This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Gonality of the modular curve X0(N)X_{0}(N)

Filip Najman Filip Najman
University of Zagreb
Bijenička Cesta 30
10000 Zagreb
Croatia
fnajman@math.hr http://web.math.pmf.unizg.hr/ fnajman
 and  Petar Orlić Petar Orlić
University of Zagreb
Bijenička Cesta 30
10000 Zagreb
Croatia
petar.orlic@math.hr
Abstract.

In this paper we determine the \mathbb{Q}-gonalities of the modular curves X0(N)X_{0}(N) for all N<145N<145. We determine the \mathbb{C}-gonality of many of these curves and the \mathbb{Q}-gonalities and \mathbb{C}-gonalities for many larger values of NN.

Using these results and some further work, we determine all the modular curves X0(N)X_{0}(N) of gonality 44, 55 and 66 over \mathbb{Q}. We also find the first known instances of pentagonal curves X0(N)X_{0}(N) over \mathbb{C}.

Key words and phrases:
Modular curves, Gonality
1991 Mathematics Subject Classification:
11G18, 14H35, 14H51
The authors were supported by the QuantiXLie Centre of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004) and by the Croatian Science Foundation under the project no. IP-2018-01-1313.

1. Introduction

Let kk be a field and CC a curve over kk (throughout the paper we assume all curves are geometrically integral). The gonality gonkC\operatorname{gon}_{k}C of CC over kk is defined to be the least degree of a non-constant morphism f:C1f:C\rightarrow{\mathbb{P}}^{1}, or equivalently the least degree of a non-constant function fk(C)f\in k(C).

Gonalities of modular curves and their quotients have been the subject of extensive research by many people. The study of gonalities of the classical modular curve X0(N)X_{0}(N) started with Ogg [24], who determined the hyperelliptic modular curves X0(N)X_{0}(N). Hasegawa and Shimura [12] determined both the X0(N)X_{0}(N) that are trigonal over \mathbb{C} and the X0(N)X_{0}(N) that are trigonal over \mathbb{Q} and Jeon and Park [18] determined the X0(N)X_{0}(N) that are tetragonal over \mathbb{C}. More generally, Abramovich [1] gave a lower bound for the gonality over \mathbb{C} for any modular curve (which is usually not sharp).

In this paper we will study the gonalities of the modular curves X0(N)X_{0}(N) over \mathbb{Q} instead of over \mathbb{C}. The motivation for this comes from two directions.

Firstly, the \mathbb{Q}-gonality of a curve is arguably more interesting from an arithmetical point of view than its \mathbb{C}-gonality. For example, when one wants to determine the modular curves X0(N)X_{0}(N) and X1(M,N)X_{1}(M,N) with infinitely many degree dd points (over \mathbb{Q}), a question of fundamental arithmetical importance, as these curves parametrise elliptic curves with level structures, then determining all such curves of gonality dd plays a key role.

Using the gonality of the modular curves as one of the main ingredients, all the modular curves X1(M,N)X_{1}(M,N) with infinitely many degree dd points have been determined for d=2d=2 by Mestre [22], d=3d=3 by Jeon, Kim and Schweizer [17], for d=4d=4 by Jeon, Kim and Park [16] and for d=5,6d=5,6 by Derickx and Sutherland [8]. The same problem has been solved for the modular curves X0(N)X_{0}(N) for d=2d=2 by Bars [3] and for d=3d=3 by Jeon [15].

The other motivation comes from the database, which is in construction, of modular curves that will be incorporated in the LMFDB [20], which tabulates LL-functions, modular forms, elliptic curves and related objects. At the moment of writing of this paper, there were 115 modular curves X0(N)X_{0}(N) in LMFDB, all with N127N\leq 127. The exact \mathbb{Q}-gonality was listed as known for less than half of them. Our work determines the \mathbb{Q}-gonality for all the NN in this database.

Although our interest lies primarily in \mathbb{Q}-gonalities, we compute and document the \mathbb{C}-gonality wherever possible. Our main result is the following theorem.

Theorem 1.1.

The \mathbb{Q}-gonalities and \mathbb{C}-gonalities of X0(N)X_{0}(N) are as listed in Table 1, Table 2 and Table 3.

One immediate consequence of our result is the determination of all X0(N)X_{0}(N) that are tetragonal over \mathbb{Q}. A curve that is tetragonal over \mathbb{Q} has to have gonality 4\leq 4 over \mathbb{C} and all curves satisfying this are known by the aforementioned results [24, 12, 18]. As we determine in 1.1 all NN satisfying this and that have gonality 44 over \mathbb{Q} the following result immediately follows.

Theorem 1.2.

The modular curve X0(N)X_{0}(N) is tetragonal over \mathbb{Q} if and only if

N{\displaystyle N\in\{ 38,42,44,51,52,53,55,56,57,58,60,61,62,63,65,66,67,68,69,70,72,73,74,75,\displaystyle 38,42,44,51,52,53,55,56,57,58,60,61,62,63,65,66,67,68,69,70,72,73,74,75,
77,78,79,80,83,85,87,88,89,91,92,94,95,96,98,100,101,103,104,107,111,119,\displaystyle 77,78,79,80,83,85,87,88,89,91,92,94,95,96,98,100,101,103,104,107,111,119,
121,125,131,142,143,167,191}.\displaystyle 121,125,131,142,143,167,191\}.

After 1.2 and the aforementioned results [24, 12, 18] which determine all X0(N)X_{0}(N) of \mathbb{C}-gonality 4\leq 4, the question of determining the pentagonal, and after that, hexagonal (both over \mathbb{Q} and over \mathbb{C}) curves X0(N)X_{0}(N) naturally arises. Surprisingly, there seems to have been no known curve that is pentagonal either over \mathbb{Q} or over \mathbb{C} (at least to our knowledge); see [12, p.139-140] for a short discussion stating this. As a byproduct of our results and with some additional work, we determine all X0(N)X_{0}(N) that are pentagonal of hexagonal over \mathbb{Q}.

Theorem 1.3.

The modular curve X0(N)X_{0}(N) is pentagonal over \mathbb{Q} if and only if N=109N=109.

Theorem 1.4.

The modular curve X0(N)X_{0}(N) is hexagonal over \mathbb{Q} if and only if

N{\displaystyle N\in\{ 76,82,84,86,90,93,97,99,108,112,113,115118,122124,127129,135,\displaystyle 76,82,84,86,90,93,97,99,108,112,113,115-118,122-124,127-129,135,
137,139,141,144,146,147,149,151,155,159,162,164,169,179,181,215,227,239}.\displaystyle 137,139,141,144,146,147,149,151,155,159,162,164,169,179,181,215,227,239\}.

We also show that X0(N)X_{0}(N) is pentagonal over \mathbb{C} for N=97N=97 and 169169, obtaining the first known such curves.

Our methods are perhaps most similar to the work of Derickx and van Hoeij [9], where they compute the exact \mathbb{Q}-gonalities of the modular curves X1(N)X_{1}(N) for N40N\leq 40 and give upper bounds for N250N\leq 250. Some of our methods will be similar to the ones in [9], but some will be different; the differences arise out of the intrinsic properties of the different modular curves. In particular, on one hand the properties that make X0(N)X_{0}(N) easier to deal with is its lower genus and an abundance of involutions (especially for highly composite NN). On the other hand, X0(N)X_{0}(N) has much fewer cusps and hence much fewer modular units, the main tool in [9] for obtaining upper bounds. Another difficulty with X0(N)X_{0}(N), as opposed to X1(N)X_{1}(N), is that it is in general hard to obtain reasonable plane models, making computations in function fields much more computationally demanding.

We now give a brief description of our methods, and compare them to the methods of [9]. The way to determine the exact gonality of a modular curve is to give a lower bound and an upper bound for the gonality which match each other. We explain both in more detail and rigor in Section 3 and Section 4.

The authors of [9] were (perhaps surprisingly) able to use a single method to obtain lower bounds and a single method to obtain upper bounds. The lower bounds were obtained using the well-known fact that gon𝔽p(C)gon(C)\operatorname{gon}_{\mathbb{F}_{p}}(C)\leq\operatorname{gon}_{\mathbb{Q}}(C) for a prime of good reduction pp of CC and by then computing gon𝔽p(C)\operatorname{gon}_{\mathbb{F}_{p}}(C), which is a finite computation. This will be one of our main tools too, together with the Castelnuovo-Severi inequality (see 3.3) and using gon(C)gon(C)\operatorname{gon}_{\mathbb{C}}(C)\leq\operatorname{gon}_{\mathbb{Q}}(C) together with known results about \mathbb{C}-gonalities. An especially interesting method, described in Section 6, is Mordell-Weil sieving on the Brill-Noether varieties Wd1(X)W_{d}^{1}(X), which we use to show that X0(97)X_{0}(97) is of gonality 6 and X0(133)X_{0}(133) is of gonality 8 over \mathbb{Q}. To produce lower bounds on the \mathbb{C}-gonality, we will use computations on Betti numbers and proven parts of the Green conjecture (see e.g. 3.8). There will be a few instances in which we also use other methods.

Derickx and van Hoeij obtained their upper bounds by constructing modular units (functions whose polar divisor is supported only on cusps) of a certain degree. In certain instances we will also obtain upper bounds by explicitly constructing functions of degree dd by searching in Riemann-Roch spaces of sets of divisors with some fixed support. For us the set of divisors through which we will search through will not be supported only on cusps, but will also include CM points and even non-CM non-cuspidal rational points. We will also construct functions on X0(N)X_{0}(N) by finding functions gg of degree kk on X0(N)/wdX_{0}(N)/w_{d} or X0(d)X_{0}(d) for d|Nd|N and then pulling them back via the quotient map f:X0(N)X0(N)/wdf:X_{0}(N)\rightarrow X_{0}(N)/w_{d} or f:X0(N)X0(d)f:X_{0}(N)\rightarrow X_{0}(d), thus obtaining a map fgf^{*}g of degree kdegfk\cdot\deg f. Apart from this we will also use the Tower theorem (see 4.5) which allows us to determine the \mathbb{Q}-gonality from the \mathbb{C}-gonality under certain assumptions.

A lot of our results rely on extensive computation in Magma [5]. To compute models for X0(N)X_{0}(N) and their quotients by Atkin-Lehner involutions, we used the code written by Philippe Michaud-Jacobs as part of an ongoing collaborative project on computing points of low degree on modular curves [2].

It is natural to wonder why we stopped at the point where we did and whether one can determine \mathbb{Q}-gonalities of X0(N)X_{0}(N) for larger NN. We discuss this, the complexity of the most computationally demanding parts of our computations, and possible further work briefly in Section 8.

The code that verifies all our computations can be found on:

https://github.com/orlic1/gonality_X0.

All of our computations were performed on the Euler server at the Department of Mathematics, University of Zagreb with a Intel Xeon W-2133 CPU running at 3.60GHz and with 64 GB of RAM.

Acknowledgements.

We are grateful to Maarten Derickx for the ideas used in Section 6 that helped resolve the cases X0(N)X_{0}(N) for N=97,133N=97,133 and 145145, and to Andreas Schweizer for helpful comments. We are grateful to the anonymous referee for many helpful comments that have greatly improved the exposition.

2. Notation

We now set up notation that will be used throughout the paper. Throughout the paper pp will be a prime number and qq a power of pp. For a curve XX the genus of XX will be denoted by g(X)g(X). By X0(N)X_{0}(N) we denote the classical modular curve parametrizing pairs (E,C)(E,C) of generalized elliptic curves together with a cyclic subgroup CC of order NN.

For any divisor dd of NN such that (d,N/d)=1(d,N/d)=1 the Atkin-Lehner involution wdw_{d} acts on (E,C)(E,C) by sending it to (E/C,E[N]/C)(E/C,E[N]/C). The Atkin-Lehner involutions form a subgroup of Aut(X0(N))\operatorname{Aut}(X_{0}(N)) isomorphic to (/2)ω(N)(\mathbb{Z}/2\mathbb{Z})^{\omega(N)}, where ω(N)\omega(N) is the number of prime divisors of NN. The curve X0(N)X_{0}(N) and all its Atkin-Lehner involutions are defined over \mathbb{Q}. They induce involutions on DivX0(N)\operatorname{Div}X_{0}(N) and PicdX0(N)\operatorname{Pic}^{d}X_{0}(N) which we will also denote by wNw_{N}.

The quotient X0(N)/wNX_{0}(N)/w_{N} is denoted by X0+(N)X_{0}^{+}(N) and the quotient of X0(N)X_{0}(N) by the whole group of Atkin-Lehner involutions is denoted by X0(N)X_{0}^{*}(N). By J0(N)J_{0}(N) we denote the Jacobian of X0(N)X_{0}(N) and by J0(N):=(1wN)J0(N)J_{0}(N)^{-}:=(1-w_{N})J_{0}(N).

3. Lower bounds

In this section we give all the results used to obtain lower bounds for the gonalities of X0(N)X_{0}(N). We first mention two obvious lower bounds for a curve CC defined over a number field KK:

(1) gonCgonKC,\operatorname{gon}_{\mathbb{C}}C\leq\operatorname{gon}_{K}C,

and

(2) gon𝔽𝔭CgonKC,\operatorname{gon}_{\mathbb{F}_{\mathfrak{p}}}C\leq\operatorname{gon}_{K}C,

where 𝔭\mathfrak{p} is a prime ideal of good reduction of CC and 𝔽𝔭\mathbb{F}_{\mathfrak{p}} is the residue field of 𝔭\mathfrak{p}. The determination of gon𝔽𝔭C\operatorname{gon}_{\mathbb{F}_{\mathfrak{p}}}C is a finite task, although often a computationally difficult one. More explicitly, gon𝔽𝔭C\operatorname{gon}_{\mathbb{F}_{\mathfrak{p}}}C can be determined by checking the Riemann-Roch spaces of all degree dd effective 𝔽𝔭\mathbb{F}_{\mathfrak{p}}-rational divisors DD; the smallest dd such that there exists such a divisor DD of degree dd for which l(D)2l(D)\geq 2 is the 𝔽𝔭\mathbb{F}_{\mathfrak{p}}-gonality of CC.

We will be interested only in the case K=K=\mathbb{Q} and 𝔭=p\mathfrak{p}=p, a rational prime. The following lemma will be useful in making the computation of gon𝔽pC\operatorname{gon}_{\mathbb{F}_{p}}C much quicker.

Lemma 3.1.

Let C/𝔽pC/\mathbb{F}_{p} be a curve such that #C(𝔽p)=n\#C(\mathbb{F}_{p})=n. Suppose that there exists a function ff of degree dd in 𝔽p(C)\mathbb{F}_{p}(C). Then:

  • a)

    There exists a function gg of degree dd such that its polar divisor is supported on at most np+1\left\lfloor\frac{n}{p+1}\right\rfloor points PC(𝔽p)P\in C(\mathbb{F}_{p}).

  • b)

    There exists a function hh of degree dd such that its polar divisor is supported on at least np+1\left\lceil\frac{n}{p+1}\right\rceil points PC(𝔽p)P\in C(\mathbb{F}_{p}).

Proof.

We will prove a), as b) is proved analogously. As ff maps C(𝔽p)C(\mathbb{F}_{p}) into 1(𝔽p){\mathbb{P}}^{1}(\mathbb{F}_{p}), it follows by the pigeonhole principle that there exists a c1(𝔽p)c\in{\mathbb{P}}^{1}(\mathbb{F}_{p}) such that f1(c)f^{-1}(c) consists of at most np+1\left\lfloor\frac{n}{p+1}\right\rfloor points. If c=c=\infty, then let g:=fg:=f, otherwise we define g(x):=1f(x)cg(x):=\frac{1}{f(x)-c}. The function gg obviously satisfies the claim. ∎

Proposition 3.2.

Let f:XYf:X\rightarrow Y be a non-constant morphism of curves over kk. Then gonk(Y)gonk(X)\operatorname{gon}_{k}(Y)\leq\operatorname{gon}_{k}(X).

Proof.

This is [25, Proposition A.1 (vii)] or [23, Lemma 1.3]. ∎

A very useful tool for producing a lower bound on the gonality is the Castelnuovo-Severi inequality (see [27, Theorem 3.11.3] for a proof).

Proposition 3.3 (Castelnuovo-Severi inequality).

Let kk be a perfect field, and let X,Y,ZX,\ Y,\ Z be curves over kk. Let non-constant morphisms πY:XY\pi_{Y}:X\rightarrow Y and πZ:XZ\pi_{Z}:X\rightarrow Z over kk be given, and let their degrees be mm and nn, respectively. Assume that there is no morphism XXX\rightarrow X^{\prime} of degree >1>1 through which both πY\pi_{Y} and πZ\pi_{Z} factor. Then the following inequality hold:

(3) g(X)mg(Y)+ng(Z)+(m1)(n1).g(X)\leq m\cdot g(Y)+n\cdot g(Z)+(m-1)(n-1).

We now deduce an easy corollary of 3.3.

Corollary 3.4.

Let XX and YY be curves over kk such that there exists a non-constant morphism π:XY\pi:X\rightarrow Y of degree 22. If g(X)2g(Y)d1g(X)-2g(Y)\geq d-1 and gonk(Y)>(d1)/2\operatorname{gon}_{k}(Y)>\lfloor(d-1)/2\rfloor, then gonk(X)d\operatorname{gon}_{k}(X)\geq d.

Proof.

Suppose the opposite and let f:X1f:X\rightarrow{\mathbb{P}}^{1} be a morphism of degree d1\leq d-1. If both ff and π\pi factor through a morphism XXX\rightarrow X^{\prime}, this morphism is of degree 22 and XYX^{\prime}\simeq Y; this implies that there is a morphism f:Y1f:Y\rightarrow{\mathbb{P}}^{1} of degree at most (d1)/2\lfloor(d-1)/2\rfloor. This is not yet a contradiction, since we still need to rule out the possibility of such an ff being defined over k¯\overline{k}, but not over kk. As fπf\circ\pi and π\pi are defined over kk we have

fπ=(fπ)σ=fσπ.f\circ\pi=(f\circ\pi)^{\sigma}=f^{\sigma}\circ\pi.

Since π\pi is a non-constant morphism it is surjective over k¯\overline{k}, so it follows that f=fσf=f^{\sigma} and hence ff is defined over kk.

On the other hand if ff and π\pi do not both factor through a morphism of degree >1>1, the Castelnuovo-Severi inequality (3) applied to π\pi and ff gives a contradiction. ∎

Lemma 3.5.

Let XX be a curve, pp a prime of good reduction for XX and qq a power of pp. Suppose #X(𝔽q)>d(q+1)\#X(\mathbb{F}_{q})>d(q+1) for some dd. Then gon(X)>d.\operatorname{gon}_{\mathbb{Q}}(X)>d.

Proof.

Let f𝔽q(X)f\in\mathbb{F}_{q}(X) be a function of degree d\leq d. Then for any c1(𝔽q)c\in{\mathbb{P}}^{1}(\mathbb{F}_{q}) we have #f1(c)d\#f^{-1}(c)\leq d. Since ff sends X(𝔽q)X(\mathbb{F}_{q}) into 1(𝔽q){\mathbb{P}}^{1}(\mathbb{F}_{q}), it follows that #X(𝔽q)d(q+1)\#X(\mathbb{F}_{q})\leq d(q+1). ∎

3.1. Lower bounds for gonality over \mathbb{C}

Here we use proven parts of Green’s conjecture to obtain a lower bound for gonX\operatorname{gon}_{\mathbb{C}}X, which in turn gives us a lower bound on gonX\operatorname{gon}_{\mathbb{Q}}X by (1). We mostly follow the notation of [18], stated in the language of divisors instead of line bundles. A gdrg_{d}^{r} is a subspace VV of L(D)L(D), for a divisor DD on XX, such that degD=d\deg D=d and dimV=r+1\dim V=r+1. Since removing the base locus of a linear series decreases the degree while preserving rr, the gonality gonX\operatorname{gon}_{\mathbb{C}}X is the smallest dd such that XX has a gd1.g_{d}^{1}.

Let DD be a divisor on XX and KK a canonical divisor on XX. The Clifford index of DD is the integer

Cliff(D):=degD2((D)1),\operatorname{{Cliff}}(D):=\deg D-2(\ell(D)-1),

and the Clifford index of XX is

Cliff(X):=min{Cliff(D)(D)2 and (KD)2}.\operatorname{{Cliff}}(X):=\min\{\operatorname{{Cliff}}(D)\mid\ell(D)\geq 2\text{ and }\ell(K-D)\geq 2\}.

The Clifford index gives bounds for the \mathbb{C}-gonality of XX (see [6]):

(4) Cliff(X)+2gonXCliff(X)+3.\operatorname{{Cliff}}(X)+2\leq\operatorname{gon}_{\mathbb{C}}X\leq\operatorname{{Cliff}}(X)+3.

The Clifford dimension of XX is defined to be

CD(X):=min{(D)1Cliff(D)=Cliff(X)}.\operatorname{{CD}}(X):=\min\{\ell(D)-1\mid\operatorname{{Cliff}}(D)=\operatorname{{Cliff}}(X)\}.

Let XX be a non-hyperelliptic curve. It has a canonical embedding Xg1X\hookrightarrow{\mathbb{P}}^{g-1}. Let S:=[X0,Xg1]S:=\mathbb{C}[X_{0},\ldots X_{g-1}], let IXI_{X} be the ideal of XX and SXS_{X} be SS-module SX:=S/IXS_{X}:=S/I_{X}. Let

(5) 0Fg1F2F1SSX00\rightarrow F_{g-1}\rightarrow\cdots F_{2}\rightarrow F_{1}\rightarrow S\rightarrow S_{X}\rightarrow 0

be the minimal free resolution of SXS_{X}, where

Fi=jS(ij)βi,j.F_{i}=\bigoplus_{j\in\mathbb{Z}}S(-i-j)^{\beta_{i,j}}.

The numbers βi,j\beta_{i,j} are called the graded Betti numbers. Green’s conjecture relates graded Betti numbers with the existence of gdrg_{d}^{r}. We state it as in [26, p.84] (note that the indices of Betti numbers are defined differently there).

Conjecture 3.6 (Green [11]).

Let XX be a curve of genus gg. Then βp,20\beta_{p,2}\neq 0 if and only if there exists a divisor DD on XX of degree dd such that a subspace gdr of L(D)g_{d}^{r}\text{ of }L(D) satisfies dg1d\leq g-1, r=(D)11r=\ell(D)-1\geq 1 and d2rp.d-2r\leq p.

The “if” part of the statement has been proved by Green and Lazarsfeld in the appendix of [11].

Theorem 3.7 (Green and Lazarsfeld, Appendix to [11]).

Let XX be a curve of genus gg. If βp,2=0,\beta_{p,2}=0, then there does not exist a divisor DD on XX of degree dd such that a subspace gdr of L(D)g_{d}^{r}\text{ of }L(D) satisfies dg1d\leq g-1, r=(D)11r=\ell(D)-1\geq 1 and d2rp.d-2r\leq p.

For the ease of the reader we state the direct consequence of this theorem that we are going to use.

Corollary 3.8.

Let XX be a curve of genus g6g\geq 6 with β3,2=0\beta_{3,2}=0. Then XX has no g51g_{5}^{1}.

4. Upper bounds

In this section we give all the results used to obtain upper bounds for the gonalities of X0(N)X_{0}(N).

Proposition 4.1.

Let XX be a curve of genus gg over a field kk.

  • (i)

    If X(k)X(k)\neq\emptyset, then gonk(X)g+1\operatorname{gon}_{k}(X)\leq g+1. If X(k)X(k)\neq\emptyset and g2g\geq 2, then gonk(X)g\operatorname{gon}_{k}(X)\leq g.

  • (ii)

    If kk is algebraically closed, then gonk(X)g+32\operatorname{gon}_{k}(X)\leq\lfloor\frac{g+3}{2}\rfloor.

Proof.

This is [25, Proposition A.1 (iv) and (v)]. ∎

Proposition 4.2.

Let f:XYf:X\rightarrow Y be a non-constant morphism of curves over kk. Then gonk(X)degfgonk(Y)\operatorname{gon}_{k}(X)\leq\deg f\cdot\operatorname{gon}_{k}(Y).

Proof.

This is trivial; see also [25, Proposition A.1 (vi)]. ∎

Proposition 4.3.

Let pp be a rational prime. There exists a morphism from X0(pN)X_{0}(pN) to X0(N)X_{0}(N) defined over \mathbb{Q} which is of degree p+1p+1 if pNp\nmid N and of degree pp if pNp\mid N.

Proof.

The map πp:X0(pN)X0(N)\pi_{p}:X_{0}(pN)\rightarrow X_{0}(N) sends the point corresponding to (E,CpN)(E,C_{pN}), where CpNC_{pN} is a cyclic subgroup of EE of order pNpN, to (E,pCpN)(E,pC_{pN}). Thus the degree of πp\pi_{p} is the number of points (E,X)(E,X) that satisfy πp((E,X))=(E,CN)\pi_{p}((E,X))=(E,C_{N}) for a given a fixed subgroup CNC_{N} of EE. This is equal to the number of cyclic subgroups XX of (/pN)2(\mathbb{Z}/pN\mathbb{Z})^{2} which satisfy pX=CNpX=C_{N}, which is easily seen to be as claimed.

We now state the Tower theorem and two very useful corollaries.

Theorem 4.4 (The Tower theorem).

Let CC be a curve defined over a perfect field kk and f:C1f:C\rightarrow{\mathbb{P}}^{1} be a non-constant morphism over k¯\overline{k} of degree dd. Then there exists a curve CC^{\prime} defined over kk and a non-constant morphism CCC\rightarrow C^{\prime} defined over kk of degree dd^{\prime} dividing dd such that

g(C)(dd1)2.g(C^{\prime})\leq\left(\frac{d}{d^{\prime}}-1\right)^{2}.
Proof.

This is [23, Theorem 2.1]. For a published proof, see [25, Proposition 2.4]. ∎

Corollary 4.5.

Let CC be a curve defined over a perfect field kk such that C(k)C(k)\neq\emptyset and let f:C1f:C\rightarrow{\mathbb{P}}^{1} be a non-constant morphism over k¯\overline{k} of prime degree dd such that g(C)>(d1)2g(C)>(d-1)^{2}. Then there exists a non-constant morphism C1C\rightarrow{\mathbb{P}}^{1} of degree dd defined over kk.

Proof.

From [12, Corollary 1.7.] it immediately follows that there exists a curve CC^{\prime} of genus 0 and a non-constant morphism CCC\rightarrow C^{\prime} of degree dd defined over kk. Since C(k)C(k)\neq\emptyset, it follows C(k)C^{\prime}(k)\neq\emptyset. Hence CC^{\prime} is isomorphic to 1{\mathbb{P}}^{1} over kk, proving our claim. ∎

Corollary 4.6.
  • (i)

    Let CC be a curve over \mathbb{Q} of genus 5\geq 5 which is trigonal over \mathbb{C} and such that C()C(\mathbb{Q})\neq\emptyset. Then CC is trigonal over \mathbb{Q}.

  • (ii)

    Let CC be a curve defined over \mathbb{Q} with gon(X)=4\operatorname{gon}_{\mathbb{C}}(X)=4 and g(X)10g(X)\geq 10 and such that C()C(\mathbb{Q})\neq\emptyset. Then gon(X)=4\operatorname{gon}_{\mathbb{Q}}(X)=4.

Proof.

Part (i) follows immediately from 4.5 by specializing CC^{\prime} to be 1{\mathbb{P}}^{1} and dd to be 33.

To prove part (ii) we note that, by 4.4, CC will have a map of degree dd^{\prime} over \mathbb{Q} dividing 4 to a curve of genus (4/d1)2\leq(4/d^{\prime}-1)^{2}, so dd^{\prime} cannot be 11. If dd^{\prime} is 22, then XX is bielliptic (and is tetragonal over \mathbb{Q}). If dd^{\prime} is 44, then XX is tetragonal over \mathbb{Q}, as required. ∎

5. Results

In this section we apply the results of Section 3 and Section 4 to the modular curves X0(N)X_{0}(N) to obtain upper and lower bounds for their gonality. An overview of the results and the location of the proofs for each curve can be found in the tables at the end of the paper.

5.1. Upper bounds obtained by searching in Riemann-Roch spaces

One way of obtaining an upper bound of dd on the gonality over \mathbb{Q} of modular curves is to explicitly construct a function ff of degree dd. This can be done by finding an effective \mathbb{Q}-rational divisor DD such that (D)2.\ell(D)\geq 2.

Proposition 5.1.

The \mathbb{Q}-gonality of X0(N)X_{0}(N) for N=85N=85 and 8888 is at most 44.

Proof.

To prove the upper bound, we construct a function of degree 44 by looking at the Riemann-Roch spaces of \mathbb{Q}-rational divisors of degree 44 whose support is in the quadratic points obtained by the pullbacks of rational points on X0(85)X_{0}^{*}(85) and X0+(88)X_{0}^{+}(88), respectively. We note that in the case N=85N=85 we were unable to obtain such functions by looking at pullbacks from rational points on X0(N)/wdX_{0}(N)/w_{d}, for any of the Atkin-Lehner involutions. ∎

Proposition 5.2.

The genus 44 quotients X0+(N)X_{0}^{+}(N) are trigonal over \mathbb{Q} for

N=84,93,115,116,129,137,155,159.N=84,93,115,116,129,137,155,159.
Proof.

We explicitly find degree 33 functions in (X0+(N))\mathbb{Q}(X_{0}^{+}(N)) by searching the Riemann-Roch spaces of divisors of the form P1+P2+P3P_{1}+P_{2}+P_{3}, where PiX0+(N)()P_{i}\in X_{0}^{+}(N)(\mathbb{Q}). ∎

Proposition 5.3.

The \mathbb{Q}-gonality of X0(109)X_{0}(109) for N=109N=109 is at most 55.

Proof.

We construct a function of degree 55 by looking at the Riemann-Roch spaces of \mathbb{Q}-rational divisors of degree 55 whose support is in the quadratic points obtained by the pullbacks of rational points on X0+(109)X_{0}^{+}(109). ∎

Proposition 5.4.

The \mathbb{Q}-gonality of X0(112)X_{0}(112) is at most 66.

Proof.

We explicitly find a modular unit of degree 66 (after 10 hours of computation; see the accompanying Magma code). ∎

Proposition 5.5.

X0(N)X_{0}(N) has \mathbb{Q}-gonality at most 66 for N=84,93,115,116,129,137,155,159N=84,93,115,116,129,137,155,159.

Proof.

The quotients X0+(N)X_{0}^{+}(N) have genus 44. We find degree 33 functions in (X0+(N))\mathbb{Q}(X_{0}^{+}(N)) by searching the Riemann-Roch spaces of divisors of the form P1+P2+P3P_{1}+P_{2}+P_{3}, where PiX0+(N)()P_{i}\in X_{0}^{+}(N)(\mathbb{Q}). It follows that gonX0(N)2gonX0+(N)=6\operatorname{gon}_{\mathbb{Q}}X_{0}(N)\leq 2\cdot\operatorname{gon}_{\mathbb{Q}}X_{0}^{+}(N)=6 by 4.2. ∎

5.2. Upper bounds obtained by considering a dominant map

Another way of obtaining an upper bound is to explicitly construct a morphism f:=X0(N)Yf:=X_{0}(N)\rightarrow Y, where gonY\operatorname{gon}_{\mathbb{Q}}Y is known. Then gonX0(N)degfgonY\operatorname{gon}_{\mathbb{Q}}X_{0}(N)\leq\deg f\operatorname{gon}_{\mathbb{Q}}Y by 4.2.

Proposition 5.6.

The \mathbb{Q}-gonality of X0(N)X_{0}(N) is at most 44 for

N=51,55,56,60,62,63,65,69,75,79,83,89,92,95,101.N=51,55,56,60,62,63,65,69,75,79,83,89,92,95,101.
Proof.

This is proved in [12, p.139]; but as the proof is short and instructive, we repeat it here. By [3] all these curves are bielliptic and have a bielliptic involution ww of Atkin-Lehner type. Hence the maps π:XX/w\pi:X\rightarrow X/w are defined over \mathbb{Q}, and hence so is the degree 44 function obtained by composing π\pi with a degree 22 rational function on the elliptic curve X/wX/w. ∎

Proposition 5.7.

The \mathbb{Q}-gonality of X0(N)X_{0}(N) is at most 44 for the following values of NN, with Y:=X0(N)/wdY:=X_{0}(N)/w_{d}:

NN g(X0(N))g(X_{0}(N)) dd g(Y)g(Y) NN g(X0(N))g(X_{0}(N)) dd g(Y)g(Y)
4242 55 4242 22 7777 77 7777 22
5252 55 5252 22 8080 77 8080 22
5757 55 5757 22 8787 99 8787 22
5858 66 2929 22 9191 77 9191 22
6666 99 1111 22 9898 77 9898 22
6767 55 6767 22 100100 77 44 22
6868 77 6868 22 103103 88 103103 22
7070 99 3535 22 107107 99 107107 22
7373 55 7373 22 121121 66 121121 22
7474 88 7474 22 125125 88 125125 22
Proof.

This is proved in [12, p.139] and the argument of the proof is the same as of 5.6, with the only difference being that the quotients X0(N)/wdX_{0}(N)/w_{d} are of genus 2 and hence necessarily hyperelliptic. ∎

Now we produce upper bounds on the \mathbb{Q}-gonality by considering the degeneracy maps X0(N)X0(d)X_{0}(N)\rightarrow X_{0}(d) for d|Nd|N.

Proposition 5.8.

The \mathbb{Q}-gonality of X0(N)X_{0}(N) is bounded from above for the following values of NN, where deg\deg denotes the degree of the degeneracy map X0(N)X0(d)X_{0}(N)\rightarrow X_{0}(d):

NN gon(X0(N))\operatorname{gon}_{\mathbb{Q}}(X_{0}(N))\leq dd deg\deg NN gon(X0(N))\operatorname{gon}_{\mathbb{Q}}(X_{0}(N))\leq dd deg\deg
7272 44 3636 22 144144 66 4848 33
8282 66 4141 33 148148 88 7474 22
9090 66 3030 33 150150 88 5050 44
9696 44 4848 22 156156 88 7878 22
9999 66 3333 33 160160 88 8080 22
108108 66 3636 33 175175 88 2525 88
117117 66 3939 33 176176 88 8888 22
118118 66 5959 33 184184 88 9292 22
132132 88 6666 22 192192 88 9696 22
136136 88 6868 22 196196 88 9898 22
140140 88 7070 22 200200 88 100100 22
Proof.

There exists a morphism f:X0(N)X0(d)f:X_{0}(N)\rightarrow X_{0}(d) of degree deg\deg over \mathbb{Q} by 4.3. Therefore, gon(X0(N))deggon(X0(d))\operatorname{gon}_{\mathbb{Q}}(X_{0}(N))\leq\deg\cdot\operatorname{gon}_{\mathbb{Q}}(X_{0}(d)). ∎

Next we obtain upper bounds on gonX0(N)\operatorname{gon}_{\mathbb{Q}}X_{0}(N) by considering Atkin-Lehner quotients.

Proposition 5.9.

The \mathbb{C}-gonality of X0(N)X_{0}(N) is bounded above by 66 and the \mathbb{Q}-gonality is bounded from above for the following values of NN, with X:=X0(N)X:=X_{0}(N) and Y:=X0(N)/wdY:=X_{0}(N)/w_{d}:

NN gon(X)\operatorname{gon}_{\mathbb{Q}}(X)\leq dd g(Y)g(Y) gonY\operatorname{gon}_{\mathbb{Q}}Y\leq NN gon(X)\operatorname{gon}_{\mathbb{Q}}(X)\leq dd g(Y)g(Y) gonY\operatorname{gon}_{\mathbb{Q}}Y
7676 66 7676 33 33 145145 88 2929 44 44
8686 66 8686 33 33 149149 66 149149 33 33
9797 66 9797 33 33 151151 66 151151 33 33
105105 66 3535 33 33 161161 88 161161 44 44
110110 88 5555 44 44 169169 66 169169 33 33
113113 66 113113 33 33 173173 88 173173 44 44
123123 66 4141 33 33 177177 88 5959 44 44
124124 66 3131 33 33 179179 66 179179 33 33
127127 66 127127 33 33 188188 88 4747 44 44
128128 66 128128 33 33 199199 88 199199 44 44
133133 88 1919 44 44 215215 66 215215 44 33
135135 66 135135 44 33 239239 66 239239 33 33
139139 66 139139 33 33 251251 88 251251 44 44
141141 66 4747 33 33 311311 88 311311 44 44
Proof.

In all the cases above YY is known to not be hyperelliptic. As there exists a morphism of degree 22 over \mathbb{Q} to X0(N)/wdX_{0}(N)/w_{d}, it follows that

gon(X0(N))2gon(Y)2g(Y).\operatorname{gon}_{\mathbb{Q}}(X_{0}(N))\leq 2\operatorname{gon}_{\mathbb{Q}}(Y)\leq 2g(Y).

In the cases N=135N=135 and 215215 in the table above where we have gonY3<g(Y)=4\operatorname{gon}_{\mathbb{Q}}Y\leq 3<g(Y)=4, this was obtained by explicitly computing the trigonal map Y1Y\rightarrow{\mathbb{P}}^{1} and observing that it is defined over \mathbb{Q}. ∎

Proposition 5.10.

The \mathbb{Q}-gonality of X0(N)X_{0}(N) is 8\leq 8 for the following values of NN, with Y:=X0(N)/wd1,wd2Y:=X_{0}(N)/\left<w_{d_{1}},w_{d_{2}}\right>:

NN d1d_{1}, d2d_{2} g(Y)g(Y) NN d1d_{1}, d2d_{2} g(Y)g(Y)
102102 22, 5151 22 171171 99, 1919 33
106106 22, 5353 22 190190 1919, 9595 22
114114 33, 3838 22 195195 55, 3939 33
120120 88, 1515 22 205205 55, 4141 22
126126 22, 6363 22 206206 22, 103103 22
130130 1010, 2626 22 209209 1111, 1919 22
134134 22, 6767 22 213213 33, 7171 22
138138 33, 6969 22 221221 1313, 1717 22
153153 99, 1717 22 279279 99, 3131 55
158158 22, 7979 22 284284 44, 7171 22
165165 1111, 1515 33 287287 77, 4141 22
166166 22, 8383 22 299299 1313, 2323 22
168168 2424, 5656 44
Proof.

There exists a morphism of degree 44 over \mathbb{Q} to X0(N)/wd1,wd2X_{0}(N)/\left<w_{d_{1}},w_{d_{2}}\right>. All these quotients are hyperelliptic by [10]. Therefore, gon(X0(N))42=8\operatorname{gon}_{\mathbb{Q}}(X_{0}(N))\leq 4\cdot 2=8. ∎

Proposition 5.11.

The \mathbb{Q}-gonality of X0(N)X_{0}(N) is at most 66 for NN in the table below, where Y:=X0(N)/wdY:=X_{0}(N)/w_{d}.

NN g(X0(N))g(X_{0}(N)) dd g(Y)g(Y) NN g(X0(N))g(X_{0}(N)) dd g(Y)g(Y)
105105 1313 3535 33 147147 1111 33 55
118118 1414 5959 33 149149 1212 149149 33
122122 1414 122122 55 162162 1616 162162 77
123123 1313 4141 33 164164 1919 164164 66
124124 1414 3131 33 181181 1414 181181 55
139139 1111 139139 33 227227 1919 227227 55
141141 1515 4747 33 239239 2020 239239 33
146146 1717 146146 55
Proof.

For N=105,118,123,124,139,141,149,239N=105,118,123,124,139,141,149,239 the quotients Y=X0(N)/wdY=X_{0}(N)/w_{d} are trigonal over \mathbb{Q} since they are of genus 33. For N=122,146,147,162,164,181,227N=122,146,147,162,164,181,227, the quotients are trigonal over \mathbb{Q} since they are trigonal over \mathbb{C} of genus 5\geq 5 by [13] and we can apply 4.6 (i). It follows that gonX0(N)6\operatorname{gon}_{\mathbb{Q}}X_{0}(N)\leq 6. ∎

Proposition 5.12.

X0(N)X_{0}(N) has \mathbb{Q}-gonality at most 88 for

N=152,157,163,183,185,197,203,211,223,263,269,359.N=152,157,163,183,185,197,203,211,223,263,269,359.
Proof.

The quotients X0+(N)X_{0}^{+}(N) have genus 55 or 66 and are not trigonal by [13]. We explicitly find degree 44 functions in (X0+(N))\mathbb{Q}(X_{0}^{+}(N)) using the Magma functions Genus5GonalMap(C) and Genus6GonalMap(C). It follows that gonX0(N)2gonX0+(N)8\operatorname{gon}_{\mathbb{Q}}X_{0}(N)\leq 2\cdot\operatorname{gon}_{\mathbb{Q}}X_{0}^{+}(N)\leq 8. ∎

5.3. Lower bounds obtained by reduction modulo pp

As mentioned in Section 3, an important technique for obtaining a lower bound for the \mathbb{Q}-gonality is by computing the 𝔽p\mathbb{F}_{p}-gonality. We will use certain tricks to greatly reduce the computational time needed to give a lower bound for the 𝔽p\mathbb{F}_{p}-gonality. The following two propositions explain how we do this in more detail.

Proposition 5.13.

The \mathbb{Q}-gonality of X0(N)X_{0}(N) for N=99N=99 is at least 66.

Proof.

Let X:=X0(99)X:=X_{0}(99). We compute #X(𝔽5)=6\#X(\mathbb{F}_{5})=6. Suppose ff is an 𝔽5\mathbb{F}_{5}-rational function of degree 5\leq 5. By the pigeonhole principle (as in 3.1), it follows that either there is a point c1(𝔽5)c\in{\mathbb{P}}^{1}(\mathbb{F}_{5}) such that f1(c)f^{-1}(c) contains no 𝔽5\mathbb{F}_{5}-rational points, or #f1(c)(𝔽5)=1\#f^{-1}(c)(\mathbb{F}_{5})=1 for every c1(𝔽5)c\in{\mathbb{P}}^{1}(\mathbb{F}_{5}).

Suppose the former and let g(x):=1/(f(x)c)g(x):=1/(f(x)-c). Hence g1()g^{-1}(\infty) has no 𝔽5\mathbb{F}_{5}-rational points. Hence gg lies in the Riemann-Roch space of a divisor of one of the following forms: D5D_{5}, D4D_{4}, D3+D2D_{3}+D_{2} or D2+D2D_{2}+D_{2}^{\prime}, where DiD_{i} is an irreducible 𝔽5\mathbb{F}_{5}-rational effective divisor of degree ii. Searching among the Riemann-Roch spaces of such divisors, we find that there are no non-constant functions.

Suppose now the latter. Now we can fix a PX(𝔽5)P\in X(\mathbb{F}_{5}) and suppose without loss of generality that g1()(𝔽5)=Pg^{-1}(\infty)(\mathbb{F}_{5})={P}. Hence gg will be found in the Riemann-Roch spaces of P+D4P+D_{4}, P+D2+D2P+D_{2}+D_{2}^{\prime} or P+D3P+D_{3}, where the notation is as before. Searching among the Riemann-Roch spaces of such divisors, we find that there are no non-constant functions.

Proposition 5.14.

The \mathbb{Q}-gonality of X0(N)X_{0}(N) for N=130N=130 is at least 88.

Proof.

Let X:=X0(130)X:=X_{0}(130). We compute #X(𝔽3)=8\#X(\mathbb{F}_{3})=8. Suppose ff is an 𝔽3\mathbb{F}_{3}-rational function of degree 7\leq 7. By the pigeonhole principle (as in 3.1), it follows that either there is a point c1(𝔽3)c\in{\mathbb{P}}^{1}(\mathbb{F}_{3}) such that f1(c)(𝔽3)f^{-1}(c)(\mathbb{F}_{3}) contains at most one 𝔽3\mathbb{F}_{3}-rational point or #f1(c)(𝔽3)=2\#f^{-1}(c)(\mathbb{F}_{3})=2 for every c1(𝔽3)c\in{\mathbb{P}}^{1}(\mathbb{F}_{3}).

Suppose the former and let g(x):=1/(f(x)c)g(x):=1/(f(x)-c). Hence g1()g^{-1}(\infty) has one 𝔽3\mathbb{F}_{3}-rational point. Hence ff lies in the Riemann-Roch space of an effective degree 77 divisor supported on at most 11 rational point. Searching among the Riemann-Roch spaces of such divisors, we find that there are no non-constant functions.

Suppose now the latter. Now we can fix a PX(𝔽3)P\in X(\mathbb{F}_{3}) and suppose without loss of generality that g1()(𝔽3)={P,Q}g^{-1}(\infty)(\mathbb{F}_{3})=\{P,Q\} for some QX(𝔽3)Q\in X(\mathbb{F}_{3}). Hence gg will be found in the Riemann-Roch space of an effective degree 77 divisor for which the set of rational points in the support is exactly {P,Q}\{P,Q\}, with QQ varying through all QX(𝔽3)Q\in X(\mathbb{F}_{3}). Searching among the Riemann-Roch spaces of such divisors, we find that there are no non-constant functions. ∎

We apply a similar approach by producing a lower bound for the 𝔽p\mathbb{F}_{p}-gonality to obtain a lower bound for the \mathbb{Q}-gonality for a large number of NN.

Proposition 5.15.

A lower bound (LB) for the \mathbb{Q}-gonality of X0(N)X_{0}(N) is given in the following table, where pp is a prime of good reduction for X0(N)X_{0}(N):

NN LB pp time NN LB pp time NN LB pp time NN LB pp time
3838 44 55 22 sec 115115 66 33 5656 sec 151151 66 55 9494 sec 181181 66 33 99 sec
4444 44 55 44 sec 116116 66 33 1010 sec 152152 88 33 20.520.5 min 187187 88 22 1.51.5 hrs
5353 44 55 99 sec 117117 66 55 1010 sec 153153 88 55 22 hrs 189189 88 22 33 min
6161 44 33 11 sec 118118 66 33 1212 sec 154154 88 55 22 days 192192 88 55 44 days
7676 66 55 88 sec 122122 66 33 5555 sec 157157 88 33 3737 sec 193193 66 33 2828 sec
8282 66 55 6262 sec 127127 66 33 2424 sec 160160 88 77 173173 sec 196196 88 55 2.92.9 hrs
8484 66 55 6767 min 128128 66 33 44 sec 162162 66 55 5353 sec 197197 66 33 3636 min
8686 66 33 135135 sec 130130 88 33 2020 min 163163 77 55 33 min 198198 88 55 77 days
9393 66 55 44 sec 132132 88 66 22.222.2 hrs 169169 66 55 2.52.5 min 200200 88 33 1.61.6 hrs
9999 66 55 9494 sec 134134 88 33 1.21.2 hrs 170170 88 33 100.5100.5 hrs 201201 88 22 44 hrs
102102 88 55 3.33.3 hrs 136136 88 55 13.413.4 hrs 172172 88 33 3.33.3 hrs 217217 88 22 22 min
106106 88 77 3535 hrs 137137 66 33 44 sec 175175 22 22 18.718.7 sec 229229 88 33 6.56.5 min
108108 66 55 2727 min 140140 88 33 25.625.6 hrs 176176 88 33 1212 min 233233 88 22 22 hrs
109109 55 33 8383 sec 144144 66 55 5656 sec 178178 88 33 4.54.5 hrs 241241 88 22 2.52.5 min
112112 66 33 1010 hrs 147147 66 55 4.54.5 min 179179 66 55 1010 min 247247 88 22 44 hrs
113113 66 33 44 sec 148148 88 66 3.23.2 hrs 180180 77 77 99 days 277277 88 66 77 days
114114 88 55 53.253.2 hrs 150150 88 77 34.534.5 hrs
Proof.

In all the cases we compute that there are no functions of degree <d<d in 𝔽p(X0(N))\mathbb{F}_{p}(X_{0}(N)), where pp is as listed in the table. In computationally more demanding cases, i.e. when dd, pp and the genus of X0(N)X_{0}(N) are larger, we use techniques as in Propositions 5.13 and 5.14. All the Magma computations proving this can be found in our repository. ∎

Proposition 5.16.

The following genus 44 quotients X0(N)/wdX_{0}(N)/w_{d} are not trigonal over \mathbb{Q}, where pp is a prime of good reduction for X0(N)X_{0}(N):

NN dd pp NN dd pp
110110 5555 77 188188 4747 33
145145 2929 1111 199199 199199 55
161161 161161 55 251251 251251 33
173173 173173 55 311311 311311 55
177177 5959 55
Proof.

We find that the quotients X0(N)/wdX_{0}(N)/w_{d} have no functions of degree 33 over 𝔽p\mathbb{F}_{p} for dd and pp listed in the table above. ∎

Remark 5.17.

It is worth mentioning that Bars and Dalal [4] determined all quotients X0+(N)X_{0}^{+}(N) which are trigonal over \mathbb{Q}, thereby independently obtaining the results for N=161,173,199,251,311N=161,173,199,251,311 in the above proposition.

5.4. Lower bounds obtained by the Castelnuovo-Severi inequality

Proposition 5.18.

The \mathbb{Q}-gonality and \mathbb{C}-gonality of X0(N)X_{0}(N) are at least 66 for NN in the table below, where Y:=X0(N)/wdY:=X_{0}(N)/w_{d}.

NN g(X0(N))g(X_{0}(N)) dd g(Y)g(Y) NN g(X0(N))g(X_{0}(N)) dd g(Y)g(Y)
105105 1313 3535 33 141141 1515 4747 33
116116 1313 116116 44 146146 1717 146146 55
118118 1414 5959 33 149149 1212 149149 33
123123 1313 4141 33 164164 1919 164164 66
124124 1414 3131 33 227227 1919 227227 55
139139 1111 139139 33 239239 2020 239239 33
Proof.

By [18] it follows that gonX0(N)5\operatorname{gon}_{\mathbb{C}}X_{0}(N)\geq 5 and then 3.4 gives gonX0(N)6\operatorname{gon}_{\mathbb{C}}X_{0}(N)\geq 6. ∎

Corollary 5.19.

The \mathbb{Q}-gonality is at least 88 and the \mathbb{C}-gonality is at least 66 for N=110,161,173,177,188,199,251,311N=110,161,173,177,188,199,251,311.

Proof.

Since all the curves have genus 44 quotients X0(N)/wdX_{0}(N)/w_{d} as in 5.16 and genus 14\geq 14, applying 3.4 proves gon6\operatorname{gon}_{\mathbb{C}}\geq 6.

For N173N\neq 173, since the quotients are not trigonal over \mathbb{Q}, we can apply 3.4 to prove gonX0(N)8\operatorname{gon}_{\mathbb{Q}}X_{0}(N)\geq 8.

For N=173N=173, since the quotient is not trigonal over \mathbb{Q}, we can apply the Castelnuovo-Severi inequality similarly as in 3.4 and conclude that gon(X0(173))7\operatorname{gon}_{\mathbb{Q}}(X_{0}(173))\geq 7. Now we explicitly compute that there are no degree 77 functions over 𝔽3\mathbb{F}_{3} as in 5.15 (the computation takes 26 seconds). ∎

Proposition 5.20.

The \mathbb{Q}-gonality and \mathbb{C}-gonality are at least 88 for the following NN, where Y:=X0(N)/wdY:=X_{0}(N)/w_{d}:

NN g(X0(N))g(X_{0}(N)) dd g(Y)g(Y) NN g(X0(N))g(X_{0}(N)) dd g(Y)g(Y)
120120 1717 1515 55 203203 1919 203203 66
126126 1717 6363 55 205205 1919 4141 66
138138 2121 2323 55 206206 2525 206206 88
156156 2323 3939 66 209209 1919 209209 55
158158 1919 7979 55 213213 2323 7171 55
165165 2121 1111 77 221221 1919 221221 66
166166 2020 8383 66 263263 2222 263263 55
168168 2525 5656 99 269269 2222 269269 66
171171 1717 171171 55 279279 2929 279279 99
183183 1919 183183 66 284284 3434 7171 77
184184 2121 2323 55 287287 2727 287287 77
185185 1717 185185 55 299299 2727 299299 66
190190 2727 9595 66 359359 3030 359359 66
195195 2525 3939 99
Proof.

Since the quotients Y=X0(N)/wdY=X_{0}(N)/w_{d} are not trigonal over \mathbb{C} [13], they are not trigonal over \mathbb{Q} either, and by applying 3.4 the result follows. ∎

Proposition 5.21.

The \mathbb{Q}-gonality of X0(N)X_{0}(N) for N=271N=271 is 1010 and the \mathbb{C}-gonality is 88.

Proof.

The quotient X0+(271)X_{0}^{+}(271) is of genus 66 and pentagonal over \mathbb{Q} (we found a function of degree 55 using the Magma function Genus6GonalMap(C)). Further, the quotient is not tetragonal over \mathbb{Q} since it is not tetragonal over 𝔽3\mathbb{F}_{3}, but it is tetragonal over \mathbb{C} because of 4.1. It now follows from 3.4 that there are no functions f:X0(271)1f:X_{0}(271)\to\mathbb{P}^{1} of degree 7\leq 7 defined over \mathbb{C} and that there are no functions f:X0(271)1f:X_{0}(271)\to\mathbb{P}^{1} of degree 9\leq 9 defined over \mathbb{Q}. ∎

Proposition 5.22.

The \mathbb{C}-gonality for is bounded from below for the following values of NN, where Y:=X0(N)/wdY:=X_{0}(N)/w_{d}:

NN g(X0(N))g(X_{0}(N)) dd g(Y)g(Y) gon\textup{gon}_{\mathbb{C}}\geq NN g(X0(N))g(X_{0}(N)) dd g(Y)g(Y) gon\textup{gon}_{\mathbb{C}}\geq
102102 1515 5151 55 66 202202 2424 101101 99 77
129129 1313 129129 44 66 204204 3131 6868 1212 88
150150 1919 7575 77 66 210210 4141 3535 1515 88
152152 1717 152152 66 66 211211 1717 211211 66 66
155155 1515 155155 44 66 214214 2626 107107 99 88
159159 1717 159159 44 66 219219 2323 219219 88 77
174174 2727 8787 88 88 223223 1818 223223 66 77
175175 1515 175175 55 66 257257 2121 257257 77 77
186186 2929 6262 1111 88 281281 2323 281281 77 88
194194 2323 9797 77 88 293293 2424 293293 88 88
Proof.

Using the degree 22 maps to X0(N)/wdX_{0}(N)/w_{d}, we can apply the Castelnuovo-Severi inequality similarly as in 3.4 and get the lower bound for gon(X0(N))\operatorname{gon}_{\mathbb{C}}(X_{0}(N)). ∎

5.5. Lower bounds by Green’s conjecture

Finally, we prove the lower bound for gonX0(N)\operatorname{gon}_{\mathbb{C}}X_{0}(N) where we can. We first recall the following result for completeness.

Proposition 5.23.

The \mathbb{C}-gonality is at least 66 for

N=\displaystyle N= 114,132,134,135,140,145,150,151,152,160,165,166,168,170,171,172,\displaystyle 114,132,134,135,140,145,150,151,152,160,165,166,168,170,171,172,
174,175,176,178,182,183,185,186,189,192,194,195,196 and N198.\displaystyle 174,175,176,178,182,183,185,186,189,192,194,195,196\textup{ and }N\geq 198.
Proof.

This is [12, Proposition 4.4]. ∎

Proposition 5.24.

The \mathbb{C}-gonality of X0(90)X_{0}(90) is at least 66.

Proof.

Let X:=X0(90)X:=X_{0}(90). We first note that the degree 33 map to X0(30)X_{0}(30) gives an upper bound on the \mathbb{Q}-gonality by 4.2. From [18, Theorem 0.1], it follows that gonX>4\operatorname{gon}_{\mathbb{C}}X>4. By [16, Table 1], we see that β3,2=0\beta_{3,2}=0, and hence we conclude by 3.8 that XX has no g51.g_{5}^{1}. It follows that gonX6\operatorname{gon}_{\mathbb{C}}X\geq 6 and hence gonX=gonX=6.\operatorname{gon}_{\mathbb{C}}X=\operatorname{gon}_{\mathbb{Q}}X=6.

Proposition 5.25.

The \mathbb{C}-gonality for N=84,86,93,106,115,127,128,133,137N=84,86,93,106,115,127,128,133,137 is greater or equal to 66.

Proof.

By [18], gonX0(N)5\operatorname{gon}_{\mathbb{C}}X_{0}(N)\geq 5. By [16, Table 1], we see that β3,2=0\beta_{3,2}=0 for all N86,127N\neq 86,127, while for N=86,127N=86,127 we compute β2,2=β3,2=0\beta_{2,2}=\beta_{3,2}=0 in Magma (the computations take 3.5 and 1.5 hours, respectively). We conclude by 3.8 that X0(N)X_{0}(N) has no g51,g_{5}^{1}, hence gonX0(N)6\operatorname{gon}_{\mathbb{C}}X_{0}(N)\geq 6. ∎

6. Mordell-Weil sieving on Brill-Noether varieties

The only cases that remain unsolved for N<145N<145 are N=97N=97 and 133133 for which we have 5gonX0(97)65\leq\operatorname{gon}_{\mathbb{Q}}X_{0}(97)\leq 6 and gonX0(133)8\operatorname{gon}_{\mathbb{Q}}X_{0}(133)\leq 8. In this section we show that the upper bound is correct in both cases and also prove that 7gonX0(145)7\leq\operatorname{gon}_{\mathbb{Q}}X_{0}(145).

For a curve XX, denote by Wdr(X)W_{d}^{r}(X) the closed subvariety of Picd(X)\operatorname{Pic}^{d}(X) classifying divisor classes of effective divisors DD of degree dd which are contained in linear systems of dimension r\geq r, or equivalently, for which (D)r+1\ell(D)\geq r+1. Obviously a curve XX with X()X(\mathbb{Q})\neq\emptyset has a function of degree dd over \mathbb{Q} if and only if Wd1(X)()W_{d}^{1}(X)(\mathbb{Q})\neq\emptyset. Let X:=X0(N)X:=X_{0}(N) and μ:PicdXJ0(N)\mu:\operatorname{Pic}^{d}X\rightarrow J_{0}(N) the map defined by μ(D):=Dw(D)\mu(D):=D-w(D). We obviously have that the μ(J0(N))J0(N)\mu(J_{0}(N))\subset J_{0}(N)^{-}. For N=97N=97 and 133133, we compute that J0(N)()J_{0}(N)^{-}(\mathbb{Q}) is of rank 0 by computing that its analytic rank is 0 (see e.g. [7, Section 3]).

Suppose DWd1(X)()D\in W_{d}^{1}(X)(\mathbb{Q}) and p>2p>2 is a prime of good reduction for XX. We have the following commutative diagram

Wd1(X)()μredpJ0(N)()redpWd1(X)(𝔽p)μJ0(N)(𝔽p),\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 3.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 27.78375pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{W_{d}^{1}(X)(\mathbb{Q})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 86.97974pt\raise 5.1875pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 105.50214pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 53.85919pt\raise-20.60277pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.61111pt\hbox{$\scriptstyle{\operatorname{red}_{p}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 53.85919pt\raise-29.56778pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 105.50214pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{J_{0}(N)^{-}(\mathbb{Q})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 130.31813pt\raise-20.60277pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.61111pt\hbox{$\scriptstyle{\operatorname{red}_{p}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 130.31813pt\raise-29.49998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-3.0pt\raise-41.20554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 27.0pt\raise-41.20554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{W_{d}^{1}(X)(\mathbb{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 86.97974pt\raise-36.01804pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 104.71838pt\raise-41.20554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 104.71838pt\raise-41.20554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{J_{0}(N)^{-}(\mathbb{F}_{p})}$}}}}}}}\ignorespaces}}}}\ignorespaces,

where the vertical maps are reduction modulo pp. Suppose now that there exists a DWd1(X)()D\in W_{d}^{1}(X)(\mathbb{Q}). Then μ(D)\mu(D) lies in redp1(μ(Wd1(X)(𝔽p)))\operatorname{red}_{p}^{-1}(\mu(W_{d}^{1}(X)(\mathbb{F}_{p}))). The set Wd1(X)(𝔽p)W_{d}^{1}(X)(\mathbb{F}_{p}) can be computed in practice by simply finding all the effective degree dd divisors whose Riemann-Roch spaces have dimension 2\geq 2. Note that in our cases J0(N)()J_{0}(N)^{-}(\mathbb{Q}) is a torsion group and redp\operatorname{red}_{p} is injective on the torsion of J0(N)()J_{0}(N)(\mathbb{Q}) [19, Appendix]. The same procedure can be applied for a set SS of multiple primes p>2p>2 of good reduction, in which case we get

μ(D)pSredp1(μ(Wd1(X)(𝔽p))).\mu(D)\in\bigcap_{p\in S}\operatorname{red}_{p}^{-1}(\mu(W_{d}^{1}(X)(\mathbb{F}_{p}))).

If

pSredp1(μ(Wd1(X)(𝔽p)))=\bigcap_{p\in S}\operatorname{red}_{p}^{-1}(\mu(W_{d}^{1}(X)(\mathbb{F}_{p})))=\emptyset

it follows that Wd1(X)()=W_{d}^{1}(X)(\mathbb{Q})=\emptyset and indeed this is what we will show. In our cases it will be enough to take SS consisting of a single prime.

Proposition 6.1.

The \mathbb{Q}-gonality of X0(97)X_{0}(97) is 66 and the \mathbb{Q}-gonality of X0(133)X_{0}(133) is 88. The \mathbb{Q}-gonality of X0(145)X_{0}(145) is 7\geq 7.

Proof.

By [21, Theorem 4] we know that J0(97)()/8J_{0}(97)^{-}(\mathbb{Q})\simeq\mathbb{Z}/8\mathbb{Z} and is generated by D0=[0]D_{0}=[0-\infty], where 0 and \infty are the two cusps of X0(97)X_{0}(97). We compute

red31(μ(W51(X0(97)(𝔽3))))={0},red51(μ(W51(X0(97)(𝔽5))))={D0,7D0},\operatorname{red}_{3}^{-1}(\mu(W_{5}^{1}(X_{0}(97)(\mathbb{F}_{3}))))=\{0\},\quad\operatorname{red}_{5}^{-1}(\mu(W_{5}^{1}(X_{0}(97)(\mathbb{F}_{5}))))=\{D_{0},7D_{0}\},
red71(μ(W51(X0(97)(𝔽7))))=.\quad\operatorname{red}_{7}^{-1}(\mu(W_{5}^{1}(X_{0}(97)(\mathbb{F}_{7}))))=\emptyset.

Hence sieving with either {3,5}\{3,5\} or just the prime 77 proves that W51(X0(97))()=W_{5}^{1}(X_{0}(97))(\mathbb{Q})=\emptyset. Hence it follows that X0(97)X_{0}(97) is of gonality 66 over \mathbb{Q}.

The cases of X0(133)X_{0}(133) and X0(145)X_{0}(145) are more involved than X0(97)X_{0}(97) because we cannot compute the torsion group exactly. The rank of J0(N)()J_{0}(N)^{-}(\mathbb{Q}) is 0 in both cases, so J0(N)()J_{0}(N)^{-}(\mathbb{Q}) is contained in J0(N)()torsJ_{0}(N)(\mathbb{Q})_{\operatorname{tors}}.

First we solve the case N=133N=133. Using the methods of [7, Section 4], we obtain that J0(N)()torsJ_{0}(N)(\mathbb{Q})_{\operatorname{tors}} is isomorphic to a subgroup of /6×/360\mathbb{Z}/6\mathbb{Z}\times\mathbb{Z}/360\mathbb{Z}. We find cuspidal divisors (i.e. divisors supported on cusps of X0(N)X_{0}(N)) A,BA,B which generate a subgroup T:=A,B/6×/180T:=\langle A,B\rangle\simeq\mathbb{Z}/6\mathbb{Z}\times\mathbb{Z}/180\mathbb{Z}. Thus it follows that for any xJ0(N)()x\in J_{0}(N)^{-}(\mathbb{Q}), we have 2xT2x\in T. Hence we use the map 2μ2\mu, sending a divisor DD to 2(Dw(D))2(D-w(D)) instead of μ\mu (which we used for X0(97)X_{0}(97)). For sieving, we will just need to use the prime 3. We observe that #X0(133)(𝔽3)=8\#X_{0}(133)(\mathbb{F}_{3})=8, so if there exists a function of degree 77 on X0(133)X_{0}(133) over \mathbb{Q}, then there has to exist a function of degree 77 over \mathbb{Q} whose reduction modulo 33 has a polar divisor that is supported on at most 2 𝔽3\mathbb{F}_{3}-rational points, using the same arguments as in 3.1. Thus we need only search effective divisors supported on at most 2 𝔽3\mathbb{F}_{3}-rational points; if RW71(X0(133))(𝔽3)R\subset W_{7}^{1}(X_{0}(133))(\mathbb{F}_{3}) is the set of all divisors classes in W71(X0(133))(𝔽3)W_{7}^{1}(X_{0}(133))(\mathbb{F}_{3}) represented by divisors supported on at most 2 𝔽3\mathbb{F}_{3}-rational points, then

red31(2μ(R))= implies red31(2μ(W71(X0(133))(𝔽3)))=.\operatorname{red}_{3}^{-1}(2\cdot\mu(R))=\emptyset\quad\text{ implies }\quad\operatorname{red}_{3}^{-1}(2\cdot\mu(W_{7}^{1}(X_{0}(133))(\mathbb{F}_{3})))=\emptyset.

This is exactly what we obtain, proving the result.

Now we solve the case N=145N=145. Using the methods of [7, Section 4] again, we obtain that J0(N)()torsJ_{0}(N)(\mathbb{Q})_{\operatorname{tors}} is isomorphic to a subgroup of /2×/2×/2×/14×/140\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/14\mathbb{Z}\times\mathbb{Z}/140\mathbb{Z}. We find cuspidal divisors A,BA,B which generate a subgroup T:=A,B/14×/140T:=\langle A,B\rangle\simeq\mathbb{Z}/14\mathbb{Z}\times\mathbb{Z}/140\mathbb{Z}. Hence we use the map 2μ2\mu as in the case N=133N=133. For sieving, we will again just need to use the prime 3. Using the same techniques as for the N=133N=133 we obtain

red31(2μ(R))= implies red31(2μ(W61(X0(145))(𝔽3)))=\operatorname{red}_{3}^{-1}(2\cdot\mu(R))=\emptyset\quad\text{ implies }\quad\operatorname{red}_{3}^{-1}(2\cdot\mu(W_{6}^{1}(X_{0}(145))(\mathbb{F}_{3})))=\emptyset

which proves that the \mathbb{Q}-gonality of X0(145)X_{0}(145) is 7\geq 7 as desired. ∎

For N=97N=97, the program described in 6.1 terminates after 7.67.6 minutes, for N=133N=133 after 6.36.3 hours, and for N=145N=145 after 1.61.6 minutes.

7. Proofs of the Main Results

First observe that 1.1 follows from the fact that the upper and lower bounds populating the tables agree. We now prove Theorems 1.2, 1.3 and 1.4 in separate subsections. Before proceeding with the proofs, recall that Ogg [24] determined the hyperelliptic curves X0(N)X_{0}(N) and Hasegawa and Shimura [12] determined all X0(N)X_{0}(N) that are trigonal over \mathbb{Q}.

7.1. Tetragonal curves

Proof of 1.2.

By [12, Prosposition 4.4] the \mathbb{C}-gonality (and therefore the \mathbb{Q}-gonality) of X0(N)X_{0}(N) is 5\geq 5 for N192N\geq 192. Hence, we only need to consider the N191N\leq 191 such that X0(N)X_{0}(N) is not of gonality 3\leq 3 over \mathbb{Q} and such that the gonality over \mathbb{C} is not 5\geq 5. For these values, the results follow from 1.1. ∎

7.2. Pentagonal curves

Proof of 1.3.

In 1.2 we determined all the cuvres X0(N)X_{0}(N) that are tetragonal over \mathbb{Q}. 5.3 and 5.15 tell us that for N=109N=109 the curve is pentagonal over \mathbb{Q}.

Hasegawa and Shimura [12, Proposition 4.4] have proved that the \mathbb{C}-gonality (and therefore the \mathbb{Q}-gonality) is 6\geq 6 for N198N\geq 198. In 1.1 we proved that for the remaining (i.e. those not of \mathbb{Q}-gonality 4\leq 4) X0(N)X_{0}(N) with N197,N\leq 197, the \mathbb{Q}-gonality is 6\geq 6. Hence it follows that for N109N\neq 109 the \mathbb{Q}-gonality is either smaller or larger than 55, proving the result. ∎

7.3. Hexagonal curves

In this section we prove 1.4 by showing that there are no curves X0(N)X_{0}(N) which are hexagonal over \mathbb{Q} besides those that we will list in 1.4. An important tool used here is the following inequality of Ogg. It originally appeared as [24, Theorem 3.1], but we state it in the simpler form as in [12, Lemma 3.1].

Lemma 7.1.

For a prime pNp\nmid N, let

Lp(N):=p112ψ(N)+2ω(N),L_{p}(N):=\frac{p-1}{12}\psi(N)+2^{\omega(N)},

where ψ(N)=NqN(1+1q)\psi(N)=N\prod_{q\mid N}(1+\frac{1}{q}) and ω(N)\omega(N) is the number of distinct prime divisors of NN. Then

Lp(N)#X0(N)(𝔽p2).L_{p}(N)\leq\#{X}_{0}(N)(\mathbb{F}_{p^{2}}).

This allows us to get a finite and moreover a relatively small list of possible values NN for which X0(N)X_{0}(N) is hexagonal.

Proposition 7.2.

The curve X0(N)X_{0}(N) is not hexagonal over \mathbb{Q} for N>335N>335 and

N{\displaystyle N\in\{ 220,222,224226,228,230232,234,236238,242,244246,248,250,252,\displaystyle 220,222,224-226,228,230-232,234,236-238,242,244-246,248,250,252,
254256,258,260262,264268,270,272276,278,280,282,285,286,288,\displaystyle 254-256,258,260-262,264-268,270,272-276,278,280,282,285,286,288,
290,292,294298,300306,308310,312,314316,318330,332335}.\displaystyle 290,292,294-298,300-306,308-310,312,314-316,318-330,332-335\}.
Proof.

If the curve X0(N)X_{0}(N) is hexagonal over \mathbb{Q}, we must have #X0(N)(𝔽p2)6(p2+1)\#{X}_{0}(N)(\mathbb{F}_{p^{2}})\leq 6(p^{2}+1) by setting q=p2q=p^{2} in 3.5. Therefore, the inequality Lp(N)6(p2+1)L_{p}(N)\leq 6(p^{2}+1) must hold for every prime pNp\nmid N. Now using the same technique as in [12, Lemma 3.2.] we complete the proof. ∎

Proposition 7.3.

The curve X0(N)X_{0}(N) is not hexagonal over \mathbb{Q} for the following NN:

NN pp #X0(N)(𝔽p2)\#{X}_{0}(N)(\mathbb{F}_{p^{2}}) NN pp #X0(N)(𝔽p2)\#{X}_{0}(N)(\mathbb{F}_{p^{2}})
182182 33 6464 253253 22 3232
207207 22 3232 259259 22 3434
208208 33 6868 283283 33 6464
216216 55 168168 289289 22 3232
218218 33 6464 307307 33 6868
235235 22 3232 313313 33 6868
240240 77 312312 317317 22 3535
243243 22 3333 331331 22 3737
Proof.

For each of these NN we have that #X0(N)(𝔽p2)>6(p2+1)\#{X}_{0}(N)(\mathbb{F}_{p^{2}})>6(p^{2}+1) from which it follows by 3.5 that X0(N)X_{0}(N) is not hexagonal over \mathbb{Q}. ∎

Proposition 7.4.

The curve X0(212)X_{0}(212) is not hexagonal over \mathbb{Q}.

Proof.

The curve X0(106)X_{0}(106) has \mathbb{Q}-gonality equal to 88 by 5.10 and 5.15. Therefore, the \mathbb{Q}-gonality of the curve X0(212)X_{0}(212) must be at least 88 by 3.2. ∎

Proof of 1.4.

This now follows directly from 1.1 and Propositions 7.2 - 7.4. ∎

8. Limits of our methods and future work

In this section we briefly discuss why our methods can’t be pushed much further for X0(N)X_{0}(N), and how they could be applied to other modular curves, or even more generally, to arbitrary curves.

8.1. Complexity and obstacles to pushing further

It is a natural question what stopped us from going further, i.e. determining the gonality for larger NN. Unfortunately, as NN gets larger, computations get much harder. As the genus of X0(N)X_{0}(N) becomes larger, computing models, their quotients, and computations in Riemann-Roch spaces over \mathbb{Q} all become much more difficult. Furthermore, as the gonalities get larger, the degrees of divisors and the sheer number of divisors needed to be considered (as in 5.15) makes computations of the 𝔽p\mathbb{F}_{p}-gonality far more difficult. In particular, the most computationally demanding computations that we do are the ones to determine a lower bound for the 𝔽p\mathbb{F}_{p}-gonality. This requires computing the dimension of a huge number of Riemann-Roch spaces. While the complexity of computing a single Riemann-Roch space is polynomial in the size of the input (see [14]), the number of Riemann-Roch spaces that need to be computed to give a lower bound of dd for the 𝔽p\mathbb{F}_{p}-gonality is O(pd)O(p^{d}). By [1, Theorem 0.1] we can expect the gonality of X0(N)X_{0}(N) to grow linearly in NN, which suggests that the number of Riemann-Roch spaces that need to be checked grows exponentially with NN (and doubly exponentially with the size of NN). The necessity of choosing (very) small pp when computing the 𝔽p\mathbb{F}_{p}-gonality is clear from the complexity discussion above.

It should be clear that our methods do not give an algorithm for computing the gonality of X0(N)X_{0}(N). They produce a lower bound and an upper bound, but there is no guarantee that they will be equal. In practice this (the bounds not matching) is exactly what happens for NN larger than the ones that we list. It often happens that for a curve X, one has gon𝔽pX<gonX\operatorname{gon}_{\mathbb{F}_{p}}X<\operatorname{gon}_{\mathbb{Q}}X. For example this happens when n=gonX<gonXn=\operatorname{gon}_{\mathbb{C}}X<\operatorname{gon}_{\mathbb{Q}}X, and a degree nn map to 1{\mathbb{P}}^{1} is defined over a number field KK in which pp splits completely. Then it follows that gon𝔽pXn\operatorname{gon}_{\mathbb{F}_{p}}X\leq n, and hence the lower bound obtained by computing gon𝔽pX\operatorname{gon}_{\mathbb{F}_{p}}X will not be sharp.

In practice, for the NN-s where we started encountering difficulties and were unable to compute the exact gonality, the bounds not matching was the more common problem than the computations being too demanding.

8.2. Applications and future work

As has been mentioned in the introduction, the LMFDB will contain modular curves XΓX_{\Gamma} for all congruence subgroups ΓSL2()\Gamma\leq\operatorname{SL}_{2}(\mathbb{Z}) up to some level. Since the methods we use to obtain lower and upper bounds for the gonality in Section 3 and Section 4, respectively, work for any curve, the same methods should be, in principle, able to determine the gonality of many other XΓX_{\Gamma}. However, there are several properties of X0(N)X_{0}(N) that make them particularly amenable to our methods. The first is the existence of Atkin-Lehner involutions on X0(N)X_{0}(N). Their existence makes us, on one hand able to construct explicit functions, giving upper bounds, and on the other hand to use the Castelnuovo-Severi inequality to obtain lower bounds. Another useful property of X0(N)X_{0}(N) is the existence of rational points, namely cusps. This is a necessary assumption in some of the methods that we use, e.g. 4.4 and 4.5. While other modular curves have rational cusps, many interesting ones, such as Xns+(p)X_{ns}^{+}(p) (the modular curves corresponding to the normalizer of the non-split Cartan subgroup) don’t.

As an application of our results, the second author has been working on determining the NN for which X0(N)X_{0}(N) have infinitely many quartic points. The main difficulty in solving the problem is determining whether a given X0(N)X_{0}(N) has a degree 44 map to an elliptic curve.

9. Summary of results

We summarize our results in the following tables. For each value of NN, there are 77 entries, listed in the order that they appear in: the genus gg, the gonality of X0(N)X_{0}(N) over \mathbb{Q} (denoted by gon\operatorname{gon}_{\mathbb{Q}}), references to how the lower and upper bound for the \mathbb{Q}-gonality were obtained (denoted by LB and UB, respectively), the gonality of X0(N)X_{0}(N) over \mathbb{C} (denoted by gon\operatorname{gon}_{\mathbb{C}}) and finally references to how the lower and upper bound for the \mathbb{C}-gonality were obtained (again denoted by LB and UB, respectively).

For larger NN, we show only those whose \mathbb{Q}-gonality we have determined and skip the others.

NN gg gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} LB UB gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} LB UB NN gg gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} LB UB gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} LB UB
10\leq 10 0 11 11 1111 11 22 [24] [24] 22 [24] [24]
1212 0 11 11 1313 0 11 11
1414 11 22 [24] [24] 22 [24] [24] 1515 11 22 [24] [24] 22 [24] [24]
1616 0 11 11 1717 11 22 [24] [24] 22 [24] [24]
1818 0 11 11 1919 11 22 [24] [24] 22 [24] [24]
2020 11 22 [24] [24] 22 [24] [24] 2121 11 22 [24] [24] 22 [24] [24]
2222 22 22 [24] [24] 22 [24] [24] 2323 22 22 [24] [24] 22 [24] [24]
2424 11 22 [24] [24] 22 [24] [24] 2525 0 11 11
2626 22 22 [24] [24] 22 [24] [24] 2727 11 22 [24] [24] 22 [24] [24]
2828 22 22 [24] [24] 22 [24] [24] 2929 22 22 [24] [24] 22 [24] [24]
3030 33 22 [24] [24] 22 [24] [24] 3131 22 22 [24] [24] 22 [24] [24]
3232 11 22 [24] [24] 22 [24] [24] 3333 33 22 [24] [24] 22 [24] [24]
3434 33 33 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} [12] 33 [12] [12] 3535 33 22 [24] [24] 22 [24] [24]
3636 11 22 [24] [24] 22 [24] [24] 3737 22 22 [24] [24] 22 [24] [24]
3838 44 44 5.15 [12] 33 [12] [12] 3939 33 22 [24] [24] 22 [24] [24]
4040 33 22 [24] [24] 22 [24] [24] 4141 33 22 [24] [24] 22 [24] [24]
4242 55 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18] 4343 33 33 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} [12] 33 [12] [12]
4444 44 44 5.15 [12] 33 [12] [12] 4545 33 33 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} [12] 33 [12] [12]
4646 55 22 [24] [24] 22 [24] [24] 4747 44 22 [24] [24] 22 [24] [24]
4848 33 22 [24] [24] 22 [24] [24] 4949 11 22 [24] [24] 22 [24] [24]
5050 22 22 [24] [24] 22 [24] [24] 5151 55 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.6 44 [18] [18]
5252 55 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18] 5353 44 44 5.15 [12] 33 [12] [12]
5454 44 33 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} [12] 33 [12] [12] 5555 55 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.6 44 [18] [18]
5656 55 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.6 44 [18] [18] 5757 55 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18]
5858 66 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18] 5959 55 22 [24] [24] 22 [24] [24]
6060 77 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18] 6161 44 44 5.15 [12] 33 [12] [12]
6262 77 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.6 44 [18] [18] 6363 55 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.6 44 [18] [18]
6464 33 33 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} [12] 33 [12] [12] 6565 55 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.6 44 [18] [18]
6666 99 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18] 6767 55 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18]
6868 77 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18] 6969 77 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.6 44 [18] [18]
7070 99 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18] 7171 66 22 [24] [24] 22 [24] [24]
7272 55 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.8 44 [18] [18] 7373 55 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18]
7474 88 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18] 7575 55 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.6 44 [18] [18]
7676 88 66 5.15 5.9 55 [18] 4.1 7777 77 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18]
7878 1111 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} [12] 44 [18] [18] 7979 66 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.6 44 [18] [18]
8080 77 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18] 8181 44 33 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} [12] 33 [12] [12]
8282 99 66 5.15 5.8 [5,6][5,6] [18] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 8383 55 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.6 44 [18] [18]
8484 1111 66 5.15 5.5 66 5.25 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 8585 77 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.1 44 [18] [18]
8686 1010 66 5.15 5.9 66 5.25 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 8787 99 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18]
8888 99 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.1 44 [18] [18] 8989 77 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.6 44 [18] [18]
9090 1111 66 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.8 66 5.24 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 9191 77 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18]
9292 1010 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.6 44 [18] [18] 9393 99 66 5.15 5.5 66 5.25 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}

Table 1. Gonalities of X0(N)X_{0}(N), for N93N\leq 93.
NN gg gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} LB UB gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} LB UB NN gg gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} LB UB gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} LB UB
9494 1111 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} [12] 44 [18] [18] 9595 99 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.6 44 [18] [18]
9696 99 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.8 44 [18] [18] 9797 77 66 6.1 5.9 55 [18] 4.1
9898 77 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18] 9999 99 66 5.13 5.8 44 [18] [18]
100100 77 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18] 101101 88 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.6 44 [18] [18]
102102 1515 88 5.15 5.10 [6,8][6,8] 5.22 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 103103 88 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18]
104104 1111 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} [12] 44 [18] [18] 105105 1313 66 5.18 5.11 66 5.18 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
106106 1212 88 5.15 5.10 [6,7][6,7] 5.25 4.1 107107 99 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18]
108108 1010 66 5.15 5.6 [5,6][5,6] [18] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 109109 88 55 5.15 5.3 44 [18] [18]
110110 1515 88 5.19 5.9 66 5.19 5.9 111111 99 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} [12] 44 [18] [18]
112112 1111 66 5.15 5.4 [5,6][5,6] [18] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 113113 99 66 5.15 5.9 [5,6][5,6] [18] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
114114 1717 88 5.15 5.10 [6,8][6,8] 5.23 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 115115 1111 66 5.15 5.5 66 5.25 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
116116 1313 66 5.18 5.5 66 5.18 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 117117 1111 66 5.15 5.8 [5,6][5,6] [18] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
118118 1414 66 5.18 5.11 66 5.18 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 119119 1111 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} [12] 44 [18] [18]
120120 1717 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 121121 66 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18]
122122 1414 66 5.15 5.11 [5,6][5,6] [18] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 123123 1313 66 5.18 5.11 66 5.18 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
124124 1414 66 5.18 5.11 66 5.18 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 125125 88 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.7 44 [18] [18]
126126 1717 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 127127 1010 66 5.15 5.9 66 5.25 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
128128 99 66 5.15 5.9 66 5.25 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 129129 1313 66 5.15 5.5 66 5.22 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
130130 1717 88 5.14 5.10 [6,8][6,8] 5.23 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 131131 1111 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} [12] 44 [18] [18]
132132 1919 88 5.15 5.8 [6,8][6,8] 5.23 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 133133 1111 88 6.1 5.9 66 5.25 5.9
134134 1616 88 5.15 5.9 [6,8][6,8] 5.23 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 135135 1313 66 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.9 66 5.23 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
136136 1515 88 5.15 5.8 [5,8][5,8] [18] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 137137 1111 66 5.15 5.5 66 5.25 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
138138 2121 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 139139 1111 66 5.18 5.9 66 5.18 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
140140 1919 88 5.15 5.8 [6,8][6,8] 5.23 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 141141 1515 66 5.18 5.9 66 5.18 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
142142 1717 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} [12] 44 [18] [18] 143143 1313 44 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} [12] 44 [18] [18]
144144 1313 66 5.15 5.8 [5,6][5,6] [18] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 145145 1313 [7,8][7,8] 6.1 5.9 66 5.23 5.9
146146 1717 66 5.18 5.11 66 5.18 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 147147 1111 66 5.15 5.11 [5,6][5,6] [18] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
148148 1717 88 5.15 5.8 [5,8][5,8] [18] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 149149 1212 66 5.18 5.9 66 5.18 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
150150 1919 88 5.15 5.8 [6,8][6,8] 5.22 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 151151 1212 66 5.15 5.9 66 5.23 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
152152 1717 88 5.15 5.12 [6,8][6,8] 5.22 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 153153 1515 88 5.15 5.10 [5,8][5,8] [18] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
154154 2121 [8,12][8,12] 5.15 5.8 [5,12][5,12] [18] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 155155 1515 66 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.5 66 5.22 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
156156 2323 88 5.20 5.8 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 157157 1212 88 5.15 5.12 [5,7][5,7] [18] 4.1
158158 1919 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 159159 1717 66 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.5 66 5.22 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
160160 1717 88 5.15 5.8 [6,8][6,8] 5.23 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 161161 1515 88 5.19 5.9 66 5.19 5.9
162162 1616 66 5.15 5.11 [5,6][5,6] [18] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 163163 1313 [7,8][7,8] 5.15 5.12 [5,8][5,8] [18] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
164164 1919 66 5.18 5.11 66 5.18 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 165165 2121 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
166166 2020 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 167167 1414 44 [12] [12] 44 [18] [18]
168168 2525 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 169169 88 66 5.15 5.9 55 [18] 4.1

Table 2. Gonalities of X0(N)X_{0}(N), for 94N16994\leq N\leq 169.
NN gg gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} LB UB gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} LB UB NN gg gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} LB UB gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} LB UB
171171 1717 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 173173 1414 88 5.19 5.9 66 5.19 5.9
175175 1515 88 5.15 5.8 [6,8][6,8] 5.22 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 176176 1919 88 5.15 5.8 [6,8][6,8] 5.23 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
177177 1919 88 5.19 5.9 66 5.19 5.9 179179 1515 66 5.15 5.9 [5,6][5,6] [18] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
181181 1414 66 5.15 5.11 [5,6][5,6] [18] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 183183 1919 88 5.20 5.12 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
184184 2121 88 5.20 5.8 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 185185 1717 88 5.20 5.12 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
188188 2222 88 5.19 5.9 66 5.19 5.9 190190 2727 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
191191 1616 44 [12] [12] 44 [18] [18] 192192 2121 88 5.15 5.8 [6,8][6,8] [12] gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
195195 2525 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 196196 1717 88 5.15 5.8 [6,8][6,8] 5.23 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
197197 1616 88 5.20 5.12 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 199199 1616 88 5.19 5.19 66 5.19 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
200200 1919 88 5.15 5.8 [6,8][6,8] 5.23 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 203203 1919 88 5.20 5.12 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
205205 1919 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 206206 2525 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
209209 1919 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 211211 1717 88 5.15 5.12 [6,8][6,8] 5.22 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
213213 2323 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 215215 2121 66 gon{\scriptstyle\operatorname{gon}_{\mathbb{C}}} 5.9 66 5.23 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
221221 1919 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 223223 1818 88 5.15 5.12 [7,8][7,8] 5.22 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
227227 1919 66 5.18 5.11 66 5.18 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 239239 2020 66 5.18 5.11 66 5.18 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
251251 2121 88 5.19 5.9 66 5.19 5.9 263263 2222 88 5.20 5.12 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
269269 2222 88 5.20 5.12 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 271271 2222 1010 5.21 5.21 88 5.21 5.21
279279 2929 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 284284 3434 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
287287 2727 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}} 299299 2727 88 5.20 5.10 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}
311311 2626 88 5.19 5.9 66 5.19 5.9 359359 3030 88 5.20 5.12 88 5.20 gon{\scriptstyle\operatorname{gon}_{\mathbb{Q}}}

Table 3. Gonalities of some X0(N)X_{0}(N), for N>170N>170.

References

  • [1] D. Abramovich, A linear lower bound on the gonality of modular curves, Internat. Math. Res. Notices, (1996), pp. 1005–1011.
  • [2] N. Adžaga, T. Keller, P. Michaud-Jacobs, F. Najman, E. Ozman, and B. Vukorepa, Computing quadratic points on modular curves X0(N)X_{0}(N). preprint, available at: https://arxiv.org/abs/2303.12566.
  • [3] F. Bars, Bielliptic modular curves, J. Number Theory, 76 (1999), pp. 154–165.
  • [4] F. Bars and T. Dalal, Infinitely many cubic points for X0+(N)X_{0}^{+}(N) over \mathbb{Q}. preprint, available at: https://arxiv.org/abs/2207.03727.
  • [5] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I: The user language, J. Symb. Comput., 24 (1997), pp. 235–265.
  • [6] M. Coppens and G. Martens, Secant spaces and Clifford’s theorem, Compos. Math., 78 (1991), pp. 193–212.
  • [7] M. Derickx, A. Etropolski, M. van Hoeij, J. S. Morrow, and D. Zureick-Brown, Sporadic cubic torsion, Algebra Number Theory, 15 (2021), pp. 1837–1864.
  • [8] M. Derickx and A. V. Sutherland, Torsion subgroups of elliptic curves over quintic and sextic number fields, Proc. Am. Math. Soc., 145 (2017), pp. 4233–4245.
  • [9] M. Derickx and M. van Hoeij, Gonality of the modular curve X1(N)X_{1}(N), J. Algebra, 417 (2014), pp. 52–71.
  • [10] M. Furumoto and Y. Hasegawa, Hyperelliptic Quotients of Modular Curves X0(N)X_{0}(N), Tokyo Journal of Mathematics, 22 (1999), pp. 105 – 125.
  • [11] M. L. Green, Koszul cohomology and the geometry of projective varieties. Appendix: The nonvanishing of certain Koszul cohomology groups (by Mark Green and Robert Lazarsfeld), J. Differ. Geom., 19 (1984), pp. 125–167, 168–171.
  • [12] Y. Hasegawa and M. Shimura, Trigonal modular curves, Acta Arith., 88 (1999), pp. 129–140.
  • [13]  , Trigonal modular curves X0+d(N)X_{0}^{+d}(N), Proc. Japan Acad., Ser. A, 75 (1999), pp. 172–175.
  • [14] F. Hess, Computing Riemann-Roch spaces in algebraic function fields and related topics., J. Symb. Comput., 33 (2002), pp. 425–445.
  • [15] D. Jeon, Modular curves with infinitely many cubic points, J. Number Theory, 219 (2021), pp. 344–355.
  • [16] D. Jeon, C. H. Kim, and E. Park, On the torsion of elliptic curves over quartic number fields, J. London Math. Soc. (2), 74 (2006), pp. 1–12.
  • [17] D. Jeon, C. H. Kim, and A. Schweizer, On the torsion of elliptic curves over cubic number fields, Acta Arith., 113 (2004), pp. 291–301.
  • [18] D. Jeon and E. Park, Tetragonal modular curves, Acta Arith., 120 (2005), pp. 307–312.
  • [19] N. M. Katz, Galois properties of torsion points on abelian varieties, Invent. Math., 62 (1981), pp. 481–502.
  • [20] LMFDB Collaboration, The L-functions and modular forms database. http://www.lmfdb.org, 2022. [Online; accessed 30 June 2022].
  • [21] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math., (1977), pp. 33–186 (1978).
  • [22] J.-F. Mestre, Corps euclidiens, unites exceptionnelles et courbes elliptiques, J. Number Theory, 13 (1981), pp. 123–137.
  • [23] K. V. Nguyen and M.-H. Saito, dd-gonality of modular curves and bounding torsions. preprint, arXiv:alg-geom/9603024.
  • [24] A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France, 102 (1974), pp. 449–462.
  • [25] B. Poonen, Gonality of modular curves in characteristic pp, Math. Res. Lett., 14 (2007), pp. 691–701.
  • [26] F.-O. Schreyer, A standard basis approach to syzygies of canonical curves, J. Reine Angew. Math., 421 (1991), pp. 83–123.
  • [27] H. Stichtenoth, Algebraic function fields and codes, vol. 254 of Grad. Texts Math., Berlin: Springer, 2nd ed. ed., 2009.