This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

GRB 221009A/SN 2022xiw: A Supernova Obscured by a Gamma-Ray Burst Afterglow?

De-Feng Kong Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; wangxg@gxu.edu.cn, lew@gxu.edu.cn GXU-NAOC Center for Astrophysics and Space Sciences, Nanning 530004, China Xiang-Gao Wang Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; wangxg@gxu.edu.cn, lew@gxu.edu.cn GXU-NAOC Center for Astrophysics and Space Sciences, Nanning 530004, China WeiKang Zheng Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA; weikang@berkeley.edu, afilippenko@berkeley.edu Hou-Jun Lü Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; wangxg@gxu.edu.cn, lew@gxu.edu.cn GXU-NAOC Center for Astrophysics and Space Sciences, Nanning 530004, China L. P. Xin CAS Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China. Da-Bin Lin Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; wangxg@gxu.edu.cn, lew@gxu.edu.cn GXU-NAOC Center for Astrophysics and Space Sciences, Nanning 530004, China Jia-Xin Cao Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; wangxg@gxu.edu.cn, lew@gxu.edu.cn GXU-NAOC Center for Astrophysics and Space Sciences, Nanning 530004, China Ming-Xuan Lu Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; wangxg@gxu.edu.cn, lew@gxu.edu.cn GXU-NAOC Center for Astrophysics and Space Sciences, Nanning 530004, China B. Ren Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; wangxg@gxu.edu.cn, lew@gxu.edu.cn GXU-NAOC Center for Astrophysics and Space Sciences, Nanning 530004, China Edgar P. Vidal Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA; weikang@berkeley.edu, afilippenko@berkeley.edu J. Y. Wei CAS Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China. En-Wei Liang Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; wangxg@gxu.edu.cn, lew@gxu.edu.cn GXU-NAOC Center for Astrophysics and Space Sciences, Nanning 530004, China Alexei V. Filippenko Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA; weikang@berkeley.edu, afilippenko@berkeley.edu
Abstract

We present optical photometry for the afterglow of GRB 221009A, in some respects the most extraordinary gamma-ray burst (GRB) ever observed. Good quality in the RR-band light curve is obtained, covering 0.32–19.57 days since the Fermi-GBM trigger. We find that a weak bump emerges from the declining afterglow at t11t\approx 11 days; a supernova (SN) may be responsible. We use a smooth broken power-law and Ni56{}^{56}\mathrm{Ni} model to fit the light curve. The best-fitting results reveal that the SN ejected a total mass of Mej=3.70MM_{\mathrm{ej}}=3.70\,M_{\odot}, a Ni56{}^{56}\mathrm{Ni} mass of MNi=0.23MM_{\mathrm{Ni}}=0.23\,M_{\odot}, and a kinetic energy of ESN,K=2.35×1052ergE_{\mathrm{SN,K}}=2.35\times 10^{52}\,\mathrm{erg}. We also compare GRB 221009A with other GRB-SN events based on a GRB-associated SN sample, and find that only SN 2003lw and SN 2011kl can be obviously revealed in the afterglow of GRB 221009A by setting these objects at its distance. This suggests that a supernova (SN 2022xiw) is possibly obscured by the brighter afterglow emission from GRB 221009A.

gamma-ray burst: individual (GRB 221009A) — supernovae: individual (SN 2022xiw)

1 Introduction

The connection between long-duration gamma-ray bursts (LGRBs) and broad-line Type Ic supernovae (SNe Ic-BL) has been established — the “GRB-SN connection” (e.g., Woosley & Bloom, 2006; Hjorth & Bloom, 2012; Cano et al., 2017). Since the discovery of GRB 980425/SN 1998bw (Galama et al., 1998), dozens of GRB-SNe have been observed, but relatively few were nearby (redshift z<0.2z<0.2): GRB 980425/SN 1998bw (z=0.00867z=0.00867; Galama et al., 1998), GRB 030329/SN 2003dh (z=0.16867z=0.16867; Stanek et al., 2003), GRB 031203/SN 2003lw (z=0.10536z=0.10536; Malesani et al., 2004), GRB 060218/SN 2006aj (z=0.03342z=0.03342; Pian et al., 2006), GRB 100316D/SN 2010bh (z=0.0592z=0.0592; Chornock et al., 2010), GRB 130702A/SN 2013dx (z=0.145z=0.145; D’Elia et al., 2015), GRB 161219B/SN 2016jca (z=0.1475z=0.1475; Tanvir et al., 2016; de Ugarte Postigo et al., 2016), GRB 171205A/SN 2017iuk (z=0.0368z=0.0368; Izzo et al., 2019), GRB 180728A/SN 2018fip (z=0.117z=0.117; Izzo et al., 2018), and GRB 190829A/SN 2019oyw (z=0.0785z=0.0785; Valeev et al., 2019). However, some nearby LGRBs show no evidence of SN emission down to very deep limits: GRB 060505 (z=0.089z=0.089; Fynbo et al., 2006), GRB 060614 (z=0.1254z=0.1254; Fynbo et al., 2006; Della Valle et al., 2006), and GRB 111005A (z=0.01326z=0.01326; Tanga et al., 2018; MichałowskI et al., 2018). Also, GRB 211211A (z=0.0763z=0.0763; Rastinejad et al., 2022; Troja et al., 2022) and the recent case of GRB 230307A (z=0.065/3.87z=0.065/3.87; Levan et al., 2024, which in terms of flux is only second to GRB 221009A) have instead been associated with potential kilonova emission.

On 2022 October 9, at 13:16:59 (UTC dates are used herein), the Fermi Gamma-Ray Burst Monitor (GBM; Meegan et al., 2009) onboard the Fermi Gamma-ray Space Telescope (FGST) triggered an extraordinarily bright LGRB, GRB 221009A (Veres et al., 2022). About 53 min later, at 14:10:17, the Burst Alert Telescope (BAT; Barthelmy et al., 2005) onboard the Neil Gehrels Swift Observatory also triggered GRB 221009A, but it was named Swift J1913.1+1946 (Dichiara et al., 2022). The Swift X-Ray Telescope (XRT; Burrows et al., 2005) began observing the GRB at 14:13:09, 172 s after the BAT trigger, and the Ultraviolet and Optical Telescope (UVOT; Roming et al., 2005) began at 179 s (Williams et al., 2023). GRB 221009A is a nearby event, with a very low redshift z=0.151z=0.151 (de Ugarte Postigo et al., 2022b; Castro-Tirado et al., 2022; Izzo et al., 2022). As GRB 221009A optical afterglow observations continued, photometric evidence for an SN appeared (Belkin et al., 2022a, b). A few days later, Maiorano et al. (2022) announced the results of follow-up spectroscopy of the afterglow of GRB 221009A, confirming the emerging contribution of SN 2022xiw (Postigo et al., 2022) as reported by de Ugarte Postigo et al. (2022a). Moreover, Fulton et al. (2023) presented extensive optical photometry of the afterglow of GRB 221009A, showing evidence for emission from an accompanying SN. Srinivasaragavan et al. (2023) also presented their optical photometry and announced that they found an SN component. However, Shrestha et al. (2023) did not find SN signatures in their imaging and spectroscopy, and Levan et al. (2023) failed to see significant evidence for SN emission in their James Webb Space Telescope (JWST) and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A. But late-time JWST observations possibly suggest some specific SN spectral features associated with GRB 221009A. In particular, a close match with SNe Ic-BL suggests the presence of a typical GRB-SN in the spectrum (Blanchard et al., 2023, 2024).

Here we present our photometric follow-up observations of GRB 221009A. We analyze the optical afterglow of GRB 221009A by fitting the RR-band light curve with a smooth broken power-law plus Ni56{}^{56}\mathrm{Ni} model. In addition, we compare GRB 221009A with other GRB-SN events based on a GRB-associated SN sample. This paper is organized as follows. Section 2 presents our observations and data reduction, while Section 3 shows the analysis and results. Our conclusions and implications are presented in Section 4. Throughout, we adopt a concordance cosmology with parameters H0=69.3kms1Mpc1H_{0}=69.3\,\mathrm{km\,s^{-1}\,Mpc^{-1}}, ΩM=0.286\Omega_{\mathrm{M}}=0.286, ΩΛ=0.714\Omega_{\mathrm{\Lambda}}=0.714.

2 Observations and Data Reduction

The afterglow of GRB 221009A was observed by many ground-based telescopes including our GWAC telescopes. The GWAC system is an optical transient survey located at Xinglong Observatory, China; it includes two 60 cm optical telescopes (GWAC-F60A/B), as one of the main ground-based facilities of the Space-based Multi-band Astronomical Variable Objects Monitor (SVOM)111SVOM is a China–France satellite mission dedicated to the detection and study of GRBs. mission (Wei et al., 2016). GWAC-F60 began observing the afterglow of GRB 221009A at 13:16:59, 22.04 hr after the GBM trigger, with a set of RR-band images. In addition, we performed follow-up observations on October 14 and 16, but the optical afterglow was not detected in the stacked image. LCOGT (Las Cumbres Observatory Global Telescope Network; Brown et al., 2013) began observing GRB 221009A about 7.73 hr after the GBM trigger; RR-band images were obtained with the 1 m Sinistro instrument at the Teide Observatory on Tenerife and the 1 m Sinistro instrument at McDonald Observatory, Texas, USA. BB, VV, RR, and II images of GRB 221009A were also obtained with the 1 m Nickel telescope at Lick Observatory (Vidal et al., 2022), and additional ClearClear-band images were obtained with the Lick 0.76 m Katzman Automatic Imaging Telescope (KAIT; Filippenko et al., 2001).

Point-spread-function (PSF) photometry was performed using DAOPHOT (Stetson, 1987) from the IDL Astronomy Users Library222http://idlastro.gsfc.nasa.gov/. Several nearby stars were chosen from the Pan-STARRS1333http://archive.stsci.edu/panstarrs/search.php catalog for calibration; their magnitudes were transformed into the Landolt (Landolt, 1992) magnitudes using the empirical prescription presented by Eq. 6 of Tonry et al. (2012).

The photometry results are corrected for Galactic extinction with E(BV)=1.36E(B-V)=1.36 mag (Schlafly & Finkbeiner, 2011) for analysis. Owing to large uncertainties, we do not make corrections for the extinction in the GRB host galaxy. We report the original photometry from LCOGT, GWAC-F60, KAIT, and Nickel follow-up observations in Table 1.

We collected additonal photometry data for our analysis from Williams et al. (2023), Shrestha et al. (2023), Laskar et al. (2023), Srinivasaragavan et al. (2023) and Gamma-ray-burst Coordinates Network (GCN) Circulars (Broens, 2022; Hu et al., 2022; Belkin et al., 2022d; de Wet et al., 2022; Xu et al., 2022; Brivio et al., 2022; Durbak et al., 2022; Paek et al., 2022; Romanov, 2022a; Chen et al., 2022; Kim et al., 2022; Groot et al., 2022; Romanov, 2022b; Belkin et al., 2022c; Watson et al., 2022; Strausbaugh & Cucchiara, 2022; Butler et al., 2022; Vinko et al., 2022; Mao et al., 2022; Zaznobin et al., 2022; Sasada et al., 2022; O’Connor et al., 2022a; Bikmaev et al., 2022a; O’Connor et al., 2022b; Bikmaev et al., 2022b; Schneider et al., 2022; D’Avanzo et al., 2022; Huber et al., 2022; Shresta et al., 2022; Izzo et al., 2022; Belkin et al., 2022a; Rajabov et al., 2022; Im et al., 2022; Ferro et al., 2022; Rossi et al., 2022; Gupta et al., 2022; Belkin et al., 2022b; Pellegrin et al., 2022; O’Connor et al., 2022c; Aguerre et al., 2022). XRT data were downloaded from the UK Swift Science Data Center at the University of Leicester (Evans et al., 2009) 444https://www.swift.ac.uk/xrt_curves/01126853/. Figure 1 shows the multiband light curves of the afterglow in both optical and X-ray bands.

\startlongtable
Table 1: Photometry of GRB 221009AaaIncludes contributions from the GRB afterglow, host galaxy, and associated SN 2022xiw
tmidt_{\mathrm{mid}} (s)bbtmidt_{\mathrm{mid}} is the midpoint of each observation after the GBM trigger. tmidt_{\mathrm{mid}} (days)bbtmidt_{\mathrm{mid}} is the midpoint of each observation after the GBM trigger. Mag (Vega)ccThe data have not been corrected for extinction in the Milky Way Galaxy or the GRB host galaxy. 1σ1\sigma Filter Telescope
49088.07 0.568 17.04 0.01 ClearClear KAIT
49804.07 0.576 17.04 0.01 ClearClear KAIT
50516.09 0.585 17.09 0.01 ClearClear KAIT
54258.08 0.628 17.18 0.01 ClearClear KAIT
54970.10 0.636 17.28 0.02 ClearClear KAIT
55687.05 0.645 17.17 0.02 ClearClear KAIT
136147.05 1.576 18.36 0.03 ClearClear KAIT
136859.07 1.584 18.41 0.02 ClearClear KAIT
137576.07 1.592 18.42 0.03 ClearClear KAIT
140746.03 1.629 18.45 0.04 ClearClear KAIT
141390.06 1.636 18.53 0.04 ClearClear KAIT
142178.03 1.646 18.39 0.04 ClearClear KAIT
142986.04 1.655 18.25 0.03 ClearClear KAIT
143703.07 1.663 18.29 0.05 ClearClear KAIT
144419.07 1.672 18.19 0.05 ClearClear KAIT
229204.08 2.653 18.96 0.05 ClearClear KAIT
230275.09 2.665 19.15 0.08 ClearClear KAIT
314183.06 3.636 19.55 0.05 ClearClear KAIT
487790.04 5.646 20.02 0.11 ClearClear KAIT
574322.05 6.647 20.35 0.14 ClearClear KAIT
1005531.06 11.638 21.54 0.51 ClearClear KAIT
1349766.03 15.622 22.02 0.86 ClearClear KAIT
54648.09 0.633 19.13 0.09 VV Nickel
55033.08 0.637 17.54 0.02 RR Nickel
55588.03 0.643 15.99 0.01 II Nickel
59297.10 0.686 18.87 0.06 VV Nickel
59631.03 0.690 17.62 0.02 RR Nickel
59970.07 0.694 16.04 0.01 II Nickel
60305.04 0.698 20.61 0.30 BB Nickel
60640.01 0.702 18.98 0.07 VV Nickel
60974.04 0.706 17.64 0.02 RR Nickel
61310.04 0.710 16.09 0.01 II Nickel
61645.02 0.713 20.05 0.26 BB Nickel
61979.04 0.717 18.97 0.08 VV Nickel
62314.10 0.721 17.64 0.02 RR Nickel
62649.07 0.725 16.11 0.01 II Nickel
79414.90 0.919 18.15 0.07 RR GWAC-F60
81203.40 0.940 18.47 0.11 RR GWAC-F60
83394.80 0.965 18.11 0.08 RR GWAC-F60
85059.10 0.984 18.22 0.11 RR GWAC-F60
899095.30 10.406 18.07 0.16 RR GWAC-F60
27964.40 0.324 16.52 0.01 RR LCOGT
28290.60 0.327 16.55 0.01 RR LCOGT
28617.50 0.331 16.56 0.01 RR LCOGT
28945.80 0.335 16.58 0.01 RR LCOGT
29272.80 0.339 16.57 0.01 RR LCOGT
118637.60 1.373 18.59 0.04 RR LCOGT
118964.30 1.377 18.54 0.04 RR LCOGT
119293.20 1.381 18.56 0.26 RR LCOGT
119620.10 1.384 18.56 0.04 RR LCOGT
119947.60 1.388 18.58 0.03 RR LCOGT
201327.50 2.330 19.52 0.06 RR LCOGT
201654.90 2.334 19.59 0.06 RR LCOGT
202309.00 2.342 19.61 0.07 RR LCOGT
202636.30 2.345 19.47 0.06 RR LCOGT
203159.70 2.351 19.53 0.06 RR LCOGT
203487.30 2.355 19.46 0.06 RR LCOGT
203814.90 2.359 19.55 0.07 RR LCOGT
204142.10 2.363 19.41 0.05 RR LCOGT
204469.90 2.367 19.36 0.05 RR LCOGT
204912.50 2.372 19.60 0.38 RR LCOGT
205566.30 2.379 19.49 0.06 RR LCOGT
205893.20 2.383 19.49 0.08 RR LCOGT
306667.70 3.549 20.00 0.04 RR LCOGT
306994.10 3.553 20.15 0.06 RR LCOGT
307323.60 3.557 20.24 0.06 RR LCOGT
307651.10 3.561 20.20 0.07 RR LCOGT
307978.00 3.565 19.98 0.07 RR LCOGT
309028.90 3.577 20.06 0.04 RR LCOGT
309355.70 3.581 20.06 0.04 RR LCOGT
309682.80 3.584 20.04 0.04 RR LCOGT
310010.00 3.588 20.03 0.04 RR LCOGT
310336.70 3.592 20.09 0.05 RR LCOGT
312204.39 3.613 20.10 0.07 RR LCOGT
312530.89 3.617 20.13 0.08 RR LCOGT
312857.29 3.621 20.08 0.07 RR LCOGT
313184.64 3.625 20.18 0.06 RR LCOGT
313512.20 3.629 20.16 0.07 RR LCOGT
397818.80 4.604 20.41 0.05 RR LCOGT
397859.82 4.605 20.42 0.06 RR LCOGT
398146.40 4.608 20.45 0.06 RR LCOGT
398186.69 4.609 20.51 0.07 RR LCOGT
398474.00 4.612 20.64 0.08 RR LCOGT
398514.09 4.612 20.49 0.07 RR LCOGT
398803.10 4.616 20.62 0.08 RR LCOGT
398841.59 4.616 20.44 0.07 RR LCOGT
399129.60 4.620 20.62 0.08 RR LCOGT
399170.09 4.620 20.44 0.06 RR LCOGT
547867.00 6.341 20.95 0.11 RR LCOGT
548194.30 6.345 20.84 0.09 RR LCOGT
548522.80 6.349 20.87 0.09 RR LCOGT
548849.70 6.352 20.87 0.11 RR LCOGT
549178.30 6.356 21.07 0.10 RR LCOGT
549614.70 6.361 20.79 0.08 RR LCOGT
549942.50 6.365 20.84 0.09 RR LCOGT
550269.00 6.369 20.96 0.12 RR LCOGT
550596.20 6.373 20.92 0.12 RR LCOGT
550922.90 6.376 20.86 0.10 RR LCOGT
633664.60 7.334 21.12 0.07 RR LCOGT
894065.30 10.348 21.74 0.18 RR LCOGT
1236672.70 14.313 22.05 0.16 RR LCOGT
1690581.70 19.567 22.94 0.22 RR LCOGT

3 Analysis and Results

3.1 Modeling the Afterglow Light Curve

In order to detect temporal features of the afterglow light curve, we fit it with a model having two basic components: a smooth broken power-law (BPL) function and a Ni56{}^{56}\mathrm{Ni} cascade decay model (the Ni56{}^{56}\mathrm{Ni} model; see detailed studies by, e.g., Arnett, 1979, 1980, 1982, 1996). In addition, since the data are not corrected for host-galaxy emission, we use F625W=24.88±0.08mag\mathrm{F625W}=24.88\pm 0.08\,\mathrm{mag} to correct for underlying host-galaxy light in our analysis, which approximately corresponds to the RR band and is measured by Levan et al. (2023).

The empirical BPL function (e.g., Liang et al., 2007; Li et al., 2012; Wang et al., 2015c) is given by

F=F0[(ttb)ωα1+(ttb)ωα2]1/ω,F=F_{0}\left[\left(\frac{t}{t_{\mathrm{b}}}\right)^{\omega\alpha_{1}}+\left(\frac{t}{t_{\mathrm{b}}}\right)^{\omega\alpha_{2}}\right]^{-1/\omega}, (1)

where α1\alpha_{1} and α2\alpha_{2} are the temporal slopes, tbt_{\mathrm{b}} is the break time, and ω\omega measures the sharpness of the break (in this paper, we fix ω=3\omega=3).

For radioactivity from Ni56{}^{56}\mathrm{Ni} and its daughter nucleus Co56{}^{56}\mathrm{Co}, the total power can be written as (Wang et al., 2015a)

PNi(t)=ϵNiMNiet/tNi+ϵCoMNiet/tCoet/tNi1tNi/tCoergs1,P_{\mathrm{Ni}}(t)=\epsilon_{\mathrm{Ni}}M_{\mathrm{Ni}}e^{-t/t_{\mathrm{Ni}}}+\epsilon_{\mathrm{Co}}M_{\mathrm{Ni}}\frac{e^{-t/t_{\mathrm{Co}}}-e^{-t/t_{\mathrm{Ni}}}}{1-t_{\mathrm{Ni}}/t_{\mathrm{Co}}}\,\mathrm{erg\,s^{-1}}, (2)

where MNiM_{\mathrm{Ni}} is the amount of Ni56{}^{56}\mathrm{Ni} formed in the explosion, ϵNi=3.9×1010ergg1s1\epsilon_{\mathrm{Ni}}=3.9\times 10^{10}\,\rm{erg\,g^{-1}\,s^{-1}}, tNi=8.8t_{\mathrm{Ni}}=8.8 days, ϵCo=6.8×109ergg1s1\epsilon_{\mathrm{Co}}=6.8\times 10^{9}\,\rm{erg\,g^{-1}\,s^{-1}}, and tCo=111.3t_{\mathrm{Co}}=111.3 days. The output luminosity can be written as (Arnett, 1982)

LSN(t)=e(t/tdiff)20t2PNi(t)ttdiffe(t/tdiff)2\displaystyle L_{\mathrm{SN}}(t)=e^{-(t/t_{\mathrm{diff}})^{2}}\int^{t}_{0}2P_{\mathrm{Ni}}(t^{{}^{\prime}})\frac{t^{{}^{\prime}}}{t_{\mathrm{diff}}}e^{(t^{{}^{\prime}}/t_{\mathrm{diff}})^{2}}
(1eAt2)dttdiff,\displaystyle(1-e^{-At^{-2}})\frac{dt^{{}^{\prime}}}{t_{\mathrm{diff}}}, (3)

where

tdiff=(2κMejβcvej)1/2,t_{\mathrm{diff}}=\left(\frac{2\kappa M_{\mathrm{ej}}}{\beta cv_{\mathrm{ej}}}\right)^{1/2}, (4)

is the diffusion time, and

A=3κγMej4πvej2A=\frac{3\kappa_{\gamma}M_{\mathrm{ej}}}{4\pi v^{2}_{\mathrm{ej}}} (5)

is the leakage parameter (Wang et al., 2015b). The parameter β\beta has a typical value of 13.8 (Arnett, 1982); MejM_{\mathrm{ej}}, vejv_{\mathrm{ej}}, κ\kappa, κγ\kappa_{\gamma}, and cc are the ejecta mass, the expansion velocity of the ejecta, the Thomson electron scattering opacity, the effective gamma-ray opacity, and the speed of light in a vacuum, respectively. We assume the velocity at the photosphere vphotvejv_{\mathrm{phot}}\approx v_{\mathrm{ej}}. For a uniform density profile, the kinetic energy is given by ESN,K=(3/10)Mejvphot2E_{\mathrm{SN,K}}=(3/10)\,M_{\mathrm{ej}}v^{2}_{\mathrm{phot}}.

We further assume that the spectral energy distribution (SED) in our SN model is a blackbody, which is a reasonable choice for SNe. The blackbody SED is calculated according to the Planck formula using the temperature and radius of the photosphere, implying the flux at frequency ν\nu can be written as

fν=2πhν3c21ehν/kT1ergs1cm2Hz1,f_{\nu}=\frac{2\pi h\nu^{3}}{c^{2}}\frac{1}{e^{h\nu/kT}-1}\,\rm{erg\,s^{-1}\,cm^{-2}\,Hz^{-1}}, (6)

where ν\nu is the frequency, hh is Planck’s constant, kk is Boltzmann’s constant, and TT is the temperature in degrees Kelvin.

The temperature and radius are given by (Nicholl et al., 2017)

Tphot(t)={(LSN(t)4πσvphot2t2)14,(LSN(t)4πσvphot2t2)14>TfTf,(LSN(t)4πσvphot2t2)14Tf,T_{\mathrm{phot}}(t)=\left\{\begin{array}[]{cc}\left(\frac{L_{\mathrm{SN}}(t)}{4\pi\sigma v^{2}_{\mathrm{phot}}t^{2}}\right)^{\frac{1}{4}},\quad\left(\frac{L_{\mathrm{SN}}(t)}{4\pi\sigma v^{2}_{\mathrm{phot}}t^{2}}\right)^{\frac{1}{4}}>T_{\mathrm{f}}&\\ T_{\mathrm{f}},\qquad\qquad\left(\frac{L_{\mathrm{SN}}(t)}{4\pi\sigma v^{2}_{\mathrm{phot}}t^{2}}\right)^{\frac{1}{4}}\leq T_{\mathrm{f}}&\end{array}\right., (7)
Rphot(t)={vphot2t,(LSN(t)4πσvphot2t2)14>Tf(LSN(t)4πσTf4)12,(LSN(t)4πσvphot2t2)14Tf,R_{\mathrm{phot}}(t)=\left\{\begin{array}[]{cc}v^{2}_{\mathrm{phot}}t,\qquad\left(\frac{L_{\mathrm{SN}}(t)}{4\pi\sigma v^{2}_{\mathrm{phot}}t^{2}}\right)^{\frac{1}{4}}>T_{\mathrm{f}}&\\ \left(\frac{L_{\mathrm{SN}}(t)}{4\pi\sigma T_{\mathrm{f}}^{4}}\right)^{\frac{1}{2}},\quad\left(\frac{L_{\mathrm{SN}}(t)}{4\pi\sigma v^{2}_{\mathrm{phot}}t^{2}}\right)^{\frac{1}{4}}\leq T_{\mathrm{f}}&\end{array}\right., (8)

where σ\sigma is the Stefan-Boltzmann constant and TfT_{\mathrm{f}} is the final plateau temperature, an additional free parameter. This parameter simply allows us to extend our fits to later times, where other photospheric models based on determining the optical depth break down (Inserra et al., 2013).

\startlongtable
Table 2: Model Parameters
Parameter Unit Best fit
log F0F_{0} ergcm2s1\mathrm{erg\,cm^{-2}\,s^{-1}} 10.19-10.19
α1\alpha_{1} 0.75
α2\alpha_{2} 1.56
tbt_{\mathrm{b}} day 0.44
κ\kappa cm2g1\rm{cm^{2}\,g^{-1}} 0.05
log κγ\kappa_{\gamma} cm2g1\rm{cm^{2}\,g^{-1}} 0.65-0.65
MejM_{\mathrm{ej}} MM_{\odot} 3.70
vejv_{\mathrm{ej}} 109cms110^{9}\mathrm{cm\,s^{-1}} 3.26
MNiM_{\mathrm{Ni}} MM_{\odot} 0.40
TfT_{\mathrm{f}} 103K10^{3}\mathrm{K} 3.50

3.2 Light-Curve Fitting and Results

For our light-curve analysis, we focus on the RR band because we have better data coverage in it compared with other bands. We used 10 parameters to fit the RR light curve; the best-fitting parameters are presented in Table 2 and the results are shown in Figure 2.

It should be noted that the model ofArnett (1982) that we adopt above might overestimate the Ni56{}^{56}\mathrm{Ni} mass of SN 2022xiw. Therefore, we calculate a more accurate value of the Ni56{}^{56}\mathrm{Ni} mass using the equation derived by Khatami & Kasen (2019),

MNi\displaystyle M_{\mathrm{Ni}} =\displaystyle= Lpeakβ2tpeak22ϵtNi2((1ϵCoϵNi)\displaystyle\frac{L_{\mathrm{peak}}\beta^{\prime 2}t_{\mathrm{peak}}^{2}}{2\epsilon t_{\mathrm{Ni}}^{2}}\Bigg{(}\left(1-\frac{\epsilon_{\mathrm{Co}}}{\epsilon_{\mathrm{Ni}}}\right) (9)
×(1(1+βtpeak/tNi)eβtpeak/tNi)\displaystyle\times\left(1-\left(1+\beta^{\prime}t_{\mathrm{peak}}/t_{\mathrm{Ni}}\right)e^{-\beta^{\prime}t_{\mathrm{peak}}/t_{\mathrm{Ni}}}\right)
+ϵCotCo2ϵNitNi2(1(1+βtpeak/tCo)eβtpeak/tCo))1,\displaystyle+\frac{\epsilon_{\mathrm{Co}}t_{\mathrm{Co}}^{2}}{\epsilon_{\mathrm{Ni}}t_{\mathrm{Ni}}^{2}}\left(1-\left(1+\beta^{\prime}t_{\mathrm{peak}}/t_{\mathrm{Co}}\right)e^{-\beta^{\prime}t_{\mathrm{peak}}/t_{\mathrm{Co}}}\right)\Bigg{)}^{-1}\,,

where we adopt a value of the mixing parameter β=0.56\beta^{\prime}=0.56, suitable for SNe Ic-BL (Afsariardchi et al., 2021). Using the peak luminosity LpeakL_{\mathrm{peak}} and the time of peak light tpeakt_{\mathrm{peak}} of the bolometric light curve produced by the best-fitting parameters of the RR-band light-curve fit, we find that the Ni56{}^{56}\mathrm{Ni} mass of SN 2022xiw is 0.23M0.23\,M_{\odot}.

One can see from the Figure 2 that the bump is very weak, and the SN contribution is also small in the model. We note that the power-law slope of the later-time light curve is 1.56, and the X-ray power-law slope is also similar, 1.556\sim 1.556 (Fulton et al., 2023). We therefore tried to describe the multiband light curves with a single-decline-rate power law, f(t)t1.56f(t)\propto t^{-1.56}; the result is shown in Figure 1, where one can see that in all bands, there is no significant bump signature.

\startlongtable
Table 3: Comparison of Parameters
Parameter Unit Fulton+ (2023)aaThe data from Fulton et al. (2023). Srinivasaragava+ (2023)bbThe data from Srinivasaragavan et al. (2023). Blanchard+ (2024)ccThe data from Blanchard et al. (2024). Cano+ (2017)ddfootnotemark: Our result
ESN,KE_{\mathrm{SN,K}} 1052erg10^{52}\,\mathrm{erg} 2.6–9.0 1.6–5.2 2.52±1.792.52\pm 1.79 2.35
MejM_{\mathrm{ej}} MM_{\odot} 7.11.72.47.1_{-1.7}^{2.4} 3.5–11.1 5.90±3.805.90\pm 3.80 3.70
MNiM_{\mathrm{Ni}} MM_{\odot} 1.00.40.61.0_{-0.4}^{0.6} 0.05–0.25 0.09 0.37±0.200.37\pm 0.20 0.23
ESN,K/MejE_{\mathrm{SN,K}}/M_{\mathrm{ej}} 1052ergM110^{52}\,\mathrm{erg}\,M_{\odot}^{-1} 0.37–1.27 0.46–0.47 0.43 0.64
MNi/MejM_{\mathrm{Ni}}/M_{\mathrm{ej}} 0.141 0.014–0.023 0.063 0.065
vejv_{\mathrm{ej}} 109cms110^{9}\,\mathrm{cm\,s^{-1}} 3.390.570.593.39_{-0.57}^{0.59} 2.8 2.02±0.852.02\pm 0.85 3.26
bbfootnotetext: The data from Table 1 (GRB ALL) of Cano et al. (2017).

Table 3 compares the parameters with the results reported by other works (Fulton et al., 2023; Srinivasaragavan et al., 2023; Blanchard et al., 2024) and the general value of GRB-SNe (Cano et al., 2017). Our results are close to those of Srinivasaragavan et al. (2023), and consistent with the average value inferred by Cano et al. (2017) for other GRB-SNe except for the expansion velocity of the ejecta, vejv_{\mathrm{ej}}. Srinivasaragavan et al. (2023) assumed SN 2022xiw has a photospheric velocity comparable to that of SN 1998bw, vph=2.8×109cms1v_{\mathrm{ph}}=2.8\times 10^{9}\,\mathrm{cm\,s^{-1}}, and the value of our velocity is between that of Srinivasaragavan et al. (2023) and Fulton et al. (2023). In addition, a spectrum taken of the optical afterglow 8\sim 8 days after the burst reported the possible existence of broad features with velocities slightly larger than those of SN 1998bw (de Ugarte Postigo et al., 2022a). Thus, we think our results are reasonable.

Refer to caption
Figure 1: Multiband light curves of GRB 221009A described with a single power law, f(t)t1.56f(t)\propto t^{-1.56}, fit to all bands at late times.
Refer to caption
Figure 2: RR-band light curve of GRB 221009A fitted with a BPL (purple dashed line) plus Ni56{}^{56}\mathrm{Ni} model (green dashed line). The flux has been corrected for underlying host-galaxy light.

One can also define the efficiency of GRB/SN events (Lü et al., 2018),

η=EGRBEGRB+ESN,K,\eta=\frac{E_{\mathrm{GRB}}}{E_{\mathrm{GRB}}+E_{\mathrm{SN,K}}}, (10)

to denote the energy partition. Kann & Agui Fernandez (2022) preliminarily estimated an isotropic energy release of log Eγ,iso=54.77E_{\mathrm{\gamma,iso}}=54.77 (0.1 keV–100 keV); Laskar et al. (2023) reported a beaming-corrected kinetic energy Eγ,K=4×1050E_{\mathrm{\gamma,K}}=4\times 10^{50} erg and a small jet opening angle θjet=1.640.20+0.28\theta_{\rm jet}=1.64_{-0.20}^{+0.28}. We therefore calculated the GRB energy Eγ=Eγ,isofb=2.41×1051ergE_{\mathrm{\gamma}}=E_{\mathrm{\gamma,iso}}f_{\mathrm{b}}=2.41\times 10^{51}\,\mathrm{erg} and EGRB=Eγ+Eγ,K=2.81×1051ergE_{\mathrm{GRB}}=E_{\mathrm{\gamma}}+E_{\mathrm{\gamma,K}}=2.81\times 10^{51}\,\mathrm{erg}, and get η=0.11\eta=0.11 for GRB 221009A. Figure 3 shows the distribution of η\eta for the GRB-SN events; the η\eta value of GRB 221009A is consistent with the majority of GRB-SNe (the center value of η0.1\eta\approx 0.1; Lü et al., 2018).

Refer to caption
Figure 3: Distribution of η\eta for GRB-SN events, reproduced from Lü et al. (2018). The red solid line denotes the value for GRB 221009A.

3.3 Comparison of GRB 221009A and other GRB-SNe

To better study the properties of GRB 221009A, we compared GRB 221009A with a sample of 14 other GRB-SN events — 980425/1998bw, 030329/2003dh, 031203/2003lw, 060218/2006aj, 080109/2008d, 081007/2008hw, 091127/2009nz, 100316D/2010bh, 101219B/2010ma, 111209A/2011kl, 120422A/2012bz, 130427A/2013cq, 130702A/2013dx, 161219B/2016jca; their properties and parameters were obtained from Lü et al. (2018). All GRB-SN events in our sample have strong evidence confirming an SN associated with a GRB (see more details in the review by Lü et al., 2018, and references therein).

Figure 4 shows two correlations among SN parameters: peak magnitude (MpeakM_{\mathrm{peak}}) of the SN as a function of ESNE_{\mathrm{SN}} (top panel) and MNiM_{\mathrm{Ni}} (bottom panel). In both correlations, GRB 221009A appears to be consistent with other GRB-SN events. Figure 5 shows Eγ,iso/EGRBE_{\mathrm{\gamma,iso}}/E_{\mathrm{GRB}} as a function of ESNE_{\mathrm{SN}}. One can see that both the γ\gamma-ray energy and the SN kinetic energy of GRB 221009A are relatively large, which means that the SN (if present) is bright.

Refer to caption
Refer to caption
Figure 4: Peak magnitude (MpeakM_{\mathrm{peak}}) of SNe as a function of ESNE_{\mathrm{SN}} (top) and MNiM_{\mathrm{Ni}} (bottom). The red diamonds denote GRB 221009A. Both panels are reproduced from Lü et al. (2018).
Refer to caption
Figure 5: Eγ,iso/EGRBE_{\mathrm{\gamma,iso}}/E_{\mathrm{GRB}} vs. ESNE_{\mathrm{SN}}. The vertical and horizontal lines are the upper limits of the magnetar energy budget. GRB 221009A is represented with red points. The dashed line denotes the equality line. This figure is reproduced from Lü et al. (2018).
Refer to caption
Figure 6: The light curve of SN 2022xiw (black), after subtracting the BPL and host-galaxy components. The data for other SNe are taken from (Lü et al., 2018).
Refer to caption
Figure 7: Comparison of SN light curves at the same redshift (z=0.151z=0.151), which shows that only two SNe (SN 2003lw and SN 2011kl) can be obviously found in the afterglow of GRB 221009A.

To study the pure SN light curve of SN 2022xiw, we chose the RR-band data from 7 days after the GBM trigger, then subtracted the BPL and host-galaxy components in our model, and finally discarded the negative values. We converted the data to absolute magnitude, which are shown in Figure 6, though with large scatter.

To better compare among SNe, we set the other SN redshifts to be the same as that of GRB 221009A, with the results shown in Figure 7. We find that only two SNe can be obviously detected in the afterglow of GRB 221009A — SN 2003lw and SN 2011kl. Most of the other SNe are obscured by the afterglow of GRB 221009A. In our sample, SN 2003lw has the largest peak time (tpeak=21.5±3.5dayst_{\mathrm{peak}}=21.5\pm 3.5\,\mathrm{days}) and SN 2011kl is the brightest (with Mpeak=19.8±0.1M_{\mathrm{peak}}=-19.8\pm 0.1 mag); indeed, SN 2011kl resemble a superluminous SN (Greiner et al., 2015; Kann et al., 2019). Therefore, we suggest that an SN may be detected when its peak emerges relatively late, when the afterglow of the GRB has faded to a low level. Another possibility is that an SN is very luminous, in order to be found in the afterglow of a GRB.

4 Conclusion and Discussion

We have presented multiwavelength observations of the extraordinary GRB 221009A, spanning about 19 days in time. A weak bump, possibly from a supernova, emerges from the declining afterglow at 11\sim 11 days in the RR-band light curve. Here we summarize our results.

  1. 1.

    We used a smooth broken power law plus Ni56{}^{56}\mathrm{Ni} model to fit the RR-band light curve. The best-fitting results reveal that the SN ejected a total mass of Mej=3.70MM_{\mathrm{ej}}=3.70\,M_{\odot}, a Ni56{}^{56}\mathrm{Ni} mass of MNi=0.23MM_{\mathrm{Ni}}=0.23\,M_{\odot}, and a total kinetic energy of ESN,K=2.35×1052ergE_{\mathrm{SN,K}}=2.35\times 10^{52}\,\mathrm{erg}. We estimate the energy partition η=0.11\eta=0.11. In addition, we used a single-decline-rate power law, f(t)t1.56f(t)\propto t^{-1.56}, to describe multiband light curves, and found no significant SN signal in all bands.

  2. 2.

    We compared GRB 221009A with other GRB-SN events based on a GRB-associated SN sample, finding that the correlations among SN parameters of GRB 221009A are consistent with other GRB-SN events. It is noteworthy that both the γ\gamma-ray energy and SN kinetic energy are large. We set these SNe in our sample at the distance of GRB 221009A, and find that only SN 2003lw and SN 2011kl can be obviously detected in the afterglow of GRB 221009A.

Owing to the limited dataset and the bright afterglow, it is difficult to study the SN signals and give good constraints. Focusing on our fitting results, on the one hand, we estimate the absolute AB mag of the SN peak to be MR=19.21M_{R}=-19.21 mag, close to the value of Mr=19.4±0.3M_{r}=-19.4\pm 0.3 mag that Fulton et al. (2023) measured, and also consistent with the limit Mr>19.5M_{r}>-19.5 mag that is given by Shrestha et al. (2023). On the other hand, de Ugarte Postigo et al. (2022a) announced spectroscopic detection of emerging SN features 8\sim 8 days after the burst. Maiorano et al. (2022) also reported spectroscopic confirmation of an SN in LBT spectra at t8.56t\approx 8.56 days. Our peak time of (1+z)tpeak=12.73(1+z)t_{\mathrm{peak}}=12.73 days is close to these values. In general, at the peak brightness of the SN, its spectral features are most obvious. Shrestha et al. (2023) suggested that the absolute magnitude of the associated SN would have to be brighter than Mr=20.66M_{r}=-20.66 mag after correcting for the extinction of E(BV)=1.32E(B-V)=1.32 mag, for them to detect SN bumps during that time period. But from our light-curve analysis, we suggest a weak bump emerges from the declining afterglow during that time period, and it is most visible at t11t\approx 11 days.

In addition, Shrestha et al. (2023) discussed that it is possible an associated SN was below their detection limit if they consider the high extinction. Although Levan et al. (2023) reported that they do not see significant evidence for SN emission in their observations, they do not discard the possibility that an event somewhat less luminous than SN 1998bw (and perhaps somewhat faster evolving or bluer) could simply have evaded detection in their observations. Levan et al. (2023) also reported that the optical to mid-infrared (0.6–12 μ\mum) SED shows little evidence for variability from early to late times (0.5–55 days), but late-time JWST observations show that the G140M+G235M spectrum significantly differs from a power-law continuum 13 days after the burst (Blanchard et al., 2023). The late-time spectroscopy and photometry are well described by an SN and power-law afterglow. The close match with SNe Ic-BL in particular demonstrates the presence of a typical GRB-SN in the spectrum. These observations provide the first clear detection of an SN associated with GRB 221009A (Blanchard et al., 2024). Moreover, Srinivasaragavan et al. (2023) also announced that they found moderate evidence for the presence of an additional component arising from an associated SN and found that it must be substantially fainter than SN 1998bw (see more details in the review by Srinivasaragavan et al., 2023). Thus, our RR-band light light is likely to contain contributions from an SN (named SN 2022xiw; Postigo et al., 2022).

Both the light-curve analysis and comparative analysis imply that the SN is not faint. However, why can we not obviously detect the SN signal? Shrestha et al. (2023) mentioned that the nondetection of an SN from GRB 221009A may be because most of the energy is carried by the relativistic jet, not the bulk ejecta. But we estimated the energy partition η\eta to be only 0.032, consistent with that inferred for most other GRB-SNe. Therefore, we suggest that the energy partition is not the primary reason why we cannot detect significant SN signal.

When we set the redshift of SNe in our sample to be the same as that of GRB 221009A, we find that most of them are obscured by the afterglow of GRB 221009A. Only two SNe can be obviously detected: SN 2003lw with tpeak=21.5±3.5dayst_{\mathrm{peak}}=21.5\pm 3.5\,\mathrm{days}, and SN 2011kl with Mpeak=19.8±0.1M_{\mathrm{peak}}=-19.8\pm 0.1 days. So, we suggest that an SN can be detected in the GRB afterglow in GRB-SN events either if it appears very late (when the afterglow has faded) or is very luminous. In the case of GRB 221009A, the extraordinarily bright afterglow is likely a reason why the SN was not detected by several observers.

In conclusion, we suggest that SN 2022xiw is possibly associated with GRB 221009A, but the SN emission is largely obscured by the afterglow of GRB 221009A. Our analysis shows that the SN is bright, but the GRB afterglow is even brighter.

5 Acknowledgments

This work is supported by the National Natural Science Foundation of China (grant Nos. 12373042, U1938201, 12133003 and 12273005), China Manned Spaced Project (CMS-CSST-2021-B11), the Bagui Scholars Programme (W.X.-G.) and the Guangxi Science Foundation the National (grant No. 2023GXNSFDA026007). A.V.F.’s group at U.C. Berkeley is grateful for financial assistance from the Christopher R. Redlich Fund, Gary and Cynthia Bengier, Clark and Sharon Winslow, Alan Eustace (W.Z. is a Bengier-Winslow-Eustace Specialist in Astronomy), and many other donors. KAIT and its ongoing operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the U.S. NSF, the University of California, the Sylvia & Jim Katzman Foundation, and the TABASGO Foundation. We thank the staff at Lick Observatory for their assistance. Research at Lick Observatory is partially supported by a generous gift from Google.

References

  • Afsariardchi et al. (2021) Afsariardchi, N., Drout, M. R., Khatami, D. K., et al. 2021, ApJ, 918, 89, doi: 10.3847/1538-4357/ac0aeb
  • Aguerre et al. (2022) Aguerre, O., Bayard, F., Broens, E., et al. 2022, GRB Coordinates Network, 32934, 1
  • Arnett (1996) Arnett, D. 1996, Supernovae and Nucleosynthesis: An Investigation of the History of Matter from the Big Bang to the Present
  • Arnett (1979) Arnett, W. D. 1979, ApJ, 230, L37, doi: 10.1086/182957
  • Arnett (1980) —. 1980, ApJ, 237, 541, doi: 10.1086/157898
  • Arnett (1982) —. 1982, ApJ, 253, 785, doi: 10.1086/159681
  • Barthelmy et al. (2005) Barthelmy, S. D., Barbier, L. M., Cummings, J. R., et al. 2005, Space Sci. Rev., 120, 143, doi: 10.1007/s11214-005-5096-3
  • Belkin et al. (2022a) Belkin, S., Kim, V., Pozanenko, A., et al. 2022a, GRB Coordinates Network, 32769, 1
  • Belkin et al. (2022b) Belkin, S., Moskvitin, A., Kim, V., et al. 2022b, GRB Coordinates Network, 32818, 1
  • Belkin et al. (2022c) Belkin, S., Nazarov, S., Pozanenko, A., Pankov, N., & IKI GRB FuN. 2022c, GRB Coordinates Network, 32684, 1
  • Belkin et al. (2022d) Belkin, S., Pozanenko, A., Klunko, E., Pankov, N., & GRB IKI FuN. 2022d, GRB Coordinates Network, 32645, 1
  • Bikmaev et al. (2022a) Bikmaev, I., Khamitov, I., Irtuganov, E., et al. 2022a, GRB Coordinates Network, 32743, 1
  • Bikmaev et al. (2022b) —. 2022b, GRB Coordinates Network, 32752, 1
  • Blanchard et al. (2023) Blanchard, P. K., Villar, V. A., Chornock, R., et al. 2023, GRB Coordinates Network, 33676, 1
  • Blanchard et al. (2024) —. 2024, Nature Astronomy, doi: 10.1038/s41550-024-02237-4
  • Brivio et al. (2022) Brivio, R., Ferro, M., D’Avanzo, P., et al. 2022, GRB Coordinates Network, 32652, 1
  • Broens (2022) Broens, E. 2022, GRB Coordinates Network, 32640, 1
  • Brown et al. (2013) Brown, T. M., Baliber, N., Bianco, F. B., et al. 2013, PASP, 125, 1031, doi: 10.1086/673168
  • Burrows et al. (2005) Burrows, D. N., Hill, J. E., Nousek, J. A., et al. 2005, Space Sci. Rev., 120, 165, doi: 10.1007/s11214-005-5097-2
  • Butler et al. (2022) Butler, N., Watson, A. M., Dichiara, S., et al. 2022, GRB Coordinates Network, 32705, 1
  • Cano et al. (2017) Cano, Z., Wang, S.-Q., Dai, Z.-G., & Wu, X.-F. 2017, Advances in Astronomy, 2017, 8929054, doi: 10.1155/2017/8929054
  • Castro-Tirado et al. (2022) Castro-Tirado, A. J., Sanchez-Ramirez, R., Hu, Y. D., et al. 2022, GRB Coordinates Network, 32686, 1
  • Chen et al. (2022) Chen, T. W., Malesani, D. B., Yang, S., et al. 2022, GRB Coordinates Network, 32667, 1
  • Chornock et al. (2010) Chornock, R., Berger, E., Levesque, E. M., et al. 2010, arXiv e-prints, arXiv:1004.2262, doi: 10.48550/arXiv.1004.2262
  • D’Avanzo et al. (2022) D’Avanzo, P., Ferro, M., Brivio, R., et al. 2022, GRB Coordinates Network, 32755, 1
  • de Ugarte Postigo et al. (2022a) de Ugarte Postigo, A., Izzo, L., Thoene, C. C., et al. 2022a, GRB Coordinates Network, 32800, 1
  • de Ugarte Postigo et al. (2016) de Ugarte Postigo, A., Cano, Z., Izzo, L., et al. 2016, GRB Coordinates Network, 20342, 1
  • de Ugarte Postigo et al. (2022b) de Ugarte Postigo, A., Izzo, L., Pugliese, G., et al. 2022b, GRB Coordinates Network, 32648, 1
  • de Wet et al. (2022) de Wet, S., Groot, P. J., & Meerlicht Consortium. 2022, GRB Coordinates Network, 32646, 1
  • D’Elia et al. (2015) D’Elia, V., Pian, E., Melandri, A., et al. 2015, A&A, 577, A116, doi: 10.1051/0004-6361/201425381
  • Della Valle et al. (2006) Della Valle, M., Chincarini, G., Panagia, N., et al. 2006, Nature, 444, 1050, doi: 10.1038/nature05374
  • Dichiara et al. (2022) Dichiara, S., Gropp, J. D., Kennea, J. A., et al. 2022, GRB Coordinates Network, 32632, 1
  • Durbak et al. (2022) Durbak, J. M., Kutyrev, A. S., Andreoni, I., et al. 2022, GRB Coordinates Network, 32654, 1
  • Evans et al. (2009) Evans, P. A., Beardmore, A. P., Page, K. L., et al. 2009, MNRAS, 397, 1177, doi: 10.1111/j.1365-2966.2009.14913.x
  • Ferro et al. (2022) Ferro, M., Brivio, R., D’Avanzo, P., et al. 2022, GRB Coordinates Network, 32804, 1
  • Filippenko et al. (2001) Filippenko, A. V., Li, W. D., Treffers, R. R., & Modjaz, M. 2001, in Astronomical Society of the Pacific Conference Series, Vol. 246, IAU Colloq. 183: Small Telescope Astronomy on Global Scales, ed. B. Paczynski, W.-P. Chen, & C. Lemme, 121
  • Fulton et al. (2023) Fulton, M. D., Smartt, S. J., Rhodes, L., et al. 2023, ApJ, 946, L22, doi: 10.3847/2041-8213/acc101
  • Fynbo et al. (2006) Fynbo, J. P. U., Watson, D., Thöne, C. C., et al. 2006, Nature, 444, 1047, doi: 10.1038/nature05375
  • Galama et al. (1998) Galama, T. J., Vreeswijk, P. M., van Paradijs, J., et al. 1998, Nature, 395, 670, doi: 10.1038/27150
  • Greiner et al. (2015) Greiner, J., Mazzali, P. A., Kann, D. A., et al. 2015, Nature, 523, 189, doi: 10.1038/nature14579
  • Groot et al. (2022) Groot, P. J., Vreeswijk, P. M., Ter Horst, R., et al. 2022, GRB Coordinates Network, 32678, 1
  • Gupta et al. (2022) Gupta, R., Ror, A. K., Pandey, S. B., et al. 2022, GRB Coordinates Network, 32811, 1
  • Hjorth & Bloom (2012) Hjorth, J., & Bloom, J. S. 2012, The Gamma-Ray Burst - Supernova Connection, 169–190
  • Hu et al. (2022) Hu, Y. D., Casanova, V., Fernandez-Garcia, E., et al. 2022, GRB Coordinates Network, 32644, 1
  • Huber et al. (2022) Huber, M., Schultz, A., Chambers, K. C., et al. 2022, GRB Coordinates Network, 32758, 1
  • Im et al. (2022) Im, M., Paek, G. S. H., Lim, G., et al. 2022, GRB Coordinates Network, 32803, 1
  • Inserra et al. (2013) Inserra, C., Smartt, S. J., Jerkstrand, A., et al. 2013, ApJ, 770, 128, doi: 10.1088/0004-637X/770/2/128
  • Izzo et al. (2018) Izzo, L., Rossi, A., Malesani, D. B., et al. 2018, GRB Coordinates Network, 23142, 1
  • Izzo et al. (2019) Izzo, L., de Ugarte Postigo, A., Maeda, K., et al. 2019, Nature, 565, 324, doi: 10.1038/s41586-018-0826-3
  • Izzo et al. (2022) Izzo, L., Saccardi, A., Fynbo, J. P. U., et al. 2022, GRB Coordinates Network, 32765, 1
  • Kann & Agui Fernandez (2022) Kann, D. A., & Agui Fernandez, J. F. 2022, GRB Coordinates Network, 32762, 1
  • Kann et al. (2019) Kann, D. A., Schady, P., Olivares E., F., et al. 2019, A&A, 624, A143, doi: 10.1051/0004-6361/201629162
  • Khatami & Kasen (2019) Khatami, D. K., & Kasen, D. N. 2019, ApJ, 878, 56, doi: 10.3847/1538-4357/ab1f09
  • Kim et al. (2022) Kim, V., Krugov, M., Pozanenko, A., et al. 2022, GRB Coordinates Network, 32670, 1
  • Landolt (1992) Landolt, A. U. 1992, AJ, 104, 340, doi: 10.1086/116242
  • Laskar et al. (2023) Laskar, T., Alexander, K. D., Margutti, R., et al. 2023, ApJ, 946, L23, doi: 10.3847/2041-8213/acbfad
  • Levan et al. (2023) Levan, A. J., Lamb, G. P., Schneider, B., et al. 2023, ApJ, 946, L28, doi: 10.3847/2041-8213/acc2c1
  • Levan et al. (2024) Levan, A. J., Gompertz, B. P., Salafia, O. S., et al. 2024, Nature, 626, 737, doi: 10.1038/s41586-023-06759-1
  • Li et al. (2012) Li, L., Liang, E.-W., Tang, Q.-W., et al. 2012, ApJ, 758, 27, doi: 10.1088/0004-637X/758/1/27
  • Liang et al. (2007) Liang, E.-W., Zhang, B.-B., & Zhang, B. 2007, ApJ, 670, 565, doi: 10.1086/521870
  • Lü et al. (2018) Lü, H.-J., Lan, L., Zhang, B., et al. 2018, ApJ, 862, 130, doi: 10.3847/1538-4357/aacd03
  • Maiorano et al. (2022) Maiorano, E., Palazzi, E., Rossi, A., et al. 2022, GRB Coordinates Network, 32850, 1
  • Malesani et al. (2004) Malesani, D., Tagliaferri, G., Chincarini, G., et al. 2004, ApJ, 609, L5, doi: 10.1086/422684
  • Mao et al. (2022) Mao, J., Lu, K. X., Zhao, X. H., & Bai, J. M. 2022, GRB Coordinates Network, 32727, 1
  • Meegan et al. (2009) Meegan, C., Lichti, G., Bhat, P. N., et al. 2009, ApJ, 702, 791, doi: 10.1088/0004-637X/702/1/791
  • MichałowskI et al. (2018) MichałowskI, M. J., Xu, D., Stevens, J., et al. 2018, A&A, 616, A169, doi: 10.1051/0004-6361/201629942
  • Nicholl et al. (2017) Nicholl, M., Guillochon, J., & Berger, E. 2017, ApJ, 850, 55, doi: 10.3847/1538-4357/aa9334
  • O’Connor et al. (2022a) O’Connor, B., Cenko, S. B., Troja, E., et al. 2022a, GRB Coordinates Network, 32739, 1
  • O’Connor et al. (2022b) O’Connor, B., Troja, E., Dichiara, S., Gillanders, J., & Cenko, S. B. 2022b, GRB Coordinates Network, 32750, 1
  • O’Connor et al. (2022c) —. 2022c, GRB Coordinates Network, 32860, 1
  • Paek et al. (2022) Paek, G. S. H., Im, M., Urata, Y., & Sung, H.-I. 2022, GRB Coordinates Network, 32659, 1
  • Pellegrin et al. (2022) Pellegrin, K., Rumstay, K., & Hartmann, D. 2022, GRB Coordinates Network, 32852, 1
  • Pian et al. (2006) Pian, E., Mazzali, P. A., Masetti, N., et al. 2006, Nature, 442, 1011, doi: 10.1038/nature05082
  • Postigo et al. (2022) Postigo, A. D. U., Izzo, L., Thoene, C. C., et al. 2022, Transient Name Server Classification Report, 2022-3047, 1
  • Rajabov et al. (2022) Rajabov, Y., Sadibekova, T., Tillayev, Y., et al. 2022, GRB Coordinates Network, 32795, 1
  • Rastinejad et al. (2022) Rastinejad, J. C., Gompertz, B. P., Levan, A. J., et al. 2022, Nature, 612, 223, doi: 10.1038/s41586-022-05390-w
  • Romanov (2022a) Romanov, F. D. 2022a, GRB Coordinates Network, 32664, 1
  • Romanov (2022b) —. 2022b, GRB Coordinates Network, 32679, 1
  • Roming et al. (2005) Roming, P. W. A., Kennedy, T. E., Mason, K. O., et al. 2005, Space Sci. Rev., 120, 95, doi: 10.1007/s11214-005-5095-4
  • Rossi et al. (2022) Rossi, A., Maiorano, E., Malesani, D. B., et al. 2022, GRB Coordinates Network, 32809, 1
  • Sasada et al. (2022) Sasada, M., Imai, Y., Murata, K. L., et al. 2022, GRB Coordinates Network, 32730, 1
  • Schlafly & Finkbeiner (2011) Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103, doi: 10.1088/0004-637X/737/2/103
  • Schneider et al. (2022) Schneider, B., Adami, C., Le Floc’h, E., et al. 2022, GRB Coordinates Network, 32753, 1
  • Shresta et al. (2022) Shresta, M., Sand, D., Alexander, K. D., et al. 2022, GRB Coordinates Network, 32759, 1
  • Shrestha et al. (2023) Shrestha, M., Sand, D. J., Alexander, K. D., et al. 2023, ApJ, 946, L25, doi: 10.3847/2041-8213/acbd50
  • Srinivasaragavan et al. (2023) Srinivasaragavan, G. P., O’Connor, B., Cenko, S. B., et al. 2023, ApJ, 949, L39, doi: 10.3847/2041-8213/accf97
  • Stanek et al. (2003) Stanek, K. Z., Matheson, T., Garnavich, P. M., et al. 2003, ApJ, 591, L17, doi: 10.1086/376976
  • Stetson (1987) Stetson, P. B. 1987, PASP, 99, 191, doi: 10.1086/131977
  • Strausbaugh & Cucchiara (2022) Strausbaugh, R., & Cucchiara, A. 2022, GRB Coordinates Network, 32693, 1
  • Tanga et al. (2018) Tanga, M., Krühler, T., Schady, P., et al. 2018, A&A, 615, A136, doi: 10.1051/0004-6361/201731799
  • Tanvir et al. (2016) Tanvir, N. R., Kruehler, T., Wiersema, K., et al. 2016, GRB Coordinates Network, 20321, 1
  • Tonry et al. (2012) Tonry, J. L., Stubbs, C. W., Lykke, K. R., et al. 2012, ApJ, 750, 99, doi: 10.1088/0004-637X/750/2/99
  • Troja et al. (2022) Troja, E., Fryer, C. L., O’Connor, B., et al. 2022, Nature, 612, 228, doi: 10.1038/s41586-022-05327-3
  • Valeev et al. (2019) Valeev, A. F., Castro-Tirado, A. J., Hu, Y. D., et al. 2019, GRB Coordinates Network, 25565, 1
  • Veres et al. (2022) Veres, P., Burns, E., Bissaldi, E., et al. 2022, GRB Coordinates Network, 32636, 1
  • Vidal et al. (2022) Vidal, E., Zheng, W., Filippenko, A. V., & KAIT GRB team. 2022, GRB Coordinates Network, 32669, 1
  • Vinko et al. (2022) Vinko, J., Bodi, A., Pal, A., et al. 2022, GRB Coordinates Network, 32709, 1
  • Wang et al. (2015a) Wang, S. Q., Wang, L. J., Dai, Z. G., & Wu, X. F. 2015a, ApJ, 807, 147, doi: 10.1088/0004-637X/807/2/147
  • Wang et al. (2015b) —. 2015b, ApJ, 799, 107, doi: 10.1088/0004-637X/799/1/107
  • Wang et al. (2015c) Wang, X.-G., Zhang, B., Liang, E.-W., et al. 2015c, ApJS, 219, 9, doi: 10.1088/0067-0049/219/1/9
  • Watson et al. (2022) Watson, A. M., Butler, N., Dichiara, S., et al. 2022, GRB Coordinates Network, 32692, 1
  • Wei et al. (2016) Wei, J., Cordier, B., Antier, S., et al. 2016, arXiv e-prints, arXiv:1610.06892. https://arxiv.org/abs/1610.06892
  • Williams et al. (2023) Williams, M. A., Kennea, J. A., Dichiara, S., et al. 2023, ApJ, 946, L24, doi: 10.3847/2041-8213/acbcd1
  • Woosley & Bloom (2006) Woosley, S. E., & Bloom, J. S. 2006, ARA&A, 44, 507, doi: 10.1146/annurev.astro.43.072103.150558
  • Xu et al. (2022) Xu, D., Jiang, S. Q., Fu, S. Y., et al. 2022, GRB Coordinates Network, 32647, 1
  • Zaznobin et al. (2022) Zaznobin, I., Burenin, R., & Eselevich, M. 2022, GRB Coordinates Network, 32729, 1