{2}\|^{2}_{H^{N}_{x}\mathcal{L}^{s}_{\gamma/2}}+\sum_{j=0}^{k}\sum_{|\alpha|\leq N-j,|\beta|=j}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}})
|α|N|(αg,αf)|+j=0k|α|Nj,|β|=j|(αβg,W2l|α|,|β|αβf)|+|α|N1|E,αg|2L2x.\displaystyle\lesssim\sum_{|\alpha|\leq N}|(\partial^{\alpha}g,\partial^{\alpha}f)|+\sum_{j=0}^{k}\sum_{|\alpha|\leq N-j,|\beta|=j}|(\partial^{\alpha}_{\beta}g,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|+\sum_{|\alpha|\leq N-1}|\langle E,\partial^{\alpha}g\rangle|^{2}_{L^{2}_{x}}.

Let MkM_{k} be large enough such that λ016Mk2C\frac{\lambda_{0}}{16}M_{k}\geq 2C and Mk2M_{k}\geq 2, then (7.25)×Mkρ2+(7.1)\eqref{essential-micro-macro-result-k}\times M_{k}\rho^{-2}+\eqref{essential-micro-macro-result-pure-2} gives

ddt(Kk+12ρ2k1N(f)+Kk+11ρ2(k+1)f2HNxL2+j=0k+1Kk+1jρ2j2(k+1)|α|Nj,|β|=jαβf2L2xL2l|α|,|β|)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}(K^{k+1}_{-2}\rho^{-2k-1}\mathcal{I}_{N}(f)+K^{k+1}_{-1}\rho^{-2(k+1)}\|f\|^{2}_{H^{N}_{x}L^{2}}+\sum_{j=0}^{k+1}K^{k+1}_{j}\rho^{2j-2(k+1)}\sum_{|\alpha|\leq N-j,|\beta|=j}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}L^{2}_{l_{|\alpha|,|\beta|}}})
+λ016ρ(|(a,b,c)|2HNx+f22HNxsγ/2+j=0k+1|α|Nj,|β|=jαβf2L2xsl|α|,|β|+γ/2)\displaystyle+\frac{\lambda_{0}}{16}\rho(|(a,b,c)|^{2}_{H^{N}_{x}}+\|f_{2}\|^{2}_{H^{N}_{x}\mathcal{L}^{s}_{\gamma/2}}+\sum_{j=0}^{k+1}\sum_{|\alpha|\leq N-j,|\beta|=j}\|\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{x}\mathcal{L}^{s}_{l_{|\alpha|,|\beta|}+\gamma/2}})
|α|N|(αg,αf)|+j=0k+1|α|Nj,|β|=j|(αβg,W2l|α|,|β|αβf)|+|α|N1|E,αg|2L2x.\displaystyle\lesssim\sum_{|\alpha|\leq N}|(\partial^{\alpha}g,\partial^{\alpha}f)|+\sum_{j=0}^{k+1}\sum_{|\alpha|\leq N-j,|\beta|=j}|(\partial^{\alpha}_{\beta}g,W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f)|+\sum_{|\alpha|\leq N-1}|\langle E,\partial^{\alpha}g\rangle|^{2}_{L^{2}_{x}}.

where Kk+1j=MkKkjK^{k+1}_{j}=M_{k}K^{k}_{j} for 2jk-2\leq j\leq k, Kk+1k+1=1K^{k+1}_{k+1}=1. Thus (7.22) is proved when i=k+1i=k+1 and so we finish the proof. ∎

7.2. A priori estimate of the quantum Boltzmann equation.

In this subsection, we derive the following a priori estimate for solutions to the Cauchy problem (1.20).

Theorem 7.1.

Let N9N\geq 9. Let 0<ρρ00<\rho\leq\rho_{0}. Fix T>0T>0. There exists a constant δ2>0\delta_{2}>0 which is independent of ρ\rho and TT, such that if a solution fρf^{\rho} to the Cauchy problem (1.20) satisfies

sup0tTN(fρ(t))δ2ρ,\displaystyle\sup_{0\leq t\leq T}\mathcal{E}_{N}(f^{\rho}(t))\leq\delta_{2}\rho,

then fρf^{\rho} verifies

sup0tTN(fρ(t))+ρ0T𝒟N(fρ(t))dtCρ2NN(f0),\displaystyle\sup_{0\leq t\leq T}\mathcal{E}_{N}(f^{\rho}(t))+\rho\int_{0}^{T}\mathcal{D}_{N}(f^{\rho}(t))\mathrm{d}t\leq C\rho^{-2N}\mathcal{E}_{N}(f_{0}), (7.26)

for some universal constant CC.

Proof.

Observe that fρf^{\rho} solves (7.1) with g=Γ2ρ(fρ,fρ)+Γ3ρ(fρ,fρ,fρ)g=\Gamma_{2}^{\rho}(f^{\rho},f^{\rho})+\Gamma_{3}^{\rho}(f^{\rho},f^{\rho},f^{\rho}). Note that (1.16) and (1.17) give

(1,v,|v|2)𝒩ρf(t,x,v)dxdv=(1,v,|v|2)𝒩ρf0(x,v)dxdv=0.\displaystyle\int(1,v,|v|^{2})\mathcal{N}_{\rho}f(t,x,v)\mathrm{d}x\mathrm{d}v=\int(1,v,|v|^{2})\mathcal{N}_{\rho}f_{0}(x,v)\mathrm{d}x\mathrm{d}v=0. (7.27)

Thanks to (7.27) and recalling 𝒩ρ=ρ12Nρ\mathcal{N}_{\rho}=\rho^{\frac{1}{2}}N_{\rho}, fρf^{\rho} verifies (7.13). Then we can apply Proposition 7.1 and the three terms on the righthand of (7.1) are

1\displaystyle\mathcal{I}_{1} \colonequals\displaystyle\colonequals |α|N|(αΓ2ρ(fρ,fρ)+αΓ3ρ(fρ,fρ,fρ),αfρ)|,\displaystyle\sum_{|\alpha|\leq N}|(\partial^{\alpha}\Gamma_{2}^{\rho}(f^{\rho},f^{\rho})+\partial^{\alpha}\Gamma_{3}^{\rho}(f^{\rho},f^{\rho},f^{\rho}),\partial^{\alpha}f^{\rho})|,
2\displaystyle\mathcal{I}_{2} \colonequals\displaystyle\colonequals |α|+|β|N|(αβΓ2ρ(fρ,fρ)+αβΓ3ρ(fρ,fρ,fρ),W2l|α|,|β|αβfρ)|,\displaystyle\sum_{|\alpha|+|\beta|\leq N}|(\partial^{\alpha}_{\beta}\Gamma_{2}^{\rho}(f^{\rho},f^{\rho})+\partial^{\alpha}_{\beta}\Gamma_{3}^{\rho}(f^{\rho},f^{\rho},f^{\rho}),W_{2l_{|\alpha|,|\beta|}}\partial^{\alpha}_{\beta}f^{\rho})|,
3\displaystyle\mathcal{I}_{3} \colonequals\displaystyle\colonequals |α|N1|αΓ2ρ(fρ,fρ)+αΓ3ρ(fρ,fρ,fρ),E|L2x2.\displaystyle\sum_{|\alpha|\leq N-1}|\langle\partial^{\alpha}\Gamma_{2}^{\rho}(f^{\rho},f^{\rho})+\partial^{\alpha}\Gamma_{3}^{\rho}(f^{\rho},f^{\rho},f^{\rho}),E\rangle|_{L^{2}_{x}}^{2}.

It is not necessary to estimate 1\mathcal{I}_{1}, since the upper bound of 2\mathcal{I}_{2} controls 1\mathcal{I}_{1} naturally. By (5.47) and Theorem 5.8, we have

2ρ1212N(fρ)𝒟N(fρ)+ρN(fρ)𝒟N(fρ).\displaystyle\mathcal{I}_{2}\lesssim\rho^{\frac{1}{2}}\mathcal{E}^{\frac{1}{2}}_{N}(f^{\rho})\mathcal{D}_{N}(f^{\rho})+\rho\mathcal{E}_{N}(f^{\rho})\mathcal{D}_{N}(f^{\rho}).

In view of the proof of (5.47) and Theorem 5.8, it is much easier to check

3ρN(fρ)𝒟N(fρ)+ρ22N(fρ)𝒟N(fρ).\displaystyle\mathcal{I}_{3}\lesssim\rho\mathcal{E}_{N}(f^{\rho})\mathcal{D}_{N}(f^{\rho})+\rho^{2}\mathcal{E}^{2}_{N}(f^{\rho})\mathcal{D}_{N}(f^{\rho}).

Therefore by (7.1), we get

ddtΞρN(fρ)+λ016ρ𝒟N(fρ)C(ρ1212N(fρ)+ρN(fρ)+ρ22N(fρ))𝒟N(fρ).\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\Xi^{\rho}_{N}(f^{\rho})+\frac{\lambda_{0}}{16}\rho\mathcal{D}_{N}(f^{\rho})\leq C\big{(}\rho^{\frac{1}{2}}\mathcal{E}^{\frac{1}{2}}_{N}(f^{\rho})+\rho\mathcal{E}_{N}(f^{\rho})+\rho^{2}\mathcal{E}^{2}_{N}(f^{\rho})\big{)}\mathcal{D}_{N}(f^{\rho}).

We take δ2\delta_{2} small enough such that ρ0δ2121,Cδ212λ096.\rho_{0}\delta_{2}^{\frac{1}{2}}\leq 1,C\delta_{2}^{\frac{1}{2}}\leq\frac{\lambda_{0}}{96}. If ρρ0,sup0tTN(fρ(t))δ2ρ\rho\leq\rho_{0},\sup_{0\leq t\leq T}\mathcal{E}_{N}(f^{\rho}(t))\leq\delta_{2}\rho, then

C(ρ1212N(fρ)+ρN(fρ)+ρ22N(fρ))C(δ212ρ+δ2ρ2+δ22ρ4)=Cδ212ρ(1+δ212ρ+δ232ρ3)λ032ρ\displaystyle C(\rho^{\frac{1}{2}}\mathcal{E}^{\frac{1}{2}}_{N}(f^{\rho})+\rho\mathcal{E}_{N}(f^{\rho})+\rho^{2}\mathcal{E}^{2}_{N}(f^{\rho}))\leq C(\delta_{2}^{\frac{1}{2}}\rho+\delta_{2}\rho^{2}+\delta_{2}^{2}\rho^{4})=C\delta_{2}^{\frac{1}{2}}\rho(1+\delta_{2}^{\frac{1}{2}}\rho+\delta_{2}^{\frac{3}{2}}\rho^{3})\leq\frac{\lambda_{0}}{32}\rho

and thus

ddtΞρN(fρ)+λ032ρ𝒟N(fρ)0.\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\Xi^{\rho}_{N}(f^{\rho})+\frac{\lambda_{0}}{32}\rho\mathcal{D}_{N}(f^{\rho})\leq 0. (7.28)

Integrating (7.28) w.r.t. time, we finish the proof by recalling (7.17). ∎

7.3. Global well-posedness.

With Theorem 6.1(local well-posedness) and Theorem 7.1(a priori estimate) in hand, we are ready to prove Theorem 1.1 for global well-posedness.

Proof of Theorem 1.1.

Recall the constants ρ2,δ1\rho_{2},\delta_{1} in Theorem 6.1. Recall the constant δ2\delta_{2} in Theorem 7.1. Take ρ=ρ2\rho_{*}=\rho_{2}. Note that ρ2ρ1ρ0\rho_{2}\leq\rho_{1}\leq\rho_{0} and so both Theorems are valid if 0<ρρ0<\rho\leq\rho_{*}. Denote still by CC the larger one of the two universal constants in (6.10) and (7.26). Take

δ=min{δ1C,δ2C2}.\displaystyle\delta_{*}=\min\{\frac{\delta_{1}}{C},\frac{\delta_{2}}{C^{2}}\}.

Now we assume N(f0)δρ2N+1\mathcal{E}_{N}(f_{0})\leq\delta_{*}\rho^{2N+1} and set to establish global existence and the estimate (1.33). Note that ρ1,C1\rho\leq 1,C\geq 1. First since N(f0)δρ2N+1\mathcal{E}_{N}(f_{0})\leq\delta_{*}\rho^{2N+1} and δρ2Nδ1\delta_{*}\rho^{2N}\leq\delta_{1}, we can apply Theorem 6.1(taking δ=δρ2N\delta=\delta_{*}\rho^{2N}) to conclude that the Cauchy problem (1.20) admits a unique solution fρL([0,T];N)f^{\rho}\in L^{\infty}([0,T^{*}];\mathcal{E}_{N}) verifying

sup0tTN(fρ(t))Cδρ2N+1δ2ρ.\displaystyle\sup_{0\leq t\leq T^{*}}\mathcal{E}_{N}(f^{\rho}(t))\leq C\delta_{*}\rho^{2N+1}\leq\delta_{2}\rho.

Then by Theorem 7.1(taking T=TT=T^{*}), the solution verifies

sup0tTN(fρ(t))+ρ0T𝒟N(fρ(t))dtCρ2NN(f0).\displaystyle\sup_{0\leq t\leq T^{*}}\mathcal{E}_{N}(f^{\rho}(t))+\rho\int_{0}^{T^{*}}\mathcal{D}_{N}(f^{\rho}(t))\mathrm{d}t\leq C\rho^{-2N}\mathcal{E}_{N}(f_{0}). (7.29)

Now we go to establish the following result. For any n1n\geq 1, the Cauchy problem (1.20) admits a solution fρL([0,nT];N)f^{\rho}\in L^{\infty}([0,nT^{*}];\mathcal{E}_{N}) verifying

sup0tnTN(fρ(t))+ρ0nT𝒟N(fρ(t))dtCρ2NN(f0).\displaystyle\sup_{0\leq t\leq nT^{*}}\mathcal{E}_{N}(f^{\rho}(t))+\rho\int_{0}^{nT^{*}}\mathcal{D}_{N}(f^{\rho}(t))\mathrm{d}t\leq C\rho^{-2N}\mathcal{E}_{N}(f_{0}). (7.30)

We will prove (7.30) by mathematical induction on nn. First, n=1n=1 is given by (7.29). Suppose (7.30) is valid for n=k1n=k\geq 1, we now prove it is also valid for n=k+1n=k+1. By the assumption, the Cauchy problem (1.20) admits a solution fρL([0,kT];N)f^{\rho}\in L^{\infty}([0,kT^{*}];\mathcal{E}_{N}) verifying

sup0tkTN(fρ(t))+ρ0kT𝒟N(fρ(t))dtCρ2NN(f0)Cδρ.\displaystyle\sup_{0\leq t\leq kT^{*}}\mathcal{E}_{N}(f^{\rho}(t))+\rho\int_{0}^{kT^{*}}\mathcal{D}_{N}(f^{\rho}(t))\mathrm{d}t\leq C\rho^{-2N}\mathcal{E}_{N}(f_{0})\leq C\delta_{*}\rho. (7.31)

In particular, N(fρ(kT))Cδρ\mathcal{E}_{N}(f^{\rho}(kT^{*}))\leq C\delta_{*}\rho and Cδδ1C\delta_{*}\leq\delta_{1}, we can apply Theorem 6.1(taking δ=Cδ\delta=C\delta_{*}) to conclude that the Cauchy problem (1.20) admits a unique solution fρL([kT,(k+1)T];N)f^{\rho}\in L^{\infty}([kT^{*},(k+1)T^{*}];\mathcal{E}_{N}) verifying

supkTt(k+1)TN(fρ(t))C2δρ.\displaystyle\sup_{kT^{*}\leq t\leq(k+1)T^{*}}\mathcal{E}_{N}(f^{\rho}(t))\leq C^{2}\delta_{*}\rho. (7.32)

By (7.31) and (7.32), the solution verifying

sup0t(k+1)TN(fρ(t))C2δρδ2ρ.\displaystyle\sup_{0\leq t\leq(k+1)T^{*}}\mathcal{E}_{N}(f^{\rho}(t))\leq C^{2}\delta_{*}\rho\leq\delta_{2}\rho.

Then by Theorem 7.1(taking T=(k+1)TT=(k+1)T^{*}), the solution verifies

sup0t(k+1)TN(fρ(t))+ρ0(k+1)T𝒟N(fρ(t))dtCρ2NN(f0).\displaystyle\sup_{0\leq t\leq(k+1)T^{*}}\mathcal{E}_{N}(f^{\rho}(t))+\rho\int_{0}^{(k+1)T^{*}}\mathcal{D}_{N}(f^{\rho}(t))\mathrm{d}t\leq C\rho^{-2N}\mathcal{E}_{N}(f_{0}).

That is, (7.30) is valid for n=k+1n=k+1. Sending nn\rightarrow\infty, we get a global solution fρL([0,);N)f^{\rho}\in L^{\infty}([0,\infty);\mathcal{E}_{N}) satisfying (1.33).

Note that positivity ρμ1ρμ+ρ12μ121ρμfρ(t)0\frac{\rho\mu}{1-\rho\mu}+\frac{\rho^{\frac{1}{2}}\mu^{\frac{1}{2}}}{1-\rho\mu}f^{\rho}(t)\geq 0 follows from Theorem 6.1.

In the last, we prove uniqueness. Uniqueness can be easily proved by using the arguments in the proof of Theorem 6.1. Indeed, suppose f,gf,g are two solutions to the Cauchy problem (1.20) satisfying (1.33). Let h=fgh=f-g, then hh solves

th+vxh+ρh=Γ2ρ(f,h)+Γ2ρ(h,g)+Γ3ρ(f,f,h)+Γ3ρ(f,h,g)+Γ3ρ(h,g,g),\displaystyle\partial_{t}h+v\cdot\nabla_{x}h+\mathcal{L}^{\rho}h=\Gamma_{2}^{\rho}(f,h)+\Gamma_{2}^{\rho}(h,g)+\Gamma_{3}^{\rho}(f,f,h)+\Gamma_{3}^{\rho}(f,h,g)+\Gamma_{3}^{\rho}(h,g,g),

with the initial condition h(0,x,v)0h(0,x,v)\equiv 0. By energy estimates like in the proof of Theorem 6.1, one will get

ddt~N(h)+λ032ρ𝒟N(h)C(1+𝒟N(f)+𝒟N(g))~N(h).\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\tilde{\mathcal{E}}_{N}(h)+\frac{\lambda_{0}}{32}\rho\mathcal{D}_{N}(h)\leq C(1+\mathcal{D}_{N}(f)+\mathcal{D}_{N}(g))\tilde{\mathcal{E}}_{N}(h).

Since f,gf,g are two solutions satisfying (1.33), the quantity 1+𝒟N(f)+𝒟N(g)1+\mathcal{D}_{N}(f)+\mathcal{D}_{N}(g) is integrable over [0,T][0,T] for any T>0T>0. Then by Grönwall’s inequality and using the initial condition h(0,x,v)0h(0,x,v)\equiv 0, one has h(t)=0h(t)=0 in N\mathcal{E}_{N} for any t0t\geq 0 and so f(t)=g(t)f(t)=g(t). Now the proof is complete. ∎

8. Appendix

Recalling (2.9) and (2.10) for the definition of {dρi}1i5\{d^{\rho}_{i}\}_{1\leq i\leq 5} and {eρi}1i5\{e^{\rho}_{i}\}_{1\leq i\leq 5}. Recalling (2.9), one has

{d0i}1i5={μ12,μ12v1,μ12v2,μ12v3,μ12(|v|23)}.\displaystyle\{d^{0}_{i}\}_{1\leq i\leq 5}=\{\mu^{\frac{1}{2}},\mu^{\frac{1}{2}}v_{1},\mu^{\frac{1}{2}}v_{2},\mu^{\frac{1}{2}}v_{3},\mu^{\frac{1}{2}}(|v|^{2}-3)\}.

For α>0\alpha>0, we recall

eα2|v|2dv=α3π32,eα2|v|2|v|2dv=α532π32,eα2|v|2|v|4dv=α7154π32.\displaystyle\int e^{-\alpha^{2}|v|^{2}}\mathrm{d}v=\alpha^{-3}\pi^{\frac{3}{2}},\quad\int e^{-\alpha^{2}|v|^{2}}|v|^{2}\mathrm{d}v=\alpha^{-5}\frac{3}{2}\pi^{\frac{3}{2}},\quad\int e^{-\alpha^{2}|v|^{2}}|v|^{4}\mathrm{d}v=\alpha^{-7}\frac{15}{4}\pi^{\frac{3}{2}}. (8.1)

From which, for i=2,3,4,i=2,3,4, it is easy to see

|d01|L22=μdv=1,|d0i|L22=13μ|v|2dv=1,|d05|L22=μ(|v|23)2dv=6.\displaystyle|d^{0}_{1}|_{L^{2}}^{2}=\int\mu\mathrm{d}v=1,\quad|d^{0}_{i}|_{L^{2}}^{2}=\frac{1}{3}\int\mu|v|^{2}\mathrm{d}v=1,\quad|d^{0}_{5}|_{L^{2}}^{2}=\int\mu(|v|^{2}-3)^{2}\mathrm{d}v=6. (8.2)

Recalling (2.10), the orthonormal basis {e0i}1i5\{e^{0}_{i}\}_{1\leq i\leq 5} for Null0\mathrm{Null}^{0} is

{e0i}1i5={μ12,μ12v1,μ12v2,μ12v3,16μ12(|v|23)}.\displaystyle\{e^{0}_{i}\}_{1\leq i\leq 5}=\{\mu^{\frac{1}{2}},\mu^{\frac{1}{2}}v_{1},\mu^{\frac{1}{2}}v_{2},\mu^{\frac{1}{2}}v_{3},\frac{1}{\sqrt{6}}\mu^{\frac{1}{2}}(|v|^{2}-3)\}.

Intuitively, when ρ\rho is small, we expect the orthogonal basis {dρi}1i5\{d^{\rho}_{i}\}_{1\leq i\leq 5} is close to {d0i}1i5\{d^{0}_{i}\}_{1\leq i\leq 5}, so is {eρi}1i5\{e^{\rho}_{i}\}_{1\leq i\leq 5} to {e0i}1i5\{e^{0}_{i}\}_{1\leq i\leq 5}. The following lemma reflects this expectation mathematically.

Lemma 8.1.

Let 0ρ11600\leq\rho\leq\frac{1}{160}, the following estimates are valid.

12|dρ1|L22,||dρ1|L21|43ρ,|eρ1e01|L253ρ.\displaystyle\frac{1}{2}\leq|d^{\rho}_{1}|_{L^{2}}\leq 2,\quad||d^{\rho}_{1}|_{L^{2}}-1|\leq\frac{4}{3}\rho,\quad|e^{\rho}_{1}-e^{0}_{1}|_{L^{2}}\leq\frac{5}{3}\rho. (8.3)
12|dρi|L22,||dρi|L21|43ρ,|eρie0i|L253ρ,2i4.\displaystyle\frac{1}{2}\leq|d^{\rho}_{i}|_{L^{2}}\leq 2,\quad||d^{\rho}_{i}|_{L^{2}}-1|\leq\frac{4}{3}\rho,\quad|e^{\rho}_{i}-e^{0}_{i}|_{L^{2}}\leq\frac{5}{3}\rho,\quad 2\leq i\leq 4. (8.4)
3|dρ5|L23,||dρ5|L26|160ρ,|eρ5e05|L21606ρ.\displaystyle\sqrt{3}\leq|d^{\rho}_{5}|_{L^{2}}\leq 3,\quad||d^{\rho}_{5}|_{L^{2}}-\sqrt{6}|\leq 160\rho,\quad|e^{\rho}_{5}-e^{0}_{5}|_{L^{2}}\leq\frac{160}{\sqrt{6}}\rho. (8.5)

Recall (2.12) and (2.14). As a byproduct, we have

0lρ,i1,i=1,2,3,4.\displaystyle 0\leq l_{\rho,i}\lesssim 1,\quad i=1,2,3,4. (8.6)
Proof.

If 0ρ12(2π)320\leq\rho\leq\frac{1}{2}(2\pi)^{\frac{3}{2}}, one has

121ρμ1.\displaystyle\frac{1}{2}\leq 1-\rho\mu\leq 1. (8.7)

Recall (2.1) and (2.9), we define

h(ρ)\colonequals|dρ1|L22=μ(1ρμ)2dv.\displaystyle h(\rho)\colonequals|d^{\rho}_{1}|_{L^{2}}^{2}=\int\frac{\mu}{(1-\rho\mu)^{2}}\mathrm{d}v.

Taking derivative w.r.t. ρ\rho, using (8.7) and |μ|L18|\mu|_{L^{\infty}}\leq\frac{1}{8}, recalling (8.2), we get

|h(ρ)|=2μ2(1ρμ)3dv2μdv=2.\displaystyle|h^{\prime}(\rho)|=2\int\frac{\mu^{2}}{(1-\rho\mu)^{3}}\mathrm{d}v\leq 2\int\mu\mathrm{d}v=2. (8.8)

Note that h(0)=1h(0)=1 by (8.2). If ρ14\rho\leq\frac{1}{4}, by mean value theorem,

|h(ρ)h(0)|2ρ1212h(ρ)3212|dρ1|L22.\displaystyle|h(\rho)-h(0)|\leq 2\rho\leq\frac{1}{2}\quad\Rightarrow\quad\frac{1}{2}\leq h(\rho)\leq\frac{3}{2}\quad\Rightarrow\quad\frac{1}{2}\leq|d^{\rho}_{1}|_{L^{2}}\leq 2. (8.9)

From which we get

||dρ1|L21|=||dρ1|L221||dρ1|L2+1=|h(ρ)h(0)||dρ1|L2+143ρ.\displaystyle||d^{\rho}_{1}|_{L^{2}}-1|=\frac{||d^{\rho}_{1}|_{L^{2}}^{2}-1|}{|d^{\rho}_{1}|_{L^{2}}+1}=\frac{|h(\rho)-h(0)|}{|d^{\rho}_{1}|_{L^{2}}+1}\leq\frac{4}{3}\rho. (8.10)

Recalling (2.9) and (2.10) for the definition of dρ1d^{\rho}_{1} and eρ1e^{\rho}_{1}, we have

eρ1e01=dρ1|dρ1|L2μ12=(1|dρ1|L2)dρ1|dρ1|L2+ρμ321ρμ.\displaystyle e^{\rho}_{1}-e^{0}_{1}=\frac{d^{\rho}_{1}}{|d^{\rho}_{1}|_{L^{2}}}-\mu^{\frac{1}{2}}=(1-|d^{\rho}_{1}|_{L^{2}})\frac{d^{\rho}_{1}}{|d^{\rho}_{1}|_{L^{2}}}+\frac{\rho\mu^{\frac{3}{2}}}{1-\rho\mu}.

Using (8.7), since |μ|L18|\mu|_{L^{\infty}}\leq\frac{1}{8}, it is easy to see |μ321ρμ|L2|μ1ρμ|L|μ12|L21413|\frac{\mu^{\frac{3}{2}}}{1-\rho\mu}|_{L^{2}}\leq|\frac{\mu}{1-\rho\mu}|_{L^{\infty}}|\mu^{\frac{1}{2}}|_{L^{2}}\leq\frac{1}{4}\leq\frac{1}{3}. From which together with (8.10), we get

|eρ1e01|L2|1|dρ1|L2|+ρ|μ321ρμ|L243ρ+13ρ=53ρ.\displaystyle|e^{\rho}_{1}-e^{0}_{1}|_{L^{2}}\leq|1-|d^{\rho}_{1}|_{L^{2}}|+\rho|\frac{\mu^{\frac{3}{2}}}{1-\rho\mu}|_{L^{2}}\leq\frac{4}{3}\rho+\frac{1}{3}\rho=\frac{5}{3}\rho. (8.11)

Putting together (8.9), (8.10) and (8.11), we get (8.3).

Fix 2i42\leq i\leq 4, let g(ρ)\colonequals|dρi|L22g(\rho)\colonequals|d^{\rho}_{i}|_{L^{2}}^{2} for ρ0\rho\geq 0. Note that g(ρ)g(\rho) is independent of 2i42\leq i\leq 4 and g(0)=1g(0)=1 by (8.2). Recalling the definition of dρid^{\rho}_{i} in (2.9), there holds

g(ρ)=μv12(1ρμ)2dv=13μ|v|2(1ρμ)2dv.\displaystyle g(\rho)=\int\frac{\mu v_{1}^{2}}{(1-\rho\mu)^{2}}\mathrm{d}v=\frac{1}{3}\int\frac{\mu|v|^{2}}{(1-\rho\mu)^{2}}\mathrm{d}v.

Taking derivative w.r.t. ρ\rho, using (8.7) and |μ|L18|\mu|_{L^{\infty}}\leq\frac{1}{8}, we get

|g(ρ)|=23μ2|v|2(1ρμ)3dv23μ|v|2dv=2.\displaystyle|g^{\prime}(\rho)|=\frac{2}{3}\int\frac{\mu^{2}|v|^{2}}{(1-\rho\mu)^{3}}\mathrm{d}v\leq\frac{2}{3}\int\mu|v|^{2}\mathrm{d}v=2. (8.12)

Recalling g(0)=1g(0)=1. When ρ1/4\rho\leq 1/4, by mean value theorem, we have

|g(ρ)g(0)|2ρ1212g(ρ)3212|dρi|L22.\displaystyle|g(\rho)-g(0)|\leq 2\rho\leq\frac{1}{2}\quad\Rightarrow\quad\frac{1}{2}\leq g(\rho)\leq\frac{3}{2}\quad\Rightarrow\quad\frac{1}{2}\leq|d^{\rho}_{i}|_{L^{2}}\leq 2. (8.13)

From which we get

||dρi|L21|=||dρi|L221||dρi|L2+1=|g(ρ)g(0)||dρi|L2+143ρ.\displaystyle||d^{\rho}_{i}|_{L^{2}}-1|=\frac{||d^{\rho}_{i}|_{L^{2}}^{2}-1|}{|d^{\rho}_{i}|_{L^{2}}+1}=\frac{|g(\rho)-g(0)|}{|d^{\rho}_{i}|_{L^{2}}+1}\leq\frac{4}{3}\rho. (8.14)

Recalling (2.9) and (2.10) for the definition of eρie^{\rho}_{i} and dρid^{\rho}_{i}, for 2i42\leq i\leq 4, we have

eρie0i=dρi|dρi|L2μ12=(1|dρi|L2)dρi|dρi|L2+ρμ32vi11ρμ.\displaystyle e^{\rho}_{i}-e^{0}_{i}=\frac{d^{\rho}_{i}}{|d^{\rho}_{i}|_{L^{2}}}-\mu^{\frac{1}{2}}=(1-|d^{\rho}_{i}|_{L^{2}})\frac{d^{\rho}_{i}}{|d^{\rho}_{i}|_{L^{2}}}+\frac{\rho\mu^{\frac{3}{2}}v_{i-1}}{1-\rho\mu}.

It is easy to check |μ32vi11ρμ|L2|μ1ρμ|L|μ12vi1|L213|\frac{\mu^{\frac{3}{2}}v_{i-1}}{1-\rho\mu}|_{L^{2}}\leq|\frac{\mu}{1-\rho\mu}|_{L^{\infty}}|\mu^{\frac{1}{2}}v_{i-1}|_{L^{2}}\leq\frac{1}{3}. From which together with (8.14), we have

|eρie0i|L2|1|dρi|L2|+ρ|μ32vi11ρμ|L243ρ+13ρ=53ρ.\displaystyle|e^{\rho}_{i}-e^{0}_{i}|_{L^{2}}\leq|1-|d^{\rho}_{i}|_{L^{2}}|+\rho|\frac{\mu^{\frac{3}{2}}v_{i-1}}{1-\rho\mu}|_{L^{2}}\leq\frac{4}{3}\rho+\frac{1}{3}\rho=\frac{5}{3}\rho. (8.15)

Putting together (8.13), (8.14) and (8.15), we get (8.4).

Let φ(ρ)\colonequalsCρ5,1=Nρ|v|2,Nρ|Nρ|2L2=3g(ρ)h1(ρ)\varphi(\rho)\colonequals C^{\rho}_{5,1}=\langle N_{\rho}|v|^{2},N_{\rho}\rangle|N_{\rho}|^{-2}_{L^{2}}=3g(\rho)h^{-1}(\rho). Recalling (8.8), (8.9), (8.12) and (8.13), we have

12h(ρ)32,|h(ρ)|2,12g(ρ)32,|g(ρ)|2.\displaystyle\frac{1}{2}\leq h(\rho)\leq\frac{3}{2},\quad|h^{\prime}(\rho)|\leq 2,\quad\frac{1}{2}\leq g(\rho)\leq\frac{3}{2},\quad|g^{\prime}(\rho)|\leq 2. (8.16)

Taking derivative w.r.t. ρ\rho and using (8.16), we get

|φ(ρ)|=|3h1(ρ)g(ρ)3g(ρ)h2(ρ)h(ρ)|60.\displaystyle|\varphi^{\prime}(\rho)|=|3h^{-1}(\rho)g^{\prime}(\rho)-3g(\rho)h^{-2}(\rho)h^{\prime}(\rho)|\leq 60.

Note that φ(0)=3\varphi(0)=3 by recalling g(0)=h(0)=1g(0)=h(0)=1. When |ρ|140|\rho|\leq\frac{1}{40}, by mean value theorem, we have

|φ(ρ)φ(0)|60ρ3232φ(ρ)=Cρ5,192.\displaystyle|\varphi(\rho)-\varphi(0)|\leq 60\rho\leq\frac{3}{2}\quad\Rightarrow\quad\frac{3}{2}\leq\varphi(\rho)=C^{\rho}_{5,1}\leq\frac{9}{2}. (8.17)

Next, recalling (2.9) and using |dρ1|2L2Cρ5,1=dρ1|v|2,dρ1|d^{\rho}_{1}|^{2}_{L^{2}}C^{\rho}_{5,1}=\langle d^{\rho}_{1}|v|^{2},d^{\rho}_{1}\rangle, we have

f(ρ)\colonequals|dρ5|2L2\displaystyle f(\rho)\colonequals|d^{\rho}_{5}|^{2}_{L^{2}} =\displaystyle= (dρ1|v|2Cρ5,1dρ1)2dv\displaystyle\int(d^{\rho}_{1}|v|^{2}-C^{\rho}_{5,1}d^{\rho}_{1})^{2}\mathrm{d}v
=\displaystyle= ((dρ1)2|v|4(dρ1)2(Cρ5,1)2)dv=μ|v|4(1ρμ)2dv9g2(ρ)h(ρ).\displaystyle\int\left((d^{\rho}_{1})^{2}|v|^{4}-(d^{\rho}_{1})^{2}(C^{\rho}_{5,1})^{2}\right)\mathrm{d}v=\int\frac{\mu|v|^{4}}{(1-\rho\mu)^{2}}\mathrm{d}v-\frac{9g^{2}(\rho)}{h(\rho)}.

Taking derivative w.r.t. ρ\rho, using (8.7) and |μ|L18|\mu|_{L^{\infty}}\leq\frac{1}{8} to get μ2|v|4(1ρμ)3dvμ|v|4dv=15,\int\frac{\mu^{2}|v|^{4}}{(1-\rho\mu)^{3}}\mathrm{d}v\leq\int\mu|v|^{4}\mathrm{d}v=15, recalling (8.16), we get

|f(ρ)|=|2μ2|v|4(1ρμ)3dv18g(ρ)g(ρ)h1(ρ)+9g2(ρ)h2(ρ)h(ρ)|480.\displaystyle|f^{\prime}(\rho)|=|2\int\frac{\mu^{2}|v|^{4}}{(1-\rho\mu)^{3}}\mathrm{d}v-18g(\rho)g^{\prime}(\rho)h^{-1}(\rho)+9g^{2}(\rho)h^{-2}(\rho)h^{\prime}(\rho)|\leq 480.

Note that f(0)=6f(0)=6 by (8.2). If ρ1160\rho\leq\frac{1}{160}, by mean value theorem, we have

|f(ρ)f(0)|480ρ33f(ρ)93|dρ5|3.\displaystyle|f(\rho)-f(0)|\leq 480\rho\leq 3\quad\Rightarrow\quad 3\leq f(\rho)\leq 9\quad\Rightarrow\quad\sqrt{3}\leq|d^{\rho}_{5}|\leq 3. (8.18)

From which we get

||dρ5|L26|=||dρ5|L226||dρ5|L2+6=|f(ρ)f(0)||dρ5|L2+6160ρ.\displaystyle||d^{\rho}_{5}|_{L^{2}}-\sqrt{6}|=\frac{||d^{\rho}_{5}|_{L^{2}}^{2}-6|}{|d^{\rho}_{5}|_{L^{2}}+\sqrt{6}}=\frac{|f(\rho)-f(0)|}{|d^{\rho}_{5}|_{L^{2}}+\sqrt{6}}\leq 160\rho. (8.19)

By (8.18) and (8.19), the first two inequalities in (8.5) are proved. Recalling (2.9) and (2.10) for the definition of eρ5e^{\rho}_{5} and dρ5d^{\rho}_{5}, we have

eρ5e05\displaystyle e^{\rho}_{5}-e^{0}_{5} =\displaystyle= dρ5|dρ5|L2d05|d05|L2=|d05|L2dρ5|dρ5|L2d05|d05|L2|dρ5|L2\displaystyle\frac{d^{\rho}_{5}}{|d^{\rho}_{5}|_{L^{2}}}-\frac{d^{0}_{5}}{|d^{0}_{5}|_{L^{2}}}=\frac{|d^{0}_{5}|_{L^{2}}d^{\rho}_{5}-|d^{\rho}_{5}|_{L^{2}}d^{0}_{5}}{|d^{0}_{5}|_{L^{2}}|d^{\rho}_{5}|_{L^{2}}}
=\displaystyle= (|d05|L2|dρ5|L2)dρ5+|dρ5|L2(dρ5d05)|d05|L2|dρ5|L2,\displaystyle\frac{(|d^{0}_{5}|_{L^{2}}-|d^{\rho}_{5}|_{L^{2}})d^{\rho}_{5}+|d^{\rho}_{5}|_{L^{2}}(d^{\rho}_{5}-d^{0}_{5})}{|d^{0}_{5}|_{L^{2}}|d^{\rho}_{5}|_{L^{2}}},

and thus

|eρ5e05|L2||d05|L2|dρ5|L2|+|dρ5d05|L2|d05|L22|dρ5d05|L2|d05|L2.\displaystyle|e^{\rho}_{5}-e^{0}_{5}|_{L^{2}}\leq\frac{||d^{0}_{5}|_{L^{2}}-|d^{\rho}_{5}|_{L^{2}}|+|d^{\rho}_{5}-d^{0}_{5}|_{L^{2}}}{|d^{0}_{5}|_{L^{2}}}\leq\frac{2|d^{\rho}_{5}-d^{0}_{5}|_{L^{2}}}{|d^{0}_{5}|_{L^{2}}}. (8.20)

Now it remains to consider |dρ5d05|L2|d^{\rho}_{5}-d^{0}_{5}|_{L^{2}}. Recall

dρ5=μ12|v|21ρμCρ5,1μ121ρμ,d05=μ12|v|23μ12.\displaystyle d^{\rho}_{5}=\frac{\mu^{\frac{1}{2}}|v|^{2}}{1-\rho\mu}-C^{\rho}_{5,1}\frac{\mu^{\frac{1}{2}}}{1-\rho\mu},\quad d^{0}_{5}=\mu^{\frac{1}{2}}|v|^{2}-3\mu^{\frac{1}{2}}.

Then

dρ5d05=μρμ12|v|21ρμ+(3Cρ5,1)μ12μρCρ5,1μ121ρμ.\displaystyle d^{\rho}_{5}-d^{0}_{5}=\mu\rho\frac{\mu^{\frac{1}{2}}|v|^{2}}{1-\rho\mu}+(3-C^{\rho}_{5,1})\mu^{\frac{1}{2}}-\mu\rho C^{\rho}_{5,1}\frac{\mu^{\frac{1}{2}}}{1-\rho\mu}.

Recalling (8.7) and |μ|L18|\mu|_{L^{\infty}}\leq\frac{1}{8}, using |μ12|v|2|L2=15,|μ12|L2=1|\mu^{\frac{1}{2}}|v|^{2}|_{L^{2}}=\sqrt{15},|\mu^{\frac{1}{2}}|_{L^{2}}=1 and the results in (8.17), we have

|dρ5d05|L2\displaystyle|d^{\rho}_{5}-d^{0}_{5}|_{L^{2}} \displaystyle\leq 14ρ|μ12|v|2|L2+|3Cρ5,1||μ12|L2+14ρ|Cρ5,1||μ12|L2\displaystyle\frac{1}{4}\rho|\mu^{\frac{1}{2}}|v|^{2}|_{L^{2}}+|3-C^{\rho}_{5,1}||\mu^{\frac{1}{2}}|_{L^{2}}+\frac{1}{4}\rho|C^{\rho}_{5,1}||\mu^{\frac{1}{2}}|_{L^{2}}
\displaystyle\leq 14ρ×15+60ρ+14ρ×9280ρ.\displaystyle\frac{1}{4}\rho\times\sqrt{15}+60\rho+\frac{1}{4}\rho\times\frac{9}{2}\leq 80\rho.

By recalling (8.20) and |d05|L2=6|d^{0}_{5}|_{L^{2}}=\sqrt{6}, we get the last inequality in (8.5).

Recalling (2.12) and (2.14), using (8.3), (8.4), (8.5) and (8.17), we get (8.6). ∎

We can revise the proof of Lemma 8.1 to get

Lemma 8.2.

Let m0,l,0ρ1160m\geq 0,l\in\mathbb{R},0\leq\rho\leq\frac{1}{160}. For 1i51\leq i\leq 5, there holds

|μ14(eρie0i)|L2C~ρ,|eρie0i|HmlC~m,lρ,\displaystyle|\mu^{-\frac{1}{4}}(e^{\rho}_{i}-e^{0}_{i})|_{L^{2}}\leq\tilde{C}\rho,\quad|e^{\rho}_{i}-e^{0}_{i}|_{H^{m}_{l}}\leq\tilde{C}_{m,l}\rho,

for some universal constant C~\tilde{C} and a constant C~m,l\tilde{C}_{m,l} depending only on m,lm,l.

We now apply Lemma 8.2 to prove Lemma 2.3.

Proof of Lemma 2.3..

Observe

ρf0f=i=15f,eρieρii=15f,e0ie0i=i=15f,eρie0ieρi+i=15f,e0i(eρie0i).\displaystyle\mathbb{P}_{\rho}f-\mathbb{P}_{0}f=\sum_{i=1}^{5}\langle f,e^{\rho}_{i}\rangle e^{\rho}_{i}-\sum_{i=1}^{5}\langle f,e^{0}_{i}\rangle e^{0}_{i}=\sum_{i=1}^{5}\langle f,e^{\rho}_{i}-e^{0}_{i}\rangle e^{\rho}_{i}+\sum_{i=1}^{5}\langle f,e^{0}_{i}\rangle(e^{\rho}_{i}-e^{0}_{i}).

By Cauchy-Schwartz inequality, we have

|f,eρie0i||μ14f|L2|μ14(eρie0i)|L2,|f,e0i||μ14f|L2|μ14e0i|L2,\displaystyle|\langle f,e^{\rho}_{i}-e^{0}_{i}\rangle|\leq|\mu^{\frac{1}{4}}f|_{L^{2}}|\mu^{-\frac{1}{4}}(e^{\rho}_{i}-e^{0}_{i})|_{L^{2}},\quad|\langle f,e^{0}_{i}\rangle|\leq|\mu^{\frac{1}{4}}f|_{L^{2}}|\mu^{-\frac{1}{4}}e^{0}_{i}|_{L^{2}},

which gives

|ρf0f|Hml|μ14f|L2|i=15|μ14(eρie0i)|L2|eρi|Hml+|μ14f|L2|i=15|μ14e0i|L2|eρie0i|Hml.\displaystyle|\mathbb{P}_{\rho}f-\mathbb{P}_{0}f|_{H^{m}_{l}}\leq|\mu^{\frac{1}{4}}f|_{L^{2}}|\sum_{i=1}^{5}|\mu^{-\frac{1}{4}}(e^{\rho}_{i}-e^{0}_{i})|_{L^{2}}|e^{\rho}_{i}|_{H^{m}_{l}}+|\mu^{\frac{1}{4}}f|_{L^{2}}|\sum_{i=1}^{5}|\mu^{-\frac{1}{4}}e^{0}_{i}|_{L^{2}}|e^{\rho}_{i}-e^{0}_{i}|_{H^{m}_{l}}.

With the constants C~\tilde{C} and C~m,l\tilde{C}_{m,l} in Lemma 8.2, define Cm,lC_{m,l} in the following way,

Cm,l\colonequals(C~+C~m,l)(i=15|μ14e0i|L2+sup0ρ1601i=15|eρi|Hml).\displaystyle C_{m,l}\colonequals(\tilde{C}+\tilde{C}_{m,l})(\sum_{i=1}^{5}|\mu^{-\frac{1}{4}}e^{0}_{i}|_{L^{2}}+\sup_{0\leq\rho\leq 160^{-1}}\sum_{i=1}^{5}|e^{\rho}_{i}|_{H^{m}_{l}}). (8.21)

Then by Lemma 8.2, we get the desired result. ∎

When vv and vv_{*} are close, we can exchange negative exponential weight freely. For example, if |vv|1|v-v_{*}|\leq 1, then |v|212|v|21|v|^{2}\geq\frac{1}{2}|v_{*}|^{2}-1 and thus μ(v)μ12(v)\mu(v)\lesssim\mu^{\frac{1}{2}}(v_{*}). More general, we have

Lemma 8.3.

Recall v(κ)\colonequalsv+κ(vv),v(ι)\colonequalsv+ι(vv)v(\kappa)\colonequals v+\kappa(v^{\prime}-v),v_{*}(\iota)\colonequals v_{*}+\iota(v^{\prime}_{*}-v_{*}). For κ1,ι1,κ2,ι2[0,1]\kappa_{1},\iota_{1},\kappa_{2},\iota_{2}\in[0,1], if |vv|1|v-v_{*}|\leq 1, then

μ(v(κ1))μ12(v(ι1)),μ(v(ι1))μ12(v(κ1)),μ(v(κ1))μ12(v(κ2)),μ(v(ι1))μ12(v(ι2)).\displaystyle\mu(v(\kappa_{1}))\lesssim\mu^{\frac{1}{2}}(v_{*}(\iota_{1})),\quad\mu(v_{*}(\iota_{1}))\lesssim\mu^{\frac{1}{2}}(v(\kappa_{1})),\quad\mu(v(\kappa_{1}))\lesssim\mu^{\frac{1}{2}}(v(\kappa_{2})),\quad\mu(v_{*}(\iota_{1}))\lesssim\mu^{\frac{1}{2}}(v_{*}(\iota_{2})).

Lemma 8.3 is obvious since |v(κ1)v(ι1)|,|v(κ1)v(κ2)|,|v(ι1)v(ι2)||vv|1|v(\kappa_{1})-v_{*}(\iota_{1})|,|v(\kappa_{1})-v(\kappa_{2})|,|v_{*}(\iota_{1})-v_{*}(\iota_{2})|\leq|v-v_{*}|\leq 1.

We estimate various integrals over 𝕊2\mathbb{S}^{2} involving the difference D(μ14)\mathrm{D}(\mu^{\frac{1}{4}}_{*}) in the following lemma.

Lemma 8.4.

The following estimates are valid for any v,v3v,v_{*}\in\mathbb{R}^{3}.

|BD(μ14)dσ|\displaystyle|\int B\mathrm{D}(\mu^{\frac{1}{4}}_{*})\mathrm{d}\sigma| \displaystyle\lesssim 1|vv|1vγ+2s+1|vv|1|vv|2μ132μ132.\displaystyle\mathrm{1}_{|v-v_{*}|\geq 1}\langle v\rangle^{\gamma+2s}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-2}\mu^{\frac{1}{32}}\mu^{\frac{1}{32}}_{*}. (8.22)
|BD(μ14)μ14dσ|\displaystyle|\int B\mathrm{D}(\mu^{\frac{1}{4}}_{*})\mu^{\frac{1}{4}}\mathrm{d}\sigma| \displaystyle\lesssim 1|vv|1μ132μ132+1|vv|1|vv|2μ132μ132.\displaystyle\mathrm{1}_{|v-v_{*}|\geq 1}\mu^{\frac{1}{32}}\mu^{\frac{1}{32}}_{*}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-2}\mu^{\frac{1}{32}}\mu^{\frac{1}{32}}_{*}. (8.23)
BD2(μ14)dσ\displaystyle\int B\mathrm{D}^{2}(\mu^{\frac{1}{4}}_{*})\mathrm{d}\sigma \displaystyle\lesssim 1|vv|1vγ+2s+1|vv|1|vv|1μ132μ132.\displaystyle\mathrm{1}_{|v-v_{*}|\geq 1}\langle v\rangle^{\gamma+2s}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-1}\mu^{\frac{1}{32}}\mu^{\frac{1}{32}}_{*}. (8.24)
BD2(μ14)μ14dσ\displaystyle\int B\mathrm{D}^{2}(\mu^{\frac{1}{4}}_{*})\mu^{\frac{1}{4}}\mathrm{d}\sigma \displaystyle\lesssim 1|vv|1μ132μ132+1|vv|1|vv|2μ132μ132.\displaystyle\mathrm{1}_{|v-v_{*}|\geq 1}\mu^{\frac{1}{32}}\mu^{\frac{1}{32}}_{*}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-2}\mu^{\frac{1}{32}}\mu^{\frac{1}{32}}_{*}. (8.25)
Proof.

Note that when |vv|1|v-v_{*}|\leq 1, all the results contain a μμ\mu\mu_{*} type weight. This is given by Lemma 8.3. We will give a detailed proof to (8.22) and then only sketch the proof of the other three results.

Applying Taylor expansion, we have

D(μ14)=(μ14)(v)(vv)+01(1ι)(2μ14)(v(ι)):(vv)(vv)dι,\displaystyle-\mathrm{D}(\mu^{\frac{1}{4}}_{*})=(\nabla\mu^{\frac{1}{4}})(v_{*})\cdot\left(v^{\prime}_{*}-v_{*}\right)+\int_{0}^{1}(1-\iota)(\nabla^{2}\mu^{\frac{1}{4}})(v_{*}(\iota)):\left(v^{\prime}_{*}-v_{*}\right)\otimes\left(v^{\prime}_{*}-v_{*}\right)\mathrm{d}\iota, (8.26)

where v(ι)\colonequalsv+ι(vv)v_{*}(\iota)\colonequals v_{*}+\iota(v^{\prime}_{*}-v_{*}). We consider two cases: |vv|1|v-v_{*}|\leq 1 and |vv|1|v-v_{*}|\geq 1.

Case 1: |vv|1|v-v_{*}|\leq 1. By (8.26), |BD(μ14)dσ|=|𝒫1+𝒫2||\int B\mathrm{D}(\mu^{\frac{1}{4}}_{*})\mathrm{d}\sigma|=|\mathcal{P}_{1}+\mathcal{P}_{2}| where

𝒫1\colonequalsB(μ14)(v)(vv)dσ,𝒫2\colonequalsB(1ι)(2μ14)(v(ι)):(vv)(vv)dιdσ.\displaystyle\mathcal{P}_{1}\colonequals\int B(\nabla\mu^{\frac{1}{4}})(v_{*})\cdot\left(v^{\prime}_{*}-v_{*}\right)\mathrm{d}\sigma,\quad\mathcal{P}_{2}\colonequals\int B(1-\iota)(\nabla^{2}\mu^{\frac{1}{4}})(v_{*}(\iota)):\left(v^{\prime}_{*}-v_{*}\right)\otimes\left(v^{\prime}_{*}-v_{*}\right)\mathrm{d}\iota\mathrm{d}\sigma.

Noting that vv=vvv^{\prime}_{*}-v_{*}=v-v^{\prime}, using (2.33), the estimate (2.30), the fact |μ14|μ18|\nabla\mu^{\frac{1}{4}}|\lesssim\mu^{\frac{1}{8}} and Lemma 8.3, we get

|𝒫1|=|Bsin2θ2(μ14)(v)(vv)dσ|μ18(v)|vv|γ+1|vv|2μ132μ132.\displaystyle|\mathcal{P}_{1}|=|\int B\sin^{2}\frac{\theta}{2}(\nabla\mu^{\frac{1}{4}})(v_{*})\cdot(v-v_{*})\mathrm{d}\sigma|\lesssim\mu^{\frac{1}{8}}(v_{*})|v-v_{*}|^{\gamma+1}\lesssim|v-v_{*}|^{-2}\mu^{\frac{1}{32}}\mu^{\frac{1}{32}}_{*}.

By the fact |2μ14|μ18|\nabla^{2}\mu^{\frac{1}{4}}|\lesssim\mu^{\frac{1}{8}}, Lemma 8.3 and the estimate (2.30), we have

|𝒫2|Bsin2θ2|vv|2|(2μ14)(v(ι))|dιdσ|vv|γ+2μ132μ132|vv|1μ132μ132.\displaystyle|\mathcal{P}_{2}|\leq\int B\sin^{2}\frac{\theta}{2}|v-v_{*}|^{2}|(\nabla^{2}\mu^{\frac{1}{4}})(v_{*}(\iota))|\mathrm{d}\iota\mathrm{d}\sigma\lesssim|v-v_{*}|^{\gamma+2}\mu^{\frac{1}{32}}\mu^{\frac{1}{32}}_{*}\lesssim|v-v_{*}|^{-1}\mu^{\frac{1}{32}}\mu^{\frac{1}{32}}_{*}.

Patching together the previous two estimates, since |vv|1|v-v_{*}|\leq 1, we get

|BD(μ14)dσ||𝒫1|+|𝒫2||vv|2μ132μ132.\displaystyle|\int B\mathrm{D}(\mu^{\frac{1}{4}}_{*})\mathrm{d}\sigma|\leq|\mathcal{P}_{1}|+|\mathcal{P}_{2}|\lesssim|v-v_{*}|^{-2}\mu^{\frac{1}{32}}\mu^{\frac{1}{32}}_{*}. (8.27)

Case 2: |vv|1|v-v_{*}|\geq 1. We divide the integral into two parts according to sinθ2|vv|1\sin\frac{\theta}{2}\leq|v-v_{*}|^{-1} and sinθ2|vv|1\sin\frac{\theta}{2}\geq|v-v_{*}|^{-1} as BD(μ14)dσ=𝒬+𝒬,\int B\mathrm{D}(\mu^{\frac{1}{4}}_{*})\mathrm{d}\sigma=\mathcal{Q}_{\leq}+\mathcal{Q}_{\geq}, where

𝒬\colonequals1sinθ2|vv|1BD(μ14)dσ,𝒬\colonequals1sinθ2|vv|1BD(μ14)dσ.\displaystyle\mathcal{Q}_{\leq}\colonequals\int\mathrm{1}_{\sin\frac{\theta}{2}\leq|v-v_{*}|^{-1}}B\mathrm{D}(\mu^{\frac{1}{4}}_{*})\mathrm{d}\sigma,\quad\mathcal{Q}_{\geq}\colonequals\int\mathrm{1}_{\sin\frac{\theta}{2}\geq|v-v_{*}|^{-1}}B\mathrm{D}(\mu^{\frac{1}{4}}_{*})\mathrm{d}\sigma.

It is obvious |𝒬|𝒬,1+𝒬,2|\mathcal{Q}_{\geq}|\leq\mathcal{Q}_{\geq,1}+\mathcal{Q}_{\geq,2} where

𝒬,1\colonequals1sinθ2|vv|1B(μ14)dσ,𝒬,2\colonequals1sinθ2|vv|1Bμ14dσ.\displaystyle\mathcal{Q}_{\geq,1}\colonequals\int\mathrm{1}_{\sin\frac{\theta}{2}\geq|v-v_{*}|^{-1}}B(\mu^{\frac{1}{4}})^{\prime}_{*}\mathrm{d}\sigma,\quad\mathcal{Q}_{\geq,2}\colonequals\int\mathrm{1}_{\sin\frac{\theta}{2}\geq|v-v_{*}|^{-1}}B\mu_{*}^{\frac{1}{4}}\mathrm{d}\sigma.

Note that

1sinθ2|vv|1sin22sθ2dσ|vv|2s,\displaystyle\int\mathrm{1}_{\sin\frac{\theta}{2}\geq|v-v_{*}|^{-1}}\sin^{-2-2s}\frac{\theta}{2}\mathrm{d}\sigma\lesssim|v-v_{*}|^{2s}, (8.28)

which gives 𝒬,2μ14|vv|γ+2svγ+2s.\mathcal{Q}_{\geq,2}\lesssim\mu_{*}^{\frac{1}{4}}|v-v_{*}|^{\gamma+2s}\lesssim\langle v\rangle^{\gamma+2s}. The analysis of 𝒬,1\mathcal{Q}_{\geq,1} is a little bit technical. We will make use of the nice weight (μ14)(\mu^{\frac{1}{4}})^{\prime}_{*} on vv^{\prime}_{*}. Since |vv||vv||v-v^{\prime}_{*}|\sim|v-v_{*}| and |vv|1|v-v_{*}|\geq 1, we have

|vv|γ(μ14)|vv|γ+2s(μ14)|vv|2svγ+2s|vv|2s.\displaystyle|v-v_{*}|^{\gamma}(\mu^{\frac{1}{4}})^{\prime}_{*}\lesssim|v-v^{\prime}_{*}|^{\gamma+2s}(\mu^{\frac{1}{4}})^{\prime}_{*}|v-v_{*}|^{-2s}\lesssim\langle v\rangle^{\gamma+2s}|v-v_{*}|^{-2s}.

Plugging which into 𝒬,1\mathcal{Q}_{\geq,1} and using (8.28), we get

𝒬,11sinθ2|vv|1sin22sθ2vγ+2s|vv|2sdσvγ+2s.\displaystyle\mathcal{Q}_{\geq,1}\lesssim\int\mathrm{1}_{\sin\frac{\theta}{2}\geq|v-v_{*}|^{-1}}\sin^{-2-2s}\frac{\theta}{2}\langle v\rangle^{\gamma+2s}|v-v_{*}|^{-2s}\mathrm{d}\sigma\lesssim\langle v\rangle^{\gamma+2s}.

Note that 𝒬,1\mathcal{Q}_{\geq,1} and 𝒬,2\mathcal{Q}_{\geq,2} share the same upper bound vγ+2s\langle v\rangle^{\gamma+2s} and so |𝒬|vγ+2s.|\mathcal{Q}_{\geq}|\lesssim\langle v\rangle^{\gamma+2s}. Plugging (8.26) into 𝒬\mathcal{Q}_{\leq}, we get |𝒬|=|𝒬,1+𝒬,2||\mathcal{Q}_{\leq}|=|\mathcal{Q}_{\leq,1}+\mathcal{Q}_{\leq,2}| where

𝒬,1\displaystyle\mathcal{Q}_{\leq,1} \colonequals\displaystyle\colonequals 1sinθ2|vv|1B(μ14)(v)(vv)dσ,\displaystyle\int\mathrm{1}_{\sin\frac{\theta}{2}\leq|v-v_{*}|^{-1}}B(\nabla\mu^{\frac{1}{4}})(v_{*})\cdot\left(v^{\prime}_{*}-v_{*}\right)\mathrm{d}\sigma,
𝒬,2\displaystyle\mathcal{Q}_{\leq,2} \colonequals\displaystyle\colonequals 1sinθ2|vv|1B(1ι)(2μ14)(v(ι)):(vv)(vv)dιdσ.\displaystyle\int\mathrm{1}_{\sin\frac{\theta}{2}\leq|v-v_{*}|^{-1}}B(1-\iota)(\nabla^{2}\mu^{\frac{1}{4}})(v_{*}(\iota)):\left(v^{\prime}_{*}-v_{*}\right)\otimes\left(v^{\prime}_{*}-v_{*}\right)\mathrm{d}\iota\mathrm{d}\sigma.

Using (2.33) and vv=vvv^{\prime}_{*}-v_{*}=v-v^{\prime}, we have

|𝒬,1|=|1sinθ2|vv|1Bsin2θ2(μ14)(v)(vv)dσ|μ18(v)|vv|γ+2s1vγ+2s1,\displaystyle|\mathcal{Q}_{\leq,1}|=|\int\mathrm{1}_{\sin\frac{\theta}{2}\leq|v-v_{*}|^{-1}}B\sin^{2}\frac{\theta}{2}(\nabla\mu^{\frac{1}{4}})(v_{*})\cdot(v-v_{*})\mathrm{d}\sigma|\lesssim\mu^{\frac{1}{8}}(v_{*})|v-v_{*}|^{\gamma+2s-1}\lesssim\langle v\rangle^{\gamma+2s-1},

where we use

1sinθ2|vv|1sin2sθ2dσ|vv|2s2.\displaystyle\int\mathrm{1}_{\sin\frac{\theta}{2}\leq|v-v_{*}|^{-1}}\sin^{-2s}\frac{\theta}{2}\mathrm{d}\sigma\lesssim|v-v_{*}|^{2s-2}. (8.29)

We will make use of the nice weight (2μ14)(v(ι))(\nabla^{2}\mu^{\frac{1}{4}})(v_{*}(\iota)) on v(ι)v_{*}(\iota) in 𝒬,2\mathcal{Q}_{\leq,2}. Since |vv(ι)||vv||v-v_{*}(\iota)|\sim|v-v_{*}| and |vv|1|v-v_{*}|\geq 1, we have

|vv|γ|(2μ14)(v(ι))||vv(ι)|γ+2sμ18(v(ι))|vv|2svγ+2s|vv|2s.\displaystyle|v-v_{*}|^{\gamma}|(\nabla^{2}\mu^{\frac{1}{4}})(v_{*}(\iota))|\lesssim|v-v_{*}(\iota)|^{\gamma+2s}\mu^{\frac{1}{8}}(v_{*}(\iota))|v-v_{*}|^{-2s}\lesssim\langle v\rangle^{\gamma+2s}|v-v_{*}|^{-2s}.

From which together with (8.29), we get

|𝒬,2|vγ+2s1sinθ2|vv|1sin2sθ2|vv|22sdσvγ+2s.\displaystyle|\mathcal{Q}_{\leq,2}|\lesssim\langle v\rangle^{\gamma+2s}\int\mathrm{1}_{\sin\frac{\theta}{2}\leq|v-v_{*}|^{-1}}\sin^{-2s}\frac{\theta}{2}|v-v_{*}|^{2-2s}\mathrm{d}\sigma\lesssim\langle v\rangle^{\gamma+2s}.

Patching together the estimates of |𝒬,1||\mathcal{Q}_{\leq,1}| and |𝒬,2||\mathcal{Q}_{\leq,2}|, we get |𝒬|vγ+2s.|\mathcal{Q}_{\leq}|\lesssim\langle v\rangle^{\gamma+2s}. Therefore when |vv|1|v-v_{*}|\geq 1, we get

|BD(μ14)dσ||𝒬|+|𝒬|vγ+2s.\displaystyle|\int B\mathrm{D}(\mu^{\frac{1}{4}}_{*})\mathrm{d}\sigma|\leq|\mathcal{Q}_{\leq}|+|\mathcal{Q}_{\geq}|\lesssim\langle v\rangle^{\gamma+2s}. (8.30)

Patching together (8.27) and (8.30), we finish the proof of (8.22).

Thanks to the additional factor μ14\mu^{\frac{1}{4}} on the left-hand side of (8.23), we can use (2.37) to retain the μμ\mu\mu_{*} weight for the case |vv|1|v-v_{*}|\geq 1 and get the desired result (8.23).

Now we explain how to prove (8.24). Note that D2(μ14)\mathrm{D}^{2}(\mu^{\frac{1}{4}}_{*}) contains order 2 cancelation by first order Taylor expansion. For the case |vv|1|v-v_{*}|\leq 1, applying Taylor expansion to D(μ14)\mathrm{D}(\mu^{\frac{1}{4}}_{*}) up to first order, using the fact |μ14|μ18|\nabla\mu^{\frac{1}{4}}|\lesssim\mu^{\frac{1}{8}} and Lemma 8.3, we can get the result. For the case |vv|1|v-v_{*}|\geq 1, like in the proof of (8.22), we divide the integral into two parts according to sinθ2|vv|1\sin\frac{\theta}{2}\leq|v-v_{*}|^{-1} and sinθ2|vv|1\sin\frac{\theta}{2}\geq|v-v_{*}|^{-1}. For the part with sinθ2|vv|1\sin\frac{\theta}{2}\geq|v-v_{*}|^{-1}, we can use the same estimate for 𝒬\mathcal{Q}_{\geq}. For the part with sinθ2|vv|1\sin\frac{\theta}{2}\leq|v-v_{*}|^{-1}, applying Taylor expansion to D(μ14)\mathrm{D}(\mu^{\frac{1}{4}}_{*}) up to first order, we can use the same estimate for 𝒬,2.\mathcal{Q}_{\leq,2}.

At last, let us see how to prove (8.25). Thanks to the additional factor μ14\mu^{\frac{1}{4}} on the left-hand side of (8.25), we can use (2.37) to retain the μμ\mu\mu_{*} weight in the proof of (8.24) for the case |vv|1|v-v_{*}|\geq 1 and get the desired result (8.25). ∎

The exponents of μ\mu in Lemma 8.4 can be relaxed as long as they have a lower bound. Since 116\frac{1}{16} is enough for our purpose, we give

Lemma 8.5.

Let 116a,b1\frac{1}{16}\leq a,b\leq 1, then the following estimates are valid.

|BD(μa)dσ|\displaystyle|\int B\mathrm{D}(\mu^{a}_{*})\mathrm{d}\sigma| \displaystyle\lesssim 1|vv|1vγ+2s+1|vv|1|vv|2μ1128μ1128.\displaystyle\mathrm{1}_{|v-v_{*}|\geq 1}\langle v\rangle^{\gamma+2s}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-2}\mu^{\frac{1}{128}}\mu^{\frac{1}{128}}_{*}. (8.31)
|BD(μa)μbdσ|\displaystyle|\int B\mathrm{D}(\mu^{a}_{*})\mu^{b}\mathrm{d}\sigma| \displaystyle\lesssim 1|vv|1μ1128μ1128+1|vv|1|vv|2μ1128μ1128.\displaystyle\mathrm{1}_{|v-v_{*}|\geq 1}\mu^{\frac{1}{128}}\mu^{\frac{1}{128}}_{*}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-2}\mu^{\frac{1}{128}}\mu^{\frac{1}{128}}_{*}. (8.32)
BD2(μa)dσ\displaystyle\int B\mathrm{D}^{2}(\mu^{a}_{*})\mathrm{d}\sigma \displaystyle\lesssim 1|vv|1vγ+2s+1|vv|1|vv|1μ1128μ1128.\displaystyle\mathrm{1}_{|v-v_{*}|\geq 1}\langle v\rangle^{\gamma+2s}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-1}\mu^{\frac{1}{128}}\mu^{\frac{1}{128}}_{*}. (8.33)
BD2(μa)μbdσ\displaystyle\int B\mathrm{D}^{2}(\mu^{a}_{*})\mu^{b}\mathrm{d}\sigma \displaystyle\lesssim 1|vv|1μ1128μ1128+1|vv|1|vv|1μ1128μ1128.\displaystyle\mathrm{1}_{|v-v_{*}|\geq 1}\mu^{\frac{1}{128}}\mu^{\frac{1}{128}}_{*}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-1}\mu^{\frac{1}{128}}\mu^{\frac{1}{128}}_{*}. (8.34)
Proof.

Since μbμ116,μaμ116,|μa|μ132,|2μa|μ132\mu^{b}\lesssim\mu^{\frac{1}{16}},\mu^{a}\lesssim\mu^{\frac{1}{16}},|\nabla\mu^{a}|\lesssim\mu^{\frac{1}{32}},|\nabla^{2}\mu^{a}|\lesssim\mu^{\frac{1}{32}}, we can follow the proof of Lemma 8.4 to get the desired results. ∎

Based on the proofs of Lemma 8.4 and Lemma 8.5, recalling (2.3), we give the following remark.

Remark 8.1.

If we replace μ\mu with N2N^{2} or MM in Lemma 8.5, all the results are still valid. Let P1,P2P_{1},P_{2} be two polynomials on 3\mathbb{R}^{3}. If we replace μa\mu^{a} and μb\mu^{b} with P1μaP_{1}\mu^{a} and P2μbP_{2}\mu^{b} respectively in Lemma 8.5, all the results are still valid. Moreover, If we replace μa\mu^{a} and μb\mu^{b} with P1N2aP_{1}N^{2a}(or P1MaP_{1}M^{a}) and P2N2bP_{2}N^{2b}(or P2MbP_{2}M^{b}) respectively in Lemma 8.5, all the results are still valid.

By Hardy-Sobolev-Littlewood inequality, we can derive

Lemma 8.6.

Let s1,s20,s1+s2=12s_{1},s_{2}\geq 0,s_{1}+s_{2}=\frac{1}{2}. There holds

|vv|1g2h2dvdv|g|Hs12|h|Hs22.\displaystyle\int|v-v_{*}|^{-1}g_{*}^{2}h^{2}\mathrm{d}v_{*}\mathrm{d}v\lesssim|g|_{H^{s_{1}}}^{2}|h|_{H^{s_{2}}}^{2}. (8.35)

Let a1,a2,a30,a1+a2+a3=12a_{1},a_{2},a_{3}\geq 0,a_{1}+a_{2}+a_{3}=\frac{1}{2}. There holds

|vv|2|ghf|dvdv|g|Ha1|h|Ha2|f|Ha3.\displaystyle\int|v-v_{*}|^{-2}|g_{*}hf|\mathrm{d}v_{*}\mathrm{d}v\lesssim|g|_{H^{a_{1}}}|h|_{H^{a_{2}}}|f|_{H^{a_{3}}}. (8.36)

Based on Lemma 8.5 and Lemma 8.6, we now give a proof to Lemma 3.2.

Proof of Lemma 3.2.

We first prove (3.13). By (8.31) and (8.36), we have

|BD(μa)ghfdV|\displaystyle|\int B\mathrm{D}(\mu^{a}_{*})g_{*}hf\mathrm{d}V|
\displaystyle\lesssim (1|vv|1vγ+2s+1|vv|1|vv|2μ1128μ1128)|ghf|dvdv\displaystyle\int(\mathrm{1}_{|v-v_{*}|\geq 1}\langle v\rangle^{\gamma+2s}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-2}\mu^{\frac{1}{128}}\mu^{\frac{1}{128}}_{*})|g_{*}hf|\mathrm{d}v_{*}\mathrm{d}v
\displaystyle\lesssim |g|L1|h|L2γ/2+s|f|L2γ/2+s+|μ1256g|Hs1|μ1256h|Hs2|μ1256f|Hs3.\displaystyle|g|_{L^{1}}|h|_{L^{2}_{\gamma/2+s}}|f|_{L^{2}_{\gamma/2+s}}+|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}|\mu^{\frac{1}{256}}f|_{H^{s_{3}}}.

By the same argument as the above, using the imbedding H2LH^{2}\hookrightarrow L^{\infty}(for gg or Wγ/2+shW_{\gamma/2+s}h or ϱ\varrho), we can get (3.19). By (8.32) and (8.36), we can similarly prove (3.14) and (3.15). By (8.32), using the imbedding H2LH^{2}\hookrightarrow L^{\infty} and (8.36), we can similarly prove (3.20). By (8.32), using the imbedding H2LH^{2}\hookrightarrow L^{\infty} for μ1256ϱ\mu^{\frac{1}{256}}\varrho and (8.36), we can similarly get (3.21). By the same argument, we can also get (3.22). By (8.32), using the imbedding H2LH^{2}\hookrightarrow L^{\infty} for μ1256g\mu^{\frac{1}{256}}g and Lemma 2.6, we can get (3.16).

We now go to prove (3.17). By (8.33) and (8.35), using (3.10) and (3.11), we have

BD2(μa)g2h2dV\displaystyle\int B\mathrm{D}^{2}(\mu^{a}_{*})g_{*}^{2}h^{2}\mathrm{d}V \displaystyle\lesssim (1|vv|1vγ+2s+1|vv|1|vv|1μ1128μ1128)g2h2dvdv\displaystyle\int(\mathrm{1}_{|v-v_{*}|\geq 1}\langle v\rangle^{\gamma+2s}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-1}\mu^{\frac{1}{128}}\mu^{\frac{1}{128}}_{*})g_{*}^{2}h^{2}\mathrm{d}v_{*}\mathrm{d}v
\displaystyle\lesssim |g|L22|h|L2γ/2+s2+|μ1256g|Hs12|μ1256h|Hs22|g|Hs12|h|Hs2γ/2+s2.\displaystyle|g|_{L^{2}}^{2}|h|_{L^{2}_{\gamma/2+s}}^{2}+|\mu^{\frac{1}{256}}g|_{H^{s_{1}}}^{2}|\mu^{\frac{1}{256}}h|_{H^{s_{2}}}^{2}\lesssim|g|_{H^{s_{1}}}^{2}|h|_{H^{s_{2}}_{\gamma/2+s}}^{2}.

By (8.34) and (8.35), we can similarly prove (3.18). Now the proof is complete. ∎

We set to prove Lemma 3.3 by adopting some arguments in the proof of Lemma 8.4.

Proof of Lemma 3.3.

We will give a detailed proof to (3.38) and sketch the proof of the other three results by pointing out the differences.

According to |vv|1|v-v_{*}|\leq 1 and |vv|1|v-v_{*}|\geq 1, we write Bμ116D2(g)h2dV=𝒫+𝒬\int B\mu^{\frac{1}{16}}_{*}\mathrm{D}^{2}(g_{*})h^{2}\mathrm{d}V=\mathcal{P}+\mathcal{Q} where

𝒫\colonequalsBμ1161|vv|1D2(g)h2dV,𝒬\colonequalsBμ1161|vv|1D2(g)h2dV.\displaystyle\mathcal{P}\colonequals\int B\mu^{\frac{1}{16}}_{*}\mathrm{1}_{|v-v_{*}|\leq 1}\mathrm{D}^{2}(g_{*})h^{2}\mathrm{d}V,\quad\mathcal{Q}\colonequals\int B\mu^{\frac{1}{16}}_{*}\mathrm{1}_{|v-v_{*}|\geq 1}\mathrm{D}^{2}(g_{*})h^{2}\mathrm{d}V.

By Taylor expansion, we have

D(g)=01g(v(ι))(vv)dι.\displaystyle-\mathrm{D}(g_{*})=\int_{0}^{1}\nabla g(v_{*}(\iota))\cdot\left(v^{\prime}_{*}-v_{*}\right)\mathrm{d}\iota. (8.37)

Estimate of 𝒫\mathcal{P}. By (8.37), we get

𝒫B|vv|2sin2θ21|vv|1μ116|g(v(ι))|2h2dVdι.\displaystyle\mathcal{P}\lesssim\int B|v-v_{*}|^{2}\sin^{2}\frac{\theta}{2}\mathrm{1}_{|v-v_{*}|\leq 1}\mu^{\frac{1}{16}}_{*}|\nabla g(v_{*}(\iota))|^{2}h^{2}\mathrm{d}V\mathrm{d}\iota. (8.38)

Since |vv|1|v-v_{*}|\leq 1, by Lemma 8.3, we have μμ12(v(ι)),μμ12\mu_{*}\lesssim\mu^{\frac{1}{2}}(v_{*}(\iota)),\mu_{*}\lesssim\mu^{\frac{1}{2}}. For any fixed ι\iota, using the following change of variable

vv(ι),|vv(ι)|1,cosθ(ι)=vv(ι)|vv(ι)|σ,θ2θ(ι)θ,\displaystyle v_{*}\to v_{*}(\iota),\quad|\frac{\partial v_{*}}{\partial v_{*}(\iota)}|\lesssim 1,\quad\cos\theta(\iota)=\frac{v-v_{*}(\iota)}{|v-v_{*}(\iota)|}\cdot\sigma,\quad\frac{\theta}{2}\leq\theta(\iota)\leq\theta, (8.39)

the fact 22|vv||vv(ι)||vv|\frac{\sqrt{2}}{2}|v-v_{*}|\leq|v-v_{*}(\iota)|\leq|v-v_{*}| and the estimate (2.30), we get

𝒫\displaystyle\mathcal{P} \displaystyle\lesssim B|vv|2sin2θ21|vv|1μ164μ164|(g)|2h2dV\displaystyle\int B|v-v_{*}|^{2}\sin^{2}\frac{\theta}{2}\mathrm{1}_{|v-v_{*}|\leq 1}\mu^{\frac{1}{64}}_{*}\mu^{\frac{1}{64}}|(\nabla g)_{*}|^{2}h^{2}\mathrm{d}V
\displaystyle\lesssim |vv|11|vv|1μ164μ164|(g)|2h2dvdv|μ1128g|Hs1+12|μ1128h|Hs22,\displaystyle\int|v-v_{*}|^{-1}\mathrm{1}_{|v-v_{*}|\leq 1}\mu^{\frac{1}{64}}_{*}\mu^{\frac{1}{64}}|(\nabla g)_{*}|^{2}h^{2}\mathrm{d}v\mathrm{d}v_{*}\lesssim|\mu^{\frac{1}{128}}g|_{H^{s_{1}+1}}^{2}|\mu^{\frac{1}{128}}h|_{H^{s_{2}}}^{2},

where we use (8.35) in the last inequality.

Estimate of 𝒬\mathcal{Q}. According to sinθ2|vv|1\sin\frac{\theta}{2}\leq|v-v_{*}|^{-1} and sinθ2|vv|1\sin\frac{\theta}{2}\geq|v-v_{*}|^{-1}, we write 𝒬=𝒬+𝒬\mathcal{Q}=\mathcal{Q}_{\leq}+\mathcal{Q}_{\geq} where

𝒬\colonequalsBμ1161|vv|11sinθ2|vv|1D2(g)h2dV,\displaystyle\mathcal{Q}_{\leq}\colonequals\int B\mu^{\frac{1}{16}}_{*}\mathrm{1}_{|v-v_{*}|\geq 1}\mathrm{1}_{\sin\frac{\theta}{2}\leq|v-v_{*}|^{-1}}\mathrm{D}^{2}(g_{*})h^{2}\mathrm{d}V, (8.40)
𝒬\colonequalsBμ1161|vv|11sinθ2|vv|1D2(g)h2dV.\displaystyle\mathcal{Q}_{\geq}\colonequals\int B\mu^{\frac{1}{16}}_{*}\mathrm{1}_{|v-v_{*}|\geq 1}\mathrm{1}_{\sin\frac{\theta}{2}\geq|v-v_{*}|^{-1}}\mathrm{D}^{2}(g_{*})h^{2}\mathrm{d}V. (8.41)

It is obvious |𝒬|2𝒬,1+2𝒬,2|\mathcal{Q}_{\geq}|\leq 2\mathcal{Q}_{\geq,1}+2\mathcal{Q}_{\geq,2} where

𝒬,1\colonequalsBμ1161|vv|11sinθ2|vv|1g2h2dV,𝒬,2\colonequalsBμ1161|vv|11sinθ2|vv|1(g2)h2dV.\displaystyle\mathcal{Q}_{\geq,1}\colonequals\int B\mu^{\frac{1}{16}}_{*}\mathrm{1}_{|v-v_{*}|\geq 1}\mathrm{1}_{\sin\frac{\theta}{2}\geq|v-v_{*}|^{-1}}g_{*}^{2}h^{2}\mathrm{d}V,\quad\mathcal{Q}_{\geq,2}\colonequals\int B\mu^{\frac{1}{16}}_{*}\mathrm{1}_{|v-v_{*}|\geq 1}\mathrm{1}_{\sin\frac{\theta}{2}\geq|v-v_{*}|^{-1}}(g^{2})^{\prime}_{*}h^{2}\mathrm{d}V.

Recalling (8.28), we have

𝒬,1μ116|vv|γ+2s1|vv|1g2h2dV|μ164g|L22|h|L2γ+2s2,\displaystyle\mathcal{Q}_{\geq,1}\lesssim\int\mu^{\frac{1}{16}}_{*}|v-v_{*}|^{\gamma+2s}\mathrm{1}_{|v-v_{*}|\geq 1}g_{*}^{2}h^{2}\mathrm{d}V\lesssim|\mu^{\frac{1}{64}}g|_{L^{2}}^{2}|h|_{L^{2}_{\gamma+2s}}^{2},

where we use

μ116|vv|γ+2s1|vv|1μ116vvγ+2sμ132vγ+2s.\displaystyle\mu^{\frac{1}{16}}_{*}|v-v_{*}|^{\gamma+2s}\mathrm{1}_{|v-v_{*}|\geq 1}\lesssim\mu^{\frac{1}{16}}_{*}\langle v-v_{*}\rangle^{\gamma+2s}\lesssim\mu^{\frac{1}{32}}_{*}\langle v\rangle^{\gamma+2s}. (8.42)

The analysis of 𝒬,2\mathcal{Q}_{\geq,2} is a little bit technical. We will make use of the change of variable vvv_{*}\rightarrow v^{\prime}_{*} and the nice weight μ116\mu^{\frac{1}{16}}_{*} on vv_{*}. Since |vv||vv||v-v^{\prime}_{*}|\sim|v-v_{*}| and |vv|1|v-v_{*}|\geq 1, we have

|vv|γμ116|vv|γ+2sμ116|vv|2svγ+2s|vv|2s.\displaystyle|v-v_{*}|^{\gamma}\mu^{\frac{1}{16}}_{*}\lesssim|v-v_{*}|^{\gamma+2s}\mu^{\frac{1}{16}}_{*}|v-v^{\prime}_{*}|^{-2s}\lesssim\langle v\rangle^{\gamma+2s}|v-v^{\prime}_{*}|^{-2s}. (8.43)

Plugging which into 𝒬,2\mathcal{Q}_{\geq,2}, by the change of variable vvv_{*}\rightarrow v^{\prime}_{*}(take ι=1\iota=1 in (8.39) and let θ=θ2\theta^{\prime}=\frac{\theta}{2}) and using (8.28), we get

𝒬,2\displaystyle\mathcal{Q}_{\geq,2} \displaystyle\lesssim vγ+2s|vv|2ssin22sθ1|vv|2/21sinθ|vv|1(g2)h2dV\displaystyle\int\langle v\rangle^{\gamma+2s}|v-v^{\prime}_{*}|^{-2s}\sin^{-2-2s}\theta^{\prime}\mathrm{1}_{|v-v^{\prime}_{*}|\geq\sqrt{2}/2}\mathrm{1}_{\sin\theta^{\prime}\geq|v-v^{\prime}_{*}|^{-1}}(g^{2})^{\prime}_{*}h^{2}\mathrm{d}V
\displaystyle\lesssim vγ+2s|vv|2ssin22sθ1|vv|2/21sinθ|vv|1g2h2dV\displaystyle\int\langle v\rangle^{\gamma+2s}|v-v_{*}|^{-2s}\sin^{-2-2s}\theta\mathrm{1}_{|v-v_{*}|\geq\sqrt{2}/2}\mathrm{1}_{\sin\theta\geq|v-v_{*}|^{-1}}g^{2}_{*}h^{2}\mathrm{d}V
\displaystyle\lesssim vγ+2sg2h2dvdv|g|L22|h|L2γ+2s2.\displaystyle\int\langle v\rangle^{\gamma+2s}g^{2}_{*}h^{2}\mathrm{d}v\mathrm{d}v_{*}\lesssim|g|_{L^{2}}^{2}|h|_{L^{2}_{\gamma+2s}}^{2}.

Patching together the estimates of 𝒬,1\mathcal{Q}_{\geq,1} and 𝒬,2\mathcal{Q}_{\geq,2}, we arrive at 𝒬|g|L22|h|L2γ+2s2.\mathcal{Q}_{\geq}\lesssim|g|_{L^{2}}^{2}|h|_{L^{2}_{\gamma+2s}}^{2}. We now go to see 𝒬\mathcal{Q}_{\leq}. Plugging (8.37) into 𝒬\mathcal{Q}_{\leq}, we get

𝒬B|vv|2sin2θ21|vv|11sinθ2|vv|1μ116|g(v(ι))|2h2dVdι.\displaystyle\mathcal{Q}_{\leq}\lesssim\int B|v-v_{*}|^{2}\sin^{2}\frac{\theta}{2}\mathrm{1}_{|v-v_{*}|\geq 1}\mathrm{1}_{\sin\frac{\theta}{2}\leq|v-v_{*}|^{-1}}\mu^{\frac{1}{16}}_{*}|\nabla g(v_{*}(\iota))|^{2}h^{2}\mathrm{d}V\mathrm{d}\iota. (8.44)

We will use the change of variable vv(ι)v_{*}\rightarrow v_{*}(\iota) according to (8.39). Recall 22|vv||vv(ι)||vv|\frac{\sqrt{2}}{2}|v-v_{*}|\leq|v-v_{*}(\iota)|\leq|v-v_{*}| and θ2θ(ι)θ\frac{\theta}{2}\leq\theta(\iota)\leq\theta, then

|vv|γ+2μ116|vv|γ+2sμ116|vv(ι)|22svγ+2s|vv(ι)|22s,\displaystyle|v-v_{*}|^{\gamma+2}\mu^{\frac{1}{16}}_{*}\lesssim|v-v_{*}|^{\gamma+2s}\mu^{\frac{1}{16}}_{*}|v-v_{*}(\iota)|^{2-2s}\lesssim\langle v\rangle^{\gamma+2s}|v-v_{*}(\iota)|^{2-2s}, (8.45)
|vv|1|vv(ι)|22,sinθ2|vv|1sinθ(ι)2|vv(ι)|1,\displaystyle|v-v_{*}|\geq 1\Rightarrow|v-v_{*}(\iota)|\geq\frac{\sqrt{2}}{2},\quad\sin\frac{\theta}{2}\leq|v-v_{*}|^{-1}\Rightarrow\sin\frac{\theta(\iota)}{2}\leq|v-v_{*}(\iota)|^{-1},

which yield

𝒬\displaystyle\mathcal{Q}_{\leq} \displaystyle\lesssim vγ+2s|vv(ι)|22ssin2sθ(ι)21|vv(ι)|2/21sinθ(ι)2|vv(ι)|1|g(v(ι))|2h2dVdι\displaystyle\int\langle v\rangle^{\gamma+2s}|v-v_{*}(\iota)|^{2-2s}\sin^{-2s}\frac{\theta(\iota)}{2}\mathrm{1}_{|v-v_{*}(\iota)|\geq\sqrt{2}/2}\mathrm{1}_{\sin\frac{\theta(\iota)}{2}\leq|v-v_{*}(\iota)|^{-1}}|\nabla g(v_{*}(\iota))|^{2}h^{2}\mathrm{d}V\mathrm{d}\iota
\displaystyle\lesssim vγ+2s|vv|22ssin2sθ21|vv|2/21sinθ2|vv|1|g(v)|2h2dV\displaystyle\int\langle v\rangle^{\gamma+2s}|v-v_{*}|^{2-2s}\sin^{-2s}\frac{\theta}{2}\mathrm{1}_{|v-v_{*}|\geq\sqrt{2}/2}\mathrm{1}_{\sin\frac{\theta}{2}\leq|v-v_{*}|^{-1}}|\nabla g(v_{*})|^{2}h^{2}\mathrm{d}V
\displaystyle\lesssim vγ+2s|g(v)|2h2dvdv|g|H12|h|L2γ+2s2,\displaystyle\int\langle v\rangle^{\gamma+2s}|\nabla g(v_{*})|^{2}h^{2}\mathrm{d}v\mathrm{d}v_{*}\lesssim|g|_{H^{1}}^{2}|h|_{L^{2}_{\gamma+2s}}^{2},

where we use the change of variable vv(ι)v_{*}\rightarrow v_{*}(\iota) in the second line and (8.29) in the last line. Patching together the estimates of 𝒬\mathcal{Q}_{\geq} and 𝒬\mathcal{Q}_{\leq}, we get |𝒬||g|H12|h|L2γ+2s2.|\mathcal{Q}|\lesssim|g|_{H^{1}}^{2}|h|_{L^{2}_{\gamma+2s}}^{2}. Patching together the estimates of 𝒫\mathcal{P} and 𝒬\mathcal{Q}, we finish the proof of (3.38).

Now let us see how to get (3.39) by revising the proof of (3.38). Keep in mind the additional term f2f^{2}_{*}. For 𝒫\mathcal{P} where |vv|1|v-v_{*}|\leq 1, from (8.38) we just take out |g|L|g|H3|\nabla g|_{L^{\infty}}\lesssim|g|_{H^{3}} and thus we do not need the change of variable vv(ι)v_{*}\to v_{*}^{\prime}(\iota). Finally we will get |𝒫||g|H32|μ1128f|Hs12|μ1128h|Hs22|\mathcal{P}|\lesssim|g|_{H^{3}}^{2}|\mu^{\frac{1}{128}}f|_{H^{s_{1}}}^{2}|\mu^{\frac{1}{128}}h|_{H^{s_{2}}}^{2}. Let us turn to 𝒬\mathcal{Q} where |vv|1|v-v_{*}|\geq 1. Let us first see 𝒬\mathcal{Q}_{\geq} in (8.41). We simply use D2(g)|g|L2|g|H22\mathrm{D}^{2}(g_{*})\lesssim|g|_{L^{\infty}}^{2}\lesssim|g|_{H^{2}}^{2} and then just use the same argument as that for 𝒬,1\mathcal{Q}_{\geq,1}. Finally we will get |𝒬||g|H22|μ164f|L22|h|L2γ+2s2|\mathcal{Q}_{\geq}|\lesssim|g|_{H^{2}}^{2}|\mu^{\frac{1}{64}}f|_{L^{2}}^{2}|h|_{L^{2}_{\gamma+2s}}^{2}. Now it remains to see 𝒬\mathcal{Q}_{\leq} defined in (8.40). From (8.44) we just take out |g|L|g|H3|\nabla g|_{L^{\infty}}\lesssim|g|_{H^{3}} and thus we do not need the change of variable vv(ι)v_{*}\to v_{*}(\iota). The line (8.45) is revised to

|vv|γ+2μ116|vv|γ+2sμ116|vv|22svγ+2s|vv|22sμ132,\displaystyle|v-v_{*}|^{\gamma+2}\mu^{\frac{1}{16}}_{*}\lesssim|v-v_{*}|^{\gamma+2s}\mu^{\frac{1}{16}}_{*}|v-v_{*}|^{2-2s}\lesssim\langle v\rangle^{\gamma+2s}|v-v_{*}|^{2-2s}\mu_{*}^{\frac{1}{32}},

and we will get |𝒬||g|H32|μ164f|L22|h|L2γ+2s2|\mathcal{Q}_{\leq}|\lesssim|g|_{H^{3}}^{2}|\mu^{\frac{1}{64}}f|_{L^{2}}^{2}|h|_{L^{2}_{\gamma+2s}}^{2}. Patching together the three parts, we get (3.39).

Comparing to (3.39), there is an additional factor μ116\mu^{\frac{1}{16}} in (3.40) and so we can also get μ\mu weight for gg and hh by using (2.37). We omit the details here.

Now let us see how to get (3.41) by revising the proof of (3.38). Now we have the factor μ116\mu^{\frac{1}{16}} instead of μ116\mu^{\frac{1}{16}}_{*}. In 𝒫\mathcal{P} where |vv|1|v-v_{*}|\leq 1, by using Lemma 8.3 to get μμ12(v(ι))\mu\lesssim\mu^{\frac{1}{2}}(v_{*}(\iota)), we can get exactly the same upper bound. As for 𝒬\mathcal{Q} where |vv|1|v-v_{*}|\geq 1, we indicate the differences. Firstly, (8.42) is revised to

μ116|vv|γ+2s1|vv|1μ116vvγ+2sμ132vγ+2s.\displaystyle\mu^{\frac{1}{16}}|v-v_{*}|^{\gamma+2s}\mathrm{1}_{|v-v_{*}|\geq 1}\lesssim\mu^{\frac{1}{16}}\langle v-v_{*}\rangle^{\gamma+2s}\lesssim\mu^{\frac{1}{32}}\langle v_{*}\rangle^{\gamma+2s}. (8.46)

Secondly, (8.43) is revised to

|vv|γμ116|vv|γ+2sμ116|vv|2svγ+2s|vv|2sμ132.\displaystyle|v-v_{*}|^{\gamma}\mu^{\frac{1}{16}}\lesssim|v-v^{\prime}_{*}|^{\gamma+2s}\mu^{\frac{1}{16}}|v-v^{\prime}_{*}|^{-2s}\lesssim\langle v^{\prime}_{*}\rangle^{\gamma+2s}|v-v^{\prime}_{*}|^{-2s}\mu^{\frac{1}{32}}. (8.47)

Thirdly, the line (8.45) is revised to

|vv|γ+2μ116|vv(ι)|γ+2sμ116|vv(ι)|22sv(ι)γ+2s|vv(ι)|22sμ132.\displaystyle|v-v_{*}|^{\gamma+2}\mu^{\frac{1}{16}}\lesssim|v-v_{*}(\iota)|^{\gamma+2s}\mu^{\frac{1}{16}}|v-v_{*}(\iota)|^{2-2s}\lesssim\langle v_{*}(\iota)\rangle^{\gamma+2s}|v-v_{*}(\iota)|^{2-2s}\mu^{\frac{1}{32}}. (8.48)

Note that in all the three estimates (8.46), (8.47) and (8.48), we have polynomial weight γ+2s\langle\cdot\rangle^{\gamma+2s} for gg and negative exponential weight μ132\mu^{\frac{1}{32}} for hh. Therefore, we can get (3.41). ∎

The following lemma gives upper bounds of various integrals over 𝕊2\mathbb{S}^{2} involving the difference D(Wl)\mathrm{D}(W_{l}).

Lemma 8.7.

Let l0l\geq 0. The following estimates are valid.

|BD(Wl)μ14dσ|\displaystyle|\int B\mathrm{D}(W_{l})\mu^{\frac{1}{4}}_{*}\mathrm{d}\sigma| \displaystyle\lesssim (1|vv|1vl+γ+1|vv|1|vv|2μ132)μ132.\displaystyle(\mathrm{1}_{|v-v_{*}|\geq 1}\langle v\rangle^{l+\gamma}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-2}\mu^{\frac{1}{32}})\mu^{\frac{1}{32}}_{*}. (8.49)
BD2(Wl)μ14dσ\displaystyle\int B\mathrm{D}^{2}(W_{l})\mu^{\frac{1}{4}}_{*}\mathrm{d}\sigma \displaystyle\lesssim (1|vv|1v2l+γ+1|vv|1|vv|1μ132)μ132.\displaystyle(\mathrm{1}_{|v-v_{*}|\geq 1}\langle v\rangle^{2l+\gamma}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-1}\mu^{\frac{1}{32}})\mu^{\frac{1}{32}}_{*}. (8.50)
BD2(Wl)(μ14)dσ\displaystyle\int B\mathrm{D}^{2}(W_{l})(\mu^{\frac{1}{4}})^{\prime}_{*}\mathrm{d}\sigma \displaystyle\lesssim 1|vv|1v2l+γ+1|vv|1|vv|1μ132μ132.\displaystyle\mathrm{1}_{|v-v_{*}|\geq 1}\langle v\rangle^{2l+\gamma}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-1}\mu^{\frac{1}{32}}\mu^{\frac{1}{32}}_{*}. (8.51)
Proof.

Applying (2.31) to WlW_{l}, we get |BD(Wl)μ14dσ|=|𝒫1+𝒫2||\int B\mathrm{D}(W_{l})\mu^{\frac{1}{4}}_{*}\mathrm{d}\sigma|=|\mathcal{P}_{1}+\mathcal{P}_{2}| where

𝒫1\colonequalsBμ14Wl(v)(vv)dσ,𝒫2\colonequalsBμ14(1κ)2Wl(v(κ)):(vv)(vv)dκdσ.\displaystyle\mathcal{P}_{1}\colonequals\int B\mu^{\frac{1}{4}}_{*}\nabla W_{l}(v)\cdot(v^{\prime}-v)\mathrm{d}\sigma,\quad\mathcal{P}_{2}\colonequals\int B\mu^{\frac{1}{4}}_{*}(1-\kappa)\nabla^{2}W_{l}(v(\kappa)):(v^{\prime}-v)\otimes(v^{\prime}-v)\mathrm{d}\kappa\mathrm{d}\sigma.

Using (2.33) and (2.30), since |Wl|lWl1|\nabla W_{l}|\lesssim lW_{l-1} we get

|𝒫1|=|Bsin2θ2μ14Wl(v)(vv)dσ|μ14vl1|vv|γ+1.\displaystyle|\mathcal{P}_{1}|=|\int B\sin^{2}\frac{\theta}{2}\mu^{\frac{1}{4}}_{*}\nabla W_{l}(v)\cdot(v-v_{*})\mathrm{d}\sigma|\lesssim\mu^{\frac{1}{4}}_{*}\langle v\rangle^{l-1}|v-v_{*}|^{\gamma+1}.

If |vv|1|v-v_{*}|\geq 1, then |vv|γ+1vvγ+1vγ+1v|γ+1||v-v_{*}|^{\gamma+1}\sim\langle v-v_{*}\rangle^{\gamma+1}\lesssim\langle v\rangle^{\gamma+1}\langle v_{*}\rangle^{|\gamma+1|}. If |vv|1|v-v_{*}|\leq 1, then μ14μ116μ116\mu^{\frac{1}{4}}_{*}\lesssim\mu^{\frac{1}{16}}\mu^{\frac{1}{16}}_{*} by Lemma 8.3 and |vv|γ+1|vv|2|v-v_{*}|^{\gamma+1}\lesssim|v-v_{*}|^{-2} since γ>3\gamma>-3. Patching together these two cases, we get

|𝒫1|(1|vv|1vl+γ+1|vv|1|vv|2μ132)μ132.\displaystyle|\mathcal{P}_{1}|\lesssim(\mathrm{1}_{|v-v_{*}|\geq 1}\langle v\rangle^{l+\gamma}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-2}\mu^{\frac{1}{32}})\mu^{\frac{1}{32}}_{*}. (8.52)

Using |2Wl|(l2+1)Wl2|\nabla^{2}W_{l}|\lesssim(l^{2}+1)W_{l-2} to get

|𝒫2|μ14v(κ)l2|vv|γ+2sin2sθ2dκdσ.\displaystyle|\mathcal{P}_{2}|\lesssim\int\mu^{\frac{1}{4}}_{*}\langle v(\kappa)\rangle^{l-2}|v-v_{*}|^{\gamma+2}\sin^{-2s}\frac{\theta}{2}\mathrm{d}\kappa\mathrm{d}\sigma. (8.53)

If |vv|1|v-v_{*}|\geq 1, then |vv|γ+2vγ+2v|γ+2||v-v_{*}|^{\gamma+2}\lesssim\langle v\rangle^{\gamma+2}\langle v_{*}\rangle^{|\gamma+2|} and v(κ)l2v(κ)vl2v|l2|vvl2v|l2|vl2v2|l2|\langle v(\kappa)\rangle^{l-2}\lesssim\langle v(\kappa)-v_{*}\rangle^{l-2}\langle v_{*}\rangle^{|l-2|}\lesssim\langle v-v_{*}\rangle^{l-2}\langle v_{*}\rangle^{|l-2|}\lesssim\langle v\rangle^{l-2}\langle v_{*}\rangle^{2|l-2|}. As a result, we have

μ14v(κ)l2|vv|γ+2μ132vl+γ.\displaystyle\mu^{\frac{1}{4}}_{*}\langle v(\kappa)\rangle^{l-2}|v-v_{*}|^{\gamma+2}\lesssim\mu^{\frac{1}{32}}_{*}\langle v\rangle^{l+\gamma}.

If |vv|1|v-v_{*}|\leq 1, then μ14μ116μ116\mu^{\frac{1}{4}}_{*}\lesssim\mu^{\frac{1}{16}}\mu^{\frac{1}{16}}_{*} by Lemma 8.3 and |vv|γ+2|vv|1|v-v_{*}|^{\gamma+2}\lesssim|v-v_{*}|^{-1} since γ>3\gamma>-3. Using |v(κ)||v|+|v||v(\kappa)|\lesssim|v|+|v_{*}|, we get |(2Wl)(v(κ))|v|l2|v|l2||(\nabla^{2}W_{l})(v(\kappa))|\lesssim\langle v\rangle^{|l-2|}\langle v_{*}\rangle^{|l-2|}. As a result, we have

μ14v(κ)l2|vv|γ+2μ132μ132|vv|1.\displaystyle\mu^{\frac{1}{4}}_{*}\langle v(\kappa)\rangle^{l-2}|v-v_{*}|^{\gamma+2}\lesssim\mu^{\frac{1}{32}}_{*}\mu^{\frac{1}{32}}|v-v_{*}|^{-1}.

Patching these two cases together, using (2.30), we get

|𝒫2|(1|vv|1vl+γ+1|vv|1|vv|1μ132)μ132.\displaystyle|\mathcal{P}_{2}|\lesssim(\mathrm{1}_{|v-v_{*}|\geq 1}\langle v\rangle^{l+\gamma}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-1}\mu^{\frac{1}{32}})\mu^{\frac{1}{32}}_{*}. (8.54)

Patching together (8.52) and (8.54), we arrive at (8.49).

Now we sketch the proof of (8.50). By Taylor expansion up to order 1, we have

D(Wl)=01Wl(v(κ))(vv)dκ.\displaystyle-\mathrm{D}(W_{l})=\int_{0}^{1}\nabla W_{l}(v(\kappa))\cdot(v^{\prime}-v)\mathrm{d}\kappa. (8.55)

Since |Wl|lWl1|\nabla W_{l}|\lesssim lW_{l-1}, we have

|BD2(Wl)μ14dσ|μ14v(κ)2l2|vv|γ+2sin2sθ2dκdσ.\displaystyle|\int B\mathrm{D}^{2}(W_{l})\mu^{\frac{1}{4}}_{*}\mathrm{d}\sigma|\lesssim\int\mu^{\frac{1}{4}}_{*}\langle v(\kappa)\rangle^{2l-2}|v-v_{*}|^{\gamma+2}\sin^{-2s}\frac{\theta}{2}\mathrm{d}\kappa\mathrm{d}\sigma. (8.56)

Comparing (8.56) with (8.53), by the same arguments as that for 𝒫2\mathcal{P}_{2}, we can get (8.50).

We set to prove (8.51). Recalling (8.55). Since |Wl|lWl1|\nabla W_{l}|\lesssim lW_{l-1} and |v(κ)||v|+|v||v(\kappa)|\lesssim|v|+|v^{\prime}_{*}|, we get |Wl(v(κ))|vl1vl1|\nabla W_{l}(v(\kappa))|\lesssim\langle v\rangle^{l-1}\langle v^{\prime}_{*}\rangle^{l-1}. Note that |vv|=|vv|sinθ2|vv|sinθ2|v^{\prime}-v|=|v-v_{*}|\sin\frac{\theta}{2}\sim|v-v^{\prime}_{*}|\sin\frac{\theta}{2} and thus

|D(Wl)|vl1vl1|vv|sinθ2,\displaystyle|\mathrm{D}(W_{l})|\lesssim\langle v\rangle^{l-1}\langle v^{\prime}_{*}\rangle^{l-1}|v-v^{\prime}_{*}|\sin\frac{\theta}{2},

which gives

|vv|γD2(Wl)(μ14)|vv|γ+2v2l2v2l2(μ14)sin2θ2.\displaystyle|v-v_{*}|^{\gamma}\mathrm{D}^{2}(W_{l})(\mu^{\frac{1}{4}})^{\prime}_{*}\lesssim|v-v^{\prime}_{*}|^{\gamma+2}\langle v\rangle^{2l-2}\langle v^{\prime}_{*}\rangle^{2l-2}(\mu^{\frac{1}{4}})^{\prime}_{*}\sin^{2}\frac{\theta}{2}.

If |vv|1|v-v_{*}|\geq 1, then |vv|γ+2vvγ+2vγ+2v|γ+2||v-v^{\prime}_{*}|^{\gamma+2}\sim\langle v-v^{\prime}_{*}\rangle^{\gamma+2}\lesssim\langle v\rangle^{\gamma+2}\langle v^{\prime}_{*}\rangle^{|\gamma+2|}. If |vv|1|v-v_{*}|\leq 1, then (μ14)μ116μ116(\mu^{\frac{1}{4}})^{\prime}_{*}\lesssim\mu^{\frac{1}{16}}\mu^{\frac{1}{16}}_{*} and |vv|γ+2|vv|1|v-v^{\prime}_{*}|^{\gamma+2}\lesssim|v-v_{*}|^{-1}. Patching these two cases together, we get

|vv|γD2(Wl)(μ14)(1|vv|1v2l+γ+1|vv|1|vv|1μ132μ132)sin2θ2.\displaystyle|v-v_{*}|^{\gamma}\mathrm{D}^{2}(W_{l})(\mu^{\frac{1}{4}})^{\prime}_{*}\lesssim(\mathrm{1}_{|v-v_{*}|\geq 1}\langle v\rangle^{2l+\gamma}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-1}\mu^{\frac{1}{32}}\mu^{\frac{1}{32}}_{*})\sin^{2}\frac{\theta}{2}.

From which together with (2.30), we get (8.51) and finish the proof. ∎

Proof of Lemma 5.1..

By (8.50) and (8.35), we directly obtain (5.1). By (8.51) and (8.35), we directly obtain (5.2). By (8.49) and (8.36), we directly obtain (5.3).

By (8.49), the imbedding H2LH^{2}\hookrightarrow L^{\infty} and (8.36), we get (5.5) and (5.6).

It remains to prove (5.4). By (2.36) and recalling |2Wl|(l2+1)Wl2|\nabla^{2}W_{l}|\lesssim(l^{2}+1)W_{l-2}, using |v(κ)v||vv|,v(κ)l2vl2v2|l2||v^{\prime}(\kappa)-v_{*}|\sim|v-v_{*}|,\langle v(\kappa)\rangle^{l-2}\lesssim\langle v^{\prime}\rangle^{l-2}\langle v_{*}\rangle^{2|l-2|}, recalling (2.42) for the change of variable vvv\rightarrow v^{\prime}, the fact sin2sθdσ11s\int\sin^{-2s}\theta\mathrm{d}\sigma\lesssim\frac{1}{1-s}, we have

|BD(Wl)μ14g(hf)dV|\displaystyle|\int B\mathrm{D}(W_{l})\mu^{\frac{1}{4}}_{*}g_{*}(hf)^{\prime}\mathrm{d}V|
\displaystyle\lesssim v(κ)l2|vv|γ+210θπ/2sin2sθ2|μ14g(hf)|dV\displaystyle\int\langle v(\kappa)\rangle^{l-2}|v^{\prime}-v_{*}|^{\gamma+2}\mathrm{1}_{0\leq\theta\leq\pi/2}\sin^{-2s}\frac{\theta}{2}|\mu^{\frac{1}{4}}_{*}g_{*}(hf)^{\prime}|\mathrm{d}V
\displaystyle\lesssim vl2v2|l2||vv|γ+210θπ/4sin2sθ|μ14ghf|dV\displaystyle\int\langle v\rangle^{l-2}\langle v_{*}\rangle^{2|l-2|}|v-v_{*}|^{\gamma+2}\mathrm{1}_{0\leq\theta\leq\pi/4}\sin^{-2s}\theta|\mu^{\frac{1}{4}}_{*}g_{*}hf|\mathrm{d}V
\displaystyle\lesssim (1|vv|1vl+γ+1|vv|1|vv|1μ132)μ132|ghf|dvdv\displaystyle\int(\mathrm{1}_{|v-v_{*}|\geq 1}\langle v\rangle^{l+\gamma}+\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-1}\mu^{\frac{1}{32}})\mu^{\frac{1}{32}}_{*}|g_{*}hf|\mathrm{d}v_{*}\mathrm{d}v
\displaystyle\lesssim |μ164g|L2|h|L2l+γ/2|f|L2γ/2+|μ164g|L2|μ164h|L2|μ164f|L2|μ164g|L2|h|L2l+γ/2|f|L2γ/2,\displaystyle|\mu^{\frac{1}{64}}g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}|f|_{L^{2}_{\gamma/2}}+|\mu^{\frac{1}{64}}g|_{L^{2}}|\mu^{\frac{1}{64}}h|_{L^{2}}|\mu^{\frac{1}{64}}f|_{L^{2}}\lesssim|\mu^{\frac{1}{64}}g|_{L^{2}}|h|_{L^{2}_{l+\gamma/2}}|f|_{L^{2}_{\gamma/2}},

where in the last line we use

1|vv|1|vv|1μ132|g|dv|μ164g|L2.\displaystyle\int\mathrm{1}_{|v-v_{*}|\leq 1}|v-v_{*}|^{-1}\mu^{\frac{1}{32}}_{*}|g_{*}|\mathrm{d}v_{*}\lesssim|\mu^{\frac{1}{64}}g|_{L^{2}}.

The proof of the lemma is complete now. ∎

Acknowledgments. Yu-Long Zhou was supported by National Key R&D Program of China under the grant 2021YFA1002100 and NSF of China under the grant 12001552. The author is indebted to Prof. Ling-Bing He for his continuous encouragement and supervision. Great gratitude goes to Prof. Xuguang Lu for his insightful comments, especially in the scope and focus of the article.

References

  • [1] R. Alexandre, On some related non homogeneous 3D Boltzmann models in the non cutoff case, Journal of Mathematics of Kyoto University, 40 (2000), pp. 493–524.
  • [2] R. Alexandre, L. Desvillettes, C. Villani, and B. Wennberg, Entropy dissipation and long-range interactions, Archive for Rational Mechanics and Analysis, 152 (2000), pp. 327–355.
  • [3] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Communications in Mathematical Physics, 304 (2011), pp. 513–581.
  • [4]  , The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, Journal of Functional Analysis, 262 (2012), pp. 915–1010.
  • [5] G.-C. Bae, J. W. Jang, and S.-B. Yun, The relativistic quantum Boltzmann equation near equilibrium, Archive for Rational Mechanics and Analysis, 240 (2021), pp. 1593–1644.
  • [6] D. Benedetto, F. Castella, R. Esposito, and M. Pulvirenti, Some considerations on the derivation of the nonlinear quantum Boltzmann equation, Journal of Statistical Physics, 116 (2004), pp. 381–410.
  • [7]  , Some considerations on the derivation of the nonlinear quantum Boltzmann equation II: the low density regime, Journal of Statistical Physics, 124 (2006), pp. 951–996.
  • [8]  , A short review on the derivation of the nonlinear quantum Boltzmann equations, Communications in Mathematical Sciences, 5 (2007), pp. 55–71.
  • [9]  , From the N-body Schrödinger equation to the quantum Boltzmann equation: a term-by-term convergence result in the weak coupling regime, Communications in Mathematical Physics, 277 (2008), pp. 1–44.
  • [10] D. Benedetto, M. Pulvirenti, F. Castella, and R. Esposito, On the weak-coupling limit for bosons and fermions, Mathematical Models and Methods in Applied Sciences, 15 (2005), pp. 1811–1843.
  • [11] M. Briant and A. Einav, On the Cauchy problem for the homogeneous Boltzmann–Nordheim equation for bosons: local existence, uniqueness and creation of moments, Journal of Statistical Physics, 163 (2016), pp. 1108–1156.
  • [12] S. Cai and X. Lu, The spatially homogeneous Boltzmann equation for Bose–Einstein particles: Rate of strong convergence to equilibrium, Journal of Statistical Physics, 175 (2019), pp. 289–350.
  • [13] S. Chapman and T. G. Cowling, The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, Cambridge university press, 1990.
  • [14] J. Dolbeault, Kinetic models and quantum effects: A modified Boltzmann equation for Fermi-Dirac Particles, Archive for Rational Mechanics and Analysis, 127 (1994), pp. 101–131.
  • [15] R. Duan, On the Cauchy problem for the Boltzmann equation in the whole space: Global existence and uniform stability in L2ξ(HNx)L^{2}_{\xi}(H^{N}_{x}), Journal of Differential Equations, 244 (2008), pp. 3204–3234.
  • [16] R. Duan, S. Liu, S. Sakamoto, and R. M. Strain, Global mild solutions of the Landau and non-cutoff Boltzmann equations, Communications on Pure and Applied Mathematics, 74 (2021), pp. 932–1020.
  • [17] L. Erdős, M. Salmhofer, and H.-T. Yau, On the quantum Boltzmann equation, Journal of Statistical Physics, 116 (2004), pp. 367–380.
  • [18] M. Escobedo, S. Mischler, and M. A. Valle, Homogeneous Boltzmann equation in quantum relativistic kinetic theory, Electronic Journal of Differential Equations, 4 (2003), pp. 1–85.
  • [19] M. Escobedo, S. Mischler, and J. J. L. Velázquez, On the fundamental solution of a linearized Uehling–Uhlenbeck equation, Archive for Rational Mechanics and Analysis, 186 (2007), pp. 309–349.
  • [20]  , Singular solutions for the Uehling–Uhlenbeck equation, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 138 (2008), pp. 67–107.
  • [21] M. Escobedo and J. Velázquez, On the blow up and condensation of supercritical solutions of the Nordheim equation for bosons, Communications in Mathematical Physics, 330 (2014), pp. 331–365.
  • [22]  , Finite time blow-up and condensation for the bosonic Nordheim equation, Inventiones Mathematicae, 200 (2015), pp. 761–847.
  • [23] P. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, Journal of the American Mathematical Society, 24 (2011), pp. 771–847.
  • [24] Y. Guo, Classical solutions to the Boltzmann equation for molecules with an angular cutoff, Archive for Rational Mechanics and Analysis, 169 (2003), pp. 305–353.
  • [25]  , The Vlasov-Poisson-Landau system in a periodic box, Journal of the American Mathematical Society, 25 (2012), pp. 759–812.
  • [26] L.-B. He and Y.-L. Zhou, Asymptotic analysis of the linearized boltzmann collision operator from angular cutoff to non-cutoff, Annales de l’Institut Henri Poincaré C, (2022).
  • [27] N. Jiang, L. Xiong, and K. Zhou, The incompressible Navier-Stokes-Fourier limit from Boltzmann-Fermi-Dirac equation, arXiv preprint arXiv:2102.02656, (2021).
  • [28] W. Li and X. Lu, Global existence of solutions of the Boltzmann equation for Bose–Einstein particles with anisotropic initial data, Journal of Functional Analysis, 276 (2019), pp. 231–283.
  • [29] P. L. Lions, Compactness in Boltzmann’s equation via Fourier integral operators and applications. III, Journal of Mathematics of Kyoto University, 34 (1994), pp. 539–584.
  • [30] X. Lu, A modified Boltzmann equation for Bose–Einstein particles: isotropic solutions and long-time behavior, Journal of Statistical Physics, 98 (2000), pp. 1335–1394.
  • [31]  , On spatially homogeneous solutions of a modified Boltzmann equation for Fermi–Dirac particles, Journal of Statistical Physics, 105 (2001), pp. 353–388.
  • [32]  , On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles, Journal of Statistical Physics, 116 (2004), pp. 1597–1649.
  • [33]  , The Boltzmann equation for Bose–Einstein particles: velocity concentration and convergence to equilibrium, Journal of Statistical Physics, 119 (2005), pp. 1027–1067.
  • [34]  , On the Boltzmann equation for Fermi–Dirac particles with very soft potentials: Averaging compactness of weak solutions, Journal of Statistical Physics, 124 (2006), pp. 517–547.
  • [35]  , On the Boltzmann equation for Fermi–Dirac particles with very soft potentials: Global existence of weak solutions, Journal of Differential equations, 245 (2008), pp. 1705–1761.
  • [36]  , The Boltzmann equation for Bose-Einstein particles: condensation in finite time, Journal of Statistical Physics, 150 (2013), pp. 1138–1176.
  • [37]  , The Boltzmann equation for Bose–Einstein particles: regularity and condensation, Journal of Statistical Physics, 156 (2014), pp. 493–545.
  • [38]  , Long time convergence of the Bose–Einstein condensation, Journal of Statistical Physics, 162 (2016), pp. 652–670.
  • [39]  , Long time strong convergence to Bose-Einstein distribution for low temperature, Kinetic and Related Models, 11 (2018), pp. 715–734.
  • [40] X. Lu and B. Wennberg, On stability and strong convergence for the spatially homogeneous Boltzmann equation for Fermi-Dirac particles, Archive for Rational Mechanics and Analysis, 168 (2003), pp. 1–34.
  • [41] J. Lukkarinen and H. Spohn, Not to normal order–notes on the kinetic limit for weakly interacting quantum fluids, Journal of Statistical Physics, 134 (2009), pp. 1133–1172.
  • [42] Y. Morimoto and S. Sakamoto, Global solutions in the critical Besov space for the non-cutoff Boltzmann equation, Journal of Differential Equations, 261 (2016), pp. 4073–4134.
  • [43] L. Nordhiem, On the kinetic method in the new statistics and application in the electron theory of conductivity, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 119 (1928), pp. 689–698.
  • [44] Z. Ouyang and L. Wu, On the quantum Boltzmann equation near Maxwellian and vacuum, arXiv preprint arXiv:2102.00657, (2021).
  • [45] H. Spohn, Kinetics of the Bose–Einstein condensation, Physica D: Nonlinear Phenomena, 239 (2010), pp. 627–634.
  • [46] R. M. Strain and Y. Guo, Almost exponential decay near Maxwellian, Communications in Partial Differential Equations, 31 (2006), pp. 417–429.
  • [47] E. A. Uehling and G. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases. i, Physical Review, 43 (1933), p. 552.
  • [48] S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proceedings of the Japan Academy, 50 (1974), pp. 179–184.