This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Gravitational Waves by Perturbation of a Slowly Rotating Thin-Shell Wormhole

Sung-Won Kim sungwon@ewha.ac.kr Ewha Womans University, Seoul 03760, Korea
Abstract

In this paper, the gravitational wave generation by a slowly rotating thin-shell wormhole is considered. Since the rotating thin-shell wormhole is assumed to be an axisymmetric rigid body, the rotation axis coincides with the largest principal axis which means there is no precession motion. However, if there is a perturbation in the angular velocity, the rotating wormhole can move with precession by perturbation which make arise the gravitational waves. We derive the gravitational wave spectrum, energy loss rate, and angular momentum loss rate.

gravitational wave, thin-shell wormhole, rotating, perturbation

today

I Introduction

The detections of the gravitational waves by the LIGO/Virgo collaboration Aasi ; Ace are in great success of windows to researches of new area. The improving accuracy and extending the detection bands provide the motivations for exploring new gravitational sources. Wormhole also can be an astrophysical compact object which is one of the candidates of gravitational wave source, even though their existence is still not confirmed yet. However, considering the gravitational waves by wormholes has sufficient meaning to be one of the candidates of source for future detections TBBL2021 .

There are several trials to find any footprint of wormhole, such as gravitational lensing ATKAA , shadows NTY2013 , Einstein rings THY2012 , and particle creation SWK92 . If we succeed in detection of GW generated by wormhole, it also can be added to the list of wormhole evidence.

To get gravitational waves by a single stellar object, we need the periodic motion of the perturbed term in it. Periodic motion can mainly be caused by two dynamic motions: pulsation and precession. For the case of pulsation, the perturbation is required in matter as well as in geometric part. The another dynamic motion is precession derived from the rotation of the body. In latter case, we use the inertia tensor of the rigid body instead of quadrupole moment. These two quantities (inertia tensor and quadrupole moment) are identified except the change of the sign, after the second derivation with respect to time in deriving the gravitational wave forms.

Usually two mathematical models of wormhole are used because of their simplicity: Ellis-Bronnikov-Morris-Thorne wormhole and Visser thin-shell wormhole. Ellis Ellis suggested a very simple drainhole model in early times. In his work, Bronnikov Bron realized, with evidence, that the Ellis drainhole is geodesically complete, without event horizons, with free singularity and with traversability. Morris and Thorne MT suggested a simple Schwarzschild type traversable wormhole, which is mathematically identical to the transformed Ellis one. Visser Visser tried to construct wormhole with minimized use of exotic matter by cut-and-paste operation with two copies of Schwarzschild spacetime. He used only delta function distribution of the exotic matter at the junction of two spacetimes, so that the resultant wormhole is the thin-shell wormhole.

As the first step to the study of the gravitational wave generated by wormhole, we considered the rotating thin-shell wormhole because of the minimal use of exotic matter. One of the most challenging problem in Einstein’s general relativity is to find stable wormholes with a minimum amount of exotic matter or with completely normal matter MT ; HV . In this regard we note that rotating wormholes present more alternatives because of their extra degrees of freedom Ov . Rotating wormholes were first introduced by Teo Teo , who addressed the restrictions that must be imposed on the geometry in order to have a stationary and axisymmetric wormhole. However, the model did not think the matter part of the r.h.s of Einstein equation. There is other type of rotating wormhole supported by a phantom field, slowly rotating case KS2008 , rapidly rotating case KK2014 , nonsymmetric case CKK2016 , and thin-shell wormhole Visser_book ; KS11 ; Ov . The rotating thin-shell wormhole is made by two copies of Kerr black holes Visser_book ; KS11 with angular momentum and inhomogeneous surface density following the mechanism designed by Visser.

In this paper we consider the gravitational wave generation by perturbed precession of thin-shell rotating wormhole. Free precession happens when triaxial ellipsoid rotates or the principal axis of an axisymmetric body does not coincide with the angular momentum Mechanics . If the axisymmetric body rotates around the principal axis, the body does not move with free precession. However, the perturbation in angular velocity of the principal axis causes oscillation and precession of axis like the forced motion. In the astrophysical situations, there is a high probability of perturbation of the star due to the scattering of small bodies.

II Thin-shell wormhole

As the example of the gravitational wave generation, we consider the thin-shell model according to Visser. Thin-shell wormhole is the surgical cut-and-paste operation with two identical copies of Schwarzschild black hole. The junction is located at the outer of the event horizon so that two way travel is possible. To construct the rotating thin-shell wormhole, we combine two copies of Kerr black holes KS11 , at some place outside of event horizon like the non-rotating case Visser . Einstein equations on the shell is (Lanczos equations)

kij+kgij=8πSij-k_{ij}+kg_{ij}=8\pi S_{ij} (1)

with the extrinsic curvature

kij\displaystyle k_{ij} =\displaystyle= Kij+Kij,k=kii,\displaystyle K^{+}_{ij}-K^{-}_{ij},\leavevmode\nobreak\ \leavevmode\nobreak\ k=k^{i}_{i},
Kij±\displaystyle K^{\pm}_{ij} =\displaystyle= nγ±(2xγξiξj+Γαβγxαξixβξj)|Σ,\displaystyle-n^{\pm}_{\gamma}\left.\left(\frac{{\partial}^{2}x^{\gamma}}{\partial{\xi}^{i}\partial{\xi}^{j}}+\Gamma^{\gamma}_{\alpha\beta}\frac{\partial x^{\alpha}}{\partial{\xi}^{i}}\frac{\partial x^{\beta}}{\partial{\xi}^{j}}\right)\right|_{\Sigma}, (2)

and the surface stress-energy tensor

Sij=(σ0ζ0pϑ0ζ0pφ),S_{ij}=\left(\begin{array}[]{ccc}\sigma&0&\zeta\\ 0&p_{\vartheta}&0\\ \zeta&0&p_{\varphi}\end{array}\right), (3)

where σ\sigma is the surface energy density, pϑp_{\vartheta} and pφp_{\varphi} are principal surface pressures, and ζ\zeta is the surface angular momentum density.

Kerr in Boyer-Lindquist coordinates is given by

ds2=(12rρ2)c2dt2+ρ2Δdr2+ρ2dθ2+(r2+ρ2+2a2rρ2sin2θ)sin2θdϕ24𝒥rρ2sin2θdϕcdt,ds^{2}=-\left(1-\frac{2{\cal M}r}{{\rho}^{2}}\right)c^{2}dt^{2}+\frac{\rho^{2}}{\Delta}dr^{2}+\rho^{2}d\theta^{2}+\left(r^{2}+\rho^{2}+\frac{2{\cal M}a^{2}r}{\rho^{2}}\sin^{2}\theta\right)\sin^{2}\theta d\phi^{2}-\frac{4{\cal J}r}{\rho^{2}}\sin^{2}\theta d\phi cdt,\\ (4)

where

ρ2=r2+a2sin2θ,Δ=r22r+a2.\rho^{2}=r^{2}+a^{2}\sin^{2}\theta,\quad\Delta=r^{2}-2{\cal M}r+a^{2}.

Here 𝒥{\cal J} is the angular momentum in length-square dimension, and {\cal M} is the mass in length dimension. They have

=M×(Gc2),𝒥=J×(Gc3),{\cal M}=M\times\left(\frac{G}{c^{2}}\right),\qquad{\cal J}=J\times\left(\frac{G}{c^{3}}\right),

where JJ is the angular momentum, a=𝒥/a={\cal J}/{\cal M} is the angular momentum per unit mass and it has the unit of length. The event horizon is located at r+=+2a2r_{+}={\cal M}+\sqrt{{\cal M}^{2}-a^{2}} and the ergosphere is between r+r_{+} and r0=+2a2cos2θr_{0}={\cal M}+\sqrt{{\cal M}^{2}-a^{2}\cos^{2}\theta}.

In this thin shell wormhole, the mass surface density is derived as KS11

4πσ=Δβ1/2[2β3+α2β+α2+α2(β1)cos2θ]ρβΦ(c2G),4\pi\sigma=-\frac{{{\Delta}}^{1/2}_{\beta}[2{\beta}^{3}+{\alpha}^{2}\beta+{\alpha}^{2}+{\alpha}^{2}\left(\beta-1\right)\cos^{2}\theta]}{{\cal M}{\rho}_{\beta}\Phi}\left(\frac{c^{2}}{G}\right), (5)

where α=a/\alpha=a/{\cal M}, β=b/\beta=b/{\cal M}, Δβ=β22β+α2\Delta_{\beta}=\beta^{2}-2\beta+\alpha^{2}, ρβ2=β2+α2cos2θ\rho^{2}_{\beta}=\beta^{2}+\alpha^{2}\cos^{2}\theta, Φ=β4+α2β2+2α2β+α2Δβcos2θ\Phi=\beta^{4}+\alpha^{2}\beta^{2}+2\alpha^{2}\beta+\alpha^{2}\Delta_{\beta}\cos^{2}\theta which are all dimensionless parameter. The aa is angular momentum per mass in length unit and bb is the radius of cut-and-paste, that is, the wormhole throat size. Thus for the thin-shell wormhole model, the event horizon is at β+=1+1α2{\beta}_{+}=1+\sqrt{1-{\alpha}^{2}} and 1<β+<21<\beta_{+}<2 for α2<1\alpha^{2}<1. At event horizon, σ=0\sigma=0. The ergosphere is at β0=1+1α2cos2θ>β+>1{\beta}_{0}=1+\sqrt{1-{\alpha}^{2}{{\mathrm{cos}}^{2}\theta\ }}>{\beta}_{+}>1. At least, β>β+\beta>\beta_{+} for positivity of Δβ\Delta_{\beta}. For the case of vanishing α\alpha, then the density is

σ0=12πb12/β(c2G).\sigma_{0}=-\frac{1}{2\pi b}\sqrt{1-2/\beta}\left(\frac{c^{2}}{G}\right). (6)

The density is negative everywhere, there is no region of positive value, even when the wormhole is rotating. Fig. 1 shows the θ\theta-distribution of density at constant α\alpha and β\beta. The property of σ<0\sigma<0 is well discussed in the article by Morris and Thorne MT in the context of flare-out condition.

Refer to caption
Figure 1: density distribution of thin-shell model in θ\theta at constant β=2,α=0.2\beta=2,\alpha=0.2

III perturbation of symmetric rotating body

Let a rigid body with principal moments I1,I2,I_{1},I_{2}, and I3I_{3} rotate around x3x_{\mathrm{3}}-axis (𝝎=ω3𝒆3\bm{\omega}\mathrm{=}{\omega}_{\mathrm{3}}{\bm{e}}_{\mathrm{3}}) and we apply a small perturbation, the angular velocity vector assumes the form as

𝝎=λ𝒆1+μ𝒆𝟐+ω3𝒆3,\bm{\omega}\mathrm{=}\lambda{\bm{e}}_{\mathrm{1}}+\mu{\bm{e}}_{\bm{\mathrm{2}}}+{\omega}_{\mathrm{3}}{\bm{e}}_{\mathrm{3}},

where λ\lambda and μ\mu are small quantities.

The Euler equations becomes

(I2I3)μω3I1λ˙=0,\displaystyle(I_{2}-I_{3})\mu\omega_{3}-I_{1}\dot{\lambda}=0,
(I3I1)λω3I2μ˙=0,\displaystyle(I_{3}-I_{1})\lambda\omega_{3}-I_{2}\dot{\mu}=0,
(I1I2)λμI3ω˙3=0.\displaystyle(I_{1}-I_{2})\lambda\mu-I_{3}\dot{\omega}_{3}=0. (7)

when I1=I2I_{1}=I_{2}, ω3=\omega_{3}=cosnt and

λ(t)\displaystyle\lambda(t) =\displaystyle= AeiΩt+BeiΩt,\displaystyle A^{\prime}e^{i\Omega t}+B^{\prime}e^{-i\Omega t}, (8)
μ(t)\displaystyle\mu(t) =\displaystyle= CeiΩt+DeiΩt,\displaystyle C^{\prime}e^{i\Omega t}+D^{\prime}e^{-i\Omega t}, (9)

where

Ω=ω3(I3I1)(I3I2)I1I2=ω3I3I1I1=ω3ϵ\Omega=\omega_{3}\sqrt{\frac{(I_{3}-I_{1})(I_{3}-I_{2})}{I_{1}I_{2}}}=\omega_{3}\frac{I_{3}-I_{1}}{I_{1}}=\omega_{3}\epsilon

when I1=I2<I3I_{1}=I_{2}<I_{3} and ϵ=I3I1I1\epsilon=\frac{I_{3}-I_{1}}{I_{1}} is the ellipticity of the body. Here A,B,CA^{\prime},B^{\prime},C^{\prime} and DD^{\prime} are constants. Thus we can say that the perturbation makes arise the two dimensional harmonic motion as

ω1(t)\displaystyle\omega_{1}(t) =\displaystyle= λ(t)=Acos(Ωtα),\displaystyle\lambda(t)=A\cos(\Omega t-\alpha), (10)
ω2(t)\displaystyle\omega_{2}(t) =\displaystyle= μ(t)=Bcos(Ωtβ),\displaystyle\mu(t)=B\cos(\Omega t-\beta), (11)

with small constants AA and BB.

Refer to caption
Figure 2: Circular and elliptic precessions around zz-axis. The tip of 𝝎\bm{\omega} moves in a circle and an ellipse on the plane parallel to xx-yy plane. The former case has time-independent angle θ\theta from zz-axis and the latter has time-dependent θ\theta.

If A=BA=B and the phase difference is αβ=π/2\alpha-\beta=\pi/2, it is a circular motion around x3x_{3}-axis in fixed frame, which is precession motion and the angle θ=θ0\theta=\theta_{0} is constant. See the Fig. 2. Thus we need the transformation 2x(θ0)z(Ωt)\mathcal{R}_{2}\equiv\mathcal{R}_{x}(\theta_{0})\mathcal{R}_{z}(\Omega t) from 𝕀b\mathbb{I}_{\mathrm{b}} to 𝕀f\mathbb{I}_{\mathrm{f}} and we get the consequent components of 𝕀f\mathbb{I}_{\mathrm{f}} as

I11\displaystyle I_{11} =\displaystyle= I1(cos2Ωt+cos2θ0sin2Ωt)+I3sin2θ0sin2Ωt,\displaystyle I_{1}(\cos^{2}\Omega t+\cos^{2}\theta_{0}\sin^{2}\Omega t)+I_{3}\sin^{2}\theta_{0}\sin^{2}\Omega t,
I12\displaystyle I_{12} =\displaystyle= (I1I3)sin2θ0sinΩtcosΩt,\displaystyle(I_{1}-I_{3})\sin^{2}\theta_{0}\sin\Omega t\cos\Omega t,
I13\displaystyle I_{13} =\displaystyle= (I1I3)sinθ0cosθ0sinΩt,\displaystyle-(I_{1}-I_{3})\sin\theta_{0}\cos\theta_{0}\sin\Omega t,
I21\displaystyle I_{21} =\displaystyle= (I1I3)sin2θ0sinΩtcosΩt,\displaystyle(I_{1}-I_{3})\sin^{2}\theta_{0}\sin\Omega t\cos\Omega t,
I22\displaystyle I_{22} =\displaystyle= I1(sin2Ωt+cos2θ0cos2Ωt)+I3sin2θ0cos2Ωt,\displaystyle I_{1}(\sin^{2}\Omega t+\cos^{2}\theta_{0}\cos^{2}\Omega t)+I_{3}\sin^{2}\theta_{0}\cos^{2}\Omega t,
I23\displaystyle I_{23} =\displaystyle= (I1I3)sin2θ0sinΩtcosΩt,\displaystyle(I_{1}-I_{3})\sin^{2}\theta_{0}\sin\Omega t\cos\Omega t,
I31\displaystyle I_{31} =\displaystyle= (I1I3)sinθ0cosθ0sinΩt,\displaystyle-(I_{1}-I_{3})\sin\theta_{0}\cos\theta_{0}\sin\Omega t,
I32\displaystyle I_{32} =\displaystyle= (I1I3)sinθ0cosθ0cosΩt,\displaystyle(I_{1}-I_{3})\sin\theta_{0}\cos\theta_{0}\cos\Omega t,
I33\displaystyle I_{33} =\displaystyle= I1sin2θ0+I3cos2θ0.\displaystyle I_{1}\sin^{2}\theta_{0}+I_{3}\cos^{2}\theta_{0}.

The second derivatives of the inertia tensor with respect to time are

I¨(t)=12Ω2(I3I1)(4sin2θ0cos2Ωt4sin2θ0sin2Ωtsin2θ0sinΩt4sin2θ0sin2Ωt4sin2θ0cos2Ωtsin2θ0cosΩtsin2θ0sinΩtsin2θ0cosΩt0)\ddot{I}(t)=\frac{1}{2}\Omega^{2}(I_{3}-I_{1})\left(\begin{array}[]{ccc}4\sin^{2}\theta_{0}\cos 2\Omega t&4\sin^{2}\theta_{0}\sin 2\Omega t&-\sin 2\theta_{0}\sin\Omega t\\ 4\sin^{2}\theta_{0}\sin 2\Omega t&-4\sin^{2}\theta_{0}\cos 2\Omega t&\sin 2\theta_{0}\cos\Omega t\\ -\sin 2\theta_{0}\sin\Omega t&\sin 2\theta_{0}\cos\Omega t&0\end{array}\right) (12)
Refer to caption
Figure 3: The relation between (𝐱^,𝐲^,𝐳^)(\hat{\rm{\bf x}},\hat{\rm{\bf y}},\hat{\rm{\bf z}}) frame and the (𝐮^,𝐯^,𝐧^)(\hat{\rm{\bf u}},\hat{\rm{\bf v}},\hat{\rm{\bf n}}) frame. The vector 𝐧^\hat{\rm{\bf n}} is at an angle ι\iota from zz-axis and κ\kappa from yy-axis MM .

To calculate the amplitudes for a gravitational waves propagating in the generic direction 𝐧^\hat{\rm{\bf n}}, we introduce two unit vectors 𝐮^\hat{\rm{\bf u}} and 𝐯^\hat{\rm{\bf v}} orthogonal to 𝐧^\hat{\rm{\bf n}} so that 𝐮^×𝐯^=𝐧^\hat{\rm{\bf u}}\times\hat{\rm{\bf v}}=\hat{\rm{\bf n}} as shown in Fig. 3.

Therefore the strains h+h_{+} and h×h_{\times} in direction 𝐧^\hat{\rm{\bf n}} with inclination angle ι\iota are

h+(t;ι)\displaystyle h_{+}(t;\iota) =\displaystyle= Grc4(I¨11I¨22cos2ιI¨33sin2ι+I¨23sin2ι\displaystyle-\frac{G}{rc^{4}}(\ddot{I}_{11}-\ddot{I}_{22}\cos^{2}\iota-\ddot{I}_{33}\sin^{2}\iota+\ddot{I}_{23}\sin 2\iota
\displaystyle\simeq h0[2θ02(1+cos2ι)cos2Ωt+2θ0sinιcosιcosΩt],\displaystyle h_{0}[2\theta_{0}^{2}(1+\cos^{2}\iota)\cos 2\Omega t+2\theta_{0}\sin\iota\cos\iota\cos\Omega t],
h×(t;ι)\displaystyle h_{\times}(t;\iota) =\displaystyle= Grc4(2I¨12cosι2I¨13sinι)\displaystyle-\frac{G}{rc^{4}}(2\ddot{I}_{12}\cos\iota-2\ddot{I}_{13}\sin\iota) (14)
=\displaystyle= h0(4θ02cosιsin2Ωt+2θ0sinιsinΩt),\displaystyle h_{0}(4\theta_{0}^{2}\cos\iota\sin 2\Omega t+2\theta_{0}\sin\iota\sin\Omega t),

where

h0=Grc4I1ϵΩ2.h_{0}=-\frac{G}{rc^{4}}I_{1}\epsilon\Omega^{2}.

The results are the same as the free precession case of symmetric body ZS except that θ0=2A/ω3\theta_{0}=\sqrt{2}A/\omega_{3} and Ω=ϵω3\Omega=\epsilon\omega_{3}. That is, the amplitude depends on the perturbation size and the frequency depends on the angular velocity of the rotation. When ι=0\iota=0,

h+(t;0)=4h0θ02cos2Ωt,h×(t;0)=4h0θ02sin2Ωt.h_{+}(t;0)=4h_{0}\theta_{0}^{2}\cos 2\Omega t,\qquad h_{\times}(t;0)=4h_{0}\theta_{0}^{2}\sin 2\Omega t.

They are same spectrum of free precession cases ZS and the order of magnitude is ϵ3θ02\epsilon^{3}\theta_{0}^{2}. When ι=π/2\iota=\pi/2,

h+(t;π/2)=2h0θ02cos2Ωt,h×(t;π/2)=2h0θ0sinΩt.h_{+}(t;\pi/2)=2h_{0}\theta_{0}^{2}\cos 2\Omega t,\qquad h_{\times}(t;\pi/2)=2h_{0}\theta_{0}\sin\Omega t.

In this case, the size of h+(t;π/2)h_{+}(t;\pi/2) is smaller than the size of h×h_{\times} in Δ\Delta, and is half of h+(t;0)h_{+}(t;0). However, only the Ω\Omega spectrum appears in h×(t;π/2)h_{\times}(t;\pi/2). The power radiated is

P\displaystyle P =\displaystyle= 2G5c5I12ϵ2Ω6sin2θ0(cos2θ0+16sin2θ0)\displaystyle\frac{2G}{5c^{5}}I_{1}^{2}\epsilon^{2}\Omega^{6}\sin^{2}\theta_{0}(\cos^{2}\theta_{0}+16\sin^{2}\theta_{0}) (15)
\displaystyle\simeq 2G5c5I12ϵ8ω36θ02.\displaystyle\frac{2G}{5c^{5}}I_{1}^{2}\epsilon^{8}\omega_{3}^{6}\theta_{0}^{2}.

for small angle θ0\theta_{0}. It depends on ϵ8\epsilon^{8} and θ02\theta_{0}^{2}. The change rate of the angular momentum change LL is

dLdt\displaystyle\frac{dL}{dt} =\displaystyle= 2G5c5I12ϵ2Ω5sin2θ0(cos2θ0+16sin2θ0)\displaystyle-\frac{2G}{5c^{5}}I_{1}^{2}\epsilon^{2}\Omega^{5}\sin^{2}\theta_{0}(\cos^{2}\theta_{0}+16\sin^{2}\theta_{0}) (16)
\displaystyle\simeq 2G5c5I12ϵ7ω35θ02.\displaystyle-\frac{2G}{5c^{5}}I_{1}^{2}\epsilon^{7}\omega_{3}^{5}\theta_{0}^{2}.

for small angle θ0\theta_{0}. Therefore

dJdt=dEdt1Ω=dEdt1ϵω3.\frac{dJ}{dt}=\frac{dE}{dt}\frac{1}{\Omega}=\frac{dE}{dt}\frac{1}{\epsilon\omega_{3}}.

Where JJ is the loss of angular momentum.

IV gravitational waves by thin-shell wormhole

We need the inertia tensor for the rotating wormhole, because of the consideration of the rigid body. Note that the two-dimensional surface t=t= const, r=br=b in Kerr spacetime is actually an ellipsoid of revolution having minor and major axis equal to bb and b2+a2\sqrt{b^{2}+a^{2}}. In order to calculate the moment of inertia for thin shell, we need the surface integral over the ellipsoid. In the surface integral, the oblate factor is bb2+a21+ζcos2θsinθdθ=ρβb2+a2sinθdθb\sqrt{b^{2}+a^{2}}\sqrt{1+\zeta\cos^{2}\theta}\sin\theta d\theta={\cal{M}}\rho_{\beta}\sqrt{b^{2}+a^{2}}\sin\theta d\theta instead of b2sinθdθb^{2}\sin\theta d\theta for sphere. Here ζ=a2/b2=α2/β2\zeta=a^{2}/b^{2}=\alpha^{2}/\beta^{2}.

To see the simple estimation of mass dependence on JJ, there is a relation like as HKL2017

𝒥=2a,{\cal J}={\cal M}^{2}a_{*}, (17)

where aa_{*} is the dimensionless spin parameter with value between 0 and 1. We can set β=4>2\beta=4>2. The assumption of smallness of αβa4\frac{\alpha}{\beta}\simeq\frac{a_{*}}{4} is validated for any mass.

Therefore, the moment of inertia for ellipsoid is

Iij=02π0π[r2δijxixj]σρβb2+a2sinθdθdϕ.I_{ij}=\int^{2\pi}_{0}\int^{\pi}_{0}[r^{2}\delta_{ij}-x_{i}x_{j}]\sigma{\cal{M}}\rho_{\beta}\sqrt{b^{2}+a^{2}}\sin\theta d\theta d\phi. (18)

The σ\sigma is used instead of σ0\sigma_{0} in calculating inertia tensor, because of the using T0^0^T^{\hat{0}\hat{0}} for gravitational waves. Here the ρβσ\cal{M}\rho_{\beta}\sigma is expanded for small ζ\zeta as

ρβσ12π(β22β)β[1+ζ(P+Qx2)],{\cal{M}}\rho_{\beta}\sigma\cong-\frac{1}{2\pi}\frac{\sqrt{(\beta^{2}-2\beta)}}{\beta}[1+\zeta(P+Qx^{2})],

where

x=cosθ,P=β+22β(β2),Q=12+32β.x=\cos\theta,\qquad P=\frac{\beta+2}{2\beta(\beta-2)},\qquad Q=-\frac{1}{2}+\frac{3}{2\beta}.

With this formula we get the components of moment

I1\displaystyle I_{1} =\displaystyle= I2=Ixx=σ0S023b2[1+ζ(P+1+25Q)]\displaystyle I_{2}=I_{xx}=\sigma_{0}S_{0}\frac{2}{3}b^{2}\left[1+\zeta\left(P+1+\frac{2}{5}Q\right)\right] (19)
=\displaystyle= 43b312β[1+ζ(16β210β420β(β2))](c2G),\displaystyle-\frac{4}{3}b^{3}\sqrt{1-\frac{2}{\beta}}\left[1+\zeta\left(\frac{16\beta^{2}-10\beta-4}{20\beta(\beta-2)}\right)\right]\left(\frac{c^{2}}{G}\right),
I3\displaystyle I_{3} =\displaystyle= Izz=σ0S023b2[1+ζ(P+32+110Q)]\displaystyle I_{zz}=\sigma_{0}S_{0}\frac{2}{3}b^{2}\left[1+\zeta\left(P+\frac{3}{2}+\frac{1}{10}Q\right)\right] (20)
=\displaystyle= 43b312β[1+ζ(29β245β+1420β(β2))](c2G),\displaystyle-\frac{4}{3}b^{3}\sqrt{1-\frac{2}{\beta}}\left[1+\zeta\left(\frac{29\beta^{2}-45\beta+14}{20\beta(\beta-2)}\right)\right]\left(\frac{c^{2}}{G}\right),

where S0S_{0} is the surface area of sphere of radius bb when aa is zero. These go to sphere case in the limit of ζ0\zeta\to 0

I3I1=σ083πb4ζ13β235β+1820β(β2)=σ083πb4ζ(13β9)20βI_{3}-I_{1}={\sigma}_{0}\frac{\mathrm{8}}{\mathrm{3}}\pi b^{\mathrm{4}}\zeta\frac{\mathrm{13}{\beta}^{\mathrm{2}}-\mathrm{35}\beta+\mathrm{18}}{\mathrm{20}\beta\mathrm{(}\beta-\mathrm{2)}}\mathrm{=}{\sigma}_{0}\frac{\mathrm{8}}{\mathrm{3}}\pi b^{\mathrm{4}}\zeta\frac{\mathrm{(13}\beta-\mathrm{9)\ }}{\mathrm{20}\beta}

. The ellipticity is

ϵ=I3I1I1=ζ(13β9)20β1+ζ(16β210β420β(β2))ζ(13β9)20β.\epsilon=\frac{I_{\mathrm{3}}-I_{\mathrm{1}}}{I_{\mathrm{1}}}\mathrm{=}\frac{\zeta\frac{\mathrm{(13}\beta-\mathrm{9)\ }}{\mathrm{20}\beta}}{\mathrm{1}+\zeta\mathrm{(}\frac{\mathrm{16}{\beta}^{\mathrm{2}}-\mathrm{10}\beta-\mathrm{4}}{\mathrm{20}\beta\mathrm{(}\beta-\mathrm{2)}}\mathrm{)}}\cong\zeta\frac{\mathrm{(13}\beta-\mathrm{9)\ }}{\mathrm{20}\beta}. (21)

The amplitude of the strain due to the dominant term in the value of I1I_{1} is

h\displaystyle h =\displaystyle= |h0|θ02=4Gc4rϵ|I1|Ω2θ02\displaystyle|h_{0}|\theta_{0}^{2}=\frac{4G}{c^{4}r}\epsilon|I_{1}|\Omega^{2}\theta_{0}^{2} (22)
=\displaystyle= 163c2rb312β(13β920β)3ζ3ω2θ02.\displaystyle\frac{16}{{3c^{2}r}}b^{3}\sqrt{1-\frac{2}{\beta}}\left(\frac{13\beta-9}{20\beta}\right)^{3}\zeta^{3}\omega^{2}\theta_{0}^{2}.

It is proportional to b3b^{3} and ζ3\zeta^{3}, the consequent dependencies are a6b3a^{6}b^{-3}. If we have reasonable β=4\beta=4

h1032(r108ly)1(b600km)3(ζ102)3(θ0102)2(ω100Hz)2h\sim{10}^{-32}{\left(\frac{r}{{10}^{8}\mathrm{ly}}\right)}^{-1}{\left(\frac{b}{600\mathrm{km}}\right)}^{3}{\left(\frac{\zeta}{10^{-2}}\right)}^{3}{\left(\frac{\theta_{0}}{10^{-2}}\right)}^{2}{\left(\frac{\omega}{100\mathrm{Hz}}\right)}^{2}\\

for M=100MM=100M_{\odot}. This amplitude is very weak to be detected by present gravitational wave observers. Since σ\sigma is negative unlike normal objects, the wave has opposite sign, meaning a phase shift with π\pi.

The luminosity is

LGW\displaystyle L_{GW} =\displaystyle= 25Gc5I12ϵ8θ02ω6\displaystyle\frac{2}{5}\frac{G}{c^{5}}I_{1}^{2}\epsilon^{8}\theta_{0}^{2}\omega^{6} (23)
=\displaystyle= 3245Gcb6(12β)(13β920β)8ζ8ω6θ02,\displaystyle\frac{32}{45Gc}b^{6}\left(1-\frac{2}{\beta}\right)\left(\frac{13\beta-9}{20\beta}\right)^{8}\zeta^{8}\omega^{6}\theta_{0}^{2},

in terms of the dominant term. This formula shows that the luminosity is proportional to the a16b10a^{16}b^{-10}.

LGW1025(b600km)6(ζ102)8(θ0102)2(ω100Hz)6L_{GW}\sim{10}^{25}{\left(\frac{b}{600\mathrm{km}}\right)}^{6}{\left(\frac{\zeta}{10^{-2}}\right)}^{8}{\left(\frac{\theta_{0}}{10^{-2}}\right)}^{2}{\left(\frac{\omega}{100\mathrm{Hz}}\right)}^{6}

for M=100MM=100M_{\odot} and β=4\beta=4. The energy radiation rate looks very large so that it radiates away in very short time. It seems that the precessing wormhole is very unstable. However, the effective mass is calculated by

m\displaystyle m =\displaystyle= 02π0πσρβb2+a2sinθdθdϕ\displaystyle\int^{2\pi}_{0}\int^{\pi}_{0}\sigma{\cal{M}}\rho_{\beta}\sqrt{b^{2}+a^{2}}\sin\theta d\theta d\phi (24)
=\displaystyle= σ0S0[1+ζ2(β13(β2))]\displaystyle\sigma_{0}S_{0}\left[1+\zeta^{2}\left(\frac{\beta-1}{3(\beta-2)}\right)\right]
=\displaystyle= 2b12β[1+ζ2(β13(β2))](c2G).\displaystyle-2b\sqrt{1-\frac{2}{\beta}}\left[1+\zeta^{2}\left(\frac{\beta-1}{3(\beta-2)}\right)\right]\left(\frac{c^{2}}{G}\right).

The size of the mass is roughly 105010^{50}. Therefore the time to radiate all mass energy is

mc2LGW1025(b600km)5(ζ102)8(θ0102)2(ω100Hz)6,\frac{mc^{2}}{L_{GW}}\simeq 10^{25}{\left(\frac{b}{600\mathrm{km}}\right)}^{-5}{\left(\frac{\zeta}{10^{-2}}\right)}^{-8}{\left(\frac{\theta_{0}}{10^{-2}}\right)}^{-2}{\left(\frac{\omega}{100\mathrm{Hz}}\right)}^{-6},

which is much longer than the cosmic time to radiate whole matter out.

The angular momentum loss rate is

dLdt\displaystyle\frac{dL}{dt} \displaystyle\simeq 2G5c5I12ϵ7ω35θ02\displaystyle-\frac{2G}{5c^{5}}I_{1}^{2}\epsilon^{7}\omega_{3}^{5}\theta_{0}^{2} (25)
=\displaystyle= 3245Gcb6(12β)(13β920β)7ζ7ω5θ02.\displaystyle-\frac{32}{45Gc}b^{6}\left(1-\frac{2}{\beta}\right)\left(\frac{13\beta-9}{20\beta}\right)^{7}\zeta^{7}\omega^{5}\theta_{0}^{2}.

V Summary and Discussion

We consider the toy model of gravitational waves generation by and thin-shell wormhole to consider the relationship of gravitational waves with wormhole, by assuming the ‘slowly’ rotating case under feasible conditions, such as mass limit.

We examined the nature of energy density to see the differences from gravitational waves by normal matter. We can see the signatures (negative property) of the density and they do not affect on the components of quadrupole moment.

We found the amplitude of the wave, gravitational waves luminosity, life time of wormhole in terms of throat size and angular momentum. The order of magnitude is very small, comparing to the binary merger cases. The gravitational wave spectrum is determined by the rotation angular velocity of the thin-shell wormhole. The smallness of all gravitational waves related quantities comes from ellipticity or the fractional ratio of angular momentum per mass to the wormhole throat size.

Acknowledgements.
This work was supported by National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A1A01056433).

References

  • (1) J. Aasi et al. Class. Quant. Grav. 32, 074001 (2015).
  • (2) F. Acernese et al. Class. Quant. Grav. 32, 024001 (2015).
  • (3) A. Toubiana, S. Babak, E. Barausse, and L. Lehner, Phys. Rev. D 103, 064042 (2021).
  • (4) F. Abe, Asrtophys. J. 725, 787 (2010); Y. Toki, T. Kitamura, H. Asada, and F. Abe, Asrtophys. J. 740, 121 (2011).
  • (5) P. G. Nedkova, V. N. Tinchev, and S. S. Yazadjiev, Phys. Rev. D 88, 124019 (2013).
  • (6) N. Tsukamoto, T. Harada, and K. Yajima, Phys. Rev. D 86, 104062 (2012).
  • (7) Sung-Won Kim, Phys. Rev. D 46, 2428 (1992).
  • (8) H. G. Ellis, J. Math. Phys. 14, 104 (1973).
  • (9) K. A. Bronnikov, Acta Phys. Polon. B 4, 251 (1973).
  • (10) M.S. Morris and K.S. Thorne, Am. J. Phys. 56, 395 (1988).
  • (11) M. Visser, Nucl. Phys. B328. 203 (1989).
  • (12) D. Hochberg and M. Visser, Phys. Rev. D 56, 4745 (1997).
  • (13) A. Ovgun, Eur. Phys. J. Plus 131. 389 (2016).
  • (14) E. Teo, Phys. Rev. D 58, 024014 (1998).
  • (15) P. E. Kashargin and S. V. Sushkov, Gravit. Cosmol. 14, 80 (2008); Phys. Rev. D 78, 06071 (2008).
  • (16) B. Keihaus and J. Kunz, Phys. Rev. D 90, 121503 (2014).
  • (17) X. Y. Chew, B. Keihaus, and J. Kunz, Phys. Rev. D 94, 104031 (2016).
  • (18) M. Visser, Lorentzian Wormholes (Springer-Verlag, New York, 1996), pp. 75-78.
  • (19) P. E. Kashargin and S. V. Sushkov, Gravit. Cosmol. 17, 119 (2011).
  • (20) S. T. Thornton and J. B. Marion, Classical Dynamics of Particles and Systems, 5ed., Thomson/Brooks/Cole, Belmont, CA (2003).
  • (21) M. Maggiore, Gravitational Waves, Volume 1: Theory and Experiments, Oxford University Press: New York (2008).
  • (22) M. Zimmermann and E. Szedenits, Jr., Phys. Rev. D 20 351 (1979).
  • (23) T. Harko, Z. Kovács, and F.S.N. Lobo, Phys. Rev. D79, 064001 (2009).