This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Gravitationally sensitive structured x-ray optics using nuclear resonances

Shin-Yu Lee Department of Physics, National Central University, Taoyuan City 32001, Taiwan    Sven Ahrens Shanghai Normal University, Shanghai 200234, China    Wen-Te Liao wente.liao@g.ncu.edu.tw Department of Physics, National Central University, Taoyuan City 32001, Taiwan Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan Center for Quantum Technology, Hsinchu 30013, Taiwan
Abstract

Einstein’s general theory of relativity not only revolutionized human understanding of the universe, but also brought many gravitational applications in large scale, such as gravitational-wave astronomy [1], gravitational lensing [2], and the operation of the global positioning system [3]. However, it still remains a challenge to implement applications for gravitational effects at small spacial extensions on Earth. Here, we investigate a structured waveguide system that allows for the control of an x-ray profile at altitude separations of millimeters and even shorter using the nuclear resonant scattering of x rays [4, 5]. Our present results suggest a potential compact scheme for turning the Earth’s gravity into a practical application of x-ray optics.

quantum optics,interference effect

The Pound–Rebka experiment [6] has demonstrated a unique system for probing the gravitational red-shift effect by exploiting an extremely narrow nuclear linewidth in combination of a high x-ray energy in the Mössbauer effect [7]. Moreover, advances in modern x-ray light sources and optics have raised the field of x-ray-nuclei interactions to a new level of accuracy where coherent quantum control comes into play [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. A combination of nuclear quantum coherence and its sensitivity to gravity will potentially lead to a new type of x-ray optics whose performance depends on the gravitational red-shift in addition to the typical Zeeman shift [8, 12] and Doppler shift [14, 17, 18, 19]. In this context, we investigate a system that emulates the Schrödinger equation [22] and is sensitive to gravity. The present scheme allows for a systematic generation of structured x rays [23, 24, 25, 26] via changing the altitude, the x-ray photon energy, or the external magnetic field of a our system for a given waveguide structure.

Table 1: Nuclear and waveguide material parameters. For each isotope XX we present the nuclear transition energy EtE_{t} and the radiative decay rate Γ\Gamma. The last six columns list the x-ray index of refraction ne=1δ+iβn_{e}=1-\delta+i\beta for SXWG materials [5, 27, 28].
XX EtE_{t} (keV) Γ\Gamma (MHz) δX(106)\delta_{X}(10^{-6}) δC(106)\delta_{\mathrm{C}}(10^{-6}) δPt(105)\delta_{\mathrm{Pt}}(10^{-5}) βX(109)\beta_{X}(10^{-9}) βC(109)\beta_{\mathrm{C}}(10^{-9}) βPt(106)\beta_{\mathrm{Pt}}(10^{-6})
45Sc 12.4 2.18×106\times 10^{-6} 3.84 2.97 2.091 131.9 1.78 2.737
57Fe 14.413 7.05 7.43 2.20 1.607 338.9 0.93 2.49
73Ge 13.275 0.24 5.41 2.59 1.622 508.9 1.32 2.947
181Ta 6.238 0.11 67.74 11.77 8.731 7987.3 32.76 12.616
182Ta 16.273 2.45×106\times 10^{-6} 10.41 1.72 1.304 1062.2 0.55 1.642
Refer to caption
Figure 1: (a) the incident x ray (red upward arrow) drives a nuclear transition |g|e|g\rangle\rightarrow|e\rangle with detuning Δ+ΔG\Delta+\Delta_{G} (gray vertical double arrows). Δ\Delta is the x-ray detuning, and ΔG\Delta_{G} is the x-ray gravitational red shift. (b) a hard x ray of transverse mode ψ1\psi_{1} (red arrow) propagates through a structured platinum cladding waveguide with a periodic nuclear distribution whose spatial concentration is indicated by the horizontal green-yellow legend. An output x ray of mode ψ2\psi_{2} is measured by a downstream position-sensitive detector (blue thick disc). The top black curves and pictures in gray level represent the intra-waveguide x-ray intensity. (c) the SXWG altitude-dependent nuclear coherence ρeg\rho_{eg} between the nuclear ground state |g|g\rangle and the excited state |e|e\rangle of the isotope 45Sc. Red-dashed (blue-solid) line depicts the imaginary (real) part of the nuclear ρeg\rho_{eg}. Black horizontal double arrow indicates the full altitude width ΔZG\Delta Z_{G} at the half maximum |Re[ρeg]||Re\left[\rho_{eg}\right]|. (d) the transversely gradient (along x) and the longitudinally periodic (along y) electronic refractive index of an SXWG. Between the platinum claddings the intra-waveguide structure, made of carbon and an isotope X\mathrm{X}, drives the transition from the x-ray ground state ψ1\psi_{1} (red-solid line) to the first excited state ψ2\psi_{2} (blue-solid line).
Refer to caption
Figure 2: A full cycle of the x-ray Rabi oscillation between ψ1\psi_{1} and ψ2\psi_{2} is illustrated by (a) the fidelity F1F_{1} (red-dashed line) and F2F_{2} (green-solid line) and (b) the normalized intra-waveguide x-ray intensity distribution. The input x-ray in the state ψ1\psi_{1} splits and reaches the maximum transverse double-hump separation of the state ψ2\psi_{2} at y=2y=2mm where the maximum F2F_{2} also occurs. For y>2y>2mm the x-ray confluence reflects the second half Rabi cycle, and the transverse x-ray pattern returns toward the state ψ1\psi_{1}.
Refer to caption
Figure 3: (a) Earth’s gravity changes the x-ray propagation in the waveguide composed of 45Sc nuclei. Three cases at different altitudes z=2.32z=2.32cm, z=2z=2cm, and z=1.72z=1.72cm where x rays propagate with a detuning Δ=19.36\Delta=19.36 and gravitational red shifts ΔG=21.88\Delta_{G}=-21.88, ΔG=18.86\Delta_{G}=-18.86, and ΔG=16.22\Delta_{G}=-16.22, respectively. (b, d, and f) the fidelity F1F_{1} (red-dashed line) and F2F_{2} (green-solid line) for z=2.32z=2.32cm, z=2z=2cm, and z=1.72z=1.72cm, respectively. (c, e, and g) the normalized intra-waveguide x-ray intensity distribution |E(x,y)|2|E\left(x,y\right)|^{2} at altitude z=2.32z=2.32cm, z=2z=2cm, and z=1.72z=1.72cm from the top to the bottom.
Refer to caption
Figure 4: (a) altitude-dependent x-ray fidelity F2F_{2} through an SXWG composed of 45Sc nuclei. (b) the FWHM ΔZG\Delta Z_{G} on Earth is dependent on the quality factor QQ of nuclear resonances for different nuclear species.

The system is depicted in Figure 1 with the description as follows. An x ray drives a nuclear transition from the ground state |g|g\rangle to the excited state |e|e\rangle with the total detuning ΔtΓ=(ΔG+Δ)Γ\Delta_{t}\Gamma=\left(\Delta_{G}+\Delta\right)\Gamma in Fig. 1(a). We emphasize that the gravitational red shift ΔGzEtGME/(Γc2RE2)\Delta_{G}\simeq-zE_{t}GM_{E}/\left(\hbar\Gamma c^{2}R_{E}^{2}\right) has to be taken into account when the system is located at different altitude zz relative to where x rays are emitted. Here EtE_{t} is the nuclear transition energy, GG is the gravitational constant, MEM_{E} is the mass of the Earth, and RER_{E} is the average radius of the Earth. ΔΓ\Delta\Gamma is the x-ray detuning, and Γ\Gamma the spontaneous decay rate of the excited state |e|e\rangle. Our system of nuclear resonant scattering of x rays can be described by the optical-Bloch equation [9, 21]:

tρeg\displaystyle\partial_{t}{\rho_{eg}} =\displaystyle= Γ[12i(Δ+ΔG)]ρeg+i2PE,\displaystyle-\Gamma\left[\frac{1}{2}-i\left(\Delta+\Delta_{G}\right)\right]\rho_{eg}+\frac{i}{2}\frac{P}{\hbar}E, (1)
1ctE+yE\displaystyle\frac{1}{c}\partial_{t}E+\partial_{y}E =\displaystyle= 12ik2Ek2i(ne21)E+iηρeg,\displaystyle\frac{-1}{2ik}\nabla_{\perp}^{2}E-\frac{k}{2i}(n_{e}^{2}-1)E+i\eta\rho_{eg}, (2)

where ρeg\rho_{eg} is the coherence of a nuclear two-level system, EE is the x-ray electric field strength, \hbar is the reduced Planck constant, kk is the x-ray wavenumber, and nen_{e} is the index of refraction from electrons. Further, we denote the transverse Laplacian 2=x2+z2\nabla_{\perp}^{2}=\partial^{2}_{x}+\partial^{2}_{z}, and the coupling constant η=2Γξ/(PL)\eta=2\hbar\Gamma\xi/\left(PL\right), where LL the length of the waveguide, PP is the nuclear transition dipole moment, and ξ\xi is the nuclear resonant thickness. The steady state of Eqs. (1-2) leads to the analytic solution ρeg=PE(i2Δt)/[Γ(1+4Δt2)]\rho_{eg}=PE\left(i-2\Delta_{t}\right)/\left[\hbar\Gamma\left(1+4\Delta_{t}^{2}\right)\right] and the optical Schrödinger equation [22] (see supplemental information)

icyE=22me2E+c[k(1ne2)2+4ξΔtL(1+4Δt2)]E,i\hbar c\partial_{y}E=-\frac{\hbar^{2}}{2m_{e}}\nabla_{\perp}^{2}E+\hbar c\left[\frac{k(1-n_{e}^{2})}{2}+\frac{4\xi\Delta_{t}}{L\left(1+4\Delta_{t}^{2}\right)}\right]E, (3)

with the effective mass me=k/cm_{e}=\hbar k/c. Equation (3) suggests a structured x-ray waveguide (SXWG) system composed of resonant nuclei, as depicted in Fig. 1(b), with a high degree of freedom for simulating different quantum systems via spatial engineering of nen_{e} and ξ\xi. Fig. 1(c) displays the altitude dependent real part Re[ρeg]Re\left[\rho_{eg}\right] (blue-solid) and imaginary part Im[ρeg]Im\left[\rho_{eg}\right] (red-dashed line) of ρeg\rho_{eg} with Δ=0\Delta=0 for the isotope 45Sc. Re[ρeg]Re\left[\rho_{eg}\right] describes the refractive index from nuclei and results in the gravitational effects in our system as revealed by the last term of Eq. (3). In cantrast, Im[ρeg]Im\left[\rho_{eg}\right] of Lorentzian line shape represents the nuclear absorption of x rays and leads to the Pound–Rebka experiment [6].

In the following, we use the SXWG to simulate Rabi oscillations of x ray in a finite square well of width LxL_{x}. As illustrated in Fig. 1(d), we introduce a platinum cladding ne=1δPt+iβPtn_{e}=1-\delta_{\mathrm{Pt}}+i\beta_{\mathrm{Pt}} for |x|>Lx/2|x|>L_{x}/2 to constitute a finite square well potential, which provides with a transverse confinement to the x ray propagation direction [21]. The cladding material leads to the energy eigenfunctions of the EE field in Eq. (3) which read as (see supplemental information)

ψn(x)=2Lxsin[nπLx(x+Lx2)],\psi_{n}\left(x\right)=\sqrt{\frac{2}{L_{x}}}\sin\left[\frac{n\pi}{L_{x}}\left(x+\frac{L_{x}}{2}\right)\right], (4)

with the eigen angular frequencies ωn=n2π2c/(2kLx2).\omega_{n}=n^{2}\pi^{2}c/\left(2kL_{x}^{2}\right). Inside the square well |x|Lx/2|x|\leq L_{x}/2, we perturb the system by a periodic (gradient) particle distribution of isotope XX and carbon along the y direction (x direction), where ξ(x,y)=(ϱ/2)[1+(2x/Lx)sin(kdy)]\xi\left(x,y\right)=\left(\varrho/2\right)\left[1+\left(2x/L_{x}\right)\sin\left(k_{d}y\right)\right] and ne(x,y)=1δC(x,y)+iβC(x,y)δX(x,y)+iβX(x,y)n_{e}\left(x,y\right)=1-\delta_{\mathrm{C}}\left(x,y\right)+i\beta_{\mathrm{C}}\left(x,y\right)-\delta_{\mathrm{X}}\left(x,y\right)+i\beta_{\mathrm{X}}\left(x,y\right) (see supplemental information for the form of nen_{e}). In Fig. 1(d) subscripts Pt, C, and X represent platinum, carbon and resonant nucleus, respectively. We list other relevant material parameters in Table 1. With the above density modulation, the last term in Eq. (3) effectively becomes the electric dipole Hamiltonian in an oscillating field which perturbes the square well potential. This plays the key role to drive the x-ray Rabi oscillation with gravitational sensitivity. When the resonant condition ckd=ωn+1ωnck_{d}=\omega_{n+1}-\omega_{n} is fulfilled, the periodic structure of the refractive index drives the dipole transition ψnψn+1\psi_{n}\rightarrow\psi_{n+1} with the effective Rabi frequency (see supplemental information)

Ωn=16ϱn(n+1)cπ2(2n+1)2L[k(δCδSc)2Nσ0+2Δt1+4Δt2].\Omega_{n}=\frac{16\varrho n\left(n+1\right)c}{\pi^{2}\left(2n+1\right)^{2}L}\left[\frac{k\left(\delta_{\mathrm{C}}-\delta_{\mathrm{Sc}}\right)}{2N\sigma_{0}}+\frac{2\Delta_{t}}{1+4\Delta_{t}^{2}}\right]. (5)

A propagating x ray experiences a constant SXWG-induced Rabi frequency, and the condition for having a mπm\pi pulse is |Ωn|L/c=mπ|\Omega_{n}|L/c=m\pi. We use m=2m=2 to demonstrate the Rabi oscillation between the x-ray ground state ψ1\psi_{1} and the first excited state ψ2\psi_{2} by numerically solving Eq. (3).

The solution of Eq. (3) in Fig. 2 represents an x ray which propagates through an SXWG with with X=45X=^{45}Sc, ϱ=26.25\varrho=26.25, natural scandium particle density N=3.99×1028N=3.99\times 10^{28}m-3, nuclear resonance absorption cross section σ0=12.6\sigma_{0}=12.6(kbarn), Lx=100L_{x}=100nm, L=4L=4mm, kd=22.778×103k_{d}=22.778\times 10^{3}rad/m, Δ=4Γ\Delta=4\Gamma, and ΔG=0\Delta_{G}=0. The process is visualized in terms of the fidelity Fn(y)=|ψn(x)E(x,y)𝑑x|2/|E(x,y)|2𝑑xF_{n}\left(y\right)=|\int_{-\infty}^{\infty}\psi_{n}^{\ast}\left(x\right)E\left(x,y\right)dx|^{2}/\int_{-\infty}^{\infty}|E\left(x,y\right)|^{2}dx in Fig. 2(a), and the normalized intra-waveguide x-ray intensity distribution |E(x,y)|2/|E(x,y)|2𝑑x|E\left(x,y\right)|^{2}/\int_{-\infty}^{\infty}|E\left(x,y\right)|^{2}dx in Fig. 2(b). The alternation of F1F_{1} and F2F_{2} in Fig. 2(a) clearly demonstrates that the ground-state x ray enters the SXWG at y=0y=0, and is then coherently promoted to the first excited state when approaching y=2y=2mm. After that, the x ray returns to the ground state and finishes a full Rabi cycle at y=4y=4mm. One can also observe the same phenomenon at the intra-waveguide x-ray intensity which evolves back and forth between states ψ1\psi_{1} and ψ2\psi_{2} in Fig.2(b).

The above x-ray Rabi oscillation suggests a systematic way to generate the ψn\psi_{n} mode with a sequence of SXWGs driving Δn=1\Delta n=1 transitions, where one can raise the quantum number one by one. Specifically, one can connect two different SXWGs to accomplish a ψ1ψ3\psi_{1}\rightarrow\psi_{3} transition, where the upstream SXWG drives a ψ1ψ2\psi_{1}\rightarrow\psi_{2} transition, and the downstream SXWG achieves a ψ2ψ3\psi_{2}\rightarrow\psi_{3} promotion. Moreover, one can even design multiple SXWG modules for Δn=2\Delta n=2 or any dipole forbidden transitions. Thus, all combinations of SXWG modules open the capability to generate high order x-ray modes starting from the ground state ψ1\psi_{1}. It is worth mentioning another possible application using dual SXWGs with a gap in between as an x-ray interferometer. While the upstream SXWG causes the ψ1ψ2\psi_{1}\rightarrow\psi_{2} transition as a beam splitter, the downstream SXWG leads to the return of ψ2ψ1\psi_{2}\rightarrow\psi_{1} as a beam combiner. Furthermore, in the gap between two SXWGs one can introduce a phase modulator to impose a phase shift at one branch of the split state ψ2\psi_{2}, e.g., x>0x>0 at y=2y=2mm in Fig. 2. A controllable interference due to the phase modulation is expected to happen at the end of the downstream SXWG.

We are ready to demonstrate the Earth’s gravitational effect on our SXWG system. Given that the gravitational redshift ΔG\Delta_{G} significantly changes the nuclear coherence ρeg\rho_{eg} and Rabi frequency Ωn\Omega_{n} in Eq. (5) in two millimeter on Earth as demonstrated in Fig. 1(c), this sensitivity potentially allows for turning gravity into a practical use, e.g., gravitationally sensitive x-ray optics. For illustrating the effect, we numerically solve Eq. (3) and use the isotope 45Sc in an SXWG with parameters ϱ=8.38\varrho=8.38, Lx=100L_{x}=100nm, L=2L=2mm, kd=23.778×103k_{d}=23.778\times 10^{3}rad/m, and Δ=19.36\Delta=19.36 to show the gravitational effect. Fig. 4(a) illustrates three cases where the above discussed SXWG is located at z=2.32z=2.32cm, z=2z=2cm, and z=1.72z=1.72cm from the top down. An incident x ray with the transverse mode ψ1\psi_{1} is deflected upward and experiences a gravitational redshift (vertical upward arrow with color gradient). The ΔG\Delta_{G} will change when the x ray illuminates the SXWG at different altitudes. The total detuning for each case is specified at the level-scheme plot, namely, Δ+ΔG=2.52\Delta+\Delta_{G}=-2.52, Δ+ΔG=0.5\Delta+\Delta_{G}=0.5, and Δ+ΔG=3.14\Delta+\Delta_{G}=3.14 from the top down. We emphasize that the periodic particle density modulation effectively plays the role of a resonant field, and it always resonantly drives a transition between the x-ray modes in a cladding waveguide for three cases. However, various ΔG\Delta_{G} change the effective coupling strength Ωn\Omega_{n} and result in different outputs. The scattered/split x rays reflect the output mode and can be measured by a downstream position-sensitive detector. The xx-dependent photon number counts show the output |E(x,L)|2|E\left(x,L\right)|^{2} and reveal the Earth’s gravitational effect. We depict the normalized |E(x,y)|2|E\left(x,y\right)|^{2} for z=2.32z=2.32cm, z=2z=2cm, and z=1.72z=1.72cm in Fig. 4(c, e, and g), respectively. The intra-waveguide intensity shows that the x ray significantly gets split in Fig. 4(e) under a half Rabi cycle ψ1ψ2\psi_{1}\rightarrow\psi_{2} in the SXWG at z=2z=2cm. In contrast, Fig. 4(c and g) depicts only a transverse broadening of the x ray due to a small |Ω1||\Omega_{1}|. Fig. 4(b,d, and f) illustrate F1(y)F_{1}\left(y\right) (red-dashed line) and F2(y)F_{2}\left(y\right) (green-solid line) for z=2.32z=2.32cm, z=2z=2cm, and z=1.72z=1.72cm, respectively. One can clearly see that the x ray experiences Rabi flopping and becomes ψ2\psi_{2} at the resonant altitude z=2z=2cm as also pointed out by Fig. 4(d and e). Given that |Ω1||\Omega_{1}| decreases when the SXWG leaves the resonant altitude, the x ray mostly remains in the initial mode ψ1\psi_{1}, namely, F1(y)>F2(y)F_{1}\left(y\right)>F_{2}\left(y\right) at z=2.32z=2.32cm and z=1.72z=1.72cm. We depict the output altitude-dependent F2F_{2} at y=2y=2mm in Fig. 4(a). As a result, different x-ray splitting is expected to occur when lifting an SXWG composed of 45Sc at only a millimeter altitude change.

We quantify the gravitational sensitivity of the SXWG by the full altitude width ΔZG\Delta Z_{G} at the half maximum Re[ρeg]Re\left[\rho_{eg}\right]

ΔZG=3(ΓEt)c2RE2GME,\Delta Z_{G}=\sqrt{3}\left(\frac{\hbar\Gamma}{E_{t}}\right)\frac{c^{2}R_{E}^{2}}{GM_{E}}, (6)

as indicated by the black-horizontal double arrow in Fig. 1(c). The introduced ΔZG\Delta Z_{G} is a measure for the sensitivity of the x-ray-nucleus coupling to the change of the SXWG vertical location. With the definition of the quality factor of a nuclear resonance Q=Et/(Γ)Q=E_{t}/\left(\hbar\Gamma\right), we can see that ΔZG\Delta Z_{G} is proportional to 1/Q1/Q. Fig. 4(b) exemplifies the implication of Eq. (6) for our system on Earth in a double-logarithmic plot, where we mark the isotopes 45Sc, 57Fe, 67Zn, 73Ge, 103Rh, 107Ag, 109Ag, 181Ta, 182Ta, 229Th, and 249Bk, according their QQ factor. Some of the nuclear parameters are listed in Table 1. Remarkably, the advantage of a very high Q1019Q\sim 10^{19} of 45Sc or 182Ta nuclear resonance endues an SXWG with a gravitational sensitivity to only millimeter altitude change. Notably, it is also possible to get sub-millimeter ΔZG\Delta Z_{G} using 229Th whose Q1020Q\sim 10^{20} [29], and micron ΔZG\Delta Z_{G} with 107Ag and 109Ag whose Q1022Q\sim 10^{22}. It deserves to mention that 103Rh whose Q>1023Q>10^{23} [27] even results in a nanometer ΔZG\Delta Z_{G}, and it may lead to gravitational application in mesoscopic scale.

In conclusion we have put forward a controllable SXWG system that potentially turns gravity into an application of x-ray optics. A periodic intra-waveguide structure, e.g., nuclear optical lattice 57Fe/56Fe bilayers in Ref.[30], can drive a transition between x-ray modes. The x-ray transverse mode experiences Rabi oscillation when propagating in an SXWG. Our scheme allows for applications like a systematic production of structured x rays and an x-ray interferometer without any beam splitter. Remarkably, a significant change of a gravitionally induced splitting of x rays could happen by lifting our SXWG made of, e.g., 45Sc or 182Ta, at only a millimeter scale.

S.-Y. L. and W.-T. L. are supported by the National Science and Technology Council of Taiwan (Grant No. 110-2112-M-008-027-MY3, 110-2639-M-007 -001-ASP, 111-2923-M-008-004-MY3 & 111-2639-M-007-001-ASP). S. A. is supported by National Science Foundation of China (Grant No. 11975155).

References

  • Abbott and et al. [2016] B. P. Abbott and et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116, 061102 (2016).
  • Bartelmann and Schneider [2001] M. Bartelmann and P. Schneider, Weak gravitational lensing, Physics Reports 340, 291 (2001).
  • Ashby [2002] N. Ashby, Relativity and the global positioning system, Physics Today 55, 41 (2002).
  • Hastings et al. [1991] J. B. Hastings, D. P. Siddons, U. van Bürck, R. Hollatz, and U. Bergmann, Mössbauer spectroscopy using synchrotron radiation, Phys. Rev. Lett. 66, 770 (1991).
  • Röhlsberger [2004] R. Röhlsberger, Nuclear Condensed Matter Physics With Synchrotron Radiation: Basic Principles, Methodology and Applications (Springer-Verlag, 2004).
  • Pound and Rebka [1960] R. V. Pound and G. A. Rebka, Apparent weight of photons, Phys. Rev. Lett. 4, 337 (1960).
  • Kalvius and Kienle [2012] M. Kalvius and P. Kienle, The Rudolf Mössbauer Story: His Scientific Work and Its Impact on Science and History (Springer Science & Business Media, 2012).
  • Shvyd’ko et al. [1996] Y. V. Shvyd’ko, T. Hertrich, U. van Bürck, E. Gerdau, O. Leupold, J. Metge, H. D. Rüter, S. Schwendy, G. V. Smirnov, W. Potzel, and P. Schindelmann, Storage of nuclear excitation energy through magnetic switching, Phys. Rev. Lett. 77, 3232 (1996).
  • Shvyd’ko [1999] Y. V. Shvyd’ko, Nuclear resonant forward scattering of x rays: Time and space picture, Phys. Rev. B 59, 9132 (1999).
  • Pálffy et al. [2009] A. Pálffy, C. H. Keitel, and J. Evers, Single-photon entanglement in the kev regime via coherent control of nuclear forward scattering, Phys. Rev. Lett. 103, 017401 (2009).
  • Röhlsberger et al. [2012] R. Röhlsberger, H. C. Wille, K. Schlage, and B. Sahoo, Electromagnetically induced transparency with resonant nuclei in a cavity, Nature 482, 199 (2012).
  • Liao et al. [2012] W.-T. Liao, A. Pálffy, and C. H. Keitel, Coherent storage and phase modulation of single hard-x-ray photons using nuclear excitons, Phys. Rev. Lett. 109, 197403 (2012).
  • Adams et al. [2013] B. W. Adams, C. Buth, S. M. Cavaletto, J. Evers, Z. Harman, C. H. Keitel, A. Pálffy, A. Picón, R. Röhlsberger, Y. Rostovtsev, and K. Tamasaku, X-ray quantum optics, Journal of modern optics 60, 2 (2013).
  • Vagizov et al. [2014] F. Vagizov, V. Antonov, Y. Radeonychev, R. N. Shakhmuratov, and O. Kocharovskaya, Coherent control of the waveforms of recoilless γ\gamma-ray photons, Nature 508, 80 (2014).
  • Liao and Ahrens [2015] W.-T. Liao and S. Ahrens, Gravitational and relativistic deflection of x-ray superradiance, Nature Photonics 9, 169 (2015).
  • Heeg et al. [2015] K. P. Heeg, J. Haber, D. Schumacher, L. Bocklage, H.-C. Wille, K. S. Schulze, R. Loetzsch, I. Uschmann, G. G. Paulus, R. Rüffer, R. Röhlsberger, and J. Evers, Tunable subluminal propagation of narrow-band x-ray pulses, Phys. Rev. Lett. 114, 203601 (2015).
  • Heeg et al. [2017] K. P. Heeg, A. Kaldun, C. Strohm, P. Reiser, C. Ott, R. Subramanian, D. Lentrodt, J. Haber, H.-C. Wille, S. Goerttler, R. Rüffer, C. H. Keitel, R. Röhlsberger, T. Pfeifer, and J. Evers, Spectral narrowing of x-ray pulses for precision spectroscopy with nuclear resonances, Science 357, 375 (2017).
  • Zhang et al. [2019] X. Zhang, W.-T. Liao, A. Kalachev, R. Shakhmuratov, M. Scully, and O. Kocharovskaya, Nuclear quantum memory and time sequencing of a single γ\gamma photon, Phys. Rev. Lett. 123, 250504 (2019).
  • Radeonychev et al. [2020] Y. V. Radeonychev, I. R. Khairulin, F. G. Vagizov, M. Scully, and O. Kocharovskaya, Observation of acoustically induced transparency for γ\gamma-ray photons, Phys. Rev. Lett. 124, 163602 (2020).
  • Heeg et al. [2021] K. P. Heeg, A. Kaldun, C. Strohm, C. Ott, R. Subramanian, D. Lentrodt, J. Haber, H.-C. Wille, S. Goerttler, R. Rüffer, et al., Coherent x-ray- optical control of nuclear excitons, Nature 590, 401 (2021).
  • Chen et al. [2022] Y.-H. Chen, P.-H. Lin, G.-Y. Wang, A. Pálffy, and W.-T. Liao, Transient nuclear inversion by x-ray free electron laser in a tapered x-ray waveguide, Phys. Rev. Research 4, L032007 (2022).
  • Marte and Stenholm [1997] M. A. M. Marte and S. Stenholm, Paraxial light and atom optics: The optical schrödinger equation and beyond, Phys. Rev. A 56, 2940 (1997).
  • Seipt et al. [2014] D. Seipt, A. Surzhykov, and S. Fritzsche, Structured x-ray beams from twisted electrons by inverse compton scattering of laser light, Phys. Rev. A 90, 012118 (2014).
  • Rubinsztein-Dunlop et al. [2016] H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, et al., Roadmap on structured light, Journal of Optics 19, 013001 (2016).
  • MacDonald [2017] C. A. MacDonald, Structured x-ray optics for laboratory-based materials analysis, Annual Review of Materials Research 47, 115 (2017).
  • Forbes et al. [2021] A. Forbes, M. de Oliveira, and M. R. Dennis, Structured light, Nature Photonics 15, 253 (2021).
  • [27] National Nuclear Data Center, https://www.nndc.bnl.gov/ensdf/.
  • [28] The Center for X-Ray Optics, https://www.cxro.lbl.gov/.
  • Seiferle et al. [2019] B. Seiferle, L. von der Wense, P. V. Bilous, I. Amersdorffer, C. Lemell, F. Libisch, S. Stellmer, T. Schumm, C. E. Düllmann, A. Pálffy, et al., Energy of the 229th nuclear clock transition, Nature 573, 243 (2019).
  • Haber et al. [2016] J. Haber, K. S. Schulze, K. Schlage, R. Loetzsch, L. Bocklage, T. Gurieva, H. Bernhardt, H.-C. Wille, R. Rüffer, I. Uschmann, et al., Collective strong coupling of x-rays and nuclei in a nuclear optical lattice, Nature Photonics 10, 445 (2016).