This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Ground and Excited state masses of Ωc0\Omega_{c}^{0}, Ωcc+\Omega_{cc}^{+} and Ωccc++\Omega_{ccc}^{++} baryons

Juhi Oudichhya    Keval Gandhi keval.physics@yahoo.com    Ajay Kumar Rai Department of Physics, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395007, India
Abstract

The masses of ground and excited states of Ωc0\Omega_{c}^{0}, Ωcc+\Omega_{cc}^{+} and Ωccc++\Omega_{ccc}^{++} baryons are calculated within the framework of Regge phenomenology. Here our attempt is to assign a possible spin-parity to these obtained masses. Our calculated masses in (J,M2)(J,M^{2}) plane with both natural (JPJ^{P} = 1/2+1/2^{+}, 3/23/2^{-}, 5/2+5/2^{+}, ….) and unnatural (JPJ^{P} = 3/2+3/2^{+}, 5/25/2^{-}, 7/2+7/2^{+}, ….) spin-parities are in agreement with the experimental observations where available and reasonably close to other theoretical predictions. Further we fix the slope and intercept of each Regge line in (n,M2)(n,M^{2}) plane and estimate the masses of higher excited states of these baryons. The obtained mass relations and the mass value predictions could provide an useful information in future experimental searches and the spin-parity assignment of these states.

preprint: APS/123-QED

I Introduction

In 2017, the LHCb collaboration observed five new narrow excited Ωc0\Omega_{c}^{0} states such as Ωc(3000)0\Omega_{c}(3000)^{0}, Ωc(3050)0\Omega_{c}{(3050)}^{0}, Ωc(3066)0\Omega_{c}{(3066)}^{0}, Ωc(3090)0\Omega_{c}{(3090)}^{0} and Ωc(3119)0\Omega_{c}{(3119)}^{0} decaying into Ξ+K\Xi^{+}K^{-} [1]. Except for Ωc(3119)0\Omega_{c}{(3119)}^{0} other four states were further confirmed by Belle [2] in 2018. Frequent questions have been arises with this discovery, for instance (i) why only five states were observed ? (ii) why they are so narrow ?. Many authors have been addressed these questions with recent studies given in Refs. [4, 5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Since Ωc0\Omega_{c}^{0} is composed of two strange quarks (ss)(ss) and one charm quark (c)(c), if ssss diquark remains in its color triplet it has spin-1, as symmetry rules do not allow a spin-0 diquark. This spin combined with spin 1/2 of cc quark, we have S=1/2S=1/2 or 3/23/2. Now consider states with relative orbital momentum L=1L=1 and combining with S=1/2S=1/2 and 3/23/2 gives the total spin J=1/2J=1/2, 3/23/2 and J=1/2J=1/2, 3/23/2, 5/25/2, respectively. All these five states have negative parity. Also these states are extremely narrow which indicates that it is difficult to pull apart the two ss quarks in a diquark [4].

The study of heavy-light bound state provides an ideal platform to understand the dynamics of quantum chromodynamics (QCD) at low energy regime. The strong interaction coupling is small for the hadrons containing heavy quark (cc or bb) which makes it easier to understand the QCD perturbatively than the system containing only light quark [16]. Different experimental facilities have provided new information in the sector of hadron spectroscopy like masses, decay width, branching ratios, isospin mass splittings, apin, parity, polarisation amplitude, etc. It is very crucial to assign the spin-parity of hadrons which facilitate the determination of experimental properties. Experimentally only the ground state Ωc0\Omega_{c}^{0} and Ωc(2770)0\Omega_{c}(2770)^{0} are observed with their quantum numbers, JPJ^{P} = 12+\frac{1}{2}^{+} and 32+\frac{3}{2}^{+} respectively [17], where JJ is the total spin and PP denotes the parity. The JPJ^{P} values of excited state Ωc0\Omega_{c}^{0} baryons are still missing as shown in Table 1.

Upto the date there are different research aspects to study the hadron spectroscopy, one of the prominent way to determine the properties of hadronic states is mass spectrum analysis. So far there are various method to depict the mass spectrum. The authors of Refs. [18, 19, 20, 21] calculate the excited state masses of singly, doubly and triply heavy baryons using non-relativistic approach of hypercentral constituent quark model (hCQM). In Ref. [22] mass analysis is carried out for the newly excited Ωc/b\Omega_{c/b} baryons by proposing a new scheme of state classification called JlsJls mixing coupling which goes beyond jjjj coupling. The results favor to predict the spin-parity of these states. The ground state and excited state spectra of Ωc0\Omega_{c}^{0} baryon are estimated from lattice QCD with dynamical quark field in Ref. [5] and results predicted the JPJ^{P} assignments of the states Ωc(3000)0\Omega_{c}(3000)^{0}, Ωc(3050)0\Omega_{c}{(3050)}^{0} and Ωc(3066)0\Omega_{c}{(3066)}^{0}, Ωc(3090)0\Omega_{c}{(3090)}^{0} and Ωc(3119)0\Omega_{c}{(3119)}^{0} with 1/21/2^{-}, 3/23/2^{-} and 5/25/2^{-}, respectively. The authors of Ref. [4] predicts the existence of five states with negative parity by assuming these baryonic states as bound state of cc-quark and a PP wave ssss-diquark. Ebert et al. [23] determine mass spectra of excited heavy baryons consisting of two light (u,d,s)(u,d,s) and one heavy (c,b)(c,b) quarks, in the framework of QCD-motivated by relativistic quark model. Robert et al.[24] used non-relativistic hamiltonian quark model to calculate the masses of heavy baryons. Ref. [25] estimate the masses and residues of these newly observed Ωc0\Omega_{c}^{0} baryon states within QCD sum rules and try to determine the nature of these states. So far none of the doubly/triply Ω\Omega baryons have been experimently detected. Although many authors have predicted the masses of Ωcc\Omega_{cc} and Ωccc\Omega_{ccc} baryons using various theoretical and phenomenological models, like Relativistic quark model [26] , Salpeter model [27], Lattice QCD [28, 29], the Hamiltonian model [30], the Hypercentral constituent quark model [18, 19] etc.

Wei et al. [31] derive some useful mass relations such as linear mass inequalities, quadratic mass inequalities and quadratic mass equalities for hadrons using quasilinear Regge trejectory ansatz. Based on these relations they determine mass ranges of some mesons and baryons and predict JPJ^{P} assignments of Ξc\Xi_{c}(2980), Ξc\Xi_{c}(3055), Ξc\Xi_{c}(3077) and Ξc\Xi_{c}(3123) baryons. Ref. [32] the same group extended this methodology to compute the masses of ground state and excited state of other doubly and triply charmed baryons such as Ωcc,Ξcc,Ωcc\Omega_{cc},\Xi_{cc}^{*},\Omega_{cc}^{*} and Ωccc\Omega_{ccc}. In the present work we have used the same approach of Regge phenomenology with the assumption of linear Regge trejectories. We obtained relations between intercept, slope ratios and baryon masses in both (J,M2J,M^{2}) and (nr,M2n_{r},M^{2}) planes. Using these relations we determine the mass spectra of Ωc\Omega_{c} baryon and try to assign a possible spin-parity to these recently observed five baryonic states. Further we apply the same scheme for doubly and triply charmed omega baryons. Since these baryons are yet to be observed by experiments and therefore they are not listed in PDG [17] yet. This motivate us to study the mass spectra of Ωc0\Omega_{c}^{0}, Ωcc+\Omega_{cc}^{+} and Ωccc++\Omega_{ccc}^{++} baryons.

Table 1: Masses, width and JPJ^{P} value of Ωc0\Omega_{c}^{0} baryons reported by LHCb [1].
Resonance Mass(MeV) Width(MeV) JPJ^{P}
Ωc0\Omega_{c}^{0} 2695.2±1.7\pm 1.7 - 12+\frac{1}{2}^{+}
Ωc(2770)0\Omega_{c}(2770)^{0} 2765.9±2.0\pm 2.0 - 32+\frac{3}{2}^{+}
Ωc(3000)0\Omega_{c}(3000)^{0} 3000.4±0.22±0.1\pm 0.22\pm 0.1 4.5±0.6±0.34.5\pm 0.6\pm 0.3 ???^{?}
Ωc(3050)0\Omega_{c}(3050)^{0} 3050.2±0.1±0.1\pm 0.1\pm 0.1 0.8±0.2±0.10.8\pm 0.2\pm 0.1 ???^{?}
Ωc(3065)0\Omega_{c}(3065)^{0} 3065.6±0.1±0.3\pm 0.1\pm 0.3 3.5±0.4±0.23.5\pm 0.4\pm 0.2 ???^{?}
Ωc(3090)0\Omega_{c}(3090)^{0} 3090.2±0.3±0.9\pm 0.3\pm 0.9 8.7±0.1±0.8\pm 0.1\pm 0.8 ???^{?}
Ωc(3120)0\Omega_{c}(3120)^{0} 3119±0.3±0.9\pm 0.3\pm 0.9 1.1±0.8±0.4\pm 0.8\pm 0.4 ???^{?}

The remainder of this paper is organised as follows. After introduction, in sec II we briefly explain the linear Regge trejectories and extract the quadratic mass relation in (J,M2)(J,M^{2}) plane to calculate the ground state and excited state masses of Ωc\Omega_{c} baryon. Further we extend this work and again derive some mass equations to evaluate the mass spectra for Ωcc\Omega_{cc} and Ωccc\Omega_{ccc} baryons. In addition, we estimate the masses of these baryons in (n,M2)(n,M^{2}) plane by calculating Regge slopes and intercepts of particular regge lines. The discussions of our results appear in sec.III.

II Theoretical Framework

Regge theory is one of the simplest and effective phenomenological approach to study the hadron spectroscopy. Various theories were developed to understand the regge trejectory. Among them, one of the straightforward explaination for linear regge trejectories were proposed by Nambu [33, 34]. He assumed that the uniform interaction of quark and antiquark pair form a strong flux tube and at the end of the tube the light quarks rotating with the speed of light at radius RR. The mass originating in this flux tube is estimated as [35],

M=20Rσ1ν2(r)𝑑r=πσR,M=2\int_{0}^{R}\dfrac{\sigma}{\sqrt{1-\nu^{2}(r)}}dr=\pi\sigma R, (1)

where σ\sigma represent the string tension, i.e the mass density per unit length. Likewise, the angular momentum of this flux tube is evaluated as,

J=20Rσrν(r)1ν2(r)𝑑r=πσR22+c,J=2\int_{0}^{R}\dfrac{\sigma r\nu(r)}{\sqrt{1-\nu^{2}(r)}}dr=\dfrac{\pi\sigma R^{2}}{2}+c^{{}^{\prime}}, (2)

one can also write,

J=M22πσ+c′′,J=\dfrac{M^{2}}{2\pi\sigma}+c^{{}^{\prime\prime}}, (3)

where cc^{{}^{\prime}} and c′′c^{{}^{\prime\prime}} are the constants of integration. Hence we can say that, JJ and M2M^{2} are linearly related to each other. The plots of Regge trejectories of hadrons in the (J,M2)(J,M^{2}) plane are usually called Chew-frautschi plots [36]. Also hadrons lying on the same Regge line possess the same internal quantum numbers. From Eq. (3), the most general form of linear regge trejectories can be expressed as [31],

J=α(M)=a(0)+αM2,J=\alpha(M)=a(0)+\alpha^{{}^{\prime}}M^{2}, (4)

where a(0)a(0) and α\alpha^{{}^{\prime}} represents the intercept and slope of the trejectory respectively. These parameters for different quark constituents of a baryon multiplet can be related by two relations [31, 37, 38, 39, 40],

aiiq(0)+ajjq(0)=2aijq(0),a_{iiq}(0)+a_{jjq}(0)=2a_{ijq}(0), (5)
1αiiq+1αjjq=2αijq,\dfrac{1}{{\alpha^{{}^{\prime}}}_{iiq}}+\dfrac{1}{{\alpha^{{}^{\prime}}}_{jjq}}=\dfrac{2}{{\alpha^{{}^{\prime}}}_{ijq}}, (6)

where i,j,qi,j,q represent quark flavors, mi<mjm_{i}<m_{j} and qq denotes an arbitrary light or heavy quark. Using Eqs. (4) and (5) we obtain,

αiiqMiiq2+αjjqMjjq2=2αijqMijq2.\alpha^{{}^{\prime}}_{iiq}M^{2}_{iiq}+\alpha^{{}^{\prime}}_{jjq}M^{2}_{jjq}=2\alpha^{{}^{\prime}}_{ijq}M^{2}_{ijq}. (7)

Combining the relations (6) and (7) and after solving the quadratic equation, we obtain a pair of solutions as,

αjjqαiiq=12Mjjq2×[(4Mijq2Miiq2Mjjq2)±(4Mijq2Miiq2Mjjq2)24Miiq2Mjjq2].\dfrac{\alpha^{{}^{\prime}}_{jjq}}{\alpha^{{}^{\prime}}_{iiq}}=\dfrac{1}{2M^{2}_{jjq}}\times[(4M^{2}_{ijq}-M^{2}_{iiq}-M^{2}_{jjq})\pm\sqrt{{{(4M^{2}_{ijq}-M^{2}_{iiq}-M^{2}_{jjq}})^{2}}-4M^{2}_{iiq}M^{2}_{jjq}}]. (8)

This is the important relation we obtained between slope ratios and baryon masses. Eq. (8) can also be expressed in terms of baryon masses by introducing kk, where kk can be any quark flavor,

αjjqαiiq=αkkqαiiq×αjjqαkkq,\dfrac{\alpha^{{}^{\prime}}_{jjq}}{\alpha^{{}^{\prime}}_{iiq}}=\dfrac{\alpha^{{}^{\prime}}_{kkq}}{\alpha^{{}^{\prime}}_{iiq}}\times\dfrac{\alpha^{{}^{\prime}}_{jjq}}{\alpha^{{}^{\prime}}_{kkq}}, (9)

we have,

[(4Mijq2Miiq2Mjjq2)+(4Mijq2Miiq2Mjjq2)24Miiq2Mjjq2]2Mjjq2=[(4Mikq2Miiq2Mkkq2)+(4Mikq2Miiq2Mkkq2)24Miiq2Mkkq2]/2Mkkq2[(4Mjkq2Mjjq2Mkkq2)+(4Mjkq2Mjjq2Mkkq2)24Mjjq2Mkkq2]/2Mkkq2.\begin{split}\dfrac{[(4M^{2}_{ijq}-M^{2}_{iiq}-M^{2}_{jjq})+\sqrt{{{(4M^{2}_{ijq}-M^{2}_{iiq}-M^{2}_{jjq}})^{2}}-4M^{2}_{iiq}M^{2}_{jjq}}]}{2M^{2}_{jjq}}\\ =\dfrac{[(4M^{2}_{ikq}-M^{2}_{iiq}-M^{2}_{kkq})+\sqrt{{{(4M^{2}_{ikq}-M^{2}_{iiq}-M^{2}_{kkq}})^{2}}-4M^{2}_{iiq}M^{2}_{kkq}}]/2M^{2}_{kkq}}{[(4M^{2}_{jkq}-M^{2}_{jjq}-M^{2}_{kkq})+\sqrt{{{(4M^{2}_{jkq}-M^{2}_{jjq}-M^{2}_{kkq}})^{2}}-4M^{2}_{jjq}M^{2}_{kkq}}]/2M^{2}_{kkq}}.\end{split} (10)

This is the general relation we have derived in terms of baryon masses which can be used to predict the mass of any baryon state by knowing all other masses.

II.1 Masses of Ωc0\Omega_{c}^{0} baryon

In the present work we used Eq. (10) to evaluate the ground state masses of Ωc0\Omega_{c}^{0} baryon. Since Ωc0\Omega_{c}^{0} is composed of two strange quark and one charmed quark (ssc)(ssc). So keeping this configuration in mind we put i=ui=u, j=sj=s, q=cq=c, k=uk=u in Eq. (10) and we get,

[2MΞc+(MΩc02MΞc+)MΩc02MΣc++2]=(4MΞc+2MΣc++2MΩc02)24MΩc02MΞc+2,\left[2M_{\Xi_{c}^{+}}(M_{\Omega_{c}^{0}}-2M_{\Xi_{c}^{+}})-M^{2}_{\Omega_{c}^{0}}-M^{2}_{\varSigma_{c}^{++}}\right]=\sqrt{(4M^{2}_{\Xi_{c}^{+}}-M^{2}_{\varSigma_{c}^{++}}-M^{2}_{\Omega_{c}^{0}})^{2}-4M^{2}_{\Omega_{c}^{0}}M^{2}_{\Xi_{c}^{+}}}, (11)

substituting the masses of Ξc+\Xi_{c}^{+} (JP=1/2+,3/2+)(J^{P}=1/2^{+},3/2^{+}) and Σc++\varSigma_{c}^{++} (JP=1/2+,3/2+)(J^{P}=1/2^{+},3/2^{+}) baryon from PDG [17] into relation (11), we obtain the ground state masses of Ωc0\Omega_{c}^{0} baryon such as 2.702 GeV for JP=12+J^{P}=\frac{1}{2}^{+} and 2.772 GeV for JP=32+J^{P}=\frac{3}{2}^{+}. From Eq. (8) we can write ,

αsscαuuc=12MΩc02×[(4MΞc+2MΣc++2MΩc02)+(4MΞc+2MΣc++2MΩc02)24MΣc++2MΩc02].\begin{split}\dfrac{\alpha^{{}^{\prime}}_{ssc}}{\alpha^{{}^{\prime}}_{uuc}}=\dfrac{1}{2M^{2}_{\Omega_{c}^{0}}}\times[(4M^{2}_{\Xi_{c}^{+}}-M^{2}_{\varSigma_{c}^{++}}-M^{2}_{\Omega_{c}^{0}})\\ +\sqrt{{{(4M^{2}_{\Xi_{c}^{+}}-M^{2}_{\varSigma_{c}^{++}}-M^{2}_{\Omega_{c}^{0}}})^{2}}-4M^{2}_{\varSigma_{c}^{++}}M^{2}_{\Omega_{c}^{0}}}].\end{split} (12)

Putting the values of masses in above equation, we get αssc/αuuc\alpha^{{}^{\prime}}_{ssc}/\alpha^{{}^{\prime}}_{uuc}. We can determine the slope by using Eq. (4),

α=(J+1)JMJ+12MJ2,\alpha^{{}^{\prime}}=\dfrac{(J+1)-J}{M^{2}_{J+1}-M^{2}_{J}}, (13)

for Σc++\varSigma_{c}^{++}(uuc)(uuc) it will be,

αuuc=1MΣc++(32)2MΣc++(12+)2,\alpha^{{}^{\prime}}_{uuc}=\dfrac{1}{M^{2}_{\varSigma^{++}_{c}(\frac{3}{2}^{-})}-M^{2}_{\varSigma^{++}_{c}(\frac{1}{2}^{+})}}, (14)

we get αssc=\alpha^{{}^{\prime}}_{ssc}= 0.54835 GeV2GeV^{-2} for JP=12+J^{P}=\frac{1}{2}^{+}. Similarly we get αssc=\alpha^{{}^{\prime}}_{ssc}= 0.66524 GeV2GeV^{-2} for JP=32+J^{P}=\frac{3}{2}^{+}.

From Eq. (4) one can have,

MJ+1=MJ2+1α.M_{J+1}=\sqrt{M_{J}^{2}+\dfrac{1}{\alpha^{{}^{\prime}}}}. (15)

Using this equation we calculate the masses of excited states of Ωc0\Omega_{c}^{0} baryon, which are presented in Table 2 and Table 3 for natural and unnatural parity states, respectively. We compared our results with other theoritical predictions and experimental observations where available.

Table 2: Masses of excited states of Ωc0\Omega_{c}^{0} baryon (in GeV) in (J,M2)(J,M^{2}) plane with natural parities P=(1)J12P=(-1)^{J-\frac{1}{2}}.
States 12S121^{2}S_{\frac{1}{2}} 12P321^{2}P_{\frac{3}{2}} 12D521^{2}D_{\frac{5}{2}} 12F721^{2}F_{\frac{7}{2}} 12G921^{2}G_{\frac{9}{2}} 12H1121^{2}H_{\frac{11}{2}}
Present 2.702 3.049 3.360 3.645 3.871 4.156
LHCb [1] 3.050
Belle [2] 3.050
PDG [17] 2.695 3.050
Ref. [20] 2.696 2.968 3.251 3.519 3.783
Ref. [21] 2.695 3.024 3.299 3.565
Ref. [23] 2.698 3.054 3.297 3.514 3.705
Ref. [24] 2.718 2.977 3.196
Ref. [30] 2.731 3.033
Ref. [41] 2.698 3.026 3.218
Ref. [42] 2.718 3.056 3.273
Table 3: Masses of excited states of Ωc0\Omega_{c}^{0} baryon (in GeV) in (J,M2)(J,M^{2}) plane with unnatural parities P=(1)J+12P=(-1)^{J+\frac{1}{2}}.
States 14S321^{4}S_{\frac{3}{2}} 14P521^{4}P_{\frac{5}{2}} 14D721^{4}D_{\frac{7}{2}} 14F921^{4}F_{\frac{9}{2}} 14G1121^{4}G_{\frac{11}{2}} 14H1321^{4}H_{\frac{13}{2}}
Present 2.772 3.055 3.314 3.555 3.779 3.991
PDG[17] 2.765
Ref. [20] 2.766 2.962 3.241 3.503 3.756
Ref. [21] 2.765 3.010 3.276 3.532
Ref. [23] 2.776 3.051 3.283 3.485 3.665
Ref. [24] 2.776 3.014 3.206
Ref. [30] 2.779 3.057
Ref. [41] 2.765 3.022 3.237
Ref. [42] 2.766 3.014

II.2 Masses of Ωcc\Omega_{cc} and Ωccc\Omega_{ccc}

The values of αjjq/αiiq\alpha^{{}^{\prime}}_{jjq}/\alpha^{{}^{\prime}}_{iiq} from Eq. (8) should be a real number. So we can write Eq. (8) as,

|4Mijq2Miiq2Mjjq2|2MiiqMjjq,|4M^{2}_{ijq}-M^{2}_{iiq}-M^{2}_{jjq}|\geqslant 2M_{iiq}M_{jjq}, (16)

this inequality relation can be simplified to,

2Mijq(Miiq+Mjjq).2M_{ijq}\geqslant(M_{iiq}+M_{jjq}). (17)

Many theoretical studies shows that the slopes of Regge trejectories decreases with increasing quark masses [37, 38, 43, 44, 45, 46]. For mj>mim_{j}>m_{i}, we can write αjjq/αiiq<1\alpha^{{}^{\prime}}_{jjq}/\alpha^{{}^{\prime}}_{iiq}<1. Therefore Eq. (8) is,

αjjqαiiq=12Mjjq2×[(4Mijq2Miiq2Mjjq2)+(4Mijq2Miiq2Mjjq2)24Miiq2Mjjq2]<1,\begin{split}\dfrac{\alpha^{{}^{\prime}}_{jjq}}{\alpha^{{}^{\prime}}_{iiq}}=\dfrac{1}{2M^{2}_{jjq}}\times[(4M^{2}_{ijq}-M^{2}_{iiq}-M^{2}_{jjq})\\ +\sqrt{{{(4M^{2}_{ijq}-M^{2}_{iiq}-M^{2}_{jjq}})^{2}}-4M^{2}_{iiq}M^{2}_{jjq}}]<1,\end{split} (18)

the above relation gives another inequality equation as,

2Mijq2<Miiq2+Mjjq2,2M^{2}_{ijq}<M^{2}_{iiq}+M^{2}_{jjq}, (19)

so from Eqs. (17) and (19) we have,

Miiq+Mjjq2<Mijq<Miiq2+Mjjq22.\dfrac{M_{iiq}+M_{jjq}}{2}<M_{ijq}<\sqrt{\dfrac{M^{2}_{iiq}+M^{2}_{jjq}}{2}}. (20)

This relation can be used to calculate the upper and lower limit for baryon masses MijqM_{ijq}. Further to estimate the deviation of relation (20), we introduce a parameter called δ\delta which is used to replace the signs of inequalities to equal signs. For baryons it is denoted by δij,qb\delta^{b}_{ij,q} and given by,

δij,qb=Miiq2+Mjjq22Mijq2,\delta^{b}_{ij,q}=M^{2}_{iiq}+M^{2}_{jjq}-2M^{2}_{ijq}, (21)

here also i,ji,j and qq represents the arbitrary light or heavy quarks.

Now from Eqs. (5) and (6) we can write,

aiiq(0)aijq(0)=aijq(0)ajjq(0),a_{iiq}(0)-a_{ijq}(0)=a_{ijq}(0)-a_{jjq}(0), (22)
1αiiq1αijq=1αijq1αjjq,\frac{1}{\alpha_{iiq}^{{}^{\prime}}}-\frac{1}{\alpha_{ijq}^{{}^{\prime}}}=\frac{1}{\alpha_{ijq}^{{}^{\prime}}}-\frac{1}{\alpha_{jjq}^{{}^{\prime}}}, (23)

based on these equations we introduce two parameters,

λx=annn(0)annx(0),γx=1αnnx1αnnn;\lambda_{x}=a_{nnn}(0)-a_{nnx}(0),\gamma_{x}=\frac{1}{\alpha^{{}^{\prime}}_{nnx}}-\frac{1}{\alpha^{{}^{\prime}}_{nnn}}; (24)

where nn represents light nonstrange quark (uu or dd) and xx denotes i,ji,j or qq. From Eqs. (22-24)we have,

aijq(0)=annn(0)λiλjλq,1αijq=1αnnn+γi+γj+γq.\begin{split}a_{ijq}(0)=a_{nnn}(0)-\lambda_{i}-\lambda_{j}-\lambda_{q},\\ \frac{1}{\alpha_{ijq}^{{}^{\prime}}}=\frac{1}{\alpha_{nnn}^{{}^{\prime}}}+\gamma_{i}+\gamma_{j}+\gamma_{q}.\end{split} (25)

Since in baryon multiplets for nnnnnn and ijqijq states we can write from Eq. LABEL:(eq:4),

J=annn(0)+αnnnMnnn2,J=aijq(0)+αijqMijq2,\begin{split}J=a_{nnn}(0)+\alpha_{nnn}^{{}^{\prime}}M^{2}_{nnn},\\ J=a_{ijq}(0)+\alpha^{{}^{\prime}}_{ijq}M^{2}_{ijq},\end{split} (26)

solving Eqs. (25) and (26) we have,

Mijq2=(αnnnMnnn2+λi+λj+λq)(1αnnn+γi+γj+γq).M^{2}_{ijq}=(\alpha^{{}^{\prime}}_{nnn}M^{2}_{nnn}+\lambda_{i}+\lambda_{j}+\lambda_{q})\left(\frac{1}{\alpha^{{}^{\prime}}_{nnn}}+\gamma_{i}+\gamma_{j}+\gamma_{q}\right). (27)

Therefore from Eqs.(21) and (27), we have

δij,qb\displaystyle\delta^{b}_{ij,q} =\displaystyle= Miiq2+Mjjq22Mijq2\displaystyle M^{2}_{iiq}+M^{2}_{jjq}-2M^{2}_{ijq} (28)
=\displaystyle= (αnnnMnnn2+2λi+λq)(1αnnn+2γi+γq)+(αnnnMnnn2+2λj+λq)(1αnnn+2γj+γq)\displaystyle(\alpha^{{}^{\prime}}_{nnn}M^{2}_{nnn}+2\lambda_{i}+\lambda_{q})\left(\frac{1}{\alpha^{{}^{\prime}}_{nnn}}+2\gamma_{i}+\gamma_{q}\right)+(\alpha^{{}^{\prime}}_{nnn}M^{2}_{nnn}+2\lambda_{j}+\lambda_{q})\left(\frac{1}{\alpha^{{}^{\prime}}_{nnn}}+2\gamma_{j}+\gamma_{q}\right)
\displaystyle- 2(αnnnMnnn2+λi+λj+λq)(1αnnn+γi+γj+γq)\displaystyle 2(\alpha^{{}^{\prime}}_{nnn}M^{2}_{nnn}+\lambda_{i}+\lambda_{j}+\lambda_{q})\left(\frac{1}{\alpha^{{}^{\prime}}_{nnn}}+\gamma_{i}+\gamma_{j}+\gamma_{q}\right)
=\displaystyle= 2(λiλj)(γiγj).\displaystyle 2(\lambda_{i}-\lambda_{j})(\gamma_{i}-\gamma_{j}).

So, we can say that δij,qb\delta^{b}_{ij,q} is independent of quark flavor qq. Hence by keeping ii and jj fixed and changing the qq quark, using Eq. (21) we have some following relations for 32+\frac{3}{2}^{+} states :
(I) i=ui=u, j=sj=s, q=uq=u, cc

δus(3/2)+=MΔ2+MΞ22MΣ2=MΣc2+MΩc22MΞc2;\begin{split}\delta_{us}^{(3/2)^{+}}=M^{2}_{\Delta}+M^{2}_{\Xi^{*}}-2M^{2}_{\Sigma^{*}}\\ =M^{2}_{\Sigma_{c}^{*}}+M^{2}_{\Omega_{c}^{*}}-2M^{2}_{\Xi_{c}^{*}};\end{split} (29)

(II) i=ui=u, j=cj=c, q=uq=u ,ss

δuc(3/2)+=MΔ2+MΞcc22MΣc2=MΣ2+MΩcc22MΞc2;\begin{split}\delta_{uc}^{(3/2)^{+}}=M^{2}_{\Delta}+M^{2}_{\Xi^{*}_{cc}}-2M^{2}_{\Sigma^{*}_{c}}\\ =M^{2}_{\Sigma^{*}}+M^{2}_{\Omega_{cc}^{*}}-2M^{2}_{\Xi_{c}^{*}};\end{split} (30)

(III) i=si=s, j=cj=c, q=uq=u ,cc

δsc(3/2)+=MΞ2+MΞcc22MΞc2=MΩc2+MΩccc22MΩcc2;\begin{split}\delta_{sc}^{(3/2)^{+}}=M^{2}_{\Xi^{*}}+M^{2}_{\Xi^{*}_{cc}}-2M^{2}_{\Xi^{*}_{c}}\\ =M^{2}_{\Omega_{c}^{*}}+M^{2}_{\Omega_{ccc}^{*}}-2M^{2}_{\Omega_{cc}^{*}};\end{split} (31)

solving Eqs. (29) and (30) we have,

(MΩcc2MΞcc2)+(MΞ2MΣ2)=(MΩc2MΣc2),(M^{2}_{\Omega_{cc}^{*}}-M^{2}_{\Xi^{*}_{cc}})+(M^{2}_{\Xi^{*}}-M^{2}_{\Sigma^{*}})=(M^{2}_{\Omega_{c}^{*}}-M^{2}_{\Sigma_{c}^{*}}), (32)

similarly, its corresponding relation for 12+\frac{1}{2}^{+} baryonic states is,

(MΩcc2MΞcc2)+(MΞ2MΣ2)=(MΩc2MΣc2),(M^{2}_{\Omega_{cc}}-M^{2}_{\Xi_{cc}})+(M^{2}_{\Xi}-M^{2}_{\Sigma})=(M^{2}_{\Omega_{c}}-M^{2}_{\Sigma_{c}}), (33)

using Eqs. (11) and (33) we have the expression,

(4MΞc+2MΩcc+2+MΞcc++22MΣc++2MΞ02+MΣ+2)2MΣc++MΩcc+2MΞcc++2+MΞ02MΣ+2+MΣc++2=(4MΞc+2MΩcc+2+MΞcc++22MΣc++2MΞ02+MΣ+2)24MΣc++2(MΩcc+2MΞcc++2+MΞ02MΣ+2+MΣc++2)..\begin{split}\left(4M^{2}_{\Xi_{c}^{+}}-M^{2}_{\Omega_{cc}^{+}}+M^{2}_{\Xi_{cc}^{++}}-2M^{2}_{\Sigma_{c}^{++}}-M^{2}_{\Xi^{0}}+M^{2}_{\Sigma^{+}}\right)-2M_{\Sigma_{c}^{++}}\sqrt{M^{2}_{\Omega_{cc}^{+}}-M^{2}_{\Xi_{cc}^{++}}+M^{2}_{\Xi^{0}}-M^{2}_{\Sigma^{+}}+M^{2}_{\Sigma_{c}^{++}}}\\ =-\sqrt{\left(4M^{2}_{\Xi_{c}^{+}}-M^{2}_{\Omega_{cc}^{+}}+M^{2}_{\Xi_{cc}^{++}}-2M^{2}_{\Sigma_{c}^{++}}-M^{2}_{\Xi^{0}}+M^{2}_{\Sigma^{+}}\right)^{2}-4M^{2}_{\Sigma_{c}^{++}}\left(M^{2}_{\Omega_{cc}^{+}}-M^{2}_{\Xi_{cc}^{++}}+M^{2}_{\Xi^{0}}-M^{2}_{\Sigma^{+}}+M^{2}_{\Sigma_{c}^{++}}\right)}.\end{split}. (34)

Using the above expression we have calculated the ground state masses of Ωcc+\Omega_{cc}^{+} baryon. Inserting the masses MΞc+M_{\Xi_{c}^{+}}, MΣc++M_{\Sigma_{c}^{++}}, MΞccM_{\Xi_{cc}} and MΞM_{\Xi}, MΣM_{\Sigma} from PDG[17] and MΩc0M_{\Omega_{c}^{0}} (calculated above) in Eq. (34), we get MΩcc+M_{\Omega_{cc}^{+}}=3.752 GeV for JPJ^{P}=12+\frac{1}{2}^{+}. Similarly we get MΩcc+M_{\Omega_{cc}^{+}}=3.816 GeV for JPJ^{P}=32+\frac{3}{2}^{+}. Since the quark configuration of Ωcc++\Omega_{cc}^{++} is scc, hence using relation (8) we have,

αsccαuus=12MΩcc+2×[(4MΞc+2MΣ+2MΩcc+2)+(4MΞc+2MΣ+2MΩcc+2)24MΣ+2MΩcc+2]..\begin{split}\dfrac{\alpha^{{}^{\prime}}_{scc}}{\alpha^{{}^{\prime}}_{uus}}=\dfrac{1}{2M^{2}_{\Omega_{cc}^{+}}}\times[(4M^{2}_{\Xi_{c}^{+}}-M^{2}_{\varSigma^{+}}-M^{2}_{\Omega_{cc}^{+}})\\ +\sqrt{{{(4M^{2}_{\Xi_{c}^{+}}-M^{2}_{\varSigma^{+}}-M^{2}_{\Omega_{cc}^{+}}})^{2}}-4M^{2}_{\varSigma^{+}}M^{2}_{\Omega_{cc}^{+}}}].\end{split}. (35)

Further using Eqs. (35) and (15) we calculate the excited state masses of Ωcc+\Omega_{cc}^{+} baryon in the same way we have done for Ωc0\Omega_{c}^{0}. Our predicted masses are labeled with ”Present” for both natural and unnatural parity states presented in Table 4 and Table 5 respectively, where our predictions are reasonably close to other theoretical predictions.

Table 4: Masses of excited states of Ωcc\Omega_{cc} baryon (in GeV) in (J,M2)(J,M^{2}) with natural parities P=(1)J12P=(-1)^{J-\frac{1}{2}} .
States 12S121^{2}S_{\frac{1}{2}} 12P321^{2}P_{\frac{3}{2}} 12D521^{2}D_{\frac{5}{2}} 12F721^{2}F_{\frac{7}{2}} 12G921^{2}G_{\frac{9}{2}} 12H1121^{2}H_{\frac{11}{2}}
Present 3.752 3.975 4.186 4.387 4.579 4.763
Ref. [18] 3.650 3.972 4.141 4.296
Ref. [24] 3.815 4.052 4.202
Ref. [26] 3.719
Ref. [30] 3.832 4.086 4.264
Ref. [31] 3.650 4.174
Ref. [32] 3.650 3.910 4.153 4.383
Ref. [47] 3.778 4.102
Ref. [48] 3.710
Ref. [49] 3.637
Ref. [50] 3.732 3.986
Ref. [51] 3.804
Table 5: Masses of excited states of Ωcc\Omega_{cc} baryon (in GeV) in (J,M2)(J,M^{2}) with unnatural parities P=(1)J+12P=(-1)^{J+\frac{1}{2}}.
states 14S321^{4}S_{\frac{3}{2}} 14P521^{4}P_{\frac{5}{2}} 14D721^{4}D_{\frac{7}{2}} 14F921^{4}F_{\frac{9}{2}} 14G1121^{4}G_{\frac{11}{2}} 14H1321^{4}H_{\frac{13}{2}}
Present 3.816 4.094 4.354 4.599 4.832 5.055
Ref. [18] 3.810 3.958 4.122 4.274
Ref. [24] 3.876 4.152 4.230
Ref. [29] 3.822
Ref. [31] 3.808 4.313
Ref. [32] 3.809 4.058 4.294 4.516
Ref. [48] 3.760
Ref. [49] 3.762
Ref. [50] 3.765
Ref. [51] 3.850
Ref. [52] 3.730 4.134 4.204
Ref. [53] 3.800

Similarly for triply charmed omega baryon (Ωccc\Omega_{ccc}), using relations (31) and (34) we have,

(3MΞcc2MΩccc2+6MΞc24MΣc2MΩc2+MΞ2+2MΣ2)2MΣc++MΩccc23MΞcc2+MΩc2+MΞ2+2(MΞc2+MΣc2MΣ2)=(3MΞcc2MΩccc2+6MΞc24MΣc2MΩc2+MΞ2+2MΣ2)28MΣc++2[MΩccc23MΞcc2+MΩc2+MΞ2+2(MΞc2+MΣc2MΣ2)].\begin{split}\left(3M^{2}_{\Xi_{cc}}-M^{2}_{\Omega_{ccc}}+6M^{2}_{\Xi_{c}}-4M^{2}_{\Sigma_{c}}-M^{2}_{\Omega_{c}}+M^{2}_{\Xi}+2M^{2}_{\varSigma}\right)-2M_{\Sigma_{c}^{++}}\sqrt{M^{2}_{\Omega_{ccc}}-3M^{2}_{\Xi_{cc}}+M^{2}_{\Omega_{c}}+M^{2}_{\Xi}+2\left(M^{2}_{\Xi_{c}}+M^{2}_{\varSigma_{c}}-M^{2}_{\varSigma}\right)}\\ =-\sqrt{\left(3M^{2}_{\Xi_{cc}}-M^{2}_{\Omega_{ccc}}+6M^{2}_{\Xi_{c}}-4M^{2}_{\Sigma_{c}}-M^{2}_{\Omega_{c}}+M^{2}_{\Xi}+2M^{2}_{\varSigma}\right)^{2}-8M^{2}_{\Sigma_{c}^{++}}\left[M^{2}_{\Omega_{ccc}}-3M^{2}_{\Xi_{cc}}+M^{2}_{\Omega_{c}}+M^{2}_{\Xi}+2\left(M^{2}_{\Xi_{c}}+M^{2}_{\varSigma_{c}}-M^{2}_{\varSigma}\right)\right]}.\end{split} (36)

Since the ground state (JP(J^{P}=32+)\frac{3}{2}^{+}) mass of Ξcc++\Xi_{cc}^{++} is not confirmed by PDG yet, so we take MΞccM_{\Xi_{cc}}^{*}= 3.695 GeV [32] and inserting all other masses from latest PDG [17] into Eq. (36), we obtain MΩcccM_{\Omega_{ccc}^{*}}=4.841 GeV for JPJ^{P}=32+\frac{3}{2}^{+}. Excited state masses for Ωccc{\Omega_{ccc}} baryon are calculated in the similar manner as we have calculated for Ωc0\Omega_{c}^{0} and Ωcc+\Omega_{cc}^{+}, only by changing the quark constituents i.e. ii ,jj and qq. Our calculated masses of excited Ωccc\Omega_{ccc} are presented in Table 6. Our results are in accordance with other theoritical predictions.

Table 6: Masses of excited states of Ωccc\Omega_{ccc} baryon (in GeV) in (J,M2)(J,M^{2}) plane with unnatural parities P=(1)J+12P=(-1)^{J+\frac{1}{2}}.
states 14S321^{4}S_{\frac{3}{2}} 14P521^{4}P_{\frac{5}{2}} 14D721^{4}D_{\frac{7}{2}} 14F921^{4}F_{\frac{9}{2}} 14G1121^{4}G_{\frac{11}{2}} 14H1321^{4}H_{\frac{13}{2}}
Present 4.841 5.081 5.310 5.530 5.741 5.945
Ref. [24] 4.965 5.331
Ref. [26] 4.803
Ref. [31] 4.818 5.302
Ref. [32] 4.834 5.301
Ref. [50] 4.773
Ref. [51] 4.930
Ref. [54] 4.827
Ref. [55] 4.758 5.300
Ref. [56] 4.761 5.396
Ref. [57] 4.880

II.3 Masses of Ωc0\Omega_{c}^{0}, Ωcc+\Omega_{cc}^{+} and Ωccc++\Omega_{ccc}^{++} baryons in (n,M2)(n,M^{2}) Plane.

The general equation for linear Regge trejectories in (n,M2)(n,M^{2}) plane can be expressed as,

n=β0+βM2,n=\beta_{0}+\beta M^{2}, (37)

where nn = 1,2,3….is the radial principal quantum number, β\beta and β0\beta_{0} are the slope and intercept of the trejectories. The Regge slope (β\beta) and Regge intercept (β0\beta_{0}) are assumed to be same for all baryon multiplets lying on the single Regge line. So first of all these parameters (β\beta and β0\beta_{0}) are calculated, and with the help of them the excited states masses (N2S+1LJN^{2S+1}L_{J}, where NN, LL, SS denote the radial excited quantum number, the orbital quantum number and the intrinsic spin, respectively) of Ωc0\Omega_{c}^{0}, Ωcc+\Omega_{cc}^{+} and Ωccc++\Omega_{ccc}^{++} baryons are estimated lying on these Regge trejectories. For Ωc0\Omega_{c}^{0} baryon, using the slope equation β(S)=1/(MΩc(2S)2MΩc(1S)2)\beta_{(S)}=1/(M^{2}_{\Omega_{c}(2S)}-M^{2}_{\Omega_{c}(1S)}), where MΩc(1S)M_{\Omega_{c}(1S)}=2.702 GeV (calculated above) and taking MΩc(2S)M_{\Omega_{c}(2S)}=3.164 GeV from [21] for JPJ^{P} = 1/2+1/2^{+} state, we get β(S)\beta_{(S)} = 0.3689 GeV2GeV^{-2}. Using the following equations,

1=β0(S)+β(S)MΩc(1S)2,2=β0(S)+β(S)MΩc(2S)2,\begin{split}1=\beta_{0(S)}+\beta_{(S)}M^{2}_{\Omega_{c}(1S)},\\ 2=\beta_{0(S)}+\beta_{(S)}M^{2}_{\Omega_{c}(2S)},\end{split} (38)

we have β0(S)\beta_{0(S)} = -1.6939. In the same way we can write,

1=β0(P)+β(P)MΩc(1P)2,2=β0(P)+β(P)MΩc(2P)2,1=β0(D)+β(D)MΩc(1D)2,2=β0(D)+β(D)MΩc(2D)2.\begin{split}1=\beta_{0(P)}+\beta_{(P)}M^{2}_{\Omega_{c}(1P)},\\ 2=\beta_{0(P)}+\beta_{(P)}M^{2}_{\Omega_{c}(2P)},\\ 1=\beta_{0(D)}+\beta_{(D)}M^{2}_{\Omega_{c}(1D)},\\ 2=\beta_{0(D)}+\beta_{(D)}M^{2}_{\Omega_{c}(2D)}.\end{split} (39)

With the help β(S)\beta_{(S)} and β0(S)\beta_{0(S)}, we calculate the masses of excited Ωc0\Omega_{c}^{0} baryon for n=3,4,5… Tables 7 and 8 shows our calculated radial and orbital excited state masses of Ωc\Omega_{c} baryon in (n,M2)(n,M^{2}) plane for natural and unnatural parity states respectively. In the similar manner we estimate the mass spectra for Ωcc\Omega_{cc} (see Tables 9 and 10) and Ωccc\Omega_{ccc}(see Table 11) baryons also in (n,M2)(n,M^{2}) plane.

Table 7: Masses of excited states of Ωc0\Omega_{c}^{0} baryon (in GeV) in (n,M2)(n,M^{2}) plane with natural parity P=(1)J12P=(-1)^{J-\frac{1}{2}}. The masses from [21] are taken as input.
N2S+1LJN^{2S+1}L_{J} Present [23] [20] [24] [55] [30]
12S121^{2}S_{\frac{1}{2}} 2.702 2.698 2.696 2.718 2.699 2.731
22S122^{2}S_{\frac{1}{2}} 3.164 [21] 3.088 3.165 3.152 3.159 3.227
32S123^{2}S_{\frac{1}{2}} 3.566 3.489 3.540 3.292
42S124^{2}S_{\frac{1}{2}} 3.928 3.814 3.895
52S125^{2}S_{\frac{1}{2}} 4.259 4.102 4.238
62S126^{2}S_{\frac{1}{2}} 4.566 4.569
12P321^{2}P_{\frac{3}{2}} 3.049 3.054 2.968 2.986 3.033
22P322^{2}P_{\frac{3}{2}} 3.408 [21] 3.433 3.334 3.056
32P323^{2}P_{\frac{3}{2}} 3.732 3.752 3.687
42P324^{2}P_{\frac{3}{2}} 4.031 4.036 4.029
52P325^{2}P_{\frac{3}{2}} 4.309 4.362
12D521^{2}D_{\frac{5}{2}} 3.360 3.297 3.251
22D522^{2}D_{\frac{5}{2}} 3.680 [21] 3.626 3.604
32D523^{2}D_{\frac{5}{2}} 3.974 3.752 3.947
42D524^{2}D_{\frac{5}{2}} 4.248 4.282
52D525^{2}D_{\frac{5}{2}} 4.505
Table 8: Masses of excited states of Ωc0\Omega_{c}^{0} baryon (in GeV) in (n,M2)(n,M^{2}) plane with unnatural parity P=(1)J+12P=(-1)^{J+\frac{1}{2}}. The masses from [21] are taken as input.
N2S+1LJN^{2S+1}L_{J} Present [23] [20] [24] [55] [30]
14S321^{4}S_{\frac{3}{2}} 2.772 2.768 2.766 2.776 2.768 2.779
24S322^{4}S_{\frac{3}{2}} 3.197 [21] 3.123 3.208 3.190 3.202 3.257
34S323^{4}S_{\frac{3}{2}} 3.571 3.510 3.564 3.285
44S324^{4}S_{\frac{3}{2}} 3.910 3.830 3.911
54S325^{4}S_{\frac{3}{2}} 4.222 4.114 4.248
64S326^{4}S_{\frac{3}{2}} 4.513
14P521^{4}P_{\frac{5}{2}} 3.055 3.051 2.962 3.041 3.057
24P522^{4}P_{\frac{5}{2}} 3.393 [21] 3.427 3.328 3.477
34P523^{4}P_{\frac{5}{2}} 3.700 3.744 3.681 3.620
44P524^{4}P_{\frac{5}{2}} 3.983 4.028 4.023
54P525^{4}P_{\frac{5}{2}} 4.248
14D721^{4}D_{\frac{7}{2}} 3.314 3.283 3.241
24D722^{4}D_{\frac{7}{2}} 3.656 [21] 3.611 3.594
34D723^{4}D_{\frac{7}{2}} 3.968 3.938
44D724^{4}D_{\frac{7}{2}} 4.258 4.273
54D725^{4}D_{\frac{7}{2}} 4.529 4.594
Table 9: Masses of excited states of Ωcc+\Omega_{cc}^{+} baryon (in GeV) in (n,M2)(n,M^{2}) plane with natural parity P=(1)J12P=(-1)^{J-\frac{1}{2}}. The masses from [18] are taken as input.
N2S+1LJN^{2S+1}L_{J} Present [47] [30] [24] [32]
12S121^{2}S_{\frac{1}{2}} 3.752 3.778 3.832 3.815 3.650
22S122^{2}S_{\frac{1}{2}} 4.028 [18] 4.075 4.227 4.180
32S123^{2}S_{\frac{1}{2}} 4.310 4.321 4.295
42S124^{2}S_{\frac{1}{2}} 4.564
52S125^{2}S_{\frac{1}{2}} 4.804
62S126^{2}S_{\frac{1}{2}} 5.033
12P321^{2}P_{\frac{3}{2}} 3.975 4.102 4.086 4.052 3.910
22P322^{2}P_{\frac{3}{2}} 4.259 [18] 4.345 4.201 4.140
32P323^{2}P_{\frac{3}{2}} 4.525
42P324^{2}P_{\frac{3}{2}} 4.776
52P325^{2}P_{\frac{3}{2}} 5.015
12D521^{2}D_{\frac{5}{2}} 4.186 4.264 4.202 4.153
22D522^{2}D_{\frac{5}{2}} 4.407 [18]
32D523^{2}D_{\frac{5}{2}} 4.617
42D524^{2}D_{\frac{5}{2}} 4.818
52D525^{2}D_{\frac{5}{2}} 5.011
Table 10: Masses of excited states of Ωcc+\Omega_{cc}^{+} baryon (in GeV) in (n,M2)(n,M^{2}) plane with unnatural parity P=(1)J+12P=(-1)^{J+\frac{1}{2}}. The masses from [18] are taken as input.
N2S+1LJN^{2S+1}L_{J} Present [47] [30] [24] [58]
14S321^{4}S_{\frac{3}{2}} 3.816 3.872 3.883 3.876 3.824
24S322^{4}S_{\frac{3}{2}} 4.096 [18] 4.174 4.263 4.188 4.163
34S323^{4}S_{\frac{3}{2}} 4.358 4.265
44S324^{4}S_{\frac{3}{2}} 4.605
54S325^{4}S_{\frac{3}{2}} 4.839
64S326^{4}S_{\frac{3}{2}} 5.063
14P521^{4}P_{\frac{5}{2}} 4.094 4.220 4.152
24P522^{4}P_{\frac{5}{2}} 4.247 [18]
34P523^{4}P_{\frac{5}{2}} 4.394
44P524^{4}P_{\frac{5}{2}} 4.537
54P525^{4}P_{\frac{5}{2}} 4.676
14D721^{4}D_{\frac{7}{2}} 4.354
24D722^{4}D_{\frac{7}{2}} 4.391 [18]
34D723^{4}D_{\frac{7}{2}} 4.427
44D724^{4}D_{\frac{7}{2}} 4.464
54D725^{4}D_{\frac{7}{2}} 4.500
Table 11: Masses of excited states of Ωccc++\Omega_{ccc}^{++} baryon (in GeV) in (n,M2)(n,M^{2}) plane with unnatural parity P=(1)J+12P=(-1)^{J+\frac{1}{2}}. The masses from [19] are taken as input.
N2S+1LJN^{2S+1}L_{J} Present [24] [32] [31] [55]
14S321^{4}S_{\frac{3}{2}} 4.841 4.965 4.834 4.818 4.758
24S322^{4}S_{\frac{3}{2}} 5.300 [19] 5.313
34S323^{4}S_{\frac{3}{2}} 5.722
44S324^{4}S_{\frac{3}{2}} 6.115
54S325^{4}S_{\frac{3}{2}} 6.484
64S326^{4}S_{\frac{3}{2}} 6.834
14P521^{4}P_{\frac{5}{2}} 5.081
24P522^{4}P_{\frac{5}{2}} 5.553 [19]
34P523^{4}P_{\frac{5}{2}} 5.987
44P524^{4}P_{\frac{5}{2}} 6.393
54P525^{4}P_{\frac{5}{2}} 6.774
14D721^{4}D_{\frac{7}{2}} 5.310 5.331 5.301 5.302 5.300
24D722^{4}D_{\frac{7}{2}} 5.961 [19]
34D723^{4}D_{\frac{7}{2}} 6.547
44D724^{4}D_{\frac{7}{2}} 7.085
54D725^{4}D_{\frac{7}{2}} 7.585

III Result and discussion

In the framework of regge phenomenology , we have obtained the radial and orbital excited states of singly, doubly and triply charmed omega baryons. In the present work we have focused on studying the masses of Ωc0\Omega_{c}^{0} baryon by obtaining the mass relations derived from regge phenomenology. Ground state as well as excited state masses are obtained successfully in both (J,M2)(J,M^{2}) and (n,M2)(n,M^{2}) planes for the following baryons.

  • Ωc\Omega_{c} baryon :Our calculated masses in (J,M2)(J,M^{2}) plane for Ωc0\Omega_{c}^{0} baryon are shown in Table 2 and Table 3 for natural and unnatural parity states respectively. Firstly we compared our predicted ground state masses with experimently available data [1, 2, 17] and other theoretical predictions [23, 20, 21, 41, 24, 42, 30]. Our results are very close to [17] with a slight mass difference of 7-8 MeV and also they are in good agreement with Refs.[23, 20, 21, 41]. Further the excited state masses are compared with other theoretical outcomes. For 12P321^{2}P_{\frac{3}{2}} and 12P521^{2}P_{\frac{5}{2}} states our results are in accordance with Refs.[23, 21, 41, 42, 30] with mass difference of range 5-50 MeV and for 12D521^{2}D_{\frac{5}{2}}-12F721^{2}F_{\frac{7}{2}} and 14D721^{4}D_{\frac{7}{2}}-14F921^{4}F_{\frac{9}{2}} states our predictions are consistent with Refs. [23, 20] with mass difference of 30-65 MeV. Similarly in (n,M2)(n,M^{2}) plane, our calculated results are shown in Tables 7 and 8 for natural and unnatural parity states respectively. Our predicted masses are in agreement with Refs.[23, 20, 24]. The experimentally observed state Ωc(3050)0\Omega_{c}(3050)^{0} having mass 3.050 GeV is close to our prediction 3.049 GeV, so we assigned Ωc(3050)0\Omega_{c}(3050)^{0} as 1P1P state with JPJ^{P}=3/23/2^{-} for SS = 1/21/2. Other four states Ωc(3000)0\Omega_{c}(3000)^{0}, Ωc(3066)0\Omega_{c}{(3066)}^{0}, Ωc(3090)0\Omega_{c}{(3090)}^{0} and Ωc(3119)0\Omega_{c}{(3119)}^{0} are not identified in this work (it may belong to remaining 1P1P states such as 12P121^{2}P_{\frac{1}{2}}, 14P121^{4}P_{\frac{1}{2}} and 14P321^{4}P_{\frac{3}{2}} [4]). Since we get masses for 12S121^{2}S_{\frac{1}{2}}, 12P321^{2}P_{\frac{3}{2}}, 12D321^{2}D_{\frac{3}{2}},… and 14S321^{4}S_{\frac{3}{2}}, 14P521^{4}P_{\frac{5}{2}}, 14D721^{4}D_{\frac{7}{2}},… states for natural and unnatural parity respectively in (J,M2)(J,M^{2}) plane lying on Regge line.

  • Ωcc\Omega_{cc} baryon : Table 4 and Table 5 shows our estimated results for natural and unnatural parity states respectively in (J,M2)(J,M^{2}) plane. Our calculated ground state (12S12)(1^{2}S_{\frac{1}{2}}) mass is in good agreement with the predictions of Refs.[24, 47, 48, 50, 51, 26] with mass difference of 25-65 MeV, and for 12P321^{2}P_{\frac{3}{2}}-12F721^{2}F_{\frac{7}{2}} states our results are in accordance with Refs.[32, 31, 24, 50] with mass difference of 20-70 MeV (see Table 4). Similarly for 14S321^{4}S_{\frac{3}{2}} state our predicted mass is very close to the results of Refs.[32, 31, 29, 53] having slight mass difference of 7-16 MeV, and for 14P521^{4}P_{\frac{5}{2}}-14F921^{4}F_{\frac{9}{2}} states our results are in accordance with other theoritical outcomes (see Table 5). In the same manner we compared our calculated radial and orbital excited state masses evaluated in (n,M2)(n,M^{2}) plane for both natural and unnatural parity states and our results are consistent with other theoretical and phenomenological studies (see Tables 9 and 10).

  • Ωccc\Omega_{ccc} baryon : For triply charmed omega baryon, we calculate the ground state and excited state masses in both (J,M2)(J,M^{2}) and (n,M2)(n,M^{2}) planes shown in Table 6 and Table 11 respectively. The masses the ground state Ωccc++\Omega_{ccc}^{++} vary in the range 4.750-4.950 GeV in other theoretical references (Table 6). Our predicted mass for (14S32)(1^{4}S_{\frac{3}{2}}) state shows few MeV difference with Refs. [32, 31, 26, 54]. For excited state very few results are availabe from previous theoretical predictions [24, 31, 32, 55], and our calculate masses are in accordance with them.

We have successfully employed Regge phenomenological approach to calculate the masses of singly, doubly and triply charmed Ω\Omega baryons. This study will definitely help future experimental studies at LHCb, Belle II and the upcoming facility PANDA, to identify these baryonic states from resonances.

Acknowledgements.
One of the authors Juhi Oudichhya inspired by the work of Ke-Wei Wei, Bing Chen, Xin-Heng Guo, De-Min Li, Bing Ma, Yu-Xiao Li, Qian-Kai Yao, Hong Yu on Regge phenomenology and would like to thank them for their valuabe contributions to this field.

References

  • [1] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 118 (2017) 18, 182001.
  • [2] J. Yelton et al. (Belle Collaboration), Phys. Rev. D 97 (2018), 051102
  • [3] B. Chen nd X. Liu, Phys. Rev. D 96, 094015(2017)
  • [4] M. Karliner, J.L. Rosner, Phys. Rev. D 95, 114012(2017)
  • [5] M. Padmanath and N. Mathur, Phys. Rev. Lett. 119, 042001 (2017).
  • [6] W. Wang and R. L. Zhu,Phys. Rev. D 96, 014024(2017)
  • [7] Z. G. WangcitekeyEur. Phys.J. C 77, 325(2017) .
  • [8] S. S. Agaev, K. Azizi, and H. Sundu, Eur. Phys. Lett. 118,61001 (2017)
  • [9] H. X. Chen, Q. Mao, W. Chen, A. Hosaka, X. Liu, and S.L. Zhu, Phys. Rev. D 95, 094008(2017)
  • [10] H. Y. Cheng and C. W. Chiang, Phys. Rev. D 95,094018(2017)
  • [11] K. L. Wang, L. Y. Xiao, X. H. Zhong, and Q. Zhao, Phys. Rev. D 95, 116010(2017)
  • [12] Z. Zhao, D. D. Ye, and A. Zhang, Phys. Rev. D 95,114024(2017)
  • [13] G. Yang and J. Ping, Phys. Rev. D 97, 034023(2018)
  • [14] H. Huang, J. Ping, and F. Wang, Phys. Rev. D 97, 034027(2018)
  • [15] C. S. An and H. Chen, Phys. Rev. D 96, 034012(2017)
  • [16] A.V. Manohar, M.B. Wise, Heavy Quark Physics (Cambridge Uni-versity Press, Cambridge, 2000)
  • [17] P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020 (2020) 8, 083C01.
  • [18] Z. Shah, K. Thakkar and A. K. Rai,Eur. Phys. J. C. 76,530 (2016)
  • [19] Z. Shah and A.K. Rai, Eur. Phys. J. A, 53, 195 (2017)
  • [20] K.Gandhi, A.K. Rai,Eur. Phys. J Plus 135(2020)
  • [21] Z. Shah, K. Thakkar, A. K. Rai and P.C. Vinodkumar, Eur. Phys. J A52, 313 (2016).
  • [22] D. Jia, J.-H. Pan, and C.-Q. Pang, arXiv:2007.01545v1 [hep-ph] (2020)
  • [23] D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 84, 014025 (2011)
  • [24] W. Roberts annd M. Pervin, Int. J. Mod. Phys. A 23, 2817 (2008).
  • [25] T. M. Aliev, S. Bilmis and M. Savci, Mod. Phys. Lett. A 35, (2020)
  • [26] A. P. Martynenko, Phys. Lett. B 663, 317 (2008).
  • [27] F.Giannuzzi, Phys. Rev. D 79,094002 (2009)
  • [28] C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, G. Koutsou, Phys. Rev. D 90(7),074501 (2014).
  • [29] Z. S. Brown, W. Detmold, S. Meinel, and K. Orginos, Phys. Rev. D 90, 094507 (2014).
  • [30] T. Yoshida, E. Hiyama, A. Hosaka, M. Oka and K. Sadato, Phys. Rev. D 92, 114029 (2015).
  • [31] K.-W. Wei, Bing Chen and X.-H. Guo, Phys. Rev. D 78, , 056005 (2008)
  • [32] K.-W. Wei, Bing Chen and X.-H. Guo, Phys. Rev. D 92, 076008 (2015)
  • [33] Y. Nambu, Physical Review D 10, 4262 (1974)
  • [34] Y. Nambu, Physics Letters B 80, 372 (1979)
  • [35] H.X. Chen et al., Reports on Progress in Physics 80, 076201 (2017)
  • [36] G. F. Chew, S. C. Frautschi, Phys. Rev. Lett. 7 (1961)
  • [37] D.-M. Li, B. Ma, Y.-X. Li, Q.-K. Yao, and H. Yu, Eur. Phys. J. C 37, 323 (2004).
  • [38] L. Burakovsky, T. Goldman, and L. P. Horwitz, Phys. Rev.D 56, 7119 (1997); J. Phys. G 24, 771 (1998).
  • [39] L. Burakovsky and T. Goldman, Phys. Lett. B 434, 251 (1998).
  • [40] A. B. Kaidalov, Z. Phys. C 12, 63 (1982).
  • [41] D. Ebert, R.N. Faustov and V.O. Galkin, Phys. Lett. B 659, 612 (2008).
  • [42] Y. Yamaguchi et al. Phys. Rev. D 91, 034034 (2015).
  • [43] A. Zhang, Phys. Rev. D 72, 017902 (2005); Phys. Lett. B 647, 140 (2007).
  • [44] M. M. Brisudova, L. Burakovsky, and T. Goldman, Phys. Rev. D 61, 054013 (2000).
  • [45] J. L. Basdevant and S. Boukraa, Z. Phys. C 28, 413 (1985); 30, 103 (1986).
  • [46] A. B. Kaidalov, Z. Phys. C 12, 63 (1982).
  • [47] D. Ebert, R.N. Faustov, V.O. Galkin, A.P. Martynenko, Phys. Rev. D 66, 014008 (2002)
  • [48] Z. G. Wang, Eur. Phys. J. C 68, 459(2010)
  • [49] T.W. Chiu and T. H. Hsieh, Nucl. Phys. A755, 471 (2005).
  • [50] S. Migura, D. Merten, B. C. Metsch, and H. R. Petry, Eur. Phys. J. A 28, 41 (2006).
  • [51] L. Burakovsky, T. Goldman, and L. P. Horwitz, Phys. Rev. D 56, 7124 (1997).
  • [52] S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Phys. Rev. D 62, 054021 (2000); V. V. Kiselev, A. K. Likhoded, O. N. Pakhomova, and V. A. Saleev, Phys. Rev. D 66, 034030 (2002).
  • [53] A. Bernotas and V. Simonis, Heavy hadron spectroscopy and the bag model, Lith. J. Phys. 49, 19 (2009).
  • [54] R. L. Jaffe and J. E. Kiskis, Phys. Rev. D 13, 1355 (1976).
  • [55] A. Valcarce, H. Garcilazo, and J. Vijande, Eur. Phys. J. A37, 217 (2008); J. Vijande, A. Valcarce, and H. Garcilazo, Phys. Rev. D 90, 094004 (2014).
  • [56] M. Padmanath, R. G. Edwards, N. Mathur, and M. Peardon, Phys. Rev. D 90, 074504 (2014).
  • [57] Z. Ghalenovi, A. A. Rajabi, S. x. Qin, and D. H. Rischke, Mod. Phys. Lett. A 29, 1450106 (2014).
  • [58] F. LÃij, K.L. Wang, L.Y. Xiao, X.H. Zhong (2017), 1708.04468