This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

GW231123: a Binary Black Hole Merger with Total Mass 190-265 MM_{\odot}

A. G. Abac Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany I. Abouelfettouh LIGO Hanford Observatory, Richland, WA 99352, USA F. Acernese Dipartimento di Farmacia, Università di Salerno, I-84084 Fisciano, Salerno, Italy INFN, Sezione di Napoli, I-80126 Napoli, Italy K. Ackley University of Warwick, Coventry CV4 7AL, United Kingdom C. Adamcewicz OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia S. Adhicary The Pennsylvania State University, University Park, PA 16802, USA D. Adhikari Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany N. Adhikari University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA R. X. Adhikari LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA V. K. Adkins Louisiana State University, Baton Rouge, LA 70803, USA S. Afroz Tata Institute of Fundamental Research, Mumbai 400005, India A. Agapito Centre de Physique Théorique, Aix-Marseille Université, Campus de Luminy, 163 Av. de Luminy, 13009 Marseille, France D. Agarwal Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium M. Agathos Queen Mary University of London, London E1 4NS, United Kingdom N. Aggarwal University of California, Davis, Davis, CA 95616, USA S. Aggarwal University of Minnesota, Minneapolis, MN 55455, USA O. D. Aguiar Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil I.-L. Ahrend Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France L. Aiello Università di Roma Tor Vergata, I-00133 Roma, Italy INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy A. Ain Universiteit Antwerpen, 2000 Antwerpen, Belgium P. Ajith International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India T. Akutsu Gravitational Wave Science Project, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan Advanced Technology Center, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan S. Albanesi Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany INFN Sezione di Torino, I-10125 Torino, Italy W. Ali INFN, Sezione di Genova, I-16146 Genova, Italy Dipartimento di Fisica, Università degli Studi di Genova, I-16146 Genova, Italy S. Al-Kershi Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany C. Alléné Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France A. Allocca Università di Napoli “Federico II”, I-80126 Napoli, Italy INFN, Sezione di Napoli, I-80126 Napoli, Italy S. Al-Shammari Cardiff University, Cardiff CF24 3AA, United Kingdom P. A. Altin OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia S. Alvarez-Lopez LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA W. Amar Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France O. Amarasinghe Cardiff University, Cardiff CF24 3AA, United Kingdom A. Amato Maastricht University, 6200 MD Maastricht, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands F. Amicucci INFN, Sezione di Roma, I-00185 Roma, Italy Università di Roma “La Sapienza”, I-00185 Roma, Italy C. Amra Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, F-13013 Marseille, France A. Ananyeva LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA S. B. Anderson LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA W. G. Anderson LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA M. Andia Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France M. Ando University of Tokyo, Tokyo, 113-0033, Japan M. Andrés-Carcasona Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain T. Andrić Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany J. Anglin University of Florida, Gainesville, FL 32611, USA S. Ansoldi Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, I-33100 Udine, Italy INFN, Sezione di Trieste, I-34127 Trieste, Italy J. M. Antelis Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, 64849 Monterrey, Nuevo León, Mexico S. Antier Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France M. Aoumi Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan E. Z. Appavuravther INFN, Sezione di Perugia, I-06123 Perugia, Italy Università di Camerino, I-62032 Camerino, Italy S. Appert LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA S. K. Apple University of Washington, Seattle, WA 98195, USA K. Arai LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA C. Araujo Alvarez IGFAE, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain A. Araya University of Tokyo, Tokyo, 113-0033, Japan M. C. Araya LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA M. Arca Sedda Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy J. S. Areeda California State University Fullerton, Fullerton, CA 92831, USA N. Aritomi LIGO Hanford Observatory, Richland, WA 99352, USA F. Armato INFN, Sezione di Genova, I-16146 Genova, Italy Dipartimento di Fisica, Università degli Studi di Genova, I-16146 Genova, Italy S. Armstrong SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom N. Arnaud Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France M. Arogeti Georgia Institute of Technology, Atlanta, GA 30332, USA S. M. Aronson Louisiana State University, Baton Rouge, LA 70803, USA K. G. Arun Chennai Mathematical Institute, Chennai 603103, India G. Ashton Royal Holloway, University of London, London TW20 0EX, United Kingdom Y. Aso Gravitational Wave Science Project, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan Astronomical course, The Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan L. Asprea INFN Sezione di Torino, I-10125 Torino, Italy M. Assiduo Università degli Studi di Urbino “Carlo Bo”, I-61029 Urbino, Italy INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy S. Assis de Souza Melo European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy S. M. Aston LIGO Livingston Observatory, Livingston, LA 70754, USA P. Astone INFN, Sezione di Roma, I-00185 Roma, Italy F. Attadio Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy F. Aubin Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France K. AultONeal Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA G. Avallone Dipartimento di Fisica “E.R. Caianiello”, Università di Salerno, I-84084 Fisciano, Salerno, Italy E. A. Avila Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, 64849 Monterrey, Nuevo León, Mexico S. Babak Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France C. Badger King’s College London, University of London, London WC2R 2LS, United Kingdom S. Bae Korea Institute of Science and Technology Information, Daejeon 34141, Republic of Korea S. Bagnasco INFN Sezione di Torino, I-10125 Torino, Italy L. Baiotti International College, Osaka University, 1-1 Machikaneyama-cho, Toyonaka City, Osaka 560-0043, Japan R. Bajpai Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba City, Ibaraki 305-0801, Japan T. Baka Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, 3584 CC Utrecht, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands A. M. Baker OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia K. A. Baker OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia T. Baker University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom G. Baldi Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy N. Baldicchi Università di Perugia, I-06123 Perugia, Italy INFN, Sezione di Perugia, I-06123 Perugia, Italy M. Ball University of Oregon, Eugene, OR 97403, USA G. Ballardin European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy S. W. Ballmer Syracuse University, Syracuse, NY 13244, USA S. Banagiri OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia B. Banerjee Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy D. Bankar Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India T. M. Baptiste Louisiana State University, Baton Rouge, LA 70803, USA P. Baral University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA M. Baratti INFN, Sezione di Pisa, I-56127 Pisa, Italy Università di Pisa, I-56127 Pisa, Italy J. C. Barayoga LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA B. C. Barish LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA D. Barker LIGO Hanford Observatory, Richland, WA 99352, USA N. Barman Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India P. Barneo Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), c. Martí i Franquès, 1, 08028 Barcelona, Spain Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028 Barcelona, Spain Institut d’Estudis Espacials de Catalunya, c. Gran Capità, 2-4, 08034 Barcelona, Spain F. Barone Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università di Salerno, I-84081 Baronissi, Salerno, Italy INFN, Sezione di Napoli, I-80126 Napoli, Italy B. Barr IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom L. Barsotti LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA M. Barsuglia Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France D. Barta HUN-REN Wigner Research Centre for Physics, H-1121 Budapest, Hungary A. M. Bartoletti Concordia University Wisconsin, Mequon, WI 53097, USA M. A. Barton IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom I. Bartos University of Florida, Gainesville, FL 32611, USA A. Basalaev Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany R. Bassiri Stanford University, Stanford, CA 94305, USA A. Basti Università di Pisa, I-56127 Pisa, Italy INFN, Sezione di Pisa, I-56127 Pisa, Italy M. Bawaj Università di Perugia, I-06123 Perugia, Italy INFN, Sezione di Perugia, I-06123 Perugia, Italy P. Baxi University of Michigan, Ann Arbor, MI 48109, USA J. C. Bayley IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom A. C. Baylor University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA P. A. Baynard II Georgia Institute of Technology, Atlanta, GA 30332, USA M. Bazzan Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy INFN, Sezione di Padova, I-35131 Padova, Italy V. M. Bedakihale Institute for Plasma Research, Bhat, Gandhinagar 382428, India F. Beirnaert Universiteit Gent, B-9000 Gent, Belgium M. Bejger Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland D. Belardinelli INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy A. S. Bell IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom D. S. Bellie Northwestern University, Evanston, IL 60208, USA L. Bellizzi INFN, Sezione di Pisa, I-56127 Pisa, Italy Università di Pisa, I-56127 Pisa, Italy W. Benoit University of Minnesota, Minneapolis, MN 55455, USA I. Bentara Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France J. D. Bentley Universität Hamburg, D-22761 Hamburg, Germany M. Ben Yaala SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom S. Bera IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain Aix-Marseille Université, Université de Toulon, CNRS, CPT, Marseille, France F. Bergamin Cardiff University, Cardiff CF24 3AA, United Kingdom B. K. Berger Stanford University, Stanford, CA 94305, USA S. Bernuzzi Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany M. Beroiz LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA C. P. L. Berry IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom D. Bersanetti INFN, Sezione di Genova, I-16146 Genova, Italy T. Bertheas Laboratoire des 2 Infinis - Toulouse (L2IT-IN2P3), F-31062 Toulouse Cedex 9, France A. Bertolini Nikhef, 1098 XG Amsterdam, Netherlands Maastricht University, 6200 MD Maastricht, Netherlands J. Betzwieser LIGO Livingston Observatory, Livingston, LA 70754, USA D. Beveridge OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia G. Bevilacqua Università di Siena, Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente, I-53100 Siena, Italy N. Bevins Villanova University, Villanova, PA 19085, USA R. Bhandare RRCAT, Indore, Madhya Pradesh 452013, India R. Bhatt LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA D. Bhattacharjee Kenyon College, Gambier, OH 43022, USA Missouri University of Science and Technology, Rolla, MO 65409, USA S. Bhattacharyya Indian Institute of Technology Madras, Chennai 600036, India S. Bhaumik University of Florida, Gainesville, FL 32611, USA S. Bhagwat University of Birmingham, Birmingham B15 2TT, United Kingdom V. Biancalana Università di Siena, Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente, I-53100 Siena, Italy A. Bianchi Nikhef, 1098 XG Amsterdam, Netherlands Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands I. A. Bilenko Lomonosov Moscow State University, Moscow 119991, Russia G. Billingsley LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA A. Binetti Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium S. Bini LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy C. Binu Rochester Institute of Technology, Rochester, NY 14623, USA S. Biot Université libre de Bruxelles, 1050 Bruxelles, Belgium O. Birnholtz Bar-Ilan University, Ramat Gan, 5290002, Israel S. Biscoveanu Northwestern University, Evanston, IL 60208, USA A. Bisht Leibniz Universität Hannover, D-30167 Hannover, Germany M. Bitossi European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy INFN, Sezione di Pisa, I-56127 Pisa, Italy M.-A. Bizouard Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Artemis, F-06304 Nice, France S. Blaber University of British Columbia, Vancouver, BC V6T 1Z4, Canada J. K. Blackburn LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA L. A. Blagg University of Oregon, Eugene, OR 97403, USA C. D. Blair OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia LIGO Livingston Observatory, Livingston, LA 70754, USA D. G. Blair OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia N. Bode Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany N. Boettner Universität Hamburg, D-22761 Hamburg, Germany G. Boileau Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Artemis, F-06304 Nice, France M. Boldrini INFN, Sezione di Roma, I-00185 Roma, Italy G. N. Bolingbroke OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia A. Bolliand Centre national de la recherche scientifique, 75016 Paris, France Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, F-13013 Marseille, France L. D. Bonavena University of Florida, Gainesville, FL 32611, USA R. Bondarescu Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), c. Martí i Franquès, 1, 08028 Barcelona, Spain F. Bondu Univ Rennes, CNRS, Institut FOTON - UMR 6082, F-35000 Rennes, France E. Bonilla Stanford University, Stanford, CA 94305, USA M. S. Bonilla California State University Fullerton, Fullerton, CA 92831, USA A. Bonino University of Birmingham, Birmingham B15 2TT, United Kingdom R. Bonnand Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France Centre national de la recherche scientifique, 75016 Paris, France A. Borchers Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany S. Borhanian The Pennsylvania State University, University Park, PA 16802, USA V. Boschi INFN, Sezione di Pisa, I-56127 Pisa, Italy S. Bose Washington State University, Pullman, WA 99164, USA V. Bossilkov LIGO Livingston Observatory, Livingston, LA 70754, USA Y. Bothra Nikhef, 1098 XG Amsterdam, Netherlands Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands A. Boudon Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France L. Bourg Georgia Institute of Technology, Atlanta, GA 30332, USA G. Bouyer University of Texas, Austin, TX 78712, USA M. Boyle Cornell University, Ithaca, NY 14850, USA A. Bozzi European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy C. Bradaschia INFN, Sezione di Pisa, I-56127 Pisa, Italy P. R. Brady University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA A. Branch LIGO Livingston Observatory, Livingston, LA 70754, USA M. Branchesi Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy I. Braun Kenyon College, Gambier, OH 43022, USA T. Briant Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, F-75005 Paris, France A. Brillet Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Artemis, F-06304 Nice, France M. Brinkmann Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany P. Brockill University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA E. Brockmueller Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany A. F. Brooks LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA B. C. Brown University of Florida, Gainesville, FL 32611, USA D. D. Brown OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia M. L. Brozzetti Università di Perugia, I-06123 Perugia, Italy INFN, Sezione di Perugia, I-06123 Perugia, Italy S. Brunett LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA G. Bruno Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium R. Bruntz Christopher Newport University, Newport News, VA 23606, USA J. Bryant University of Birmingham, Birmingham B15 2TT, United Kingdom Y. Bu OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia F. Bucci INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy J. Buchanan Christopher Newport University, Newport News, VA 23606, USA O. Bulashenko Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), c. Martí i Franquès, 1, 08028 Barcelona, Spain Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028 Barcelona, Spain T. Bulik Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland H. J. Bulten Nikhef, 1098 XG Amsterdam, Netherlands A. Buonanno University of Maryland, College Park, MD 20742, USA Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany K. Burtnyk LIGO Hanford Observatory, Richland, WA 99352, USA R. Buscicchio Università degli Studi di Milano-Bicocca, I-20126 Milano, Italy INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy D. Buskulic Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France C. Buy Laboratoire des 2 Infinis - Toulouse (L2IT-IN2P3), F-31062 Toulouse Cedex 9, France R. L. Byer Stanford University, Stanford, CA 94305, USA G. S. Cabourn Davies University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom R. Cabrita Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium V. Cáceres-Barbosa The Pennsylvania State University, University Park, PA 16802, USA L. Cadonati Georgia Institute of Technology, Atlanta, GA 30332, USA G. Cagnoli Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France C. Cahillane Syracuse University, Syracuse, NY 13244, USA A. Calafat IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain J. Calderón Bustillo IGFAE, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain T. A. Callister University of Chicago, Chicago, IL 60637, USA E. Calloni Università di Napoli “Federico II”, I-80126 Napoli, Italy INFN, Sezione di Napoli, I-80126 Napoli, Italy S. R. Callos University of Oregon, Eugene, OR 97403, USA M. Canepa Dipartimento di Fisica, Università degli Studi di Genova, I-16146 Genova, Italy INFN, Sezione di Genova, I-16146 Genova, Italy G. Caneva Santoro Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain K. C. Cannon University of Tokyo, Tokyo, 113-0033, Japan H. Cao LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA L. A. Capistran University of Arizona, Tucson, AZ 85721, USA E. Capocasa Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France E. Capote LIGO Hanford Observatory, Richland, WA 99352, USA LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA G. Capurri Università di Pisa, I-56127 Pisa, Italy INFN, Sezione di Pisa, I-56127 Pisa, Italy G. Carapella Dipartimento di Fisica “E.R. Caianiello”, Università di Salerno, I-84084 Fisciano, Salerno, Italy INFN, Sezione di Napoli, Gruppo Collegato di Salerno, I-80126 Napoli, Italy F. Carbognani European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy M. Carlassara Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany J. B. Carlin OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia T. K. Carlson University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA M. F. Carney Kenyon College, Gambier, OH 43022, USA M. Carpinelli Università degli Studi di Milano-Bicocca, I-20126 Milano, Italy European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy G. Carrillo University of Oregon, Eugene, OR 97403, USA J. J. Carter Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany G. Carullo University of Birmingham, Birmingham B15 2TT, United Kingdom Niels Bohr Institute, Copenhagen University, 2100 København, Denmark A. Casallas-Lagos Universidad de Guadalajara, 44430 Guadalajara, Jalisco, Mexico J. Casanueva Diaz European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy C. Casentini Istituto di Astrofisica e Planetologia Spaziali di Roma, 00133 Roma, Italy INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy S. Y. Castro-Lucas Colorado State University, Fort Collins, CO 80523, USA S. Caudill University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA M. Cavaglià Missouri University of Science and Technology, Rolla, MO 65409, USA R. Cavalieri European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy A. Ceja California State University Fullerton, Fullerton, CA 92831, USA G. Cella INFN, Sezione di Pisa, I-56127 Pisa, Italy P. Cerdá-Durán Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain Observatori Astronòmic, Universitat de València, E-46980 Paterna, València, Spain E. Cesarini INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy N. Chabbra OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia W. Chaibi Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Artemis, F-06304 Nice, France A. Chakraborty Tata Institute of Fundamental Research, Mumbai 400005, India P. Chakraborty Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany S. Chakraborty RRCAT, Indore, Madhya Pradesh 452013, India S. Chalathadka Subrahmanya Universität Hamburg, D-22761 Hamburg, Germany J. C. L. Chan Niels Bohr Institute, University of Copenhagen, 2100 Kóbenhavn, Denmark M. Chan University of British Columbia, Vancouver, BC V6T 1Z4, Canada K. Chandra The Pennsylvania State University, University Park, PA 16802, USA K. Chang National Central University, Taoyuan City 320317, Taiwan S. Chao National Tsing Hua University, Hsinchu City 30013, Taiwan National Central University, Taoyuan City 320317, Taiwan P. Charlton OzGrav, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia E. Chassande-Mottin Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France C. Chatterjee Vanderbilt University, Nashville, TN 37235, USA Debarati Chatterjee Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India Deep Chatterjee LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA M. Chaturvedi RRCAT, Indore, Madhya Pradesh 452013, India S. Chaty Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France K. Chatziioannou LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA A. Chen University of the Chinese Academy of Sciences / International Centre for Theoretical Physics Asia-Pacific, Bejing 100049, China A. H.-Y. Chen Department of Electrophysics, National Yang Ming Chiao Tung University, 101 Univ. Street, Hsinchu, Taiwan D. Chen Kamioka Branch, National Astronomical Observatory of Japan, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan H. Chen National Tsing Hua University, Hsinchu City 30013, Taiwan H. Y. Chen University of Texas, Austin, TX 78712, USA S. Chen Vanderbilt University, Nashville, TN 37235, USA Yanbei Chen CaRT, California Institute of Technology, Pasadena, CA 91125, USA Yitian Chen Cornell University, Ithaca, NY 14850, USA H. P. Cheng Northeastern University, Boston, MA 02115, USA P. Chessa Università di Perugia, I-06123 Perugia, Italy INFN, Sezione di Perugia, I-06123 Perugia, Italy H. T. Cheung University of Michigan, Ann Arbor, MI 48109, USA S. Y. Cheung OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia F. Chiadini Dipartimento di Ingegneria Industriale (DIIN), Università di Salerno, I-84084 Fisciano, Salerno, Italy INFN, Sezione di Napoli, Gruppo Collegato di Salerno, I-80126 Napoli, Italy G. Chiarini Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany INFN, Sezione di Padova, I-35131 Padova, Italy A. Chiba Faculty of Science, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555, Japan A. Chincarini INFN, Sezione di Genova, I-16146 Genova, Italy M. L. Chiofalo Università di Pisa, I-56127 Pisa, Italy INFN, Sezione di Pisa, I-56127 Pisa, Italy A. Chiummo INFN, Sezione di Napoli, I-80126 Napoli, Italy European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy C. Chou Department of Electrophysics, National Yang Ming Chiao Tung University, 101 Univ. Street, Hsinchu, Taiwan S. Choudhary OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia N. Christensen Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Artemis, F-06304 Nice, France Carleton College, Northfield, MN 55057, USA S. S. Y. Chua OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia G. Ciani Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy P. Ciecielag Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland M. Cieślar Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland M. Cifaldi INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy B. Cirok University of Szeged, Dóm tér 9, Szeged 6720, Hungary F. Clara LIGO Hanford Observatory, Richland, WA 99352, USA J. A. Clark LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA Georgia Institute of Technology, Atlanta, GA 30332, USA T. A. Clarke OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia P. Clearwater OzGrav, Swinburne University of Technology, Hawthorn VIC 3122, Australia S. Clesse Université libre de Bruxelles, 1050 Bruxelles, Belgium F. Cleva Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Artemis, F-06304 Nice, France Centre national de la recherche scientifique, 75016 Paris, France E. Coccia Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain E. Codazzo INFN Cagliari, Physics Department, Università degli Studi di Cagliari, Cagliari 09042, Italy Università degli Studi di Cagliari, Via Università 40, 09124 Cagliari, Italy P.-F. Cohadon Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, F-75005 Paris, France S. Colace Dipartimento di Fisica, Università degli Studi di Genova, I-16146 Genova, Italy E. Colangeli University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom M. Colleoni IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain C. G. Collette Université Libre de Bruxelles, Brussels 1050, Belgium J. Collins LIGO Livingston Observatory, Livingston, LA 70754, USA S. Colloms IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom A. Colombo INAF, Osservatorio Astronomico di Brera sede di Merate, I-23807 Merate, Lecco, Italy INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy C. M. Compton LIGO Hanford Observatory, Richland, WA 99352, USA G. Connolly University of Oregon, Eugene, OR 97403, USA L. Conti INFN, Sezione di Padova, I-35131 Padova, Italy T. R. Corbitt Louisiana State University, Baton Rouge, LA 70803, USA I. Cordero-Carrión Departamento de Matemáticas, Universitat de València, E-46100 Burjassot, València, Spain S. Corezzi Università di Perugia, I-06123 Perugia, Italy INFN, Sezione di Perugia, I-06123 Perugia, Italy N. J. Cornish Montana State University, Bozeman, MT 59717, USA I. Coronado The University of Utah, Salt Lake City, UT 84112, USA A. Corsi Johns Hopkins University, Baltimore, MD 21218, USA R. Cottingham LIGO Livingston Observatory, Livingston, LA 70754, USA M. W. Coughlin University of Minnesota, Minneapolis, MN 55455, USA A. Couineaux INFN, Sezione di Roma, I-00185 Roma, Italy P. Couvares LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA Georgia Institute of Technology, Atlanta, GA 30332, USA D. M. Coward OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia R. Coyne University of Rhode Island, Kingston, RI 02881, USA A. Cozzumbo Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy J. D. E. Creighton University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA T. D. Creighton The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA P. Cremonese IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain S. Crook LIGO Livingston Observatory, Livingston, LA 70754, USA R. Crouch LIGO Hanford Observatory, Richland, WA 99352, USA J. Csizmazia LIGO Hanford Observatory, Richland, WA 99352, USA J. R. Cudell Université de Liège, B-4000 Liège, Belgium T. J. Cullen LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA A. Cumming IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom E. Cuoco DIFA- Alma Mater Studiorum Università di Bologna, Via Zamboni, 33 - 40126 Bologna, Italy Istituto Nazionale Di Fisica Nucleare - Sezione di Bologna, viale Carlo Berti Pichat 6/2 - 40127 Bologna, Italy M. Cusinato Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain L. V. Da Conceição University of Manitoba, Winnipeg, MB R3T 2N2, Canada T. Dal Canton Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France S. Dal Pra INFN-CNAF - Bologna, Viale Carlo Berti Pichat, 6/2, 40127 Bologna BO, Italy G. Dálya Laboratoire des 2 Infinis - Toulouse (L2IT-IN2P3), F-31062 Toulouse Cedex 9, France B. D’Angelo INFN, Sezione di Genova, I-16146 Genova, Italy S. Danilishin Maastricht University, 6200 MD Maastricht, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands S. D’Antonio INFN, Sezione di Roma, I-00185 Roma, Italy K. Danzmann Leibniz Universität Hannover, D-30167 Hannover, Germany Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany K. E. Darroch Christopher Newport University, Newport News, VA 23606, USA L. P. Dartez LIGO Livingston Observatory, Livingston, LA 70754, USA R. Das Indian Institute of Technology Madras, Chennai 600036, India A. Dasgupta Institute for Plasma Research, Bhat, Gandhinagar 382428, India V. Dattilo European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy A. Daumas Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France N. Davari Università degli Studi di Sassari, I-07100 Sassari, Italy INFN, Laboratori Nazionali del Sud, I-95125 Catania, Italy I. Dave RRCAT, Indore, Madhya Pradesh 452013, India A. Davenport Colorado State University, Fort Collins, CO 80523, USA M. Davier Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France T. F. Davies OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia D. Davis LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA L. Davis OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia M. C. Davis University of Minnesota, Minneapolis, MN 55455, USA P. Davis Université de Normandie, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, F-14000 Caen, France Laboratoire de Physique Corpusculaire Caen, 6 boulevard du maréchal Juin, F-14050 Caen, France E. J. Daw The University of Sheffield, Sheffield S10 2TN, United Kingdom M. Dax Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany J. De Bolle Universiteit Gent, B-9000 Gent, Belgium M. Deenadayalan Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India J. Degallaix Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France M. De Laurentis Università di Napoli “Federico II”, I-80126 Napoli, Italy INFN, Sezione di Napoli, I-80126 Napoli, Italy F. De Lillo Universiteit Antwerpen, 2000 Antwerpen, Belgium S. Della Torre INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy W. Del Pozzo Università di Pisa, I-56127 Pisa, Italy INFN, Sezione di Pisa, I-56127 Pisa, Italy A. Demagny Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France F. De Marco Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy G. Demasi Università di Firenze, Sesto Fiorentino I-50019, Italy INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy F. De Matteis Università di Roma Tor Vergata, I-00133 Roma, Italy INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy N. Demos LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA T. Dent IGFAE, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain A. Depasse Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium N. DePergola Villanova University, Villanova, PA 19085, USA R. De Pietri Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy R. De Rosa Università di Napoli “Federico II”, I-80126 Napoli, Italy INFN, Sezione di Napoli, I-80126 Napoli, Italy C. De Rossi European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy M. Desai LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA R. DeSalvo California State University, Los Angeles, Los Angeles, CA 90032, USA A. DeSimone Marquette University, Milwaukee, WI 53233, USA R. De Simone Dipartimento di Ingegneria Industriale (DIIN), Università di Salerno, I-84084 Fisciano, Salerno, Italy INFN, Sezione di Napoli, Gruppo Collegato di Salerno, I-80126 Napoli, Italy A. Dhani Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany R. Diab University of Florida, Gainesville, FL 32611, USA M. C. Díaz The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA M. Di Cesare Università di Napoli “Federico II”, I-80126 Napoli, Italy INFN, Sezione di Napoli, I-80126 Napoli, Italy G. Dideron Perimeter Institute, Waterloo, ON N2L 2Y5, Canada T. Dietrich Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany L. Di Fiore INFN, Sezione di Napoli, I-80126 Napoli, Italy C. Di Fronzo OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia M. Di Giovanni Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy T. Di Girolamo Università di Napoli “Federico II”, I-80126 Napoli, Italy INFN, Sezione di Napoli, I-80126 Napoli, Italy D. Diksha Nikhef, 1098 XG Amsterdam, Netherlands Maastricht University, 6200 MD Maastricht, Netherlands J. Ding Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France Corps des Mines, Mines Paris, Université PSL, 60 Bd Saint-Michel, 75272 Paris, France S. Di Pace Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy I. Di Palma Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy D. Di Piero Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy INFN, Sezione di Trieste, I-34127 Trieste, Italy F. Di Renzo Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France Divyajyoti Cardiff University, Cardiff CF24 3AA, United Kingdom A. Dmitriev University of Birmingham, Birmingham B15 2TT, United Kingdom J. P. Docherty IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom Z. Doctor Northwestern University, Evanston, IL 60208, USA N. Doerksen University of Manitoba, Winnipeg, MB R3T 2N2, Canada E. Dohmen LIGO Hanford Observatory, Richland, WA 99352, USA A. Doke University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA A. Domiciano De Souza Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Lagrange, F-06304 Nice, France L. D’Onofrio INFN, Sezione di Roma, I-00185 Roma, Italy F. Donovan LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA K. L. Dooley Cardiff University, Cardiff CF24 3AA, United Kingdom T. Dooney Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, 3584 CC Utrecht, Netherlands S. Doravari Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India O. Dorosh National Center for Nuclear Research, 05-400 Świerk-Otwock, Poland W. J. D. Doyle Christopher Newport University, Newport News, VA 23606, USA M. Drago Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy J. C. Driggers LIGO Hanford Observatory, Richland, WA 99352, USA L. Dunn OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia U. Dupletsa Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy P.-A. Duverne Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France D. D’Urso Università degli Studi di Sassari, I-07100 Sassari, Italy INFN Cagliari, Physics Department, Università degli Studi di Cagliari, Cagliari 09042, Italy P. Dutta Roy University of Florida, Gainesville, FL 32611, USA H. Duval Vrije Universiteit Brussel, 1050 Brussel, Belgium S. E. Dwyer LIGO Hanford Observatory, Richland, WA 99352, USA C. Eassa LIGO Hanford Observatory, Richland, WA 99352, USA M. Ebersold University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France T. Eckhardt Universität Hamburg, D-22761 Hamburg, Germany G. Eddolls Syracuse University, Syracuse, NY 13244, USA A. Effler LIGO Livingston Observatory, Livingston, LA 70754, USA J. Eichholz OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia H. Einsle Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Artemis, F-06304 Nice, France M. Eisenmann Gravitational Wave Science Project, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan M. Emma Royal Holloway, University of London, London TW20 0EX, United Kingdom K. Endo Faculty of Science, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555, Japan R. Enficiaud Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany L. Errico Università di Napoli “Federico II”, I-80126 Napoli, Italy INFN, Sezione di Napoli, I-80126 Napoli, Italy R. Espinosa The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA M. C. Espitia Universidad de Antioquia, Medellín, Colombia M. Esposito INFN, Sezione di Napoli, I-80126 Napoli, Italy Università di Napoli “Federico II”, I-80126 Napoli, Italy R. C. Essick Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8, Canada H. Estellés Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany T. Etzel LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA M. Evans LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA T. Evstafyeva Perimeter Institute, Waterloo, ON N2L 2Y5, Canada B. E. Ewing The Pennsylvania State University, University Park, PA 16802, USA J. M. Ezquiaga Niels Bohr Institute, University of Copenhagen, 2100 Kóbenhavn, Denmark F. Fabrizi Università degli Studi di Urbino “Carlo Bo”, I-61029 Urbino, Italy INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy V. Fafone Università di Roma Tor Vergata, I-00133 Roma, Italy INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy S. Fairhurst Cardiff University, Cardiff CF24 3AA, United Kingdom A. M. Farah University of Chicago, Chicago, IL 60637, USA B. Farr University of Oregon, Eugene, OR 97403, USA W. M. Farr Stony Brook University, Stony Brook, NY 11794, USA Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA G. Favaro Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy M. Favata Montclair State University, Montclair, NJ 07043, USA M. Fays Université de Liège, B-4000 Liège, Belgium M. Fazio SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom J. Feicht LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA M. M. Fejer Stanford University, Stanford, CA 94305, USA R. Felicetti Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy INFN, Sezione di Trieste, I-34127 Trieste, Italy E. Fenyvesi HUN-REN Wigner Research Centre for Physics, H-1121 Budapest, Hungary HUN-REN Institute for Nuclear Research, H-4026 Debrecen, Hungary J. Fernandes Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India T. Fernandes Centro de Física das Universidades do Minho e do Porto, Universidade do Minho, PT-4710-057 Braga, Portugal Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain D. Fernando Rochester Institute of Technology, Rochester, NY 14623, USA S. Ferraiuolo Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy T. A. Ferreira Louisiana State University, Baton Rouge, LA 70803, USA F. Fidecaro Università di Pisa, I-56127 Pisa, Italy INFN, Sezione di Pisa, I-56127 Pisa, Italy P. Figura Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland A. Fiori INFN, Sezione di Pisa, I-56127 Pisa, Italy Università di Pisa, I-56127 Pisa, Italy I. Fiori European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy R. P. Fisher Christopher Newport University, Newport News, VA 23606, USA R. Fittipaldi CNR-SPIN, I-84084 Fisciano, Salerno, Italy INFN, Sezione di Napoli, Gruppo Collegato di Salerno, I-80126 Napoli, Italy V. Fiumara Scuola di Ingegneria, Università della Basilicata, I-85100 Potenza, Italy INFN, Sezione di Napoli, Gruppo Collegato di Salerno, I-80126 Napoli, Italy R. Flaminio Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France S. M. Fleischer Western Washington University, Bellingham, WA 98225, USA L. S. Fleming SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom E. Floden University of Minnesota, Minneapolis, MN 55455, USA H. Fong University of British Columbia, Vancouver, BC V6T 1Z4, Canada J. A. Font Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain Observatori Astronòmic, Universitat de València, E-46980 Paterna, València, Spain F. Fontinele-Nunes University of Minnesota, Minneapolis, MN 55455, USA C. Foo Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany B. Fornal Barry University, Miami Shores, FL 33168, USA K. Franceschetti Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy N. Franchini CENTRA, Departamento de Física, Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal F. Frappez Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France S. Frasca Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy F. Frasconi INFN, Sezione di Pisa, I-56127 Pisa, Italy J. P. Freed Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA Z. Frei Eötvös University, Budapest 1117, Hungary A. Freise Nikhef, 1098 XG Amsterdam, Netherlands Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands O. Freitas Centro de Física das Universidades do Minho e do Porto, Universidade do Minho, PT-4710-057 Braga, Portugal Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain R. Frey University of Oregon, Eugene, OR 97403, USA W. Frischhertz LIGO Livingston Observatory, Livingston, LA 70754, USA P. Fritschel LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA V. V. Frolov LIGO Livingston Observatory, Livingston, LA 70754, USA G. G. Fronzé INFN Sezione di Torino, I-10125 Torino, Italy M. Fuentes-Garcia LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA S. Fujii Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582, Japan T. Fujimori Department of Physics, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan P. Fulda University of Florida, Gainesville, FL 32611, USA M. Fyffe LIGO Livingston Observatory, Livingston, LA 70754, USA B. Gadre Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, 3584 CC Utrecht, Netherlands J. R. Gair Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany S. Galaudage Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Lagrange, F-06304 Nice, France V. Galdi University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy R. Gamba The Pennsylvania State University, University Park, PA 16802, USA A. Gamboa Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany S. Gamoji California State University, Los Angeles, Los Angeles, CA 90032, USA D. Ganapathy University of California, Berkeley, CA 94720, USA A. Ganguly Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India B. Garaventa INFN, Sezione di Genova, I-16146 Genova, Italy J. García-Bellido Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain C. García-Quirós University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland J. W. Gardner OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia K. A. Gardner University of British Columbia, Vancouver, BC V6T 1Z4, Canada S. Garg University of Tokyo, Tokyo, 113-0033, Japan J. Gargiulo European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy X. Garrido Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France A. Garron IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain F. Garufi Università di Napoli “Federico II”, I-80126 Napoli, Italy INFN, Sezione di Napoli, I-80126 Napoli, Italy P. A. Garver Stanford University, Stanford, CA 94305, USA C. Gasbarra Università di Roma Tor Vergata, I-00133 Roma, Italy INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy B. Gateley LIGO Hanford Observatory, Richland, WA 99352, USA F. Gautier Laboratoire d’Acoustique de l’Université du Mans, UMR CNRS 6613, F-72085 Le Mans, France V. Gayathri University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA T. Gayer Syracuse University, Syracuse, NY 13244, USA G. Gemme INFN, Sezione di Genova, I-16146 Genova, Italy A. Gennai INFN, Sezione di Pisa, I-56127 Pisa, Italy V. Gennari Laboratoire des 2 Infinis - Toulouse (L2IT-IN2P3), F-31062 Toulouse Cedex 9, France J. George RRCAT, Indore, Madhya Pradesh 452013, India R. George University of Texas, Austin, TX 78712, USA O. Gerberding Universität Hamburg, D-22761 Hamburg, Germany L. Gergely University of Szeged, Dóm tér 9, Szeged 6720, Hungary Sayantan Ghosh Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India Shaon Ghosh Montclair State University, Montclair, NJ 07043, USA Shrobana Ghosh Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany Suprovo Ghosh University of Southampton, Southampton SO17 1BJ, United Kingdom Tathagata Ghosh Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India J. A. Giaime Louisiana State University, Baton Rouge, LA 70803, USA LIGO Livingston Observatory, Livingston, LA 70754, USA K. D. Giardina LIGO Livingston Observatory, Livingston, LA 70754, USA D. R. Gibson SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom C. Gier SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom S. Gkaitatzis Università di Pisa, I-56127 Pisa, Italy INFN, Sezione di Pisa, I-56127 Pisa, Italy J. Glanzer LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA F. Glotin Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France J. Godfrey University of Oregon, Eugene, OR 97403, USA R. V. Godley Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany P. Godwin LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA A. S. Goettel Cardiff University, Cardiff CF24 3AA, United Kingdom E. Goetz University of British Columbia, Vancouver, BC V6T 1Z4, Canada J. Golomb LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA S. Gomez Lopez Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy B. Goncharov Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy G. González Louisiana State University, Baton Rouge, LA 70803, USA P. Goodarzi University of California, Riverside, Riverside, CA 92521, USA S. Goode OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia M. Gosselin European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy R. Gouaty Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France D. W. Gould OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia K. Govorkova LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA A. Grado Università di Perugia, I-06123 Perugia, Italy INFN, Sezione di Perugia, I-06123 Perugia, Italy V. Graham IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom A. E. Granados University of Minnesota, Minneapolis, MN 55455, USA M. Granata Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France V. Granata Dipartimento di Ingegneria Industriale, Elettronica e Meccanica, Università degli Studi Roma Tre, I-00146 Roma, Italy INFN, Sezione di Napoli, Gruppo Collegato di Salerno, I-80126 Napoli, Italy S. Gras LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA P. Grassia LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA J. Graves Georgia Institute of Technology, Atlanta, GA 30332, USA C. Gray LIGO Hanford Observatory, Richland, WA 99352, USA R. Gray IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom G. Greco INFN, Sezione di Perugia, I-06123 Perugia, Italy A. C. Green Nikhef, 1098 XG Amsterdam, Netherlands Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands L. Green University of Nevada, Las Vegas, Las Vegas, NV 89154, USA S. M. Green University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom S. R. Green University of Nottingham NG7 2RD, UK C. Greenberg University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA A. M. Gretarsson Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA H. K. Griffin University of Minnesota, Minneapolis, MN 55455, USA D. Griffith LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA H. L. Griggs Georgia Institute of Technology, Atlanta, GA 30332, USA G. Grignani Università di Perugia, I-06123 Perugia, Italy INFN, Sezione di Perugia, I-06123 Perugia, Italy C. Grimaud Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France H. Grote Cardiff University, Cardiff CF24 3AA, United Kingdom S. Grunewald Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany D. Guerra Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain D. Guetta Ariel University, Ramat HaGolan St 65, Ari’el, Israel G. M. Guidi Università degli Studi di Urbino “Carlo Bo”, I-61029 Urbino, Italy INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy A. R. Guimaraes Louisiana State University, Baton Rouge, LA 70803, USA H. K. Gulati Institute for Plasma Research, Bhat, Gandhinagar 382428, India F. Gulminelli Université de Normandie, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, F-14000 Caen, France Laboratoire de Physique Corpusculaire Caen, 6 boulevard du maréchal Juin, F-14050 Caen, France H. Guo University of the Chinese Academy of Sciences / International Centre for Theoretical Physics Asia-Pacific, Bejing 100049, China W. Guo OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia Y. Guo Nikhef, 1098 XG Amsterdam, Netherlands Maastricht University, 6200 MD Maastricht, Netherlands Anuradha Gupta The University of Mississippi, University, MS 38677, USA I. Gupta The Pennsylvania State University, University Park, PA 16802, USA N. C. Gupta Institute for Plasma Research, Bhat, Gandhinagar 382428, India S. K. Gupta University of Florida, Gainesville, FL 32611, USA V. Gupta University of Minnesota, Minneapolis, MN 55455, USA N. Gupte Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany J. Gurs Universität Hamburg, D-22761 Hamburg, Germany N. Gutierrez Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France N. Guttman OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia F. Guzman University of Arizona, Tucson, AZ 85721, USA D. Haba Graduate School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan M. Haberland Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany S. Haino Institute of Physics, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan E. D. Hall LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA E. Z. Hamilton IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain G. Hammond IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom M. Haney Nikhef, 1098 XG Amsterdam, Netherlands J. Hanks LIGO Hanford Observatory, Richland, WA 99352, USA C. Hanna The Pennsylvania State University, University Park, PA 16802, USA M. D. Hannam Cardiff University, Cardiff CF24 3AA, United Kingdom A. G. Hanselman University of Chicago, Chicago, IL 60637, USA H. Hansen LIGO Hanford Observatory, Richland, WA 99352, USA J. Hanson LIGO Livingston Observatory, Livingston, LA 70754, USA S. Hanumasagar Georgia Institute of Technology, Atlanta, GA 30332, USA R. Harada University of Tokyo, Tokyo, 113-0033, Japan A. R. Hardison Marquette University, Milwaukee, WI 53233, USA S. Harikumar National Center for Nuclear Research, 05-400 Świerk-Otwock, Poland K. Haris Nikhef, 1098 XG Amsterdam, Netherlands Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, 3584 CC Utrecht, Netherlands I. Harley-Trochimczyk University of Arizona, Tucson, AZ 85721, USA T. Harmark Niels Bohr Institute, Copenhagen University, 2100 København, Denmark J. Harms Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy G. M. Harry American University, Washington, DC 20016, USA I. W. Harry University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom J. Hart Kenyon College, Gambier, OH 43022, USA B. Haskell Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland Dipartimento di Fisica, Università degli studi di Milano, Via Celoria 16, I-20133, Milano, Italy INFN, sezione di Milano, Via Celoria 16, I-20133, Milano, Italy C. J. Haster University of Nevada, Las Vegas, Las Vegas, NV 89154, USA K. Haughian IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom H. Hayakawa Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan K. Hayama Department of Applied Physics, Fukuoka University, 8-19-1 Nanakuma, Jonan, Fukuoka City, Fukuoka 814-0180, Japan M. C. Heintze LIGO Livingston Observatory, Livingston, LA 70754, USA J. Heinze University of Birmingham, Birmingham B15 2TT, United Kingdom J. Heinzel LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA H. Heitmann Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Artemis, F-06304 Nice, France F. Hellman University of California, Berkeley, CA 94720, USA A. F. Helmling-Cornell University of Oregon, Eugene, OR 97403, USA G. Hemming European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy O. Henderson-Sapir OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia M. Hendry IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom I. S. Heng IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom M. H. Hennig IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom C. Henshaw Georgia Institute of Technology, Atlanta, GA 30332, USA M. Heurs Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany A. L. Hewitt University of Cambridge, Cambridge CB2 1TN, United Kingdom University of Lancaster, Lancaster LA1 4YW, United Kingdom J. Heynen Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium J. Heyns LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA S. Higginbotham Cardiff University, Cardiff CF24 3AA, United Kingdom S. Hild Maastricht University, 6200 MD Maastricht, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands S. Hill IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom Y. Himemoto College of Industrial Technology, Nihon University, 1-2-1 Izumi, Narashino City, Chiba 275-8575, Japan N. Hirata Gravitational Wave Science Project, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan C. Hirose Faculty of Engineering, Niigata University, 8050 Ikarashi-2-no-cho, Nishi-ku, Niigata City, Niigata 950-2181, Japan D. Hofman Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France B. E. Hogan Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA N. A. Holland Nikhef, 1098 XG Amsterdam, Netherlands Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands I. J. Hollows The University of Sheffield, Sheffield S10 2TN, United Kingdom D. E. Holz University of Chicago, Chicago, IL 60637, USA L. Honet Université libre de Bruxelles, 1050 Bruxelles, Belgium D. J. Horton-Bailey University of California, Berkeley, CA 94720, USA J. Hough IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom S. Hourihane LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA N. T. Howard Vanderbilt University, Nashville, TN 37235, USA E. J. Howell OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia C. G. Hoy University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom C. A. Hrishikesh Università di Roma Tor Vergata, I-00133 Roma, Italy P. Hsi LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA H.-F. Hsieh National Tsing Hua University, Hsinchu City 30013, Taiwan H.-Y. Hsieh National Tsing Hua University, Hsinchu City 30013, Taiwan C. Hsiung Department of Physics, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan S.-H. Hsu Department of Electrophysics, National Yang Ming Chiao Tung University, 101 Univ. Street, Hsinchu, Taiwan W.-F. Hsu Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium Q. Hu IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom H. Y. Huang National Central University, Taoyuan City 320317, Taiwan Y. Huang The Pennsylvania State University, University Park, PA 16802, USA Y. T. Huang Syracuse University, Syracuse, NY 13244, USA A. D. Huddart Rutherford Appleton Laboratory, Didcot OX11 0DE, United Kingdom B. Hughey Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA V. Hui Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France S. Husa IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain R. Huxford The Pennsylvania State University, University Park, PA 16802, USA L. Iampieri Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy G. A. Iandolo Maastricht University, 6200 MD Maastricht, Netherlands M. Ianni INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy Università di Roma Tor Vergata, I-00133 Roma, Italy G. Iannone INFN, Sezione di Napoli, Gruppo Collegato di Salerno, I-80126 Napoli, Italy J. Iascau University of Oregon, Eugene, OR 97403, USA K. Ide Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara City, Kanagawa 252-5258, Japan R. Iden Graduate School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan A. Ierardi Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy S. Ikeda Kamioka Branch, National Astronomical Observatory of Japan, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan H. Imafuku University of Tokyo, Tokyo, 113-0033, Japan Y. Inoue National Central University, Taoyuan City 320317, Taiwan G. Iorio Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy P. Iosif Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy INFN, Sezione di Trieste, I-34127 Trieste, Italy M. H. Iqbal OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia J. Irwin IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom R. Ishikawa Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara City, Kanagawa 252-5258, Japan M. Isi Stony Brook University, Stony Brook, NY 11794, USA Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA T. Islam University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA K. S. Isleif Helmut Schmidt University, D-22043 Hamburg, Germany Y. Itoh Department of Physics, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka Metropolitan University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan M. Iwaya Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582, Japan B. R. Iyer International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India C. Jacquet Laboratoire des 2 Infinis - Toulouse (L2IT-IN2P3), F-31062 Toulouse Cedex 9, France P.-E. Jacquet Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, F-75005 Paris, France T. Jacquot Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France S. J. Jadhav Directorate of Construction, Services & Estate Management, Mumbai 400094, India S. P. Jadhav OzGrav, Swinburne University of Technology, Hawthorn VIC 3122, Australia M. Jain University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA T. Jain University of Cambridge, Cambridge CB2 1TN, United Kingdom A. L. James LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA K. Jani Vanderbilt University, Nashville, TN 37235, USA N. N. Janthalur Directorate of Construction, Services & Estate Management, Mumbai 400094, India S. Jaraba Observatoire Astronomique de Strasbourg, 11 Rue de l’Université, 67000 Strasbourg, France P. Jaranowski Faculty of Physics, University of Białystok, 15-245 Białystok, Poland R. Jaume IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain W. Javed Cardiff University, Cardiff CF24 3AA, United Kingdom A. Jennings LIGO Hanford Observatory, Richland, WA 99352, USA M. Jensen LIGO Hanford Observatory, Richland, WA 99352, USA W. Jia LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA J. Jiang Northeastern University, Boston, MA 02115, USA H.-B. Jin National Astronomical Observatories, Chinese Academic of Sciences, 20A Datun Road, Chaoyang District, Beijing, China School of Astronomy and Space Science, University of Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, China G. R. Johns Christopher Newport University, Newport News, VA 23606, USA N. A. Johnson University of Florida, Gainesville, FL 32611, USA M. C. Johnston University of Nevada, Las Vegas, Las Vegas, NV 89154, USA R. Johnston IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom N. Johny Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany D. H. Jones OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia D. I. Jones University of Southampton, Southampton SO17 1BJ, United Kingdom R. Jones IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom H. E. Jose University of Oregon, Eugene, OR 97403, USA P. Joshi The Pennsylvania State University, University Park, PA 16802, USA S. K. Joshi Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India G. Joubert Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France J. Ju Sungkyunkwan University, Seoul 03063, Republic of Korea L. Ju OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia K. Jung Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea J. Junker OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia V. Juste Université libre de Bruxelles, 1050 Bruxelles, Belgium H. B. Kabagoz LIGO Livingston Observatory, Livingston, LA 70754, USA LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA T. Kajita Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582, Japan I. Kaku Department of Physics, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan V. Kalogera Northwestern University, Evanston, IL 60208, USA M. Kalomenopoulos University of Nevada, Las Vegas, Las Vegas, NV 89154, USA M. Kamiizumi Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan N. Kanda Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka Metropolitan University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan Department of Physics, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan S. Kandhasamy Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India G. Kang Chung-Ang University, Seoul 06974, Republic of Korea N. C. Kannachel OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia J. B. Kanner LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA S. A. KantiMahanty University of Minnesota, Minneapolis, MN 55455, USA S. J. Kapadia Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India D. P. Kapasi California State University Fullerton, Fullerton, CA 92831, USA M. Karthikeyan University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA M. Kasprzack LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA H. Kato Faculty of Science, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555, Japan T. Kato Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582, Japan E. Katsavounidis LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA W. Katzman LIGO Livingston Observatory, Livingston, LA 70754, USA R. Kaushik RRCAT, Indore, Madhya Pradesh 452013, India K. Kawabe LIGO Hanford Observatory, Richland, WA 99352, USA R. Kawamoto Department of Physics, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan D. Keitel IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain L. J. Kemperman OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia J. Kennington The Pennsylvania State University, University Park, PA 16802, USA F. A. Kerkow University of Minnesota, Minneapolis, MN 55455, USA R. Kesharwani Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India J. S. Key University of Washington Bothell, Bothell, WA 98011, USA R. Khadela Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany S. Khadka Stanford University, Stanford, CA 94305, USA S. S. Khadkikar The Pennsylvania State University, University Park, PA 16802, USA F. Y. Khalili Lomonosov Moscow State University, Moscow 119991, Russia F. Khan Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany T. Khanam Johns Hopkins University, Baltimore, MD 21218, USA M. Khursheed RRCAT, Indore, Madhya Pradesh 452013, India N. M. Khusid Stony Brook University, Stony Brook, NY 11794, USA Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA W. Kiendrebeogo Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Artemis, F-06304 Nice, France Laboratoire de Physique et de Chimie de l’Environnement, Université Joseph KI-ZERBO, 9GH2+3V5, Ouagadougou, Burkina Faso N. Kijbunchoo OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia C. Kim Ewha Womans University, Seoul 03760, Republic of Korea J. C. Kim National Institute for Mathematical Sciences, Daejeon 34047, Republic of Korea K. Kim Korea Astronomy and Space Science Institute, Daejeon 34055, Republic of Korea M. H. Kim Sungkyunkwan University, Seoul 03063, Republic of Korea S. Kim Department of Astronomy and Space Science, Chungnam National University, 9 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea Y.-M. Kim Korea Astronomy and Space Science Institute, Daejeon 34055, Republic of Korea C. Kimball Northwestern University, Evanston, IL 60208, USA K. Kimes California State University Fullerton, Fullerton, CA 92831, USA M. Kinnear Cardiff University, Cardiff CF24 3AA, United Kingdom J. S. Kissel LIGO Hanford Observatory, Richland, WA 99352, USA S. Klimenko University of Florida, Gainesville, FL 32611, USA A. M. Knee University of British Columbia, Vancouver, BC V6T 1Z4, Canada E. J. Knox University of Oregon, Eugene, OR 97403, USA N. Knust Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany K. Kobayashi Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582, Japan S. M. Koehlenbeck Stanford University, Stanford, CA 94305, USA G. Koekoek Nikhef, 1098 XG Amsterdam, Netherlands Maastricht University, 6200 MD Maastricht, Netherlands K. Kohri Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba City, Ibaraki 305-0801, Japan Division of Science, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan K. Kokeyama Cardiff University, Cardiff CF24 3AA, United Kingdom Nagoya University, Nagoya, 464-8601, Japan S. Koley Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy Université de Liège, B-4000 Liège, Belgium P. Kolitsidou University of Birmingham, Birmingham B15 2TT, United Kingdom A. E. Koloniari Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece K. Komori University of Tokyo, Tokyo, 113-0033, Japan A. K. H. Kong National Tsing Hua University, Hsinchu City 30013, Taiwan A. Kontos Bard College, Annandale-On-Hudson, NY 12504, USA L. M. Koponen University of Birmingham, Birmingham B15 2TT, United Kingdom M. Korobko Universität Hamburg, D-22761 Hamburg, Germany X. Kou University of Minnesota, Minneapolis, MN 55455, USA A. Koushik Universiteit Antwerpen, 2000 Antwerpen, Belgium N. Kouvatsos King’s College London, University of London, London WC2R 2LS, United Kingdom M. Kovalam OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia T. Koyama Faculty of Science, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555, Japan D. B. Kozak LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA S. L. Kranzhoff Maastricht University, 6200 MD Maastricht, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands V. Kringel Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany N. V. Krishnendu University of Birmingham, Birmingham B15 2TT, United Kingdom S. Kroker Technical University of Braunschweig, D-38106 Braunschweig, Germany A. Królak Institute of Mathematics, Polish Academy of Sciences, 00656 Warsaw, Poland National Center for Nuclear Research, 05-400 Świerk-Otwock, Poland K. Kruska Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany J. Kubisz Astronomical Observatory, Jagiellonian University, 31-007 Cracow, Poland G. Kuehn Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany S. Kulkarni The University of Mississippi, University, MS 38677, USA A. Kulur Ramamohan OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia Achal Kumar University of Florida, Gainesville, FL 32611, USA Anil Kumar Directorate of Construction, Services & Estate Management, Mumbai 400094, India Praveen Kumar IGFAE, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain Prayush Kumar International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India Rahul Kumar LIGO Hanford Observatory, Richland, WA 99352, USA Rakesh Kumar Institute for Plasma Research, Bhat, Gandhinagar 382428, India J. Kume Department of Physics and Astronomy, University of Padova, Via Marzolo, 8-35151 Padova, Italy Sezione di Padova, Istituto Nazionale di Fisica Nucleare (INFN), Via Marzolo, 8-35131 Padova, Italy University of Tokyo, Tokyo, 113-0033, Japan K. Kuns LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA N. Kuntimaddi Cardiff University, Cardiff CF24 3AA, United Kingdom S. Kuroyanagi Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain Department of Physics, Nagoya University, ES building, Furocho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan S. Kuwahara University of Tokyo, Tokyo, 113-0033, Japan K. Kwak Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea K. Kwan OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia S. Kwon University of Tokyo, Tokyo, 113-0033, Japan G. Lacaille IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom D. Laghi University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland Laboratoire des 2 Infinis - Toulouse (L2IT-IN2P3), F-31062 Toulouse Cedex 9, France A. H. Laity University of Rhode Island, Kingston, RI 02881, USA E. Lalande Université de Montréal/Polytechnique, Montreal, Quebec H3T 1J4, Canada M. Lalleman Universiteit Antwerpen, 2000 Antwerpen, Belgium P. C. Lalremruati Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741252, India M. Landry LIGO Hanford Observatory, Richland, WA 99352, USA B. B. Lane LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA R. N. Lang LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA J. Lange University of Texas, Austin, TX 78712, USA R. Langgin University of Nevada, Las Vegas, Las Vegas, NV 89154, USA B. Lantz Stanford University, Stanford, CA 94305, USA I. La Rosa IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain J. Larsen Western Washington University, Bellingham, WA 98225, USA A. Lartaux-Vollard Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France P. D. Lasky OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia J. Lawrence The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA M. Laxen LIGO Livingston Observatory, Livingston, LA 70754, USA C. Lazarte Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain A. Lazzarini LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA C. Lazzaro Università degli Studi di Cagliari, Via Università 40, 09124 Cagliari, Italy INFN Cagliari, Physics Department, Università degli Studi di Cagliari, Cagliari 09042, Italy P. Leaci Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy L. Leali University of Minnesota, Minneapolis, MN 55455, USA Y. K. Lecoeuche University of British Columbia, Vancouver, BC V6T 1Z4, Canada H. M. Lee Seoul National University, Seoul 08826, Republic of Korea H. W. Lee Department of Computer Simulation, Inje University, 197 Inje-ro, Gimhae, Gyeongsangnam-do 50834, Republic of Korea J. Lee Syracuse University, Syracuse, NY 13244, USA K. Lee Sungkyunkwan University, Seoul 03063, Republic of Korea R.-K. Lee National Tsing Hua University, Hsinchu City 30013, Taiwan R. Lee LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Sungho Lee Korea Astronomy and Space Science Institute, Daejeon 34055, Republic of Korea Sunjae Lee Sungkyunkwan University, Seoul 03063, Republic of Korea Y. Lee National Central University, Taoyuan City 320317, Taiwan I. N. Legred LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA J. Lehmann Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany L. Lehner Perimeter Institute, Waterloo, ON N2L 2Y5, Canada M. Le Jean Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France Centre national de la recherche scientifique, 75016 Paris, France A. Lemaître NAVIER, École des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France M. Lenti INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy Università di Firenze, Sesto Fiorentino I-50019, Italy M. Leonardi Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Mitaka City, Tokyo 181-8588, Japan M. Lequime Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, F-13013 Marseille, France N. Leroy Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France M. Lesovsky LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA N. Letendre Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France M. Lethuillier Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France Y. Levin OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia K. Leyde University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom A. K. Y. Li LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA K. L. Li Department of Physics, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan X. Li CaRT, California Institute of Technology, Pasadena, CA 91125, USA Y. Li Northwestern University, Evanston, IL 60208, USA Z. Li IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom A. Lihos Christopher Newport University, Newport News, VA 23606, USA E. T. Lin National Tsing Hua University, Hsinchu City 30013, Taiwan F. Lin National Central University, Taoyuan City 320317, Taiwan L. C.-C. Lin Department of Physics, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan Y.-C. Lin National Tsing Hua University, Hsinchu City 30013, Taiwan C. Lindsay SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom S. D. Linker California State University, Los Angeles, Los Angeles, CA 90032, USA A. Liu The Chinese University of Hong Kong, Shatin, NT, Hong Kong G. C. Liu Department of Physics, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan Jian Liu OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia F. Llamas Villarreal The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA J. Llobera-Querol IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain R. K. L. Lo Niels Bohr Institute, University of Copenhagen, 2100 Kóbenhavn, Denmark J.-P. Locquet Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium S. C. G. Loggins St. Thomas University, Miami Gardens, FL 33054, USA M. R. Loizou University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA L. T. London King’s College London, University of London, London WC2R 2LS, United Kingdom A. Longo Università degli Studi di Urbino “Carlo Bo”, I-61029 Urbino, Italy INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy D. Lopez Université de Liège, B-4000 Liège, Belgium M. Lopez Portilla Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, 3584 CC Utrecht, Netherlands M. Lorenzini Università di Roma Tor Vergata, I-00133 Roma, Italy INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy A. Lorenzo-Medina IGFAE, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain V. Loriette Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France M. Lormand LIGO Livingston Observatory, Livingston, LA 70754, USA G. Losurdo Scuola Normale Superiore, I-56126 Pisa, Italy INFN, Sezione di Pisa, I-56127 Pisa, Italy E. Lotti University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA T. P. Lott IV Georgia Institute of Technology, Atlanta, GA 30332, USA J. D. Lough Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany H. A. Loughlin LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA C. O. Lousto Rochester Institute of Technology, Rochester, NY 14623, USA N. Low OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia N. Lu OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia L. Lucchesi INFN, Sezione di Pisa, I-56127 Pisa, Italy H. Lück Leibniz Universität Hannover, D-30167 Hannover, Germany Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany D. Lumaca INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy A. P. Lundgren Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain Institut de Física d’Altes Energies, E-08193 Barcelona, Spain A. W. Lussier Université de Montréal/Polytechnique, Montreal, Quebec H3T 1J4, Canada R. Macas University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom M. MacInnis LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA D. M. Macleod Cardiff University, Cardiff CF24 3AA, United Kingdom I. A. O. MacMillan LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA A. Macquet Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France K. Maeda Faculty of Science, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555, Japan S. Maenaut Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium S. S. Magare Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India R. M. Magee LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA E. Maggio Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany R. Maggiore Nikhef, 1098 XG Amsterdam, Netherlands Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands M. Magnozzi INFN, Sezione di Genova, I-16146 Genova, Italy Dipartimento di Fisica, Università degli Studi di Genova, I-16146 Genova, Italy M. Mahesh Universität Hamburg, D-22761 Hamburg, Germany M. Maini University of Rhode Island, Kingston, RI 02881, USA S. Majhi Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India E. Majorana Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy C. N. Makarem LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA D. Malakar Missouri University of Science and Technology, Rolla, MO 65409, USA J. A. Malaquias-Reis Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil U. Mali Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8, Canada S. Maliakal LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA A. Malik RRCAT, Indore, Madhya Pradesh 452013, India L. Mallick University of Manitoba, Winnipeg, MB R3T 2N2, Canada Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8, Canada A.-K. Malz Royal Holloway, University of London, London TW20 0EX, United Kingdom N. Man Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Artemis, F-06304 Nice, France M. Mancarella Aix-Marseille Université, Université de Toulon, CNRS, CPT, Marseille, France V. Mandic University of Minnesota, Minneapolis, MN 55455, USA V. Mangano Università degli Studi di Sassari, I-07100 Sassari, Italy INFN Cagliari, Physics Department, Università degli Studi di Cagliari, Cagliari 09042, Italy B. Mannix University of Oregon, Eugene, OR 97403, USA G. L. Mansell Syracuse University, Syracuse, NY 13244, USA M. Manske University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA M. Mantovani European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy M. Mapelli Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy INFN, Sezione di Padova, I-35131 Padova, Italy Institut fuer Theoretische Astrophysik, Zentrum fuer Astronomie Heidelberg, Universitaet Heidelberg, Albert Ueberle Str. 2, 69120 Heidelberg, Germany C. Marinelli Università di Siena, Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente, I-53100 Siena, Italy F. Marion Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France A. S. Markosyan Stanford University, Stanford, CA 94305, USA A. Markowitz LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA E. Maros LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA S. Marsat Laboratoire des 2 Infinis - Toulouse (L2IT-IN2P3), F-31062 Toulouse Cedex 9, France F. Martelli Università degli Studi di Urbino “Carlo Bo”, I-61029 Urbino, Italy INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy I. W. Martin IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom R. M. Martin Montclair State University, Montclair, NJ 07043, USA B. B. Martinez University of Arizona, Tucson, AZ 85721, USA D. A. Martinez California State University Fullerton, Fullerton, CA 92831, USA M. Martinez Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain Institucio Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain V. Martinez Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France A. Martini Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy J. C. Martins Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil D. V. Martynov University of Birmingham, Birmingham B15 2TT, United Kingdom E. J. Marx LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA L. Massaro Maastricht University, 6200 MD Maastricht, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands A. Masserot Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France M. Masso-Reid IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom S. Mastrogiovanni INFN, Sezione di Roma, I-00185 Roma, Italy T. Matcovich INFN, Sezione di Perugia, I-06123 Perugia, Italy M. Matiushechkina Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany L. Maurin Laboratoire d’Acoustique de l’Université du Mans, UMR CNRS 6613, F-72085 Le Mans, France N. Mavalvala LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA N. Maxwell LIGO Hanford Observatory, Richland, WA 99352, USA G. McCarrol LIGO Livingston Observatory, Livingston, LA 70754, USA R. McCarthy LIGO Hanford Observatory, Richland, WA 99352, USA D. E. McClelland OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia S. McCormick LIGO Livingston Observatory, Livingston, LA 70754, USA L. McCuller LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA S. McEachin Christopher Newport University, Newport News, VA 23606, USA C. McElhenny Christopher Newport University, Newport News, VA 23606, USA G. I. McGhee IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom J. McGinn IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom K. B. M. McGowan Vanderbilt University, Nashville, TN 37235, USA J. McIver University of British Columbia, Vancouver, BC V6T 1Z4, Canada A. McLeod OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia I. McMahon University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland T. McRae OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia R. McTeague IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom D. Meacher University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA B. N. Meagher Syracuse University, Syracuse, NY 13244, USA R. Mechum Rochester Institute of Technology, Rochester, NY 14623, USA Q. Meijer Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, 3584 CC Utrecht, Netherlands A. Melatos OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia C. S. Menoni Colorado State University, Fort Collins, CO 80523, USA F. Mera LIGO Hanford Observatory, Richland, WA 99352, USA R. A. Mercer University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA L. Mereni Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France K. Merfeld Johns Hopkins University, Baltimore, MD 21218, USA E. L. Merilh LIGO Livingston Observatory, Livingston, LA 70754, USA J. R. Mérou IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain J. D. Merritt University of Oregon, Eugene, OR 97403, USA M. Merzougui Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Artemis, F-06304 Nice, France C. Messick University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA B. Mestichelli Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy M. Meyer-Conde Research Center for Space Science, Advanced Research Laboratories, Tokyo City University, 3-3-1 Ushikubo-Nishi, Tsuzuki-Ku, Yokohama, Kanagawa 224-8551, Japan F. Meylahn Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany A. Mhaske Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India A. Miani Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy H. Miao Tsinghua University, Beijing 100084, China C. Michel Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France Y. Michimura University of Tokyo, Tokyo, 113-0033, Japan H. Middleton University of Birmingham, Birmingham B15 2TT, United Kingdom D. P. Mihaylov Kenyon College, Gambier, OH 43022, USA S. J. Miller LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA M. Millhouse Georgia Institute of Technology, Atlanta, GA 30332, USA E. Milotti Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy INFN, Sezione di Trieste, I-34127 Trieste, Italy V. Milotti Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy Y. Minenkov INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy E. M. Minihan Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA Ll. M. Mir Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain L. Mirasola INFN Cagliari, Physics Department, Università degli Studi di Cagliari, Cagliari 09042, Italy Università degli Studi di Cagliari, Via Università 40, 09124 Cagliari, Italy M. Miravet-Tenés Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain C.-A. Miritescu Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain A. Mishra International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India C. Mishra Indian Institute of Technology Madras, Chennai 600036, India T. Mishra University of Florida, Gainesville, FL 32611, USA A. L. Mitchell Nikhef, 1098 XG Amsterdam, Netherlands Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands J. G. Mitchell Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA S. Mitra Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India V. P. Mitrofanov Lomonosov Moscow State University, Moscow 119991, Russia K. Mitsuhashi Gravitational Wave Science Project, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan R. Mittleman LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA O. Miyakawa Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan S. Miyoki Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan A. Miyoko Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA G. Mo LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA L. Mobilia Università degli Studi di Urbino “Carlo Bo”, I-61029 Urbino, Italy INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy S. R. P. Mohapatra LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA S. R. Mohite The Pennsylvania State University, University Park, PA 16802, USA M. Molina-Ruiz University of California, Berkeley, CA 94720, USA M. Mondin California State University, Los Angeles, Los Angeles, CA 90032, USA J. K. Monsalve Universidad de Antioquia, Medellín, Colombia M. Montani Università degli Studi di Urbino “Carlo Bo”, I-61029 Urbino, Italy INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy C. J. Moore University of Cambridge, Cambridge CB2 1TN, United Kingdom D. Moraru LIGO Hanford Observatory, Richland, WA 99352, USA A. More Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India S. More Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India C. Moreno Universidad de Guadalajara, 44430 Guadalajara, Jalisco, Mexico E. A. Moreno LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA G. Moreno LIGO Hanford Observatory, Richland, WA 99352, USA A. Moreso Serra Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), c. Martí i Franquès, 1, 08028 Barcelona, Spain S. Morisaki University of Tokyo, Tokyo, 113-0033, Japan Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582, Japan Y. Moriwaki Faculty of Science, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555, Japan G. Morras Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain A. Moscatello Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy M. Mould LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA B. Mours Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France C. M. Mow-Lowry Nikhef, 1098 XG Amsterdam, Netherlands Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands L. Muccillo Università di Firenze, Sesto Fiorentino I-50019, Italy INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy F. Muciaccia Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy D. Mukherjee University of Birmingham, Birmingham B15 2TT, United Kingdom Samanwaya Mukherjee International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India Soma Mukherjee The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA Subroto Mukherjee Institute for Plasma Research, Bhat, Gandhinagar 382428, India Suvodip Mukherjee Tata Institute of Fundamental Research, Mumbai 400005, India N. Mukund LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA A. Mullavey LIGO Livingston Observatory, Livingston, LA 70754, USA H. Mullock University of British Columbia, Vancouver, BC V6T 1Z4, Canada J. Mundi American University, Washington, DC 20016, USA C. L. Mungioli OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia M. Murakoshi Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara City, Kanagawa 252-5258, Japan P. G. Murray IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom D. Nabari Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy S. L. Nadji Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany A. Nagar INFN Sezione di Torino, I-10125 Torino, Italy Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France N. Nagarajan IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom K. Nakagaki Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan K. Nakamura Gravitational Wave Science Project, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan H. Nakano Faculty of Law, Ryukoku University, 67 Fukakusa Tsukamoto-cho, Fushimi-ku, Kyoto City, Kyoto 612-8577, Japan M. Nakano LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA D. Nanadoumgar-Lacroze Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain D. Nandi Louisiana State University, Baton Rouge, LA 70803, USA V. Napolano European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy P. Narayan The University of Mississippi, University, MS 38677, USA I. Nardecchia INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy T. Narikawa Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582, Japan H. Narola Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, 3584 CC Utrecht, Netherlands L. Naticchioni INFN, Sezione di Roma, I-00185 Roma, Italy R. K. Nayak Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741252, India L. Negri Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, 3584 CC Utrecht, Netherlands A. Nela IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom C. Nelle University of Oregon, Eugene, OR 97403, USA A. Nelson University of Arizona, Tucson, AZ 85721, USA T. J. N. Nelson LIGO Livingston Observatory, Livingston, LA 70754, USA M. Nery Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany A. Neunzert LIGO Hanford Observatory, Richland, WA 99352, USA S. Ng California State University Fullerton, Fullerton, CA 92831, USA L. Nguyen Quynh Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, Yen Nghia, Ha Dong, Hanoi, Vietnam S. A. Nichols Louisiana State University, Baton Rouge, LA 70803, USA A. B. Nielsen University of Stavanger, 4021 Stavanger, Norway Y. Nishino Gravitational Wave Science Project, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan University of Tokyo, Tokyo, 113-0033, Japan A. Nishizawa Physics Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima City, Hiroshima 739-8526, Japan S. Nissanke GRAPPA, Anton Pannekoek Institute for Astronomy and Institute for High-Energy Physics, University of Amsterdam, 1098 XH Amsterdam, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands W. Niu The Pennsylvania State University, University Park, PA 16802, USA F. Nocera European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy J. Noller University College London, London WC1E 6BT, United Kingdom M. Norman Cardiff University, Cardiff CF24 3AA, United Kingdom C. North Cardiff University, Cardiff CF24 3AA, United Kingdom J. Novak Centre national de la recherche scientifique, 75016 Paris, France Observatoire Astronomique de Strasbourg, 11 Rue de l’Université, 67000 Strasbourg, France Observatoire de Paris, 75014 Paris, France R. Nowicki Vanderbilt University, Nashville, TN 37235, USA J. F. Nuño Siles Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain L. K. Nuttall University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom K. Obayashi Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara City, Kanagawa 252-5258, Japan J. Oberling LIGO Hanford Observatory, Richland, WA 99352, USA J. O’Dell Rutherford Appleton Laboratory, Didcot OX11 0DE, United Kingdom E. Oelker LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA M. Oertel Observatoire Astronomique de Strasbourg, 11 Rue de l’Université, 67000 Strasbourg, France Centre national de la recherche scientifique, 75016 Paris, France Laboratoire Univers et Théories, Observatoire de Paris, 92190 Meudon, France Observatoire de Paris, 75014 Paris, France G. Oganesyan Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy T. O’Hanlon LIGO Livingston Observatory, Livingston, LA 70754, USA M. Ohashi Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan F. Ohme Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany R. Oliveri Centre national de la recherche scientifique, 75016 Paris, France Laboratoire Univers et Théories, Observatoire de Paris, 92190 Meudon, France Observatoire de Paris, 75014 Paris, France R. Omer University of Minnesota, Minneapolis, MN 55455, USA B. O’Neal Christopher Newport University, Newport News, VA 23606, USA M. Onishi Faculty of Science, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555, Japan K. Oohara Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2-no-cho, Nishi-ku, Niigata City, Niigata 950-2181, Japan B. O’Reilly LIGO Livingston Observatory, Livingston, LA 70754, USA M. Orselli INFN, Sezione di Perugia, I-06123 Perugia, Italy Università di Perugia, I-06123 Perugia, Italy R. O’Shaughnessy Rochester Institute of Technology, Rochester, NY 14623, USA S. O’Shea IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom S. Oshino Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan C. Osthelder LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA I. Ota Louisiana State University, Baton Rouge, LA 70803, USA D. J. Ottaway OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia A. Ouzriat Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France H. Overmier LIGO Livingston Observatory, Livingston, LA 70754, USA B. J. Owen University of Maryland, Baltimore County, Baltimore, MD 21250, USA R. Ozaki Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara City, Kanagawa 252-5258, Japan A. E. Pace The Pennsylvania State University, University Park, PA 16802, USA R. Pagano Louisiana State University, Baton Rouge, LA 70803, USA M. A. Page Gravitational Wave Science Project, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan A. Pai Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India L. Paiella Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy A. Pal CSIR-Central Glass and Ceramic Research Institute, Kolkata, West Bengal 700032, India S. Pal Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741252, India M. A. Palaia INFN, Sezione di Pisa, I-56127 Pisa, Italy Università di Pisa, I-56127 Pisa, Italy M. Pálfi Eötvös University, Budapest 1117, Hungary P. P. Palma Università di Roma “La Sapienza”, I-00185 Roma, Italy Università di Roma Tor Vergata, I-00133 Roma, Italy INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy C. Palomba INFN, Sezione di Roma, I-00185 Roma, Italy P. Palud Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France H. Pan National Tsing Hua University, Hsinchu City 30013, Taiwan J. Pan OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia K. C. Pan National Tsing Hua University, Hsinchu City 30013, Taiwan P. K. Panda Directorate of Construction, Services & Estate Management, Mumbai 400094, India Shiksha Pandey The Pennsylvania State University, University Park, PA 16802, USA Swadha Pandey LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA P. T. H. Pang Nikhef, 1098 XG Amsterdam, Netherlands Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, 3584 CC Utrecht, Netherlands F. Pannarale Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy K. A. Pannone California State University Fullerton, Fullerton, CA 92831, USA B. C. Pant RRCAT, Indore, Madhya Pradesh 452013, India F. H. Panther OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia M. Panzeri Università degli Studi di Urbino “Carlo Bo”, I-61029 Urbino, Italy INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy F. Paoletti INFN, Sezione di Pisa, I-56127 Pisa, Italy A. Paolone INFN, Sezione di Roma, I-00185 Roma, Italy Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, I-00185 Roma, Italy A. Papadopoulos IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom E. E. Papalexakis University of California, Riverside, Riverside, CA 92521, USA L. Papalini INFN, Sezione di Pisa, I-56127 Pisa, Italy Università di Pisa, I-56127 Pisa, Italy G. Papigkiotis Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece A. Paquis Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France A. Parisi Università di Perugia, I-06123 Perugia, Italy INFN, Sezione di Perugia, I-06123 Perugia, Italy B.-J. Park Korea Astronomy and Space Science Institute, Daejeon 34055, Republic of Korea J. Park Department of Astronomy, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea W. Parker LIGO Livingston Observatory, Livingston, LA 70754, USA G. Pascale Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany D. Pascucci Universiteit Gent, B-9000 Gent, Belgium A. Pasqualetti European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy R. Passaquieti Università di Pisa, I-56127 Pisa, Italy INFN, Sezione di Pisa, I-56127 Pisa, Italy L. Passenger OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia D. Passuello INFN, Sezione di Pisa, I-56127 Pisa, Italy O. Patane LIGO Hanford Observatory, Richland, WA 99352, USA A. V. Patel National Central University, Taoyuan City 320317, Taiwan D. Pathak Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India A. Patra Cardiff University, Cardiff CF24 3AA, United Kingdom B. Patricelli Università di Pisa, I-56127 Pisa, Italy INFN, Sezione di Pisa, I-56127 Pisa, Italy B. G. Patterson Cardiff University, Cardiff CF24 3AA, United Kingdom K. Paul Indian Institute of Technology Madras, Chennai 600036, India S. Paul University of Oregon, Eugene, OR 97403, USA E. Payne LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA T. Pearce Cardiff University, Cardiff CF24 3AA, United Kingdom M. Pedraza LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA A. Pele LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA F. E. Peña Arellano Department of Physics, University of Guadalajara, Av. Revolucion 1500, Colonia Olimpica C.P. 44430, Guadalajara, Jalisco, Mexico X. Peng University of Birmingham, Birmingham B15 2TT, United Kingdom Y. Peng Georgia Institute of Technology, Atlanta, GA 30332, USA S. Penn Hobart and William Smith Colleges, Geneva, NY 14456, USA M. D. Penuliar California State University Fullerton, Fullerton, CA 92831, USA A. Perego Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy Z. Pereira University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA C. Périgois INAF, Osservatorio Astronomico di Padova, I-35122 Padova, Italy INFN, Sezione di Padova, I-35131 Padova, Italy Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy G. Perna Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy A. Perreca Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy J. Perret Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France S. Perriès Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France J. W. Perry Nikhef, 1098 XG Amsterdam, Netherlands Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands D. Pesios Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece S. Peters Université de Liège, B-4000 Liège, Belgium S. Petracca University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy C. Petrillo Università di Perugia, I-06123 Perugia, Italy H. P. Pfeiffer Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany H. Pham LIGO Livingston Observatory, Livingston, LA 70754, USA K. A. Pham University of Minnesota, Minneapolis, MN 55455, USA K. S. Phukon University of Birmingham, Birmingham B15 2TT, United Kingdom H. Phurailatpam The Chinese University of Hong Kong, Shatin, NT, Hong Kong M. Piarulli Laboratoire des 2 Infinis - Toulouse (L2IT-IN2P3), F-31062 Toulouse Cedex 9, France L. Piccari Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy O. J. Piccinni OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia M. Pichot Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Artemis, F-06304 Nice, France M. Piendibene Università di Pisa, I-56127 Pisa, Italy INFN, Sezione di Pisa, I-56127 Pisa, Italy F. Piergiovanni Università degli Studi di Urbino “Carlo Bo”, I-61029 Urbino, Italy INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy L. Pierini INFN, Sezione di Roma, I-00185 Roma, Italy G. Pierra INFN, Sezione di Roma, I-00185 Roma, Italy V. Pierro Dipartimento di Ingegneria, Università del Sannio, I-82100 Benevento, Italy INFN, Sezione di Napoli, Gruppo Collegato di Salerno, I-80126 Napoli, Italy M. Pietrzak Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland M. Pillas Université de Liège, B-4000 Liège, Belgium F. Pilo INFN, Sezione di Pisa, I-56127 Pisa, Italy L. Pinard Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France I. M. Pinto Dipartimento di Ingegneria, Università del Sannio, I-82100 Benevento, Italy INFN, Sezione di Napoli, Gruppo Collegato di Salerno, I-80126 Napoli, Italy Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, I-00184 Roma, Italy Università di Napoli “Federico II”, I-80126 Napoli, Italy M. Pinto European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy B. J. Piotrzkowski University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA M. Pirello LIGO Hanford Observatory, Richland, WA 99352, USA M. D. Pitkin University of Cambridge, Cambridge CB2 1TN, United Kingdom IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom A. Placidi INFN, Sezione di Perugia, I-06123 Perugia, Italy E. Placidi Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy M. L. Planas IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain W. Plastino Dipartimento di Ingegneria Industriale, Elettronica e Meccanica, Università degli Studi Roma Tre, I-00146 Roma, Italy INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy C. Plunkett LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA R. Poggiani Università di Pisa, I-56127 Pisa, Italy INFN, Sezione di Pisa, I-56127 Pisa, Italy E. Polini LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA J. Pomper INFN, Sezione di Pisa, I-56127 Pisa, Italy Università di Pisa, I-56127 Pisa, Italy L. Pompili Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany J. Poon The Chinese University of Hong Kong, Shatin, NT, Hong Kong E. Porcelli Nikhef, 1098 XG Amsterdam, Netherlands E. K. Porter Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France C. Posnansky The Pennsylvania State University, University Park, PA 16802, USA R. Poulton European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy J. Powell OzGrav, Swinburne University of Technology, Hawthorn VIC 3122, Australia G. S. Prabhu Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India M. Pracchia Université de Liège, B-4000 Liège, Belgium B. K. Pradhan Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India T. Pradier Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France A. K. Prajapati Institute for Plasma Research, Bhat, Gandhinagar 382428, India K. Prasai Kennesaw State University, Kennesaw, GA 30144, USA R. Prasanna Directorate of Construction, Services & Estate Management, Mumbai 400094, India P. Prasia Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India G. Pratten University of Birmingham, Birmingham B15 2TT, United Kingdom G. Principe Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy INFN, Sezione di Trieste, I-34127 Trieste, Italy G. A. Prodi Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy P. Prosperi INFN, Sezione di Pisa, I-56127 Pisa, Italy P. Prosposito Università di Roma Tor Vergata, I-00133 Roma, Italy INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy A. C. Providence Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA A. Puecher Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany J. Pullin Louisiana State University, Baton Rouge, LA 70803, USA P. Puppo INFN, Sezione di Roma, I-00185 Roma, Italy M. Pürrer University of Rhode Island, Kingston, RI 02881, USA H. Qi Queen Mary University of London, London E1 4NS, United Kingdom J. Qin OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia G. Quéméner Laboratoire de Physique Corpusculaire Caen, 6 boulevard du maréchal Juin, F-14050 Caen, France Centre national de la recherche scientifique, 75016 Paris, France V. Quetschke The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA L. H. Quiceno Universidad de Antioquia, Medellín, Colombia P. J. Quinonez Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA N. Qutob Georgia Institute of Technology, Atlanta, GA 30332, USA F. J. Raab LIGO Hanford Observatory, Richland, WA 99352, USA R. Rading Helmut Schmidt University, D-22043 Hamburg, Germany I. Rainho Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain S. Raja RRCAT, Indore, Madhya Pradesh 452013, India C. Rajan RRCAT, Indore, Madhya Pradesh 452013, India B. Rajbhandari Rochester Institute of Technology, Rochester, NY 14623, USA K. E. Ramirez LIGO Livingston Observatory, Livingston, LA 70754, USA F. A. Ramis Vidal IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain M. Ramos Arevalo The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA A. Ramos-Buades IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain Nikhef, 1098 XG Amsterdam, Netherlands S. Ranjan Georgia Institute of Technology, Atlanta, GA 30332, USA K. Ransom LIGO Livingston Observatory, Livingston, LA 70754, USA P. Rapagnani Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy B. Ratto Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA A. Ravichandran University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA A. Ray Northwestern University, Evanston, IL 60208, USA V. Raymond Cardiff University, Cardiff CF24 3AA, United Kingdom M. Razzano Università di Pisa, I-56127 Pisa, Italy INFN, Sezione di Pisa, I-56127 Pisa, Italy J. Read California State University Fullerton, Fullerton, CA 92831, USA T. Regimbau Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France S. Reid SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom C. Reissel LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA D. H. Reitze LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA A. I. Renzini LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA A. Renzini Università degli Studi di Milano-Bicocca, I-20126 Milano, Italy B. Revenu Subatech, CNRS/IN2P3 - IMT Atlantique - Nantes Université, 4 rue Alfred Kastler BP 20722 44307 Nantes CÉDEX 03, France Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France A. Revilla Peña Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), c. Martí i Franquès, 1, 08028 Barcelona, Spain R. Reyes California State University, Los Angeles, Los Angeles, CA 90032, USA L. Ricca Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium F. Ricci Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy M. Ricci INFN, Sezione di Roma, I-00185 Roma, Italy Università di Roma “La Sapienza”, I-00185 Roma, Italy A. Ricciardone Università di Pisa, I-56127 Pisa, Italy INFN, Sezione di Pisa, I-56127 Pisa, Italy J. Rice Syracuse University, Syracuse, NY 13244, USA J. W. Richardson University of California, Riverside, Riverside, CA 92521, USA M. L. Richardson OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia A. Rijal Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA K. Riles University of Michigan, Ann Arbor, MI 48109, USA H. K. Riley Cardiff University, Cardiff CF24 3AA, United Kingdom S. Rinaldi Institut fuer Theoretische Astrophysik, Zentrum fuer Astronomie Heidelberg, Universitaet Heidelberg, Albert Ueberle Str. 2, 69120 Heidelberg, Germany J. Rittmeyer Universität Hamburg, D-22761 Hamburg, Germany C. Robertson Rutherford Appleton Laboratory, Didcot OX11 0DE, United Kingdom F. Robinet Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France M. Robinson LIGO Hanford Observatory, Richland, WA 99352, USA A. Rocchi INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy L. Rolland Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France J. G. Rollins LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA A. E. Romano Universidad de Antioquia, Medellín, Colombia R. Romano Dipartimento di Farmacia, Università di Salerno, I-84084 Fisciano, Salerno, Italy INFN, Sezione di Napoli, I-80126 Napoli, Italy A. Romero Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France I. M. Romero-Shaw University of Cambridge, Cambridge CB2 1TN, United Kingdom J. H. Romie LIGO Livingston Observatory, Livingston, LA 70754, USA S. Ronchini The Pennsylvania State University, University Park, PA 16802, USA T. J. Roocke OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia L. Rosa INFN, Sezione di Napoli, I-80126 Napoli, Italy Università di Napoli “Federico II”, I-80126 Napoli, Italy T. J. Rosauer University of California, Riverside, Riverside, CA 92521, USA C. A. Rose Georgia Institute of Technology, Atlanta, GA 30332, USA D. Rosińska Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland M. P. Ross University of Washington, Seattle, WA 98195, USA M. Rossello-Sastre IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain S. Rowan IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom S. K. Roy Stony Brook University, Stony Brook, NY 11794, USA Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA S. Roy Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium D. Rozza Università degli Studi di Milano-Bicocca, I-20126 Milano, Italy INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy P. Ruggi European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy N. Ruhama Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea E. Ruiz Morales Departamento de Física - ETSIDI, Universidad Politécnica de Madrid, 28012 Madrid, Spain Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain K. Ruiz-Rocha Vanderbilt University, Nashville, TN 37235, USA S. Sachdev Georgia Institute of Technology, Atlanta, GA 30332, USA T. Sadecki LIGO Hanford Observatory, Richland, WA 99352, USA P. Saffarieh Nikhef, 1098 XG Amsterdam, Netherlands Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands S. Safi-Harb University of Manitoba, Winnipeg, MB R3T 2N2, Canada M. R. Sah Tata Institute of Fundamental Research, Mumbai 400005, India S. Saha National Tsing Hua University, Hsinchu City 30013, Taiwan T. Sainrat Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France S. Sajith Menon Ariel University, Ramat HaGolan St 65, Ari’el, Israel Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy K. Sakai Department of Electronic Control Engineering, National Institute of Technology, Nagaoka College, 888 Nishikatakai, Nagaoka City, Niigata 940-8532, Japan Y. Sakai Research Center for Space Science, Advanced Research Laboratories, Tokyo City University, 3-3-1 Ushikubo-Nishi, Tsuzuki-Ku, Yokohama, Kanagawa 224-8551, Japan M. Sakellariadou King’s College London, University of London, London WC2R 2LS, United Kingdom S. Sakon The Pennsylvania State University, University Park, PA 16802, USA O. S. Salafia INAF, Osservatorio Astronomico di Brera sede di Merate, I-23807 Merate, Lecco, Italy INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy Università degli Studi di Milano-Bicocca, I-20126 Milano, Italy F. Salces-Carcoba LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA L. Salconi European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy M. Saleem University of Texas, Austin, TX 78712, USA F. Salemi Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN, Sezione di Roma, I-00185 Roma, Italy M. Sallé Nikhef, 1098 XG Amsterdam, Netherlands S. U. Salunkhe Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India S. Salvador Laboratoire de Physique Corpusculaire Caen, 6 boulevard du maréchal Juin, F-14050 Caen, France Université de Normandie, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, F-14000 Caen, France A. Salvarese University of Texas, Austin, TX 78712, USA A. Samajdar Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, 3584 CC Utrecht, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands A. Sanchez LIGO Hanford Observatory, Richland, WA 99352, USA E. J. Sanchez LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA L. E. Sanchez LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA N. Sanchis-Gual Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain J. R. Sanders Marquette University, Milwaukee, WI 53233, USA E. M. Sänger Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany F. Santoliquido Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy F. Sarandrea INFN Sezione di Torino, I-10125 Torino, Italy T. R. Saravanan Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India N. Sarin OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia P. Sarkar Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany A. Sasli Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece P. Sassi INFN, Sezione di Perugia, I-06123 Perugia, Italy Università di Perugia, I-06123 Perugia, Italy B. Sassolas Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France B. S. Sathyaprakash The Pennsylvania State University, University Park, PA 16802, USA Cardiff University, Cardiff CF24 3AA, United Kingdom R. Sato Faculty of Engineering, Niigata University, 8050 Ikarashi-2-no-cho, Nishi-ku, Niigata City, Niigata 950-2181, Japan S. Sato Faculty of Science, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555, Japan Yukino Sato Faculty of Science, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555, Japan Yu Sato Faculty of Science, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555, Japan O. Sauter University of Florida, Gainesville, FL 32611, USA R. L. Savage LIGO Hanford Observatory, Richland, WA 99352, USA T. Sawada Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan H. L. Sawant Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India S. Sayah Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France V. Scacco Università di Roma Tor Vergata, I-00133 Roma, Italy INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy D. Schaetzl LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA M. Scheel CaRT, California Institute of Technology, Pasadena, CA 91125, USA A. Schiebelbein Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8, Canada M. G. Schiworski Syracuse University, Syracuse, NY 13244, USA P. Schmidt University of Birmingham, Birmingham B15 2TT, United Kingdom S. Schmidt Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, 3584 CC Utrecht, Netherlands R. Schnabel Universität Hamburg, D-22761 Hamburg, Germany M. Schneewind Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany R. M. S. Schofield University of Oregon, Eugene, OR 97403, USA K. Schouteden Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium B. W. Schulte Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany B. F. Schutz Cardiff University, Cardiff CF24 3AA, United Kingdom Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany E. Schwartz Trinity College, Hartford, CT 06106, USA M. Scialpi Dipartimento di Fisica e Scienze della Terra, Università Degli Studi di Ferrara, Via Saragat, 1, 44121 Ferrara FE, Italy J. Scott IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom S. M. Scott OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia R. M. Sedas LIGO Livingston Observatory, Livingston, LA 70754, USA T. C. Seetharamu IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom M. Seglar-Arroyo Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain Y. Sekiguchi Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi City, Chiba 274-8510, Japan D. Sellers LIGO Livingston Observatory, Livingston, LA 70754, USA N. Sembo Department of Physics, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan A. S. Sengupta Indian Institute of Technology, Palaj, Gandhinagar, Gujarat 382355, India E. G. Seo IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom J. W. Seo Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium V. Sequino Università di Napoli “Federico II”, I-80126 Napoli, Italy INFN, Sezione di Napoli, I-80126 Napoli, Italy M. Serra INFN, Sezione di Roma, I-00185 Roma, Italy A. Sevrin Vrije Universiteit Brussel, 1050 Brussel, Belgium T. Shaffer LIGO Hanford Observatory, Richland, WA 99352, USA U. S. Shah Georgia Institute of Technology, Atlanta, GA 30332, USA M. A. Shaikh Seoul National University, Seoul 08826, Republic of Korea L. Shao Kavli Institute for Astronomy and Astrophysics, Peking University, Yiheyuan Road 5, Haidian District, Beijing 100871, China A. K. Sharma IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain Preeti Sharma Louisiana State University, Baton Rouge, LA 70803, USA Prianka Sharma RRCAT, Indore, Madhya Pradesh 452013, India Ritwik Sharma University of Minnesota, Minneapolis, MN 55455, USA S. Sharma Chaudhary Missouri University of Science and Technology, Rolla, MO 65409, USA P. Shawhan University of Maryland, College Park, MD 20742, USA N. S. Shcheblanov Laboratoire MSME, Cité Descartes, 5 Boulevard Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France NAVIER, École des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France E. Sheridan Vanderbilt University, Nashville, TN 37235, USA Z.-H. Shi National Tsing Hua University, Hsinchu City 30013, Taiwan M. Shikauchi University of Tokyo, Tokyo, 113-0033, Japan R. Shimomura Faculty of Information Science and Technology, Osaka Institute of Technology, 1-79-1 Kitayama, Hirakata City, Osaka 573-0196, Japan H. Shinkai Faculty of Information Science and Technology, Osaka Institute of Technology, 1-79-1 Kitayama, Hirakata City, Osaka 573-0196, Japan S. Shirke Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India D. H. Shoemaker LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA D. M. Shoemaker University of Texas, Austin, TX 78712, USA R. W. Short LIGO Hanford Observatory, Richland, WA 99352, USA S. ShyamSundar RRCAT, Indore, Madhya Pradesh 452013, India A. Sider Université Libre de Bruxelles, Brussels 1050, Belgium H. Siegel Stony Brook University, Stony Brook, NY 11794, USA Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA D. Sigg LIGO Hanford Observatory, Richland, WA 99352, USA L. Silenzi Maastricht University, 6200 MD Maastricht, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands L. Silvestri Università di Roma “La Sapienza”, I-00185 Roma, Italy INFN-CNAF - Bologna, Viale Carlo Berti Pichat, 6/2, 40127 Bologna BO, Italy M. Simmonds OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia L. P. Singer NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Amitesh Singh The University of Mississippi, University, MS 38677, USA Anika Singh LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA D. Singh University of California, Berkeley, CA 94720, USA N. Singh IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain S. Singh Graduate School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan Astronomical course, The Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan A. M. Sintes IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain V. Sipala Università degli Studi di Sassari, I-07100 Sassari, Italy INFN Cagliari, Physics Department, Università degli Studi di Cagliari, Cagliari 09042, Italy V. Skliris Cardiff University, Cardiff CF24 3AA, United Kingdom B. J. J. Slagmolen OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia D. A. Slater Western Washington University, Bellingham, WA 98225, USA T. J. Slaven-Blair OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia J. Smetana University of Birmingham, Birmingham B15 2TT, United Kingdom J. R. Smith California State University Fullerton, Fullerton, CA 92831, USA L. Smith IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy INFN, Sezione di Trieste, I-34127 Trieste, Italy R. J. E. Smith OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia W. J. Smith Vanderbilt University, Nashville, TN 37235, USA S. Soares de Albuquerque Filho Università degli Studi di Urbino “Carlo Bo”, I-61029 Urbino, Italy M. Soares-Santos University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland K. Somiya Graduate School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan I. Song National Tsing Hua University, Hsinchu City 30013, Taiwan S. Soni LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA V. Sordini Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France F. Sorrentino INFN, Sezione di Genova, I-16146 Genova, Italy H. Sotani Faculty of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi-shi, Kochi 780-8520, Japan F. Spada INFN, Sezione di Pisa, I-56127 Pisa, Italy V. Spagnuolo Nikhef, 1098 XG Amsterdam, Netherlands A. P. Spencer IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom P. Spinicelli European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy A. K. Srivastava Institute for Plasma Research, Bhat, Gandhinagar 382428, India F. Stachurski IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom C. J. Stark Christopher Newport University, Newport News, VA 23606, USA D. A. Steer Laboratoire de Physique de l’École Normale Supérieure, ENS, (CNRS, Université PSL, Sorbonne Université, Université Paris Cité), F-75005 Paris, France N. Steinle University of Manitoba, Winnipeg, MB R3T 2N2, Canada J. Steinlechner Maastricht University, 6200 MD Maastricht, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands S. Steinlechner Maastricht University, 6200 MD Maastricht, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands N. Stergioulas Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece P. Stevens Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France S. P. Stevenson OzGrav, Swinburne University of Technology, Hawthorn VIC 3122, Australia M. StPierre University of Rhode Island, Kingston, RI 02881, USA M. D. Strong Louisiana State University, Baton Rouge, LA 70803, USA A. Strunk LIGO Hanford Observatory, Richland, WA 99352, USA A. L. Stuver Deceased, September 2024. Villanova University, Villanova, PA 19085, USA M. Suchenek Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland S. Sudhagar Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland Y. Sudo Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara City, Kanagawa 252-5258, Japan N. Sueltmann Universität Hamburg, D-22761 Hamburg, Germany L. Suleiman California State University Fullerton, Fullerton, CA 92831, USA K. D. Sullivan Louisiana State University, Baton Rouge, LA 70803, USA J. Sun Chung-Ang University, Seoul 06974, Republic of Korea L. Sun OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia S. Sunil Institute for Plasma Research, Bhat, Gandhinagar 382428, India J. Suresh Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Artemis, F-06304 Nice, France B. J. Sutton King’s College London, University of London, London WC2R 2LS, United Kingdom P. J. Sutton Cardiff University, Cardiff CF24 3AA, United Kingdom K. Suzuki Graduate School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan M. Suzuki Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582, Japan S. Swain University of Birmingham, Birmingham B15 2TT, United Kingdom B. L. Swinkels Nikhef, 1098 XG Amsterdam, Netherlands A. Syx Centre national de la recherche scientifique, 75016 Paris, France M. J. Szczepańczyk Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warszawa, Poland P. Szewczyk Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland M. Tacca Nikhef, 1098 XG Amsterdam, Netherlands H. Tagoshi Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582, Japan K. Takada Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582, Japan H. Takahashi Research Center for Space Science, Advanced Research Laboratories, Tokyo City University, 3-3-1 Ushikubo-Nishi, Tsuzuki-Ku, Yokohama, Kanagawa 224-8551, Japan R. Takahashi Gravitational Wave Science Project, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan A. Takamori University of Tokyo, Tokyo, 113-0033, Japan S. Takano Laser Interferometry and Gravitational Wave Astronomy, Max Planck Institute for Gravitational Physics, Callinstrasse 38, 30167 Hannover, Germany H. Takeda The Hakubi Center for Advanced Research, Kyoto University, Yoshida-honmachi, Sakyou-ku, Kyoto City, Kyoto 606-8501, Japan Department of Physics, Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyou-ku, Kyoto City, Kyoto 606-8502, Japan K. Takeshita Graduate School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan I. Takimoto Schmiegelow Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy M. Takou-Ayaoh Syracuse University, Syracuse, NY 13244, USA C. Talbot University of Chicago, Chicago, IL 60637, USA M. Tamaki Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582, Japan N. Tamanini Laboratoire des 2 Infinis - Toulouse (L2IT-IN2P3), F-31062 Toulouse Cedex 9, France D. Tanabe National Central University, Taoyuan City 320317, Taiwan K. Tanaka Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan S. J. Tanaka Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara City, Kanagawa 252-5258, Japan S. Tanioka Cardiff University, Cardiff CF24 3AA, United Kingdom D. B. Tanner University of Florida, Gainesville, FL 32611, USA W. Tanner Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany L. Tao University of California, Riverside, Riverside, CA 92521, USA R. D. Tapia The Pennsylvania State University, University Park, PA 16802, USA E. N. Tapia San Martín Nikhef, 1098 XG Amsterdam, Netherlands C. Taranto Università di Roma Tor Vergata, I-00133 Roma, Italy INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy A. Taruya Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyou-ku, Kyoto City, Kyoto 606-8502, Japan J. D. Tasson Carleton College, Northfield, MN 55057, USA J. G. Tau Rochester Institute of Technology, Rochester, NY 14623, USA D. Tellez California State University Fullerton, Fullerton, CA 92831, USA R. Tenorio IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain H. Themann California State University, Los Angeles, Los Angeles, CA 90032, USA A. Theodoropoulos Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain M. P. Thirugnanasambandam Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India L. M. Thomas LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA M. Thomas LIGO Livingston Observatory, Livingston, LA 70754, USA P. Thomas LIGO Hanford Observatory, Richland, WA 99352, USA J. E. Thompson University of Southampton, Southampton SO17 1BJ, United Kingdom S. R. Thondapu RRCAT, Indore, Madhya Pradesh 452013, India K. A. Thorne LIGO Livingston Observatory, Livingston, LA 70754, USA E. Thrane OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia J. Tissino Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy A. Tiwari Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India Pawan Tiwari Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy Praveer Tiwari Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India S. Tiwari University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland V. Tiwari University of Birmingham, Birmingham B15 2TT, United Kingdom M. R. Todd Syracuse University, Syracuse, NY 13244, USA M. Toffano Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy A. M. Toivonen University of Minnesota, Minneapolis, MN 55455, USA K. Toland IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom A. E. Tolley University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom T. Tomaru Gravitational Wave Science Project, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan V. Tommasini LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA T. Tomura Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan H. Tong OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia C. Tong-Yu National Central University, Taoyuan City 320317, Taiwan A. Torres-Forné Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain Observatori Astronòmic, Universitat de València, E-46980 Paterna, València, Spain C. I. Torrie LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA I. Tosta e Melo University of Catania, Department of Physics and Astronomy, Via S. Sofia, 64, 95123 Catania CT, Italy E. Tournefier Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France M. Trad Nery Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Artemis, F-06304 Nice, France K. Tran Christopher Newport University, Newport News, VA 23606, USA A. Trapananti Università di Camerino, I-62032 Camerino, Italy INFN, Sezione di Perugia, I-06123 Perugia, Italy R. Travaglini Istituto Nazionale Di Fisica Nucleare - Sezione di Bologna, viale Carlo Berti Pichat 6/2 - 40127 Bologna, Italy F. Travasso Università di Camerino, I-62032 Camerino, Italy INFN, Sezione di Perugia, I-06123 Perugia, Italy G. Traylor LIGO Livingston Observatory, Livingston, LA 70754, USA M. Trevor University of Maryland, College Park, MD 20742, USA M. C. Tringali European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy A. Tripathee University of Michigan, Ann Arbor, MI 48109, USA G. Troian Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy INFN, Sezione di Trieste, I-34127 Trieste, Italy A. Trovato Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy INFN, Sezione di Trieste, I-34127 Trieste, Italy L. Trozzo INFN, Sezione di Napoli, I-80126 Napoli, Italy R. J. Trudeau LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA T. Tsang Cardiff University, Cardiff CF24 3AA, United Kingdom S. Tsuchida National Institute of Technology, Fukui College, Geshi-cho, Sabae-shi, Fukui 916-8507, Japan L. Tsukada University of Nevada, Las Vegas, Las Vegas, NV 89154, USA K. Turbang Vrije Universiteit Brussel, 1050 Brussel, Belgium Universiteit Antwerpen, 2000 Antwerpen, Belgium M. Turconi Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Artemis, F-06304 Nice, France C. Turski Universiteit Gent, B-9000 Gent, Belgium H. Ubach Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), c. Martí i Franquès, 1, 08028 Barcelona, Spain Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028 Barcelona, Spain N. Uchikata Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582, Japan T. Uchiyama Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan R. P. Udall LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA T. Uehara Department of Communications Engineering, National Defense Academy of Japan, 1-10-20 Hashirimizu, Yokosuka City, Kanagawa 239-8686, Japan K. Ueno University of Tokyo, Tokyo, 113-0033, Japan V. Undheim University of Stavanger, 4021 Stavanger, Norway L. E. Uronen The Chinese University of Hong Kong, Shatin, NT, Hong Kong T. Ushiba Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan M. Vacatello INFN, Sezione di Pisa, I-56127 Pisa, Italy Università di Pisa, I-56127 Pisa, Italy H. Vahlbruch Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany N. Vaidya LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA G. Vajente LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA A. Vajpeyi OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia J. Valencia IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain M. Valentini Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands S. A. Vallejo-Peña Universidad de Antioquia, Medellín, Colombia S. Vallero INFN Sezione di Torino, I-10125 Torino, Italy V. Valsan University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA M. van Dael Nikhef, 1098 XG Amsterdam, Netherlands Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands E. Van den Bossche Vrije Universiteit Brussel, 1050 Brussel, Belgium J. F. J. van den Brand Maastricht University, 6200 MD Maastricht, Netherlands Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands C. Van Den Broeck Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, 3584 CC Utrecht, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands M. van der Sluys Nikhef, 1098 XG Amsterdam, Netherlands Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, 3584 CC Utrecht, Netherlands A. Van de Walle Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France J. van Dongen Nikhef, 1098 XG Amsterdam, Netherlands Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands K. Vandra Villanova University, Villanova, PA 19085, USA M. VanDyke Washington State University, Pullman, WA 99164, USA H. van Haevermaet Universiteit Antwerpen, 2000 Antwerpen, Belgium J. V. van Heijningen Nikhef, 1098 XG Amsterdam, Netherlands Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands P. Van Hove Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France J. Vanier Université de Montréal/Polytechnique, Montreal, Quebec H3T 1J4, Canada M. VanKeuren Kenyon College, Gambier, OH 43022, USA J. Vanosky LIGO Hanford Observatory, Richland, WA 99352, USA N. van Remortel Universiteit Antwerpen, 2000 Antwerpen, Belgium M. Vardaro Maastricht University, 6200 MD Maastricht, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands A. F. Vargas OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia V. Varma University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA A. N. Vazquez Stanford University, Stanford, CA 94305, USA A. Vecchio University of Birmingham, Birmingham B15 2TT, United Kingdom G. Vedovato INFN, Sezione di Padova, I-35131 Padova, Italy J. Veitch IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom P. J. Veitch OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia S. Venikoudis Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium R. C. Venterea University of Minnesota, Minneapolis, MN 55455, USA P. Verdier Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France M. Vereecken Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium D. Verkindt Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France B. Verma University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA Y. Verma RRCAT, Indore, Madhya Pradesh 452013, India S. M. Vermeulen LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA F. Vetrano Università degli Studi di Urbino “Carlo Bo”, I-61029 Urbino, Italy A. Veutro INFN, Sezione di Roma, I-00185 Roma, Italy Università di Roma “La Sapienza”, I-00185 Roma, Italy A. Viceré Università degli Studi di Urbino “Carlo Bo”, I-61029 Urbino, Italy INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy S. Vidyant Syracuse University, Syracuse, NY 13244, USA A. D. Viets Concordia University Wisconsin, Mequon, WI 53097, USA A. Vijaykumar Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8, Canada A. Vilkha Rochester Institute of Technology, Rochester, NY 14623, USA N. Villanueva Espinosa Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain V. Villa-Ortega IGFAE, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain E. T. Vincent Georgia Institute of Technology, Atlanta, GA 30332, USA J.-Y. Vinet Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Artemis, F-06304 Nice, France S. Viret Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France S. Vitale LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA H. Vocca Università di Perugia, I-06123 Perugia, Italy INFN, Sezione di Perugia, I-06123 Perugia, Italy D. Voigt Universität Hamburg, D-22761 Hamburg, Germany E. R. G. von Reis LIGO Hanford Observatory, Richland, WA 99352, USA J. S. A. von Wrangel Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany W. E. Vossius Helmut Schmidt University, D-22043 Hamburg, Germany L. Vujeva Niels Bohr Institute, University of Copenhagen, 2100 Kóbenhavn, Denmark S. P. Vyatchanin Lomonosov Moscow State University, Moscow 119991, Russia J. Wack LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA L. E. Wade Kenyon College, Gambier, OH 43022, USA M. Wade Kenyon College, Gambier, OH 43022, USA K. J. Wagner Rochester Institute of Technology, Rochester, NY 14623, USA L. Wallace LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA E. J. Wang Stanford University, Stanford, CA 94305, USA H. Wang Graduate School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan J. Z. Wang University of Michigan, Ann Arbor, MI 48109, USA W. H. Wang The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA Y. F. Wang Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany G. Waratkar Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India J. Warner LIGO Hanford Observatory, Richland, WA 99352, USA M. Was Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France T. Washimi Gravitational Wave Science Project, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan N. Y. Washington LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA D. Watarai University of Tokyo, Tokyo, 113-0033, Japan B. Weaver LIGO Hanford Observatory, Richland, WA 99352, USA S. A. Webster IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom N. L. Weickhardt Universität Hamburg, D-22761 Hamburg, Germany M. Weinert Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany A. J. Weinstein LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA R. Weiss LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA L. Wen OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia K. Wette OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia J. T. Whelan Rochester Institute of Technology, Rochester, NY 14623, USA B. F. Whiting University of Florida, Gainesville, FL 32611, USA C. Whittle LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA E. G. Wickens University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom D. Wilken Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany A. T. Wilkin University of California, Riverside, Riverside, CA 92521, USA B. M. Williams Washington State University, Pullman, WA 99164, USA D. Williams IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom M. J. Williams University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom N. S. Williams Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany J. L. Willis LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA B. Willke Leibniz Universität Hannover, D-30167 Hannover, Germany Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany M. Wils Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium L. Wilson Kenyon College, Gambier, OH 43022, USA C. W. Winborn Missouri University of Science and Technology, Rolla, MO 65409, USA J. Winterflood OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia C. C. Wipf LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA G. Woan IGR, University of Glasgow, Glasgow G12 8QQ, United Kingdom J. Woehler Maastricht University, 6200 MD Maastricht, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands N. E. Wolfe LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA H. T. Wong National Central University, Taoyuan City 320317, Taiwan H. W. Y. Wong The Chinese University of Hong Kong, Shatin, NT, Hong Kong I. C. F. Wong The Chinese University of Hong Kong, Shatin, NT, Hong Kong Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium K. Wong Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8, Canada T. Wouters Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, 3584 CC Utrecht, Netherlands Nikhef, 1098 XG Amsterdam, Netherlands J. L. Wright LIGO Hanford Observatory, Richland, WA 99352, USA B. Wu Syracuse University, Syracuse, NY 13244, USA C. Wu National Tsing Hua University, Hsinchu City 30013, Taiwan D. S. Wu Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany H. Wu National Tsing Hua University, Hsinchu City 30013, Taiwan K. Wu Washington State University, Pullman, WA 99164, USA Q. Wu University of Washington, Seattle, WA 98195, USA Y. Wu Northwestern University, Evanston, IL 60208, USA Z. Wu Laboratoire des 2 Infinis - Toulouse (L2IT-IN2P3), F-31062 Toulouse Cedex 9, France E. Wuchner California State University Fullerton, Fullerton, CA 92831, USA D. M. Wysocki University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA V. A. Xu University of California, Berkeley, CA 94720, USA Y. Xu IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain N. Yadav INFN Sezione di Torino, I-10125 Torino, Italy H. Yamamoto LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA K. Yamamoto Faculty of Science, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555, Japan T. S. Yamamoto University of Tokyo, Tokyo, 113-0033, Japan T. Yamamoto Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan R. Yamazaki Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara City, Kanagawa 252-5258, Japan T. Yan University of Birmingham, Birmingham B15 2TT, United Kingdom K. Z. Yang University of Minnesota, Minneapolis, MN 55455, USA Y. Yang Department of Electrophysics, National Yang Ming Chiao Tung University, 101 Univ. Street, Hsinchu, Taiwan Z. Yarbrough Louisiana State University, Baton Rouge, LA 70803, USA J. Yebana IAC3–IEEC, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain S.-W. Yeh National Tsing Hua University, Hsinchu City 30013, Taiwan A. B. Yelikar Vanderbilt University, Nashville, TN 37235, USA X. Yin LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA J. Yokoyama Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), WPI, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8583, Japan University of Tokyo, Tokyo, 113-0033, Japan T. Yokozawa Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan S. Yuan OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia H. Yuzurihara Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan M. Zanolin Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA M. Zeeshan Rochester Institute of Technology, Rochester, NY 14623, USA T. Zelenova European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy J.-P. Zendri INFN, Sezione di Padova, I-35131 Padova, Italy M. Zeoli Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium M. Zerrad Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, F-13013 Marseille, France M. Zevin Northwestern University, Evanston, IL 60208, USA L. Zhang LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA N. Zhang Georgia Institute of Technology, Atlanta, GA 30332, USA R. Zhang Northeastern University, Boston, MA 02115, USA T. Zhang University of Birmingham, Birmingham B15 2TT, United Kingdom C. Zhao OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia Yue Zhao The University of Utah, Salt Lake City, UT 84112, USA Yuhang Zhao Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France Z.-C. Zhao Department of Astronomy, Beijing Normal University, Xinjiekouwai Street 19, Haidian District, Beijing 100875, China Y. Zheng Missouri University of Science and Technology, Rolla, MO 65409, USA H. Zhong University of Minnesota, Minneapolis, MN 55455, USA H. Zhou Syracuse University, Syracuse, NY 13244, USA H. O. Zhu OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia Z.-H. Zhu Department of Astronomy, Beijing Normal University, Xinjiekouwai Street 19, Haidian District, Beijing 100875, China School of Physics and Technology, Wuhan University, Bayi Road 299, Wuchang District, Wuhan, Hubei, 430072, China A. B. Zimmerman University of Texas, Austin, TX 78712, USA L. Zimmermann Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France M. E. Zucker LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA J. Zweizig LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
([)
Abstract

On 2023 November 23 the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses \IfEqCaseGW231123cgcombinedGW231123cgcombined137GW231123cgnrsur129GW231123cgxphm150GW231123cgxo4a143GW231123cgtphm133GW231123cgseob134\IfEqCaseGW231123cgcombinedGW231123cgcombined17GW231123cgnrsur14GW231123cgxphm12GW231123cgxo4a14GW231123cgtphm12GW231123cgseob14+\IfEqCaseGW231123cgcombinedGW231123cgcombined22GW231123cgnrsur15GW231123cgxphm12GW231123cgxo4a24GW231123cgtphm17GW231123cgseob19M\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{137}{GW231123cg_{n}rsur}{129}{GW231123cg_{x}phm}{150}{GW231123cg_{x}o4a}{143}{GW231123cg_{t}phm}{133}{GW231123cg_{s}eob}{134}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{22}{GW231123cg_{n}rsur}{15}{GW231123cg_{x}phm}{12}{GW231123cg_{x}o4a}{24}{GW231123cg_{t}phm}{17}{GW231123cg_{s}eob}{19}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{17}{GW231123cg_{n}rsur}{14}{GW231123cg_{x}phm}{12}{GW231123cg_{x}o4a}{14}{GW231123cg_{t}phm}{12}{GW231123cg_{s}eob}{14}}}\,M_{\odot} and \IfEqCaseGW231123cgcombinedGW231123cgcombined103GW231123cgnrsur111GW231123cgxphm93GW231123cgxo4a55GW231123cgtphm110GW231123cgseob111\IfEqCaseGW231123cgcombinedGW231123cgcombined52GW231123cgnrsur17GW231123cgxphm20GW231123cgxo4a18GW231123cgtphm15GW231123cgseob19+\IfEqCaseGW231123cgcombinedGW231123cgcombined20GW231123cgnrsur14GW231123cgxphm18GW231123cgxo4a11GW231123cgtphm15GW231123cgseob16M\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{103}{GW231123cg_{n}rsur}{111}{GW231123cg_{x}phm}{93}{GW231123cg_{x}o4a}{55}{GW231123cg_{t}phm}{110}{GW231123cg_{s}eob}{111}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{20}{GW231123cg_{n}rsur}{14}{GW231123cg_{x}phm}{18}{GW231123cg_{x}o4a}{11}{GW231123cg_{t}phm}{15}{GW231123cg_{s}eob}{16}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{52}{GW231123cg_{n}rsur}{17}{GW231123cg_{x}phm}{20}{GW231123cg_{x}o4a}{18}{GW231123cg_{t}phm}{15}{GW231123cg_{s}eob}{19}}}\,M_{\odot} (90% credible intervals), at luminosity distance 0.7–4.1 Gpc and redshift of \IfEqCaseGW231123cgcombinedGW231123cgcombined0.39GW231123cgnrsur0.29GW231123cgxphm0.17GW231123cgxo4a0.58GW231123cgtphm0.47GW231123cgseob0.39\IfEqCaseGW231123cgcombinedGW231123cgcombined0.24GW231123cgnrsur0.14GW231123cgxphm0.06GW231123cgxo4a0.20GW231123cgtphm0.16GW231123cgseob0.16+\IfEqCaseGW231123cgcombinedGW231123cgcombined0.27GW231123cgnrsur0.23GW231123cgxphm0.06GW231123cgxo4a0.16GW231123cgtphm0.15GW231123cgseob0.18\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.29}{GW231123cg_{x}phm}{0.17}{GW231123cg_{x}o4a}{0.58}{GW231123cg_{t}phm}{0.47}{GW231123cg_{s}eob}{0.39}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.27}{GW231123cg_{n}rsur}{0.23}{GW231123cg_{x}phm}{0.06}{GW231123cg_{x}o4a}{0.16}{GW231123cg_{t}phm}{0.15}{GW231123cg_{s}eob}{0.18}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.24}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.06}{GW231123cg_{x}o4a}{0.20}{GW231123cg_{t}phm}{0.16}{GW231123cg_{s}eob}{0.16}}}, and a network signal-to-noise ratio of \sim22.5. Both black holes exhibit high spins, \IfEqCaseGW231123cgcombinedGW231123cgcombined0.90GW231123cgnrsur0.89GW231123cgxphm0.79GW231123cgxo4a0.92GW231123cgtphm0.92GW231123cgseob0.91\IfEqCaseGW231123cgcombinedGW231123cgcombined0.19GW231123cgnrsur0.20GW231123cgxphm0.20GW231123cgxo4a0.06GW231123cgtphm0.13GW231123cgseob0.16+\IfEqCaseGW231123cgcombinedGW231123cgcombined0.10GW231123cgnrsur0.11GW231123cgxphm0.21GW231123cgxo4a0.07GW231123cgtphm0.08GW231123cgseob0.09\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.90}{GW231123cg_{n}rsur}{0.89}{GW231123cg_{x}phm}{0.79}{GW231123cg_{x}o4a}{0.92}{GW231123cg_{t}phm}{0.92}{GW231123cg_{s}eob}{0.91}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.10}{GW231123cg_{n}rsur}{0.11}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.07}{GW231123cg_{t}phm}{0.08}{GW231123cg_{s}eob}{0.09}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.19}{GW231123cg_{n}rsur}{0.20}{GW231123cg_{x}phm}{0.20}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.13}{GW231123cg_{s}eob}{0.16}}} and \IfEqCaseGW231123cgcombinedGW231123cgcombined0.80GW231123cgnrsur0.91GW231123cgxphm0.68GW231123cgxo4a0.47GW231123cgtphm0.88GW231123cgseob0.81\IfEqCaseGW231123cgcombinedGW231123cgcombined0.51GW231123cgnrsur0.19GW231123cgxphm0.46GW231123cgxo4a0.47GW231123cgtphm0.23GW231123cgseob0.35+\IfEqCaseGW231123cgcombinedGW231123cgcombined0.20GW231123cgnrsur0.09GW231123cgxphm0.32GW231123cgxo4a0.41GW231123cgtphm0.12GW231123cgseob0.19\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.80}{GW231123cg_{n}rsur}{0.91}{GW231123cg_{x}phm}{0.68}{GW231123cg_{x}o4a}{0.47}{GW231123cg_{t}phm}{0.88}{GW231123cg_{s}eob}{0.81}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.20}{GW231123cg_{n}rsur}{0.09}{GW231123cg_{x}phm}{0.32}{GW231123cg_{x}o4a}{0.41}{GW231123cg_{t}phm}{0.12}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.51}{GW231123cg_{n}rsur}{0.19}{GW231123cg_{x}phm}{0.46}{GW231123cg_{x}o4a}{0.47}{GW231123cg_{t}phm}{0.23}{GW231123cg_{s}eob}{0.35}}} respectively. A massive black hole remnant is supported by an independent ringdown analysis. Some properties of GW231123 are subject to large systematic uncertainties, as indicated by differences in inferred parameters between signal models. The primary black hole lies within or above the theorized mass gap where black holes between 60–130 MM_{\odot} should be rare due to pair instability mechanisms, while the secondary spans the gap. The observation of GW231123 therefore suggests the formation of black holes from channels beyond standard stellar collapse, and that intermediate-mass black holes of mass \sim200 MM_{\odot} form through gravitational-wave driven mergers.

software: Calibration of the LIGO strain data was performed with a GstLAL-based calibration software pipeline (Viets et al., 2018b). Data-quality products and event-validation results were computed using the DMT (Zweizig, J., 2006), DQR (LIGO Scientific Collaboration and Virgo Collaboration, 2018), DQSEGDB (Fisher et al., 2021), gwdetchar (Urban et al., 2021), hveto (Smith et al., 2011), iDQ (Essick et al., 2020), Omicron (Robinet et al., 2020), and PythonVirgoTools (Virgo Collaboration, 2021) software packages and contributing software tools. Analyses in this catalog relied on software from the LVK Algorithm Library Suite (LIGO Scientific, Virgo, and KAGRA Collaboration, 2018; Wette, 2020). The detection of the signals and subsequent significance evaluations were performed with the GstLAL-based inspiral software pipeline (Messick et al., 2017; Sachdev et al., 2019; Hanna et al., 2020; Cannon et al., 2021), with the MBTA pipeline (Adams et al., 2016; Aubin et al., 2021), with the PyCBC (Usman et al., 2016; Nitz et al., 2017; Davies et al., 2020) packages, with cWB-BBH pipeline  (Mishra et al., 2025), cWB-2G  (Klimenko et al., 2008, 2016a; Drago et al., 2020) cWB-XP  (Klimenko, 2022), cWB-GMM  (Gayathri et al., 2020; Lopez et al., 2022; Smith et al., 2024). Low-latency source localization was performed using BAYESTAR (Singer & Price, 2016). Estimates of the noise spectra and glitch models were obtained using BayesWave (Cornish & Littenberg, 2015; Littenberg & Cornish, 2015; Cornish et al., 2021). Source-parameter estimation was primarily performed with the Bilby and BilbyPipe libraries (Ashton et al., 2019; Smith et al., 2020; Romero-Shaw et al., 2020b) using the Dynesty nested sampling package (Speagle, 2020). SEOBNRv5PHM waveforms used in parameter estimation were generated using pySEOBNR (Mihaylov et al., 2025). PESummary was used to postprocess and collate parameter-estimation results (Hoy & Raymond, 2021). Some of the parameter-estimation analyses were managed with the Asimov library (Williams et al., 2023). Ringdown analyses were performed using the pyRing (Carullo et al., 2025) library, relying on the CPNest nested sampling algorithm (Veitch et al., 2020). The manuscript content has been derived making use of additional publicly available software: matplotlib (Hunter, 2007), numpy (Harris et al., 2020), scipy (Virtanen & others, 2020), seaborn (Waskom et al., 2021), sxs Scheel et al. (2025).

]Compiled: September 21, 2025

\pacs

04.80.Nn, 04.25.dg, 95.85.Sz, 97.80.-d 04.30.Db, 04.30.Tv

1 Introduction

From 2015 to 2020 the LIGO-Virgo-KAGRA Collaboration identified 69 gravitational-wave signals from binary black hole mergers with false alarm rates below one per year (Aasi et al., 2015; Acernese et al., 2015; Abbott et al., 2020c; Akutsu et al., 2020; Abbott et al., 2023a). Of these, the most massive was the source of GW190521, with a merger remnant of \sim140 MM_{\odot} (Abbott et al., 2020d, e). The small number of observable cycles of GW190521 limits our ability to accurately infer the source’s properties, and subsequent studies have proposed a wide range of alternative interpretations, including highly eccentric orbits, dynamical capture scenarios, exotic object mergers, and cosmic string collapse (Gayathri et al., 2022; Romero-Shaw et al., 2020a; Gamba et al., 2023; Calderón Bustillo et al., 2021b; Aurrekoetxea et al., 2024). Here we present a yet more challenging signal: GW231123_135430 (hereafter referred to as GW231123), confidently observed through a coincident detection in both the LIGO Hanford and Livingston detectors during the first part of their fourth observing run, O4a (2023 May 24 to 2024 January 16). The combination of data from the two observatories was essential in making a confident detection.

GW231123 consists of \sim5 cycles over a frequency range of 30–80 Hz. We interpret GW231123 as a binary-black-hole merger and infer a total mass between 190 MM_{\odot} and 265 MM_{\odot} and high component black-hole spins (\sim0.9 and \sim0.8). While a few gravitational-wave candidates have been observed with similarly high total masses (Abbott et al., 2023a; Wadekar et al., 2023), none have false alarm rates less than 1 per year; in addition, GW231123 has both a large signal-to-noise ratio and high statistical significance. Such high masses and spins pose a challenge to our most accurate waveform models, leading to larger uncertainties in the black-hole masses, and the binary orientation and distance, than any previous signal of comparable strength.

Pair instability supernovae and pulsational pair instability supernovae are expected to preclude stellar collapse to black holes with masses 60\approx 60–130MM_{\odot} (Farmer et al., 2019, 2020; Woosley & Heger, 2021; Hendriks et al., 2023), and the majority of the astrophysical population of black holes inferred from gravitational-wave catalogs lies below this gap (Abbott et al., 2023b). The large measurement uncertainties in the source of GW231123 mean that the primary black hole may be within or beyond the mass gap, while the range of possible values for the secondary mass spans the entire gap. It is also possible that the two black-hole masses lie on either side of the gap. The scenarios with the highest probability require a formation channel that populates the mass gap, such as prior stellar (e.g., Di Carlo et al., 2020; Renzo et al., 2020a; Kremer et al., 2020) or black-hole (Gerosa & Fishbach, 2021) mergers. The high inferred spins do not exclude these interpretations, although their values may be higher than the inferred spins of the remnant black holes produced in the binary-black-hole mergers observed so far.

In this paper we present the LIGO-Virgo-KAGRA analysis of GW231123. In Section 2, we establish GW231123 as a confident gravitational wave (GW) detection. In Section 3, we discuss the data quality at the time of the observation. In Section 4, we first discuss our treatment of waveform uncertainties, then present the source properties and additional waveform consistency checks. In Section 5, we analyse the ringdown portion to test the consistency of a black hole (BH) remnant interpretation. In Section 6 we present a range of potential astrophysical implications. Although the binary black hole (BBH) merger scenario presented throughout this paper is the most plausible astrophysical explanation for the source of GW231123, alternative scenarios cannot be ruled out and we discuss a selection of these in Section 7. We conclude in Section 8, and provide additional material in support of our results in a series of appendices.

Refer to caption
Figure 1: The GW event GW231123 as observed by the LIGO Hanford (left panels) and LIGO Livingston (right panels) detectors. Time is measured relative to 2023 November 23 at 13:54:30.619 UTC. The top panels show the time-domain strain data (black), sampled at 1024 Hz, whitened and then bandpass-filtered with a passband from 20 Hz to 256 Hz (Abbott et al., 2020a). Also shown are the point-estimate whitened waveform from the cWB-BBH search (red), the 90% credible interval of whitened waveforms inferred from a coherent Bayesian analysis using the combined samples from five BBH waveform models (blue bands), and the 90% credible interval inferred from BayesWave using a generic wavelet-based model (shaded purple). The vertical axis is in units of the noise standard deviation, σnoise\sigma_{\rm noise}. The bottom panels display the corresponding whitened time-frequency representations of the strain data, obtained using a continuous wavelet transform (CWT) with a Morlet–Gabor wavelet. The color scale is in units of the amplitude of the CWT coefficients.

2 Detection Significance

On 2023 November 23, at 13:54:30 UTC, the Advanced LIGO Hanford and Livingston detectors observed the GW transient GW231123. Despite its short duration (\sim0.1 s) and limited bandwidth (Figure 1), the signal was identified in low-latency analyses with high statistical significance, reported in terms of inverse false-alarm rate (IFAR); see Table. 1. It was first detected by PyCBC Live, a matched-filter search for compact binaries (Allen, 2005; Usman et al., 2016; Nitz et al., 2017; Dal Canton et al., 2021). It was also reported by coherent WaveBurst (cWB)-BBH, a minimally modelled coherent excess power search (Mishra et al., 2025). The cWB-BBH search uses the WaveScan time–frequency (TF) transformation (Klimenko, 2022) and ranks identified triggers using a machine-learning classifier trained specifically on BBH signals (Mishra et al., 2021, 2022, 2025). In addition, the event was also detected by two model-independent low-latency cWB searches, or burst searches, designed to identify generic GW transients: cWB-2G and cWB-XP. The former is based on the Wilson–Debauchies–Meyer TF transformation (Klimenko et al., 2008, 2016a; Drago et al., 2020), while the latter uses the WaveScan TF transformation. Both apply a machine-learning classifier (XGBoost), trained on generic white-noise-bursts to rank identified triggers (Szczepańczyk et al., 2023). For further details on model-independent searches, see Abac et al. (2025a).

Subsequent offline or archival reanalyses using improved background estimation and data quality information further increased the event’s statistical significance in both the PyCBC and cWB pipelines (Table 1). Furthermore, two additional matched-filter searches, GstLAL (Messick et al., 2017; Sachdev et al., 2019; Hanna et al., 2020; Cannon et al., 2021; Sakon et al., 2024; Ewing et al., 2024; Tsukada et al., 2023; Joshi et al., 2025) and MBTA (Adams et al., 2016; Aubin et al., 2021; Alléné et al., 2025), which did not detect this event with significant confidence in low-latency (IFAR higher than 1 year), recovered it in their offline analyses. These searches differ from PyCBC (Davies et al., 2020; Chandra et al., 2021b; Davis et al., 2022; Kumar & Dent, 2024) in their implementation and use of signal–noise discriminators. GstLAL’s enhanced significance (the higher IFAR in Table. 1) is primarily driven by a higher mass extension of the search with specific settings to compute the background for such higher mass mergers accurately. More details are provided in Abac et al. (2025b). These changes improved the signal and noise models in this part of the parameter space in general, leading to a better recovery of this high mass signal. Additionally, cWB-GMM, an entirely offline model-independent search, uses Gaussian Mixture Models (Gayathri et al., 2020; Lopez et al., 2022; Smith et al., 2024) to rerank the triggers identified by cWB-2G.

Table 1: Properties of the detection of GW231123 by various search pipelines.
CBC pipelines Offline Online Offline
SNR IFAR (yr) IFAR (yr)
PyCBC 19.9 >100>100 160
GstLAL 20.1 2×1042\times 10^{-4} >10000>10000
MBTA 19.0 60
cWB-BBH 21.8 >490>490 9700
Burst pipelines
cWB-2G 21.4 >250>250 >490>490
cWB-XP 21.1 >240>240 >480>480
cWB-GMM 21.4 100

The differences in the IFARs reported by the offline search pipelines—despite broadly consistent signal-to-noise ratios—primarily reflect differences in their ability to separate GW231123-like signals from background noise in a comparable parameter range. Similar discrepancies have been observed previously, particularly between matched-filter and minimally-modelled searches, when searching for non-eccentric intermediate-mass black hole (IMBH) binaries (Calderón Bustillo et al., 2018; Chandra et al., 2020; Abbott et al., 2020d; Chandra et al., 2021a; Szczepańczyk et al., 2021). These differences arise not only from how effectively each search separates signals from glitches, but also from the differing approaches used to estimate the noise background.

To assess whether the observed variation in statistical significance across pipelines is consistent with expectations, we conducted a dedicated injection campaign. Using the NRSur7dq4 (NRSur) waveform model (Varma et al., 2019), we simulated \sim8000 non-eccentric BBH signals with intrinsic parameters consistent with those inferred for GW231123 (Section 4). We sampled the sky positions and binary orientations isotropically and drew redshifts uniformly in comoving volume up to zmax=1.5z_{\mathrm{max}}=1.5, assuming a flat Λ\LambdaCDM cosmology (Ade et al., 2016). We added these simulated signals uniformly over several days around the event and re-ran our offline search pipelines using the same configuration as applied to the real data.

We found that for simulated signals observed in both Advanced LIGO detectors, the CBC searches recovered the following fractions with a IFAR above 100 years, cWB-BBH 32%, PyCBC 27%, GstLAL 41%, and MBTA 16%. For the Burst searches, cWB-2G and cWB-XP each recovered 22%, while cWB-GMM recovered 10%. Since Burst searches identify coherent power across the detector network without relying on BBH waveform models, their efficiencies are not directly comparable to CBC searches. However, within each search category, detection pipelines reporting a higher IFAR for GW231123 consistently demonstrated higher recovery fractions for simulated signals with masses and spins representative of those inferred for GW231123.

Given the reported IFAR for GW231123 across the different searches and the results of the injection study, we consider GW231123 to be a confident detection with strong support for an astrophysical origin.

3 Data quality

The event GW231123 was detected during the first part of the fourth observing run (O4a), a time when the LIGO Hanford and LIGO Livingston detectors were observing with a typical binary neutron star inspiral range of 152 Mpc and 160 Mpc (Capote et al., 2025). The detectors’ data were calibrated in near real-time to produce the online dataset used for low-latency searches (Abbott et al., 2020b; Klimenko et al., 2016b; Tsukada et al., 2023; Ewing et al., 2024; Dal Canton et al., 2021; Chu et al., 2022; Aubin et al., 2021) and parameter estimation (Singer & Price, 2016; Ashton et al., 2019; Pankow et al., 2015). The calibration process subtracts linear spectral features from known instrumental sources, identified through auxiliary witness sensors, and intentionally injected calibration lines used to measure the instruments’ response at various frequencies (Viets et al., 2018a; Sun et al., 2020, 2021).

Following the data-quality procedures established for O4a (Soni et al., 2025), including broadband noise subtraction (Vajente et al., 2020) and data-quality report analysis routines (Davis et al., 2021), detector data surrounding the event were evaluated for signs of non-Gaussian excess power (glitches) within the target time-frequency analysis window using a spectrogram-based glitch-identification tool (Vazsonyi & Davis, 2023). It was determined that glitches were present in each detector around, but not coincident with the event.

From spectrograms, we determined that a glitch was present in the LIGO Hanford data 1.7–1.1 s before the event, in a frequency range between 15–30 Hz. The glitch is possibly related to the LIGO Hanford differential arm control loop (Aasi et al., 2015). This control loop leads to nonstationary noise from the high root-mean-square drive applied to the electrostatic drive actuator. This issue has been fixed in the second part of the fourth observing run (Vajente, 2024). This glitch was close to the event and within the time–frequency window used to infer the source properties, so BayesWave (Cornish & Littenberg, 2015; Cornish et al., 2021; Chatziioannou et al., 2021) was used to model simultaneously the compact binary signal and the glitch (Soni et al., 2025). We removed this non-Gaussianity from the data by subtracting a phenomenological, wavelet-based model of the excess power noise (Hourihane et al., 2022; Ghonge et al., 2024). The glitch-subtracted data successfully passed the validation process, which compares the residual noise to Gaussian noise  (Soni et al., 2025; Vazsonyi & Davis, 2023). Additional broadband non-stationary noise was present in the Hanford detector in the hours of data surrounding GW231123, but we found no evidence that this impacted the analysis of GW231123.

In LIGO Livingston data, a glitch was identified 3.0–2.0 s before the event, in a frequency range between 10–20 Hz. Given that LIGO Livingston had recurring low-frequency scattered light glitches (Soni et al., 2025), this glitch was likely caused by scattered light. We determined the time–frequency profile of the glitch to have no measurable effect on the GW231123 analysis, so the analyses from here on use the LIGO Livingston original data and the LIGO Hanford glitch-subtracted data.

4 Source properties

In the following, we describe the methods used to estimate the source properties (Section 4.1), and how we deal with the systematic differences in results from multiple signal models (Section 4.2). Having discussed our methods and sources of error, we present and discuss our estimates of the source properties in Section 4.3, and finally our waveform consistency checks (Section 4.4).

4.1 Methods

We report the properties of GW231123 assuming a non-eccentric BBH merger. We perform a coherent Bayesian analysis (Abbott et al., 2016a) of the LIGO Hanford and LIGO Livingston data around the time of GW231123. We calculate the likelihood using 8 s of data (6 s before and 2 s after the reported merger time of GW231123), and consider frequencies within the range 20–448 Hz. All analyses employ standard priors used in previous analyses (Abbott et al., 2021a, 2024a, 2023a), and we use a Planck 2015 ΛCDM\Lambda\mathrm{CDM} cosmology (Ade et al., 2016). The NRSur analysis employs a reduced prior mass range due to model constraints, mass ratios below 6:1. The other models employ a wider mass prior, mass ratios below \sim10:1, and no posterior support is found beyond the NRSur analysis. We characterize the detector noise via the median on-source power spectral density (PSD) produced from BayesWave (Cornish & Littenberg, 2015; Littenberg & Cornish, 2015). To sample the posterior distribution, we interface with dynesty (Speagle, 2020) via the bilby library (Ashton et al., 2019; Romero-Shaw et al., 2020b). We use 10001000 live points and the bilby-implemented acceptance-walk sampling algorithm. We verify that the results remain consistent when the number of live points is increased, as well as when we lower the frequency range to include data between 16–20 Hz.

4.2 Waveform Systematics

The source properties of GW231123 lie in a challenging region of parameter space for current waveform models, to such an extent that measurements using different models show significant disagreement, with multiple parameters failing to agree within 90% credible intervals. (See Appendix A for examples.) In general, our models are well within our observations’ accuracy requirements, and the level of model disagreement for GW231123 has not been seen in any previous LVK GW observation with moderate SNRs (>>12). All models show strong support for spins >>0.8, and since no theoretical signal model is calibrated to numerical-relativity (NR) waveforms from precessing binaries with spins above 0.8, waveform uncertainties are one possible cause of the measurement differences. Hence, before presenting the source properties, we describe how we quantify waveform-model uncertainties. We do not study in detail the impact of Gaussian noise fluctuations or low-SNR glitches that are difficult to identify and mitigate using the methods presented in Section 3.

We consider five state-of-the-art signal models, NRSur7dq4 (NRSur; Varma et al., 2019), SEOBNRv5PHM (v5PHM; Ramos-Buades et al., 2023a), IMRPhenomTPHM (TPHM; Estellés et al., 2022a), IMRPhenomXPHM (XPHM; Colleoni et al., 2025) and IMRPhenomXO4a (XO4a; Thompson et al., 2024). (More details are given in Appendix A.) The model papers referenced here include studies to assess the accuracy of these models across the BBH parameter space, but here we focus on the likely region of parameter space for this observation; high total mass, q=m2/m11/3q=m_{2}/m_{1}\geq 1/3, and moderate to high spins.

We quantify the models’ accuracy against NR results, including a set of simulations that extend up to spins of 0.95 (Boyle et al., 2019; Hamilton et al., 2024; Scheel et al., 2025). A standard waveform accuracy measure is the mismatch between two waveforms (Cutler & Flanagan, 1994), where waveform uncertainties will not bias a parameter measurement if the model’s mismatch uncertainty is less than χk2(1p)/(2ρ2)\chi^{2}_{k}(1-p)/(2\rho^{2}) (McWilliams et al., 2010; Baird et al., 2013), where ρ\rho is the SNR and χk2(1p)\chi_{k}^{2}(1-p) is the chi-square value for kk degrees of freedom at probability pp. For single-parameter measurements k=1k=1 provides a lower bound (Thompson et al., 2025), so the mismatch criterion for the 90% credible interval at ρ=22\rho=22 is 1.35/ρ2=0.00281.35/\rho^{2}=0.0028. Figure 2 reports the distribution of mismatches of each model against 1123 NR waveforms with q1/3q\geq 1/3, all scaled to the redshifted (detector-frame) total mass (1+z)M=300M(1+z)M=300\,M_{\odot}, at six equally spaced inclinations in cosι\cos\iota from ι=0\iota=0 to π/2\pi/2 inclusive. The mismatches are calculated for precessing systems (Schmidt et al., 2015; Harry et al., 2016) following the procedure described in Hamilton et al. (2021), maximising over time shifts, a global phase and template polarisation and optimising over in-plane spin rotations. A subset of the simulations come from the third release of the SXS catalog (Scheel et al., 2025) and contain GW memory, which introduces a constant late-time offset that we handle with a highpass filtering technique (Xu et al., 2024; Valencia et al., 2024; Chen et al., 2024) to mitigate possible artifacts in the Fourier domain. We employ the same PSD for the LIGO Livingston detector as utilised in the coherent Bayesian analysis. NRSur performs better than the other models (by roughly an order of magnitude for low-spin cases), and all other models have comparable accuracy. However, NRSur does not meet the conservative accuracy criterion for all cases, and for spins greater than 0.8 the mismatches are higher in 10% of 98 cases. Even if we apply a less conservative mismatch criterion from the literature (e.g., with k=7k=7 for non-eccentric binaries and p=0.67p=0.67 (Chatziioannou et al., 2017; Scheel et al., 2025) we have 0.0072) there are configurations where NRSur exceeds the criterion (2%). The relative accuracy of models is also not uniform across all cases, e.g., we find cases in which other models show comparable or improved performance relative to NRSur.

Refer to caption
Figure 2: Mismatch accuracy of the waveform models considered in this paper against 1123 NR simulations at a total mass of 300MM_{\odot} and a range of inclinations between ι=0\iota=0 and π/2\pi/2. The vertical dashed line at a mismatch of 0.0028 shows the conservative criterion discussed in the text.

To test whether these waveform uncertainties will incur biases, we performed our standard Bayesian parameter estimation analysis on a series of NR injections, as detailed in Appendix A. We observe that, while the five models considered here perform well for most signals, there are configurations where all models may incur biases for massive high-spin signals. We also find that the relative performance of each model can change in the presence of Gaussian noise, although this requires more detailed study in future work. To properly correct for this, we would ideally marginalise over waveform uncertainties or incorporate model accuracy into Bayesian analyses  (Read, 2023; Khan, 2024; Hoy et al., 2024; Pompili et al., 2024; Kumar et al., 2025; Mezzasoma et al., 2025). Without access to a model of the waveform-model uncertainties, we follow what has been done previously (Abbott et al., 2016a) and combine the results from multiple models to marginalise over the model uncertainties. In choosing models in addition to NRSur, we note that all other models exhibit a comparable range of mismatches, and no model is clearly preferred in our injection studies, and so we include all five state-of-the-art models. We combine posterior results inferred from NRSur, v5PHM, TPHM, XPHM, XO4a with equal weight and report the combined samples throughout this paper. To illustrate the variation between the combined results and single models, in some figures we also show the NRSur results. In some analyses we expect the choice of model to have little impact, e.g., the detection significance study in Section 2, and in these cases, we use only the NRSur samples.

4.3 Inference

Our Bayesian analysis indicates that GW231123 was produced from a high-mass compact binary merger with highly spinning components. We infer individual source component masses m1=\IfEqCaseGW231123cgcombinedGW231123cgcombined137GW231123cgnrsur129GW231123cgxphm150GW231123cgxo4a143GW231123cgtphm133GW231123cgseob134\IfEqCaseGW231123cgcombinedGW231123cgcombined17GW231123cgnrsur14GW231123cgxphm12GW231123cgxo4a14GW231123cgtphm12GW231123cgseob14+\IfEqCaseGW231123cgcombinedGW231123cgcombined22GW231123cgnrsur15GW231123cgxphm12GW231123cgxo4a24GW231123cgtphm17GW231123cgseob19Mm_{1}=\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{137}{GW231123cg_{n}rsur}{129}{GW231123cg_{x}phm}{150}{GW231123cg_{x}o4a}{143}{GW231123cg_{t}phm}{133}{GW231123cg_{s}eob}{134}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{22}{GW231123cg_{n}rsur}{15}{GW231123cg_{x}phm}{12}{GW231123cg_{x}o4a}{24}{GW231123cg_{t}phm}{17}{GW231123cg_{s}eob}{19}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{17}{GW231123cg_{n}rsur}{14}{GW231123cg_{x}phm}{12}{GW231123cg_{x}o4a}{14}{GW231123cg_{t}phm}{12}{GW231123cg_{s}eob}{14}}}\,M_{\odot} and m2=\IfEqCaseGW231123cgcombinedGW231123cgcombined103GW231123cgnrsur111GW231123cgxphm93GW231123cgxo4a55GW231123cgtphm110GW231123cgseob111\IfEqCaseGW231123cgcombinedGW231123cgcombined52GW231123cgnrsur17GW231123cgxphm20GW231123cgxo4a18GW231123cgtphm15GW231123cgseob19+\IfEqCaseGW231123cgcombinedGW231123cgcombined20GW231123cgnrsur14GW231123cgxphm18GW231123cgxo4a11GW231123cgtphm15GW231123cgseob16Mm_{2}=\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{103}{GW231123cg_{n}rsur}{111}{GW231123cg_{x}phm}{93}{GW231123cg_{x}o4a}{55}{GW231123cg_{t}phm}{110}{GW231123cg_{s}eob}{111}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{20}{GW231123cg_{n}rsur}{14}{GW231123cg_{x}phm}{18}{GW231123cg_{x}o4a}{11}{GW231123cg_{t}phm}{15}{GW231123cg_{s}eob}{16}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{52}{GW231123cg_{n}rsur}{17}{GW231123cg_{x}phm}{20}{GW231123cg_{x}o4a}{18}{GW231123cg_{t}phm}{15}{GW231123cg_{s}eob}{19}}}\,M_{\odot} with spin magnitudes χ1=\IfEqCaseGW231123cgcombinedGW231123cgcombined0.90GW231123cgnrsur0.89GW231123cgxphm0.79GW231123cgxo4a0.92GW231123cgtphm0.92GW231123cgseob0.91\IfEqCaseGW231123cgcombinedGW231123cgcombined0.19GW231123cgnrsur0.20GW231123cgxphm0.20GW231123cgxo4a0.06GW231123cgtphm0.13GW231123cgseob0.16+\IfEqCaseGW231123cgcombinedGW231123cgcombined0.10GW231123cgnrsur0.11GW231123cgxphm0.21GW231123cgxo4a0.07GW231123cgtphm0.08GW231123cgseob0.09\chi_{1}=\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.90}{GW231123cg_{n}rsur}{0.89}{GW231123cg_{x}phm}{0.79}{GW231123cg_{x}o4a}{0.92}{GW231123cg_{t}phm}{0.92}{GW231123cg_{s}eob}{0.91}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.10}{GW231123cg_{n}rsur}{0.11}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.07}{GW231123cg_{t}phm}{0.08}{GW231123cg_{s}eob}{0.09}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.19}{GW231123cg_{n}rsur}{0.20}{GW231123cg_{x}phm}{0.20}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.13}{GW231123cg_{s}eob}{0.16}}} and χ2=\IfEqCaseGW231123cgcombinedGW231123cgcombined0.80GW231123cgnrsur0.91GW231123cgxphm0.68GW231123cgxo4a0.47GW231123cgtphm0.88GW231123cgseob0.81\IfEqCaseGW231123cgcombinedGW231123cgcombined0.51GW231123cgnrsur0.19GW231123cgxphm0.46GW231123cgxo4a0.47GW231123cgtphm0.23GW231123cgseob0.35+\IfEqCaseGW231123cgcombinedGW231123cgcombined0.20GW231123cgnrsur0.09GW231123cgxphm0.32GW231123cgxo4a0.41GW231123cgtphm0.12GW231123cgseob0.19\chi_{2}=\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.80}{GW231123cg_{n}rsur}{0.91}{GW231123cg_{x}phm}{0.68}{GW231123cg_{x}o4a}{0.47}{GW231123cg_{t}phm}{0.88}{GW231123cg_{s}eob}{0.81}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.20}{GW231123cg_{n}rsur}{0.09}{GW231123cg_{x}phm}{0.32}{GW231123cg_{x}o4a}{0.41}{GW231123cg_{t}phm}{0.12}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.51}{GW231123cg_{n}rsur}{0.19}{GW231123cg_{x}phm}{0.46}{GW231123cg_{x}o4a}{0.47}{GW231123cg_{t}phm}{0.23}{GW231123cg_{s}eob}{0.35}}}. We present a summary of the key source properties of GW231123 in Table 2. Unless otherwise stated, we report all mass measurements in the source frame.

{ruledtabular}
Table 2: Source properties of GW231123.
Primary mass m1/Mm_{1}/\text{M}_{\odot} \IfEqCaseGW231123cgcombinedGW231123cgcombined137GW231123cgnrsur129GW231123cgxphm150GW231123cgxo4a143GW231123cgtphm133GW231123cgseob134\IfEqCaseGW231123cgcombinedGW231123cgcombined17GW231123cgnrsur14GW231123cgxphm12GW231123cgxo4a14GW231123cgtphm12GW231123cgseob14+\IfEqCaseGW231123cgcombinedGW231123cgcombined22GW231123cgnrsur15GW231123cgxphm12GW231123cgxo4a24GW231123cgtphm17GW231123cgseob19\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{137}{GW231123cg_{n}rsur}{129}{GW231123cg_{x}phm}{150}{GW231123cg_{x}o4a}{143}{GW231123cg_{t}phm}{133}{GW231123cg_{s}eob}{134}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{22}{GW231123cg_{n}rsur}{15}{GW231123cg_{x}phm}{12}{GW231123cg_{x}o4a}{24}{GW231123cg_{t}phm}{17}{GW231123cg_{s}eob}{19}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{17}{GW231123cg_{n}rsur}{14}{GW231123cg_{x}phm}{12}{GW231123cg_{x}o4a}{14}{GW231123cg_{t}phm}{12}{GW231123cg_{s}eob}{14}}}
Secondary mass m2/Mm_{2}/\text{M}_{\odot} \IfEqCaseGW231123cgcombinedGW231123cgcombined103GW231123cgnrsur111GW231123cgxphm93GW231123cgxo4a55GW231123cgtphm110GW231123cgseob111\IfEqCaseGW231123cgcombinedGW231123cgcombined52GW231123cgnrsur17GW231123cgxphm20GW231123cgxo4a18GW231123cgtphm15GW231123cgseob19+\IfEqCaseGW231123cgcombinedGW231123cgcombined20GW231123cgnrsur14GW231123cgxphm18GW231123cgxo4a11GW231123cgtphm15GW231123cgseob16\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{103}{GW231123cg_{n}rsur}{111}{GW231123cg_{x}phm}{93}{GW231123cg_{x}o4a}{55}{GW231123cg_{t}phm}{110}{GW231123cg_{s}eob}{111}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{20}{GW231123cg_{n}rsur}{14}{GW231123cg_{x}phm}{18}{GW231123cg_{x}o4a}{11}{GW231123cg_{t}phm}{15}{GW231123cg_{s}eob}{16}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{52}{GW231123cg_{n}rsur}{17}{GW231123cg_{x}phm}{20}{GW231123cg_{x}o4a}{18}{GW231123cg_{t}phm}{15}{GW231123cg_{s}eob}{19}}}
Mass ratio q=m2/m1q=m_{2}/m_{1} \IfEqCaseGW231123cgcombinedGW231123cgcombined0.75GW231123cgnrsur0.86GW231123cgxphm0.62GW231123cgxo4a0.39GW231123cgtphm0.82GW231123cgseob0.83\IfEqCaseGW231123cgcombinedGW231123cgcombined0.39GW231123cgnrsur0.11GW231123cgxphm0.13GW231123cgxo4a0.15GW231123cgtphm0.13GW231123cgseob0.14+\IfEqCaseGW231123cgcombinedGW231123cgcombined0.22GW231123cgnrsur0.14GW231123cgxphm0.12GW231123cgxo4a0.07GW231123cgtphm0.15GW231123cgseob0.17\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.75}{GW231123cg_{n}rsur}{0.86}{GW231123cg_{x}phm}{0.62}{GW231123cg_{x}o4a}{0.39}{GW231123cg_{t}phm}{0.82}{GW231123cg_{s}eob}{0.83}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.22}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.12}{GW231123cg_{x}o4a}{0.07}{GW231123cg_{t}phm}{0.15}{GW231123cg_{s}eob}{0.17}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.11}{GW231123cg_{x}phm}{0.13}{GW231123cg_{x}o4a}{0.15}{GW231123cg_{t}phm}{0.13}{GW231123cg_{s}eob}{0.14}}}
Total mass M/MM/\text{M}_{\odot} \IfEqCaseGW231123cgcombinedGW231123cgcombined238GW231123cgnrsur241GW231123cgxphm243GW231123cgxo4a198GW231123cgtphm243GW231123cgseob244\IfEqCaseGW231123cgcombinedGW231123cgcombined49GW231123cgnrsur27GW231123cgxphm26GW231123cgxo4a17GW231123cgtphm17GW231123cgseob21+\IfEqCaseGW231123cgcombinedGW231123cgcombined28GW231123cgnrsur20GW231123cgxphm25GW231123cgxo4a29GW231123cgtphm27GW231123cgseob29\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{238}{GW231123cg_{n}rsur}{241}{GW231123cg_{x}phm}{243}{GW231123cg_{x}o4a}{198}{GW231123cg_{t}phm}{243}{GW231123cg_{s}eob}{244}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{28}{GW231123cg_{n}rsur}{20}{GW231123cg_{x}phm}{25}{GW231123cg_{x}o4a}{29}{GW231123cg_{t}phm}{27}{GW231123cg_{s}eob}{29}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{49}{GW231123cg_{n}rsur}{27}{GW231123cg_{x}phm}{26}{GW231123cg_{x}o4a}{17}{GW231123cg_{t}phm}{17}{GW231123cg_{s}eob}{21}}}
Final mass Mf/MM_{\rm{f}}/\text{M}_{\odot} \IfEqCaseGW231123cgcombinedGW231123cgcombined225GW231123cgnrsur227GW231123cgxphm233GW231123cgxo4a190GW231123cgtphm227GW231123cgseob228\IfEqCaseGW231123cgcombinedGW231123cgcombined43GW231123cgnrsur28GW231123cgxphm24GW231123cgxo4a17GW231123cgtphm16GW231123cgseob20+\IfEqCaseGW231123cgcombinedGW231123cgcombined26GW231123cgnrsur18GW231123cgxphm23GW231123cgxo4a28GW231123cgtphm25GW231123cgseob27\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{225}{GW231123cg_{n}rsur}{227}{GW231123cg_{x}phm}{233}{GW231123cg_{x}o4a}{190}{GW231123cg_{t}phm}{227}{GW231123cg_{s}eob}{228}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{26}{GW231123cg_{n}rsur}{18}{GW231123cg_{x}phm}{23}{GW231123cg_{x}o4a}{28}{GW231123cg_{t}phm}{25}{GW231123cg_{s}eob}{27}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{43}{GW231123cg_{n}rsur}{28}{GW231123cg_{x}phm}{24}{GW231123cg_{x}o4a}{17}{GW231123cg_{t}phm}{16}{GW231123cg_{s}eob}{20}}}
Primary spin magnitude χ1\chi_{1} \IfEqCaseGW231123cgcombinedGW231123cgcombined0.90GW231123cgnrsur0.89GW231123cgxphm0.79GW231123cgxo4a0.92GW231123cgtphm0.92GW231123cgseob0.91\IfEqCaseGW231123cgcombinedGW231123cgcombined0.19GW231123cgnrsur0.20GW231123cgxphm0.20GW231123cgxo4a0.06GW231123cgtphm0.13GW231123cgseob0.16+\IfEqCaseGW231123cgcombinedGW231123cgcombined0.10GW231123cgnrsur0.11GW231123cgxphm0.21GW231123cgxo4a0.07GW231123cgtphm0.08GW231123cgseob0.09\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.90}{GW231123cg_{n}rsur}{0.89}{GW231123cg_{x}phm}{0.79}{GW231123cg_{x}o4a}{0.92}{GW231123cg_{t}phm}{0.92}{GW231123cg_{s}eob}{0.91}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.10}{GW231123cg_{n}rsur}{0.11}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.07}{GW231123cg_{t}phm}{0.08}{GW231123cg_{s}eob}{0.09}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.19}{GW231123cg_{n}rsur}{0.20}{GW231123cg_{x}phm}{0.20}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.13}{GW231123cg_{s}eob}{0.16}}}
Secondary spin magnitude χ2\chi_{2} \IfEqCaseGW231123cgcombinedGW231123cgcombined0.80GW231123cgnrsur0.91GW231123cgxphm0.68GW231123cgxo4a0.47GW231123cgtphm0.88GW231123cgseob0.81\IfEqCaseGW231123cgcombinedGW231123cgcombined0.51GW231123cgnrsur0.19GW231123cgxphm0.46GW231123cgxo4a0.47GW231123cgtphm0.23GW231123cgseob0.35+\IfEqCaseGW231123cgcombinedGW231123cgcombined0.20GW231123cgnrsur0.09GW231123cgxphm0.32GW231123cgxo4a0.41GW231123cgtphm0.12GW231123cgseob0.19\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.80}{GW231123cg_{n}rsur}{0.91}{GW231123cg_{x}phm}{0.68}{GW231123cg_{x}o4a}{0.47}{GW231123cg_{t}phm}{0.88}{GW231123cg_{s}eob}{0.81}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.20}{GW231123cg_{n}rsur}{0.09}{GW231123cg_{x}phm}{0.32}{GW231123cg_{x}o4a}{0.41}{GW231123cg_{t}phm}{0.12}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.51}{GW231123cg_{n}rsur}{0.19}{GW231123cg_{x}phm}{0.46}{GW231123cg_{x}o4a}{0.47}{GW231123cg_{t}phm}{0.23}{GW231123cg_{s}eob}{0.35}}}
Effective inspiral spin χeff\chi_{\rm eff} \IfEqCaseGW231123cgcombinedGW231123cgcombined0.31GW231123cgnrsur0.23GW231123cgxphm0.04GW231123cgxo4a0.30GW231123cgtphm0.44GW231123cgseob0.44\IfEqCaseGW231123cgcombinedGW231123cgcombined0.39GW231123cgnrsur0.35GW231123cgxphm0.21GW231123cgxo4a0.16GW231123cgtphm0.17GW231123cgseob0.23+\IfEqCaseGW231123cgcombinedGW231123cgcombined0.24GW231123cgnrsur0.25GW231123cgxphm0.15GW231123cgxo4a0.20GW231123cgtphm0.14GW231123cgseob0.19\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.31}{GW231123cg_{n}rsur}{0.23}{GW231123cg_{x}phm}{0.04}{GW231123cg_{x}o4a}{0.30}{GW231123cg_{t}phm}{0.44}{GW231123cg_{s}eob}{0.44}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.24}{GW231123cg_{n}rsur}{0.25}{GW231123cg_{x}phm}{0.15}{GW231123cg_{x}o4a}{0.20}{GW231123cg_{t}phm}{0.14}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.35}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.16}{GW231123cg_{t}phm}{0.17}{GW231123cg_{s}eob}{0.23}}}
Effective precessing spin χp\chi_{\rm p} \IfEqCaseGW231123cgcombinedGW231123cgcombined0.77GW231123cgnrsur0.78GW231123cgxphm0.75GW231123cgxo4a0.82GW231123cgtphm0.77GW231123cgseob0.73\IfEqCaseGW231123cgcombinedGW231123cgcombined0.19GW231123cgnrsur0.16GW231123cgxphm0.22GW231123cgxo4a0.12GW231123cgtphm0.17GW231123cgseob0.20+\IfEqCaseGW231123cgcombinedGW231123cgcombined0.17GW231123cgnrsur0.19GW231123cgxphm0.21GW231123cgxo4a0.09GW231123cgtphm0.16GW231123cgseob0.19\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.77}{GW231123cg_{n}rsur}{0.78}{GW231123cg_{x}phm}{0.75}{GW231123cg_{x}o4a}{0.82}{GW231123cg_{t}phm}{0.77}{GW231123cg_{s}eob}{0.73}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.17}{GW231123cg_{n}rsur}{0.19}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.09}{GW231123cg_{t}phm}{0.16}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.19}{GW231123cg_{n}rsur}{0.16}{GW231123cg_{x}phm}{0.22}{GW231123cg_{x}o4a}{0.12}{GW231123cg_{t}phm}{0.17}{GW231123cg_{s}eob}{0.20}}}
Final spin χf\chi_{\rm f} \IfEqCaseGW231123cgcombinedGW231123cgcombined0.84GW231123cgnrsur0.81GW231123cgxphm0.71GW231123cgxo4a0.85GW231123cgtphm0.89GW231123cgseob0.87\IfEqCaseGW231123cgcombinedGW231123cgcombined0.16GW231123cgnrsur0.14GW231123cgxphm0.09GW231123cgxo4a0.06GW231123cgtphm0.04GW231123cgseob0.05+\IfEqCaseGW231123cgcombinedGW231123cgcombined0.08GW231123cgnrsur0.06GW231123cgxphm0.07GW231123cgxo4a0.06GW231123cgtphm0.03GW231123cgseob0.05\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.84}{GW231123cg_{n}rsur}{0.81}{GW231123cg_{x}phm}{0.71}{GW231123cg_{x}o4a}{0.85}{GW231123cg_{t}phm}{0.89}{GW231123cg_{s}eob}{0.87}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.08}{GW231123cg_{n}rsur}{0.06}{GW231123cg_{x}phm}{0.07}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.03}{GW231123cg_{s}eob}{0.05}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.16}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.09}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.04}{GW231123cg_{s}eob}{0.05}}}
Luminosity distance DL/GpcD_{\rm L}/\rm{Gpc} \IfEqCaseGW231123cgcombinedGW231123cgcombined2.2GW231123cgnrsur1.5GW231123cgxphm0.8GW231123cgxo4a3.5GW231123cgtphm2.7GW231123cgseob2.2\IfEqCaseGW231123cgcombinedGW231123cgcombined1.5GW231123cgnrsur0.8GW231123cgxphm0.3GW231123cgxo4a1.4GW231123cgtphm1.0GW231123cgseob1.0+\IfEqCaseGW231123cgcombinedGW231123cgcombined1.9GW231123cgnrsur1.5GW231123cgxphm0.4GW231123cgxo4a1.2GW231123cgtphm1.1GW231123cgseob1.2\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{2.2}{GW231123cg_{n}rsur}{1.5}{GW231123cg_{x}phm}{0.8}{GW231123cg_{x}o4a}{3.5}{GW231123cg_{t}phm}{2.7}{GW231123cg_{s}eob}{2.2}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{1.9}{GW231123cg_{n}rsur}{1.5}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{1.2}{GW231123cg_{t}phm}{1.1}{GW231123cg_{s}eob}{1.2}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{1.5}{GW231123cg_{n}rsur}{0.8}{GW231123cg_{x}phm}{0.3}{GW231123cg_{x}o4a}{1.4}{GW231123cg_{t}phm}{1.0}{GW231123cg_{s}eob}{1.0}}}
Inclination angle θJN/rad\theta_{\mathrm{JN}}/\rm{rad} \IfEqCaseGW231123cgcombinedGW231123cgcombined1.4GW231123cgnrsur1.8GW231123cgxphm1.6GW231123cgxo4a0.5GW231123cgtphm1.8GW231123cgseob1.9\IfEqCaseGW231123cgcombinedGW231123cgcombined1.1GW231123cgnrsur0.8GW231123cgxphm0.4GW231123cgxo4a0.3GW231123cgtphm0.9GW231123cgseob0.9+\IfEqCaseGW231123cgcombinedGW231123cgcombined0.8GW231123cgnrsur0.3GW231123cgxphm0.4GW231123cgxo4a2.0GW231123cgtphm0.4GW231123cgseob0.3\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{1.4}{GW231123cg_{n}rsur}{1.8}{GW231123cg_{x}phm}{1.6}{GW231123cg_{x}o4a}{0.5}{GW231123cg_{t}phm}{1.8}{GW231123cg_{s}eob}{1.9}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.8}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{2.0}{GW231123cg_{t}phm}{0.4}{GW231123cg_{s}eob}{0.3}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{1.1}{GW231123cg_{n}rsur}{0.8}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{0.3}{GW231123cg_{t}phm}{0.9}{GW231123cg_{s}eob}{0.9}}}
Source redshift zz \IfEqCaseGW231123cgcombinedGW231123cgcombined0.39GW231123cgnrsur0.29GW231123cgxphm0.17GW231123cgxo4a0.58GW231123cgtphm0.47GW231123cgseob0.39\IfEqCaseGW231123cgcombinedGW231123cgcombined0.24GW231123cgnrsur0.14GW231123cgxphm0.06GW231123cgxo4a0.20GW231123cgtphm0.16GW231123cgseob0.16+\IfEqCaseGW231123cgcombinedGW231123cgcombined0.27GW231123cgnrsur0.23GW231123cgxphm0.06GW231123cgxo4a0.16GW231123cgtphm0.15GW231123cgseob0.18\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.29}{GW231123cg_{x}phm}{0.17}{GW231123cg_{x}o4a}{0.58}{GW231123cg_{t}phm}{0.47}{GW231123cg_{s}eob}{0.39}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.27}{GW231123cg_{n}rsur}{0.23}{GW231123cg_{x}phm}{0.06}{GW231123cg_{x}o4a}{0.16}{GW231123cg_{t}phm}{0.15}{GW231123cg_{s}eob}{0.18}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.24}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.06}{GW231123cg_{x}o4a}{0.20}{GW231123cg_{t}phm}{0.16}{GW231123cg_{s}eob}{0.16}}}
Network matched filter SNR ρ\rho \IfEqCaseGW231123cgcombinedGW231123cgcombined22.6GW231123cgnrsur22.6GW231123cgxphm22.4GW231123cgxo4a22.7GW231123cgtphm22.7GW231123cgseob22.6\IfEqCaseGW231123cgcombinedGW231123cgcombined0.3GW231123cgnrsur0.3GW231123cgxphm0.3GW231123cgxo4a0.2GW231123cgtphm0.2GW231123cgseob0.2+\IfEqCaseGW231123cgcombinedGW231123cgcombined0.2GW231123cgnrsur0.3GW231123cgxphm0.2GW231123cgxo4a0.1GW231123cgtphm0.1GW231123cgseob0.1\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{22.6}{GW231123cg_{n}rsur}{22.6}{GW231123cg_{x}phm}{22.4}{GW231123cg_{x}o4a}{22.7}{GW231123cg_{t}phm}{22.7}{GW231123cg_{s}eob}{22.6}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.2}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.2}{GW231123cg_{x}o4a}{0.1}{GW231123cg_{t}phm}{0.1}{GW231123cg_{s}eob}{0.1}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.3}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.3}{GW231123cg_{x}o4a}{0.2}{GW231123cg_{t}phm}{0.2}{GW231123cg_{s}eob}{0.2}}}

Although we observe differences depending on the model, the primary and secondary component masses nevertheless have a significant probability of lying within the mass gap from (pulsational) pair-instability supernova (PISN) processes, as shown in Figure 3, where we assume a nominal gap ranging from \sim60–130 MM_{\odot} (see Section 6 for a detailed discussion). The binary’s total mass is constrained to be within \IfEqCaseGW231123cg_combinedGW231123cg_combined189GW231123cg_nrsur214GW231123cg_xphm217GW231123cg_xo4a181GW231123cg_tphm225GW231123cg_seob222–\IfEqCaseGW231123cg_combinedGW231123cg_combined266GW231123cg_nrsur261GW231123cg_xphm268GW231123cg_xo4a226GW231123cg_tphm270GW231123cg_seob273 MM_{\odot}. This measurement exceeds the 95th percentile of the inferred total mass from GW190521 (Abbott et al., 2023a). Assuming a FAR threshold of one per year, similar to Abbott et al. (2023b), the source of GW231123 is the highest mass BBH observed by the LVK to date; other lower significance high-mass observations have been discussed in Abbott et al. (2024a); Wadekar et al. (2023); Williams (2025); Ruiz-Rocha et al. (2025).

Refer to caption
Figure 3: The posterior distribution of the primary and secondary source masses. We show the posterior distribution resulting from equally combining samples from five waveform models that include precession and higher-order multipoles (purple). We separately show the posterior distribution obtained with NRSur (green dash dot). We compare against estimates for the source frame masses of GW190521 (red solid, Abbott et al., 2020d, e, 2023a). Each contour, as well as the colored horizontal and vertical lines, shows the 90% credible intervals. In blue dashed we show the posterior predictive distribution for the largest BH mass mmaxobsm_{\mathrm{max}}^{\mathrm{obs}} in mock catalogs similar to GWTC-3 (Abbott et al., 2023a, b); see Section 6. The solid orange bands show the putative mass gap from (pulsational) pair instability from 60–130 MM_{\odot}.

We consistently infer that both BH are highly spinning independent of the model we use. As shown in Figure 4, we infer that the primary spin magnitude χ10.7\chi_{1}\geq 0.7 at \IfEqCaseGW231123cgcombinedGW231123cgcombined91GW231123cgnrsur89GW231123cgxphm73GW231123cgxo4a100GW231123cgtphm97GW231123cgseob95%\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{91}{GW231123cg_{n}rsur}{89}{GW231123cg_{x}phm}{73}{GW231123cg_{x}o4a}{100}{GW231123cg_{t}phm}{97}{GW231123cg_{s}eob}{95}}\% probability and the secondary spin magnitude χ20.7\chi_{2}\geq 0.7 at \IfEqCaseGW231123cgcombinedGW231123cgcombined64GW231123cgnrsur91GW231123cgxphm47GW231123cgxo4a27GW231123cgtphm85GW231123cgseob69%\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{64}{GW231123cg_{n}rsur}{91}{GW231123cg_{x}phm}{47}{GW231123cg_{x}o4a}{27}{GW231123cg_{t}phm}{85}{GW231123cg_{s}eob}{69}}\% probability. The primary component of GW231123 has one of the highest confidently measured BH spins observed through GW(evidence for highly spinning BH has also been presented in Hannam et al., 2022; Nitz et al., 2020; Abbott et al., 2024a, 2023a; Wadekar et al., 2023; Williams, 2025).

Refer to caption
Figure 4: The posterior distribution of the primary and secondary spin magnitudes. We show the posterior distribution based on the combined samples (purple) and from the NRSur7dq4 waveform model (NRSur, green dash dot). Each contour, as well as the colored horizontal and vertical lines, shows the 90% credible intervals.

We are unable to reliably infer the spin orientation of the binary; we infer polar angles between each spin vector and the orbital angular momentum that vary not only between models, but also when independently analysing data obtained by LIGO Livingston compared to LIGO Hanford, see Appendix B. To understand these differences, we carried out a series of analyses with different frequency ranges. We found that all models consistently infer greater support for spin components aligned with the orbital angular momentum when independently analysing LIGO Hanford data, and when excluding data from LIGO Livingston below 50Hz50\,\mathrm{Hz}. When spin misalignment is inferred, we are unable to conclusively constrain the spin orientation away from aligned.

The uncertainty in the spin misalignment affects the inferred effective inspiral spin χeff\chi_{\mathrm{eff}}, which parameterizes the spin aligned with the orbital angular momentum (Santamaria et al., 2010; Ajith et al., 2011). Negative χeff\chi_{\mathrm{eff}} would imply that at least one spin is misaligned with the orbital angular momentum by more than ninety degrees. We cannot rule out χeff<0\chi_{\mathrm{eff}}<0, but there is an \IfEqCaseGW231123cgcombinedGW231123cgcombined89GW231123cgnrsur81GW231123cgxphm64GW231123cgxo4a100GW231123cgtphm100GW231123cgseob100%\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{89}{GW231123cg_{n}rsur}{81}{GW231123cg_{x}phm}{64}{GW231123cg_{x}o4a}{100}{GW231123cg_{t}phm}{100}{GW231123cg_{s}eob}{100}}\% probability that χeff\chi_{\mathrm{eff}} is positive. The inferred effective precessing spin (Schmidt et al., 2015) is consistently measured between models and deviates from the prior, χp=\IfEqCaseGW231123cgcombinedGW231123cgcombined0.77GW231123cgnrsur0.78GW231123cgxphm0.75GW231123cgxo4a0.82GW231123cgtphm0.77GW231123cgseob0.73\IfEqCaseGW231123cgcombinedGW231123cgcombined0.19GW231123cgnrsur0.16GW231123cgxphm0.22GW231123cgxo4a0.12GW231123cgtphm0.17GW231123cgseob0.20+\IfEqCaseGW231123cgcombinedGW231123cgcombined0.17GW231123cgnrsur0.19GW231123cgxphm0.21GW231123cgxo4a0.09GW231123cgtphm0.16GW231123cgseob0.19\chi_{\mathrm{p}}=\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.77}{GW231123cg_{n}rsur}{0.78}{GW231123cg_{x}phm}{0.75}{GW231123cg_{x}o4a}{0.82}{GW231123cg_{t}phm}{0.77}{GW231123cg_{s}eob}{0.73}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.17}{GW231123cg_{n}rsur}{0.19}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.09}{GW231123cg_{t}phm}{0.16}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.19}{GW231123cg_{n}rsur}{0.16}{GW231123cg_{x}phm}{0.22}{GW231123cg_{x}o4a}{0.12}{GW231123cg_{t}phm}{0.17}{GW231123cg_{s}eob}{0.20}}}. Although we infer variation between models, we consistently obtain large log10\log_{10} Bayes factors (5–10) in favour of precession. Since the distribution of Bayes factors from noise alone is unknown, we additionally quantify the evidence for precession in GW231123 by computing the precession SNR, ρp\rho_{\mathrm{p}} (Fairhurst et al., 2020a, b). In the absence of any precession in the signal, we expect ρp<2.1\rho_{\mathrm{p}}<2.1 in 90% of cases. We infer an SNR of ρp=2.11.3+5.4\rho_{\mathrm{p}}=2.1^{+5.4}_{-1.3}. Although the high SNR tail is consistent with the large Bayes factors (Green et al., 2021; Pratten et al., 2020b), we infer non-negligible support below ρp=2.1\rho_{\mathrm{p}}=2.1. We are therefore unable to confidently claim precession in GW231123. GW190521 was also found to exhibit mild evidence for spin-precession (Abbott et al., 2020d, e).

We observe significant differences in the inferred luminosity distance and inclination angle of GW231123’s source, depending on the model, although most models infer comparable probabilities for face-on vs face-off (θJN=0\theta_{\rm JN}=0 and θJN=π\theta_{\rm JN}=\pi) configurations. We also infer substantial variation in the detector-frame quantities, despite seeing agreement between several models in the source-frame parameters. See Appendix A for a detailed discussion. Owing to disagreements in the inferred inclination angle of the binary, we similarly observe differences in the inferred higher-order multipole SNRs from each model. Following the methodology in Abbott et al. (2020f, g), where for each multipole the IMRPhenomXHM signal model (Garc´ıa-Quirós et al., 2020) is used to remove any contribution parallel to the dominant multipole and to calculate the orthogonal optimal SNR (Mills & Fairhurst, 2021), we nevertheless find that all models provide support for the (,m)=(3,3)(\ell,m)=(3,3) multipole in GW231123. We infer an average orthogonal optimal SNR of \IfEqCaseGW231123cgcombinedGW231123cgcombined3.3GW231123cgnrsur2.6GW231123cgxphm10.7GW231123cgxo4a4.0GW231123cgtphm2.0GW231123cgseob2.5\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{3.3}{GW231123cg_{n}rsur}{2.6}{GW231123cg_{x}phm}{10.7}{GW231123cg_{x}o4a}{4.0}{GW231123cg_{t}phm}{2.0}{GW231123cg_{s}eob}{2.5}} when combining the results from all models with equal weight.

The properties of the remnant BH are estimated in different ways depending on the model. We apply the NRSur7dq4Remnant model (Varma et al., 2019) to the samples obtained by NRSur, and we average several fits calibrated to numerical relativity simulations (Hofmann et al., 2016; Healy & Lousto, 2017; Jiménez-Forteza et al., 2017) for samples obtained by v5PHM, TPHM, XPHM, XO4a. When combining the results with equal weight, we infer the final mass and spin of the remnant BH to be Mf=\IfEqCaseGW231123cgcombinedGW231123cgcombined225GW231123cgnrsur227GW231123cgxphm233GW231123cgxo4a190GW231123cgtphm227GW231123cgseob228\IfEqCaseGW231123cgcombinedGW231123cgcombined43GW231123cgnrsur28GW231123cgxphm24GW231123cgxo4a17GW231123cgtphm16GW231123cgseob20+\IfEqCaseGW231123cgcombinedGW231123cgcombined26GW231123cgnrsur18GW231123cgxphm23GW231123cgxo4a28GW231123cgtphm25GW231123cgseob27MM_{\mathrm{f}}=\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{225}{GW231123cg_{n}rsur}{227}{GW231123cg_{x}phm}{233}{GW231123cg_{x}o4a}{190}{GW231123cg_{t}phm}{227}{GW231123cg_{s}eob}{228}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{26}{GW231123cg_{n}rsur}{18}{GW231123cg_{x}phm}{23}{GW231123cg_{x}o4a}{28}{GW231123cg_{t}phm}{25}{GW231123cg_{s}eob}{27}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{43}{GW231123cg_{n}rsur}{28}{GW231123cg_{x}phm}{24}{GW231123cg_{x}o4a}{17}{GW231123cg_{t}phm}{16}{GW231123cg_{s}eob}{20}}}\,M_{\odot} and χf=\IfEqCaseGW231123cgcombinedGW231123cgcombined0.84GW231123cgnrsur0.81GW231123cgxphm0.71GW231123cgxo4a0.85GW231123cgtphm0.89GW231123cgseob0.87\IfEqCaseGW231123cgcombinedGW231123cgcombined0.16GW231123cgnrsur0.14GW231123cgxphm0.09GW231123cgxo4a0.06GW231123cgtphm0.04GW231123cgseob0.05+\IfEqCaseGW231123cgcombinedGW231123cgcombined0.08GW231123cgnrsur0.06GW231123cgxphm0.07GW231123cgxo4a0.06GW231123cgtphm0.03GW231123cgseob0.05\chi_{\mathrm{f}}=\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.84}{GW231123cg_{n}rsur}{0.81}{GW231123cg_{x}phm}{0.71}{GW231123cg_{x}o4a}{0.85}{GW231123cg_{t}phm}{0.89}{GW231123cg_{s}eob}{0.87}}^{+\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.08}{GW231123cg_{n}rsur}{0.06}{GW231123cg_{x}phm}{0.07}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.03}{GW231123cg_{s}eob}{0.05}}}_{-\IfEqCase{GW231123cg_{c}ombined}{{GW231123cg_{c}ombined}{0.16}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.09}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.04}{GW231123cg_{s}eob}{0.05}}} respectively. For certain binary configurations, the remnant BH may receive a recoil velocity that is enough to eject the remnant from its host galaxy (Merritt et al., 2004). We infer a measurement of the remnant BH’s recoil velocity that differs from the effective prior distribution: vf=\IfEqCaseGW231123cgnrsurGW231123cgnrsur967\IfEqCaseGW231123cgnrsurGW231123cgnrsur857+\IfEqCaseGW231123cgnrsurGW231123cgnrsur829kms1v_{\mathrm{f}}=\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{n}rsur}{967}}^{+\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{n}rsur}{829}}}_{-\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{n}rsur}{857}}}\,\mathrm{km}\,\mathrm{s}^{-1}. This measurement is based on the NRSur analysis and the NRSur7dq4Remnant remnant model, the only fit providing recoil velocities estimates (Varma et al., 2019, 2020).

4.4 Waveform Consistency Checks

To further assess whether a CBC signal with the inferred parameters in Section 4.3 adequately represents the data, we perform several consistency checks using a signal-agnostic approach that reconstructs coherent transient power, and through a model incorporating a modified wave dispersion relationship. First, we compare the waveform of the maximum-likelihood sample from parameter estimation in Section 4.1 to one obtained through minimally modelled analyses that make no assumptions about the source or morphology of the signal (Szczepańczyk et al., 2021; Salemi et al., 2019; Ghonge et al., 2020). Second, we conduct a residuals analysis, subtracting the best-fit waveform from the detector data and searching for coherent residual power (Abbott et al., 2021b). Discrepancies between the modelled and minimally modelled waveforms, or the presence of significant excess residual power, could indicate physical effects in addition to or alternative to those in our BBH signal models or unaccounted-for noise features  (Johnson-McDaniel et al., 2022).

For the waveform reconstruction comparisons, we use BayesWave, cWB-2G, and cWB-BBH for the minimally modelled analysis. To evaluate the agreement between the signal as found by the modelled analysis and minimally modelled approach, we calculate the overlap between the maximum-likelihood sample from parameter estimation using the NRSur model and the median BayesWave or cWB maximum-likelihood waveform. An overlap of 1 indicates perfect agreement, while an overlap of 0 indicates no similarity between waveforms. To assess whether the overlaps are consistent with signals of comparable parameters and noise realizations, we perform a dedicated set of injections wherein we inject waveforms generated by draws from the posterior distribution of the source parameters into detector data surrounding the event. The BayesWave analysis performed 400 injections into approximately 8 hours of data surrounding the event, and the cWB analysis injected about 2800 draws from the posterior distribution in an interval of two weeks around the event. We find good agreement between the minimally modelled and CBC waveform reconstructions. The overlaps between the CBC maximum-likelihood waveform and BayesWave, cWB-2G, and cWB-BBH are 0.97, 0.96, and 0.98, respectively. Compared to the distributions of overlaps from the injections, the pp-values (defined as the fraction of injections with overlaps below that of the real event) are 0.74, 0.57, and 0.92 for BayesWave, cWB-2G, and cWB-BBH, respectively. Under the null hypothesis, the pp-values should be distributed uniformly from 0 to 1, so these results indicate that the overlaps are consistent with expectations from systems similar to GW231123.

For the residuals test, we produce residual data by subtracting from the original data the maximum-likelihood waveform from the NRSur parameter estimation samples. If the signal has been modelled sufficiently, the residual data should be consistent with Gaussian noise. We analyze the residual data with BayesWave, and calculate the 90% credible upper limit on the recovered network SNR (SNR90\mathrm{SNR}_{90}). To compare to expected values of SNR90\mathrm{SNR}_{90}, we also analyze segments of data (with no injected signal) selected randomly from 16384 s of data surrounding the event, and calculate the probability of obtaining an SNR90\mathrm{SNR}_{90} higher than that of residual data. Details of this procedure can be found in (Abbott et al., 2021b). We find no significant excess SNR in the residual data beyond what is expected from only Gaussian noise. Compared to the distribution of SNR90\mathrm{SNR}_{90} from the noise-only runs, the pp-value is 0.35. This further confirms that minimally modelled tests do not flag any features in the data missed by the analyses described in Section 4.1.

We additionally search for post-ringdown echo signals (Tsang et al., 2018, 2020) with a BayesWave-based search, finding negative evidence for their presence (as quantified by the Bayes factor log10noisesignal<0\log_{10}\mathcal{B}^{\mathrm{signal}}_{\mathrm{noise}}<0), consistent with the above findings. As a final consistency check, an analysis incorporating a modified wave dispersion relation due to non-zero graviton mass (Abbott et al., 2021b) yields agreement with massless wave propagation when based on the NRSur or TPHM models. Instead, when assuming the XPHM or XO4a templates, a statistically significant violation is found, suggesting missing signal components not captured by these models, which is consistent with the discussion of systematics in Section 4.2.

5 Black-hole ringdown

Massive systems dominated by merger-ringdown, such as GW231123, are ideal to test the BH signal interpretation by applying BH spectroscopy techniques (Dreyer et al., 2004; Berti et al., 2009, 2025), yielding remnant properties under minimal assumptions on the remnant formation process. We fit superpositions of damped sinusoids, aiming to associate them with characteristic quasi-normal modes (QNMs) of a BH, which drive its relaxation to equilibrium. The resulting parameter estimates make it possible to robustly validate inspiral–merger–ringdown (IMR) measurements, since a QNM description is generic to any BH remnant (e.g., a BH formed from an eccentric binary).

We truncate portions of data in the time domain at different analysis start times tstartt_{\rm start}, and fit two sets of models. The first (DS-NN) is a superposition of NN damped-sinusoids j=1NAjei[2πfj(ttstart)+ϕj]e(ttstart)/τj\sum_{j=1}^{N}A_{j}e^{i[2\pi f_{j}(t-t_{\rm start})+\phi_{j}]}e^{-(t-t_{\rm start})/\tau_{j}}, with constants Aj,ϕj,fj,τjA_{j},\phi_{j},f_{j},\tau_{j} as free parameters, assuming fj>0f_{j}>0 (circularly polarized wave). In the second (Kerr), complex frequencies are identified with QNMs of a Kerr BH, fi=fmn(Mfdet,χf)f_{i}=f_{\ell mn}(M^{\rm det}_{\rm f},\chi_{\rm f}) and τi=τmn(Mfdet,χf)\tau_{i}=\tau_{\ell mn}(M^{\rm det}_{\rm f},\chi_{\rm f}), with detector frame (redshifted) mass MfdetM^{\rm det}_{\rm f}, spin χf\chi_{\rm f}, and mn{\ell mn} the QNM angular (,m\ell,m) and overtone (nn) indices. In addition to the longest-lived mn=220{\ell mn}=220, we consider mn={221,210,200,330,320,440}{\ell mn}=\{221,210,200,330,320,440\}, the linear QNMs with the largest predicted amplitudes for binary mergers (Kamaretsos et al., 2012; London et al., 2014; Cheung et al., 2024; Zhu et al., 2025; Nobili et al., 2025; Carullo, 2024). Here, we include both ±fmn\pm f_{\ell mn} contributions, accommodating generic signal polarizations, and MfdetM^{\mathrm{det}}_{\rm f} enters the expression as mode amplitudes AmnA_{\ell mn} are degenerate with the source distance.

We use the pyRing pipeline (Carullo et al., 2019) with standard analysis settings (Isi & Farr, 2021; Abbott et al., 2021b; Gennari et al., 2024). We pre-condition the data by subtracting the 6060 Hz power line, which reduces the required analysis duration to T=0.2T=0.2\,(Siegel et al., 2025). We sample the posterior distribution using the CPNest nested sampling algorithm (Veitch et al., 2020). Times are relative to the median of the polarizations peak time tpeakpol:=maxt[h+2(t)+h×2(t)]=1384782888.59980.0153+0.0111t^{\rm pol}_{\rm peak}:=\max_{t}[h_{+}^{2}(t)+h_{\times}^{2}(t)]={1384782888.5998}^{+0.0111}_{-0.0153} in the LIGO Hanford data, computed from the NRSur reconstructed waveform. The sky location is fixed to the NRSur maximum likelihood value, fixing the analysis start time in LIGO Livingston, as required by the truncated time-domain formulation of the analysis (Isi & Farr, 2021). We have verified that repeating the analysis at different sky location values drawn from the NRSur posterior does not affect our conclusions.

Damped sinusoids are expected to be valid in the stationary regime of BH relaxation, typically [10,20]GMfdet/c3[10,20]GM^{\rm det}_{\rm f}/c^{3} (namely [14.7,29.4][14.7,29.4]\,ms assuming Mfdet298MM^{\rm det}_{\rm f}\simeq 298M_{\odot}) past the signal peak; fitting earlier may provide spurious support for additional modes (Berti et al., 2025). However, a time-domain waveform reconstruction of GW231123 indicates a highly complex morphology, displaying a monotonic decay only after tpeakstraintpeakpol+19t^{\rm strain}_{\rm peak}\simeq t^{\rm pol}_{\rm peak}+19 ms, significantly later than the nominal tpeakpolt^{\rm pol}_{\rm peak}; see Appendix C. Given this uncertainty, we explore a wide range of times tstart=tpeakpol+[7.4,58.7]t_{\rm start}=t^{\rm pol}_{\rm peak}+[-7.4,58.7]\,ms in steps of 3\approx 3\,ms.

Refer to caption
Figure 5: Two-dimensional frequency and damping time posterior distribution (90%90\% credible levels), when starting the analysis at late times and assuming a single damped sinusoid with positive frequency; the combined IMR estimates for the longest-lived mn=220{\ell mn}={220} QNM are shown for comparison. For visualisation purposes, we display up to τ1=45\tau_{1}=45ms, while the posterior tail extends up to τ1=80\tau_{1}=80ms.

Fits that start at late times tstarttpeakpol+41t^{\rm start}\simeq t^{\rm pol}_{\rm peak}+41\,ms, when we are confident on the validity of an exponential decay description, find preference for a single mode with both models (as quantified by Bayes factors \mathcal{B}). A single damped sinusoid (DS-1) fit yields a multi-modal f1τ1f_{1}-\tau_{1} distribution, shown in Figure 5, unlike what is observed in previous events at such late times. One peak with f168f_{1}\approx 68\,Hz and A12×1022A_{1}\approx 2\times 10^{-22} overlaps with the dominant Kerr mn=220\ell mn=220 frequency f220f_{220} as predicted by IMR models, supporting the BH hypothesis. The damping time spans a broad range, overlapping with τ220\tau_{220}. A second peak is centred around f145f_{1}\approx 45\,Hz, correlating with a larger amplitude value A16×1022A_{1}\approx 6\times 10^{-22}. Among linear Kerr QNMs predicted by the IMR models, this frequency peak shows the largest overlap with f200f_{200}. The damping time is also bimodal: the peak associated to f145f_{1}\approx 45\,Hz is centred around τ110\tau_{1}\approx 10\,ms, a smaller value compared to τ20018\tau_{200}\approx 18\,ms, but overlapping the latter distribution. Under a Kerr 220220 fit, the two-dimensional MfdetM^{\rm det}_{\rm f}χf\chi_{\rm f} distribution is also multi-modal: one peak overlaps with the IMR predictions, while a second prefers lower remnant spins.

Fitting at earlier times, Bayes factors indicate overwhelming preference (log10>6\log_{10}\mathcal{B}>6) for two modes over one until tstarttpeakpol+32.3t_{\rm start}\simeq t^{\rm pol}_{\rm peak}+32.3\,ms in both the DS-NN and Kerr models, but in this range we may be fitting a complex merger signal, and a QNM superposition may not be valid. At these early times, a DS-2 fit yields two frequencies consistent with the two peaks observed at later times. Amplitudes and damping times are comparable in magnitude between the two damped sinusoids, and both damping times are larger than the 10\approx 10\,ms peak observed at later times. In addition to the 220220 mode, in the time range explored we find the Kerr 320,210,200320,210,200 modes to be on average the most favoured by Bayes factors, while 330330 is preferred around tstarttpeakpol+23.5t_{\rm start}\simeq t^{\rm pol}_{\rm peak}+23.5\,ms. The Kerr two-modes combinations robustly yield a massive remnant, Mfdet200MM^{\rm det}_{\rm f}\gtrsim 200M_{\odot}, also at these earlier times.

These multi-mode combinations are in tension with IMR analyses. The most favoured Kerr mode in addition to the 220220 according to Bayes factors, the 320320, implies a MfdetM^{\rm det}_{\rm f}χf\chi_{\rm f} distribution that does not overlap with IMR estimates. Adding 210210 only results in partial overlap, while the 221221 overlaps to a larger degree. However, the short-lived 221221 mode alone is not expected to give rise to the features observed in the signal until late times. The 200200 mode addition results in the most significant overlap, with a 200200 amplitude comparable to the 220220, consistently with later times results. While mn=210,200\ell mn=210,200 QNMs can be strongly excited in highly precessing systems with large mass asymmetry (O’Shaughnessy et al., 2013; Zhu et al., 2025; Nobili et al., 2025), the IMR analyses of GW231123 predict minimal power in the 200200 mode, as discussed in Appendix D. Highly eccentric configurations can excite m=0m=0 modes (Sperhake et al., 2008), but we lack sufficiently complete merger–ringdown models for eccentric-binary signals to reliably assess this possibility; see Section 7 for further discussion. DS-NN analyses with N>3N>3 did not prefer more than two modes, but future investigations will be required to determine whether the observed features can be induced by a superposition of many overlapping modes.

In summary, the Kerr fits recover the remnant spin with large uncertainty, and they robustly predict Mfdet200MM^{\rm det}_{\rm f}\gtrsim 200M_{\odot} at all times, supporting the interpretation of a massive BH remnant. Further investigations will be required to characterize the nature of the bi-modal features persistently observed in the signal and consistently interpret the multi-mode fits at earlier times. Given these large uncertainties, we do not consider tests of the no-hair properties of BHs in general relativity that would be enabled by a confident two-mode identification (Dreyer et al., 2004; Berti et al., 2009; Gossan et al., 2012; Brito et al., 2018; Carullo et al., 2018; Bhagwat et al., 2020; Isi & Farr, 2021).

6 Astrophysical implications

Here, we discuss the astrophysical implications of the large masses and spins of GW231123’s source and its possible origin given current understanding of (pulsational) PISNe and formation channels of merging BBHs.

6.1 Single-event rate estimate

First, we quantify the merger rate of GW231123-like events following (Kim et al., 2003; Abbott et al., 2016b). The sensitive volume–time of the detectors to such signals is estimated using the cWB-BBH results for the injection campaign discussed in Section 2. Assuming a constant merger rate \mathcal{R} over comoving volume and source-frame time with prior 1/\propto 1/\sqrt{\mathcal{R}} and a Poisson likelihood for the number of triggers, we find =0.080.07+0.19Gpc3yr1\mathcal{R}=0.08_{-0.07}^{+0.19}\,\mathrm{Gpc}^{-3}\,\mathrm{yr}^{-1}. This is consistent with the rate of mergers like GW190521 and upper limits of IMBH mergers (Abbott et al., 2020d, e, 2022), but much lower than the overall rate 16–61 Gpc-3 yr-1 of BBHs with component masses <100M<100\,M_{\odot} inferred through GWTC-3 (Abbott et al., 2023b).

6.2 Relation to the previous inferred population

To further assess GW231123 in the context of the 69 BBH mergers with false-alarm rates<1yr1\mathrm{\aclp{far}}<1\,\mathrm{yr}^{-1} through GWTC-3 (Abbott et al., 2023a) and test if its masses and spins are surprising, we perform posterior predictive checks based on the fiducial BBH population fit from (Abbott et al., 2023b, Section III C; we extend the prior on the maximum BH mass up to 200M200\,M_{\odot} as there is support from GW190521 above the limit of 100 MM_{\odot} imposed in the original GWTC-3 analysis). From the inferred population, we construct mock catalogs containing 69 detected events and plot the distribution of their largest BH mass 8326+43M\approx 83_{-26}^{+43}\,M_{\odot} in Figure 3. Using the Combined parameter estimates, the primary mass of GW231123 falls at the 983+2%98_{-3}^{+2}\,\% level of this distribution, indeed indicating that this event is an unlikely draw. However, due to large uncertainties in its masses, it is not conclusively an outlier as it may be less massive than the most massive mock events (equivalent comparisons for secondary and total mass are less significant). Similarly, the largest BH spin in these catalogs is 0.780.14+0.140.78_{-0.14}^{+0.14}, against which the primary and secondary spins of GW231123 can fall at any percentile and thus are not outliers. Compared to its masses, the spins of GW231123’s source are more consistent with the known population as it does not rule out large values.

6.3 Possible formation channels

From theoretical predictions for the late-stage evolution of massive stars (Fowler & Hoyle, 1964; Barkat et al., 1967; Rakavy & Shaviv, 1967; Fraley, 1968; Bond et al., 1984; Woosley et al., 2002; Woosley, 2017), contraction of the core leads to electron–positron pair production that reduces internal pressure support, causing further contraction that powers explosive nuclear burning and a rebounding shock. For helium-core masses 32\approx 3264M64\,M_{\odot}, multiple pulsational episodes can eject sufficient material to reduce the mass below the pair-instability regime, ending with a BH remnant. A single pulse can entirely disrupt stars with larger helium cores, leaving behind no remnant in a PISN. At even larger helium-core masses 135M\gtrsim 135\,M_{\odot}, this is avoided as the high core temperature results in photodisintegration that accelerates gravitational collapse to a massive BH. This leads to the robust prediction from single-star evolution of the existence of a gap in the BH mass distribution. Though this gap is broadly consistent with the range 60\approx 60130M130\,M_{\odot}, there are several theoretical uncertainties that affect both the lower edge and total extent of the gap (Belczynski et al., 2016; Stevenson et al., 2019; Farmer et al., 2019; Mapelli et al., 2020; Renzo et al., 2020b; Marchant & Moriya, 2020; Woosley & Heger, 2021; Hendriks et al., 2023). Uncertainties in nuclear reaction rates alone can shift the lower edge of the pair-instability mass gap from 50M\approx 50\,M_{\odot} to 100M\approx 100\,M_{\odot} (Farmer et al., 2020).

Some stellar and binary evolution processes are predicted to be able to populate the pair-instability mass gap. Weaker stellar winds (Mapelli et al., 2020) or core dredge-up episodes (Costa et al., 2021) may allow a star to retain a hydrogen envelope and collapse to a BH with mass inside the gap (Spera et al., 2019). Stellar mergers in dense clusters or multiple systems could similarly produce stars that collapse to more massive BHs, with the large masses inferred from GW231123 perhaps requiring multiple such mergers (Mapelli, 2016; Di Carlo et al., 2020; Renzo et al., 2020a; Kremer et al., 2020; González et al., 2021; Rizzuto et al., 2022; Costa et al., 2022; Arca Sedda et al., 2023a). Short-period stellar binaries might avoid merging and produce binary BHs with large, equal masses 100M\sim 100\,M_{\odot} from rapidly rotating metal-poor stars due to chemically homogeneous evolution (de Mink & Mandel, 2016; Mandel & de Mink, 2016; Marchant et al., 2016). However, most models of isolated-binary formation predict small natal spins and at most one of the BHs spinning, due to tidal synchronization or accretion-induced spin up, and so binaries with masses and spins like those inferred from GW231123 are difficult to form (Belczynski et al., 2020; Qin et al., 2018; Fuller & Ma, 2019; Bavera et al., 2020; Belczynski et al., 2020; van Son et al., 2020). In fact, the components BHs and especially the primary are so massive that they may have formed through core collapse above the pair-instability mass gap (Ezquiaga & Holz, 2021; Franciolini et al., 2024).

Alternatively, in hierarchical mergers, one or both of the binary components is the product of a previous BBH merger, with characteristically large masses and spins (Gerosa & Fishbach, 2021). Previous analyses have suggested evidence for hierarchical mergers in GW catalogs (Kimball et al., 2021; Mould et al., 2022; Wang et al., 2022; Li et al., 2024; Pierra et al., 2024; Hussain et al., 2024; Antonini et al., 2025), but the population of BH remnants receive gravitational recoils as high as 10210^{2}104kms110^{4}\,\mathrm{km}\,\mathrm{s}^{-1} (Doctor et al., 2021; Mahapatra et al., 2021), requiring environments with high escape speeds (Antonini & Rasio, 2016) such as dense stellar clusters (Miller & Hamilton, 2002; Antonini et al., 2019; Rodriguez et al., 2019; Fragione & Silk, 2020; Mapelli et al., 2021; Arca Sedda et al., 2021; Kritos et al., 2023; Mahapatra et al., 2025) or the disks of active galactic nuclei (Bartos et al., 2017; Stone et al., 2017; Mckernan et al., 2018; Yang et al., 2019; Tagawa et al., 2020; McKernan et al., 2020; Vaccaro et al., 2024; Arca Sedda et al., 2023b) to be retained. This is in contrast to high-mass stellar mergers, which receive smaller recoils from asymmetric mass loss (Gaburov et al., 2010; Glebbeek et al., 2013) and therefore may be more efficient at producing BHs with large masses in dynamical environments. As seen in Figure 4, the spins inferred from GW231123 may be even larger than typically predicted from hierarchical BH mergers (Gerosa & Berti, 2017; Fishbach et al., 2017), although the expected distribution for sources retained in their host environments may accommodate a wider range of spins (Borchers et al., 2025).

A different possibility is that of primordial BH being the binary components, which may exist across a range of mass scales, including within the pair-instability mass gap (Bird et al., 2016, 2023; Clesse & Garc´ıa-Bellido, 2017, 2022). However, there are remaining theoretical uncertainties, e.g., on whether primordial BH could accrete sufficiently to spin up as rapidly as the BH inferred from GW231123 (Green & Kavanagh, 2021).

Altogether, these theoretical predictions and their uncertainties make it difficult to determine whether or not the BH in the source of GW231123 have an astrophysical origin directly from stellar collapse, or due to close encounters in dense clusters (Jaraba & Garc´ıa-Bellido, 2021). We quantify this in more detail below.

6.4 Stellar collapse

Refer to caption
Figure 6: Probability using the Combined results for GW231123 that: both BHs are in the pair-instability mass gap (top left); the primary is above the gap and the secondary is within (top right); the primary is within and the secondary is below (bottom left); the primary is above and the secondary is below (bottom right). Probabilities are computed varying the lower and upper edges of the gap, while dashed lines mark constant gap widths.

To account for a range of possible locations for the pair-instability mass gap, in Figure 6 we compute the probability that one or both component masses fall within the gap as a function of its lower edge from 40–100 MM_{\odot} and upper edge from 120–180 MM_{\odot}, using the Combined parameter estimates. In the following, we quote these probabilities specifically for the putative gap 60–130 MM_{\odot}. The probabilities that the secondary (primary) BH lies in, above, and below this gap are 83 % (26 %), 1 % (74 %), and 16 % (0 %), respectively. Considering scenarios in which at least one of the components falls in this gap, the joint probability that: both BH are in the gap (upper left panel of Figure 6) is 25 %; the primary is above while the secondary is within (upper right) is 58 %; and that the primary is within while the secondary is below (lower left) is 1 %. Alternatively, a scenario with neither BH in the gap is possible in the case of a straddling binary (Fishbach & Holz, 2020), with a primary BH above the upper edge and secondary below the lower edge (lower right) having a probability of 14 %.

Overall, this implies that within the uncertainties on the Combined parameter estimates (assuming our default prior) and the location of the pair-instability mass gap, scenarios with both BH outside the gap have lower probability than those with at least one BH in the gap.

6.5 Hierarchical mergers

Given the high probability of at least one of the BH lying inside the pair-instability mass gap, we consider the possibility that this is due to repeated BBH mergers. Assuming hierarchical origins, several works have inferred the source properties of potential BBHs whose merger products are observed with GWs in a subsequent merger (Baibhav et al., 2021; Barrera & Bartos, 2022; Álvarez et al., 2024; Mahapatra et al., 2024). We follow (Álvarez et al., 2024) and use the NRSur7dq4Remnant surrogate model (Varma et al., 2019) to find the distribution of BBH source properties such that the corresponding distribution of BH remnant properties reproduces the Combined posterior over mass and spin for the primary and secondary BH inferred from GW231123. As the primary-spin posterior favors large values 0.7\gtrsim 0.7, this constrains the parent binary of the primary BH to have unequal masses 10932+26M109_{-32}^{+26}\,M_{\odot} and 3519+35M35_{-19}^{+35}\,M_{\odot}; for more equal masses, both BH spins can reduce the total angular momentum if misaligned, whereas unequal-mass binaries are dominated by the single heavier BH. The parent binary of the primary BH may have had a large effective inspiral spin, with χeff=0.540.59+0.26\chi_{\mathrm{eff}}=0.54_{-0.59}^{+0.26}, but χeff0\chi_{\mathrm{eff}}\lesssim 0 is not ruled out. A similar picture holds for the secondary BH, with parent masses 7839+28M78_{-39}^{+28}\,M_{\odot} and 2215+31M22_{-15}^{+31}\,M_{\odot}, but more uncertain effective inspiral spin χeff=0.310.91+0.46\chi_{\mathrm{eff}}=0.31_{-0.91}^{+0.46} due to the larger uncertainty on the secondary spin in the source of GW231123. These mergers would have imparted kicks of 751626+1330kms1751_{-626}^{+1330}\,\mathrm{km}\,\mathrm{s}^{-1} and 525393+1394kms1525_{-393}^{+1394}\,\mathrm{km}\,\mathrm{s}^{-1} in the case of the primary and secondary, respectively, resulting in ejection from young star clusters or globular clusters (Antonini & Rasio, 2016).

The heavier of the two BH in both parent binaries may also lie within the pair-instability mass gap, with probabilities 91 % and 74 % for the heavier parent of the primary and secondary, respectively, when taking a gap from 60–130 MM_{\odot}, as above. Therefore, if either of the component BH of GW231123’s source is interpreted as the product of a previous BH merger, it may be the result of multiple previous mergers. Alternatively, the parent BH could themselves have formed with large masses by the other astrophysical processes discussed above, such as stellar mergers.

7 Alternative interpretations

All GW observations to date have been inferred to be from compact binaries consisting of BH and/or neutron stars (Abbott et al., 2016c, 2021a, 2024a, 2023a; Venumadhav et al., 2020; Olsen et al., 2022; Mehta et al., 2025; Nitz et al., 2023; Wadekar et al., 2023), and we consider a BBH the most astrophysically plausible interpretation of GW231123, finding that a non-eccentric BBH model fits the signal with no significant residual. Nonetheless, the low number of observable GW cycles invites alternative interpretations. We discuss several here.

7.1 Eccentricity

Binaries formed in dense environments may retain residual eccentricity in the sensitive band of current GW detectors (Samsing, 2018; Rodriguez et al., 2018; Zevin et al., 2019; Chattopadhyay et al., 2023; Dall’Amico et al., 2024) or merge following a dynamical capture (Gold & Brügmann, 2013; East et al., 2013; Gamba et al., 2023; Andrade et al., 2024; Albanesi et al., 2025b), but for high masses their GW signals can be confused with those of non-eccentric mergers (Romero-Shaw et al., 2020a; Calderón Bustillo et al., 2021a; Romero-Shaw et al., 2023). Our signal models assume a non-eccentric inspiral, while state-of-the-art IMR models that include eccentricity (Liu et al., 2022; Gamboa et al., 2024; Paul et al., 2025; Albanesi et al., 2025a; Planas et al., 2025a) assume circularization in the merger–ringdown stages and would thus be unsuitable to infer the parameters of GW231123’s source if it was eccentric when observed (Ramos-Buades et al., 2023b; Iglesias et al., 2024; Gupte et al., 2024; Planas et al., 2025b). Extensions of QNM amplitude models beyond eccentric non-spinning configurations (Carullo, 2024) will be required to investigate the possible m=0m=0 ringdown mode excitation hinted at in Section 5. Relaxing the non-eccentric assumption is not expected to significantly change our results unless the eccentricity is larger than 0.6\sim 0.6 close to merger (Hinder et al., 2008; Huerta et al., 2019; Healy & Lousto, 2022; Carullo et al., 2024; Nee et al., 2025), which would be rare in the dynamical-capture scenarios above. Therefore, although we consider large eccentricity at merger astrophysically unlikely, we cannot rule it out for the source of GW231123.

7.2 Gravitational lensing

GW signals may be strongly lensed by galaxies or galaxy clusters, producing multiple copies of the original signal (Hannuksela et al., 2019; Abbott et al., 2021c, 2024b). However, no closely matching super-threshold counterpart candidates for GW231123 have been found from standard CBC searches. GWs can also undergo wave-optics lensing (Takahashi & Nakamura, 2003) when they encounter smaller objects (\sim10210^{2}106M10^{6}\,M_{\odot} for signals in the LVK band). GW231123 shows the strongest support for distorted lensed signals seen so far for both a point-mass model (Wright & Hendry, 2022) and phenomenological analyses (Liu et al., 2023), although preliminary background analyses suggest that some GW231123-like signals may be mis-identified as lensed. More in-depth investigations are needed to assess the significance of the lensing hypothesis, and these will be presented in future work.

7.3 Other scenarios

Several possible burst-like sources (Powell & Lasky, 2025) of astrophysical and cosmological origin may produce signals of similar duration to GW231123, such as core-collapse supernovae, cosmic strings, and exotic compact objects. For most supernova waveforms, the peak signal is expected at frequencies higher than observed in GW231123 (Abdikamalov et al., 2020; Mezzacappa & Zanolin, 2024). The ringdown-dominated signals of high-mass BBH mergers can be mimicked by waveforms from the collapse of cosmic strings (Abbott et al., 2020e; Aurrekoetxea et al., 2024) and collisions of exotic compact objects (e.g. boson stars) (Calderón Bustillo et al., 2021b; Siemonsen & East, 2023; Evstafyeva et al., 2024). Though we do not explicitly rule out these scenarios, the detection of GW231123 is consistent with the rates and properties of the currently understood population under the interpretation of a high-mass BBH merger, which has higher astrophysical probability.

8 Summary

GW231123 is a short-duration GW signal consisting of \sim5 observable cycles, most likely produced by a binary-black-hole merger. On that basis, we infer a total mass between 190 MM_{\odot} and 265 MM_{\odot}, which is larger than any previously observed with high confidence in GWs, and strong support for large spins on both black holes. We report source property measurements with larger uncertainties than we would expect for a binary of this mass and a signal with SNR \sim22, most likely due to uncertainties in current signal models at high spins. A ringdown analysis also supports a massive remnant under minimal assumptions, consistent with full-signal estimates. The measured masses of GW231123’s source lie at the edge of the currently understood population of binary black holes. The scenario with the highest probability is that at least one of the black hole sits in the pair-instability mass gap. If either is interpreted as the product of a previous black-hole merger, at least one of the black holes in its parent binary probably also lies in the mass gap. Such a sequence of black-hole mergers would require an environment with high escape speed, unless the black-hole masses are grown by other astrophysical processes, such as stellar mergers.

Given the small number of observable GW cycles, the large uncertainties in our measurements, and the limitations of current signal models, we expect that there is much still to learn about GW231123 and its source. The feasibility of a wide range of other alternatives to black-hole mergers remains to be investigated. Even within the binary-black-hole merger interpretation, we expect to learn more from detailed studies of high-spin binaries, high-eccentricity mergers, hyperbolic encounters, and lensed signals. Forthcoming analyses of the combined catalog of GW events, alongside continued studies of pair-instability processes and the formation of intermediate-mass black holes, may help to reveal the origins of GW231123. All studies will have to contend with the limited information that can be extracted from short signals, but a clearer picture may emerge if a population of such signals is observed in future observing runs.

Strain data from the LIGO detectors associated with GW231123 are available from the Gravitational Wave Open Science Center 111https://doi.org/10.7935/anj7-6q40. Samples from posterior distributions of the source parameters, additional materials, and notebooks for reproducing the figures are available on Zenodo (LIGO Scientific, Virgo, and KAGRA Collaboration, 2025). The software packages used in our analyses are open-source.

This material is based upon work supported by NSF’s LIGO Laboratory, which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research (NWO) for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación (AEI), the Spanish Ministerio de Ciencia, Innovación y Universidades, the European Union NextGenerationEU/PRTR (PRTR-C17.I1), the ICSC - CentroNazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by the European Union NextGenerationEU, the Comunitat Autonòma de les Illes Balears through the Conselleria d’Educació i Universitats, the Conselleria d’Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the Polish National Agency for Academic Exchange, the National Science Centre of Poland and the European Union - European Regional Development Fund; the Foundation for Polish Science (FNP), the Polish Ministry of Science and Higher Education, the Swiss National Science Foundation (SNSF), the Russian Science Foundation, the European Commission, the European Social Funds (ESF), the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office of Hungary (NKFIH), the National Research Foundation of Korea, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Israel Science Foundation (ISF), the US-Israel Binational Science Fund (BSF), the Leverhulme Trust, the Research Corporation, the National Science and Technology Council (NSTC), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN and CNRS for provision of computational resources.

This work was supported by MEXT, the JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2402: 24103006, 24103005, and 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grants-in-Aid for Scientific Research (S) 17H06133 and 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, the National Research Foundation (NRF), the Computing Infrastructure Project of the Global Science experimental Data hub Center (GSDC) at KISTI, the Korea Astronomy and Space Science Institute (KASI), the Ministry of Science and ICT (MSIT) in Korea, Academia Sinica (AS), the AS Grid Center (ASGC) and the National Science and Technology Council (NSTC) in Taiwan under grants including the Science Vanguard Research Program, the Advanced Technology Center (ATC) of NAOJ, and the Mechanical Engineering Center of KEK.

Additional acknowledgements for support of individual authors may be found in the following document:
https://dcc.ligo.org/LIGO-M2300033/public. For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version arising. We request that citations to this article use ’A. G. Abac et al. (LIGO-Virgo-KAGRA Collaboration), …’ or similar phrasing, depending on journal convention.

Appendix A Systematics studies

For this analysis we consider the models NRSur, v5PHM, TPHM, XPHM and XO4a. These models all describe precessing quasi-circular binaries and include higher multipole content. The three model families NRSur, SEOB and Phenom use different approaches to model the waveforms (Chatziioannou et al., 2024). In short, NRSur interpolates between NR data (Field et al., 2014; Blackman et al., 2015), making it typically the most accurate of the models for high-mass signals, such as GW231123. The SEOB and Phenom families instead use a combination of analytical and numerical information to create a complete inspiral-merger-ringdown model applicable to systems at any total mass (Buonanno & Damour, 1999, 2000; Buonanno et al., 2007; Ajith et al., 2011). The models NRSur, v5PHM, and TPHM calculate the signal in the time domain, while XPHM and XO4a model directly in the frequency domain. These models comprise the five state-of-the-art models currently available for LVK analyses of observations in O4a.

NRSur is fully calibrated to numerical waveforms over the binary parameter space up to dimensionless spin magnitudes χ1=χ2=0.8\chi_{1}=\chi_{2}=0.8 and mass ratios q=1/4q=1/4, and can be extrapolated up to dimensionless spin magnitudes χ1=χ2=1.0\chi_{1}=\chi_{2}=1.0 and mass ratios q=1/6q=1/6. By construction, NRSur automatically includes all multipoles up to =4\ell=4 and characteristics of precession such as mode asymmetry (Varma et al., 2019). By contrast, v5PHM, TPHM, and XPHM are calibrated to NR only in the aligned-spin sector (Pompili et al., 2023; Estellés et al., 2022b; Pratten et al., 2020a; Garc´ıa-Quirós et al., 2020) and instead model precession either by extending post-Newtonian and effective-one-body results or by employing BH perturbation theory results through merger and ringdown. During the inspiral, v5PHM, TPHM, and XPHM implement precession dynamics by numerically evolving the spins (Khalil et al., 2023; Estellés et al., 2021; Colleoni et al., 2025). XO4a uses closed-form, orbit-averaged expressions during the inspiral Chatziioannou et al. (2017); Pratten et al. (2021) and phenomenological expressions calibrated to single-spin precessing simulations with χ1<0.8\chi_{1}<0.8 through merger and ringdown (Hamilton et al., 2021). Further, XO4a includes mode asymmetry of the dominant multipole (Ghosh et al., 2024). By employing multiple models with these key differences in their construction, we expect that our signal analysis will be more robust in more challenging regions of parameter space.

The different modeling approaches and treatments of the precession dynamics make these models relatively independent. In the presence of features in the data beyond the physical effects incorporated in the models (e.g., mismodelling in the high-spin regime, eccentricity, GW memory, or noise artefacts) one might therefore expect the models to interact with these features differently and display model systematics, as are seen in the posteriors for this event. The accuracy of these models for typical signals has been comprehensively assessed through comparison to NR, both in the modelling papers themselves and elsewhere (e.g., Mac Uilliam et al. (2024)). For GW231123 we have performed the accuracy analysis in Section 4.2, and a series of targeted NR injections, which we now describe. We hope that more can be learned in the future from improved models in the high-spin regime, and a detailed study of the behaviour of our models in Gaussian noise.

In order to investigate the likelihood of the presence of waveform systematics in the high total mass, comparable-mass (q>1/3q>1/3), highly precessing region of parameter space, we perform a simulation study where we simulate a set of signals consisting of highly precessing NR waveforms from the SXS catalog (Boyle et al., 2019; Scheel et al., 2025) and recover with the five waveform models under consideration. From several tens of simulations, we discuss here the results from two that span the range of observed results, from unbiased parameter estimation displaying no systematics to large systematic differences between models and clear biases in parameter recovery.

Refer to caption
Refer to caption
Figure 7: Marginalized posterior probability for the Left: redshifted (detector-frame) total binary mass and the mass ratio, and Right: primary and secondary source-frame masses inferred from GW231123 for each of the five models considered. Each contour, as well as the colored horizontal and vertical lines, shows the 90% credible intervals.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 8: Marginalized posterior probability for (left column) redshifted (detector-frame) total binary mass and the mass ratio and (right column) primary and secondary source-frame masses inferred from two highly spinning precessing NR simulations with (detector-frame) total binary mass of 300M300\,M_{\odot} observed approximately edge on. The Top row shows the results for the SXS:BBH:0483 (Boyle et al., 2019) with masses m1135Mm_{1}\sim 135\,M_{\odot}, m2110Mm_{2}\sim 110\,M_{\odot} and mass ratio q=0.8q=0.8. The Bottom row shows the results for the SXS:BBH:4030 (Scheel et al., 2025) with masses m1=m2130Mm_{1}=m_{2}\sim 130\,M_{\odot}. The 5 models used to analyse GW231123 were also used to analyse these simulations. Each contour, as well as the colored horizontal and vertical lines, shows the 90% credible intervals. The black vertical and horizontal lines indicate the true source properties. In some panels, the true value is beyond the axis range of the figure.

For both configurations, we show the total mass and mass ratio as measured in the data (the detector frame). For high-mass binaries, we expect the total mass to be one of the most reliably measured quantities. The detector-frame masses are not the true source masses, but the redshifted masses, and to calculate the true masses, we must also measure the redshift. The relative accuracy of the detector-frame and source-frame masses may therefore differ, depending on the accuracy of the redshift. For this reason, we also show the individual masses m1m_{1} and m2m_{2} after correcting for the redshift.

The results for GW231123 are shown in Figure 7. In the left panel, we see clear evidence of systematics in the measurement of both the total mass and the mass ratio, with no overlap of the 90% credible intervals for some models in both parameters. When we correct for the redshift, some of the differences appear to “cancel out”, and we see agreement between several models in the source masses. This is likely coincidental; we expect any model biases in the detector-frame masses and redshift to be independent. This expectation is borne out in the examples below.

In the majority of cases simulated, we were unable to reproduce this degree of systematics. In both examples discussed here, we choose a large inclination angle as the mismatch performance is worst, and thus the associated expectations of evidence of systematics are greater, for systems with the greatest contribution from higher multipoles. It should be noted, however, that since the orbital plane precesses, the inclination is not constant over the binary’s evolution. An example of a typical recovery is shown in the top row of Figure 8, where we consider the SXS:BBH:0483 precessing NR simulation with total mass M=300MM=300\,M_{\odot}, mass ratio q=0.8q=0.8, and spin magnitudes χ1=χ2=0.80\chi_{1}=\chi_{2}=0.80 on both BHs. The simulation is added to zero-noise using the fiducial inclination angle ι=π/2rad\iota=\pi/2\,\mathrm{rad} at 10 Hz. For this configuration, the mismatch for NRSur was unambiguously below the conservative distinguishability criterion, with a value of 3.92×1043.92\times 10^{-4}, while for the other models we see values 𝒪(103)\mathcal{O}\left(10^{-3}\right). In this case, the large differences in mismatch do not translate into noticeable differences in the accuracy of parameter recovery. The posteriors from all models overlap and we can be confident in our recovered source properties. Note, however, that the source-frame m2m_{2} is too low. This is a known bias for edge-on configurations: signals from face-on and face-off binaries are louder, meaning that larger distances (redshifts) are consistent with a fixed GW amplitude. This leads to a significantly larger prior volume, and thus a prior preference for smaller inclination angles (Usman et al., 2019), larger distances, and thus lower (redshifted) source masses.

Clear evidence of systematics was nevertheless seen in a limited number of simulations, as is demonstrated in the bottom row of Figure 8. We consider the SXS:BBH:4030 precessing NR simulation with total mass M=300MM=300\,M_{\odot}, equal mass components (q=1q=1), and spin magnitudes χ1=χ2=0.95\chi_{1}=\chi_{2}=0.95 on both BHs. The simulation is added to zero-noise using the fiducial inclination angle ι=π/2rad\iota=\pi/2\,\mathrm{rad} at 15 Hz. This injection was chosen from the set of cases with very high spins, with a mismatch between 2.36×1032.36\times 10^{-3} (NRSur) and 9.45×1039.45\times 10^{-3} (TPHM), mostly above the conservative indistinguishability criterion. This numerical relativity (NR) waveform also includes GW memory, which can require additional data processing for injection (Xu et al., 2024; Valencia et al., 2024; Chen et al., 2024), but we find that our results are unchanged if we first subtract the memory features before injection. We see unequivocal evidence of waveform systematics and biases in all models. Only the posterior of TPHM includes the true value of the detector-frame total mass, and all models exclude it at 90% credibility. No model recovers the true mass ratio (q=1q=1). In the source-frame, the true value of m1m_{1} lies in the 90% credible region for all models, but m2m_{2} is significantly biased from its true value of 100 MM_{\odot}.

Appendix B Source properties

{ruledtabular}
Table 3: Individual source properties of GW231123 from each of the five models considered.
XPHM XO4a TPHM NRSur v5PHM
Primary mass m1/Mm_{1}/\text{M}_{\odot} \IfEqCaseGW231123cgxphmGW231123cgcombined137GW231123cgnrsur129GW231123cgxphm150GW231123cgxo4a143GW231123cgtphm133GW231123cgseob134\IfEqCaseGW231123cgxphmGW231123cgcombined17GW231123cgnrsur14GW231123cgxphm12GW231123cgxo4a14GW231123cgtphm12GW231123cgseob14+\IfEqCaseGW231123cgxphmGW231123cgcombined22GW231123cgnrsur15GW231123cgxphm12GW231123cgxo4a24GW231123cgtphm17GW231123cgseob19\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{137}{GW231123cg_{n}rsur}{129}{GW231123cg_{x}phm}{150}{GW231123cg_{x}o4a}{143}{GW231123cg_{t}phm}{133}{GW231123cg_{s}eob}{134}}^{+\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{22}{GW231123cg_{n}rsur}{15}{GW231123cg_{x}phm}{12}{GW231123cg_{x}o4a}{24}{GW231123cg_{t}phm}{17}{GW231123cg_{s}eob}{19}}}_{-\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{17}{GW231123cg_{n}rsur}{14}{GW231123cg_{x}phm}{12}{GW231123cg_{x}o4a}{14}{GW231123cg_{t}phm}{12}{GW231123cg_{s}eob}{14}}} \IfEqCaseGW231123cgxo4aGW231123cgcombined137GW231123cgnrsur129GW231123cgxphm150GW231123cgxo4a143GW231123cgtphm133GW231123cgseob134\IfEqCaseGW231123cgxo4aGW231123cgcombined17GW231123cgnrsur14GW231123cgxphm12GW231123cgxo4a14GW231123cgtphm12GW231123cgseob14+\IfEqCaseGW231123cgxo4aGW231123cgcombined22GW231123cgnrsur15GW231123cgxphm12GW231123cgxo4a24GW231123cgtphm17GW231123cgseob19\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{137}{GW231123cg_{n}rsur}{129}{GW231123cg_{x}phm}{150}{GW231123cg_{x}o4a}{143}{GW231123cg_{t}phm}{133}{GW231123cg_{s}eob}{134}}^{+\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{22}{GW231123cg_{n}rsur}{15}{GW231123cg_{x}phm}{12}{GW231123cg_{x}o4a}{24}{GW231123cg_{t}phm}{17}{GW231123cg_{s}eob}{19}}}_{-\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{17}{GW231123cg_{n}rsur}{14}{GW231123cg_{x}phm}{12}{GW231123cg_{x}o4a}{14}{GW231123cg_{t}phm}{12}{GW231123cg_{s}eob}{14}}} \IfEqCaseGW231123cgtphmGW231123cgcombined137GW231123cgnrsur129GW231123cgxphm150GW231123cgxo4a143GW231123cgtphm133GW231123cgseob134\IfEqCaseGW231123cgtphmGW231123cgcombined17GW231123cgnrsur14GW231123cgxphm12GW231123cgxo4a14GW231123cgtphm12GW231123cgseob14+\IfEqCaseGW231123cgtphmGW231123cgcombined22GW231123cgnrsur15GW231123cgxphm12GW231123cgxo4a24GW231123cgtphm17GW231123cgseob19\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{137}{GW231123cg_{n}rsur}{129}{GW231123cg_{x}phm}{150}{GW231123cg_{x}o4a}{143}{GW231123cg_{t}phm}{133}{GW231123cg_{s}eob}{134}}^{+\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{22}{GW231123cg_{n}rsur}{15}{GW231123cg_{x}phm}{12}{GW231123cg_{x}o4a}{24}{GW231123cg_{t}phm}{17}{GW231123cg_{s}eob}{19}}}_{-\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{17}{GW231123cg_{n}rsur}{14}{GW231123cg_{x}phm}{12}{GW231123cg_{x}o4a}{14}{GW231123cg_{t}phm}{12}{GW231123cg_{s}eob}{14}}} \IfEqCaseGW231123cgnrsurGW231123cgcombined137GW231123cgnrsur129GW231123cgxphm150GW231123cgxo4a143GW231123cgtphm133GW231123cgseob134\IfEqCaseGW231123cgnrsurGW231123cgcombined17GW231123cgnrsur14GW231123cgxphm12GW231123cgxo4a14GW231123cgtphm12GW231123cgseob14+\IfEqCaseGW231123cgnrsurGW231123cgcombined22GW231123cgnrsur15GW231123cgxphm12GW231123cgxo4a24GW231123cgtphm17GW231123cgseob19\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{137}{GW231123cg_{n}rsur}{129}{GW231123cg_{x}phm}{150}{GW231123cg_{x}o4a}{143}{GW231123cg_{t}phm}{133}{GW231123cg_{s}eob}{134}}^{+\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{22}{GW231123cg_{n}rsur}{15}{GW231123cg_{x}phm}{12}{GW231123cg_{x}o4a}{24}{GW231123cg_{t}phm}{17}{GW231123cg_{s}eob}{19}}}_{-\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{17}{GW231123cg_{n}rsur}{14}{GW231123cg_{x}phm}{12}{GW231123cg_{x}o4a}{14}{GW231123cg_{t}phm}{12}{GW231123cg_{s}eob}{14}}} \IfEqCaseGW231123cgseobGW231123cgcombined137GW231123cgnrsur129GW231123cgxphm150GW231123cgxo4a143GW231123cgtphm133GW231123cgseob134\IfEqCaseGW231123cgseobGW231123cgcombined17GW231123cgnrsur14GW231123cgxphm12GW231123cgxo4a14GW231123cgtphm12GW231123cgseob14+\IfEqCaseGW231123cgseobGW231123cgcombined22GW231123cgnrsur15GW231123cgxphm12GW231123cgxo4a24GW231123cgtphm17GW231123cgseob19\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{137}{GW231123cg_{n}rsur}{129}{GW231123cg_{x}phm}{150}{GW231123cg_{x}o4a}{143}{GW231123cg_{t}phm}{133}{GW231123cg_{s}eob}{134}}^{+\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{22}{GW231123cg_{n}rsur}{15}{GW231123cg_{x}phm}{12}{GW231123cg_{x}o4a}{24}{GW231123cg_{t}phm}{17}{GW231123cg_{s}eob}{19}}}_{-\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{17}{GW231123cg_{n}rsur}{14}{GW231123cg_{x}phm}{12}{GW231123cg_{x}o4a}{14}{GW231123cg_{t}phm}{12}{GW231123cg_{s}eob}{14}}}
Secondary mass m2/Mm_{2}/\text{M}_{\odot} \IfEqCaseGW231123cgxphmGW231123cgcombined103GW231123cgnrsur111GW231123cgxphm93GW231123cgxo4a55GW231123cgtphm110GW231123cgseob111\IfEqCaseGW231123cgxphmGW231123cgcombined52GW231123cgnrsur17GW231123cgxphm20GW231123cgxo4a18GW231123cgtphm15GW231123cgseob19+\IfEqCaseGW231123cgxphmGW231123cgcombined20GW231123cgnrsur14GW231123cgxphm18GW231123cgxo4a11GW231123cgtphm15GW231123cgseob16\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{103}{GW231123cg_{n}rsur}{111}{GW231123cg_{x}phm}{93}{GW231123cg_{x}o4a}{55}{GW231123cg_{t}phm}{110}{GW231123cg_{s}eob}{111}}^{+\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{20}{GW231123cg_{n}rsur}{14}{GW231123cg_{x}phm}{18}{GW231123cg_{x}o4a}{11}{GW231123cg_{t}phm}{15}{GW231123cg_{s}eob}{16}}}_{-\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{52}{GW231123cg_{n}rsur}{17}{GW231123cg_{x}phm}{20}{GW231123cg_{x}o4a}{18}{GW231123cg_{t}phm}{15}{GW231123cg_{s}eob}{19}}} \IfEqCaseGW231123cgxo4aGW231123cgcombined103GW231123cgnrsur111GW231123cgxphm93GW231123cgxo4a55GW231123cgtphm110GW231123cgseob111\IfEqCaseGW231123cgxo4aGW231123cgcombined52GW231123cgnrsur17GW231123cgxphm20GW231123cgxo4a18GW231123cgtphm15GW231123cgseob19+\IfEqCaseGW231123cgxo4aGW231123cgcombined20GW231123cgnrsur14GW231123cgxphm18GW231123cgxo4a11GW231123cgtphm15GW231123cgseob16\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{103}{GW231123cg_{n}rsur}{111}{GW231123cg_{x}phm}{93}{GW231123cg_{x}o4a}{55}{GW231123cg_{t}phm}{110}{GW231123cg_{s}eob}{111}}^{+\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{20}{GW231123cg_{n}rsur}{14}{GW231123cg_{x}phm}{18}{GW231123cg_{x}o4a}{11}{GW231123cg_{t}phm}{15}{GW231123cg_{s}eob}{16}}}_{-\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{52}{GW231123cg_{n}rsur}{17}{GW231123cg_{x}phm}{20}{GW231123cg_{x}o4a}{18}{GW231123cg_{t}phm}{15}{GW231123cg_{s}eob}{19}}} \IfEqCaseGW231123cgtphmGW231123cgcombined103GW231123cgnrsur111GW231123cgxphm93GW231123cgxo4a55GW231123cgtphm110GW231123cgseob111\IfEqCaseGW231123cgtphmGW231123cgcombined52GW231123cgnrsur17GW231123cgxphm20GW231123cgxo4a18GW231123cgtphm15GW231123cgseob19+\IfEqCaseGW231123cgtphmGW231123cgcombined20GW231123cgnrsur14GW231123cgxphm18GW231123cgxo4a11GW231123cgtphm15GW231123cgseob16\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{103}{GW231123cg_{n}rsur}{111}{GW231123cg_{x}phm}{93}{GW231123cg_{x}o4a}{55}{GW231123cg_{t}phm}{110}{GW231123cg_{s}eob}{111}}^{+\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{20}{GW231123cg_{n}rsur}{14}{GW231123cg_{x}phm}{18}{GW231123cg_{x}o4a}{11}{GW231123cg_{t}phm}{15}{GW231123cg_{s}eob}{16}}}_{-\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{52}{GW231123cg_{n}rsur}{17}{GW231123cg_{x}phm}{20}{GW231123cg_{x}o4a}{18}{GW231123cg_{t}phm}{15}{GW231123cg_{s}eob}{19}}} \IfEqCaseGW231123cgnrsurGW231123cgcombined103GW231123cgnrsur111GW231123cgxphm93GW231123cgxo4a55GW231123cgtphm110GW231123cgseob111\IfEqCaseGW231123cgnrsurGW231123cgcombined52GW231123cgnrsur17GW231123cgxphm20GW231123cgxo4a18GW231123cgtphm15GW231123cgseob19+\IfEqCaseGW231123cgnrsurGW231123cgcombined20GW231123cgnrsur14GW231123cgxphm18GW231123cgxo4a11GW231123cgtphm15GW231123cgseob16\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{103}{GW231123cg_{n}rsur}{111}{GW231123cg_{x}phm}{93}{GW231123cg_{x}o4a}{55}{GW231123cg_{t}phm}{110}{GW231123cg_{s}eob}{111}}^{+\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{20}{GW231123cg_{n}rsur}{14}{GW231123cg_{x}phm}{18}{GW231123cg_{x}o4a}{11}{GW231123cg_{t}phm}{15}{GW231123cg_{s}eob}{16}}}_{-\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{52}{GW231123cg_{n}rsur}{17}{GW231123cg_{x}phm}{20}{GW231123cg_{x}o4a}{18}{GW231123cg_{t}phm}{15}{GW231123cg_{s}eob}{19}}} \IfEqCaseGW231123cgseobGW231123cgcombined103GW231123cgnrsur111GW231123cgxphm93GW231123cgxo4a55GW231123cgtphm110GW231123cgseob111\IfEqCaseGW231123cgseobGW231123cgcombined52GW231123cgnrsur17GW231123cgxphm20GW231123cgxo4a18GW231123cgtphm15GW231123cgseob19+\IfEqCaseGW231123cgseobGW231123cgcombined20GW231123cgnrsur14GW231123cgxphm18GW231123cgxo4a11GW231123cgtphm15GW231123cgseob16\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{103}{GW231123cg_{n}rsur}{111}{GW231123cg_{x}phm}{93}{GW231123cg_{x}o4a}{55}{GW231123cg_{t}phm}{110}{GW231123cg_{s}eob}{111}}^{+\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{20}{GW231123cg_{n}rsur}{14}{GW231123cg_{x}phm}{18}{GW231123cg_{x}o4a}{11}{GW231123cg_{t}phm}{15}{GW231123cg_{s}eob}{16}}}_{-\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{52}{GW231123cg_{n}rsur}{17}{GW231123cg_{x}phm}{20}{GW231123cg_{x}o4a}{18}{GW231123cg_{t}phm}{15}{GW231123cg_{s}eob}{19}}}
Mass ratio q=m2/m1q=m_{2}/m_{1} \IfEqCaseGW231123cgxphmGW231123cgcombined0.75GW231123cgnrsur0.86GW231123cgxphm0.62GW231123cgxo4a0.39GW231123cgtphm0.82GW231123cgseob0.83\IfEqCaseGW231123cgxphmGW231123cgcombined0.39GW231123cgnrsur0.11GW231123cgxphm0.13GW231123cgxo4a0.15GW231123cgtphm0.13GW231123cgseob0.14+\IfEqCaseGW231123cgxphmGW231123cgcombined0.22GW231123cgnrsur0.14GW231123cgxphm0.12GW231123cgxo4a0.07GW231123cgtphm0.15GW231123cgseob0.17\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.75}{GW231123cg_{n}rsur}{0.86}{GW231123cg_{x}phm}{0.62}{GW231123cg_{x}o4a}{0.39}{GW231123cg_{t}phm}{0.82}{GW231123cg_{s}eob}{0.83}}^{+\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.22}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.12}{GW231123cg_{x}o4a}{0.07}{GW231123cg_{t}phm}{0.15}{GW231123cg_{s}eob}{0.17}}}_{-\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.11}{GW231123cg_{x}phm}{0.13}{GW231123cg_{x}o4a}{0.15}{GW231123cg_{t}phm}{0.13}{GW231123cg_{s}eob}{0.14}}} \IfEqCaseGW231123cgxo4aGW231123cgcombined0.75GW231123cgnrsur0.86GW231123cgxphm0.62GW231123cgxo4a0.39GW231123cgtphm0.82GW231123cgseob0.83\IfEqCaseGW231123cgxo4aGW231123cgcombined0.39GW231123cgnrsur0.11GW231123cgxphm0.13GW231123cgxo4a0.15GW231123cgtphm0.13GW231123cgseob0.14+\IfEqCaseGW231123cgxo4aGW231123cgcombined0.22GW231123cgnrsur0.14GW231123cgxphm0.12GW231123cgxo4a0.07GW231123cgtphm0.15GW231123cgseob0.17\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.75}{GW231123cg_{n}rsur}{0.86}{GW231123cg_{x}phm}{0.62}{GW231123cg_{x}o4a}{0.39}{GW231123cg_{t}phm}{0.82}{GW231123cg_{s}eob}{0.83}}^{+\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.22}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.12}{GW231123cg_{x}o4a}{0.07}{GW231123cg_{t}phm}{0.15}{GW231123cg_{s}eob}{0.17}}}_{-\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.11}{GW231123cg_{x}phm}{0.13}{GW231123cg_{x}o4a}{0.15}{GW231123cg_{t}phm}{0.13}{GW231123cg_{s}eob}{0.14}}} \IfEqCaseGW231123cgtphmGW231123cgcombined0.75GW231123cgnrsur0.86GW231123cgxphm0.62GW231123cgxo4a0.39GW231123cgtphm0.82GW231123cgseob0.83\IfEqCaseGW231123cgtphmGW231123cgcombined0.39GW231123cgnrsur0.11GW231123cgxphm0.13GW231123cgxo4a0.15GW231123cgtphm0.13GW231123cgseob0.14+\IfEqCaseGW231123cgtphmGW231123cgcombined0.22GW231123cgnrsur0.14GW231123cgxphm0.12GW231123cgxo4a0.07GW231123cgtphm0.15GW231123cgseob0.17\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.75}{GW231123cg_{n}rsur}{0.86}{GW231123cg_{x}phm}{0.62}{GW231123cg_{x}o4a}{0.39}{GW231123cg_{t}phm}{0.82}{GW231123cg_{s}eob}{0.83}}^{+\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.22}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.12}{GW231123cg_{x}o4a}{0.07}{GW231123cg_{t}phm}{0.15}{GW231123cg_{s}eob}{0.17}}}_{-\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.11}{GW231123cg_{x}phm}{0.13}{GW231123cg_{x}o4a}{0.15}{GW231123cg_{t}phm}{0.13}{GW231123cg_{s}eob}{0.14}}} \IfEqCaseGW231123cgnrsurGW231123cgcombined0.75GW231123cgnrsur0.86GW231123cgxphm0.62GW231123cgxo4a0.39GW231123cgtphm0.82GW231123cgseob0.83\IfEqCaseGW231123cgnrsurGW231123cgcombined0.39GW231123cgnrsur0.11GW231123cgxphm0.13GW231123cgxo4a0.15GW231123cgtphm0.13GW231123cgseob0.14+\IfEqCaseGW231123cgnrsurGW231123cgcombined0.22GW231123cgnrsur0.14GW231123cgxphm0.12GW231123cgxo4a0.07GW231123cgtphm0.15GW231123cgseob0.17\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.75}{GW231123cg_{n}rsur}{0.86}{GW231123cg_{x}phm}{0.62}{GW231123cg_{x}o4a}{0.39}{GW231123cg_{t}phm}{0.82}{GW231123cg_{s}eob}{0.83}}^{+\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.22}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.12}{GW231123cg_{x}o4a}{0.07}{GW231123cg_{t}phm}{0.15}{GW231123cg_{s}eob}{0.17}}}_{-\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.11}{GW231123cg_{x}phm}{0.13}{GW231123cg_{x}o4a}{0.15}{GW231123cg_{t}phm}{0.13}{GW231123cg_{s}eob}{0.14}}} \IfEqCaseGW231123cgseobGW231123cgcombined0.75GW231123cgnrsur0.86GW231123cgxphm0.62GW231123cgxo4a0.39GW231123cgtphm0.82GW231123cgseob0.83\IfEqCaseGW231123cgseobGW231123cgcombined0.39GW231123cgnrsur0.11GW231123cgxphm0.13GW231123cgxo4a0.15GW231123cgtphm0.13GW231123cgseob0.14+\IfEqCaseGW231123cgseobGW231123cgcombined0.22GW231123cgnrsur0.14GW231123cgxphm0.12GW231123cgxo4a0.07GW231123cgtphm0.15GW231123cgseob0.17\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.75}{GW231123cg_{n}rsur}{0.86}{GW231123cg_{x}phm}{0.62}{GW231123cg_{x}o4a}{0.39}{GW231123cg_{t}phm}{0.82}{GW231123cg_{s}eob}{0.83}}^{+\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.22}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.12}{GW231123cg_{x}o4a}{0.07}{GW231123cg_{t}phm}{0.15}{GW231123cg_{s}eob}{0.17}}}_{-\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.11}{GW231123cg_{x}phm}{0.13}{GW231123cg_{x}o4a}{0.15}{GW231123cg_{t}phm}{0.13}{GW231123cg_{s}eob}{0.14}}}
Total mass M/MM/\text{M}_{\odot} \IfEqCaseGW231123cgxphmGW231123cgcombined238GW231123cgnrsur241GW231123cgxphm243GW231123cgxo4a198GW231123cgtphm243GW231123cgseob244\IfEqCaseGW231123cgxphmGW231123cgcombined49GW231123cgnrsur27GW231123cgxphm26GW231123cgxo4a17GW231123cgtphm17GW231123cgseob21+\IfEqCaseGW231123cgxphmGW231123cgcombined28GW231123cgnrsur20GW231123cgxphm25GW231123cgxo4a29GW231123cgtphm27GW231123cgseob29\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{238}{GW231123cg_{n}rsur}{241}{GW231123cg_{x}phm}{243}{GW231123cg_{x}o4a}{198}{GW231123cg_{t}phm}{243}{GW231123cg_{s}eob}{244}}^{+\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{28}{GW231123cg_{n}rsur}{20}{GW231123cg_{x}phm}{25}{GW231123cg_{x}o4a}{29}{GW231123cg_{t}phm}{27}{GW231123cg_{s}eob}{29}}}_{-\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{49}{GW231123cg_{n}rsur}{27}{GW231123cg_{x}phm}{26}{GW231123cg_{x}o4a}{17}{GW231123cg_{t}phm}{17}{GW231123cg_{s}eob}{21}}} \IfEqCaseGW231123cgxo4aGW231123cgcombined238GW231123cgnrsur241GW231123cgxphm243GW231123cgxo4a198GW231123cgtphm243GW231123cgseob244\IfEqCaseGW231123cgxo4aGW231123cgcombined49GW231123cgnrsur27GW231123cgxphm26GW231123cgxo4a17GW231123cgtphm17GW231123cgseob21+\IfEqCaseGW231123cgxo4aGW231123cgcombined28GW231123cgnrsur20GW231123cgxphm25GW231123cgxo4a29GW231123cgtphm27GW231123cgseob29\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{238}{GW231123cg_{n}rsur}{241}{GW231123cg_{x}phm}{243}{GW231123cg_{x}o4a}{198}{GW231123cg_{t}phm}{243}{GW231123cg_{s}eob}{244}}^{+\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{28}{GW231123cg_{n}rsur}{20}{GW231123cg_{x}phm}{25}{GW231123cg_{x}o4a}{29}{GW231123cg_{t}phm}{27}{GW231123cg_{s}eob}{29}}}_{-\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{49}{GW231123cg_{n}rsur}{27}{GW231123cg_{x}phm}{26}{GW231123cg_{x}o4a}{17}{GW231123cg_{t}phm}{17}{GW231123cg_{s}eob}{21}}} \IfEqCaseGW231123cgtphmGW231123cgcombined238GW231123cgnrsur241GW231123cgxphm243GW231123cgxo4a198GW231123cgtphm243GW231123cgseob244\IfEqCaseGW231123cgtphmGW231123cgcombined49GW231123cgnrsur27GW231123cgxphm26GW231123cgxo4a17GW231123cgtphm17GW231123cgseob21+\IfEqCaseGW231123cgtphmGW231123cgcombined28GW231123cgnrsur20GW231123cgxphm25GW231123cgxo4a29GW231123cgtphm27GW231123cgseob29\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{238}{GW231123cg_{n}rsur}{241}{GW231123cg_{x}phm}{243}{GW231123cg_{x}o4a}{198}{GW231123cg_{t}phm}{243}{GW231123cg_{s}eob}{244}}^{+\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{28}{GW231123cg_{n}rsur}{20}{GW231123cg_{x}phm}{25}{GW231123cg_{x}o4a}{29}{GW231123cg_{t}phm}{27}{GW231123cg_{s}eob}{29}}}_{-\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{49}{GW231123cg_{n}rsur}{27}{GW231123cg_{x}phm}{26}{GW231123cg_{x}o4a}{17}{GW231123cg_{t}phm}{17}{GW231123cg_{s}eob}{21}}} \IfEqCaseGW231123cgnrsurGW231123cgcombined238GW231123cgnrsur241GW231123cgxphm243GW231123cgxo4a198GW231123cgtphm243GW231123cgseob244\IfEqCaseGW231123cgnrsurGW231123cgcombined49GW231123cgnrsur27GW231123cgxphm26GW231123cgxo4a17GW231123cgtphm17GW231123cgseob21+\IfEqCaseGW231123cgnrsurGW231123cgcombined28GW231123cgnrsur20GW231123cgxphm25GW231123cgxo4a29GW231123cgtphm27GW231123cgseob29\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{238}{GW231123cg_{n}rsur}{241}{GW231123cg_{x}phm}{243}{GW231123cg_{x}o4a}{198}{GW231123cg_{t}phm}{243}{GW231123cg_{s}eob}{244}}^{+\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{28}{GW231123cg_{n}rsur}{20}{GW231123cg_{x}phm}{25}{GW231123cg_{x}o4a}{29}{GW231123cg_{t}phm}{27}{GW231123cg_{s}eob}{29}}}_{-\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{49}{GW231123cg_{n}rsur}{27}{GW231123cg_{x}phm}{26}{GW231123cg_{x}o4a}{17}{GW231123cg_{t}phm}{17}{GW231123cg_{s}eob}{21}}} \IfEqCaseGW231123cgseobGW231123cgcombined238GW231123cgnrsur241GW231123cgxphm243GW231123cgxo4a198GW231123cgtphm243GW231123cgseob244\IfEqCaseGW231123cgseobGW231123cgcombined49GW231123cgnrsur27GW231123cgxphm26GW231123cgxo4a17GW231123cgtphm17GW231123cgseob21+\IfEqCaseGW231123cgseobGW231123cgcombined28GW231123cgnrsur20GW231123cgxphm25GW231123cgxo4a29GW231123cgtphm27GW231123cgseob29\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{238}{GW231123cg_{n}rsur}{241}{GW231123cg_{x}phm}{243}{GW231123cg_{x}o4a}{198}{GW231123cg_{t}phm}{243}{GW231123cg_{s}eob}{244}}^{+\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{28}{GW231123cg_{n}rsur}{20}{GW231123cg_{x}phm}{25}{GW231123cg_{x}o4a}{29}{GW231123cg_{t}phm}{27}{GW231123cg_{s}eob}{29}}}_{-\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{49}{GW231123cg_{n}rsur}{27}{GW231123cg_{x}phm}{26}{GW231123cg_{x}o4a}{17}{GW231123cg_{t}phm}{17}{GW231123cg_{s}eob}{21}}}
Final mass Mf/MM_{\rm{f}}/\text{M}_{\odot} \IfEqCaseGW231123cgxphmGW231123cgcombined225GW231123cgnrsur227GW231123cgxphm233GW231123cgxo4a190GW231123cgtphm227GW231123cgseob228\IfEqCaseGW231123cgxphmGW231123cgcombined43GW231123cgnrsur28GW231123cgxphm24GW231123cgxo4a17GW231123cgtphm16GW231123cgseob20+\IfEqCaseGW231123cgxphmGW231123cgcombined26GW231123cgnrsur18GW231123cgxphm23GW231123cgxo4a28GW231123cgtphm25GW231123cgseob27\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{225}{GW231123cg_{n}rsur}{227}{GW231123cg_{x}phm}{233}{GW231123cg_{x}o4a}{190}{GW231123cg_{t}phm}{227}{GW231123cg_{s}eob}{228}}^{+\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{26}{GW231123cg_{n}rsur}{18}{GW231123cg_{x}phm}{23}{GW231123cg_{x}o4a}{28}{GW231123cg_{t}phm}{25}{GW231123cg_{s}eob}{27}}}_{-\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{43}{GW231123cg_{n}rsur}{28}{GW231123cg_{x}phm}{24}{GW231123cg_{x}o4a}{17}{GW231123cg_{t}phm}{16}{GW231123cg_{s}eob}{20}}} \IfEqCaseGW231123cgxo4aGW231123cgcombined225GW231123cgnrsur227GW231123cgxphm233GW231123cgxo4a190GW231123cgtphm227GW231123cgseob228\IfEqCaseGW231123cgxo4aGW231123cgcombined43GW231123cgnrsur28GW231123cgxphm24GW231123cgxo4a17GW231123cgtphm16GW231123cgseob20+\IfEqCaseGW231123cgxo4aGW231123cgcombined26GW231123cgnrsur18GW231123cgxphm23GW231123cgxo4a28GW231123cgtphm25GW231123cgseob27\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{225}{GW231123cg_{n}rsur}{227}{GW231123cg_{x}phm}{233}{GW231123cg_{x}o4a}{190}{GW231123cg_{t}phm}{227}{GW231123cg_{s}eob}{228}}^{+\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{26}{GW231123cg_{n}rsur}{18}{GW231123cg_{x}phm}{23}{GW231123cg_{x}o4a}{28}{GW231123cg_{t}phm}{25}{GW231123cg_{s}eob}{27}}}_{-\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{43}{GW231123cg_{n}rsur}{28}{GW231123cg_{x}phm}{24}{GW231123cg_{x}o4a}{17}{GW231123cg_{t}phm}{16}{GW231123cg_{s}eob}{20}}} \IfEqCaseGW231123cgtphmGW231123cgcombined225GW231123cgnrsur227GW231123cgxphm233GW231123cgxo4a190GW231123cgtphm227GW231123cgseob228\IfEqCaseGW231123cgtphmGW231123cgcombined43GW231123cgnrsur28GW231123cgxphm24GW231123cgxo4a17GW231123cgtphm16GW231123cgseob20+\IfEqCaseGW231123cgtphmGW231123cgcombined26GW231123cgnrsur18GW231123cgxphm23GW231123cgxo4a28GW231123cgtphm25GW231123cgseob27\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{225}{GW231123cg_{n}rsur}{227}{GW231123cg_{x}phm}{233}{GW231123cg_{x}o4a}{190}{GW231123cg_{t}phm}{227}{GW231123cg_{s}eob}{228}}^{+\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{26}{GW231123cg_{n}rsur}{18}{GW231123cg_{x}phm}{23}{GW231123cg_{x}o4a}{28}{GW231123cg_{t}phm}{25}{GW231123cg_{s}eob}{27}}}_{-\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{43}{GW231123cg_{n}rsur}{28}{GW231123cg_{x}phm}{24}{GW231123cg_{x}o4a}{17}{GW231123cg_{t}phm}{16}{GW231123cg_{s}eob}{20}}} \IfEqCaseGW231123cgnrsurGW231123cgcombined225GW231123cgnrsur227GW231123cgxphm233GW231123cgxo4a190GW231123cgtphm227GW231123cgseob228\IfEqCaseGW231123cgnrsurGW231123cgcombined43GW231123cgnrsur28GW231123cgxphm24GW231123cgxo4a17GW231123cgtphm16GW231123cgseob20+\IfEqCaseGW231123cgnrsurGW231123cgcombined26GW231123cgnrsur18GW231123cgxphm23GW231123cgxo4a28GW231123cgtphm25GW231123cgseob27\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{225}{GW231123cg_{n}rsur}{227}{GW231123cg_{x}phm}{233}{GW231123cg_{x}o4a}{190}{GW231123cg_{t}phm}{227}{GW231123cg_{s}eob}{228}}^{+\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{26}{GW231123cg_{n}rsur}{18}{GW231123cg_{x}phm}{23}{GW231123cg_{x}o4a}{28}{GW231123cg_{t}phm}{25}{GW231123cg_{s}eob}{27}}}_{-\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{43}{GW231123cg_{n}rsur}{28}{GW231123cg_{x}phm}{24}{GW231123cg_{x}o4a}{17}{GW231123cg_{t}phm}{16}{GW231123cg_{s}eob}{20}}} \IfEqCaseGW231123cgseobGW231123cgcombined225GW231123cgnrsur227GW231123cgxphm233GW231123cgxo4a190GW231123cgtphm227GW231123cgseob228\IfEqCaseGW231123cgseobGW231123cgcombined43GW231123cgnrsur28GW231123cgxphm24GW231123cgxo4a17GW231123cgtphm16GW231123cgseob20+\IfEqCaseGW231123cgseobGW231123cgcombined26GW231123cgnrsur18GW231123cgxphm23GW231123cgxo4a28GW231123cgtphm25GW231123cgseob27\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{225}{GW231123cg_{n}rsur}{227}{GW231123cg_{x}phm}{233}{GW231123cg_{x}o4a}{190}{GW231123cg_{t}phm}{227}{GW231123cg_{s}eob}{228}}^{+\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{26}{GW231123cg_{n}rsur}{18}{GW231123cg_{x}phm}{23}{GW231123cg_{x}o4a}{28}{GW231123cg_{t}phm}{25}{GW231123cg_{s}eob}{27}}}_{-\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{43}{GW231123cg_{n}rsur}{28}{GW231123cg_{x}phm}{24}{GW231123cg_{x}o4a}{17}{GW231123cg_{t}phm}{16}{GW231123cg_{s}eob}{20}}}
Primary spin magnitude χ1\chi_{1} \IfEqCaseGW231123cgxphmGW231123cgcombined0.90GW231123cgnrsur0.89GW231123cgxphm0.79GW231123cgxo4a0.92GW231123cgtphm0.92GW231123cgseob0.91\IfEqCaseGW231123cgxphmGW231123cgcombined0.19GW231123cgnrsur0.20GW231123cgxphm0.20GW231123cgxo4a0.06GW231123cgtphm0.13GW231123cgseob0.16+\IfEqCaseGW231123cgxphmGW231123cgcombined0.10GW231123cgnrsur0.11GW231123cgxphm0.21GW231123cgxo4a0.07GW231123cgtphm0.08GW231123cgseob0.09\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.90}{GW231123cg_{n}rsur}{0.89}{GW231123cg_{x}phm}{0.79}{GW231123cg_{x}o4a}{0.92}{GW231123cg_{t}phm}{0.92}{GW231123cg_{s}eob}{0.91}}^{+\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.10}{GW231123cg_{n}rsur}{0.11}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.07}{GW231123cg_{t}phm}{0.08}{GW231123cg_{s}eob}{0.09}}}_{-\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.19}{GW231123cg_{n}rsur}{0.20}{GW231123cg_{x}phm}{0.20}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.13}{GW231123cg_{s}eob}{0.16}}} \IfEqCaseGW231123cgxo4aGW231123cgcombined0.90GW231123cgnrsur0.89GW231123cgxphm0.79GW231123cgxo4a0.92GW231123cgtphm0.92GW231123cgseob0.91\IfEqCaseGW231123cgxo4aGW231123cgcombined0.19GW231123cgnrsur0.20GW231123cgxphm0.20GW231123cgxo4a0.06GW231123cgtphm0.13GW231123cgseob0.16+\IfEqCaseGW231123cgxo4aGW231123cgcombined0.10GW231123cgnrsur0.11GW231123cgxphm0.21GW231123cgxo4a0.07GW231123cgtphm0.08GW231123cgseob0.09\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.90}{GW231123cg_{n}rsur}{0.89}{GW231123cg_{x}phm}{0.79}{GW231123cg_{x}o4a}{0.92}{GW231123cg_{t}phm}{0.92}{GW231123cg_{s}eob}{0.91}}^{+\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.10}{GW231123cg_{n}rsur}{0.11}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.07}{GW231123cg_{t}phm}{0.08}{GW231123cg_{s}eob}{0.09}}}_{-\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.19}{GW231123cg_{n}rsur}{0.20}{GW231123cg_{x}phm}{0.20}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.13}{GW231123cg_{s}eob}{0.16}}} \IfEqCaseGW231123cgtphmGW231123cgcombined0.90GW231123cgnrsur0.89GW231123cgxphm0.79GW231123cgxo4a0.92GW231123cgtphm0.92GW231123cgseob0.91\IfEqCaseGW231123cgtphmGW231123cgcombined0.19GW231123cgnrsur0.20GW231123cgxphm0.20GW231123cgxo4a0.06GW231123cgtphm0.13GW231123cgseob0.16+\IfEqCaseGW231123cgtphmGW231123cgcombined0.10GW231123cgnrsur0.11GW231123cgxphm0.21GW231123cgxo4a0.07GW231123cgtphm0.08GW231123cgseob0.09\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.90}{GW231123cg_{n}rsur}{0.89}{GW231123cg_{x}phm}{0.79}{GW231123cg_{x}o4a}{0.92}{GW231123cg_{t}phm}{0.92}{GW231123cg_{s}eob}{0.91}}^{+\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.10}{GW231123cg_{n}rsur}{0.11}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.07}{GW231123cg_{t}phm}{0.08}{GW231123cg_{s}eob}{0.09}}}_{-\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.19}{GW231123cg_{n}rsur}{0.20}{GW231123cg_{x}phm}{0.20}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.13}{GW231123cg_{s}eob}{0.16}}} \IfEqCaseGW231123cgnrsurGW231123cgcombined0.90GW231123cgnrsur0.89GW231123cgxphm0.79GW231123cgxo4a0.92GW231123cgtphm0.92GW231123cgseob0.91\IfEqCaseGW231123cgnrsurGW231123cgcombined0.19GW231123cgnrsur0.20GW231123cgxphm0.20GW231123cgxo4a0.06GW231123cgtphm0.13GW231123cgseob0.16+\IfEqCaseGW231123cgnrsurGW231123cgcombined0.10GW231123cgnrsur0.11GW231123cgxphm0.21GW231123cgxo4a0.07GW231123cgtphm0.08GW231123cgseob0.09\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.90}{GW231123cg_{n}rsur}{0.89}{GW231123cg_{x}phm}{0.79}{GW231123cg_{x}o4a}{0.92}{GW231123cg_{t}phm}{0.92}{GW231123cg_{s}eob}{0.91}}^{+\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.10}{GW231123cg_{n}rsur}{0.11}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.07}{GW231123cg_{t}phm}{0.08}{GW231123cg_{s}eob}{0.09}}}_{-\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.19}{GW231123cg_{n}rsur}{0.20}{GW231123cg_{x}phm}{0.20}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.13}{GW231123cg_{s}eob}{0.16}}} \IfEqCaseGW231123cgseobGW231123cgcombined0.90GW231123cgnrsur0.89GW231123cgxphm0.79GW231123cgxo4a0.92GW231123cgtphm0.92GW231123cgseob0.91\IfEqCaseGW231123cgseobGW231123cgcombined0.19GW231123cgnrsur0.20GW231123cgxphm0.20GW231123cgxo4a0.06GW231123cgtphm0.13GW231123cgseob0.16+\IfEqCaseGW231123cgseobGW231123cgcombined0.10GW231123cgnrsur0.11GW231123cgxphm0.21GW231123cgxo4a0.07GW231123cgtphm0.08GW231123cgseob0.09\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.90}{GW231123cg_{n}rsur}{0.89}{GW231123cg_{x}phm}{0.79}{GW231123cg_{x}o4a}{0.92}{GW231123cg_{t}phm}{0.92}{GW231123cg_{s}eob}{0.91}}^{+\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.10}{GW231123cg_{n}rsur}{0.11}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.07}{GW231123cg_{t}phm}{0.08}{GW231123cg_{s}eob}{0.09}}}_{-\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.19}{GW231123cg_{n}rsur}{0.20}{GW231123cg_{x}phm}{0.20}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.13}{GW231123cg_{s}eob}{0.16}}}
Secondary spin magnitude χ2\chi_{2} \IfEqCaseGW231123cgxphmGW231123cgcombined0.80GW231123cgnrsur0.91GW231123cgxphm0.68GW231123cgxo4a0.47GW231123cgtphm0.88GW231123cgseob0.81\IfEqCaseGW231123cgxphmGW231123cgcombined0.51GW231123cgnrsur0.19GW231123cgxphm0.46GW231123cgxo4a0.47GW231123cgtphm0.23GW231123cgseob0.35+\IfEqCaseGW231123cgxphmGW231123cgcombined0.20GW231123cgnrsur0.09GW231123cgxphm0.32GW231123cgxo4a0.41GW231123cgtphm0.12GW231123cgseob0.19\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.80}{GW231123cg_{n}rsur}{0.91}{GW231123cg_{x}phm}{0.68}{GW231123cg_{x}o4a}{0.47}{GW231123cg_{t}phm}{0.88}{GW231123cg_{s}eob}{0.81}}^{+\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.20}{GW231123cg_{n}rsur}{0.09}{GW231123cg_{x}phm}{0.32}{GW231123cg_{x}o4a}{0.41}{GW231123cg_{t}phm}{0.12}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.51}{GW231123cg_{n}rsur}{0.19}{GW231123cg_{x}phm}{0.46}{GW231123cg_{x}o4a}{0.47}{GW231123cg_{t}phm}{0.23}{GW231123cg_{s}eob}{0.35}}} \IfEqCaseGW231123cgxo4aGW231123cgcombined0.80GW231123cgnrsur0.91GW231123cgxphm0.68GW231123cgxo4a0.47GW231123cgtphm0.88GW231123cgseob0.81\IfEqCaseGW231123cgxo4aGW231123cgcombined0.51GW231123cgnrsur0.19GW231123cgxphm0.46GW231123cgxo4a0.47GW231123cgtphm0.23GW231123cgseob0.35+\IfEqCaseGW231123cgxo4aGW231123cgcombined0.20GW231123cgnrsur0.09GW231123cgxphm0.32GW231123cgxo4a0.41GW231123cgtphm0.12GW231123cgseob0.19\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.80}{GW231123cg_{n}rsur}{0.91}{GW231123cg_{x}phm}{0.68}{GW231123cg_{x}o4a}{0.47}{GW231123cg_{t}phm}{0.88}{GW231123cg_{s}eob}{0.81}}^{+\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.20}{GW231123cg_{n}rsur}{0.09}{GW231123cg_{x}phm}{0.32}{GW231123cg_{x}o4a}{0.41}{GW231123cg_{t}phm}{0.12}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.51}{GW231123cg_{n}rsur}{0.19}{GW231123cg_{x}phm}{0.46}{GW231123cg_{x}o4a}{0.47}{GW231123cg_{t}phm}{0.23}{GW231123cg_{s}eob}{0.35}}} \IfEqCaseGW231123cgtphmGW231123cgcombined0.80GW231123cgnrsur0.91GW231123cgxphm0.68GW231123cgxo4a0.47GW231123cgtphm0.88GW231123cgseob0.81\IfEqCaseGW231123cgtphmGW231123cgcombined0.51GW231123cgnrsur0.19GW231123cgxphm0.46GW231123cgxo4a0.47GW231123cgtphm0.23GW231123cgseob0.35+\IfEqCaseGW231123cgtphmGW231123cgcombined0.20GW231123cgnrsur0.09GW231123cgxphm0.32GW231123cgxo4a0.41GW231123cgtphm0.12GW231123cgseob0.19\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.80}{GW231123cg_{n}rsur}{0.91}{GW231123cg_{x}phm}{0.68}{GW231123cg_{x}o4a}{0.47}{GW231123cg_{t}phm}{0.88}{GW231123cg_{s}eob}{0.81}}^{+\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.20}{GW231123cg_{n}rsur}{0.09}{GW231123cg_{x}phm}{0.32}{GW231123cg_{x}o4a}{0.41}{GW231123cg_{t}phm}{0.12}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.51}{GW231123cg_{n}rsur}{0.19}{GW231123cg_{x}phm}{0.46}{GW231123cg_{x}o4a}{0.47}{GW231123cg_{t}phm}{0.23}{GW231123cg_{s}eob}{0.35}}} \IfEqCaseGW231123cgnrsurGW231123cgcombined0.80GW231123cgnrsur0.91GW231123cgxphm0.68GW231123cgxo4a0.47GW231123cgtphm0.88GW231123cgseob0.81\IfEqCaseGW231123cgnrsurGW231123cgcombined0.51GW231123cgnrsur0.19GW231123cgxphm0.46GW231123cgxo4a0.47GW231123cgtphm0.23GW231123cgseob0.35+\IfEqCaseGW231123cgnrsurGW231123cgcombined0.20GW231123cgnrsur0.09GW231123cgxphm0.32GW231123cgxo4a0.41GW231123cgtphm0.12GW231123cgseob0.19\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.80}{GW231123cg_{n}rsur}{0.91}{GW231123cg_{x}phm}{0.68}{GW231123cg_{x}o4a}{0.47}{GW231123cg_{t}phm}{0.88}{GW231123cg_{s}eob}{0.81}}^{+\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.20}{GW231123cg_{n}rsur}{0.09}{GW231123cg_{x}phm}{0.32}{GW231123cg_{x}o4a}{0.41}{GW231123cg_{t}phm}{0.12}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.51}{GW231123cg_{n}rsur}{0.19}{GW231123cg_{x}phm}{0.46}{GW231123cg_{x}o4a}{0.47}{GW231123cg_{t}phm}{0.23}{GW231123cg_{s}eob}{0.35}}} \IfEqCaseGW231123cgseobGW231123cgcombined0.80GW231123cgnrsur0.91GW231123cgxphm0.68GW231123cgxo4a0.47GW231123cgtphm0.88GW231123cgseob0.81\IfEqCaseGW231123cgseobGW231123cgcombined0.51GW231123cgnrsur0.19GW231123cgxphm0.46GW231123cgxo4a0.47GW231123cgtphm0.23GW231123cgseob0.35+\IfEqCaseGW231123cgseobGW231123cgcombined0.20GW231123cgnrsur0.09GW231123cgxphm0.32GW231123cgxo4a0.41GW231123cgtphm0.12GW231123cgseob0.19\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.80}{GW231123cg_{n}rsur}{0.91}{GW231123cg_{x}phm}{0.68}{GW231123cg_{x}o4a}{0.47}{GW231123cg_{t}phm}{0.88}{GW231123cg_{s}eob}{0.81}}^{+\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.20}{GW231123cg_{n}rsur}{0.09}{GW231123cg_{x}phm}{0.32}{GW231123cg_{x}o4a}{0.41}{GW231123cg_{t}phm}{0.12}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.51}{GW231123cg_{n}rsur}{0.19}{GW231123cg_{x}phm}{0.46}{GW231123cg_{x}o4a}{0.47}{GW231123cg_{t}phm}{0.23}{GW231123cg_{s}eob}{0.35}}}
Effective inspiral spin χeff\chi_{\rm eff} \IfEqCaseGW231123cgxphmGW231123cgcombined0.31GW231123cgnrsur0.23GW231123cgxphm0.04GW231123cgxo4a0.30GW231123cgtphm0.44GW231123cgseob0.44\IfEqCaseGW231123cgxphmGW231123cgcombined0.39GW231123cgnrsur0.35GW231123cgxphm0.21GW231123cgxo4a0.16GW231123cgtphm0.17GW231123cgseob0.23+\IfEqCaseGW231123cgxphmGW231123cgcombined0.24GW231123cgnrsur0.25GW231123cgxphm0.15GW231123cgxo4a0.20GW231123cgtphm0.14GW231123cgseob0.19\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.31}{GW231123cg_{n}rsur}{0.23}{GW231123cg_{x}phm}{0.04}{GW231123cg_{x}o4a}{0.30}{GW231123cg_{t}phm}{0.44}{GW231123cg_{s}eob}{0.44}}^{+\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.24}{GW231123cg_{n}rsur}{0.25}{GW231123cg_{x}phm}{0.15}{GW231123cg_{x}o4a}{0.20}{GW231123cg_{t}phm}{0.14}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.35}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.16}{GW231123cg_{t}phm}{0.17}{GW231123cg_{s}eob}{0.23}}} \IfEqCaseGW231123cgxo4aGW231123cgcombined0.31GW231123cgnrsur0.23GW231123cgxphm0.04GW231123cgxo4a0.30GW231123cgtphm0.44GW231123cgseob0.44\IfEqCaseGW231123cgxo4aGW231123cgcombined0.39GW231123cgnrsur0.35GW231123cgxphm0.21GW231123cgxo4a0.16GW231123cgtphm0.17GW231123cgseob0.23+\IfEqCaseGW231123cgxo4aGW231123cgcombined0.24GW231123cgnrsur0.25GW231123cgxphm0.15GW231123cgxo4a0.20GW231123cgtphm0.14GW231123cgseob0.19\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.31}{GW231123cg_{n}rsur}{0.23}{GW231123cg_{x}phm}{0.04}{GW231123cg_{x}o4a}{0.30}{GW231123cg_{t}phm}{0.44}{GW231123cg_{s}eob}{0.44}}^{+\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.24}{GW231123cg_{n}rsur}{0.25}{GW231123cg_{x}phm}{0.15}{GW231123cg_{x}o4a}{0.20}{GW231123cg_{t}phm}{0.14}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.35}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.16}{GW231123cg_{t}phm}{0.17}{GW231123cg_{s}eob}{0.23}}} \IfEqCaseGW231123cgtphmGW231123cgcombined0.31GW231123cgnrsur0.23GW231123cgxphm0.04GW231123cgxo4a0.30GW231123cgtphm0.44GW231123cgseob0.44\IfEqCaseGW231123cgtphmGW231123cgcombined0.39GW231123cgnrsur0.35GW231123cgxphm0.21GW231123cgxo4a0.16GW231123cgtphm0.17GW231123cgseob0.23+\IfEqCaseGW231123cgtphmGW231123cgcombined0.24GW231123cgnrsur0.25GW231123cgxphm0.15GW231123cgxo4a0.20GW231123cgtphm0.14GW231123cgseob0.19\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.31}{GW231123cg_{n}rsur}{0.23}{GW231123cg_{x}phm}{0.04}{GW231123cg_{x}o4a}{0.30}{GW231123cg_{t}phm}{0.44}{GW231123cg_{s}eob}{0.44}}^{+\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.24}{GW231123cg_{n}rsur}{0.25}{GW231123cg_{x}phm}{0.15}{GW231123cg_{x}o4a}{0.20}{GW231123cg_{t}phm}{0.14}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.35}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.16}{GW231123cg_{t}phm}{0.17}{GW231123cg_{s}eob}{0.23}}} \IfEqCaseGW231123cgnrsurGW231123cgcombined0.31GW231123cgnrsur0.23GW231123cgxphm0.04GW231123cgxo4a0.30GW231123cgtphm0.44GW231123cgseob0.44\IfEqCaseGW231123cgnrsurGW231123cgcombined0.39GW231123cgnrsur0.35GW231123cgxphm0.21GW231123cgxo4a0.16GW231123cgtphm0.17GW231123cgseob0.23+\IfEqCaseGW231123cgnrsurGW231123cgcombined0.24GW231123cgnrsur0.25GW231123cgxphm0.15GW231123cgxo4a0.20GW231123cgtphm0.14GW231123cgseob0.19\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.31}{GW231123cg_{n}rsur}{0.23}{GW231123cg_{x}phm}{0.04}{GW231123cg_{x}o4a}{0.30}{GW231123cg_{t}phm}{0.44}{GW231123cg_{s}eob}{0.44}}^{+\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.24}{GW231123cg_{n}rsur}{0.25}{GW231123cg_{x}phm}{0.15}{GW231123cg_{x}o4a}{0.20}{GW231123cg_{t}phm}{0.14}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.35}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.16}{GW231123cg_{t}phm}{0.17}{GW231123cg_{s}eob}{0.23}}} \IfEqCaseGW231123cgseobGW231123cgcombined0.31GW231123cgnrsur0.23GW231123cgxphm0.04GW231123cgxo4a0.30GW231123cgtphm0.44GW231123cgseob0.44\IfEqCaseGW231123cgseobGW231123cgcombined0.39GW231123cgnrsur0.35GW231123cgxphm0.21GW231123cgxo4a0.16GW231123cgtphm0.17GW231123cgseob0.23+\IfEqCaseGW231123cgseobGW231123cgcombined0.24GW231123cgnrsur0.25GW231123cgxphm0.15GW231123cgxo4a0.20GW231123cgtphm0.14GW231123cgseob0.19\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.31}{GW231123cg_{n}rsur}{0.23}{GW231123cg_{x}phm}{0.04}{GW231123cg_{x}o4a}{0.30}{GW231123cg_{t}phm}{0.44}{GW231123cg_{s}eob}{0.44}}^{+\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.24}{GW231123cg_{n}rsur}{0.25}{GW231123cg_{x}phm}{0.15}{GW231123cg_{x}o4a}{0.20}{GW231123cg_{t}phm}{0.14}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.35}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.16}{GW231123cg_{t}phm}{0.17}{GW231123cg_{s}eob}{0.23}}}
Effective precessing spin χp\chi_{\rm p} \IfEqCaseGW231123cgxphmGW231123cgcombined0.77GW231123cgnrsur0.78GW231123cgxphm0.75GW231123cgxo4a0.82GW231123cgtphm0.77GW231123cgseob0.73\IfEqCaseGW231123cgxphmGW231123cgcombined0.19GW231123cgnrsur0.16GW231123cgxphm0.22GW231123cgxo4a0.12GW231123cgtphm0.17GW231123cgseob0.20+\IfEqCaseGW231123cgxphmGW231123cgcombined0.17GW231123cgnrsur0.19GW231123cgxphm0.21GW231123cgxo4a0.09GW231123cgtphm0.16GW231123cgseob0.19\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.77}{GW231123cg_{n}rsur}{0.78}{GW231123cg_{x}phm}{0.75}{GW231123cg_{x}o4a}{0.82}{GW231123cg_{t}phm}{0.77}{GW231123cg_{s}eob}{0.73}}^{+\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.17}{GW231123cg_{n}rsur}{0.19}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.09}{GW231123cg_{t}phm}{0.16}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.19}{GW231123cg_{n}rsur}{0.16}{GW231123cg_{x}phm}{0.22}{GW231123cg_{x}o4a}{0.12}{GW231123cg_{t}phm}{0.17}{GW231123cg_{s}eob}{0.20}}} \IfEqCaseGW231123cgxo4aGW231123cgcombined0.77GW231123cgnrsur0.78GW231123cgxphm0.75GW231123cgxo4a0.82GW231123cgtphm0.77GW231123cgseob0.73\IfEqCaseGW231123cgxo4aGW231123cgcombined0.19GW231123cgnrsur0.16GW231123cgxphm0.22GW231123cgxo4a0.12GW231123cgtphm0.17GW231123cgseob0.20+\IfEqCaseGW231123cgxo4aGW231123cgcombined0.17GW231123cgnrsur0.19GW231123cgxphm0.21GW231123cgxo4a0.09GW231123cgtphm0.16GW231123cgseob0.19\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.77}{GW231123cg_{n}rsur}{0.78}{GW231123cg_{x}phm}{0.75}{GW231123cg_{x}o4a}{0.82}{GW231123cg_{t}phm}{0.77}{GW231123cg_{s}eob}{0.73}}^{+\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.17}{GW231123cg_{n}rsur}{0.19}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.09}{GW231123cg_{t}phm}{0.16}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.19}{GW231123cg_{n}rsur}{0.16}{GW231123cg_{x}phm}{0.22}{GW231123cg_{x}o4a}{0.12}{GW231123cg_{t}phm}{0.17}{GW231123cg_{s}eob}{0.20}}} \IfEqCaseGW231123cgtphmGW231123cgcombined0.77GW231123cgnrsur0.78GW231123cgxphm0.75GW231123cgxo4a0.82GW231123cgtphm0.77GW231123cgseob0.73\IfEqCaseGW231123cgtphmGW231123cgcombined0.19GW231123cgnrsur0.16GW231123cgxphm0.22GW231123cgxo4a0.12GW231123cgtphm0.17GW231123cgseob0.20+\IfEqCaseGW231123cgtphmGW231123cgcombined0.17GW231123cgnrsur0.19GW231123cgxphm0.21GW231123cgxo4a0.09GW231123cgtphm0.16GW231123cgseob0.19\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.77}{GW231123cg_{n}rsur}{0.78}{GW231123cg_{x}phm}{0.75}{GW231123cg_{x}o4a}{0.82}{GW231123cg_{t}phm}{0.77}{GW231123cg_{s}eob}{0.73}}^{+\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.17}{GW231123cg_{n}rsur}{0.19}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.09}{GW231123cg_{t}phm}{0.16}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.19}{GW231123cg_{n}rsur}{0.16}{GW231123cg_{x}phm}{0.22}{GW231123cg_{x}o4a}{0.12}{GW231123cg_{t}phm}{0.17}{GW231123cg_{s}eob}{0.20}}} \IfEqCaseGW231123cgnrsurGW231123cgcombined0.77GW231123cgnrsur0.78GW231123cgxphm0.75GW231123cgxo4a0.82GW231123cgtphm0.77GW231123cgseob0.73\IfEqCaseGW231123cgnrsurGW231123cgcombined0.19GW231123cgnrsur0.16GW231123cgxphm0.22GW231123cgxo4a0.12GW231123cgtphm0.17GW231123cgseob0.20+\IfEqCaseGW231123cgnrsurGW231123cgcombined0.17GW231123cgnrsur0.19GW231123cgxphm0.21GW231123cgxo4a0.09GW231123cgtphm0.16GW231123cgseob0.19\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.77}{GW231123cg_{n}rsur}{0.78}{GW231123cg_{x}phm}{0.75}{GW231123cg_{x}o4a}{0.82}{GW231123cg_{t}phm}{0.77}{GW231123cg_{s}eob}{0.73}}^{+\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.17}{GW231123cg_{n}rsur}{0.19}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.09}{GW231123cg_{t}phm}{0.16}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.19}{GW231123cg_{n}rsur}{0.16}{GW231123cg_{x}phm}{0.22}{GW231123cg_{x}o4a}{0.12}{GW231123cg_{t}phm}{0.17}{GW231123cg_{s}eob}{0.20}}} \IfEqCaseGW231123cgseobGW231123cgcombined0.77GW231123cgnrsur0.78GW231123cgxphm0.75GW231123cgxo4a0.82GW231123cgtphm0.77GW231123cgseob0.73\IfEqCaseGW231123cgseobGW231123cgcombined0.19GW231123cgnrsur0.16GW231123cgxphm0.22GW231123cgxo4a0.12GW231123cgtphm0.17GW231123cgseob0.20+\IfEqCaseGW231123cgseobGW231123cgcombined0.17GW231123cgnrsur0.19GW231123cgxphm0.21GW231123cgxo4a0.09GW231123cgtphm0.16GW231123cgseob0.19\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.77}{GW231123cg_{n}rsur}{0.78}{GW231123cg_{x}phm}{0.75}{GW231123cg_{x}o4a}{0.82}{GW231123cg_{t}phm}{0.77}{GW231123cg_{s}eob}{0.73}}^{+\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.17}{GW231123cg_{n}rsur}{0.19}{GW231123cg_{x}phm}{0.21}{GW231123cg_{x}o4a}{0.09}{GW231123cg_{t}phm}{0.16}{GW231123cg_{s}eob}{0.19}}}_{-\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.19}{GW231123cg_{n}rsur}{0.16}{GW231123cg_{x}phm}{0.22}{GW231123cg_{x}o4a}{0.12}{GW231123cg_{t}phm}{0.17}{GW231123cg_{s}eob}{0.20}}}
Final spin χf\chi_{\rm f} \IfEqCaseGW231123cgxphmGW231123cgcombined0.84GW231123cgnrsur0.81GW231123cgxphm0.71GW231123cgxo4a0.85GW231123cgtphm0.89GW231123cgseob0.87\IfEqCaseGW231123cgxphmGW231123cgcombined0.16GW231123cgnrsur0.14GW231123cgxphm0.09GW231123cgxo4a0.06GW231123cgtphm0.04GW231123cgseob0.05+\IfEqCaseGW231123cgxphmGW231123cgcombined0.08GW231123cgnrsur0.06GW231123cgxphm0.07GW231123cgxo4a0.06GW231123cgtphm0.03GW231123cgseob0.05\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.84}{GW231123cg_{n}rsur}{0.81}{GW231123cg_{x}phm}{0.71}{GW231123cg_{x}o4a}{0.85}{GW231123cg_{t}phm}{0.89}{GW231123cg_{s}eob}{0.87}}^{+\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.08}{GW231123cg_{n}rsur}{0.06}{GW231123cg_{x}phm}{0.07}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.03}{GW231123cg_{s}eob}{0.05}}}_{-\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.16}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.09}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.04}{GW231123cg_{s}eob}{0.05}}} \IfEqCaseGW231123cgxo4aGW231123cgcombined0.84GW231123cgnrsur0.81GW231123cgxphm0.71GW231123cgxo4a0.85GW231123cgtphm0.89GW231123cgseob0.87\IfEqCaseGW231123cgxo4aGW231123cgcombined0.16GW231123cgnrsur0.14GW231123cgxphm0.09GW231123cgxo4a0.06GW231123cgtphm0.04GW231123cgseob0.05+\IfEqCaseGW231123cgxo4aGW231123cgcombined0.08GW231123cgnrsur0.06GW231123cgxphm0.07GW231123cgxo4a0.06GW231123cgtphm0.03GW231123cgseob0.05\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.84}{GW231123cg_{n}rsur}{0.81}{GW231123cg_{x}phm}{0.71}{GW231123cg_{x}o4a}{0.85}{GW231123cg_{t}phm}{0.89}{GW231123cg_{s}eob}{0.87}}^{+\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.08}{GW231123cg_{n}rsur}{0.06}{GW231123cg_{x}phm}{0.07}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.03}{GW231123cg_{s}eob}{0.05}}}_{-\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.16}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.09}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.04}{GW231123cg_{s}eob}{0.05}}} \IfEqCaseGW231123cgtphmGW231123cgcombined0.84GW231123cgnrsur0.81GW231123cgxphm0.71GW231123cgxo4a0.85GW231123cgtphm0.89GW231123cgseob0.87\IfEqCaseGW231123cgtphmGW231123cgcombined0.16GW231123cgnrsur0.14GW231123cgxphm0.09GW231123cgxo4a0.06GW231123cgtphm0.04GW231123cgseob0.05+\IfEqCaseGW231123cgtphmGW231123cgcombined0.08GW231123cgnrsur0.06GW231123cgxphm0.07GW231123cgxo4a0.06GW231123cgtphm0.03GW231123cgseob0.05\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.84}{GW231123cg_{n}rsur}{0.81}{GW231123cg_{x}phm}{0.71}{GW231123cg_{x}o4a}{0.85}{GW231123cg_{t}phm}{0.89}{GW231123cg_{s}eob}{0.87}}^{+\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.08}{GW231123cg_{n}rsur}{0.06}{GW231123cg_{x}phm}{0.07}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.03}{GW231123cg_{s}eob}{0.05}}}_{-\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.16}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.09}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.04}{GW231123cg_{s}eob}{0.05}}} \IfEqCaseGW231123cgnrsurGW231123cgcombined0.84GW231123cgnrsur0.81GW231123cgxphm0.71GW231123cgxo4a0.85GW231123cgtphm0.89GW231123cgseob0.87\IfEqCaseGW231123cgnrsurGW231123cgcombined0.16GW231123cgnrsur0.14GW231123cgxphm0.09GW231123cgxo4a0.06GW231123cgtphm0.04GW231123cgseob0.05+\IfEqCaseGW231123cgnrsurGW231123cgcombined0.08GW231123cgnrsur0.06GW231123cgxphm0.07GW231123cgxo4a0.06GW231123cgtphm0.03GW231123cgseob0.05\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.84}{GW231123cg_{n}rsur}{0.81}{GW231123cg_{x}phm}{0.71}{GW231123cg_{x}o4a}{0.85}{GW231123cg_{t}phm}{0.89}{GW231123cg_{s}eob}{0.87}}^{+\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.08}{GW231123cg_{n}rsur}{0.06}{GW231123cg_{x}phm}{0.07}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.03}{GW231123cg_{s}eob}{0.05}}}_{-\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.16}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.09}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.04}{GW231123cg_{s}eob}{0.05}}} \IfEqCaseGW231123cgseobGW231123cgcombined0.84GW231123cgnrsur0.81GW231123cgxphm0.71GW231123cgxo4a0.85GW231123cgtphm0.89GW231123cgseob0.87\IfEqCaseGW231123cgseobGW231123cgcombined0.16GW231123cgnrsur0.14GW231123cgxphm0.09GW231123cgxo4a0.06GW231123cgtphm0.04GW231123cgseob0.05+\IfEqCaseGW231123cgseobGW231123cgcombined0.08GW231123cgnrsur0.06GW231123cgxphm0.07GW231123cgxo4a0.06GW231123cgtphm0.03GW231123cgseob0.05\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.84}{GW231123cg_{n}rsur}{0.81}{GW231123cg_{x}phm}{0.71}{GW231123cg_{x}o4a}{0.85}{GW231123cg_{t}phm}{0.89}{GW231123cg_{s}eob}{0.87}}^{+\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.08}{GW231123cg_{n}rsur}{0.06}{GW231123cg_{x}phm}{0.07}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.03}{GW231123cg_{s}eob}{0.05}}}_{-\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.16}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.09}{GW231123cg_{x}o4a}{0.06}{GW231123cg_{t}phm}{0.04}{GW231123cg_{s}eob}{0.05}}}
Luminosity distance DL/GpcD_{\rm L}/\rm{Gpc} \IfEqCaseGW231123cgxphmGW231123cgcombined2.2GW231123cgnrsur1.5GW231123cgxphm0.8GW231123cgxo4a3.5GW231123cgtphm2.7GW231123cgseob2.2\IfEqCaseGW231123cgxphmGW231123cgcombined1.5GW231123cgnrsur0.8GW231123cgxphm0.3GW231123cgxo4a1.4GW231123cgtphm1.0GW231123cgseob1.0+\IfEqCaseGW231123cgxphmGW231123cgcombined1.9GW231123cgnrsur1.5GW231123cgxphm0.4GW231123cgxo4a1.2GW231123cgtphm1.1GW231123cgseob1.2\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{2.2}{GW231123cg_{n}rsur}{1.5}{GW231123cg_{x}phm}{0.8}{GW231123cg_{x}o4a}{3.5}{GW231123cg_{t}phm}{2.7}{GW231123cg_{s}eob}{2.2}}^{+\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{1.9}{GW231123cg_{n}rsur}{1.5}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{1.2}{GW231123cg_{t}phm}{1.1}{GW231123cg_{s}eob}{1.2}}}_{-\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{1.5}{GW231123cg_{n}rsur}{0.8}{GW231123cg_{x}phm}{0.3}{GW231123cg_{x}o4a}{1.4}{GW231123cg_{t}phm}{1.0}{GW231123cg_{s}eob}{1.0}}} \IfEqCaseGW231123cgxo4aGW231123cgcombined2.2GW231123cgnrsur1.5GW231123cgxphm0.8GW231123cgxo4a3.5GW231123cgtphm2.7GW231123cgseob2.2\IfEqCaseGW231123cgxo4aGW231123cgcombined1.5GW231123cgnrsur0.8GW231123cgxphm0.3GW231123cgxo4a1.4GW231123cgtphm1.0GW231123cgseob1.0+\IfEqCaseGW231123cgxo4aGW231123cgcombined1.9GW231123cgnrsur1.5GW231123cgxphm0.4GW231123cgxo4a1.2GW231123cgtphm1.1GW231123cgseob1.2\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{2.2}{GW231123cg_{n}rsur}{1.5}{GW231123cg_{x}phm}{0.8}{GW231123cg_{x}o4a}{3.5}{GW231123cg_{t}phm}{2.7}{GW231123cg_{s}eob}{2.2}}^{+\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{1.9}{GW231123cg_{n}rsur}{1.5}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{1.2}{GW231123cg_{t}phm}{1.1}{GW231123cg_{s}eob}{1.2}}}_{-\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{1.5}{GW231123cg_{n}rsur}{0.8}{GW231123cg_{x}phm}{0.3}{GW231123cg_{x}o4a}{1.4}{GW231123cg_{t}phm}{1.0}{GW231123cg_{s}eob}{1.0}}} \IfEqCaseGW231123cgtphmGW231123cgcombined2.2GW231123cgnrsur1.5GW231123cgxphm0.8GW231123cgxo4a3.5GW231123cgtphm2.7GW231123cgseob2.2\IfEqCaseGW231123cgtphmGW231123cgcombined1.5GW231123cgnrsur0.8GW231123cgxphm0.3GW231123cgxo4a1.4GW231123cgtphm1.0GW231123cgseob1.0+\IfEqCaseGW231123cgtphmGW231123cgcombined1.9GW231123cgnrsur1.5GW231123cgxphm0.4GW231123cgxo4a1.2GW231123cgtphm1.1GW231123cgseob1.2\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{2.2}{GW231123cg_{n}rsur}{1.5}{GW231123cg_{x}phm}{0.8}{GW231123cg_{x}o4a}{3.5}{GW231123cg_{t}phm}{2.7}{GW231123cg_{s}eob}{2.2}}^{+\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{1.9}{GW231123cg_{n}rsur}{1.5}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{1.2}{GW231123cg_{t}phm}{1.1}{GW231123cg_{s}eob}{1.2}}}_{-\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{1.5}{GW231123cg_{n}rsur}{0.8}{GW231123cg_{x}phm}{0.3}{GW231123cg_{x}o4a}{1.4}{GW231123cg_{t}phm}{1.0}{GW231123cg_{s}eob}{1.0}}} \IfEqCaseGW231123cgnrsurGW231123cgcombined2.2GW231123cgnrsur1.5GW231123cgxphm0.8GW231123cgxo4a3.5GW231123cgtphm2.7GW231123cgseob2.2\IfEqCaseGW231123cgnrsurGW231123cgcombined1.5GW231123cgnrsur0.8GW231123cgxphm0.3GW231123cgxo4a1.4GW231123cgtphm1.0GW231123cgseob1.0+\IfEqCaseGW231123cgnrsurGW231123cgcombined1.9GW231123cgnrsur1.5GW231123cgxphm0.4GW231123cgxo4a1.2GW231123cgtphm1.1GW231123cgseob1.2\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{2.2}{GW231123cg_{n}rsur}{1.5}{GW231123cg_{x}phm}{0.8}{GW231123cg_{x}o4a}{3.5}{GW231123cg_{t}phm}{2.7}{GW231123cg_{s}eob}{2.2}}^{+\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{1.9}{GW231123cg_{n}rsur}{1.5}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{1.2}{GW231123cg_{t}phm}{1.1}{GW231123cg_{s}eob}{1.2}}}_{-\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{1.5}{GW231123cg_{n}rsur}{0.8}{GW231123cg_{x}phm}{0.3}{GW231123cg_{x}o4a}{1.4}{GW231123cg_{t}phm}{1.0}{GW231123cg_{s}eob}{1.0}}} \IfEqCaseGW231123cgseobGW231123cgcombined2.2GW231123cgnrsur1.5GW231123cgxphm0.8GW231123cgxo4a3.5GW231123cgtphm2.7GW231123cgseob2.2\IfEqCaseGW231123cgseobGW231123cgcombined1.5GW231123cgnrsur0.8GW231123cgxphm0.3GW231123cgxo4a1.4GW231123cgtphm1.0GW231123cgseob1.0+\IfEqCaseGW231123cgseobGW231123cgcombined1.9GW231123cgnrsur1.5GW231123cgxphm0.4GW231123cgxo4a1.2GW231123cgtphm1.1GW231123cgseob1.2\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{2.2}{GW231123cg_{n}rsur}{1.5}{GW231123cg_{x}phm}{0.8}{GW231123cg_{x}o4a}{3.5}{GW231123cg_{t}phm}{2.7}{GW231123cg_{s}eob}{2.2}}^{+\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{1.9}{GW231123cg_{n}rsur}{1.5}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{1.2}{GW231123cg_{t}phm}{1.1}{GW231123cg_{s}eob}{1.2}}}_{-\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{1.5}{GW231123cg_{n}rsur}{0.8}{GW231123cg_{x}phm}{0.3}{GW231123cg_{x}o4a}{1.4}{GW231123cg_{t}phm}{1.0}{GW231123cg_{s}eob}{1.0}}}
Inclination angle θJN/rad\theta_{\mathrm{JN}}/\rm{rad} \IfEqCaseGW231123cgxphmGW231123cgcombined1.4GW231123cgnrsur1.8GW231123cgxphm1.6GW231123cgxo4a0.5GW231123cgtphm1.8GW231123cgseob1.9\IfEqCaseGW231123cgxphmGW231123cgcombined1.1GW231123cgnrsur0.8GW231123cgxphm0.4GW231123cgxo4a0.3GW231123cgtphm0.9GW231123cgseob0.9+\IfEqCaseGW231123cgxphmGW231123cgcombined0.8GW231123cgnrsur0.3GW231123cgxphm0.4GW231123cgxo4a2.0GW231123cgtphm0.4GW231123cgseob0.3\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{1.4}{GW231123cg_{n}rsur}{1.8}{GW231123cg_{x}phm}{1.6}{GW231123cg_{x}o4a}{0.5}{GW231123cg_{t}phm}{1.8}{GW231123cg_{s}eob}{1.9}}^{+\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.8}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{2.0}{GW231123cg_{t}phm}{0.4}{GW231123cg_{s}eob}{0.3}}}_{-\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{1.1}{GW231123cg_{n}rsur}{0.8}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{0.3}{GW231123cg_{t}phm}{0.9}{GW231123cg_{s}eob}{0.9}}} \IfEqCaseGW231123cgxo4aGW231123cgcombined1.4GW231123cgnrsur1.8GW231123cgxphm1.6GW231123cgxo4a0.5GW231123cgtphm1.8GW231123cgseob1.9\IfEqCaseGW231123cgxo4aGW231123cgcombined1.1GW231123cgnrsur0.8GW231123cgxphm0.4GW231123cgxo4a0.3GW231123cgtphm0.9GW231123cgseob0.9+\IfEqCaseGW231123cgxo4aGW231123cgcombined0.8GW231123cgnrsur0.3GW231123cgxphm0.4GW231123cgxo4a2.0GW231123cgtphm0.4GW231123cgseob0.3\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{1.4}{GW231123cg_{n}rsur}{1.8}{GW231123cg_{x}phm}{1.6}{GW231123cg_{x}o4a}{0.5}{GW231123cg_{t}phm}{1.8}{GW231123cg_{s}eob}{1.9}}^{+\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.8}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{2.0}{GW231123cg_{t}phm}{0.4}{GW231123cg_{s}eob}{0.3}}}_{-\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{1.1}{GW231123cg_{n}rsur}{0.8}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{0.3}{GW231123cg_{t}phm}{0.9}{GW231123cg_{s}eob}{0.9}}} \IfEqCaseGW231123cgtphmGW231123cgcombined1.4GW231123cgnrsur1.8GW231123cgxphm1.6GW231123cgxo4a0.5GW231123cgtphm1.8GW231123cgseob1.9\IfEqCaseGW231123cgtphmGW231123cgcombined1.1GW231123cgnrsur0.8GW231123cgxphm0.4GW231123cgxo4a0.3GW231123cgtphm0.9GW231123cgseob0.9+\IfEqCaseGW231123cgtphmGW231123cgcombined0.8GW231123cgnrsur0.3GW231123cgxphm0.4GW231123cgxo4a2.0GW231123cgtphm0.4GW231123cgseob0.3\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{1.4}{GW231123cg_{n}rsur}{1.8}{GW231123cg_{x}phm}{1.6}{GW231123cg_{x}o4a}{0.5}{GW231123cg_{t}phm}{1.8}{GW231123cg_{s}eob}{1.9}}^{+\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.8}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{2.0}{GW231123cg_{t}phm}{0.4}{GW231123cg_{s}eob}{0.3}}}_{-\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{1.1}{GW231123cg_{n}rsur}{0.8}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{0.3}{GW231123cg_{t}phm}{0.9}{GW231123cg_{s}eob}{0.9}}} \IfEqCaseGW231123cgnrsurGW231123cgcombined1.4GW231123cgnrsur1.8GW231123cgxphm1.6GW231123cgxo4a0.5GW231123cgtphm1.8GW231123cgseob1.9\IfEqCaseGW231123cgnrsurGW231123cgcombined1.1GW231123cgnrsur0.8GW231123cgxphm0.4GW231123cgxo4a0.3GW231123cgtphm0.9GW231123cgseob0.9+\IfEqCaseGW231123cgnrsurGW231123cgcombined0.8GW231123cgnrsur0.3GW231123cgxphm0.4GW231123cgxo4a2.0GW231123cgtphm0.4GW231123cgseob0.3\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{1.4}{GW231123cg_{n}rsur}{1.8}{GW231123cg_{x}phm}{1.6}{GW231123cg_{x}o4a}{0.5}{GW231123cg_{t}phm}{1.8}{GW231123cg_{s}eob}{1.9}}^{+\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.8}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{2.0}{GW231123cg_{t}phm}{0.4}{GW231123cg_{s}eob}{0.3}}}_{-\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{1.1}{GW231123cg_{n}rsur}{0.8}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{0.3}{GW231123cg_{t}phm}{0.9}{GW231123cg_{s}eob}{0.9}}} \IfEqCaseGW231123cgseobGW231123cgcombined1.4GW231123cgnrsur1.8GW231123cgxphm1.6GW231123cgxo4a0.5GW231123cgtphm1.8GW231123cgseob1.9\IfEqCaseGW231123cgseobGW231123cgcombined1.1GW231123cgnrsur0.8GW231123cgxphm0.4GW231123cgxo4a0.3GW231123cgtphm0.9GW231123cgseob0.9+\IfEqCaseGW231123cgseobGW231123cgcombined0.8GW231123cgnrsur0.3GW231123cgxphm0.4GW231123cgxo4a2.0GW231123cgtphm0.4GW231123cgseob0.3\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{1.4}{GW231123cg_{n}rsur}{1.8}{GW231123cg_{x}phm}{1.6}{GW231123cg_{x}o4a}{0.5}{GW231123cg_{t}phm}{1.8}{GW231123cg_{s}eob}{1.9}}^{+\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.8}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{2.0}{GW231123cg_{t}phm}{0.4}{GW231123cg_{s}eob}{0.3}}}_{-\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{1.1}{GW231123cg_{n}rsur}{0.8}{GW231123cg_{x}phm}{0.4}{GW231123cg_{x}o4a}{0.3}{GW231123cg_{t}phm}{0.9}{GW231123cg_{s}eob}{0.9}}}
Source redshift zz \IfEqCaseGW231123cgxphmGW231123cgcombined0.39GW231123cgnrsur0.29GW231123cgxphm0.17GW231123cgxo4a0.58GW231123cgtphm0.47GW231123cgseob0.39\IfEqCaseGW231123cgxphmGW231123cgcombined0.24GW231123cgnrsur0.14GW231123cgxphm0.06GW231123cgxo4a0.20GW231123cgtphm0.16GW231123cgseob0.16+\IfEqCaseGW231123cgxphmGW231123cgcombined0.27GW231123cgnrsur0.23GW231123cgxphm0.06GW231123cgxo4a0.16GW231123cgtphm0.15GW231123cgseob0.18\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.29}{GW231123cg_{x}phm}{0.17}{GW231123cg_{x}o4a}{0.58}{GW231123cg_{t}phm}{0.47}{GW231123cg_{s}eob}{0.39}}^{+\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.27}{GW231123cg_{n}rsur}{0.23}{GW231123cg_{x}phm}{0.06}{GW231123cg_{x}o4a}{0.16}{GW231123cg_{t}phm}{0.15}{GW231123cg_{s}eob}{0.18}}}_{-\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.24}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.06}{GW231123cg_{x}o4a}{0.20}{GW231123cg_{t}phm}{0.16}{GW231123cg_{s}eob}{0.16}}} \IfEqCaseGW231123cgxo4aGW231123cgcombined0.39GW231123cgnrsur0.29GW231123cgxphm0.17GW231123cgxo4a0.58GW231123cgtphm0.47GW231123cgseob0.39\IfEqCaseGW231123cgxo4aGW231123cgcombined0.24GW231123cgnrsur0.14GW231123cgxphm0.06GW231123cgxo4a0.20GW231123cgtphm0.16GW231123cgseob0.16+\IfEqCaseGW231123cgxo4aGW231123cgcombined0.27GW231123cgnrsur0.23GW231123cgxphm0.06GW231123cgxo4a0.16GW231123cgtphm0.15GW231123cgseob0.18\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.29}{GW231123cg_{x}phm}{0.17}{GW231123cg_{x}o4a}{0.58}{GW231123cg_{t}phm}{0.47}{GW231123cg_{s}eob}{0.39}}^{+\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.27}{GW231123cg_{n}rsur}{0.23}{GW231123cg_{x}phm}{0.06}{GW231123cg_{x}o4a}{0.16}{GW231123cg_{t}phm}{0.15}{GW231123cg_{s}eob}{0.18}}}_{-\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.24}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.06}{GW231123cg_{x}o4a}{0.20}{GW231123cg_{t}phm}{0.16}{GW231123cg_{s}eob}{0.16}}} \IfEqCaseGW231123cgtphmGW231123cgcombined0.39GW231123cgnrsur0.29GW231123cgxphm0.17GW231123cgxo4a0.58GW231123cgtphm0.47GW231123cgseob0.39\IfEqCaseGW231123cgtphmGW231123cgcombined0.24GW231123cgnrsur0.14GW231123cgxphm0.06GW231123cgxo4a0.20GW231123cgtphm0.16GW231123cgseob0.16+\IfEqCaseGW231123cgtphmGW231123cgcombined0.27GW231123cgnrsur0.23GW231123cgxphm0.06GW231123cgxo4a0.16GW231123cgtphm0.15GW231123cgseob0.18\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.29}{GW231123cg_{x}phm}{0.17}{GW231123cg_{x}o4a}{0.58}{GW231123cg_{t}phm}{0.47}{GW231123cg_{s}eob}{0.39}}^{+\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.27}{GW231123cg_{n}rsur}{0.23}{GW231123cg_{x}phm}{0.06}{GW231123cg_{x}o4a}{0.16}{GW231123cg_{t}phm}{0.15}{GW231123cg_{s}eob}{0.18}}}_{-\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.24}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.06}{GW231123cg_{x}o4a}{0.20}{GW231123cg_{t}phm}{0.16}{GW231123cg_{s}eob}{0.16}}} \IfEqCaseGW231123cgnrsurGW231123cgcombined0.39GW231123cgnrsur0.29GW231123cgxphm0.17GW231123cgxo4a0.58GW231123cgtphm0.47GW231123cgseob0.39\IfEqCaseGW231123cgnrsurGW231123cgcombined0.24GW231123cgnrsur0.14GW231123cgxphm0.06GW231123cgxo4a0.20GW231123cgtphm0.16GW231123cgseob0.16+\IfEqCaseGW231123cgnrsurGW231123cgcombined0.27GW231123cgnrsur0.23GW231123cgxphm0.06GW231123cgxo4a0.16GW231123cgtphm0.15GW231123cgseob0.18\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.29}{GW231123cg_{x}phm}{0.17}{GW231123cg_{x}o4a}{0.58}{GW231123cg_{t}phm}{0.47}{GW231123cg_{s}eob}{0.39}}^{+\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.27}{GW231123cg_{n}rsur}{0.23}{GW231123cg_{x}phm}{0.06}{GW231123cg_{x}o4a}{0.16}{GW231123cg_{t}phm}{0.15}{GW231123cg_{s}eob}{0.18}}}_{-\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.24}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.06}{GW231123cg_{x}o4a}{0.20}{GW231123cg_{t}phm}{0.16}{GW231123cg_{s}eob}{0.16}}} \IfEqCaseGW231123cgseobGW231123cgcombined0.39GW231123cgnrsur0.29GW231123cgxphm0.17GW231123cgxo4a0.58GW231123cgtphm0.47GW231123cgseob0.39\IfEqCaseGW231123cgseobGW231123cgcombined0.24GW231123cgnrsur0.14GW231123cgxphm0.06GW231123cgxo4a0.20GW231123cgtphm0.16GW231123cgseob0.16+\IfEqCaseGW231123cgseobGW231123cgcombined0.27GW231123cgnrsur0.23GW231123cgxphm0.06GW231123cgxo4a0.16GW231123cgtphm0.15GW231123cgseob0.18\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.39}{GW231123cg_{n}rsur}{0.29}{GW231123cg_{x}phm}{0.17}{GW231123cg_{x}o4a}{0.58}{GW231123cg_{t}phm}{0.47}{GW231123cg_{s}eob}{0.39}}^{+\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.27}{GW231123cg_{n}rsur}{0.23}{GW231123cg_{x}phm}{0.06}{GW231123cg_{x}o4a}{0.16}{GW231123cg_{t}phm}{0.15}{GW231123cg_{s}eob}{0.18}}}_{-\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.24}{GW231123cg_{n}rsur}{0.14}{GW231123cg_{x}phm}{0.06}{GW231123cg_{x}o4a}{0.20}{GW231123cg_{t}phm}{0.16}{GW231123cg_{s}eob}{0.16}}}
Network matched filter SNR ρ\rho \IfEqCaseGW231123cgxphmGW231123cgcombined22.6GW231123cgnrsur22.6GW231123cgxphm22.4GW231123cgxo4a22.7GW231123cgtphm22.7GW231123cgseob22.6\IfEqCaseGW231123cgxphmGW231123cgcombined0.3GW231123cgnrsur0.3GW231123cgxphm0.3GW231123cgxo4a0.2GW231123cgtphm0.2GW231123cgseob0.2+\IfEqCaseGW231123cgxphmGW231123cgcombined0.2GW231123cgnrsur0.3GW231123cgxphm0.2GW231123cgxo4a0.1GW231123cgtphm0.1GW231123cgseob0.1\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{22.6}{GW231123cg_{n}rsur}{22.6}{GW231123cg_{x}phm}{22.4}{GW231123cg_{x}o4a}{22.7}{GW231123cg_{t}phm}{22.7}{GW231123cg_{s}eob}{22.6}}^{+\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.2}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.2}{GW231123cg_{x}o4a}{0.1}{GW231123cg_{t}phm}{0.1}{GW231123cg_{s}eob}{0.1}}}_{-\IfEqCase{GW231123cg_{x}phm}{{GW231123cg_{c}ombined}{0.3}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.3}{GW231123cg_{x}o4a}{0.2}{GW231123cg_{t}phm}{0.2}{GW231123cg_{s}eob}{0.2}}} \IfEqCaseGW231123cgxo4aGW231123cgcombined22.6GW231123cgnrsur22.6GW231123cgxphm22.4GW231123cgxo4a22.7GW231123cgtphm22.7GW231123cgseob22.6\IfEqCaseGW231123cgxo4aGW231123cgcombined0.3GW231123cgnrsur0.3GW231123cgxphm0.3GW231123cgxo4a0.2GW231123cgtphm0.2GW231123cgseob0.2+\IfEqCaseGW231123cgxo4aGW231123cgcombined0.2GW231123cgnrsur0.3GW231123cgxphm0.2GW231123cgxo4a0.1GW231123cgtphm0.1GW231123cgseob0.1\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{22.6}{GW231123cg_{n}rsur}{22.6}{GW231123cg_{x}phm}{22.4}{GW231123cg_{x}o4a}{22.7}{GW231123cg_{t}phm}{22.7}{GW231123cg_{s}eob}{22.6}}^{+\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.2}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.2}{GW231123cg_{x}o4a}{0.1}{GW231123cg_{t}phm}{0.1}{GW231123cg_{s}eob}{0.1}}}_{-\IfEqCase{GW231123cg_{x}o4a}{{GW231123cg_{c}ombined}{0.3}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.3}{GW231123cg_{x}o4a}{0.2}{GW231123cg_{t}phm}{0.2}{GW231123cg_{s}eob}{0.2}}} \IfEqCaseGW231123cgtphmGW231123cgcombined22.6GW231123cgnrsur22.6GW231123cgxphm22.4GW231123cgxo4a22.7GW231123cgtphm22.7GW231123cgseob22.6\IfEqCaseGW231123cgtphmGW231123cgcombined0.3GW231123cgnrsur0.3GW231123cgxphm0.3GW231123cgxo4a0.2GW231123cgtphm0.2GW231123cgseob0.2+\IfEqCaseGW231123cgtphmGW231123cgcombined0.2GW231123cgnrsur0.3GW231123cgxphm0.2GW231123cgxo4a0.1GW231123cgtphm0.1GW231123cgseob0.1\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{22.6}{GW231123cg_{n}rsur}{22.6}{GW231123cg_{x}phm}{22.4}{GW231123cg_{x}o4a}{22.7}{GW231123cg_{t}phm}{22.7}{GW231123cg_{s}eob}{22.6}}^{+\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.2}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.2}{GW231123cg_{x}o4a}{0.1}{GW231123cg_{t}phm}{0.1}{GW231123cg_{s}eob}{0.1}}}_{-\IfEqCase{GW231123cg_{t}phm}{{GW231123cg_{c}ombined}{0.3}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.3}{GW231123cg_{x}o4a}{0.2}{GW231123cg_{t}phm}{0.2}{GW231123cg_{s}eob}{0.2}}} \IfEqCaseGW231123cgnrsurGW231123cgcombined22.6GW231123cgnrsur22.6GW231123cgxphm22.4GW231123cgxo4a22.7GW231123cgtphm22.7GW231123cgseob22.6\IfEqCaseGW231123cgnrsurGW231123cgcombined0.3GW231123cgnrsur0.3GW231123cgxphm0.3GW231123cgxo4a0.2GW231123cgtphm0.2GW231123cgseob0.2+\IfEqCaseGW231123cgnrsurGW231123cgcombined0.2GW231123cgnrsur0.3GW231123cgxphm0.2GW231123cgxo4a0.1GW231123cgtphm0.1GW231123cgseob0.1\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{22.6}{GW231123cg_{n}rsur}{22.6}{GW231123cg_{x}phm}{22.4}{GW231123cg_{x}o4a}{22.7}{GW231123cg_{t}phm}{22.7}{GW231123cg_{s}eob}{22.6}}^{+\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.2}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.2}{GW231123cg_{x}o4a}{0.1}{GW231123cg_{t}phm}{0.1}{GW231123cg_{s}eob}{0.1}}}_{-\IfEqCase{GW231123cg_{n}rsur}{{GW231123cg_{c}ombined}{0.3}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.3}{GW231123cg_{x}o4a}{0.2}{GW231123cg_{t}phm}{0.2}{GW231123cg_{s}eob}{0.2}}} \IfEqCaseGW231123cgseobGW231123cgcombined22.6GW231123cgnrsur22.6GW231123cgxphm22.4GW231123cgxo4a22.7GW231123cgtphm22.7GW231123cgseob22.6\IfEqCaseGW231123cgseobGW231123cgcombined0.3GW231123cgnrsur0.3GW231123cgxphm0.3GW231123cgxo4a0.2GW231123cgtphm0.2GW231123cgseob0.2+\IfEqCaseGW231123cgseobGW231123cgcombined0.2GW231123cgnrsur0.3GW231123cgxphm0.2GW231123cgxo4a0.1GW231123cgtphm0.1GW231123cgseob0.1\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{22.6}{GW231123cg_{n}rsur}{22.6}{GW231123cg_{x}phm}{22.4}{GW231123cg_{x}o4a}{22.7}{GW231123cg_{t}phm}{22.7}{GW231123cg_{s}eob}{22.6}}^{+\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.2}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.2}{GW231123cg_{x}o4a}{0.1}{GW231123cg_{t}phm}{0.1}{GW231123cg_{s}eob}{0.1}}}_{-\IfEqCase{GW231123cg_{s}eob}{{GW231123cg_{c}ombined}{0.3}{GW231123cg_{n}rsur}{0.3}{GW231123cg_{x}phm}{0.3}{GW231123cg_{x}o4a}{0.2}{GW231123cg_{t}phm}{0.2}{GW231123cg_{s}eob}{0.2}}}

In Table 3, we present the individual source properties of GW231123 for each of the five models considered in the analysis of this event for those interested in a more detailed picture of the systematics. As demonstrated in Appendix A, the source properties of this event lie in a challenging region of parameter space for all waveform models employed. From the analysis performed here, we cannot guarantee that the results from any given model will be free from bias in this region of parameter space. We also find that different models fit the data better than others. All models except XPHM obtain a larger Bayesian evidence than the NRSur analysis, as reflected in the differing SNRs in Table 3. For example, for some parameters XO4a yields significantly different results to many of the other models, yet it obtains a Bayes factor of at least 200:1 over NRSur. However, such differences are not necessarily indicative of one model being more accurate than another (Hoy, 2022; Hoy et al., 2024). Consequently, we combine the posteriors from multiple models to achieve a conservative error estimate, which is reported throughout the main body of the paper.

We also illustrate in Figure 9 the differences in inferred spin orientation when considering the data from LIGO Hanford (left), LIGO Livingston (middle), and the full detector network (right). LIGO Hanford shows support for aligned-spin binaries, while LIGO Livingston has a clear preference for misalignment. The stronger signal in LIGO Livingston dominates the network results. The differences between the results in the two detectors could potentially be explained by lower signal power in LIGO Hanford (such that precession is not measurable), but we have not been able to reproduce this discrepancy between detectors with injections in zero-noise, for example, of the NRSur waveform at its maximum-likelihood parameters.

Refer to caption
Refer to caption
Refer to caption
Figure 9: Posterior probabilities for the dimensionless component spins, c𝑺1/(Gm12)c\boldsymbol{S}_{1}/(Gm^{2}_{1}) and c𝑺2/(Gm12)c\boldsymbol{S}_{2}/(Gm^{2}_{1}), relative to the orbital angular momentum axis 𝑳^\hat{\boldsymbol{L}}. From left to right, we compare the posterior probabilities obtained when analysing LIGO Hanford data only (blue), LIGO Livingston data only (green), and a coherent analysis of LIGO Hanford and LIGO Livingston data (purple). In all cases, we show the posterior distribution resulting from equally combining samples from five waveform models. The tilt angles are 00^{\circ} for spins aligned with the orbital angular momentum and 180180^{\circ} for spins anti-aligned. Probabilities are marginalized over the azimuthal angles. The pixels have equal prior probability, being equally spaced in the spin magnitudes and the cosines of tilt angles. The spin orientations are defined at a fiducial GW frequency of 10 Hz.

Appendix C Signal peak time

Refer to caption
Refer to caption
Figure 10: Top panel: Posterior probability density functions of the NRSur waveform timeseries, obtained via Bilby using the NRSur waveform model in the LIGO Hanford detector. The red band shows the uncertainty in the measurement of tpeakpolt_{\mathrm{peak}}^{\mathrm{pol}}, and the grey band shows the uncertainty in tpeakstraint_{\mathrm{peak}}^{\mathrm{strain}}. Bottom panel: Posterior probability density functions of the mode strain, F+h++F×h×F_{+}h_{+}+F_{\times}h_{\times}, with h+ih×=Y,m2h,m+Y,m2h,mh_{+}-ih_{\times}={}^{-2}Y_{\ell,m}h_{\ell,m}+{}^{-2}Y_{\ell,-m}h_{\ell,-m}, shown for the LIGO Hanford detector. The top part reports the unwhitened waveform and the bottom part the whitened one, showcasing the impact of whitening in visualising the signal morphology. The inset focuses on the (,±m)=(2,0),(3,3),(4,4)(\ell,\pm m)=(2,0),(3,3),(4,4) modes. The red line indicates the median of tpeakpolt_{\mathrm{peak}}^{\mathrm{pol}}, and the dashed-dotted black lines show the median of tpeakmodest_{\mathrm{peak}}^{\mathrm{modes}}.

We require the time of peak GW emission to determine a valid starting time for ringdown analyses. The peak GW power is emitted at time tpeakmodes=maxt,m|h˙m(t)|2t^{\mathrm{modes}}_{\mathrm{peak}}=\max_{t}\sqrt{\sum_{\ell,m}\left|\dot{h}_{\ell m}(t)\right|^{2}}, where hm(t)h_{\ell m}(t) are the multipoles in a spin-weighted spherical-harmonic decomposition of the signal. Alternatively, we can estimate the peak time using the peak of the polarisation tpeakpol=max𝑡|h+ih×|2t^{\mathrm{pol}}_{\mathrm{peak}}=\underset{t}{\max}\left|h_{+}-ih_{\times}\right|^{2}. This quantity depends on the binary’s relative orientation to the detector and will be uncertain to within roughly one GW period, but it can be compared to an estimate computed through an unmodelled waveform reconstruction, allowing for a more agnostic analysis. One can also conservatively estimate the onset of ringdown directly from the maximum value of the strain tpeakstraint^{\rm strain}_{\rm peak}, after which the signal displays a clear decay. Figure 10 shows these times for GW231123, on top of the unwhitened NRSur strain reconstruction from which they were computed. From this reconstruction, we find tpeakstraint^{\rm strain}_{\rm peak} is 1384782888.61910.0322+0.00981384782888.6191^{+0.0098}_{-0.0322} s and 1384782888.61420.0195+0.01071384782888.6142^{+0.0107}_{-0.0195} s in the LIGO Hanford and Livingston detectors respectively. Instead, in the LIGO Hanford detector (chosen as reference for the ringdown analysis), we find tpeakmodestpeakpol6mst^{\mathrm{modes}}_{\mathrm{peak}}-t^{\mathrm{pol}}_{\mathrm{peak}}\approx 6\,\mathrm{ms}.

The differences among these estimates, together with the time-domain reconstruction shown in Figure 10, attest to the highly complex signal morphology and invite care when selecting a peak time definition to be used as reference in a ringdown analysis. Hence, in the main text we repeat the analysis over a wide range of times, and plot results around a conservative tstarttpeakstrain+15GMfdet/c3t^{\mathrm{start}}\approx t^{\rm strain}_{\rm peak}+15GM^{\rm det}_{\rm f}/c^{3} (assuming Mfdet298MM^{\rm det}_{\rm f}\simeq 298M_{\odot}), when we are confident on the validity of a QNM description.

Appendix D Higher-order radiation multipoles

Given the support for large binary inclination from most IMR models, subdominant multipole moments (referred to as “modes” below) beyond the dominant (,m)=(2,±2)(\ell,m)=(2,\pm 2) spherical-harmonic multipole moment are expected to contribute appreciably to the observed signal (Blanchet, 2014). Here, we investigate in detail their contribution throughout the signal. Using NRSur posterior samples, we estimate optimal SNR values of 4.951.83+1.564.95_{-1.83}^{+1.56} for the (3,±3)(3,\pm 3) mode, 3.350.45+0.563.35_{-0.45}^{+0.56} for the (4,±4)(4,\pm 4) mode, 0.670.44+3.230.67_{-0.44}^{+3.23} for the (2,±1)(2,\pm 1) mode and 1.260.66+0.771.26_{-0.66}^{+0.77} for the (2,0)(2,0) mode. Unlike the (3,3)(3,3) and (4,4)(4,4) modes, the inferred distribution for the (2,1),(2,0)(2,1),(2,0) modes are consistent with expectations from random Gaussian noise fluctuations, implying a lack of statistically significant support for their presence in the data. Relevant to the ringdown analysis, the strain contribution from the (2,0)(2,0) mode remains significantly subdominant compared to the more prominent (3,±3)(3,\pm 3) and (4,±4)(4,\pm 4) modes throughout the signal duration, as illustrated in Figure 10 (showing LIGO Hanford, with similar conclusions obtained for LIGO Livingston). As seen in the bottom panel, the whitening process suppresses the lower-frequency content of the signal, causing the peak amplitude to appear quieter relative to the higher-frequency ringdown. This filtering effect also reduces the visibility of subdominant modes such as (2,±1)(2,\pm 1) and (2,0)(2,0), which fall largely outside the detector’s sensitive band. In contrast, the (3,±3)(3,\pm 3) and (4,±4)(4,\pm 4) modes remain visible post-merger due to their higher frequency content, making them detectable. This result is consistent with the SNR estimates above. The IMR modes are defined with respect to the binary’s total angular momentum at a given reference time during the inspiral, while the ringdown modes are defined with respect to the remnant spin at asymptotically late times. The direction between these two vectors may be offset by a few degrees (Hamilton et al., 2021), but we do not expect that would be sufficient to increase the power in (2,1)(2,1) or (2,0)(2,0) to a level measurable in Gaussian noise, i.e., above an SNR of \sim2.1.

In summary, we conclude that a significant excitation of the (2,0,0)(2,0,0) or (2,1,0)(2,1,0) ringdown modes, suggested by the overlap of damped sinusoids fitting parameters with the remnant properties inferred by NRSur, is in tension with NRSur multipole moments content.

References

  • Aasi et al. (2015) Aasi, J., et al. 2015, Class. Quant. Grav., 32, 074001
  • Abac et al. (2025a) Abac, A. G., et al. 2025a, in preparation
  • Abac et al. (2025b) —. 2025b, in preparation
  • Abbott et al. (2016a) Abbott, B. P., et al. 2016a, Phys. Rev. Lett., 116, 241102
  • Abbott et al. (2016b) —. 2016b, Astrophys. J. Lett., 833, L1
  • Abbott et al. (2016c) —. 2016c, Phys. Rev. X, 6, 041015, [Erratum: Phys.Rev.X 8, 039903 (2018)]
  • Abbott et al. (2020a) —. 2020a, Class. Quant. Grav., 37, 055002
  • Abbott et al. (2020b) Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2020b, Classical and Quantum Gravity, 37, 055002
  • Abbott et al. (2020c) Abbott, R., Abbott, T., Ackley, K., et al. 2020c, Living reviews in relativity, 23, 1
  • Abbott et al. (2020d) Abbott, R., et al. 2020d, Phys. Rev. Lett., 125, 101102
  • Abbott et al. (2020e) —. 2020e, Astrophys. J. Lett., 900, L13
  • Abbott et al. (2020f) —. 2020f, Phys. Rev. D, 102, 043015
  • Abbott et al. (2020g) —. 2020g, Astrophys. J. Lett., 896, L44
  • Abbott et al. (2021a) —. 2021a, Phys. Rev. X, 11, 021053
  • Abbott et al. (2021b) —. 2021b, arXiv:2112.06861
  • Abbott et al. (2021c) —. 2021c, Astrophys. J., 923, 14
  • Abbott et al. (2022) —. 2022, Astron. Astrophys., 659, A84
  • Abbott et al. (2023a) —. 2023a, Phys. Rev. X, 13, 041039
  • Abbott et al. (2023b) —. 2023b, Phys. Rev. X, 13, 011048
  • Abbott et al. (2024a) —. 2024a, Phys. Rev. D, 109, 022001
  • Abbott et al. (2024b) —. 2024b, Astrophys. J., 970, 191
  • Abdikamalov et al. (2020) Abdikamalov, E., Pagliaroli, G., & Radice, D. 2020, arXiv:2010.04356
  • Acernese et al. (2015) Acernese, F., et al. 2015, Class. Quant. Grav., 32, 024001
  • Adams et al. (2016) Adams, T., Buskulic, D., Germain, V., et al. 2016, Class. Quant. Grav., 33, 175012
  • Ade et al. (2016) Ade, P. A. R., et al. 2016, Astron. Astrophys., 594, A13
  • Ajith et al. (2011) Ajith, P., et al. 2011, Phys. Rev. Lett., 106, 241101
  • Akutsu et al. (2020) Akutsu, T., Ando, M., Arai, K., et al. 2020, Progress of Theoretical and Experimental Physics, 2021, 05A101. https://doi.org/10.1093/ptep/ptaa125
  • Albanesi et al. (2025a) Albanesi, S., Gamba, R., Bernuzzi, S., et al. 2025a, arXiv:2503.14580
  • Albanesi et al. (2025b) Albanesi, S., Rashti, A., Zappa, F., et al. 2025b, Phys. Rev. D, 111, 024069
  • Allen (2005) Allen, B. 2005, Phys. Rev. D, 71, 062001
  • Alléné et al. (2025) Alléné, C., et al. 2025, Class. Quant. Grav., 42, 105009
  • Álvarez et al. (2024) Álvarez, C. A., Wong, H. W. Y., Liu, A., & Calderón Bustillo, J. 2024, Astrophys. J., 977, 220
  • Andrade et al. (2024) Andrade, T., et al. 2024, Phys. Rev. D, 109, 084025
  • Antonini et al. (2019) Antonini, F., Gieles, M., & Gualandris, A. 2019, Mon. Not. Roy. Astron. Soc., 486, 5008
  • Antonini & Rasio (2016) Antonini, F., & Rasio, F. A. 2016, Astrophys. J., 831, 187
  • Antonini et al. (2025) Antonini, F., Romero-Shaw, I. M., & Callister, T. 2025, Phys. Rev. Lett., 134, 011401
  • Arca Sedda et al. (2023a) Arca Sedda, M., Kamlah, A. W. H., Spurzem, R., et al. 2023a, Mon. Not. Roy. Astron. Soc., 526, 429
  • Arca Sedda et al. (2023b) Arca Sedda, M., Naoz, S., & Kocsis, B. 2023b, Universe, 9, 138
  • Arca Sedda et al. (2021) Arca Sedda, M., Rizzuto, F. P., Naab, T., et al. 2021, Astrophys. J., 920, 128
  • Ashton et al. (2019) Ashton, G., et al. 2019, Astrophys. J. Suppl., 241, 27
  • Aubin et al. (2021) Aubin, F., et al. 2021, Class. Quant. Grav., 38, 095004
  • Aurrekoetxea et al. (2024) Aurrekoetxea, J. C., Hoy, C., & Hannam, M. 2024, Phys. Rev. Lett., 132, 181401
  • Baibhav et al. (2021) Baibhav, V., Berti, E., Gerosa, D., Mould, M., & Wong, K. W. K. 2021, Phys. Rev. D, 104, 084002
  • Baird et al. (2013) Baird, E., Fairhurst, S., Hannam, M., & Murphy, P. 2013, Phys. Rev. D, 87, 024035
  • Barkat et al. (1967) Barkat, Z., Rakavy, G., & Sack, N. 1967, Phys. Rev. Lett., 18, 379
  • Barrera & Bartos (2022) Barrera, O., & Bartos, I. 2022, Astrophys. J. Lett., 929, L1
  • Bartos et al. (2017) Bartos, I., Kocsis, B., Haiman, Z., & Márka, S. 2017, Astrophys. J., 835, 165
  • Bavera et al. (2020) Bavera, S. S., Fragos, T., Qin, Y., et al. 2020, Astron. Astrophys., 635, A97
  • Belczynski et al. (2016) Belczynski, K., et al. 2016, Astron. Astrophys., 594, A97
  • Belczynski et al. (2020) —. 2020, Astron. Astrophys., 636, A104
  • Berti et al. (2009) Berti, E., Cardoso, V., & Starinets, A. O. 2009, Class. Quant. Grav., 26, 163001
  • Berti et al. (2025) Berti, E., et al. 2025, arXiv:2505.23895
  • Bhagwat et al. (2020) Bhagwat, S., Cabero, M., Capano, C. D., Krishnan, B., & Brown, D. A. 2020, Phys. Rev. D, 102, 024023
  • Bird et al. (2016) Bird, S., Cholis, I., Muñoz, J. B., et al. 2016, Phys. Rev. Lett., 116, 201301
  • Bird et al. (2023) Bird, S., et al. 2023, Phys. Dark Univ., 41, 101231
  • Blackman et al. (2015) Blackman, J., Field, S. E., Galley, C. R., et al. 2015, Phys. Rev. Lett., 115, 121102
  • Blanchet (2014) Blanchet, L. 2014, Living Rev. Rel., 17, 2
  • Bond et al. (1984) Bond, J. R., Arnett, W. D., & Carr, B. J. 1984, Astrophys. J., 280, 825
  • Borchers et al. (2025) Borchers, A., Ye, C. S., & Fishbach, M. 2025, arXiv:2503.21278
  • Boyle et al. (2019) Boyle, M., et al. 2019, Class. Quant. Grav., 36, 195006
  • Brito et al. (2018) Brito, R., Buonanno, A., & Raymond, V. 2018, Phys. Rev. D, 98, 084038
  • Buonanno & Damour (1999) Buonanno, A., & Damour, T. 1999, Phys. Rev. D, 59, 084006
  • Buonanno & Damour (2000) —. 2000, Phys. Rev. D, 62, 064015
  • Buonanno et al. (2007) Buonanno, A., Pan, Y., Baker, J. G., et al. 2007, Phys. Rev. D, 76, 104049
  • Calderón Bustillo et al. (2018) Calderón Bustillo, J., Salemi, F., Dal Canton, T., & Jani, K. P. 2018, Phys. Rev. D, 97, 024016
  • Calderón Bustillo et al. (2021a) Calderón Bustillo, J., Sanchis-Gual, N., Torres-Forné, A., & Font, J. A. 2021a, Phys. Rev. Lett., 126, 201101
  • Calderón Bustillo et al. (2021b) Calderón Bustillo, J., Sanchis-Gual, N., Torres-Forné, A., et al. 2021b, Phys. Rev. Lett., 126, 081101
  • Cannon et al. (2021) Cannon, K., Caudill, S., Chan, C., et al. 2021, SoftwareX, 14, 100680
  • Capote et al. (2025) Capote, E., et al. 2025, Phys. Rev. D, 111, 062002
  • Carullo (2024) Carullo, G. 2024, JCAP, 10, 061
  • Carullo et al. (2024) Carullo, G., Albanesi, S., Nagar, A., et al. 2024, Phys. Rev. Lett., 132, 101401
  • Carullo et al. (2019) Carullo, G., Del Pozzo, W., & Veitch, J. 2019, Phys. Rev. D, 99, 123029, [Erratum: Phys.Rev.D 100, 089903 (2019)]
  • Carullo et al. (2025) —. 2025, pyRing, v2.7.0, Zenodo, doi:10.5281/zenodo.8165507. https://doi.org/10.5281/zenodo.8165507
  • Carullo et al. (2018) Carullo, G., et al. 2018, Phys. Rev. D, 98, 104020
  • Chandra et al. (2020) Chandra, K., Gayathri, V., Bustillo, J. C., & Pai, A. 2020, Phys. Rev. D, 102, 044035
  • Chandra et al. (2021a) Chandra, K., Pai, A., Villa-Ortega, V., et al. 2021a, in 16th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories
  • Chandra et al. (2021b) Chandra, K., Villa-Ortega, V., Dent, T., et al. 2021b, Phys. Rev. D, 104, 042004
  • Chattopadhyay et al. (2023) Chattopadhyay, D., Stegmann, J., Antonini, F., Barber, J., & Romero-Shaw, I. M. 2023, Mon. Not. Roy. Astron. Soc., 526, 4908
  • Chatziioannou et al. (2021) Chatziioannou, K., Cornish, N., Wijngaarden, M., & Littenberg, T. B. 2021, Phys. Rev. D, 103, 044013
  • Chatziioannou et al. (2024) Chatziioannou, K., Dent, T., Fishbach, M., et al. 2024, arXiv:2409.02037
  • Chatziioannou et al. (2017) Chatziioannou, K., Klein, A., Yunes, N., & Cornish, N. 2017, Phys. Rev. D, 95, 104004
  • Chen et al. (2024) Chen, Y., et al. 2024, Phys. Rev. D, 110, 064049
  • Cheung et al. (2024) Cheung, M. H.-Y., Berti, E., Baibhav, V., & Cotesta, R. 2024, Phys. Rev. D, 109, 044069, [Erratum: Phys.Rev.D 110, 049902 (2024)]
  • Chu et al. (2022) Chu, Q., et al. 2022, Phys. Rev. D, 105, 024023
  • Clesse & Garc´ıa-Bellido (2017) Clesse, S., & García-Bellido, J. 2017, Phys. Dark Univ., 15, 142
  • Clesse & Garc´ıa-Bellido (2022) —. 2022, Phys. Dark Univ., 38, 101111
  • Colleoni et al. (2025) Colleoni, M., Vidal, F. A. R., García-Quirós, C., Akçay, S., & Bera, S. 2025, Phys. Rev. D, 111, 104019
  • Cornish & Littenberg (2015) Cornish, N. J., & Littenberg, T. B. 2015, Class. Quant. Grav., 32, 135012
  • Cornish et al. (2021) Cornish, N. J., Littenberg, T. B., Bécsy, B., et al. 2021, Phys. Rev. D, 103, 044006
  • Costa et al. (2022) Costa, G., Ballone, A., Mapelli, M., & Bressan, A. 2022, Mon. Not. Roy. Astron. Soc., 516, 1072
  • Costa et al. (2021) Costa, G., Bressan, A., Mapelli, M., et al. 2021, Mon. Not. Roy. Astron. Soc., 501, 4514
  • Cutler & Flanagan (1994) Cutler, C., & Flanagan, E. E. 1994, Phys. Rev. D, 49, 2658
  • Dal Canton et al. (2021) Dal Canton, T., Nitz, A. H., Gadre, B., et al. 2021, Astrophys. J., 923, 254
  • Dall’Amico et al. (2024) Dall’Amico, M., Mapelli, M., Torniamenti, S., & Arca Sedda, M. 2024, Astron. Astrophys., 683, A186
  • Davies et al. (2020) Davies, G. S., Dent, T., Tápai, M., et al. 2020, Phys. Rev. D, 102, 022004
  • Davis et al. (2022) Davis, D., Trevor, M., Mozzon, S., & Nuttall, L. K. 2022, Phys. Rev. D, 106, 102006
  • Davis et al. (2021) Davis, D., et al. 2021, Class. Quant. Grav., 38, 135014
  • de Mink & Mandel (2016) de Mink, S. E., & Mandel, I. 2016, Mon. Not. Roy. Astron. Soc., 460, 3545
  • Di Carlo et al. (2020) Di Carlo, U. N., Mapelli, M., Bouffanais, Y., et al. 2020, Mon. Not. Roy. Astron. Soc., 497, 1043
  • Doctor et al. (2021) Doctor, Z., Farr, B., & Holz, D. E. 2021, Astrophys. J. Lett., 914, L18
  • Drago et al. (2020) Drago, M., et al. 2020, arXiv:2006.12604
  • Dreyer et al. (2004) Dreyer, O., Kelly, B. J., Krishnan, B., et al. 2004, Class. Quant. Grav., 21, 787
  • East et al. (2013) East, W. E., McWilliams, S. T., Levin, J., & Pretorius, F. 2013, Phys. Rev. D, 87, 043004
  • Essick et al. (2020) Essick, R., Godwin, P., Hanna, C., Blackburn, L., & Katsavounidis, E. 2020, Mach. Learn. Sci. Technol., 2, 015004
  • Estellés et al. (2022a) Estellés, H., Colleoni, M., García-Quirós, C., et al. 2022a, Phys. Rev. D, 105, 084040
  • Estellés et al. (2022b) Estellés, H., Husa, S., Colleoni, M., et al. 2022b, Phys. Rev. D, 105, 084039
  • Estellés et al. (2021) Estellés, H., Ramos-Buades, A., Husa, S., et al. 2021, Phys. Rev. D, 103, 124060
  • Evstafyeva et al. (2024) Evstafyeva, T., Sperhake, U., Romero-Shaw, I. M., & Agathos, M. 2024, Phys. Rev. Lett., 133, 131401
  • Ewing et al. (2024) Ewing, B., Huxford, R., Singh, D., et al. 2024, Phys. Rev. D, 109, 042008
  • Ewing et al. (2024) Ewing, B., et al. 2024, Phys. Rev. D, 109, 042008
  • Ezquiaga & Holz (2021) Ezquiaga, J. M., & Holz, D. E. 2021, Astrophys. J. Lett., 909, L23
  • Fairhurst et al. (2020a) Fairhurst, S., Green, R., Hannam, M., & Hoy, C. 2020a, Phys. Rev. D, 102, 041302
  • Fairhurst et al. (2020b) Fairhurst, S., Green, R., Hoy, C., Hannam, M., & Muir, A. 2020b, Phys. Rev. D, 102, 024055
  • Farmer et al. (2020) Farmer, R., Renzo, M., de Mink, S., Fishbach, M., & Justham, S. 2020, Astrophys. J. Lett., 902, L36
  • Farmer et al. (2019) Farmer, R., Renzo, M., de Mink, S. E., Marchant, P., & Justham, S. 2019, ApJ, 887, 53
  • Field et al. (2014) Field, S. E., Galley, C. R., Hesthaven, J. S., Kaye, J., & Tiglio, M. 2014, Phys. Rev. X, 4, 031006
  • Fishbach & Holz (2020) Fishbach, M., & Holz, D. E. 2020, Astrophys. J. Lett., 904, L26
  • Fishbach et al. (2017) Fishbach, M., Holz, D. E., & Farr, B. 2017, Astrophys. J. Lett., 840, L24
  • Fisher et al. (2021) Fisher, R. P., Hemming, G., Bizouard, M.-A., et al. 2021, SoftwareX, 14, 100677
  • Fowler & Hoyle (1964) Fowler, W. A., & Hoyle, F. 1964, Astrophys. J. Suppl., 9, 201
  • Fragione & Silk (2020) Fragione, G., & Silk, J. 2020, Mon. Not. Roy. Astron. Soc., 498, 4591
  • Fraley (1968) Fraley, G. S. 1968, Ap&SS, 2, 96
  • Franciolini et al. (2024) Franciolini, G., Kritos, K., Reali, L., Broekgaarden, F., & Berti, E. 2024, Phys. Rev. D, 110, 023036
  • Fuller & Ma (2019) Fuller, J., & Ma, L. 2019, Astrophys. J. Lett., 881, L1
  • Gaburov et al. (2010) Gaburov, E., Lombardi, J., & Portegies Zwart, S. 2010, Mon. Not. Roy. Astron. Soc., 402, 105
  • Gamba et al. (2023) Gamba, R., Breschi, M., Carullo, G., et al. 2023, Nature Astron., 7, 11
  • Gamboa et al. (2024) Gamboa, A., et al. 2024, arXiv:2412.12823
  • Garc´ıa-Quirós et al. (2020) García-Quirós, C., Colleoni, M., Husa, S., et al. 2020, Phys. Rev. D, 102, 064002
  • Gayathri et al. (2020) Gayathri, V., Lopez, D., Pranjal, R. S., et al. 2020, Phys. Rev. D, 102, 104023
  • Gayathri et al. (2022) Gayathri, V., Healy, J., Lange, J., et al. 2022, Nature Astron., 6, 344
  • Gennari et al. (2024) Gennari, V., Carullo, G., & Del Pozzo, W. 2024, Eur. Phys. J. C, 84, 233
  • Gerosa & Berti (2017) Gerosa, D., & Berti, E. 2017, Phys. Rev. D, 95, 124046
  • Gerosa & Fishbach (2021) Gerosa, D., & Fishbach, M. 2021, Nature Astron., 5, 749
  • Ghonge et al. (2020) Ghonge, S., Chatziioannou, K., Clark, J. A., et al. 2020, Phys. Rev. D, 102, 064056
  • Ghonge et al. (2024) Ghonge, S., Brandt, J., Sullivan, J. M., et al. 2024, Phys. Rev. D, 110, 122002
  • Ghosh et al. (2024) Ghosh, S., Kolitsidou, P., & Hannam, M. 2024, Phys. Rev. D, 109, 024061
  • Glebbeek et al. (2013) Glebbeek, E., Gaburov, E., Portegies Zwart, S., & Pols, O. R. 2013, Mon. Not. Roy. Astron. Soc., 434, 3497
  • Gold & Brügmann (2013) Gold, R., & Brügmann, B. 2013, Phys. Rev. D, 88, 064051
  • González et al. (2021) González, E., Kremer, K., Chatterjee, S., et al. 2021, Astrophys. J. Lett., 908, L29
  • Gossan et al. (2012) Gossan, S., Veitch, J., & Sathyaprakash, B. S. 2012, Phys. Rev. D, 85, 124056
  • Green & Kavanagh (2021) Green, A. M., & Kavanagh, B. J. 2021, J. Phys. G, 48, 043001
  • Green et al. (2021) Green, R., Hoy, C., Fairhurst, S., et al. 2021, Phys. Rev. D, 103, 124023
  • Gupte et al. (2024) Gupte, N., et al. 2024, arXiv:2404.14286
  • Hamilton et al. (2021) Hamilton, E., London, L., Thompson, J. E., et al. 2021, Phys. Rev. D, 104, 124027
  • Hamilton et al. (2024) Hamilton, E., et al. 2024, Phys. Rev. D, 109, 044032
  • Hanna et al. (2020) Hanna, C., et al. 2020, Phys. Rev. D, 101, 022003
  • Hannam et al. (2022) Hannam, M., et al. 2022, Nature, 610, 652
  • Hannuksela et al. (2019) Hannuksela, O. A., Haris, K., Ng, K. K. Y., et al. 2019, Astrophys. J. Lett., 874, L2
  • Harris et al. (2020) Harris, C. R., et al. 2020, Nature (London), 585, 357. https://doi.org/10.1038/s41586-020-2649-2
  • Harry et al. (2016) Harry, I., Privitera, S., Bohé, A., & Buonanno, A. 2016, Phys. Rev. D, 94, 024012
  • Healy & Lousto (2017) Healy, J., & Lousto, C. O. 2017, Phys. Rev. D, 95, 024037
  • Healy & Lousto (2022) —. 2022, Phys. Rev. D, 105, 124010
  • Hendriks et al. (2023) Hendriks, D. D., van Son, L. A. C., Renzo, M., Izzard, R. G., & Farmer, R. 2023, Mon. Not. Roy. Astron. Soc., 526, 4130
  • Hinder et al. (2008) Hinder, I., Vaishnav, B., Herrmann, F., Shoemaker, D., & Laguna, P. 2008, Phys. Rev. D, 77, 081502
  • Hofmann et al. (2016) Hofmann, F., Barausse, E., & Rezzolla, L. 2016, Astrophys. J. Lett., 825, L19
  • Hourihane et al. (2022) Hourihane, S., Chatziioannou, K., Wijngaarden, M., et al. 2022, Phys. Rev. D, 106, 042006
  • Hoy (2022) Hoy, C. 2022, Phys. Rev. D, 106, 083003
  • Hoy et al. (2024) Hoy, C., Akcay, S., Mac Uilliam, J., & Thompson, J. E. 2024, arXiv:2409.19404
  • Hoy & Raymond (2021) Hoy, C., & Raymond, V. 2021, SoftwareX, 15, 100765
  • Huerta et al. (2019) Huerta, E. A., et al. 2019, Phys. Rev. D, 100, 064003
  • Hunter (2007) Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90
  • Hussain et al. (2024) Hussain, A., Isi, M., & Zimmerman, A. 2024, arXiv:2411.02252
  • Iglesias et al. (2024) Iglesias, H. L., et al. 2024, Astrophys. J., 972, 65
  • Isi & Farr (2021) Isi, M., & Farr, W. M. 2021, arXiv:2107.05609
  • Jaraba & Garc´ıa-Bellido (2021) Jaraba, S., & García-Bellido, J. 2021, Phys. Dark Univ., 34, 100882
  • Jiménez-Forteza et al. (2017) Jiménez-Forteza, X., Keitel, D., Husa, S., et al. 2017, Phys. Rev. D, 95, 064024
  • Johnson-McDaniel et al. (2022) Johnson-McDaniel, N. K., Ghosh, A., Ghonge, S., et al. 2022, Phys. Rev. D, 105, 044020
  • Joshi et al. (2025) Joshi, P., et al. 2025, arXiv:2506.06497
  • Kamaretsos et al. (2012) Kamaretsos, I., Hannam, M., & Sathyaprakash, B. 2012, Phys. Rev. Lett., 109, 141102
  • Khalil et al. (2023) Khalil, M., Buonanno, A., Estelles, H., et al. 2023, Phys. Rev. D, 108, 124036
  • Khan (2024) Khan, S. 2024, Phys. Rev. D, 109, 104045
  • Kim et al. (2003) Kim, C., Kalogera, V., & Lorimer, D. R. 2003, Astrophys. J., 584, 985
  • Kimball et al. (2021) Kimball, C., et al. 2021, Astrophys. J. Lett., 915, L35
  • Klimenko (2022) Klimenko, S. 2022, arXiv:2201.01096
  • Klimenko et al. (2008) Klimenko, S., Yakushin, I., Mercer, A., & Mitselmakher, G. 2008, Class. Quant. Grav., 25, 114029
  • Klimenko et al. (2016a) Klimenko, S., et al. 2016a, Phys. Rev. D, 93, 042004
  • Klimenko et al. (2016b) Klimenko, S., Vedovato, G., Drago, M., et al. 2016b, Phys. Rev. D, 93, 042004
  • Kremer et al. (2020) Kremer, K., Spera, M., Becker, D., et al. 2020, Astrophys. J., 903, 45
  • Kritos et al. (2023) Kritos, K., Berti, E., & Silk, J. 2023, Phys. Rev. D, 108, 083012
  • Kumar & Dent (2024) Kumar, P., & Dent, T. 2024, Phys. Rev. D, 110, 043036
  • Kumar et al. (2025) Kumar, S., Melching, M., & Ohme, F. 2025, arXiv:2502.17400
  • Li et al. (2024) Li, Y.-J., Wang, Y.-Z., Tang, S.-P., & Fan, Y.-Z. 2024, Phys. Rev. Lett., 133, 051401
  • LIGO Scientific Collaboration and Virgo Collaboration (2018) LIGO Scientific Collaboration and Virgo Collaboration. 2018, Data quality report user documentation, docs.ligo.org/detchar/data-quality-report/, ,
  • LIGO Scientific, Virgo, and KAGRA Collaboration (2018) LIGO Scientific, Virgo, and KAGRA Collaboration. 2018, LVK Algorithm Library - LALSuite, Free software (GPL), , , doi:10.7935/GT1W-FZ16
  • LIGO Scientific, Virgo, and KAGRA Collaboration (2025) —. 2025, GW231123: a Binary Black Hole Merger with Total Mass 190-265 MM_{\odot} — Data Release, Zenodo, doi:10.5281/zenodo.15832843. https://doi.org/10.5281/zenodo.15832843
  • Littenberg & Cornish (2015) Littenberg, T. B., & Cornish, N. J. 2015, Phys. Rev. D, 91, 084034
  • Liu et al. (2023) Liu, A., Wong, I. C. F., Leong, S. H. W., et al. 2023, Mon. Not. Roy. Astron. Soc., 525, 4149
  • Liu et al. (2022) Liu, X., Cao, Z., & Zhu, Z.-H. 2022, Class. Quant. Grav., 39, 035009
  • London et al. (2014) London, L., Shoemaker, D., & Healy, J. 2014, Phys. Rev. D, 90, 124032, [Erratum: Phys.Rev.D 94, 069902 (2016)]
  • Lopez et al. (2022) Lopez, D., Gayathri, V., Pai, A., et al. 2022, Phys. Rev. D, 105, 063024
  • Mac Uilliam et al. (2024) Mac Uilliam, J., Akcay, S., & Thompson, J. E. 2024, Phys. Rev. D, 109, 084077
  • Mahapatra et al. (2024) Mahapatra, P., Chattopadhyay, D., Gupta, A., et al. 2024, Astrophys. J., 975, 117
  • Mahapatra et al. (2025) —. 2025, Phys. Rev. D, 111, 023013
  • Mahapatra et al. (2021) Mahapatra, P., Gupta, A., Favata, M., Arun, K. G., & Sathyaprakash, B. S. 2021, Astrophys. J. Lett., 918, L31
  • Mandel & de Mink (2016) Mandel, I., & de Mink, S. E. 2016, Mon. Not. Roy. Astron. Soc., 458, 2634
  • Mapelli (2016) Mapelli, M. 2016, Mon. Not. Roy. Astron. Soc., 459, 3432
  • Mapelli et al. (2021) Mapelli, M., Santoliquido, F., Bouffanais, Y., et al. 2021, Symmetry, 13, 1678
  • Mapelli et al. (2020) Mapelli, M., Spera, M., Montanari, E., et al. 2020, Astrophys. J., 888, 76
  • Marchant et al. (2016) Marchant, P., Langer, N., Podsiadlowski, P., Tauris, T. M., & Moriya, T. J. 2016, Astron. Astrophys., 588, A50
  • Marchant & Moriya (2020) Marchant, P., & Moriya, T. 2020, Astron. Astrophys., 640, L18
  • McKernan et al. (2020) McKernan, B., Ford, K. E. S., O’Shaughnessy, R., & Wysocki, D. 2020, Mon. Not. Roy. Astron. Soc., 494, 1203
  • Mckernan et al. (2018) Mckernan, B., et al. 2018, Astrophys. J., 866, 66
  • McWilliams et al. (2010) McWilliams, S. T., Kelly, B. J., & Baker, J. G. 2010, Phys. Rev. D, 82, 024014
  • Mehta et al. (2025) Mehta, A. K., Olsen, S., Wadekar, D., et al. 2025, Phys. Rev. D, 111, 024049
  • Merritt et al. (2004) Merritt, D., Milosavljevic, M., Favata, M., Hughes, S. A., & Holz, D. E. 2004, Astrophys. J. Lett., 607, L9
  • Messick et al. (2017) Messick, C., et al. 2017, Phys. Rev. D, 95, 042001
  • Mezzacappa & Zanolin (2024) Mezzacappa, A., & Zanolin, M. 2024, arXiv:2401.11635
  • Mezzasoma et al. (2025) Mezzasoma, S., Haster, C.-J., Owen, C. B., Cornish, N. J., & Yunes, N. 2025, arXiv:2503.23304
  • Mihaylov et al. (2025) Mihaylov, D. P., Ossokine, S., Buonanno, A., et al. 2025, SoftwareX, 30, 102080
  • Miller & Hamilton (2002) Miller, M. C., & Hamilton, D. P. 2002, Mon. Not. Roy. Astron. Soc., 330, 232
  • Mills & Fairhurst (2021) Mills, C., & Fairhurst, S. 2021, Phys. Rev. D, 103, 024042
  • Mishra et al. (2025) Mishra, T., Bhaumik, S., Gayathri, V., et al. 2025, Phys. Rev. D, 111, 023054
  • Mishra et al. (2021) Mishra, T., O’Brien, B., Gayathri, V., et al. 2021, Phys. Rev. D, 104, 023014
  • Mishra et al. (2022) Mishra, T., et al. 2022, Phys. Rev. D, 105, 083018
  • Mould et al. (2022) Mould, M., Gerosa, D., & Taylor, S. R. 2022, Phys. Rev. D, 106, 103013
  • Nee et al. (2025) Nee, P. J., et al. 2025, arXiv:2503.05422
  • Nitz et al. (2017) Nitz, A. H., Dent, T., Dal Canton, T., Fairhurst, S., & Brown, D. A. 2017, Astrophys. J., 849, 118
  • Nitz et al. (2023) Nitz, A. H., Kumar, S., Wang, Y.-F., et al. 2023, Astrophys. J., 946, 59
  • Nitz et al. (2020) Nitz, A. H., Dent, T., Davies, G. S., et al. 2020, Astrophys. J., 891, 123
  • Nobili et al. (2025) Nobili, F., Bhagwat, S., Pacilio, C., & Gerosa, D. 2025, arXiv:2504.17021
  • Olsen et al. (2022) Olsen, S., Venumadhav, T., Mushkin, J., et al. 2022, Phys. Rev. D, 106, 043009
  • O’Shaughnessy et al. (2013) O’Shaughnessy, R., London, L., Healy, J., & Shoemaker, D. 2013, Phys. Rev. D, 87, 044038
  • Pankow et al. (2015) Pankow, C., Brady, P., Ochsner, E., & O’Shaughnessy, R. 2015, Phys. Rev. D, 92, 023002
  • Paul et al. (2025) Paul, K., Maurya, A., Henry, Q., et al. 2025, Phys. Rev. D, 111, 084074
  • Pierra et al. (2024) Pierra, G., Mastrogiovanni, S., & Perriès, S. 2024, Astron. Astrophys., 692, A80
  • Planas et al. (2025a) Planas, M. d. L., Ramos-Buades, A., García-Quirós, C., et al. 2025a, arXiv:2503.13062
  • Planas et al. (2025b) —. 2025b, arXiv:2504.15833
  • Pompili et al. (2024) Pompili, L., Buonanno, A., & Pürrer, M. 2024, arXiv:2410.16859
  • Pompili et al. (2023) Pompili, L., et al. 2023, Phys. Rev. D, 108, 124035
  • Powell & Lasky (2025) Powell, J., & Lasky, P. D. 2025, Publ. Astron. Soc. Austral., 42, e030
  • Pratten et al. (2020a) Pratten, G., Husa, S., Garcia-Quiros, C., et al. 2020a, Phys. Rev. D, 102, 064001
  • Pratten et al. (2020b) Pratten, G., Schmidt, P., Buscicchio, R., & Thomas, L. M. 2020b, Phys. Rev. Res., 2, 043096
  • Pratten et al. (2021) Pratten, G., et al. 2021, Phys. Rev. D, 103, 104056
  • Qin et al. (2018) Qin, Y., Fragos, T., Meynet, G., et al. 2018, Astron. Astrophys., 616, A28
  • Rakavy & Shaviv (1967) Rakavy, G., & Shaviv, G. 1967, ApJ, 148, 803
  • Ramos-Buades et al. (2023a) Ramos-Buades, A., Buonanno, A., Estellés, H., et al. 2023a, Phys. Rev. D, 108, 124037
  • Ramos-Buades et al. (2023b) Ramos-Buades, A., Buonanno, A., & Gair, J. 2023b, Phys. Rev. D, 108, 124063
  • Read (2023) Read, J. S. 2023, Class. Quant. Grav., 40, 135002
  • Renzo et al. (2020a) Renzo, M., Cantiello, M., Metzger, B. D., & Jiang, Y. F. 2020a, Astrophys. J. Lett., 904, L13
  • Renzo et al. (2020b) Renzo, M., Farmer, R. J., Justham, S., et al. 2020b, Mon. Not. Roy. Astron. Soc., 493, 4333
  • Rizzuto et al. (2022) Rizzuto, F. P., Naab, T., Spurzem, R., et al. 2022, Mon. Not. Roy. Astron. Soc., 512, 884
  • Robinet et al. (2020) Robinet, F., Arnaud, N., Leroy, N., et al. 2020, SoftwareX, 12, 100620
  • Rodriguez et al. (2018) Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S., & Rasio, F. A. 2018, Phys. Rev. Lett., 120, 151101
  • Rodriguez et al. (2019) Rodriguez, C. L., Zevin, M., Amaro-Seoane, P., et al. 2019, Phys. Rev. D, 100, 043027
  • Romero-Shaw et al. (2023) Romero-Shaw, I. M., Gerosa, D., & Loutrel, N. 2023, Mon. Not. Roy. Astron. Soc., 519, 5352
  • Romero-Shaw et al. (2020a) Romero-Shaw, I. M., Lasky, P. D., Thrane, E., & Bustillo, J. C. 2020a, Astrophys. J. Lett., 903, L5
  • Romero-Shaw et al. (2020b) Romero-Shaw, I. M., et al. 2020b, Mon. Not. Roy. Astron. Soc., 499, 3295
  • Ruiz-Rocha et al. (2025) Ruiz-Rocha, K., Yelikar, A. B., Lange, J., et al. 2025, Astrophys. J. Lett., 985, L37
  • Sachdev et al. (2019) Sachdev, S., et al. 2019, arXiv e-prints, arXiv:1901.08580
  • Sakon et al. (2024) Sakon, S., et al. 2024, Phys. Rev. D, 109, 044066
  • Salemi et al. (2019) Salemi, F., Milotti, E., Prodi, G. A., et al. 2019, Phys. Rev. D, 100, 042003
  • Samsing (2018) Samsing, J. 2018, Phys. Rev. D, 97, 103014
  • Santamaria et al. (2010) Santamaria, L., et al. 2010, Phys. Rev. D, 82, 064016
  • Scheel et al. (2025) Scheel, M. A., et al. 2025, arXiv:2505.13378
  • Schmidt et al. (2015) Schmidt, P., Ohme, F., & Hannam, M. 2015, Phys. Rev. D, 91, 024043
  • Siegel et al. (2025) Siegel, H., Isi, M., & Farr, W. M. 2025, Phys. Rev. D, 111, 044070
  • Siemonsen & East (2023) Siemonsen, N., & East, W. E. 2023, Phys. Rev. D, 107, 124018
  • Singer & Price (2016) Singer, L. P., & Price, L. R. 2016, Phys. Rev. D, 93, 024013
  • Smith et al. (2011) Smith, J. R., Abbott, T., Hirose, E., et al. 2011, Class. Quant. Grav., 28, 235005
  • Smith et al. (2024) Smith, L., Ghosh, S., Sun, J., et al. 2024, Phys. Rev. D, 110, 083032
  • Smith et al. (2020) Smith, R. J. E., Ashton, G., Vajpeyi, A., & Talbot, C. 2020, Mon. Not. R. Astron. Soc., 498, 4492
  • Soni et al. (2025) Soni, S., et al. 2025, Class. Quant. Grav., 42, 085016
  • Speagle (2020) Speagle, J. S. 2020, Mon. Not. Roy. Astron. Soc., 493, 3132
  • Spera et al. (2019) Spera, M., Mapelli, M., Giacobbo, N., et al. 2019, Mon. Not. Roy. Astron. Soc., 485, 889
  • Sperhake et al. (2008) Sperhake, U., Berti, E., Cardoso, V., et al. 2008, Phys. Rev. D, 78, 064069
  • Stevenson et al. (2019) Stevenson, S., Sampson, M., Powell, J., et al. 2019, ApJ, 882, 121
  • Stone et al. (2017) Stone, N. C., Metzger, B. D., & Haiman, Z. 2017, Mon. Not. Roy. Astron. Soc., 464, 946
  • Sun et al. (2020) Sun, L., et al. 2020, Class. Quant. Grav., 37, 225008
  • Sun et al. (2021) —. 2021, arXiv:2107.00129
  • Szczepańczyk et al. (2021) Szczepańczyk, M., et al. 2021, Phys. Rev. D, 103, 082002
  • Szczepańczyk et al. (2023) Szczepańczyk, M. J., et al. 2023, Phys. Rev. D, 107, 062002
  • Tagawa et al. (2020) Tagawa, H., Haiman, Z., & Kocsis, B. 2020, Astrophys. J., 898, 25
  • Takahashi & Nakamura (2003) Takahashi, R., & Nakamura, T. 2003, Astrophys. J., 595, 1039
  • Thompson et al. (2025) Thompson, J., Hoy, C., Fauchon-Jones, E., & Hannam, M. 2025, arXiv:2506.10530
  • Thompson et al. (2024) Thompson, J. E., Hamilton, E., London, L., et al. 2024, Phys. Rev. D, 109, 063012
  • Tsang et al. (2020) Tsang, K. W., Ghosh, A., Samajdar, A., et al. 2020, Phys. Rev. D, 101, 064012
  • Tsang et al. (2018) Tsang, K. W., Rollier, M., Ghosh, A., et al. 2018, Phys. Rev. D, 98, 024023
  • Tsukada et al. (2023) Tsukada, L., et al. 2023, Phys. Rev. D, 108, 043004
  • Urban et al. (2021) Urban, A. L., et al. 2021, gwdetchar/gwdetchar, Zenodo, doi:10.5281/zenodo.597016
  • Usman et al. (2019) Usman, S. A., Mills, J. C., & Fairhurst, S. 2019, Astrophys. J., 877, 82
  • Usman et al. (2016) Usman, S. A., et al. 2016, Class. Quant. Grav., 33, 215004
  • Vaccaro et al. (2024) Vaccaro, M. P., Mapelli, M., Périgois, C., et al. 2024, Astron. Astrophys., 685, A51
  • Vajente (2024) Vajente, G. 2024, aLIGO LHO Logbook, 76459, ,
  • Vajente et al. (2020) Vajente, G., Huang, Y., Isi, M., et al. 2020, Phys. Rev. D, 101, 042003
  • Valencia et al. (2024) Valencia, J., Tenorio, R., Rosselló-Sastre, M., & Husa, S. 2024, Phys. Rev. D, 110, 124026
  • van Son et al. (2020) van Son, L. A. C., de Mink, S. E., Broekgaarden, F. S., et al. 2020, Astrophys. J., 897, 100
  • Varma et al. (2019) Varma, V., Field, S. E., Scheel, M. A., et al. 2019, Phys. Rev. Research., 1, 033015
  • Varma et al. (2020) Varma, V., Isi, M., & Biscoveanu, S. 2020, Phys. Rev. Lett., 124, 101104
  • Vazsonyi & Davis (2023) Vazsonyi, L., & Davis, D. 2023, Class. Quant. Grav., 40, 035008
  • Veitch et al. (2020) Veitch, J., Pozzo, W. D., Williams, M., et al. 2020, johnveitch/cpnest: v0.9.9, vv0.9.9, Zenodo, doi:10.5281/zenodo.4109271. https://doi.org/10.5281/zenodo.4109271
  • Venumadhav et al. (2020) Venumadhav, T., Zackay, B., Roulet, J., Dai, L., & Zaldarriaga, M. 2020, Phys. Rev. D, 101, 083030
  • Viets et al. (2018a) Viets, A., Wade, M., Urban, A., et al. 2018a, Classical and Quantum Gravity, 35, 095015
  • Viets et al. (2018b) Viets, A., et al. 2018b, Class. Quant. Grav., 35, 095015
  • Virgo Collaboration (2021) Virgo Collaboration. 2021, PythonVirgoTools, git.ligo.org/virgo/virgoapp/PythonVirgoTools, vv5.1.1, ,
  • Virtanen & others (2020) Virtanen, P., et al. 2020, Nature Methods, 17, 261. https://doi.org/10.1038/s41592-019-0686-2
  • Wadekar et al. (2023) Wadekar, D., Roulet, J., Venumadhav, T., et al. 2023, arXiv e-prints, arXiv:2312.06631
  • Wang et al. (2022) Wang, Y.-Z., Li, Y.-J., Vink, J. S., et al. 2022, Astrophys. J. Lett., 941, L39
  • Waskom et al. (2021) Waskom, M., et al. 2021, mwaskom/seaborn: v0.11.2 (August 2021), vv0.11.2, Zenodo, doi:10.5281/zenodo.592845. https://doi.org/10.5281/zenodo.592845
  • Wette (2020) Wette, K. 2020, SoftwareX, 12, 100634
  • Williams (2025) Williams, D. 2025, Class. Quant. Grav., 42, 105012
  • Williams et al. (2023) Williams, D., Veitch, J., Chiofalo, M. L., et al. 2023, J. Open Source Softw., 8, 4170
  • Woosley (2017) Woosley, S. E. 2017, Astrophys. J., 836, 244
  • Woosley & Heger (2021) Woosley, S. E., & Heger, A. 2021, Astrophys. J. Lett., 912, L31
  • Woosley et al. (2002) Woosley, S. E., Heger, A., & Weaver, T. A. 2002, Rev. Mod. Phys., 74, 1015
  • Wright & Hendry (2022) Wright, M., & Hendry, M. 2022, The Astrophysical Journal, 935, 68. https://doi.org/10.3847/1538-4357/ac7ec2
  • Xu et al. (2024) Xu, Y., Rosselló-Sastre, M., Tiwari, S., et al. 2024, Phys. Rev. D, 109, 123034
  • Yang et al. (2019) Yang, Y., et al. 2019, Phys. Rev. Lett., 123, 181101
  • Zevin et al. (2019) Zevin, M., Samsing, J., Rodriguez, C., Haster, C.-J., & Ramirez-Ruiz, E. 2019, Astrophys. J., 871, 91
  • Zhu et al. (2025) Zhu, H., et al. 2025, Phys. Rev. D, 111, 064052
  • Zweizig, J. (2006) Zweizig, J. 2006, The Data Monitor Tool Project, labcit.ligo.caltech.edu/˜jzweizig/DMT-Project.html, ,