This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Gravitational Wave Solutions to Linearized Jordan-Brans-Dicke Theory
on a Cosmological Background

Onder Dunya onder.dunya@boun.edu.tr    Metin Arik metin.arik@boun.edu.tr Department of Physics, Bogazici University, Bebek, Istanbul, Turkey
(August 11, 2025)
Abstract

Approximate vacuum solutions of Jordan-Brans-Dicke theory for perturbed scalar field and perturbed Robertson-Walker metric, are found. Solutions for the scale factor a(t)a(t) and the scalar field ϕ(t)\phi(t) in unperturbed JBD theory are dependent on the ω\omega parameter which determines how the scalar field is coupled to geometry of space-time. After adding metric perturbation hμν(x)h_{\mu\nu}(x) to Robertson-Walker metric and perturbation δϕ(x)\delta\phi(x) to the scalar field ϕ(t)\phi(t), we solved the JBD equations such that the scale factor and the scalar field solutions are ata\propto t and ϕt2\phi\propto t^{-2} with ω=3/2\omega=-3/2. These results are necessary conditions for ordinary and scalar gravitational waves to exist in the vacuum case. Despite ω>104\omega>10^{4} for current solar system environment observations, ω=3/2\omega=-3/2 makes JBD theory conformally invariant and fits recent supernovae type Ia data. We also looked for the value of ω\omega for the case which has nonzero spatial curvature parameter.

I Introduction

In Jordan-Brans-Dicke(Brans and Dicke, 1961) theory, the gravitational constant GG is not a constant but a parameter and it is related to a scalar field ϕ\phi. So the Jordan-Brans-Dicke action contains the Lagrangian of this scalar field ϕ\phi and looks like

S=116πd4xg(ϕR+16πMωgμνμϕνϕϕ)S=\frac{1}{16\pi}\int d^{4}x\sqrt{-g}\left(\phi R+16\pi\mathcal{L}_{M}-\omega\frac{g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi}{\phi}\right) (1)

where RR is the Ricci scalar, M\mathcal{L}_{M} is the Lagrangian of matter and ω\omega is the JBD parameter. To get the JBD equations, we should vary the action with respect to gμνg^{\mu\nu} and ϕ\phi. Variation operations give us the equations as

Rμν12Rgμν=8πϕTμν+1ϕ(μνϕgμνgαβαβϕ)+ωϕ2(μϕνϕ12gμνgαβαϕβϕ)\begin{split}R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=&\frac{8\pi}{\phi}T_{\mu\nu}+\frac{1}{\phi}\left(\nabla_{\mu}\partial_{\nu}\phi-g_{\mu\nu}g^{\alpha\beta}\nabla_{\alpha}\partial_{\beta}\phi\right)\\ &+\frac{\omega}{\phi^{2}}\left(\partial_{\mu}\phi\partial_{\nu}\phi-\frac{1}{2}g_{\mu\nu}g^{\alpha\beta}\partial_{\alpha}\phi\partial_{\beta}\phi\right)\end{split} (2)

and

R+2ωϕgμνμνϕωϕ2gμνμϕνϕ=0R+2\frac{\omega}{\phi}g^{\mu\nu}\nabla_{\mu}\partial_{\nu}\phi-\frac{\omega}{\phi^{2}}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi=0 (3)

where

Tμν=2gδSMδgμνT_{\mu\nu}=-\frac{2}{\sqrt{-g}}\frac{\delta{S_{M}}}{\delta{g^{\mu\nu}}} (4)

is the energy momentum tensor of matter. Contracting (2) with gμνg^{\mu\nu} gives

R=8πϕT3ϕμμϕωϕ2μϕμϕ-R=\frac{8\pi}{\phi}T-\frac{3}{\phi}\nabla_{\mu}\partial^{\mu}\phi-\frac{\omega}{\phi^{2}}\partial_{\mu}\phi\partial^{\mu}\phi (5)

and substituting (5) into (3) yields

(3+2ω)ϕgμνμνϕ=8πϕT.\frac{(3+2\omega)}{\phi}g^{\mu\nu}\nabla_{\mu}\partial_{\nu}\phi=\frac{8\pi}{\phi}T\ . (6)

Equations (2) and (6) are the basic equations of the theory. Also the predictions of the theory are same with the predictions of Einstein field equation when ω\omega\to\infty. Current observational data for solar system environment show that ω>104\omega>10^{4}, so the theory is indistinguishable from general relativity or deviations are so smallWill (2010).

Now, we will focus on the vacuum solutions of the equations on a cosmological background. With word ”vacuum”, it is meant that there is nothing in the environment which we are interested in, no matter, no radiation and no cosmological constant. Besides, of course, the universe we live in, is not a steady state universe but it is expanding with the scale factor, so we will use Robertson-Walker metric which is

ds2=(dt)2+a2(t)[(dx1)2+(dx2)2+(dx3)2]ds^{2}=-(dt)^{2}+a^{2}(t)[(dx^{1})^{2}+(dx^{2})^{2}+(dx^{3})^{2}] (7)

where aa is the scale factor of the universe and a function of time. At that point space is also considered as flat which means curvature parameter k=0k=0. For the vacuum case, (2) and (6) transform into

Rμν12Rgμν=1ϕ(μνϕgμνgαβαβϕ)+ωϕ2(μϕνϕ12gμνgαβαϕβϕ)\begin{split}R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=&\frac{1}{\phi}\left(\nabla_{\mu}\partial_{\nu}\phi-g_{\mu\nu}g^{\alpha\beta}\nabla_{\alpha}\partial_{\beta}\phi\right)\\ &+\frac{\omega}{\phi^{2}}\left(\partial_{\mu}\phi\partial_{\nu}\phi-\frac{1}{2}g_{\mu\nu}g^{\alpha\beta}\partial_{\alpha}\phi\partial_{\beta}\phi\right)\end{split} (8)

and

gμνμνϕ=0.g^{\mu\nu}\nabla_{\mu}\partial_{\nu}\phi=0\ . (9)

As one can see, (9) can be substituted into (8), and the final form of the basic JBD equation for vacuum is

Rμν12Rgμν=1ϕμνϕ+ωϕ2(μϕνϕ12gμνgαβαϕβϕ).\begin{split}R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=&\frac{1}{\phi}\nabla_{\mu}\partial_{\nu}\phi\\ &+\frac{\omega}{\phi^{2}}\left(\partial_{\mu}\phi\partial_{\nu}\phi-\frac{1}{2}g_{\mu\nu}g^{\alpha\beta}\partial_{\alpha}\phi\partial_{\beta}\phi\right)\ .\end{split} (10)

All we should do, now, is to place the Ricci tensor components and the Ricci scalar of RW metric into the equation in order to construct equations for different μ\mu and ν\nu values. The Ricci tensor and the Ricci scalar of the metric for k=0k=0 and in cartesian coordinates, are

R00=3a¨a,R_{00}=-3\frac{\ddot{a}}{a}\ , (11)
R11=R22=R33=(aa¨+2a˙2),R_{11}=R_{22}=R_{33}=(a\ddot{a}+2\dot{a}^{2})\ , (12)
R=6(a¨a+a˙2a2),R=6\left(\frac{\ddot{a}}{a}+\frac{{\dot{a}}^{2}}{a^{2}}\right)\ , (13)

where dots represent time derivatives. We assume that the scalar field ϕ\phi is only function of time, not dependent on spatial coordinates. After substituting the Ricci tensor components and the Ricci scalar into (10), we get for μ=0\mu=0 and ν=0\nu=0

3a˙2a202ϕϕω2(0ϕ)2ϕ2=03\frac{\dot{a}^{2}}{a^{2}}-\frac{\partial_{0}^{2}\phi}{\phi}-\frac{\omega}{2}\frac{(\partial_{0}\phi)^{2}}{\phi^{2}}=0 (14)

and for μ=1\mu=1 and ν=1\nu=1

2a¨aa˙2a2+a˙a0ϕϕω2(0ϕ)2ϕ2=0.-2\frac{\ddot{a}}{a}-\frac{\dot{a}^{2}}{a^{2}}+\frac{\dot{a}}{a}\frac{\partial_{0}\phi}{\phi}-\frac{\omega}{2}\frac{(\partial_{0}\phi)^{2}}{\phi^{2}}=0\ . (15)

Other two equations for the cases μ=2\mu=2, ν=2\nu=2 and μ=3\mu=3, ν=3\nu=3 are not different from the equation of μ=1\mu=1, ν=1\nu=1, so they do not give any new information about the vacuum case solutions. Subtracting (15) from (14) yields

4a˙2a2+2a¨a02ϕϕa˙a0ϕϕ=0.4\frac{\dot{a}^{2}}{a^{2}}+2\frac{\ddot{a}}{a}-\frac{\partial_{0}^{2}\phi}{\phi}-\frac{\dot{a}}{a}\frac{\partial_{0}\phi}{\phi}=0\ . (16)

By assuming that the scalar field and the scale factor have solutions like power of time tt, (15) and (16) give us the solutions for the powers which depend on the JBD parameter ω\omega. If ϕts\phi\propto t^{s} and atqa\propto t^{q}, we get

3q2+2q+sqω2s2=0,-3q^{2}+2q+sq-\frac{\omega}{2}s^{2}=0\ , (17)
6q22qsq+ss2=0.6q^{2}-2q-sq+s-s^{2}=0\ . (18)

Solutions to these equations for ω3/2\omega\geq-3/2 and ω4/3\omega\neq-4/3 are

q±=13ω+4(ω+1±2ω+33),q_{\pm}=\frac{1}{3\omega+4}\left(\omega+1\pm\sqrt{\frac{2\omega+3}{3}}\right)\ , (19)
s±=13(2ω+3)3ω+4.s_{\pm}=\frac{1\mp\sqrt{3(2\omega+3)}}{3\omega+4}\ . (20)

They also satisfy the relation

3q+s=1.3q+s=1\ . (21)

These solutions are same with that of O’Hanlon and Tupper(O’Hanlon and Tupper, 1972). Once we get the exact value of ω\omega observationally, values of qq and ss can be determined.

II Vacuum Solutions to Linearized JBD Theory

In this section, approximate solutions for the scalar field, the scale factor, ordinary gravitational wave and scalar gravitational wave, are found by regarding perturbed RW metric and perturbed scalar field. We add first order perturbations to the metric and the scalar field, and neglect all the higher order perturbations in calculations. Since RW metric is function of time, the scalar field ϕ\phi is chosen to be function of time for ansatz. In addition, the first order perturbations of the metric and the scalar field are functions of time and spatial coordinates. So perturbed metric and perturbed scalar field are

gμν(x)=fμν(t)+hμν(x)g_{\mu\nu}(x)=f_{\mu\nu}(t)+h_{\mu\nu}(x) (22)

and

Φ(x)=ϕ(t)+δϕ(x)\Phi(x)=\phi(t)+\delta\phi(x) (23)

where

  • fμνf_{\mu\nu} is the RW metric,

  • hμνh_{\mu\nu} is perturbation to the metric and |hμν||fμν||h_{\mu\nu}|\ll|f_{\mu\nu}|,

  • δϕ\delta\phi is perturbation to the scalar field and |δϕ||ϕ||\delta\phi|\ll|\phi|.

Since we are dealing with the vacuum solutions, the energy momentum tensor and its trace are equal to zero. If the equations are written with explicit form of the field Φ\Phi and the metric gμνg_{\mu\nu}, they look like

Rμν12R(fμν+hμν)=1(ϕ+δϕ)[μν(ϕ+δϕ)]+ω(ϕ+δϕ)2[μ(ϕ+δϕ)ν(ϕ+δϕ)12(fμν+hμν)(fαβhαβ)α(ϕ+δϕ)β(ϕ+δϕ)]\begin{split}&R_{\mu\nu}-\frac{1}{2}R(f_{\mu\nu}+h_{\mu\nu})=\frac{1}{(\phi+\delta\phi)}[\nabla_{\mu}\partial_{\nu}(\phi+\delta\phi)]\\ &+\frac{\omega}{(\phi+\delta\phi)^{2}}[\partial_{\mu}(\phi+\delta\phi)\partial_{\nu}(\phi+\delta\phi)\\ &-\frac{1}{2}(f_{\mu\nu}+h_{\mu\nu})(f^{\alpha\beta}-h^{\alpha\beta})\partial_{\alpha}(\phi+\delta\phi)\partial_{\beta}(\phi+\delta\phi)]\end{split} (24)

and

1(ϕ+δϕ)(fμνhμν)μν(ϕ+δϕ)=0.\frac{1}{(\phi+\delta\phi)}(f^{\mu\nu}-h^{\mu\nu})\nabla_{\mu}\partial_{\nu}(\phi+\delta\phi)=0\ . (25)

We have used inverse of the metric in (24) and (25) as

gμν(x)=fμν(t)hμν(x).g^{\mu\nu}(x)=f^{\mu\nu}(t)-h^{\mu\nu}(x)\ . (26)

II.1 Ricci Tensor and Ricci Scalar for Perturbed RW Metric

The general forms(Weinberg, 1972)111Since there is a minus sign difference for the definition of the Riemann tensor in Weinberg’s book, we multiply first order components of the Ricci tensor with a minus sign. of first order components of the Ricci tensor are

δR00=12a2[02hkk2a˙a0hkk+2(a˙2a2a¨a)hkk],\delta R_{00}=-\frac{1}{2a^{2}}\left[\partial_{0}^{2}h_{kk}-2\frac{\dot{a}}{a}\partial_{0}h_{kk}+2\left(\frac{\dot{a}^{2}}{a^{2}}-\frac{\ddot{a}}{a}\right)h_{kk}\right]\ , (27)
δR0i=120[1a2(ihkkkhki)],\delta R_{0i}=-\frac{1}{2}\partial_{0}\left[\frac{1}{a^{2}}(\partial_{i}h_{kk}-\partial_{k}h_{ki})\right]\ , (28)
δRij=12a2[2hijjkhikikhjk+ijhkk]+1202hija˙2a[0hijδij0hkk]+a˙2a2[2hijδijhkk].\begin{split}\delta R_{ij}=&-\frac{1}{2a^{2}}\left[\nabla^{2}h_{ij}-\partial_{j}\partial_{k}h_{ik}-\partial_{i}\partial_{k}h_{jk}+\partial_{i}\partial_{j}h_{kk}\right]\\ &+\frac{1}{2}\partial_{0}^{2}h_{ij}-\frac{\dot{a}}{2a}[\partial_{0}h_{ij}-\delta_{ij}\partial_{0}h_{kk}]\\ &+\frac{\dot{a}^{2}}{a^{2}}[2h_{ij}-\delta_{ij}h_{kk}]\ .\end{split} (29)

Each of these components can be considered as summation of zeroth and first order parts like

Rμν=R¯μν+δRμνR_{\mu\nu}=\bar{R}_{\mu\nu}+\delta R_{\mu\nu} (30)

where

  • RμνR_{\mu\nu} is the Ricci tensor for the metric gμνg_{\mu\nu},

  • R¯μν\bar{R}_{\mu\nu} is the Ricci tensor for RW metric,

  • δRμν\delta R_{\mu\nu} is perturbation of the Ricci tensor.

Before proceeding to compute Ricci tensor components, we can make some simplifications for our sake. As is known, for Einstein field equation in Minkowski space-time, transverse-traceless perturbation hμνTTh_{\mu\nu}^{TT} represents plane wave solution in cartesian coordinates and it is composed of plus and cross polarized waves. For a plane wave which is propagating in x3x^{3} direction, it looks like

hμνTT=(00000h11h1200h21h2200000)h_{\mu\nu}^{TT}=\begin{pmatrix}0&0&0&0\\ 0&h_{11}&h_{12}&0\\ 0&h_{21}&h_{22}&0\\ 0&0&0&0\end{pmatrix} (31)

where

h11(tx3)=h+eikσxσandh22=h11h_{11}(t-x^{3})=h_{+}e^{ik_{\sigma}x^{\sigma}}\ \mathrm{and}\ h_{22}=-h_{11} (32)

and

h12(tx3)=h×eikσxσandh12=h21.h_{12}(t-x^{3})=h_{\times}e^{ik_{\sigma}x^{\sigma}}\ \mathrm{and}\ h_{12}=h_{21}\ . (33)

Also, if we wanted to solve the JBD equations for perturbed Minkowski metric, we should choose our scalar field as

Φ(x)=ϕ0+δϕ(x)\Phi(x)=\phi_{0}+\delta\phi(x) (34)

where ϕ0\phi_{0} is constant and δϕ\delta\phi is a function of time and spatial coordinates. The solution(Maggiore and Nicolis, 2000) would be

hμν=(00000A(+)δϕϕ0A(×)00A(×)A(+)δϕϕ000000)h_{\mu\nu}=\begin{pmatrix}0&0&0&0\\ 0&A^{(+)}-\frac{\delta\phi}{\phi_{0}}&A^{(\times)}&0\\ 0&A^{(\times)}&-A^{(+)}-\frac{\delta\phi}{\phi_{0}}&0\\ 0&0&0&0\end{pmatrix} (35)

where A(+)A^{(+)} and A(×)A^{(\times)} are ordinary gravitational waves and δϕ/ϕ0\delta\phi/\phi_{0} is a scalar gravitational wave. Furthermore this metric perturbation has trace ημνhμν=2(δϕ/ϕ0)\eta^{\mu\nu}h_{\mu\nu}=-2(\delta\phi/\phi_{0}). Taking the solutions of the JBD equations for perturbed Minkowski metric into consideration, we can assume that perturbation of RW metric for JBD theory has trace

fμνhμν=2δϕϕf^{\mu\nu}h_{\mu\nu}=-2\frac{\delta\phi}{\phi} (36)

and it is transverse to propagation direction of the wave. For a wave which is propagating in x3x^{3} direction, it can be regarded as

hμν=a2(00000(Aδϕϕ)B00B(Aδϕϕ)00000)h_{\mu\nu}=a^{2}\begin{pmatrix}0&0&0&0\\ 0&\left(A-\frac{\delta\phi}{\phi}\right)&B&0\\ 0&B&\left(-A-\frac{\delta\phi}{\phi}\right)&0\\ 0&0&0&0\end{pmatrix} (37)

where AA, BB and (δϕ/ϕ)(\delta\phi/\phi) are in the wave form. As one can see, we can take h0νh_{0\nu} and h3νh_{3\nu} components of the metric perturbation as zero. This assumption will simplify our calculations and by using (27), (28) and (29), components of the Ricci tensor can be written as

R00=R¯00+δR00=3a¨a12a202(h11+h22)+a˙a30(h11+h22)+(a¨a3a˙2a4)(h11+h22),\begin{split}R_{00}=\bar{R}_{00}+\delta R_{00}=&-\frac{3\ddot{a}}{a}-\frac{1}{2a^{2}}\partial_{0}^{2}(h_{11}+h_{22})\\ &+\frac{\dot{a}}{a^{3}}\partial_{0}(h_{11}+h_{22})\\ &+\left(\frac{\ddot{a}}{a^{3}}-\frac{\dot{a}^{2}}{a^{4}}\right)(h_{11}+h_{22})\ ,\end{split} (38)
R11=R¯11+δR11=(aa¨+2a˙2)+1202h1112a232h11+a˙2a0h22+a˙2a2(h11h22),\begin{split}R_{11}=\bar{R}_{11}+\delta R_{11}=&(a\ddot{a}+2\dot{a}^{2})+\frac{1}{2}\partial_{0}^{2}h_{11}-\frac{1}{2a^{2}}\partial_{3}^{2}h_{11}\\ &+\frac{\dot{a}}{2a}\partial_{0}h_{22}+\frac{\dot{a}^{2}}{a^{2}}(h_{11}-h_{22})\ ,\end{split} (39)
R22=R¯22+δR22=(aa¨+2a˙2)+1202h2212a232h22+a˙2a0h11+a˙2a2(h22h11),\begin{split}R_{22}=\bar{R}_{22}+\delta R_{22}=&(a\ddot{a}+2\dot{a}^{2})+\frac{1}{2}\partial_{0}^{2}h_{22}-\frac{1}{2a^{2}}\partial_{3}^{2}h_{22}\\ &+\frac{\dot{a}}{2a}\partial_{0}h_{11}+\frac{\dot{a}^{2}}{a^{2}}(h_{22}-h_{11})\ ,\end{split} (40)
R33=R¯33+δR33=(aa¨+2a˙2)12a232(h11+h22)+a˙2a0(h11+h22)a˙2a2(h11+h22),\begin{split}R_{33}=\bar{R}_{33}+\delta R_{33}=&(a\ddot{a}+2\dot{a}^{2})-\frac{1}{2a^{2}}\partial_{3}^{2}(h_{11}+h_{22})\\ &+\frac{\dot{a}}{2a}\partial_{0}(h_{11}+h_{22})-\frac{\dot{a}^{2}}{a^{2}}(h_{11}+h_{22}),\end{split} (41)
R03=R¯03+δR03=12a230(h11+h22)+a˙a33(h11+h22),\begin{split}R_{03}=\bar{R}_{03}+\delta R_{03}=&-\frac{1}{2a^{2}}\partial_{3}\partial_{0}(h_{11}+h_{22})\\ &+\frac{\dot{a}}{a^{3}}\partial_{3}(h_{11}+h_{22})\ ,\end{split} (42)
R12=R¯12+δR12=1202h1212a232h12a˙2a0h12+2a˙2a2h12,\begin{split}R_{12}=\bar{R}_{12}+\delta R_{12}=&\frac{1}{2}\partial_{0}^{2}h_{12}-\frac{1}{2a^{2}}\partial_{3}^{2}h_{12}\\ &-\frac{\dot{a}}{2a}\partial_{0}h_{12}+\frac{2\dot{a}^{2}}{a^{2}}h_{12}\ ,\end{split} (43)
R01=R02=R13=R23=0.R_{01}=R_{02}=R_{13}=R_{23}=0\ . (44)

The Ricci scalar can be easily computed by contracting the Ricci tensor with the inverse of the metric and it can be regarded as summation of zeroth and first order parts like

R=R¯+δRR=\bar{R}+\delta R (45)

where

  • RR is the Ricci scalar for the metric gμνg_{\mu\nu},

  • R¯\bar{R} is the Ricci scalar for Robertson-Walker metric,

  • δR\delta R is perturbation of the Ricci scalar.

Contracting (30) with (26) yields

R=Rμνgμν=(R¯μν+δRμν)(fμνhμν)=R¯μνfμνR¯μνhμν+δRμνfμν=R¯R¯μνhμν+δRμνfμν.\begin{split}R=R_{\mu\nu}g^{\mu\nu}&=(\bar{R}_{\mu\nu}+\delta R_{\mu\nu})(f^{\mu\nu}-h^{\mu\nu})\\ &=\bar{R}_{\mu\nu}f^{\mu\nu}-\bar{R}_{\mu\nu}h^{\mu\nu}+\delta R_{\mu\nu}f^{\mu\nu}\\ &=\bar{R}-\bar{R}_{\mu\nu}h^{\mu\nu}+\delta R_{\mu\nu}f^{\mu\nu}\ .\end{split} (46)

Finally, the Ricci scalar for perturbed RW metric is found as

R=6(a¨a+a˙2a2)+1a202(h11+h22)1a432(h11+h22)2(a¨a3+a˙2a4)(h11+h22).\begin{split}R=&6\left(\frac{\ddot{a}}{a}+\frac{{\dot{a}}^{2}}{a^{2}}\right)+\frac{1}{a^{2}}\partial_{0}^{2}(h_{11}+h_{22})\\ &-\frac{1}{a^{4}}\partial_{3}^{2}(h_{11}+h_{22})-2\left(\frac{\ddot{a}}{a^{3}}+\frac{\dot{a}^{2}}{a^{4}}\right)(h_{11}+h_{22})\ .\end{split} (47)

II.2 Solutions to Linearized JBD Equations

In this section, our plan is to construct and solve perturbed JBD equations. Since we have found necessary elements in previous sections, they can be now placed into the equations. Then solutions of aa, ϕ\phi and the perturbations can be obtained. We have two basic equations, however the first one which is equation (24), will yield more than one due to different components of the Einstein tensor which is Gμν=Rμν12RgμνG_{\mu\nu}=R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}. Let us begin with the second JBD equation which is (25). There is summation in this relation between metric components and derivatives of Φ\Phi, and it can be expanded as

1(ϕ+δϕ)[f0000(ϕ+δϕ)+(f11h11)11(ϕ+δϕ)+(f22h22)22(ϕ+δϕ)+f3333(ϕ+δϕ)]=0.\begin{split}\frac{1}{(\phi+\delta\phi)}[&f^{00}\nabla_{0}\partial_{0}(\phi+\delta\phi)+(f^{11}-h^{11})\nabla_{1}\partial_{1}(\phi+\delta\phi)\\ &+(f^{22}-h^{22})\nabla_{2}\partial_{2}(\phi+\delta\phi)\\ &+f^{33}\nabla_{3}\partial_{3}(\phi+\delta\phi)]=0\ .\end{split} (48)

Then inserting metric components and covariant derivatives of partial derivatives of Φ\Phi into (48) gives

02ϕ(ϕ+δϕ)3a˙a0ϕ(ϕ+δϕ)12a20ϕϕ0(h11+h22)+a˙a30ϕϕ(h11+h22)02δϕϕ3a˙a0δϕϕ+1a232δϕϕ=0.\begin{split}&-\frac{\partial_{0}^{2}\phi}{(\phi+\delta\phi)}-\frac{3\dot{a}}{a}\frac{\partial_{0}\phi}{(\phi+\delta\phi)}-\frac{1}{2a^{2}}\frac{\partial_{0}\phi}{\phi}\partial_{0}(h_{11}+h_{22})\\ &+\frac{\dot{a}}{a^{3}}\frac{\partial_{0}\phi}{\phi}(h_{11}+h_{22})-\frac{\partial_{0}^{2}\delta\phi}{\phi}-\frac{3\dot{a}}{a}\frac{\partial_{0}\delta\phi}{\phi}+\frac{1}{a^{2}}\frac{\partial_{3}^{2}\delta\phi}{\phi}=0\ .\end{split} (49)

To separate zeroth and first order terms, we need one more arrangement like

(ϕ+δϕ)11ϕ(1δϕϕ).(\phi+\delta\phi)^{-1}\simeq\frac{1}{\phi}\left(1-\frac{\delta\phi}{\phi}\right)\ . (50)

After placing (50) into (49), the first order equation is

02δϕϕ3a˙a0δϕϕ+1a232δϕϕ12a20ϕϕ0(h11+h22)+a˙a30ϕϕ(h11+h22)+02ϕδϕϕ2+3a˙a0ϕδϕϕ2=0.\begin{split}&-\frac{\partial_{0}^{2}\delta\phi}{\phi}-\frac{3\dot{a}}{a}\frac{\partial_{0}\delta\phi}{\phi}+\frac{1}{a^{2}}\frac{\partial_{3}^{2}\delta\phi}{\phi}\\ &-\frac{1}{2a^{2}}\frac{\partial_{0}\phi}{\phi}\partial_{0}(h_{11}+h_{22})+\frac{\dot{a}}{a^{3}}\frac{\partial_{0}\phi}{\phi}(h_{11}+h_{22})\\ &+\frac{\partial_{0}^{2}\phi\delta\phi}{\phi^{2}}+\frac{3\dot{a}}{a}\frac{\partial_{0}\phi\delta\phi}{\phi^{2}}=0\ .\end{split} (51)

Since we know h11+h22=2a2(δϕ/ϕ)h_{11}+h_{22}=-2a^{2}(\delta\phi/\phi), by using this relation and integration by parts method, (51) can be written as

02(δϕϕ)3a˙a0(δϕϕ)+1a232(δϕϕ)0ϕϕ0(δϕϕ)=0.\begin{split}&-\partial_{0}^{2}\left(\frac{\delta\phi}{\phi}\right)-\frac{3\dot{a}}{a}\partial_{0}\left(\frac{\delta\phi}{\phi}\right)+\frac{1}{a^{2}}\partial_{3}^{2}\left(\frac{\delta\phi}{\phi}\right)\\ &-\frac{\partial_{0}\phi}{\phi}\partial_{0}\left(\frac{\delta\phi}{\phi}\right)=0\ .\end{split} (52)

This is the final form of the first order part of (48) and it has the form of a wave equation for (δϕ/ϕ)(\delta\phi/\phi). While first three terms come from fμνμν(δϕ/ϕ)f^{\mu\nu}\nabla_{\mu}\nabla_{\nu}(\delta\phi/\phi), the fourth one is an extra term.

Now, there is one more equation to solve for perturbed JBD theory. In total, this one gives six equations because there are six different nonzero components of the Einstein tensor GμνG_{\mu\nu} for perturbed RW metric. We start with inserting (38) and (47) into (24) to get equation of μ=0\mu=0, ν=0\nu=0 as

3a˙212a232(h11+h22)+a˙a0(h11+h22)2a˙2a2(h11+h22)=a202ϕϕa202ϕδϕϕ2+a202δϕϕ+ωa2[(0ϕ)22ϕ2(0ϕ)2δϕϕ3+0ϕ0δϕϕ2].\begin{split}&3\dot{a}^{2}-\frac{1}{2a^{2}}\partial_{3}^{2}(h_{11}+h_{22})+\frac{\dot{a}}{a}\partial_{0}(h_{11}+h_{22})\\ &-\frac{2\dot{a}^{2}}{a^{2}}(h_{11}+h_{22})=a^{2}\frac{\partial_{0}^{2}\phi}{\phi}-a^{2}\frac{\partial_{0}^{2}\phi\delta\phi}{\phi^{2}}+a^{2}\frac{\partial_{0}^{2}\delta\phi}{\phi}\\ &+\omega a^{2}\left[\frac{(\partial_{0}\phi)^{2}}{2\phi^{2}}-\frac{(\partial_{0}\phi)^{2}\delta\phi}{\phi^{3}}+\frac{\partial_{0}\phi\partial_{0}\delta\phi}{\phi^{2}}\right]\ .\end{split} (53)

The first order part of this equation can be written as

a202δϕϕ12a232(h11+h22)+a˙a0(h11+h22)2a˙2a2(h11+h22)=a202ϕδϕϕ2+ωa2[(0ϕ)2δϕϕ3+0ϕ0δϕϕ2].\begin{split}&-a^{2}\frac{\partial_{0}^{2}\delta\phi}{\phi}-\frac{1}{2a^{2}}\partial_{3}^{2}(h_{11}+h_{22})+\frac{\dot{a}}{a}\partial_{0}(h_{11}+h_{22})\\ &-\frac{2\dot{a}^{2}}{a^{2}}(h_{11}+h_{22})=-a^{2}\frac{\partial_{0}^{2}\phi\delta\phi}{\phi^{2}}\\ &+\omega a^{2}\left[-\frac{(\partial_{0}\phi)^{2}\delta\phi}{\phi^{3}}+\frac{\partial_{0}\phi\partial_{0}\delta\phi}{\phi^{2}}\right]\ .\end{split} (54)

By using h11+h22=2a2(δϕ/ϕ)h_{11}+h_{22}=-2a^{2}(\delta\phi/\phi), (52) and the relations via integration by parts

02δϕϕ=02(δϕϕ)+20ϕϕ0(δϕϕ)+02ϕδϕϕ2,\frac{\partial_{0}^{2}\delta\phi}{\phi}=\partial_{0}^{2}\left(\frac{\delta\phi}{\phi}\right)+2\frac{\partial_{0}\phi}{\phi}\partial_{0}\left(\frac{\delta\phi}{\phi}\right)+\frac{\partial_{0}^{2}\phi\delta\phi}{\phi^{2}}\ , (55)
ωa2[(0ϕ)2δϕϕ3+0ϕ0δϕϕ2]=ωa20ϕϕ0(δϕϕ),\omega a^{2}\left[-\frac{(\partial_{0}\phi)^{2}\delta\phi}{\phi^{3}}+\frac{\partial_{0}\phi\partial_{0}\delta\phi}{\phi^{2}}\right]=\omega a^{2}\frac{\partial_{0}\phi}{\phi}\partial_{0}\left(\frac{\delta\phi}{\phi}\right)\ , (56)

equation (54) can be simplified firstly as

aa˙0(δϕϕ)a20ϕϕ0(δϕϕ)=ωa20ϕϕ0(δϕϕ),a\dot{a}\partial_{0}\left(\frac{\delta\phi}{\phi}\right)-a^{2}\frac{\partial_{0}\phi}{\phi}\partial_{0}\left(\frac{\delta\phi}{\phi}\right)=\omega a^{2}\frac{\partial_{0}\phi}{\phi}\partial_{0}\left(\frac{\delta\phi}{\phi}\right)\ , (57)

then as

a˙a0ϕϕ=ω0ϕϕ.\frac{\dot{a}}{a}-\frac{\partial_{0}\phi}{\phi}=\omega\frac{\partial_{0}\phi}{\phi}\ . (58)

We have assumed that ϕ\phi and aa have power-law solutions like ϕts\phi\propto t^{s} and atqa\propto t^{q}. So, after we put them into (58), it turns into

q=s(ω+1).q=s(\omega+1)\ . (59)

This is a new relation of qq, ss and ω\omega. When equations for different μ\mu and ν\nu cases are checked, this relation consistently appears . Now, values of qq, ss and ω\omega can be found by using the relations

3q2+2q+sqω2s2=0,-3q^{2}+2q+sq-\frac{\omega}{2}s^{2}=0\ ,
6q22qsq+ss2=0,6q^{2}-2q-sq+s-s^{2}=0\ ,
q=s(ω+1),q=s(\omega+1)\ ,

which are (17), (18) and (59) respectively. The solutions that satisfy these relations are q=1q=1, s=2s=-2 with ω=3/2\omega=-3/2. Thus, we can write

a(t)=a0(tt0)a(t)=a_{0}\left(\frac{t}{t_{0}}\right) (60)

and

ϕ(t)=ϕ0(tt0)2.\phi(t)=\phi_{0}\left(\frac{t}{t_{0}}\right)^{-2}\ . (61)

Our finding for ω\omega may seem unpleasant because it is a negative coupling parameter and solar system observations showed ω>104\omega>10^{4}. However, JBD theory with negative ω\omega value can explain accelerating expansion of the universe without any necessity of cosmological constantBertolami and Martins (2000)Sen and Seshadri (2003)Banerjee and Pavon (2001). In addition, ω=3/2\omega=-3/2 is the value which makes JBD theory conformally invariantDabrowski et al. (2007) and fits recent data of type Ia supernovaeFabris et al. (2005).

Since we obtained power law solutions for the scale factor and the scalar field, it is easy to put them into the wave equation and look for the solution. Wave equation form of a scalar gravitational wave in (52) is exactly the same for ordinary gravitational waves AA and BB. Inserting (60) and (61) into the wave equation of AA yields

1a22Az22At21tAt=0.\frac{1}{a^{2}}\frac{\partial^{2}A}{\partial z^{2}}-\frac{\partial^{2}A}{\partial t^{2}}-\frac{1}{t}\frac{\partial A}{\partial t}=0\ . (62)

This equation can be arranged as

2Az2=(a0t0)2t22At2+(a0t0)2tAt.\frac{\partial^{2}A}{\partial z^{2}}=\left(\frac{a_{0}}{t_{0}}\right)^{2}t^{2}\frac{\partial^{2}A}{\partial t^{2}}+\left(\frac{a_{0}}{t_{0}}\right)^{2}t\frac{\partial A}{\partial t}\ . (63)

Simplifying the form of the wave equation by defining conformal time τ\tau, will help us to figure it out. We define

tt=τ\frac{\partial t}{t}=\partial\tau (64)

so

lnt=τ.\ln t=\tau\ . (65)

The wave equation with respect to τ\tau is

2Az2=(a0t0)22Aτ2+(a0t0)2Aτ.\frac{\partial^{2}A}{\partial z^{2}}=\left(\frac{a_{0}}{t_{0}}\right)^{2}\frac{\partial^{2}A}{\partial\tau^{2}}+\left(\frac{a_{0}}{t_{0}}\right)^{2}\frac{\partial A}{\partial\tau}\ . (66)

At that point, to be able to guess the form of the wave equation, the distance relation on a null geodesic for the scale factor can be written as

d=ta=t0a0tt=t0lnt=t0τd=\int\frac{\partial t}{a}=\frac{t_{0}}{a_{0}}\int\frac{\partial t}{t}=t_{0}\ln t=t_{0}\tau (67)

where a0=1a_{0}=1. This and the form of the wave equation in (66) encourage us to write a wave function like

A(z,τ)=A0ei(k~azkt0τ)A(z,\tau)=A_{0}e^{i(\tilde{k}az-kt_{0}\tau)} (68)

where k~\tilde{k} is a complex wave number. Substituting this into (66) gives

k~2=(t0t)2k2+i(t0t)2kt0\tilde{k}^{2}=\left(\frac{t_{0}}{t}\right)^{2}k^{2}+i\left(\frac{t_{0}}{t}\right)^{2}\frac{k}{t_{0}} (69)

and so

k~=t0tk(1+ikt0)1/2=t0tk+i2t.\tilde{k}=\frac{t_{0}}{t}k\left(1+\frac{i}{kt_{0}}\right)^{1/2}=\frac{t_{0}}{t}k+\frac{i}{2t}\ . (70)

After inserting this back to the wave function, it becomes

A(z,τ)=A0ei(kzkt0τ)ez2t0.A(z,\tau)=A_{0}e^{i(kz-kt_{0}\tau)}e^{-\frac{z}{2t_{0}}}\ . (71)

This is the form of the wave function for ordinary and scalar gravitational waves that we are looking for. As is expected, it decays exponentially at large distances.

III Vacuum Solutions to JBD Theory for Non-Flat Spacelike Sections

So far, we dealt with JBD theory on flat space and found JBD parameter ω=3/2\omega=-3/2. Now, we wonder the value of ω\omega for cases which have nonzero curvature parameters. To find it, a new action which contains a potential term of the scalar field is the starting point. Potential term is necessary in non-flat cases, otherwise equations give the curvature parameter as zero. So, the JBD action with a self-interacting potential for the vacuum case is

S=116πd4xg(ϕRωgμνμϕνϕϕλϕ2).S=\frac{1}{16\pi}\int d^{4}x\sqrt{-g}\left(\phi R-\omega\frac{g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi}{\phi}-\lambda\phi^{2}\right)\ . (72)

Taking variations and applying the same procedure which we did before, give the JBD equations as

Rμν12Rgμν=1ϕ(μνϕgμνgαβαβϕ)+ωϕ2(μϕνϕ12gμνgαβαϕβϕ)gμν2λϕ,\begin{split}R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=&\frac{1}{\phi}\left(\nabla_{\mu}\partial_{\nu}\phi-g_{\mu\nu}g^{\alpha\beta}\nabla_{\alpha}\partial_{\beta}\phi\right)\\ &+\frac{\omega}{\phi^{2}}\left(\partial_{\mu}\phi\partial_{\nu}\phi-\frac{1}{2}g_{\mu\nu}g^{\alpha\beta}\partial_{\alpha}\phi\partial_{\beta}\phi\right)\\ &-\frac{g_{\mu\nu}}{2}\lambda\phi\ ,\end{split} (73)
(3+2ω)ϕgμνμνϕ=0.\frac{(3+2\omega)}{\phi}g^{\mu\nu}\nabla_{\mu}\partial_{\nu}\phi=0\ . (74)

We will use the following form of RW metric in spherical coordinates

ds2=dt2+a2(dr21κr2+r2(dθ2+sin2θdϕ2))ds^{2}=-dt^{2}+a^{2}\left(\frac{dr^{2}}{1-\kappa r^{2}}+r^{2}(d\theta^{2}+\sin^{2}\theta d\phi^{2})\right) (75)

where κ\kappa is curvature. Ricci tensor components and the Ricci scalar for this metric form are

R00=3a˙a,R_{00}=-3\frac{\dot{a}}{a}\ , (76)
R11=aa¨+2a˙2+2κ1κr2,R_{11}=\frac{a\ddot{a}+2\dot{a}^{2}+2\kappa}{1-\kappa r^{2}}\ , (77)
R22=r2(aa¨+2a˙2+2κ),R_{22}=r^{2}(a\ddot{a}+2\dot{a}^{2}+2\kappa)\ , (78)
R33=r2sin2θ(aa¨+2a˙2+2κ),R_{33}=r^{2}\sin^{2}\theta(a\ddot{a}+2\dot{a}^{2}+2\kappa)\ , (79)
R=6(a¨a+a˙2a2+κa2).R=6\left(\frac{\ddot{a}}{a}+\frac{\dot{a}^{2}}{a^{2}}+\frac{\kappa}{a^{2}}\right)\ . (80)

After taking the derivatives, (74) becomes

02ϕ+3a˙a0ϕ=0.\partial_{0}^{2}\phi+3\frac{\dot{a}}{a}\partial_{0}\phi=0\ . (81)

Using atqa\propto t^{q} and ϕts\phi\propto t^{s} in this equation gives 3q+s=13q+s=1 which we are familiar with from the preceding sections. Let us continue with equation (73). By using (74), (76) and (80), it can be written for μ=0\mu=0, ν=0\nu=0 as

3a˙2a2+3κa202ϕϕω2(0ϕ)2ϕ2λϕ2=0.3\frac{\dot{a}^{2}}{a^{2}}+3\frac{\kappa}{a^{2}}-\frac{\partial_{0}^{2}\phi}{\phi}-\frac{\omega}{2}\frac{(\partial_{0}\phi)^{2}}{\phi^{2}}-\frac{\lambda\phi}{2}=0\ . (82)

For μ=1\mu=1, ν=1\nu=1 case, (73) turns into

2a¨aa˙2a2κa2+a˙a0ϕϕω2(0ϕ)2ϕ2+λϕ2=0.-2\frac{\ddot{a}}{a}-\frac{\dot{a}^{2}}{a^{2}}-\frac{\kappa}{a^{2}}+\frac{\dot{a}}{a}\frac{\partial_{0}\phi}{\phi}-\frac{\omega}{2}\frac{(\partial_{0}\phi)^{2}}{\phi^{2}}+\frac{\lambda\phi}{2}=0\ . (83)

To get two independent equations, (83) is subtracted from (82), then we have

2a¨a+4a˙2a2+4κa202ϕϕa˙a0ϕϕλϕ=0.2\frac{\ddot{a}}{a}+4\frac{\dot{a}^{2}}{a^{2}}+4\frac{\kappa}{a^{2}}-\frac{\partial_{0}^{2}\phi}{\phi}-\frac{\dot{a}}{a}\frac{\partial_{0}\phi}{\phi}-\lambda\phi=0\ . (84)

Since atqa\propto t^{q} and ϕts\phi\propto t^{s}, after they are inserted into (83) and (84), following two are obtained

1t2(6q22qsq+ss2)+4κa2λϕ=0,\frac{1}{t^{2}}(6q^{2}-2q-sq+s-s^{2})+4\frac{\kappa}{a^{2}}-\lambda\phi=0\ , (85)
1t2(3q22qsq+ω2s2)+κa2λϕ2=0.\frac{1}{t^{2}}\left(3q^{2}-2q-sq+\frac{\omega}{2}s^{2}\right)+\frac{\kappa}{a^{2}}-\frac{\lambda\phi}{2}=0\ . (86)

Terms in parenthesis evolve with 1/t21/t^{2} and it is known that the equations should be satisfied in any time. So in this case, the scale factor and the scalar field should be ata\propto t and ϕt2\phi\propto t^{-2} respectively as we found before. After placing q=1q=1 and s=2s=-2 into (85) and (86), the equations, which show the relations between parameters, are

4κa2=λϕ4\frac{\kappa}{a^{2}}=\lambda\phi (87)

and

3+2ωt2+κa2=λϕ2.\frac{3+2\omega}{t^{2}}+\frac{\kappa}{a^{2}}=\frac{\lambda\phi}{2}\ . (88)

Finally, by using the forms of the scale factor and the scalar field in (60) and (61), ω\omega can be written as

ω=κt02232.\omega=\frac{\kappa t_{0}^{2}}{2}-\frac{3}{2}\ . (89)

According to this relation, ω\omega is still a negative coupling parameter since the size of the universe is greater than the age of the universe. Besides, obtaining true value of ω\omega provides the ratio between them. As it is indicated in Fabris et al. (2005), based on the recent observational data, the best fitting value of ω\omega is 1.477-1.477. So, (89) is a very reasonable relation. As we have referred before, although local tests indicate that ω\omega is a large positive number, JBD theory with a negative coupling parameter is viable scenario.

References

  • Brans and Dicke (1961) C. Brans and R. H. Dicke, Physical Review 124, 925 (1961).
  • Will (2010) C. M. Will, in General Relativity and John Archibald Wheeler (Springer, 2010) pp. 73–93.
  • O’Hanlon and Tupper (1972) J. O’Hanlon and B. Tupper, Il Nuovo Cimento B (1971-1996) 7, 305 (1972).
  • Weinberg (1972) S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity, Vol. 1 (Wiley New York, 1972).
  • Maggiore and Nicolis (2000) M. Maggiore and A. Nicolis, Physical Review D 62, 024004 (2000).
  • Bertolami and Martins (2000) O. Bertolami and P. Martins, Physical Review D 61, 064007 (2000).
  • Sen and Seshadri (2003) S. Sen and T. Seshadri, International Journal of Modern Physics D 12, 445 (2003).
  • Banerjee and Pavon (2001) N. Banerjee and D. Pavon, Physical Review D 63, 043504 (2001).
  • Dabrowski et al. (2007) M. P. Dabrowski, T. Denkiewicz,  and D. B. Blaschke, Annalen der Physik 16, 237 (2007).
  • Fabris et al. (2005) J. Fabris, S. Gonçalves,  and R. Ribeiro, arXiv preprint astro-ph/0510779  (2005).
  • Carroll (2004) S. M. Carroll, Spacetime and geometry. An introduction to general relativity, Vol. 1 (2004).
  • Capozziello and Faraoni (2010) S. Capozziello and V. Faraoni, Beyond Einstein gravity: A Survey of gravitational theories for cosmology and astrophysics, Vol. 170 (Springer Science & Business Media, 2010).
  • Faraoni (2004) V. Faraoni, Cosmology in scalar-tensor gravity, Vol. 139 (Springer Science & Business Media, 2004).