This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Hard congestion limit of the dissipative Aw-Rascle system

N. Chaudhuri111Imperial College London, London, United Kingdom; n.chaudhuri@imperial.ac.uk,  L. Navoret222University of Strasbourg, Strasbourg Cedex, France; laurent.navoret@math.unistra.fr,  C. Perrin333Aix Marseille Univ, CNRS, I2M, Marseille, France; charlotte.perrin@cnrs.fr,  E. Zatorska444Imperial College London, London, United Kingdom; e.zatorska@imperial.ac.uk
Abstract

In this study, we analyse the famous Aw-Rascle system in which the difference between the actual and the desired velocities (the offset function) is a gradient of a singular function of the density. This leads to a dissipation in the momentum equation which vanishes when the density is zero. The resulting system of PDEs can be used to model traffic or suspension flows in one dimension with the maximal packing constraint taken into account. After proving the global existence of smooth solutions, we study the so-called “hard congestion limit”, and show the convergence of a subsequence of solutions towards a weak solution of an hybrid free-congested system. In the context of suspension flows, this limit can be seen as the transition from a suspension regime, driven by lubrication forces, towards a granular regime, driven by the contact between the grains.


Keywords: Aw-Rascle system, suspension flows, maximal packing, weak solutions.

MSC: 35Q35, 35B25, 76T20, 90B20.

1 Introduction

The purpose of this work is to study a singular limit ε0\varepsilon\to 0 for the following generalization of the Aw-Rascle [AR] and Zhang [Zhang] system

tρε+x(ρεuε)=0,\displaystyle\partial_{t}\rho_{\varepsilon}+\partial_{x}(\rho_{\varepsilon}u_{\varepsilon})=0, (1a)
t(ρεwε)+x(ρεuεwε)=0,\displaystyle\partial_{t}(\rho_{\varepsilon}w_{\varepsilon})+\partial_{x}(\rho_{\varepsilon}u_{\varepsilon}w_{\varepsilon})=0, (1b)

on one-dimensional periodic domain Ω=𝕋\Omega=\mathbb{T}. The unknowns of the system are the density ρε\rho_{\varepsilon} and the velocity of motion uεu_{\varepsilon}. The quantity wεw_{\varepsilon} denotes the desired velocity of motion and it differs from the actual velocity uεu_{\varepsilon} by the offset function. This function describes the cost of moving in certain direction and it depends on the congestion of the flow. In our case the offset function is equal to the gradient of pε=pε(ρε)p_{\varepsilon}=p_{\varepsilon}(\rho_{\varepsilon}), more precisely:

wε=uε+xpε(ρε),\begin{split}w_{\varepsilon}=u_{\varepsilon}+\partial_{x}p_{\varepsilon}(\rho_{\varepsilon}),\end{split} (2)

where

pε(ρε)=ερεγ(1ρε)β,γ0,β>1.\begin{split}p_{\varepsilon}(\rho_{\varepsilon})=\varepsilon\dfrac{\rho_{\varepsilon}^{\gamma}}{(1-\rho_{\varepsilon})^{\beta}},\quad\gamma\geq 0,\quad\beta>1.\end{split} (3)

This singular function plays formally the role of a barrier by preventing the density to exceed the maximal fixed threshold ρ¯1\bar{\rho}\equiv 1. The motivation to study this model and it’s asymptotic limit ε0\varepsilon\to 0 comes mainly from two areas of applications:

The Aw-Rascle model for traffic [AR]. The system (1b) with scalar offset function, i.e. with wε=w=u+ργw_{\varepsilon}=w=u+\rho^{\gamma} for γ>1\gamma>1 has been derived from the Follow the Leader (FTL) microscopic model of one lane vehicular traffic in [AwKlar]. The drawback of that model is that the offset function ργ\rho^{\gamma}, does not preserve the maximal density constraint, i.e. solutions satisfy the maximal density constraint ρ0ρ¯\rho^{0}\leq\bar{\rho} initially but evolve in finite time to a state which violates this constraint. Moreover, the velocity offset should be very small unless the density ρ\rho is very close to the maximal value, ρ¯=1\bar{\rho}=1. Indeed, the drivers do not reduce their speed significantly if the traffic is not congested enough. To incorporate these features the authors of [BDDR] proposed to work with the asymptotic limit (ε0\varepsilon\to 0) of (1b) with wε=uε+pε(ρε)w_{\varepsilon}=u_{\varepsilon}+p_{\varepsilon}(\rho_{\varepsilon}), and a singular scalar offset function pεp_{\varepsilon} given by (3). The singular Aw-Rascle system and its asymptotic limit ε0\varepsilon\to 0 has been studied numerically in [berthelin2017], and derived from a FTL approximation in [berthelin2017FTL]. To be able to use this model in the multi-dimensional setting, where velocity and offset function should have the same physical dimension, a possible way would be to take for the offset a gradient rather than a scalar function (nevertheless, see the recent paper [berthelin2022] for a proposition and analysis of a multi-d extension of the classical Aw-Rascle model). The use of a gradient can be interpreted as ability of the driver to relax their velocity to an average of the speed of the front and the rear vehicles, weighted according to the local density. So, unlike in the classical Aw-Rascle model, both front and rear interactions would have to be incorporated at the level of the particle model. This seems to be a reasonable assumption for interactions between vehicles that can change lanes and overtake each others.

The lubrication model. Equations (1b-3) appear also in modeling of suspension flows, i.e. flows of grains suspended in a viscous fluid. To explain this context better, note that system (1b) with wεw_{\varepsilon} given by (2) can be rewritten (formally) as the pressureless compressible Navier-Stokes equations with density dependent viscosity coefficient

tρε+x(ρεuε)=0,\displaystyle\partial_{t}\rho_{\varepsilon}+\partial_{x}(\rho_{\varepsilon}u_{\varepsilon})=0,{} (4a)
t(ρεuε)+x(ρεuε2)x(λε(ρε)xuε)=0,\displaystyle\partial_{t}(\rho_{\varepsilon}u_{\varepsilon})+\partial_{x}(\rho_{\varepsilon}u_{\varepsilon}^{2})-\partial_{x}\left(\lambda_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon}\right)=0,{} (4b)

where

λε(ρε)=ρε2pε(ρ).\begin{split}\lambda_{\varepsilon}(\rho_{\varepsilon})=\rho_{\varepsilon}^{2}p^{\prime}_{\varepsilon}(\rho).\end{split} (5)

In system (4b) the singular diffusion coefficient λε(ρε)\lambda_{\varepsilon}(\rho_{\varepsilon}) represents the repulsive lubrication forces and ε\varepsilon is linked to the viscosity of the interstitial fluid. The previous system has been rigorously derived from a microscopic approximation in [LM]. The limit ε0\varepsilon\to 0 models the transition between the suspension regime, dominated by the lubrication forces, towards the granular regime dictated by the contacts between the solid grains.


Formally, performing the limit ε0\varepsilon\to 0 in (1b) (or equivalently in (4b)), we expect to get the solution (ρ,u)(\rho,u) of the compressible pressureless Euler system, at least when ρ<1\rho<1. In the region where ρ=0\rho=0 we expect that the singularity of the offset function (3) (equivalently the singularity of the viscosity coefficient (5)) will prevail giving rise to additional forcing term. The limiting equations then read

tρ+x(ρu)=0\displaystyle\partial_{t}\rho+\partial_{x}(\rho u)=0 (6a)
t(ρu+xπ)+x((ρu+xπ)u)=0\displaystyle\partial_{t}(\rho u+\partial_{x}\pi)+\partial_{x}\big{(}(\rho u+\partial_{x}\pi)u\big{)}=0 (6b)
0ρ1,(1ρ)π=0,π0,\displaystyle 0\leq\rho\leq 1,\quad(1-\rho)\pi=0,\quad\pi\geq 0, (6c)

where π\pi is the additional unknown obtained as a limit of certain singular function of ρε\rho_{\varepsilon}, that will be specified later on. This limiting system has been derived formally before in the papers of Lefebvre-Lepot and Maury [LM] and then the Lagrangian solutions based on an explicit formula using the monotone rearrangement associated to the density were constructed by Perrin and Westdickenberg [PW]. As explained in this latter work, the previous system can be related to the constrained Euler equations, studied for instance by Berthelin in [berthelin2002] or Preux and Maury [maury2017], by splitting the momentum equation (6b) as follows:

{t(ρu)+x(ρu2)+xP=0,tπ+uxπ=P.\begin{cases}\partial_{t}(\rho u)+\partial_{x}(\rho u^{2})+\partial_{x}P=0,\\ \partial_{t}\pi+u\partial_{x}\pi=-P.\end{cases} (7)

In [berthelin2002], the constrained Euler equations are obtained through the sticky blocks approximation, while in [degond2011] and [BP] the system is approximated by the compressible Euler equations with singular pressure Pε=Pε(ρε)P_{\varepsilon}=P_{\varepsilon}(\rho_{\varepsilon}).

Similar asymptotic limit passage ε0\varepsilon\to 0 was analysed in the multi-dimensional setting by Bresch, Necasova and Perrin [BNP] in the case of heterogeneous fluids flows described by compressible Birkmann equations with singular pressure and bulk viscosity coefficient. The full compressible Navier-Stokes with exponentially singular viscosity coefficients and pressure was considered by Perrin in [P2016, P2017]. The asymptotic limit when ε0\varepsilon\to 0 in the singular pressure term that leads to the two-phase compressible/incompressible Navier-Stokes equations was considered even earlier in the context of crowd dynamics, see Bresch, Perrin and Zatorska [BPZ], Perrin and Zatorska [PZ], Degond, Minakowski and Zatorska [DMZ], Degond et al. [DMNZ]. Moreover, an interested reader can also consult Lions and Masmoudi [PlLM] and Vauchelet and Zatorska [VZ] for different approximation of the two-phase system. For an overview of results and discussion of models described by the free/congested two-phase flows we refer to [perrin2018].


Our paper contains two main results related respectively to the existence of solutions to (1b) at ε\varepsilon fixed, and the convergence as ε0\varepsilon\to 0 of the solutions towards a solution of the limit system (6c). Let us be a little bit more precise about the framework and the difficulties associated to system (1b).

To study (1b) at ε\varepsilon fixed, we take advantage of the reformulation of the system as (pressureless) Navier-Stokes equations with a density dependent viscosity, namely Eq. (4b). It is now well-known that, in addition to the classical energy estimate which provides a control of λεxuε\sqrt{\lambda_{\varepsilon}}\partial_{x}u_{\varepsilon}, the BD entropy (BD for Bresch and Desjardins [bresch2006]) yields a control of the gradient of a function of the density ρε\rho_{\varepsilon}. We will show in this paper, that this estimate is precisely the key ingredient to ensure the maximal density constraint, namely we will show that ρεLt,xCε\|\rho_{\varepsilon}\|_{L^{\infty}_{t,x}}\leq C_{\varepsilon} for some constant Cε<1C_{\varepsilon}<1 tending to 11 as ε0\varepsilon\to 0.
As ε0\varepsilon\to 0, a main issue which is common to the analysis of Navier-Stokes equations with (degenerate close to vacuum) density dependent viscosities, is the fact that, a-priori, we do not have any uniform control in LpL^{p} of xuε\partial_{x}u_{\varepsilon}. Therefore, the identification of the limit of the nonlinear convective term ρεuε2\rho_{\varepsilon}u_{\varepsilon}^{2} is not direct. An important difference with [P2017] and studies on Navier-Stokes equations with degenerate viscosities, is that we have here a vanishing viscosity, namely the viscosity λε(ρ)\lambda_{\varepsilon}(\rho) goes to 0 as ε0\varepsilon\to 0 for any ρ<1\rho<1. As a result, the control the gradient of ρε\rho_{\varepsilon} provided by the BD entropy is not uniform with respect to ε\varepsilon. This prevents us to use Mellet-Vasseur [MV] type of estimates to pass to the limit the convective term. An alternative point of view is provided by the work of Boudin [boudin2000]. It concerns the vanishing viscosity limit for pressureless gases, namely it is the study of Eq. (4b) where the singular viscosity term x(λεxuε)\partial_{x}(\lambda_{\varepsilon}\partial_{x}u_{\varepsilon}) is replaced by the non-singular term εx2uε\varepsilon\partial_{x}^{2}u_{\varepsilon}. The key ingredient of [boudin2000] is the use of the concept of duality solutions for the limit pressureless gas equations introduced by Bouchut and James in [bouchut1998, bouchut1999]. In this framework, it is particularly important to ensure a one-sided Lipschitz condition, or Oleinik entropy condition, on the velocity field. It is related to the compressive property of the dynamics which turnes out to be useful also in other “compressive systems” such as aggregation equations (see for instance the works of James and Vauchelet [james2013, james2016]). Note that Berthelin in [berthelin2002] precisely derived such estimate, xu1/t\partial_{x}u\leq 1/t, for solutions of the constrained Euler equations obtained through the sticky blocks approximation. Building upon the recent developments of Constantin et al. [constantin2020] (see also [BH]) around the regular solutions for the Navier-Stokes equations, we derive the ε\varepsilon-uniform one-sided Lipschitz condition xuε1/t\partial_{x}u_{\varepsilon}\leq 1/t on the approximate solution. This estimate requires no vaccum at the level of fixed ε\varepsilon. A (ε\varepsilon dependent) lower bound on the density ρε\rho_{\varepsilon} is derived by the use of additional artificial ε\varepsilon-dependent viscosity in λε(ρ)\lambda_{\varepsilon}(\rho). This artificial viscosity will be shown to converge to 0 as ε0\varepsilon\to 0 and, therefore, will not perturb the limit system.


The outline of this paper is to first show that for ε\varepsilon fixed, (ρε,uε)(\rho_{\varepsilon},u_{\varepsilon}) is a regular solution to (13b). This step will be done not for the actual system (13b), but for certain approximation of system (4b) described in Section 2. We prove the existence of regular solutions to this system in Section 3 following the approach of Constantin et al. [constantin2020]. Then, we will derive estimates uniform with respect to ε\varepsilon, including the Oleinik entropy condition, in Section 4. Finally, we justify the limit passage ε0\varepsilon\to 0 and conclude the proof of our second main result in Section 5. For the convenience of the reader we included in the Apendix all details of technical estimates of higher regularity of solutions for ε\varepsilon fixed.

2 Approximation and main results

Our first main result concerns the existence of strong solutions to the approximation of system (1b) involving artificial viscosity corresponding to function φε(ρε)\varphi_{\varepsilon}(\rho_{\varepsilon}) introduced below. We will show in the course of the proof of our second main result that the approximate term converges to zero strongly in the limit ε0\varepsilon\to 0. With a slight abuse of notation, we re-define the functions wεw_{\varepsilon}, and λε(ρε),\lambda_{\varepsilon}(\rho_{\varepsilon}), from the introduction including this approximation.

We consider system (1b) with wεw_{\varepsilon} given by

wε=uε+xpε(ρε)+xφε(ρε)approximation,w_{\varepsilon}=u_{\varepsilon}+\partial_{x}p_{\varepsilon}(\rho_{\varepsilon})+\underbrace{\partial_{x}\varphi_{\varepsilon}(\rho_{\varepsilon})}_{\text{approximation}}, (8)

where

pε(ρε)=ερεγ(1ρε)β,φε(ρε)=εα1ρα1,γ0,β>1,α(0,12).\begin{split}p_{\varepsilon}(\rho_{\varepsilon})=\varepsilon\dfrac{\rho_{\varepsilon}^{\gamma}}{(1-\rho_{\varepsilon})^{\beta}},\quad\varphi_{\varepsilon}(\rho_{\varepsilon})=\dfrac{\varepsilon}{\alpha-1}\rho^{\alpha-1},\quad\gamma\geq 0,\quad\beta>1,\quad\alpha\in\left(0,\frac{1}{2}\right).\end{split} (9)

The approximation of (4b) is thus equal to

tρε+x(ρεuε)=0,\displaystyle\partial_{t}\rho_{\varepsilon}+\partial_{x}(\rho_{\varepsilon}u_{\varepsilon})=0, (10a)
t(ρεuε)+x(ρεuε2)x(λε(ρε)xuε)=0,\displaystyle\partial_{t}(\rho_{\varepsilon}u_{\varepsilon})+\partial_{x}(\rho_{\varepsilon}u_{\varepsilon}^{2})-\partial_{x}\left(\lambda_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon}\right)=0,{} (10b)

with λε\lambda_{\varepsilon} re-defined as

λε(ρε)=ρε2pε(ρε)+ρε2φε(ρε)approximation.\begin{split}\lambda_{\varepsilon}(\rho_{\varepsilon})=\rho_{\varepsilon}^{2}p^{\prime}_{\varepsilon}(\rho_{\varepsilon})+\underbrace{\rho_{\varepsilon}^{2}\varphi^{\prime}_{\varepsilon}(\rho_{\varepsilon})}_{\text{approximation}}.\end{split}

We supplement this system with the following set of initial conditions

ρε|t=0=ρε0,uε|t=0=uε0.\begin{split}\rho_{\varepsilon}|_{t=0}=\rho^{0}_{\varepsilon},\quad u_{\varepsilon}|_{t=0}=u^{0}_{\varepsilon}.\end{split} (11)

The existence of unique global smooth solution to the approximate problem (10b) at ε>0\varepsilon>0 fixed is stated in the theorem below.

Theorem 2.1.

Let ε>0\varepsilon>0 be fixed, and let pε,φεp_{\varepsilon},\ \varphi_{\varepsilon} be given by (9). Assume that the initial data (11) satisfy ρε0,uε0H3(𝕋)\rho^{0}_{\varepsilon},u^{0}_{\varepsilon}\in H^{3}(\mathbb{T}), with 0<ρε0<10<\rho^{0}_{\varepsilon}<1.

Then, for all T>0T>0, there exists a unique global solution (ρε,uε)(\rho_{\varepsilon},u_{\varepsilon}) to system (10b) such that 0<ρε(t,x)<10<\rho_{\varepsilon}(t,x)<1 for all t[0,T]t\in[0,T], x𝕋x\in\mathbb{T}, and

ρε𝒞([0,T];H3(𝕋)),uε𝒞([0,T];H3(𝕋))L2(0,T;H4(𝕋)).\rho_{\varepsilon}\in\mathcal{C}([0,T];H^{3}(\mathbb{T})),\qquad u_{\varepsilon}\in\mathcal{C}([0,T];H^{3}(\mathbb{T}))\cap L^{2}(0,T;H^{4}(\mathbb{T})). (12)

We further show that ρε,uε\rho_{\varepsilon},u_{\varepsilon} from the class (12) satisfy some uniform in ε\varepsilon estimates that allow us to justify the asymptotic limit ε0\varepsilon\to 0 in the weak sense. To this end, we rewrite system (10b) as follows

tρε+x(ρεuε)=0,\displaystyle\partial_{t}\rho_{\varepsilon}+\partial_{x}(\rho_{\varepsilon}u_{\varepsilon})=0, (13a)
t(ρεuε+xπε(ρε))+x((ρεuε+xπε(ρε))uε)=0,\displaystyle\partial_{t}\left(\rho_{\varepsilon}u_{\varepsilon}+\partial_{x}\pi_{\varepsilon}(\rho_{\varepsilon})\right)+\partial_{x}\big{(}\left(\rho_{\varepsilon}u_{\varepsilon}+\partial_{x}\pi_{\varepsilon}(\rho_{\varepsilon})\right)u_{\varepsilon}\big{)}=0, (13b)

where we denoted

πε(ρε)=ρεpε(ρε)+ρεφε(ρε).\begin{split}\pi_{\varepsilon}^{\prime}(\rho_{\varepsilon})=\rho_{\varepsilon}p_{\varepsilon}^{\prime}(\rho_{\varepsilon})+\rho_{\varepsilon}\varphi^{\prime}_{\varepsilon}(\rho_{\varepsilon}).\end{split} (14)

We show that for ε0\varepsilon\to 0 the solutions of (13b) converge to an entropic weak solution of (6c) with the unknowns ρ,u,π\rho,\ u,\ \pi. We have the following result.

Theorem 2.2.

Let assumptions from Theorem 2.1 be satisfied, and moreover let

0<ρε0(x)1C0ε1β1x𝕋,\displaystyle 0<\rho^{0}_{\varepsilon}(x)\leq 1-C_{0}\varepsilon^{\frac{1}{\beta-1}}\quad\forall\ x\in\mathbb{T}, (15)
ρε0uε0Lx2+esssup(λε(ρε0)xuε0)C,\displaystyle\|\sqrt{\rho^{0}_{\varepsilon}}u^{0}_{\varepsilon}\|_{L^{2}_{x}}+\operatorname*{ess\,sup}{(\lambda_{\varepsilon}(\rho_{\varepsilon}^{0})\partial_{x}u_{\varepsilon}^{0})}\leq C, (16)
xπε(ρε0)Lx2C,\displaystyle\|\partial_{x}\pi_{\varepsilon}(\rho^{0}_{\varepsilon})\|_{L^{2}_{x}}\leq C, (17)
0<M¯0Mε0=𝕋ρε0𝑑xM¯0<|𝕋|,\displaystyle 0<\underline{M}^{0}\leq M^{0}_{\varepsilon}=\int_{\mathbb{T}}\rho^{0}_{\varepsilon}\,dx\leq\overline{M}^{0}<|\mathbb{T}|, (18)

for some C0,C,M¯0,M¯0>0C_{0},C,\underline{M}^{0},\overline{M}^{0}>0 independent of ε\varepsilon. Then:

  1. 1.

    The solution (ρε,uε)(\rho_{\varepsilon},u_{\varepsilon}) given by Theorem 2.1 satisfies the following uniform estimates

    ρε(t,x)1Cε1β1(t,x)[0,T]×𝕋,πεLtHx1C,\displaystyle\rho_{\varepsilon}(t,x)\leq 1-C\varepsilon^{\frac{1}{\beta-1}}\quad\forall\ (t,x)\in[0,T]\times\mathbb{T},\qquad\|\pi_{\varepsilon}\|_{L^{\infty}_{t}H^{1}_{x}}\leq C, (19)

    for some C>0C>0, independent of ε\varepsilon, and the one-sided Lipschitz condition

    xuε(t,x)1t(t,x)]0,T]×𝕋.\partial_{x}u_{\varepsilon}(t,x)\leq\frac{1}{t}\quad\forall\ (t,x)\in\ ]0,T]\times\mathbb{T}. (20)

    Moreover, the following inequality holds for any S𝒞1()S\in\mathcal{C}^{1}(\mathbb{R}), convex:

    t(ρεS(uε))+x(ρεuεS(uε))x(S(uε)λε(ρε)xuε)0,(t,x)(0,T)×𝕋.\partial_{t}(\rho_{\varepsilon}S(u_{\varepsilon}))+\partial_{x}(\rho_{\varepsilon}u_{\varepsilon}S(u_{\varepsilon}))-\partial_{x}(S^{\prime}(u_{\varepsilon})\lambda_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon})\leq 0,\quad\forall\ (t,x)\in(0,T)\times\mathbb{T}.
  2. 2.

    Let in addition

    ρε0ρ0weaklyinL2(𝕋),ρε0uε0ρ0u0weaklyinL2(𝕋),xπε(ρε0)xπ0weaklyinL2(𝕋).\begin{split}&\rho_{\varepsilon}^{0}\to\rho^{0}\quad weakly\ in\ L^{2}(\mathbb{T}),\\ &\rho_{\varepsilon}^{0}u_{\varepsilon}^{0}\to\rho^{0}u^{0}\quad weakly\ in\ L^{2}(\mathbb{T}),\\ &\partial_{x}\pi_{\varepsilon}(\rho_{\varepsilon}^{0})\to\partial_{x}\pi^{0}\quad weakly\ in\ L^{2}(\mathbb{T}).\end{split} (21)

    Then there exists a subsequence (ρε,uε,πε(ρε))(\rho_{\varepsilon},u_{\varepsilon},\pi_{\varepsilon}(\rho_{\varepsilon})) of solutions to (13b)-(14) with initial data (ρε0,uε0,πε(ρε0))(\rho_{\varepsilon}^{0},u_{\varepsilon}^{0},\pi_{\varepsilon}(\rho^{0}_{\varepsilon})), which converges to (ρ,u,π)(\rho,u,\pi) a weak solution of (6c) with initial datum (ρ0,u0,π0)(\rho^{0},u^{0},\pi^{0}).
    More precisely we have 0ρ10\leq\rho\leq 1 a.e. and the following convergences hold:

    ρερweakly-* inL((0,T)×𝕋),\displaystyle\rho_{\varepsilon}\rightharpoonup\rho\quad\text{weakly-* in}\quad L^{\infty}((0,T)\times\mathbb{T}),
    πε(ρε)πweakly-* inL(0,T;H1(𝕋)),\displaystyle\pi_{\varepsilon}(\rho_{\varepsilon})\rightarrow\pi\quad\text{weakly-* in}\quad L^{\infty}(0,T;H^{1}(\mathbb{T})),
    uεuweakly-* inL((0,T)×𝕋).\displaystyle u_{\varepsilon}\rightarrow u\quad\text{weakly-* in}\quad L^{\infty}((0,T)\times\mathbb{T}).

    Eventually, the following entropy conditions hold:

    • Oleinik condition

      xu1tin𝒟,\partial_{x}u\leq\dfrac{1}{t}\qquad\text{in}\quad\mathcal{D}^{\prime}, (22)
    • entropy inequality:

      t(ρS(u))+x(ρuS(u))+xΛS0in𝒟,\partial_{t}(\rho S(u))+\partial_{x}(\rho uS(u))+\partial_{x}\Lambda_{S}\leq 0\qquad\text{in}\quad\mathcal{D}^{\prime}, (23)

      for convex S𝒞1()S\in\mathcal{C}^{1}(\mathbb{R}), and ΛSt,x\Lambda_{S}\in\mathcal{M}_{t,x} satisfying |ΛS|LipS|Λ||\Lambda_{S}|\leq\mathrm{Lip}_{S}|\Lambda| where Λ=λε(ρ)xu¯t,x\Lambda=\overline{\lambda_{\varepsilon}(\rho)\partial_{x}u}\in\mathcal{M}_{t,x}.


Remark 2.3.

The hypotheses on initial data are significantly stronger than the usual energy-related bounds. In particular:

  • The assumptions for the initial velocity include the upper bound for (λε(ρε0)xuε0){(\lambda_{\varepsilon}(\rho_{\varepsilon}^{0})\partial_{x}u_{\varepsilon}^{0})} uniformly in ε\varepsilon. This is to deduce the Oleinik entropy condition discussed in the introduction.

  • The initial condition (18) amounts to say the limit system (for ε=0\varepsilon=0) cannot be fully congested. This condition is required to control the singular potential πε(ρε)\pi_{\varepsilon}(\rho_{\varepsilon}) in Section 4.1. Analogous constraint has been imposed to study the asymptotic limit of the compressible Navier-Stokes equations with singular pressure, see [PZ, PWZ].

Remark 2.4.

The choice of the approximate function φε\varphi_{\varepsilon} is motivated by the uniform lower bound of the density. It was shown in [MV] that, for viscosity coefficient proportional to ρα\rho^{\alpha} with α[0,1/2)\alpha\in[0,1/2), the weak solutions to compressible Navier-Stokes have density bounded away from zero by a constant. We use this property at the level of ε\varepsilon being fixed in order to derive the Oleinik entropy condition, but we also show that in the limit passage ε0\varepsilon\to 0, φε\varphi_{\varepsilon} converges to zero strongly.

Remark 2.5.

The main difficulty in studying the ε0\varepsilon\to 0 limit passage is to justify convergence of the nonlinear terms. In particular, to pass to the limit in the convective term ρεuε\rho_{\varepsilon}u_{\varepsilon} one needs compactness of the velocity sequence with respect to space-variable. For compressible Navier-Stokes equations with constant viscosity coefficient this sort of information is deduced directly from the a-priori estimates. When the viscosity coefficient is degenerate, one can compensate lack of the a-priori estimate by higher regularity of the density via the so-called Bresch-Desjardins estimate. Here, the compactness w.r.t. space follows directly from the one-sided Lipschitz condition, which is possible to deduce because the system is pressureless.

Remark 2.6 (More general singular functions pεp_{\varepsilon}).

The specific form of the function pεp_{\varepsilon} (which blows up close to 1 like a power law) is used in the paper to exhibit the small scales associated to the singular limit ε0\varepsilon\to 0 (see in particular Lemma 3.3). Nevertheless, we expect similar results for more general (monotone) hard-sphere potentials. All the estimates will then depend on the specific balance between the parameter ε\varepsilon and the type of the singularity close to 1 encoded in the function pεp_{\varepsilon}.

3 Proof of Theorem 2.1, existence of smooth approximate solutions

The first step of the proof is to construct local in time unique regular solution to (10b). Thanks to the presence of the approximation term φε\varphi_{\varepsilon} this can be done following the iterative scheme, described for example in Appendix B of Constantin et al. [constantin2020]. The extension of this solution to the global in time solution requires some uniform (with respect to time) estimates that are presented below.

3.1 Basic energy estimates

In this section we assume that ρε,uε\rho_{\varepsilon},u_{\varepsilon} are regular solutions to (10b) in the time interval [0,T][0,T] in the class (12), and that ρε\rho_{\varepsilon} is non-negative. For such solutions we first obtain straight from the continuity equation (10a) that

ρεLx1(t)=ρε0Lx1,\begin{split}\|\rho_{\varepsilon}\|_{L^{1}_{x}}(t)=\|\rho_{\varepsilon}^{0}\|_{L^{1}_{x}},\end{split} (24)

for all t[0,T]t\in[0,T]. Multiplying the momentum equation (10b) by uεu_{\varepsilon} and integrating by parts we obtain the classical energy estimate.

Lemma 3.1.

For a regular solutions of system (10b), we have

ρεuεLtLx22+λε(ρε)xuεLt2Lx22CE0,ε,\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}^{2}+\|\sqrt{\lambda_{\varepsilon}(\rho_{\varepsilon})}\partial_{x}u_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}^{2}\leq CE_{0,\varepsilon}, (25)

with

E0,ε:=ρε0uε0Lx22.E_{0,\varepsilon}:=\|\sqrt{\rho_{\varepsilon}^{0}}u_{\varepsilon}^{0}\|_{L^{2}_{x}}^{2}.

Next energy estimate is an analogue of Bresch-Desjardins entropy for the compressible Navier-Stokes. We first introduce the quantity

Hε(ρε)=pε(ρε)+φε(ρε).\begin{split}H^{\prime}_{\varepsilon}(\rho_{\varepsilon})=p_{\varepsilon}(\rho_{\varepsilon})+\varphi_{\varepsilon}(\rho_{\varepsilon}).\end{split} (26)
Lemma 3.2.

For a regular solution of system (10b), we have

ρεwεLtLx22+Hε(ρε)LtLx1+ρεx(pε(ρε)+φε(ρε))Lt2Lx22CE1,ε(1+T),\|\sqrt{\rho_{\varepsilon}}w_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}^{2}+\|H_{\varepsilon}(\rho_{\varepsilon})\|_{L^{\infty}_{t}L^{1}_{x}}+\|\sqrt{\rho_{\varepsilon}}\partial_{x}\big{(}p_{\varepsilon}(\rho_{\varepsilon})+\varphi_{\varepsilon}(\rho_{\varepsilon})\big{)}\|_{L^{2}_{t}L^{2}_{x}}^{2}\leq CE_{1,\varepsilon}(1+T), (27)

with

E1,ε:=ρε0wε0Lx22+Hε(ρε0)Lx1.E_{1,\varepsilon}:=\|\sqrt{\rho_{\varepsilon}^{0}}w_{\varepsilon}^{0}\|_{L^{2}_{x}}^{2}+\|H_{\varepsilon}(\rho_{\varepsilon}^{0})\|_{L^{1}_{x}}.
Proof.

Recall that at the level of regular solutions, the system (10b) can be reformulated as (1b) with wεw_{\varepsilon} given by (8). Therefore, multiplying the equation (1b) by wεw_{\varepsilon} and integrating by parts we easily obtain

ρεwεLtLx2ρε0wε0Lx2.\|\sqrt{\rho_{\varepsilon}}w_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}\leq\|\sqrt{\rho_{\varepsilon}^{0}}w_{\varepsilon}^{0}\|_{L^{2}_{x}}.

Using again formula (8) to substitute for uεu_{\varepsilon} in (10a) we obtain a porous medium equation for ρε\rho_{\varepsilon}

tρε+x(ρεwε)x(ρεx(pε(ρε)+φε(ρε)))=0.\partial_{t}\rho_{\varepsilon}+\partial_{x}(\rho_{\varepsilon}w_{\varepsilon})-\partial_{x}\Big{(}\rho_{\varepsilon}\partial_{x}\big{(}p_{\varepsilon}(\rho_{\varepsilon})+\varphi_{\varepsilon}(\rho_{\varepsilon})\big{)}\Big{)}=0. (28)

Multiplying this equation by Hε(ρ)=pε(ρ)+φε(ρ)H^{\prime}_{\varepsilon}(\rho)=p_{\varepsilon}(\rho)+\varphi_{\varepsilon}(\rho) and integrating over space and time, we get

supt(0,T)𝕋Hε(ρε)𝑑x+ρεx(Hε(ρε))Lt2Lx22\displaystyle\ \sup_{t\in(0,T)}\int_{\mathbb{T}}H_{\varepsilon}(\rho_{\varepsilon})dx+\|\sqrt{\rho_{\varepsilon}}\partial_{x}\big{(}H^{\prime}_{\varepsilon}(\rho_{\varepsilon})\big{)}\|_{L^{2}_{t}L^{2}_{x}}^{2} 𝕋Hε(ρε0)𝑑x+CρεwεLt2Lx22\displaystyle\leq\int_{\mathbb{T}}H_{\varepsilon}(\rho_{\varepsilon}^{0})dx+C\|\sqrt{\rho_{\varepsilon}}w_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}^{2}
𝕋Hε(ρε0)𝑑x+CTρε0wε0Lx22.\displaystyle\leq\int_{\mathbb{T}}H_{\varepsilon}(\rho_{\varepsilon}^{0})dx+CT\|\sqrt{\rho_{\varepsilon}^{0}}w_{\varepsilon}^{0}\|_{L^{2}_{x}}^{2}.

Note that HεH_{\varepsilon} consists of two components: positive but singular Hεs=0ρεpε(r)𝑑rH_{\varepsilon}^{s}=\int_{0}^{\rho_{\varepsilon}}p_{\varepsilon}(r)\,dr and the non-singular negative one Hεn=0ρφε(r)𝑑rH_{\varepsilon}^{n}=\int_{0}^{\rho}\varphi_{\varepsilon}(r)dr since α<1\alpha<1. However can absorb this negative contribution in Hεs(ρ)H_{\varepsilon}^{s}(\rho) as follows. Let us first observe that

Hεs(r)r1ε(1r)β1,H^{s}_{\varepsilon}(r)\underset{r\to 1^{-}}{\sim}\dfrac{\varepsilon}{(1-r)^{\beta-1}},

and therefore, for any C1,C2>0C_{1},C_{2}>0 (independent of ε\varepsilon) there exist C1,C2C_{1}^{\prime},C_{2}^{\prime} (also independent of ε\varepsilon) such that

Hεs(ρε)𝟏{ρε1C1ε1β1}C1ρεα𝟏{ρε1C1ε1β1};\displaystyle H^{s}_{\varepsilon}(\rho_{\varepsilon})\mathbf{1}_{\{\rho_{\varepsilon}\geq 1-C_{1}^{\prime}\varepsilon^{\frac{1}{\beta-1}}\}}\geq C_{1}\rho_{\varepsilon}^{\alpha}\mathbf{1}_{\{\rho_{\varepsilon}\geq 1-C_{1}^{\prime}\varepsilon^{\frac{1}{\beta-1}}\}};
ΩHεs(ρε)𝟏{1C2ε1β1ρε1C1ε1β1}𝑑xC2ε.\displaystyle\int_{\Omega}H^{s}_{\varepsilon}(\rho_{\varepsilon})\mathbf{1}_{\{1-C_{2}^{\prime}\varepsilon^{\frac{1}{\beta-1}}\leq\rho_{\varepsilon}\leq 1-C_{1}^{\prime}\varepsilon^{\frac{1}{\beta-1}}\}}dx\geq C_{2}\varepsilon.

Hence, splitting the integral of HεnH^{n}_{\varepsilon} into two parts, we get

Ω|Hεn(ρε)|\displaystyle\int_{\Omega}|H_{\varepsilon}^{n}(\rho_{\varepsilon})| =Ωεα(1α)ρεα𝟏{ρε1C1ε1β1}𝑑x+Ωεα(1α)ρεα𝟏{ρε1C1ε1β1}𝑑x\displaystyle=\int_{\Omega}\dfrac{\varepsilon}{\alpha(1-\alpha)}\rho_{\varepsilon}^{\alpha}\mathbf{1}_{\{\rho_{\varepsilon}\leq 1-C_{1}^{\prime}\varepsilon^{\frac{1}{\beta-1}}\}}dx+\int_{\Omega}\dfrac{\varepsilon}{\alpha(1-\alpha)}\rho_{\varepsilon}^{\alpha}\mathbf{1}_{\{\rho_{\varepsilon}\geq 1-C_{1}^{\prime}\varepsilon^{\frac{1}{\beta-1}}\}}dx
εα(1α)|Ω|+Ω|Hεs(ρε)|𝟏{ρε1C1ε1β1}𝑑x\displaystyle\leq\dfrac{\varepsilon}{\alpha(1-\alpha)}|\Omega|+\int_{\Omega}|H_{\varepsilon}^{s}(\rho_{\varepsilon})|\mathbf{1}_{\{\rho_{\varepsilon}\geq 1-C_{1}^{\prime}\varepsilon^{\frac{1}{\beta-1}}\}}dx
Ω|Hεs(ρε)|𝟏{1C2ε1β1ρε1C1ε1β1}𝑑x+Ω|Hεs(ρε)|𝟏{ρε1C1ε1β1}𝑑x\displaystyle\leq\int_{\Omega}|H_{\varepsilon}^{s}(\rho_{\varepsilon})|\mathbf{1}_{\{1-C_{2}^{\prime}\varepsilon^{\frac{1}{\beta-1}}\leq\rho_{\varepsilon}\leq 1-C_{1}^{\prime}\varepsilon^{\frac{1}{\beta-1}}\}}dx+\int_{\Omega}|H_{\varepsilon}^{s}(\rho_{\varepsilon})|\mathbf{1}_{\{\rho_{\varepsilon}\geq 1-C_{1}^{\prime}\varepsilon^{\frac{1}{\beta-1}}\}}dx

for sufficiently large C1,C2>0C_{1}^{\prime},C_{2}^{\prime}>0, independent of ε\varepsilon.

This gives the result of the lemma. ∎

3.2 Upper and lower bound on the density

The purpose of this section is to prove that ρε\rho_{\varepsilon} is uniformly (in time) bounded from above by ρ¯ε\overline{\rho}_{\varepsilon} and from below by ρ¯ε\underline{\rho}_{\varepsilon}. This will be done in two lemmas below.

Lemma 3.3 (Upper bound on the density).

Let T>0T>0, and let (ρε,uε)(\rho_{\varepsilon},u_{\varepsilon}) be a solution to (10b) in the class (12), and satisfying the energy estimates (25) and (27). Assume moreover that initially E0,εE_{0,\varepsilon} and E1,εE_{1,\varepsilon}, defined in Lemmas 3.1-3.2, are bounded uniformly with respect to ε\varepsilon. Then there exists a positive constant CC independent of ε\varepsilon and TT such that

ρε(t,x)1C(ε1+T)1β1=:ρ¯εt[0,T],x𝕋.\rho_{\varepsilon}(t,x)\leq 1-C\left(\dfrac{\varepsilon}{1+\sqrt{T}}\right)^{\frac{1}{\beta-1}}=:\overline{\rho}_{\varepsilon}\qquad\forall\ t\in[0,T],\ x\in\mathbb{T}. (29)
Proof.

First of all, the LL1L^{\infty}L^{1} bound (27) on HεsH_{\varepsilon}^{s} provides the upper bound

ρεLt,x1.\|\rho_{\varepsilon}\|_{L^{\infty}_{t,x}}\leq 1.

One can actually derive a more precise upper bound on the density thanks to the previous estimates. First Nash’ inequality reads:

Hεs(ρε(t,))Lx2CHεs(ρε(t,))Lx12/3xHεs(ρε(t,))Lx21/3+CHεs(ρε(t,))Lx1,\|H_{\varepsilon}^{s}(\rho_{\varepsilon}(t,\cdot))\|_{L^{2}_{x}}\leq C\|H_{\varepsilon}^{s}(\rho_{\varepsilon}(t,\cdot))\|_{L^{1}_{x}}^{2/3}\|\partial_{x}H_{\varepsilon}^{s}(\rho_{\varepsilon}(t,\cdot))\|_{L^{2}_{x}}^{1/3}+C\|H_{\varepsilon}^{s}(\rho_{\varepsilon}(t,\cdot))\|_{L^{1}_{x}},

and we have by Sobolev inequality

Hεs(ρε(t,))Lx\displaystyle\|H_{\varepsilon}^{s}(\rho_{\varepsilon}(t,\cdot))\|_{L^{\infty}_{x}} Hεs(ρε(t,))Lx21/2xHεs(ρε(t,))Lx21/2+Hεs(ρε(t,))Lx2\displaystyle\leq\|H_{\varepsilon}^{s}(\rho_{\varepsilon}(t,\cdot))\|_{L^{2}_{x}}^{1/2}\|\partial_{x}H_{\varepsilon}^{s}(\rho_{\varepsilon}(t,\cdot))\|_{L^{2}_{x}}^{1/2}+\|H_{\varepsilon}^{s}(\rho_{\varepsilon}(t,\cdot))\|_{L^{2}_{x}}
C(Hεs(ρε(t,))Lx11/3xHεs(ρε(t,))Lx22/3+Hεs(ρε(t,))Lx11/2xHεs(ρε(t,))Lx21/2\displaystyle\leq C\Bigg{(}\|H_{\varepsilon}^{s}(\rho_{\varepsilon}(t,\cdot))\|_{L^{1}_{x}}^{1/3}\|\partial_{x}H_{\varepsilon}^{s}(\rho_{\varepsilon}(t,\cdot))\|_{L^{2}_{x}}^{2/3}+\|H_{\varepsilon}^{s}(\rho_{\varepsilon}(t,\cdot))\|_{L^{1}_{x}}^{1/2}\|\partial_{x}H_{\varepsilon}^{s}(\rho_{\varepsilon}(t,\cdot))\|_{L^{2}_{x}}^{1/2}
+Hεs(ρε(t,))Lx12/3xHεs(ρε(t,))Lx21/3+Hεs(ρε(t,))Lx1).\displaystyle\qquad+\|H_{\varepsilon}^{s}(\rho_{\varepsilon}(t,\cdot))\|_{L^{1}_{x}}^{2/3}\|\partial_{x}H_{\varepsilon}^{s}(\rho_{\varepsilon}(t,\cdot))\|_{L^{2}_{x}}^{1/3}+\|H_{\varepsilon}^{s}(\rho_{\varepsilon}(t,\cdot))\|_{L^{1}_{x}}\Bigg{)}. (30)

Now, we observe that the control of the energy (25) together with the estimate (27) provide the bound

ρεpε(ρε)xρεLtLx22C(E1,ε(1+T)+E0,ε),\|\sqrt{\rho_{\varepsilon}}p^{\prime}_{\varepsilon}(\rho_{\varepsilon})\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}^{2}\leq C\big{(}E_{1,\varepsilon}(1+T)+E_{0,\varepsilon}\big{)}, (31)

and on the other hand

ρεpε(ρε)xρεLtLx22=ρεpε(ρε)pε(ρε)xHεs(ρε)LtLx22.\|\sqrt{\rho_{\varepsilon}}p^{\prime}_{\varepsilon}(\rho_{\varepsilon})\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}^{2}=\left\|\sqrt{\rho_{\varepsilon}}\dfrac{p_{\varepsilon}^{\prime}(\rho_{\varepsilon})}{p_{\varepsilon}(\rho_{\varepsilon})}\partial_{x}H^{s}_{\varepsilon}(\rho_{\varepsilon})\right\|_{L^{\infty}_{t}L^{2}_{x}}^{2}.

Since

pε(ρε)=ερεγ1(1ρε)β+1[γ(1ρε)+βρε],p^{\prime}_{\varepsilon}(\rho_{\varepsilon})=\varepsilon\dfrac{\rho_{\varepsilon}^{\gamma-1}}{(1-\rho_{\varepsilon})^{\beta+1}}\big{[}\gamma(1-\rho_{\varepsilon})+\beta\rho_{\varepsilon}\big{]},

we deduce that

ρεpε(ρε)pε(ρε)\displaystyle\sqrt{\rho_{\varepsilon}}\dfrac{p_{\varepsilon}^{\prime}(\rho_{\varepsilon})}{p_{\varepsilon}(\rho_{\varepsilon})} =[γ(1ρε)+βρε]ρε1/21ρε\displaystyle=\dfrac{\big{[}\gamma(1-\rho_{\varepsilon})+\beta\rho_{\varepsilon}\big{]}\rho_{\varepsilon}^{-1/2}}{1-\rho_{\varepsilon}}
=(γ+βρε1ρε)ρε1/2\displaystyle=\left(\gamma+\beta\dfrac{\rho_{\varepsilon}}{1-\rho_{\varepsilon}}\right)\rho_{\varepsilon}^{-1/2}
γρεL1/2.\displaystyle\geq\gamma\|\rho_{\varepsilon}\|_{L^{\infty}}^{-1/2}.

Therefore

xHεs(ρε)LtLx2\displaystyle\|\partial_{x}H_{\varepsilon}^{s}(\rho_{\varepsilon})\|_{L^{\infty}_{t}L^{2}_{x}} γ1ρεLt,x1/2ρεpεxρεLtLx2\displaystyle\leq\gamma^{-1}\|\rho_{\varepsilon}\|_{L^{\infty}_{t,x}}^{1/2}\|\sqrt{\rho_{\varepsilon}}p^{\prime}_{\varepsilon}\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}
CρεLt,x1/2(E1,ε(1+T)+E0,ε)\displaystyle\leq C\|\rho_{\varepsilon}\|_{L^{\infty}_{t,x}}^{1/2}\sqrt{\big{(}E_{1,\varepsilon}(1+T)+E_{0,\varepsilon}\big{)}}
C(E1,ε(1+T)+E0,ε),\displaystyle\leq C\sqrt{\big{(}E_{1,\varepsilon}(1+T)+E_{0,\varepsilon}\big{)}},

and so, coming back to (3.2):

Hεs(ρε)Lt,xC(E1,ε(1+T)+E0,ε).\|H_{\varepsilon}^{s}(\rho_{\varepsilon})\|_{L^{\infty}_{t,x}}\leq C\sqrt{\big{(}E_{1,\varepsilon}(1+T)+E_{0,\varepsilon}\big{)}}. (32)

Finally, it is easy to show that this latter bound yields

ρεLt,x1C(ε1+T)1β1,\|\rho_{\varepsilon}\|_{L^{\infty}_{t,x}}\leq 1-C\left(\dfrac{\varepsilon}{1+\sqrt{T}}\right)^{\frac{1}{\beta-1}},

for some constant CC independent of ε\varepsilon and TT, provided that E1,εE_{1,\varepsilon} and E0,εE_{0,\varepsilon} are bounded uniformly with respect to ε\varepsilon. ∎

Remark 3.4.

This upper bound ensures that ρε\rho_{\varepsilon} never reaches 11 at ε>0\varepsilon>0 fixed in finite time, and so the pressure remains bounded by a constant which depends a-priori on ε\varepsilon. Indeed, we have

pε(ρε(t,x))ε(1ρε)βC(1+T)ββ1ε1β1t[0,T],x𝕋.p_{\varepsilon}(\rho_{\varepsilon}(t,x))\leq\dfrac{\varepsilon}{(1-\|\rho_{\varepsilon}\|_{\infty})^{\beta}}\leq C(1+\sqrt{T})^{\frac{\beta}{\beta-1}}\varepsilon^{-\frac{1}{\beta-1}}\quad\forall\ t\in[0,T],\ x\in\mathbb{T}. (33)

Note that the same type of estimate holds for the potential πε(ρε)\pi_{\varepsilon}(\rho_{\varepsilon}).


In the next step we progress with the lower bound on the density. This is the only place where the artificial approximation term φε\varphi_{\varepsilon} matters.

Lemma 3.5 (Lower bound on the density).

Let the assumptions of Lemma 3.3 be satisfied. Then for a constant C>0C>0 independent of ε\varepsilon and TT we have:

1ρεLt,xCε212α(1+T)112α=:1ρ¯ε.\left\|\dfrac{1}{\rho_{\varepsilon}}\right\|_{L^{\infty}_{t,x}}\leq C\varepsilon^{-\frac{2}{1-2\alpha}}\big{(}1+T\big{)}^{\frac{1}{1-2\alpha}}=:\dfrac{1}{\underline{\rho}_{\varepsilon}}. (34)
Proof.

The estimate (27) ensures that ρεxφε(ρε)\sqrt{\rho_{\varepsilon}}\partial_{x}\varphi_{\varepsilon}(\rho_{\varepsilon}) is controlled uniformly w.r.t. ε\varepsilon in LL2L^{\infty}L^{2}, namely there exists C>0C>0 independent of ε\varepsilon and TT such that:

x(ερεα12)LtLx22C(E1,ε(1+T)+E0,ε).\|\partial_{x}(\varepsilon\rho_{\varepsilon}^{\alpha-\frac{1}{2}})\|_{L^{\infty}_{t}L^{2}_{x}}^{2}\leq C\big{(}E_{1,\varepsilon}(1+T)+E_{0,\varepsilon}\big{)}.

One the other hand, we have by conservation of mass

𝕋ρε(t,x)𝑑x=𝕋ρε0(x)𝑑x=Mε0\int_{\mathbb{T}}\rho_{\varepsilon}(t,x)dx=\int_{\mathbb{T}}\rho_{\varepsilon}^{0}(x)dx=M^{0}_{\varepsilon}

and by hypothesis we have

0<M¯0Mε0<1,0<\underline{M}^{0}\leq M^{0}_{\varepsilon}<1,

for some M¯0\underline{M}^{0} independent of ε\varepsilon. Therefore, for any time tt, there exists some x¯(t)=x¯(t,ε)Ω\bar{x}(t)=\bar{x}(t,\varepsilon)\in\Omega such that

ρε(t,x¯(t))M¯0|𝕋|.\rho_{\varepsilon}(t,\bar{x}(t))\geq\dfrac{\underline{M}^{0}}{|\mathbb{T}|}.

For all t(0,T]t\in(0,T] and xΩx\in\Omega we can write

ε(ρε(t,x))α1/2ε(ρε(t,x¯(t)))α1/2=x¯(t)xεx(ρε(t,x))α1/2,\varepsilon\big{(}\rho_{\varepsilon}(t,x)\big{)}^{\alpha-1/2}-\varepsilon\big{(}\rho_{\varepsilon}(t,\bar{x}(t))\big{)}^{\alpha-1/2}=\int_{\bar{x}(t)}^{x}\varepsilon\partial_{x}\big{(}\rho_{\varepsilon}(t,x)\big{)}^{\alpha-1/2},

so that

ε(ρε(t,x))α1/2\displaystyle\varepsilon\big{(}\rho_{\varepsilon}(t,x)\big{)}^{\alpha-1/2} ε(ρε(t,x¯(t)))α1/2+|xx¯(t)|1/2x(ερεα12)Lx2\displaystyle\leq\varepsilon\big{(}\rho_{\varepsilon}(t,\bar{x}(t))\big{)}^{\alpha-1/2}+|x-\bar{x}(t)|^{1/2}\|\partial_{x}(\varepsilon\rho_{\varepsilon}^{\alpha-\frac{1}{2}})\|_{L^{2}_{x}}
ε(M¯0|𝕋|)α1/2+|𝕋|1/2x(ερεα12)Lx2.\displaystyle\leq\varepsilon\left(\dfrac{\underline{M}^{0}}{|\mathbb{T}|}\right)^{\alpha-1/2}+|\mathbb{T}|^{1/2}\|\partial_{x}(\varepsilon\rho_{\varepsilon}^{\alpha-\frac{1}{2}})\|_{L^{2}_{x}}.

Hence, ε(ρε(t,x))α1/2C1+T\varepsilon\big{(}\rho_{\varepsilon}(t,x)\big{)}^{\alpha-1/2}\leq C\sqrt{1+T} and finally

ρε1(t,x)Cε11/2α(1+T)112αCε2(1+T)112αt>0,x𝕋.\rho_{\varepsilon}^{-1}(t,x)\leq C\varepsilon^{-{\frac{1}{1/2-\alpha}}}\big{(}1+T\big{)}^{\frac{1}{1-2\alpha}}\leq C\varepsilon^{-2}\big{(}1+T\big{)}^{\frac{1}{1-2\alpha}}\quad\forall\ t>0,\ x\in\mathbb{T}.

Remark 3.6.

For sake of simplicity, we will sometimes estimate ρ¯ε\underline{\rho}_{\varepsilon} as follows

ρ¯ε1=Cε11/2α(1+T)112αCTε2.\underline{\rho}_{\varepsilon}^{-1}=C\varepsilon^{-{\frac{1}{1/2-\alpha}}}\big{(}1+T\big{)}^{\frac{1}{1-2\alpha}}\leq C_{T}\varepsilon^{-2}.

3.3 Further regularity estimates

Control of the singular diffusion

In the next step we provide the estimates of

Vε:=λε(ρε)xuε,V_{\varepsilon}:=\lambda_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon}, (35)

following the reasoning of Constantin et al. [constantin2020] (VεV_{\varepsilon} corresponds to what is called active potential in [constantin2020]).

Let us first check that at the level of regular solutions what is the equation satisfied by VεV_{\varepsilon}.

Lemma 3.7.

The variable VεV_{\varepsilon} satisfies

tVε+(uε+λε(ρε)ρε2xρε)xVελε(ρε)ρεx2Vε=(λε(ρε)ρε+λε(ρε))(λε(ρε))2Vε2.\displaystyle\partial_{t}V_{\varepsilon}+\left(u_{\varepsilon}+\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}^{2}}\partial_{x}\rho_{\varepsilon}\right)\partial_{x}V_{\varepsilon}-\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\partial^{2}_{x}V_{\varepsilon}=-\dfrac{\big{(}\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})\rho_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}}{\big{(}\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}^{2}}V_{\varepsilon}^{2}. (36)
Proof.

Dividing (10b) by ρε>0\rho_{\varepsilon}>0 and using the continuity equation we get

tuε+uεxuε1ρεxVε=0,\begin{split}\partial_{t}u_{\varepsilon}+u_{\varepsilon}\partial_{x}u_{\varepsilon}-\frac{1}{\rho_{\varepsilon}}\partial_{x}V_{\varepsilon}=0,\end{split} (37)

and taking the space derivative

txuε+x(uεxuε)x(1ρεxVε)=0.\begin{split}\partial_{t}\partial_{x}u_{\varepsilon}+\partial_{x}(u_{\varepsilon}\partial_{x}u_{\varepsilon})-\partial_{x}\left(\frac{1}{\rho_{\varepsilon}}\partial_{x}V_{\varepsilon}\right)=0.\end{split} (38)

On the other hand multiplying (10a) by λε(ρε)\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon}) we get

tλε(ρε)+xλε(ρε)uε+λε(ρε)ρεxuε=0.\begin{split}\partial_{t}\lambda_{\varepsilon}(\rho_{\varepsilon})+\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})u_{\varepsilon}+\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})\rho_{\varepsilon}\partial_{x}u_{\varepsilon}=0.\end{split} (39)

Hence

tVε=λε(ρε)txuε+xuεtλε(ρε)=λε(ρε)x(uεxuε)+λε(ρε)x(1ρεxVε)xλε(ρε)uεxuελε(ρε)ρε(xuε)2=x(uεVε)+x(λε(ρε)ρεxVε)λε(ρε)ρε(Vελε(ρε))2xλε(ρε)ρεxVε=uεxVε1λε(ρε)Vε2+x(λε(ρε)ρεxVε)λε(ρε)ρε(Vελε(ρε))2xλε(ρε)ρεxVε,\begin{split}\partial_{t}V_{\varepsilon}=&\lambda_{\varepsilon}(\rho_{\varepsilon})\partial_{t}\partial_{x}u_{\varepsilon}+\partial_{x}u_{\varepsilon}\partial_{t}\lambda_{\varepsilon}(\rho_{\varepsilon})\\ =&-\lambda_{\varepsilon}(\rho_{\varepsilon})\partial_{x}\left(u_{\varepsilon}\partial_{x}u_{\varepsilon}\right)+\lambda_{\varepsilon}(\rho_{\varepsilon})\partial_{x}\left(\frac{1}{\rho_{\varepsilon}}\partial_{x}V_{\varepsilon}\right)-\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})u_{\varepsilon}\partial_{x}u_{\varepsilon}-\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})\rho_{\varepsilon}(\partial_{x}u_{\varepsilon})^{2}\\ =&-\partial_{x}(u_{\varepsilon}V_{\varepsilon})+\partial_{x}\left(\frac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\partial_{x}V_{\varepsilon}\right)-\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})\rho_{\varepsilon}\left(\frac{V_{\varepsilon}}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right)^{2}-\frac{\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\partial_{x}V_{\varepsilon}\\ =&-u_{\varepsilon}\partial_{x}V_{\varepsilon}-\frac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})}V_{\varepsilon}^{2}+\partial_{x}\left(\frac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\partial_{x}V_{\varepsilon}\right)-\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})\rho_{\varepsilon}\left(\frac{V_{\varepsilon}}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right)^{2}-\frac{\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\partial_{x}V_{\varepsilon},\end{split} (40)

from which (36) follows. ∎

Lemma 3.8.

We have

VεLtLx22+εxVεLt2Lx22CVε(0)Lx22exp[T(ε3RLtLx24+ε1ρ¯ερεuεLtLx22)+ε3ρ¯ε83α(1ρ¯ε)43(β+2)VεLt2Lx22]\begin{split}&\|V_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}^{2}+\varepsilon\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}^{2}\\ &\leq C\|V_{\varepsilon}(0)\|_{L^{2}_{x}}^{2}\exp\Bigg{[}T\Big{(}\varepsilon^{-3}\|R\|_{L^{\infty}_{t}L^{2}_{x}}^{4}+\dfrac{\varepsilon^{-1}}{\sqrt{\underline{\rho}_{\varepsilon}}}\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}^{2}\Big{)}+\dfrac{\varepsilon^{{\color[rgb]{1,0,0}-3}}}{\underline{\rho}_{\varepsilon}^{\frac{8}{3}\alpha}(1-\overline{\rho}_{\varepsilon})^{\frac{4}{3}(\beta+2)}}\|V_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}^{2}\Bigg{]}\end{split} (41)

where

RLtLx2:=xλε(ρε)ρεLtLx2Cρ¯ε(1ρ¯ε)(1+T).\|R\|_{L^{\infty}_{t}L^{2}_{x}}:={\left\|\dfrac{\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\right\|_{L^{\infty}_{t}L^{2}_{x}}}\leq\dfrac{C}{\sqrt{\underline{\rho}_{\varepsilon}}(1-\overline{\rho}_{\varepsilon})}(1+\sqrt{T}).
Proof.

We multiply (36) by VεV_{\varepsilon} and integrate with respect to space to get

ddtVε22+λε(ρε)ρε(xVε)2\displaystyle\dfrac{d}{dt}\int\dfrac{V_{\varepsilon}^{2}}{2}+\int\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}(\partial_{x}V_{\varepsilon})^{2}
=x(λε(ρε)ρε)VεxVελε(ρε)ρε2xρεxVεVεuεxVεVε\displaystyle=-\int\partial_{x}\left(\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\right)V_{\varepsilon}\partial_{x}V_{\varepsilon}-\int\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}^{2}}\partial_{x}\rho_{\varepsilon}\partial_{x}V_{\varepsilon}V_{\varepsilon}-\int u_{\varepsilon}\partial_{x}V_{\varepsilon}V_{\varepsilon}
(λε(ρε)ρε+λε(ρε))(λε(ρε))2Vε3\displaystyle\qquad-\int\dfrac{\big{(}\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})\rho_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}}{\big{(}\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}^{2}}V_{\varepsilon}^{3}
=xλε(ρε)ρεxρεxVεVεuεxVεVε(λε(ρε)ρε+λε(ρε))(λε(ρε))2Vε3\displaystyle=-\int\dfrac{\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\partial_{x}\rho_{\varepsilon}\partial_{x}V_{\varepsilon}V_{\varepsilon}-\int u_{\varepsilon}\partial_{x}V_{\varepsilon}V_{\varepsilon}-\int\dfrac{\big{(}\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})\rho_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}}{\big{(}\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}^{2}}V_{\varepsilon}^{3}
=I1+I2+I3.\displaystyle=I_{1}+I_{2}+I_{3}.

First, let us observe that

λε(ρε)ρε=ρεpε(ρε)+ερα1ε\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}=\rho_{\varepsilon}p^{\prime}_{\varepsilon}(\rho_{\varepsilon})+\varepsilon\rho^{\alpha-1}\geq\varepsilon (42)

Control of I1I_{1}. We have

|I1|\displaystyle|I_{1}| |xλε(ρε)ρε|:=R|xVε||Vε|RLx2xVεLx2VεLx.\displaystyle\leq\int\underset{:=R}{\underbrace{\left|\dfrac{\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\right|}}|\partial_{x}V_{\varepsilon}||V_{\varepsilon}|\leq\|R\|_{L^{2}_{x}}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}\|V_{\varepsilon}\|_{L^{\infty}_{x}}.

Let us estimate RLtLx2\|R\|_{L^{\infty}_{t}L^{2}_{x}}. We denote

λεs=ρε2pε(ρε),λεn=ερεα,\lambda_{\varepsilon}^{s}=\rho_{\varepsilon}^{2}p^{\prime}_{\varepsilon}(\rho_{\varepsilon}),\qquad\lambda^{n}_{\varepsilon}=\varepsilon\rho_{\varepsilon}^{\alpha},

We have one the one hand

xλεsρεLtLx2\displaystyle\left\|\dfrac{\partial_{x}\lambda_{\varepsilon}^{s}}{\rho_{\varepsilon}}\right\|_{L^{\infty}_{t}L^{2}_{x}} =2ρεpε(ρε)+ρε2pε′′(ρε)ρεxρεLtLx2\displaystyle=\left\|\dfrac{2\rho_{\varepsilon}p^{\prime}_{\varepsilon}(\rho_{\varepsilon})+\rho_{\varepsilon}^{2}p^{\prime\prime}_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\partial_{x}\rho_{\varepsilon}\right\|_{L^{\infty}_{t}L^{2}_{x}}
2ρε+ρε3/2pε′′(ρε)/pε(ρε)ρεLρεpε(ρε)xρεLtLx2\displaystyle\leq\left\|\dfrac{2\sqrt{\rho_{\varepsilon}}+\rho_{\varepsilon}^{3/2}p^{\prime\prime}_{\varepsilon}(\rho_{\varepsilon})/p^{\prime}_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\right\|_{L^{\infty}}\|\sqrt{\rho_{\varepsilon}}p^{\prime}_{\varepsilon}(\rho_{\varepsilon})\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}
C(1ρ¯ε+1ρ¯ε(1ρ¯ε))ρεpε(ρε)xρεLtLx2,\displaystyle\leq C\left(\dfrac{1}{\sqrt{\underline{\rho}_{\varepsilon}}}+\dfrac{1}{\sqrt{\underline{\rho}_{\varepsilon}}(1-\overline{\rho}_{\varepsilon})}\right)\|\sqrt{\rho_{\varepsilon}}p^{\prime}_{\varepsilon}(\rho_{\varepsilon})\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}},

and

xλεnρεLtLx2\displaystyle\left\|\dfrac{\partial_{x}\lambda_{\varepsilon}^{n}}{\rho_{\varepsilon}}\right\|_{L^{\infty}_{t}L^{2}_{x}} =εαρεα2xρεLtLx2\displaystyle=\left\|\varepsilon\alpha\rho_{\varepsilon}^{\alpha-2}\partial_{x}\rho_{\varepsilon}\right\|_{L^{\infty}_{t}L^{2}_{x}}
Cρ¯ε1/2ερεα3/2xρεLtLx2.\displaystyle\leq C\underline{\rho}_{\varepsilon}^{-1/2}\left\|\varepsilon\rho_{\varepsilon}^{\alpha-3/2}\partial_{x}\rho_{\varepsilon}\right\|_{L^{\infty}_{t}L^{2}_{x}}.

so, using estimate (27), we get

RLtLx2C1+Tρ¯ε(1ρ¯ε).\|R\|_{L^{\infty}_{t}L^{2}_{x}}\leq C\dfrac{1+\sqrt{T}}{\sqrt{\underline{\rho}_{\varepsilon}}(1-\overline{\rho}_{\varepsilon})}. (43)

Coming back to the control of I1I_{1}, we have:

|I1|\displaystyle|I_{1}| VεLxxVεLx2RLx2\displaystyle\leq\|V_{\varepsilon}\|_{L^{\infty}_{x}}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}\|R\|_{L^{2}_{x}}
CxVεLx2(xVε1/2VεLx21/2+VεLx2)RLx2\displaystyle\leq C\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}\Big{(}\|\partial_{x}V_{\varepsilon}\|^{1/2}\|V_{\varepsilon}\|_{L^{2}_{x}}^{1/2}+\|V_{\varepsilon}\|_{L^{2}_{x}}\Big{)}\|R\|_{L^{2}_{x}}
C¯ε4xVεLx22+C(ε3VεLx22RLx24+ε1VεLx22RLx22).\displaystyle\leq\dfrac{\bar{C}\varepsilon}{4}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+C\Big{(}\varepsilon^{-3}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\|R\|_{L^{2}_{x}}^{4}+\varepsilon^{-1}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\|R\|_{L^{2}_{x}}^{2}\Big{)}. (44)

Control of I2I_{2}.

|I2|\displaystyle|I_{2}| |uε||xVε||Vε|\displaystyle\leq\int|u_{\varepsilon}||\partial_{x}V_{\varepsilon}||V_{\varepsilon}|
xVεLx2VεLx2uεLx\displaystyle\leq\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}\|V_{\varepsilon}\|_{L^{2}_{x}}\|u_{\varepsilon}\|_{L^{\infty}_{x}}
C¯ε4xVεLx22+Cε1VεLx22uεHx12,\displaystyle\leq\dfrac{\bar{C}\varepsilon}{4}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+C\varepsilon^{-1}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\|u_{\varepsilon}\|_{H^{1}_{x}}^{2},

with

uεHx12uεLx22+1λε(ρε)L2VεLx22ρ¯ε1/2ρεuεLx22+ε2ρ¯ε2αVεLx22ρ¯ε1/2ρεuεLx22+ε2ρ¯ε2αVεLx22\begin{split}\|u_{\varepsilon}\|_{H^{1}_{x}}^{2}\leq\|u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\left\|\dfrac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right\|_{L^{\infty}}^{2}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\leq\underline{\rho}_{\varepsilon}^{-1/2}\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\varepsilon^{-2}\underline{\rho}_{\varepsilon}^{-2\alpha}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\\ \leq\underline{\rho}_{\varepsilon}^{-1/2}\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\varepsilon^{-2}\underline{\rho}_{\varepsilon}^{-2\alpha}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\end{split}

Hence

|I2|C¯ε4xVεLx22+Cε1ρ¯ε1/2VεLx22ρεuεLx22+Cε3ρ¯εαVεLx24.\displaystyle|I_{2}|\leq\dfrac{\bar{C}\varepsilon}{4}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+C\varepsilon^{-1}\underline{\rho}_{\varepsilon}^{-1/2}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+C\varepsilon^{-3}\underline{\rho}_{\varepsilon}^{-\alpha}\|V_{\varepsilon}\|_{L^{2}_{x}}^{4}. (45)

Control of I3I_{3}.

|I3|\displaystyle|I_{3}| |(λε(ρε)ρε+λε(ρε))(λε(ρε))2||Vε|3\displaystyle\leq\int\left|\dfrac{\big{(}\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})\rho_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}}{\big{(}\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}^{2}}\right||V_{\varepsilon}|^{3}
(λε(ρε)ρε+λε(ρε))(λε(ρε))2L(xVεLx21/2VεLx25/2+VεLx23)\displaystyle\leq\left\|\dfrac{\big{(}\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})\rho_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}}{\big{(}\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}^{2}}\right\|_{L^{\infty}}\big{(}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{1/2}\|V_{\varepsilon}\|_{L^{2}_{x}}^{5/2}+\|V_{\varepsilon}\|_{L^{2}_{x}}^{3}\big{)}
Cε1ρ¯ε2α(1ρ¯ε)β+2(xVεLx21/2VεLx25/2+VεLx23)\displaystyle\leq C\dfrac{\varepsilon^{-1}}{\underline{\rho}_{\varepsilon}^{2\alpha}(1-\overline{\rho}_{\varepsilon})^{\beta+2}}\big{(}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{1/2}\|V_{\varepsilon}\|_{L^{2}_{x}}^{5/2}+\|V_{\varepsilon}\|_{L^{2}_{x}}^{3}\big{)}
C¯ε4xVεLx22+Cε4/31/3(ρ¯ε2α(1ρ¯ε)β+2)4/3VεLx25/2×4/3+Cε1ρ¯ε2α(1ρ¯ε)β+2VεLx23.\displaystyle\leq\dfrac{\bar{C}\varepsilon}{4}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+C\dfrac{\varepsilon^{-4/3-1/3}}{\big{(}\underline{\rho}_{\varepsilon}^{2\alpha}(1-\overline{\rho}_{\varepsilon})^{\beta+2}\big{)}^{4/3}}\|V_{\varepsilon}\|_{L^{2}_{x}}^{5/2\times 4/3}+C\dfrac{\varepsilon^{-1}}{\underline{\rho}_{\varepsilon}^{2\alpha}(1-\overline{\rho}_{\varepsilon})^{\beta+2}}\|V_{\varepsilon}\|_{L^{2}_{x}}^{3}.

Putting everything together, we get

ddtVεLx22+CεxVεLx22\displaystyle\dfrac{d}{dt}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}+C\varepsilon\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}
C(ε3VεLx22RLx24+ε1VεLx22RLx22+ε1ρ¯ε1/2VεLx22ρεuεLx22\displaystyle\leq C\Bigg{(}\varepsilon^{{-3}}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\|R\|_{L^{2}_{x}}^{4}+\varepsilon^{-1}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\|R\|_{L^{2}_{x}}^{2}+\varepsilon^{-1}\underline{\rho}_{\varepsilon}^{-1/2}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{2}_{x}}^{2}
+ε3ρ¯εαVεLx24+ε5/3(ρ¯ε2α(1ρ¯ε)β+2)4/3VεLx210/3+ε1ρ¯ε2α(1ρ¯ε)β+2VεLx23)\displaystyle\qquad+\varepsilon^{{-3}}\underline{\rho}_{\varepsilon}^{-\alpha}\|V_{\varepsilon}\|_{L^{2}_{x}}^{4}+\dfrac{\varepsilon^{-5/3}}{\big{(}\underline{\rho}_{\varepsilon}^{2\alpha}(1-\overline{\rho}_{\varepsilon})^{\beta+2}\big{)}^{4/3}}\|V_{\varepsilon}\|_{L^{2}_{x}}^{10/3}+\dfrac{\varepsilon^{-1}}{\underline{\rho}_{\varepsilon}^{2\alpha}(1-\overline{\rho}_{\varepsilon})^{\beta+2}}\|V_{\varepsilon}\|_{L^{2}_{x}}^{3}\Bigg{)}
CVεLx22(ε3RLx24+ε1ρ¯ε1/2ρεuεLx22+ε3(ρ¯ε2α(1ρ¯ε)β+2)4/3VεLx22),\displaystyle\leq C\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\Bigg{(}\varepsilon^{-3}\|R\|_{L^{2}_{x}}^{4}+\varepsilon^{-1}\underline{\rho}_{\varepsilon}^{-1/2}\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\dfrac{\varepsilon^{{-3}}}{\big{(}\underline{\rho}_{\varepsilon}^{2\alpha}(1-\overline{\rho}_{\varepsilon})^{\beta+2}\big{)}^{4/3}}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\Bigg{)},

and by Gronwall’s inequality:

VεLtLx22+εxVεLt2Lx22\displaystyle\|V_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}^{2}+\varepsilon\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}^{2}
CVε(0)Lx22exp[T(ε3RLtLx24+ε1ρ¯ε1/2ρεuεLtLx22)+ε3(ρ¯ε2α(1ρ¯ε)β+2)4/3VεLt2Lx22]\displaystyle\leq C\|V_{\varepsilon}(0)\|_{L^{2}_{x}}^{2}\exp\left[T\left(\varepsilon^{-3}\|R\|_{L^{\infty}_{t}L^{2}_{x}}^{4}+\varepsilon^{-1}\underline{\rho}_{\varepsilon}^{-1/2}\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}^{2}\right)+\dfrac{\varepsilon^{{-3}}}{\big{(}\underline{\rho}_{\varepsilon}^{2\alpha}(1-\overline{\rho}_{\varepsilon})^{\beta+2}\big{)}^{4/3}}\|V_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}^{2}\right]

From this result, we infer estimates on xuε\partial_{x}u_{\varepsilon}. We have the following results:

Lemma 3.9.
  • We have:

  • (i)

    xuε\partial_{x}u_{\varepsilon} is bounded in Lt2Lx2L^{2}_{t}L^{2}_{x} with the estimate

    xuεLt2Lx2\displaystyle\|\partial_{x}u_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}} 1λε(ρε)Lt,xλε(ρε)xuεL2L2Cε1/2ρ¯εα/2E01/2.\displaystyle\leq\left\|\dfrac{1}{\sqrt{\lambda_{\varepsilon}(\rho_{\varepsilon})}}\right\|_{L^{\infty}_{t,x}}\|\sqrt{\lambda_{\varepsilon}(\rho_{\varepsilon})}\partial_{x}u_{\varepsilon}\|_{L^{2}L^{2}}\leq C\varepsilon^{-1/2}\underline{\rho}_{\varepsilon}^{-\alpha/2}E_{0}^{1/2}. (46)
  • (ii)

    xuε\partial_{x}u_{\varepsilon} is bounded in LtLx2L^{\infty}_{t}L^{2}_{x} with the estimate

    xuεLtLx2\displaystyle\|\partial_{x}u_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}} 1λε(ρε)Lt,xVεLtLx2ε1ρ¯εαE21/2.\displaystyle\leq\left\|\dfrac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right\|_{L^{\infty}_{t,x}}\|V_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}\leq\varepsilon^{-1}\underline{\rho}_{\varepsilon}^{-\alpha}E_{2}^{1/2}. (47)
  • (iii)

    x2uε\partial^{2}_{x}u_{\varepsilon} is bounded in Lt2Lx2L^{2}_{t}L^{2}_{x} with the estimate

    x2uεLt2Lx2C1λε(ρε)Lt,xxVεLt2Lx2+C1λε(ρε)Lt,x2xλε(ρε)LtLx2(xλε(ρε)LtLx2+1)xuεLt2Lx2\begin{split}\|\partial^{2}_{x}u_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}\leq&C\left\|\dfrac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right\|_{L^{\infty}_{t,x}}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}\\ &+C\left\|\dfrac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right\|_{L^{\infty}_{t,x}}^{2}\|\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})\|_{L^{\infty}_{t}L^{2}_{x}}\big{(}\|\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})\|_{L^{\infty}_{t}L^{2}_{x}}+1\big{)}\|\partial_{x}u_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}\end{split} (48)
Proof.

Part (i)(i) follows immediately from (25). Part (ii)(ii) is combination of definition of VεV_{\varepsilon} and estimate LABEL:eq:est_V. And finally, part (iii)(iii) follows by differentiating VεV_{\varepsilon}, we get xVε=xλεxuε+λεx2uε\partial_{x}V_{\varepsilon}=\partial_{x}\lambda_{\varepsilon}\partial_{x}u_{\varepsilon}+\lambda_{\varepsilon}\partial^{2}_{x}u_{\varepsilon}, so that

x2uεLt2Lx21λε(ρε)Lt,x(xVεLt2Lx2+xλεLtLx2xuεLt2Lx)C1λε(ρε)Lt,x(xVεLt2Lx2+xλεLtLx2(xuεLt2Lx21/2x2uεLt2Lx21/2+xuεLt2Lx2)).\begin{split}&\|\partial^{2}_{x}u_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}\\ &\leq\left\|\dfrac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right\|_{L^{\infty}_{t,x}}\Bigg{(}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}+\|\partial_{x}\lambda_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}\|\partial_{x}u_{\varepsilon}\|_{L^{2}_{t}L^{\infty}_{x}}\Bigg{)}\\ &\leq C\left\|\dfrac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right\|_{L^{\infty}_{t,x}}\Bigg{(}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}+\|\partial_{x}\lambda_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}\left(\|\partial_{x}u_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}^{1/2}\|\partial_{x}^{2}u_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}^{1/2}+\|\partial_{x}u_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}\right)\Bigg{)}.\end{split} (49)

Higher order regularity estimates

We begin with a formal computation for additional regularity estimates, for which we assume that the functions ρε,uε\rho_{\varepsilon},u_{\varepsilon} are sufficiently smooth.

Lemma 3.10.

Let m2m\geq 2 and ρεC1([0,T];Cm(𝕋))\rho_{\varepsilon}\in C^{1}([0,T];C^{m}(\mathbb{T})), uεC([0,T];Cm+1(𝕋))u_{\varepsilon}\in C([0,T];C^{m+1}(\mathbb{T})) and they satisfy (10a), then we have

12ddtxmρεLx22C(xmuεLx2xmρεLx22+ρεLxxmρεLx2xm+1uεLx2)\displaystyle\begin{split}\frac{1}{2}\frac{d}{dt}\|\partial_{x}^{m}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}&\leq C\left(\|\partial_{x}^{m}u_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{m}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|\rho_{\varepsilon}\|_{L^{\infty}_{x}}\|\partial_{x}^{m}\rho_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{m+1}u_{\varepsilon}\|_{L^{2}_{x}}\right)\end{split} (50)

Moreover, for l1l\geq 1 and ρεC([0,T];Cl+1(𝕋d))\rho_{\varepsilon}\in C([0,T];C^{l+1}(\mathbb{T}^{d})), uεC([0,T];Cl(𝕋d))u_{\varepsilon}\in C([0,T];C^{l}(\mathbb{T}^{d})), VεC1([0,T];Cl+2(𝕋d))V_{\varepsilon}\in C^{1}([0,T];C^{l+2}(\mathbb{T}^{d})) satisfying (36), we have

12ddt|xlVε|2=xl((uε+λε(ρε)ρε2xρε)xVε)xlVε+xl(λε(ρε)ρεx2Vε)xlVεxl((λε(ρε)ρε+λε(ρε))(λε(ρε))2Vε2)xlVε.\displaystyle\begin{split}\frac{1}{2}\frac{d}{dt}\int|\partial_{x}^{l}V_{\varepsilon}|^{2}=&-\int\partial_{x}^{l}\left(\left(u_{\varepsilon}+\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}^{2}}\partial_{x}\rho_{\varepsilon}\right)\partial_{x}V_{\varepsilon}\right)\partial_{x}^{l}V_{\varepsilon}\\ &+\int\partial_{x}^{l}\left(\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\partial^{2}_{x}V_{\varepsilon}\right)\partial_{x}^{l}V_{\varepsilon}-\int\partial_{x}^{l}\left(\dfrac{\big{(}\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})\rho_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}}{\big{(}\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}^{2}}V_{\varepsilon}^{2}\right)\partial_{x}^{l}V_{\varepsilon}.\end{split} (51)
Proof.

First, differentiating continuity equation mm times with respect to xx and multiplying by xmρε\partial_{x}^{m}\rho_{\varepsilon}, we deduce

12ddt|xmρε|2=xmρε(xm(uεxρε)+xm(ρεxuε)).\displaystyle\frac{1}{2}\frac{d}{dt}\int|\partial_{x}^{m}\rho_{\varepsilon}|^{2}=-\int\partial_{x}^{m}\rho_{\varepsilon}\left(\partial_{x}^{m}(u_{\varepsilon}\partial_{x}\rho_{\varepsilon})+\partial_{x}^{m}(\rho_{\varepsilon}\partial_{x}u_{\varepsilon})\right).

We introduce the commutator notation [D,f]g=D(fg)fDg[D,f]g=D(fg)-fDg, where DD is any differential operator and f,gf,g are sufficiently smooth functions, we rewrite the above equation as

12ddt|xmρε|2=xmρε([xm,uε]xρε)xmρεuεxm+1ρεxmρε([xm,ρε]xuε)xmρερεxm+1uε.\displaystyle\begin{split}\frac{1}{2}\frac{d}{dt}\int|\partial_{x}^{m}\rho_{\varepsilon}|^{2}=&-\int\partial_{x}^{m}\rho_{\varepsilon}\left([\partial_{x}^{m},u_{\varepsilon}]\partial_{x}\rho_{\varepsilon}\right)-\int\partial_{x}^{m}\rho_{\varepsilon}u_{\varepsilon}\partial_{x}^{m+1}\rho_{\varepsilon}\\ &-\int\partial_{x}^{m}\rho_{\varepsilon}\left([\partial_{x}^{m},\rho_{\varepsilon}]\partial_{x}u_{\varepsilon}\right)-\int\partial_{x}^{m}\rho_{\varepsilon}\rho_{\varepsilon}\partial_{x}^{m+1}u_{\varepsilon}.\end{split} (52)

Now invoke the inequality for [constantin2020, Page 12], it says that for gWn,2(𝕋)g\in W^{n,2}(\mathbb{T}) with n3n\geq 3, we have

xgLxCx2gLx2C(n)xngLx2.\displaystyle\|\partial_{x}g\|_{L^{\infty}_{x}}\leq C\|\partial_{x}^{2}g\|_{L^{2}_{x}}\leq C(n)\|\partial_{x}^{n}g\|_{L^{2}_{x}}. (53)

Therefore, estimate (53) and Kato-Ponce theory yield

[xm,uε]xρεLx2\displaystyle\|[\partial_{x}^{m},u_{\varepsilon}]\partial_{x}\rho_{\varepsilon}\|_{L^{2}_{x}} C(xmρεLx2xuεLx+xmuεLx2xρεLx)C(xmuεLx2xmρεLx2)\displaystyle\leq C\left(\|\partial_{x}^{m}\rho_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}u_{\varepsilon}\|_{L^{\infty}_{x}}+\|\partial_{x}^{m}u_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{x}}\right)\leq C(\|\partial_{x}^{m}u_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{m}\rho_{\varepsilon}\|_{L^{2}_{x}})

and

[xm,ρε]xuεLx2C(xmuεLx2xρεLx+xmρεLx2xuεLx)C(xmuεLx2xmρεLx2).\displaystyle\|[\partial_{x}^{m},\rho_{\varepsilon}]\partial_{x}u_{\varepsilon}\|_{L^{2}_{x}}\leq C\left(\|\partial_{x}^{m}u_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{x}}+\|\partial_{x}^{m}\rho_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}u_{\varepsilon}\|_{L^{\infty}_{x}}\right)\leq C(\|\partial_{x}^{m}u_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{m}\rho_{\varepsilon}\|_{L^{2}_{x}}).

Now going back to (52), we notice that

xmρεuεxm+1ρε=12xuε|xmρε|2.\displaystyle-\int\partial_{x}^{m}\rho_{\varepsilon}u_{\varepsilon}\partial_{x}^{m+1}\rho_{\varepsilon}=\frac{1}{2}\int\partial_{x}u_{\varepsilon}|\partial_{x}^{m}\rho_{\varepsilon}|^{2}.

This implies

xuε|xmρε|2CxuεLxxmρεLx22.\displaystyle\int\partial_{x}u_{\varepsilon}|\partial_{x}^{m}\rho_{\varepsilon}|^{2}\leq C\|\partial_{x}u_{\varepsilon}\|_{L^{\infty}_{x}}\|\partial_{x}^{m}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}.

Combining, all these estimates and plugging into (52) we finally obtain (50). Next, differentiating (36) ll times with respect to space and multiplying by xlVε\partial_{x}^{l}V_{\varepsilon} we obtain (51). ∎

We already have the estimate of VεV_{\varepsilon} in LtLx2L^{\infty}_{t}L^{2}_{x} and xVε\partial_{x}V_{\varepsilon} in Lt2Lx2L^{2}_{t}L^{2}_{x} from (LABEL:eq:est_V). Also, Lemma 3.3 and Lemma 3.9 give

xρεLtLx2=(α12)11ερε32αx(ερεα12)LtLx21εC(ρ¯ε,α,T,E0,E1).\displaystyle\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}=\left(\alpha-\frac{1}{2}\right)^{-1}\frac{1}{\varepsilon}\left\|\rho_{\varepsilon}^{\frac{3}{2}-\alpha}\partial_{x}(\varepsilon\rho_{\varepsilon}^{\alpha-\frac{1}{2}})\right\|_{L^{\infty}_{t}L^{2}_{x}}\leq\frac{1}{\varepsilon}C(\bar{\rho}_{\varepsilon},\alpha,T,E_{0},E_{1}). (54)

Using the formulas from Lemma 3.10, we want to derive the estimates for two further orders of regularity:

  • First, the case corresponding to m=2m=2 and l=1l=1 in (50) and (51), respectively.

  • Then, the case corresponding to m=3m=3 and l=2l=2 in (50) and (51), respectively.

The obtained results are summarised in the two statements below.

Proposition 3.11.

Let ε>0\varepsilon>0 be fixed and (ρε,uε)(\rho_{\varepsilon},u_{\varepsilon}) be a regular solution of system (10b) with

E3,ε=E1,ε+x2u0,εLx2+x2ρ0,εLx2+x3u0,εLx2+x3ρ0,εLx2.E_{3,\varepsilon}=E_{1,\varepsilon}+\|\partial^{2}_{x}u_{0,\varepsilon}\|_{L^{2}_{x}}+\|\partial^{2}_{x}\rho_{0,\varepsilon}\|_{L^{2}_{x}}+\|\partial^{3}_{x}u_{0,\varepsilon}\|_{L^{2}_{x}}+\|\partial^{3}_{x}\rho_{0,\varepsilon}\|_{L^{2}_{x}}.

Then we have

x3ρεLtLx2+x2VεLtLx2+x3VεLt2Lx2+x3uεLtLx2+x4uεLt2Lx2\displaystyle\|\partial^{3}_{x}\rho_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}+\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}+\|\partial^{3}_{x}V_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}+\|\partial^{3}_{x}u_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}+\|\partial^{4}_{x}u_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}
C(ε,E3,ε,ρ¯ε,ρ¯ε,T).\displaystyle\leq C(\varepsilon,E_{3,\varepsilon},\underline{\rho}_{\varepsilon},\overline{\rho}_{\varepsilon},T). (55)

The Lemma 6.1 is an analogue of [constantin2020, Lemma 4.2] and the Proposition 3.11 is an analogue of [constantin2020, Lemma 4.3]. For completeness we include the proofs of both results, see the Appendix 6.

4 Estimates uniform in ε\varepsilon

In this section we first recall and derive additional uniform w.r.t. ε\varepsilon estimates which eventually will allow us to let ε0\varepsilon\to 0. The two key estimates of this section are: the control of the singular potential πε\pi_{\varepsilon}, and the Oleinik entropy condition on uεu_{\varepsilon}.

4.1 Estimates based on the energy bounds

First note that the Lemmas 3.1 and 3.2 are already uniform with respect to ε\varepsilon, and so we have the following uniform bounds

Proposition 4.1.

Let the initial data ρε0,uε0\rho_{\varepsilon}^{0},u_{\varepsilon}^{0} be such that

E0,ε+E1,εC\begin{split}E_{0,\varepsilon}+E_{1,\varepsilon}\leq C\end{split} (56)

for some CC independent of ε\varepsilon. Then we have for the solution ρε,uε\rho_{\varepsilon},u_{\varepsilon}:

ρεuεLtLx2CρεwεLtLx2Cλε(ρε)xuεLt2Lx2CρεLtLx1.\begin{split}&\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}\leq C\\ &\|\sqrt{\rho_{\varepsilon}}w_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}\leq C\\ &\|\sqrt{\lambda_{\varepsilon}(\rho_{\varepsilon})}\partial_{x}u_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}\leq C\\ &\|\rho_{\varepsilon}\|_{L^{\infty}_{t}L^{\infty}_{x}}\leq 1.\end{split} (57)

Note that so far we are lacking the uniform bound on the singular part of the potential πε(ρε)\pi_{\varepsilon}(\rho_{\varepsilon}) (recall Remark 3.4 and estimate (33)). This is the purpose of the next lemma.

Lemma 4.2.

Let the conditions of the previous proposition be satisfied and assume furthermore the condition (18). We have then

πε(ρε)LtLx1+xπε(ρε)LtLx2C,\|\pi_{\varepsilon}(\rho_{\varepsilon})\|_{L^{\infty}_{t}L^{1}_{x}}+\|\partial_{x}\pi_{\varepsilon}(\rho_{\varepsilon})\|_{L^{\infty}_{t}L^{2}_{x}}\leq C, (58)

for a positive constant CC independent of ε\varepsilon.

Proof.

We first multiply Eq (10b) by ψ(t,x)=0x(ρε(t,y)<ρε>)𝑑y\psi(t,x)=\int_{0}^{x}\big{(}\rho_{\varepsilon}(t,y)-<\rho_{\varepsilon}>\big{)}dy, where

<ρε>:=Mε0|𝕋|,<\rho_{\varepsilon}>:=\frac{M^{0}_{\varepsilon}}{|\mathbb{T}|},

to get after time and space integration:

0tρε2pε(ρε)xuε(ρε<ρε>)dxdt=0tρε2φε(ρε)xuε(ρε<ρε>)dxdt+0t(ρεuε)tψdxdt+0tρεuε2(ρε<ρε>)𝑑x𝑑t.\begin{split}\int_{0}^{t}\int\rho_{\varepsilon}^{2}p^{\prime}_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon}\big{(}\rho_{\varepsilon}-<\rho_{\varepsilon}>\big{)}dx\,dt=&-\int_{0}^{t}\int\rho_{\varepsilon}^{2}\varphi^{\prime}_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon}\big{(}\rho_{\varepsilon}-<\rho_{\varepsilon}>\big{)}dx\,dt\\ &+\int_{0}^{t}\int(\rho_{\varepsilon}u_{\varepsilon})\partial_{t}\psi\,dx\,dt+\int_{0}^{t}\int\rho_{\varepsilon}u_{\varepsilon}^{2}\big{(}\rho_{\varepsilon}-<\rho_{\varepsilon}>\big{)}dx\,dt.\end{split}

From (LABEL:est_un_ep) we infer that

|0tρε2pε(ρε)xuε(ρε<ρε>)dxdt|C.\left|\int_{0}^{t}\int\rho_{\varepsilon}^{2}p^{\prime}_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon}\big{(}\rho_{\varepsilon}-<\rho_{\varepsilon}>\big{)}dx\,dt\right|\leq C.

Recall that we assumed that there exist M¯0,M¯0\overline{M}^{0},\underline{M}^{0}, independent of ε\varepsilon such that

0<M¯0Mε0M¯0.0<\underline{M}^{0}\leq M^{0}_{\varepsilon}\leq\overline{M}^{0}.

From the hypotheses (15)-(18), we ensure that

<ρε>ρ^=M¯0|𝕋|<1,<\rho_{\varepsilon}>\leq\hat{\rho}=\frac{\overline{M}^{0}}{|\mathbb{T}|}<1, (59)

and we define ρεm=1+<ρε>21+ρ^2\rho^{m}_{\varepsilon}=\dfrac{1+<\rho_{\varepsilon}>}{2}\leq\dfrac{1+\hat{\rho}}{2}. We then split the previous integral into two parts, depending on the value of ρε\rho_{\varepsilon}. When ρερεm\rho_{\varepsilon}\leq\rho^{m}_{\varepsilon}, the pressure remains far from the singularity uniformly with respect to ε\varepsilon and therefore

|0tρε2pε(ρε)xuε(ρε<ρε>)𝟏{ρερεm}dxdt|\displaystyle\left|\int_{0}^{t}\int\rho_{\varepsilon}^{2}p^{\prime}_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon}\big{(}\rho_{\varepsilon}-<\rho_{\varepsilon}>\big{)}\mathbf{1}_{\{\rho_{\varepsilon}\leq\rho_{\varepsilon}^{m}\}}dx\,dt\right|
Cpε(ρε)𝟏{ρερεm}Lt2Lx2ρεpε(ρε)xuεLt2Lx2\displaystyle\leq C\|\sqrt{p^{\prime}_{\varepsilon}(\rho_{\varepsilon})}\mathbf{1}_{\{\rho_{\varepsilon}\leq\rho_{\varepsilon}^{m}\}}\|_{L^{2}_{t}L^{2}_{x}}\|\rho_{\varepsilon}\sqrt{p^{\prime}_{\varepsilon}(\rho_{\varepsilon})}\partial_{x}u_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}
C\displaystyle\leq C

thanks to (LABEL:est_un_ep). Hence

C\displaystyle C |0tρε2pε(ρε)xuε(ρε<ρε>)𝟏{ρε>ρεm}dxdt|\displaystyle\geq\left|\int_{0}^{t}\int\rho_{\varepsilon}^{2}p^{\prime}_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon}\big{(}\rho_{\varepsilon}-<\rho_{\varepsilon}>\big{)}\mathbf{1}_{\{\rho_{\varepsilon}>\rho_{\varepsilon}^{m}\}}dx\,dt\right|
1ρ^2|0tρε2pε(ρε)xuε𝟏{ρε>ρεm}dxdt|.\displaystyle\geq\frac{1-\hat{\rho}}{2}\left|\int_{0}^{t}\int\rho_{\varepsilon}^{2}p^{\prime}_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon}\mathbf{1}_{\{\rho_{\varepsilon}>\rho_{\varepsilon}^{m}\}}dx\,dt\right|.

summarizing, we have shown that

|0t𝕋ρε2pε(ρε)xuεdxdt|C.\left|\int_{0}^{t}\int_{\mathbb{T}}\rho_{\varepsilon}^{2}p^{\prime}_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon}dx\,dt\right|\leq C. (60)

Next, note that for ε\varepsilon fixed, sε=ρεpε(ρε)s_{\varepsilon}=\rho_{\varepsilon}p_{\varepsilon}(\rho_{\varepsilon}) satisfies the following equation

tsε(ρε)+x(sε(ρε)uε)=ρε2pε(ρε)xuε.\partial_{t}s_{\varepsilon}(\rho_{\varepsilon})+\partial_{x}(s_{\varepsilon}(\rho_{\varepsilon})u_{\varepsilon})=-\rho_{\varepsilon}^{2}p^{\prime}_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon}. (61)

From this and the estimate (60), we can deduce that

sε(ρε)LtLx1C.\|s_{\varepsilon}(\rho_{\varepsilon})\|_{L^{\infty}_{t}L^{1}_{x}}\leq C.

Now, considering the cases of ρε\rho_{\varepsilon} far away from 1 and close to 1 separately and observing that sε(ρ)s_{\varepsilon}(\rho) and πε(ρ)\pi_{\varepsilon}(\rho) have the same singularity when ρ\rho is close to 11, we obtain

πε(ρε)LtLx1C.\|\pi_{\varepsilon}(\rho_{\varepsilon})\|_{L^{\infty}_{t}L^{1}_{x}}\leq C.

Regarding the control of the gradient xπε(ρε)\partial_{x}\pi_{\varepsilon}(\rho_{\varepsilon}), we simply use estimate (LABEL:est_un_ep) to write

xπε(ρε)LtLx2\displaystyle\|\partial_{x}\pi_{\varepsilon}(\rho_{\varepsilon})\|_{L^{\infty}_{t}L^{2}_{x}} ρεLt,xρεx(pε(ρε)+φε(ρε))LtLx2\displaystyle\leq\|\sqrt{\rho_{\varepsilon}}\|_{L^{\infty}_{t,x}}\|\sqrt{\rho_{\varepsilon}}\partial_{x}\big{(}p_{\varepsilon}(\rho_{\varepsilon})+\varphi_{\varepsilon}(\rho_{\varepsilon})\big{)}\|_{L^{\infty}_{t}L^{2}_{x}}
ρεLt,x(ρεwεLtLx2+ρεuεLtLx2)C.\displaystyle\leq\|\sqrt{\rho_{\varepsilon}}\|_{L^{\infty}_{t,x}}\Big{(}\|\sqrt{\rho_{\varepsilon}}w_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}+\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}\Big{)}\leq C.


From the control (60), we directly infer the next result.

Corollary 4.3.

Under the same hypotheses, we have

λε(ρε)xuεLt,x1C,\|\lambda_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon}\|_{L^{1}_{t,x}}\leq C, (62)

for some C>0C>0 independent of ε\varepsilon.

4.2 One-sided Lipschitz condition on xuε\partial_{x}u_{\varepsilon}

The purpose of this subsection is to prove that uεu_{\varepsilon} satisfies the Oleinik entropy condition, i.e. xuε1/t\partial_{x}u_{\varepsilon}\leq 1/t.

Lemma 4.4.

Let ρε,uε\rho_{\varepsilon},u_{\varepsilon} be solution to system (10b) and assume that initially

esssup(λε(ρε0)xuε0)C\begin{split}\operatorname*{ess\,sup}{(\lambda_{\varepsilon}(\rho_{\varepsilon}^{0})\partial_{x}u_{\varepsilon}^{0})}\leq C\end{split} (63)

uniformly w.r.t. ε\varepsilon, and let us denote

A=max(esssup(λε(ρε0)xuε0),0).\begin{split}A=\max(\operatorname*{ess\,sup}{(\lambda_{\varepsilon}(\rho_{\varepsilon}^{0})\partial_{x}u_{\varepsilon}^{0})},0).\end{split} (64)

Then we have the ε\varepsilon-uniform estimate:

xuε(t,x)AAt+11tt]0,T],x𝕋.\begin{split}\partial_{x}u_{\varepsilon}(t,x)\leq\frac{A}{At+1}\leq\frac{1}{t}\qquad\forall\ t\in\ ]0,T],\leavevmode\nobreak\ x\in\mathbb{T}.\end{split} (65)
Proof.

The starting point is derivation of equation for

V~ε=(At+1)Vελ¯ε,whereλ¯ε=ερ¯εα.\widetilde{V}_{\varepsilon}=(At+1)\frac{V_{\varepsilon}}{\underline{\lambda}_{\varepsilon}},\quad\mbox{where}\ \underline{\lambda}_{\varepsilon}=\varepsilon\underline{\rho}_{\varepsilon}^{\alpha}.

Similarly to proof of Proposition 3.7 we can show that

tV~ε+x(uεV~ε)x(λε(ρε)ρεxV~ε)=AAt+1V~ελε(ρε)ρελ¯εAt+1(V~ελε(ρε))2xλε(ρε)ρεxV~ε,\begin{split}&\partial_{t}\widetilde{V}_{\varepsilon}+\partial_{x}(u_{\varepsilon}\widetilde{V}_{\varepsilon})-\partial_{x}\left(\frac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\partial_{x}\widetilde{V}_{\varepsilon}\right)\\ &=\frac{A}{At+1}\widetilde{V}_{\varepsilon}-\frac{\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})\rho_{\varepsilon}\underline{\lambda}_{\varepsilon}}{At+1}\left(\frac{\widetilde{V}_{\varepsilon}}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right)^{2}-\frac{\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\partial_{x}\widetilde{V}_{\varepsilon},\end{split} (66)

which for ε\varepsilon fixed holds pointwisely. We now derive the renormalised equation for V~ε\widetilde{V}_{\varepsilon}. To this purpose we multiply (LABEL:tVe_conserv) by S(V~ε)S^{\prime}(\widetilde{V}_{\varepsilon}), where SS is smooth, increasing and convex function, we obtain

tS(V~ε)+x(uεS(V~ε))x(λε(ρε)ρεS(V~ε)xV~ε)=(S(V~ε)S(V~ε)V~ε)xuεS′′(V~ε)λε(ρε)ρε(xV~ε)2+AAt+1S(V~ε)V~εS(V~ε)λε(ρε)ρελ¯εAt+1(V~ελε(ρε))2xλε(ρε)ρεxS(V~ε)\begin{split}&\partial_{t}S(\widetilde{V}_{\varepsilon})+\partial_{x}(u_{\varepsilon}S(\widetilde{V}_{\varepsilon}))-\partial_{x}\left(\frac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}S^{\prime}(\widetilde{V}_{\varepsilon})\partial_{x}\widetilde{V}_{\varepsilon}\right)\\ &=\left(S(\widetilde{V}_{\varepsilon})-S^{\prime}(\widetilde{V}_{\varepsilon})\widetilde{V}_{\varepsilon}\right)\partial_{x}u_{\varepsilon}-S^{\prime\prime}(\widetilde{V}_{\varepsilon})\frac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\left(\partial_{x}\widetilde{V}_{\varepsilon}\right)^{2}\\ &+\frac{A}{At+1}S^{\prime}(\widetilde{V}_{\varepsilon})\widetilde{V}_{\varepsilon}-\frac{S^{\prime}(\widetilde{V}_{\varepsilon})\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})\rho_{\varepsilon}\underline{\lambda}_{\varepsilon}}{At+1}\left(\frac{\widetilde{V}_{\varepsilon}}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right)^{2}-\frac{\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\partial_{x}S(\widetilde{V}_{\varepsilon})\end{split} (67)

We set S(y)=Fη(y)S(y)=F_{\eta}(y) where FηF_{\eta}, η>0\eta>0, is a regularization of (A)+(\cdot-A)_{+}:

Fη(y)={0ifyηyη2+η2πsin(πyη)ifηy2ηy3η2ify2ηF_{\eta}(y)=\begin{cases}0\quad&\text{if}\leavevmode\nobreak\ y\leq\eta\\ \dfrac{y-\eta}{2}+\dfrac{\eta}{2\pi}\sin(\pi\frac{y}{\eta})\quad&\text{if}\leavevmode\nobreak\ \eta\leq y\leq 2\eta\\ y-\dfrac{3\eta}{2}\quad&\text{if}\leavevmode\nobreak\ y\geq 2\eta\end{cases} (68)

For η>0\eta>0 fixed, Fη′′0F^{\prime\prime}_{\eta}\geq 0, 0Fη10\leq F^{\prime}_{\eta}\leq 1, and

|Fη(y)(yA)Fη(y)|(32+12π)η=κη.\begin{split}|F_{\eta}(y)-(y-A)F^{\prime}_{\eta}(y)|\leq\left(\frac{3}{2}+\frac{1}{2\pi}\right)\eta=\kappa\eta.\end{split} (69)

Note that for such choice of SS the second and the fourth terms on the r.h.s. of (LABEL:S_conserv) are non-positive. Therefore, integrating (LABEL:S_conserv) in space, we then get:

ddtFη(V~ε(t))|Fη(V~ε)Fη(V~ε)(V~εA)||xuε|+AAt+1Fη(V~ε)V~ε|11λε(ρε)|+|x(xλε(ρε)ρε)|Fη(V~ε).\begin{split}\frac{d}{dt}\int F_{\eta}(\widetilde{V}_{\varepsilon}(t))&\leq\int\Big{|}F_{\eta}(\widetilde{V}_{\varepsilon})-F_{\eta}^{\prime}(\widetilde{V}_{\varepsilon})(\widetilde{V}_{\varepsilon}-A)\Big{|}|\partial_{x}u_{\varepsilon}|\\ &\quad+\int\frac{A}{At+1}F^{\prime}_{\eta}(\widetilde{V}_{\varepsilon})\widetilde{V}_{\varepsilon}\left|1-\frac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right|+\int\left|\partial_{x}\left(\frac{\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\right)\right|F_{\eta}(\widetilde{V}_{\varepsilon}).\end{split} (70)

The first term on the r.h.s. can be controlled using (69), (LABEL:est_un_ep), and the ε\varepsilon-dependent bound from below for ρε\rho_{\varepsilon} (34), we obtain

|Fη(V~ε)Fη(V~ε)(V~εA)||xuε|κη|xuε|κC(T)ηεα\begin{split}\int\Big{|}F_{\eta}(\widetilde{V}_{\varepsilon})-F_{\eta}^{\prime}(\widetilde{V}_{\varepsilon})(\widetilde{V}_{\varepsilon}-A)\Big{|}|\partial_{x}u_{\varepsilon}|\leq\kappa\eta\int|\partial_{x}u_{\varepsilon}|\leq\kappa C(T)\eta\varepsilon^{-\alpha^{\prime}}\end{split} (71)

with some α>0\alpha^{\prime}>0. For the second term on the r.h.s. of (70) we compute

yFη(y)={0ifyηy2+y2cos(πyη)ifηy2ηyify2η,yF_{\eta}^{\prime}(y)=\begin{cases}0\quad&\text{if}\leavevmode\nobreak\ y\leq\eta\\ \dfrac{y}{2}+\dfrac{y}{2}\cos(\pi\frac{y}{\eta})\quad&\text{if}\leavevmode\nobreak\ \eta\leq y\leq 2\eta\\ y\quad&\text{if}\leavevmode\nobreak\ y\geq 2\eta,\end{cases} (72)

and so yFη(y)4Fη(y)yF_{\eta}^{\prime}(y)\leq 4F_{\eta}(y) which can be then controlled by the Gronwall argument, since

11λε(ρε)LtLxC(T)εα′′,\begin{split}\left\|1-\frac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right\|_{L^{\infty}_{t}L^{\infty}_{x}}\leq C(T)\varepsilon^{-\alpha^{\prime\prime}},\end{split} (73)

for some α′′>0\alpha^{\prime\prime}>0.
Finally, the last term on the r.h.s. of (70) can also be controlled by the Gronwall’s argument seeing that from Proposition 3.11:

x(xλε(ρε)ρε)Lt1LxC(T)εα′′′\begin{split}\left\|\partial_{x}\left(\frac{\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\right)\right\|_{{L^{1}_{t}L^{\infty}_{x}}}\leq C(T)\varepsilon^{-\alpha^{\prime\prime\prime}}\end{split} (74)

for some α′′′>0\alpha^{\prime\prime\prime}>0. Putting this together, and applying the Gronwall’s inequality to (70) we obtain

Fη(V~ε(t))exp(x(xλε(ρε)ρε)Lt1Lx+log(At+1)11λε(ρε)LtLx)[Fη(V~ε(0))+C(T)κηtεα]exp(C(T)εα′′′+log(At+1)C(T)εα′′)[Fη(V~ε(0))+C(T)κηtεα]\begin{split}&\int F_{\eta}(\widetilde{V}_{\varepsilon}(t))\\ &\leq\exp{\left(\left\|\partial_{x}\left(\frac{\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\right)\right\|_{L^{1}_{t}L^{\infty}_{x}}\!\!\!\!+\log(At+1)\left\|1-\frac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right\|_{L^{\infty}_{t}L^{\infty}_{x}}\right)}\int\left[F_{\eta}(\widetilde{V}_{\varepsilon}(0))+C(T)\kappa\eta t\varepsilon^{-\alpha^{\prime}}\right]\\ &\leq\exp{\left(C(T)\varepsilon^{-\alpha^{\prime\prime\prime}}+\log(At+1)C(T)\varepsilon^{-\alpha^{\prime\prime}}\right)}\left[\int F_{\eta}(\widetilde{V}_{\varepsilon}(0))+C(T)\kappa\eta t\varepsilon^{-\alpha^{\prime}}\right]\end{split} (75)

Passing to the limit η0\eta\to 0, we obtain

(V~ε(t)A)+exp(C(T)εα′′′+log(At+1)C(T)εα′′)(V~ε(0)A)+.\begin{split}&\int(\widetilde{V}_{\varepsilon}(t)-A)_{+}\leq\exp{\left(C(T)\varepsilon^{-\alpha^{\prime\prime\prime}}+\log(At+1)C(T)\varepsilon^{-\alpha^{\prime\prime}}\right)}\int(\widetilde{V}_{\varepsilon}(0)-A)_{+}.\end{split} (76)

Noticing that V~ε(0)=Vε(0)\widetilde{V}_{\varepsilon}(0)=V_{\varepsilon}(0) we therefore obtain

Ω(V~ε(t)A)+0\begin{split}\int_{\Omega}(\widetilde{V}_{\varepsilon}(t)-A)_{+}\leq 0\end{split} (77)

uniformly w.r.t. ε\varepsilon which implies

λε(ρε)λ¯εxuεAAt+11t.\begin{split}\frac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\underline{\lambda}_{\varepsilon}}\partial_{x}u_{\varepsilon}\leq\frac{A}{At+1}\leq\frac{1}{t}.\end{split} (78)

For each ε>0\varepsilon>0 we have λε(ρε)λ¯ε{\lambda_{\varepsilon}(\rho_{\varepsilon})}\geq{\underline{\lambda}_{\varepsilon}}, and λ¯ελε(ρε)1\frac{\underline{\lambda}_{\varepsilon}}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\leq 1, thus we get the required estimate uniformly in ε\varepsilon. ∎

As a consequence of Lemma 4.4 and due to periodicity of the domain, we can control the whole norm of the velocity gradient.

Corollary 4.5.

We have

xuεLtLx1C\begin{split}\|\partial_{x}u_{\varepsilon}\|_{L^{\infty}_{t}L^{1}_{x}}\leq C\end{split} (79)

for constant CC independent of ε\varepsilon.

Proof.

Let us denote Dε:=(xuε)+D_{\varepsilon}:=(\partial_{x}u_{\varepsilon})_{+}. We have, for any tt

𝕋|xuε(t,x)|𝑑x\displaystyle\int_{\mathbb{T}}|\partial_{x}u_{\varepsilon}(t,x)|dx
=𝕋(2Dε(t,x)xuε(t,x))𝑑x\displaystyle=\int_{\mathbb{T}}\Big{(}2D_{\varepsilon}(t,x)-\partial_{x}u_{\varepsilon}(t,x)\Big{)}dx
=𝕋2Dε(t,x)𝑑x\displaystyle=\int_{\mathbb{T}}2D_{\varepsilon}(t,x)\,dx
Oleinik cond.2|𝕋|AAt+1.\displaystyle\overset{\text{Oleinik cond.}}{\leq}2|\mathbb{T}|\dfrac{A}{At+1}.

Taking the supremum w.r.t. tt we conclude the proof. ∎

5 Passage to the limit ε0\varepsilon\to 0

The purpose of this section is to prove Theorem 2.2. We will show that when ε0\varepsilon\to 0 the sequence of solutions ρε,uε\rho_{\varepsilon},u_{\varepsilon} gives rise to a sequence ρε,mε,πε\rho_{\varepsilon},m_{\varepsilon},\pi_{\varepsilon} converging to ρ,m,π\rho,m,\pi distributional solution of (6c).

Proof of Theorem 2.2.

Thanks to the uniform bounds from the previous section, there exist ρ[0,1]\rho\in[0,1], uu, and π0\pi\geq 0 such that

ρερweakly-* inL((0,T)×𝕋),\displaystyle\rho_{\varepsilon}\rightharpoonup\rho\quad\text{weakly-* in}\quad L^{\infty}((0,T)\times\mathbb{T}),
uεuweakly-* inL((0,T)×𝕋),\displaystyle u_{\varepsilon}\rightharpoonup u\quad\text{weakly-* in}\quad L^{\infty}((0,T)\times\mathbb{T}),
πε(ρε)πweakly-* inL(0,T;H1(𝕋)),\displaystyle\pi_{\varepsilon}(\rho_{\varepsilon})\rightarrow\pi\quad\text{weakly-* in}\quad L^{\infty}(0,T;H^{1}(\mathbb{T})),

up to selection of a subsequence.
We can immediately justify that

(1ρε)πε(ρε)0strongly in Lq((0,T)×𝕋),q>1,\begin{split}(1-\rho_{\varepsilon})\pi_{\varepsilon}(\rho_{\varepsilon})\rightarrow 0\quad\text{strongly in }\leavevmode\nobreak\ L^{q}((0,T)\times\mathbb{T}),\leavevmode\nobreak\ q>1,\end{split} (80)

and that the approximate viscosity term converges to 0 strongly, i.e.

ρεφε(ρε)0strongly in L((0,T)×𝕋).\rho_{\varepsilon}\varphi_{\varepsilon}(\rho_{\varepsilon})\rightarrow 0\quad\text{strongly in }L^{\infty}((0,T)\times\mathbb{T}).

To pass to the limit in the nonlinear terms we first use the continuity and momentum equations of system (10b) to deduce that for any p<p<\infty we have

tρεLtWx1,p+t(ρεuε)LtWx1,2C,\begin{split}\|\partial_{t}\rho_{\varepsilon}\|_{L^{\infty}_{t}W^{-1,p}_{x}}+\|\partial_{t}(\rho_{\varepsilon}u_{\varepsilon})\|_{L^{\infty}_{t}W^{-1,2}_{x}}\leq C,\end{split} (81)

where to estimate the time derivative of momentum, we use that λε(ρε)πε(ρε)1+1β\lambda_{\varepsilon}(\rho_{\varepsilon})\approx\pi_{\varepsilon}(\rho_{\varepsilon})^{1+\frac{1}{\beta}}, along with uniform estimates (LABEL:est_un_ep) and (58).
Combining the control of tρε\partial_{t}\rho_{\varepsilon} with the control of xπε(ρε)\partial_{x}\pi_{\varepsilon}(\rho_{\varepsilon}) we can apply the standard compensated compactness argument (see, Lemma 5.1 from [lions1996]) to justify that

(1ρε)πε(ρε)(1ρ)πin𝒟,(1-\rho_{\varepsilon})\pi_{\varepsilon}(\rho_{\varepsilon})\rightharpoonup(1-\rho)\pi\quad\text{in}\leavevmode\nobreak\ \mathcal{D}^{\prime},

and so, from (80), we deduce that (1ρ)π=0(1-\rho)\pi=0 a.e. in (0,T)×𝕋(0,T)\times\mathbb{T} with 1ρ01-\rho\geq 0, π0\pi\geq 0.

Similarly, combining the control of gradient of velocity (79) with the uniform estimates for the time derivatives (81) we can justify that

ρεuερuandρεuε2ρu2\begin{split}\rho_{\varepsilon}u_{\varepsilon}\to\rho u\quad\mbox{and}\qquad\rho_{\varepsilon}u_{\varepsilon}^{2}\to\rho u^{2}\end{split} (82)

in the sense of distributions.

Finally, we can use the equation for tπε(ρε)\partial_{t}\pi_{\varepsilon}(\rho_{\varepsilon}) (which is of the form (61)) to deduce that

txπε(ρε)LtWx1,1,\begin{split}\partial_{t}\partial_{x}\pi_{\varepsilon}(\rho_{\varepsilon})\in L^{\infty}_{t}W^{-1,1}_{x},\end{split} (83)

so, repeating the previous argument we can justify that also

uεπε(ρε)uπ\begin{split}u_{\varepsilon}\pi_{\varepsilon}(\rho_{\varepsilon})\to u\pi\end{split} (84)

in the sense of the distributions.

The last part is to verify the entropy conditions for the limiting system. First, it is clear that the one-sided Lipschitz estimate holds on the limit velocity uu:

xu1tin𝒟.\partial_{x}u\leq\frac{1}{t}\qquad\text{in}\leavevmode\nobreak\ \mathcal{D}^{\prime}.

Next, we write that for fixed ε\varepsilon, smooth function SS:

t(ρεS(uε))+x(ρεuεS(uε))x(S(uε)λε(ρε)xuε)\displaystyle\partial_{t}(\rho_{\varepsilon}S(u_{\varepsilon}))+\partial_{x}(\rho_{\varepsilon}u_{\varepsilon}S(u_{\varepsilon}))-\partial_{x}\big{(}S^{\prime}(u_{\varepsilon})\lambda_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon}\big{)}
=S′′(uε)λε(ρε)(xuε)2,\displaystyle=S^{\prime\prime}(u_{\varepsilon})\lambda_{\varepsilon}(\rho_{\varepsilon})(\partial_{x}u_{\varepsilon})^{2},

hence, for convex function SS:

t(ρεS(uε))+x(ρεuεS(uε))x(S(uε)λε(ρε)xuε)0.\partial_{t}(\rho_{\varepsilon}S(u_{\varepsilon}))+\partial_{x}(\rho_{\varepsilon}u_{\varepsilon}S(u_{\varepsilon}))-\partial_{x}\big{(}S^{\prime}(u_{\varepsilon})\lambda_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon}\big{)}\leq 0.

As previously, we pass to the limit in the sense of distribution in the first two nonlinear terms thanks to compensated compactness arguments. Next, since (λε(ρε)xuε)ε(\lambda_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon})_{\varepsilon} is bounded in Lt,x1L^{1}_{t,x} it converges to some Λ((0,T)×𝕋)\Lambda\in\mathcal{M}((0,T)\times\mathbb{T}). Recall that (uε)ε(u_{\varepsilon})_{\varepsilon} is bounded in Lt,xL^{\infty}_{t,x}, so (S(uε)λε(ρε)xuε)ε(S^{\prime}(u_{\varepsilon})\lambda_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon})_{\varepsilon} is bounded in Lt,x1L^{1}_{t,x} and converges to some ΛS((0,T)×𝕋)\Lambda_{S}\in\mathcal{M}((0,T)\times\mathbb{T}), where |ΛS|LipS|Λ||\Lambda_{S}|\leq\mathrm{Lip}_{S}|\Lambda|. Finally, we have proven that:

t(ρS(u))+x(ρuS(u))xΛS0.\partial_{t}(\rho S(u))+\partial_{x}(\rho uS(u))-\partial_{x}\Lambda_{S}\leq 0.

The proof of the Theorem 2.2 is therefore complete. ∎


6 Appendix

In order to proof the Proposition 3.11, we first state the following lemma.

Lemma 6.1.

Let ε>0\varepsilon>0 be fixed and (ρε,uε)(\rho_{\varepsilon},u_{\varepsilon}) be a regular solution of system (10b) with

E2,ε=E1,ε+x2u0,εLx2+x2ρ0,εLx2.E_{2,\varepsilon}=E_{1,\varepsilon}+\|\partial^{2}_{x}u_{0,\varepsilon}\|_{L^{2}_{x}}+\|\partial^{2}_{x}\rho_{0,\varepsilon}\|_{L^{2}_{x}}.

Then we have

x2ρεLtLx2+xVεLtLx2+x2VεLt2Lx2+x2uεLtLx2+x3uεLt2Lx2\displaystyle\|\partial^{2}_{x}\rho_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}+\|\partial_{x}V_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}+\|\partial^{2}_{x}V_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}+\|\partial^{2}_{x}u_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}+\|\partial^{3}_{x}u_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}
C(ε,E2,ε,ρ¯ε,ρ¯ε,T).\displaystyle\leq C(\varepsilon,E_{2,\varepsilon},\underline{\rho}_{\varepsilon},\overline{\rho}_{\varepsilon},T). (85)
Proof.

Here, we recall that our estimate of xρε\partial_{x}\rho_{\varepsilon} in LL2L^{\infty}L^{2} :

xρεLtLx2=(α12)11ερε32αx(ερεα12)LtLx21εC(ρ¯ε,α,T,E0,E1).\displaystyle\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}=\left(\alpha-\frac{1}{2}\right)^{-1}\frac{1}{\varepsilon}\left\|\rho_{\varepsilon}^{\frac{3}{2}-\alpha}\partial_{x}(\varepsilon\rho_{\varepsilon}^{\alpha-\frac{1}{2}})\right\|_{L^{\infty}_{t}L^{2}_{x}}\leq\frac{1}{\varepsilon}C(\bar{\rho}_{\varepsilon},\alpha,T,E_{0},E_{1}).

We consider the case that corresponds to m=2m=2 in (50). Therefore, we have

12ddtx2ρεLx22\displaystyle\frac{1}{2}\frac{d}{dt}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2} C(x2uεLx2x2ρεLx22+x2ρεLx2x3uεLx2).\displaystyle\leq C\left(\|\partial_{x}^{2}u_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{3}u_{\varepsilon}\|_{L^{2}_{x}}\right).

On the other hand, using integration by parts for l=1l=1 in (51) gives us

12ddt|xVε|2+λε(ρε)ρε|x2Vε|2\displaystyle\frac{1}{2}\frac{d}{dt}\int|\partial_{x}V_{\varepsilon}|^{2}+\int\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}|\partial_{x}^{2}V_{\varepsilon}|^{2}
=(uε+λε(ρε)ρε2xρε)xVεx2Vε+(λε(ρε)ρε+λε(ρε))(λε(ρε))2Vε2x2Vε.\displaystyle=\int\left(u_{\varepsilon}+\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}^{2}}\partial_{x}\rho_{\varepsilon}\right)\partial_{x}V_{\varepsilon}\partial_{x}^{2}V_{\varepsilon}+\int\dfrac{\big{(}\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})\rho_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}}{\big{(}\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}^{2}}V_{\varepsilon}^{2}\partial_{x}^{2}V_{\varepsilon}.

From the observation

λε(ρε)ρε=ρεpε(ρε)+ερα1ε\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}=\rho_{\varepsilon}p^{\prime}_{\varepsilon}(\rho_{\varepsilon})+\varepsilon\rho^{\alpha-1}\geq\varepsilon

we deduce that

12ddt|xVε|2+ε|x2Vε|2\displaystyle\frac{1}{2}\frac{d}{dt}\int|\partial_{x}V_{\varepsilon}|^{2}+\varepsilon\int|\partial_{x}^{2}V_{\varepsilon}|^{2}
uεxVεx2Vε+λε(ρε)ρε2xρεxVεx2Vε+(λε(ρε)ρε+λε(ρε))(λε(ρε))2Vε2x2Vε:=i=13Ji\displaystyle\leq\int u_{\varepsilon}\partial_{x}V_{\varepsilon}\partial_{x}^{2}V_{\varepsilon}+\int\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}^{2}}\partial_{x}\rho_{\varepsilon}\partial_{x}V_{\varepsilon}\partial_{x}^{2}V_{\varepsilon}+\int\dfrac{\big{(}\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})\rho_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}}{\big{(}\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}^{2}}V_{\varepsilon}^{2}\partial_{x}^{2}V_{\varepsilon}\;\;:=\sum_{i=1}^{3}J_{i}

Control for J1J_{1}: We proceed similarly as in the case of I2I_{2} of Lemma 3.8. We have

|J1|uεLxxVεLx2x2VεLx2ε16x2VεLx22+4ϵuεLx2xVεLx22.\displaystyle|J_{1}|\leq\|u_{\varepsilon}\|_{L^{\infty}_{x}}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}\leq\dfrac{\varepsilon}{16}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+\frac{4}{\epsilon}\|u_{\varepsilon}\|_{L^{\infty}_{x}}^{2}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}.

We recall

uεHx12ρ¯ε1/2ρεuεLx22+ε2ρ¯ε2αVεLx22\displaystyle\|u_{\varepsilon}\|_{H^{1}_{x}}^{2}\leq\underline{\rho}_{\varepsilon}^{-1/2}\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\varepsilon^{-2}\underline{\rho}_{\varepsilon}^{-2\alpha}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}

to conclude

|J1|ε16x2VεLx22+4(ρ¯ε1/2ε1ρεuεLx22+ε3ρ¯ε2αVεLx22)xVεLx22.\displaystyle|J_{1}|\leq\dfrac{\varepsilon}{16}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+4\left(\underline{\rho}_{\varepsilon}^{-1/2}\varepsilon^{-1}\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\varepsilon^{-3}\underline{\rho}_{\varepsilon}^{-2\alpha}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\right)\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}. (86)

Control for J2J_{2}: For this term, we observe

|J2|C(ρ¯ε,ρ¯ε)xρεLxxVεLx2x2VεLx2ε16x2VεLx22+C(ε,ρ¯ε,ρ¯ε)xρεLx2xVεLx22.\displaystyle|J_{2}|\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{x}}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}\leq\dfrac{\varepsilon}{16}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{x}}^{2}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}.

Moreover, we have

|J2|ε16x2VεLx22+C(ε,ρ¯ε,ρ¯ε)x2ρεLx22xVεLx22.\displaystyle|J_{2}|\leq\dfrac{\varepsilon}{16}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}. (87)

Control for J3J_{3}: The bound of (λε(ρε)ρε+λε(ρε))(λε(ρε))2Lx\left\|\dfrac{\big{(}\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})\rho_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}}{\big{(}\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}^{2}}\right\|_{L^{\infty}_{x}} implies

|J3|ε16x2VεLx22+C(ε,ρ¯ε,ρ¯ε)|Vε|4\displaystyle|J_{3}|\leq\dfrac{\varepsilon}{16}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\int|V_{\varepsilon}|^{4}

Moreover, using Nash inequality we obtain

VεLx44C(VεLx23xVεLx2+VεLx24).\displaystyle\|V_{\varepsilon}\|_{L^{4}_{x}}^{4}\leq C\left(\|V_{\varepsilon}\|_{L^{2}_{x}}^{3}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}+\|V_{\varepsilon}\|_{L^{2}_{x}}^{4}\right).

Thus we deduce

|J3|ε16x2VεLx22+C(ε,ρ¯ε,ρ¯ε)(VεLx23xVεLx2+VεLx24).\displaystyle|J_{3}|\leq\dfrac{\varepsilon}{16}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\|V_{\varepsilon}\|_{L^{2}_{x}}^{3}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}+\|V_{\varepsilon}\|_{L^{2}_{x}}^{4}\right). (88)

Therefore, combining (86), (87) and (88), it yields

12ddt|xVε|2+1316ε|x2Vε|24(ρ¯ε1/2ε1ρεuεLx22+ε3ρ¯ε2αVεLx22)xVεLx22+C(ε,ρ¯ε,ρ¯ε)x2ρεLx22xVεLx22+C(ε,ρ¯ε,ρ¯ε)(VεLx23xVεLx2+VεLx24).\displaystyle\begin{split}&\frac{1}{2}\frac{d}{dt}\int|\partial_{x}V_{\varepsilon}|^{2}+\frac{13}{16}\varepsilon\int|\partial_{x}^{2}V_{\varepsilon}|^{2}\\ &\leq 4\left(\underline{\rho}_{\varepsilon}^{-1/2}\varepsilon^{-1}\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\varepsilon^{-3}\underline{\rho}_{\varepsilon}^{-2\alpha}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\right)\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}\\ &+C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\|V_{\varepsilon}\|_{L^{2}_{x}}^{3}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}+\|V_{\varepsilon}\|_{L^{2}_{x}}^{4}\right).\end{split} (89)

Now we want to derive an expresiion of x3uε\partial_{x}^{3}u_{\varepsilon} in terms of VεV_{\varepsilon} and its derivatives. Clearly, a direct calculation gives us

x2Vε=2x(λε(ρε))x2uε+x2(λε(ρε))xuε+λε(ρε)x3uε.\displaystyle\partial_{x}^{2}V_{\varepsilon}=2\partial_{x}(\lambda_{\varepsilon}(\rho_{\varepsilon}))\partial_{x}^{2}u_{\varepsilon}+\partial_{x}^{2}(\lambda_{\varepsilon}(\rho_{\varepsilon}))\partial_{x}u_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\partial_{x}^{3}u_{\varepsilon}.

Now using relation between xVε\partial_{x}V_{\varepsilon} and xuε\partial_{x}u_{\varepsilon}, we have

x3uε\displaystyle\partial_{x}^{3}u_{\varepsilon} =1λε(ρε)x2Vε2xλε(ρε)λε(ρε)xVε+2(xλε(ρε)λε(ρε))2Vε(λε(ρε)|xρε|2+λε′′(ρε)x2ρελε(ρε)2)Vε\displaystyle=\dfrac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\partial_{x}^{2}V_{\varepsilon}-\dfrac{2\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\partial_{x}V_{\varepsilon}+2\left(\dfrac{\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right)^{2}V_{\varepsilon}-\left(\dfrac{\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})|\partial_{x}\rho_{\varepsilon}|^{2}+\lambda^{\prime\prime}_{\varepsilon}(\rho_{\varepsilon})\partial_{x}^{2}\rho_{\varepsilon}}{\lambda_{\varepsilon}(\rho_{\varepsilon})^{2}}\right)V_{\varepsilon}
:=i=14Bi.\displaystyle:=\sum_{i=1}^{4}B_{i}.

Considering A~=xλε(ρε)λε(ρε)\tilde{A}=\dfrac{\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})}, we observe that

A~LxC(ρ¯ε,ρ¯ε)xρεLxC(ρ¯ε,ρ¯ε)x2ρεLx2.\displaystyle\|\tilde{A}\|_{L^{\infty}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}.

Using the above estimate, we obtain the following bounds:

B1Lx21λε(ρε)Lxx2VεLx2C(ρ¯ε,ρ¯ε)x2VεLx2;\displaystyle\|B_{1}\|_{L^{2}_{x}}\leq\left\|\frac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right\|_{L^{\infty}_{x}}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}};
B2Lx2CA~LxxVεLx2C(ρ¯ε,ρ¯ε)x2ρεLx2xVεLx2;\displaystyle\|B_{2}\|_{L^{2}_{x}}\leq C\|\tilde{A}\|_{L^{\infty}_{x}}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}};
B3Lx2CA~LxA~Lx2VεLxC(ρ¯ε,ρ¯ε)xρεLxxρεLx2VεHx1\displaystyle\|B_{3}\|_{L^{2}_{x}}\leq C\|\tilde{A}\|_{L^{\infty}_{x}}\|\tilde{A}\|_{L^{2}_{x}}\|V_{\varepsilon}\|_{L^{\infty}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{x}}\|\partial_{x}\rho_{\varepsilon}\|_{L^{2}_{x}}\|V_{\varepsilon}\|_{H^{1}_{x}}
C(ρ¯ε,ρ¯ε)x2ρεLx2xρεLx2VεHx1;\displaystyle\quad\quad\quad\;\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}\rho_{\varepsilon}\|_{L^{2}_{x}}\|V_{\varepsilon}\|_{H^{1}_{x}};
B4Lx2C(ρ¯ε,ρ¯ε)xρεLxxρεLx2VεHx1+C(ρ¯ε,ρ¯ε)x2ρεLx2VεHx1\displaystyle\|B_{4}\|_{L^{2}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{x}}\|\partial_{x}\rho_{\varepsilon}\|_{L^{2}_{x}}\|V_{\varepsilon}\|_{H^{1}_{x}}+C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}\|V_{\varepsilon}\|_{H^{1}_{x}}
C(ρ¯ε,ρ¯ε)(x2ρεLx2xρεLx2VεHx1+x2ρεLx2VεHx1);\displaystyle\quad\quad\quad\;\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}\rho_{\varepsilon}\|_{L^{2}_{x}}\|V_{\varepsilon}\|_{H^{1}_{x}}+\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}\|V_{\varepsilon}\|_{H^{1}_{x}}\right);

Therefore, we have

x3uεLx2C(ρ¯ε,ρ¯ε)(x2VεLx2+(xρεLx2VεHx1+VεHx1)x2ρεLx2)\displaystyle\begin{split}\|\partial_{x}^{3}u_{\varepsilon}\|_{L^{2}_{x}}\leq&C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}+\left(\|\partial_{x}\rho_{\varepsilon}\|_{L^{2}_{x}}\|V_{\varepsilon}\|_{H^{1}_{x}}+\|V_{\varepsilon}\|_{H^{1}_{x}}\right)\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}\right)\\ \end{split} (90)

We recall

12ddtx2ρεLx22\displaystyle\frac{1}{2}\frac{d}{dt}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2} C(x2uεLx2x2ρεLx22+x2ρεLx2x3uεLx2)\displaystyle\leq C\left(\|\partial_{x}^{2}u_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{3}u_{\varepsilon}\|_{L^{2}_{x}}\right)

and substitute (90) in the estimate for x2ρε\partial_{x}^{2}\rho_{\varepsilon}, we get

12ddtx2ρεLx22\displaystyle\frac{1}{2}\frac{d}{dt}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2} C(ρ¯ε,ρ¯ε)x2VεLx2x2ρεLx2\displaystyle\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}
+C(ρ¯ε,ρ¯ε)(x2uεLx2+VεHx1+xρεLx2VεHx1)x2ρεLx22\displaystyle+C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\|\partial_{x}^{2}u_{\varepsilon}\|_{L^{2}_{x}}+\|V_{\varepsilon}\|_{H^{1}_{x}}+\|\partial_{x}\rho_{\varepsilon}\|_{L^{2}_{x}}\|V_{\varepsilon}\|_{H^{1}_{x}}\right)\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}

Now we add the above estimate with (89) to obtain

12ddtx2ρεLx22+12ddtxVεLx22+1316εx2VεLx22\displaystyle\frac{1}{2}\frac{d}{dt}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}+\frac{1}{2}\frac{d}{dt}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+\frac{13}{16}\varepsilon\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}
C(ρ¯ε,ρ¯ε)x2VεLx2x2ρεLx2\displaystyle\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}
+C(ρ¯ε,ρ¯ε)(x2uεLx2+VεHx1+xρεLx2VεHx1+xVεLx22)x2ρεLx22\displaystyle+C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\|\partial_{x}^{2}u_{\varepsilon}\|_{L^{2}_{x}}+\|V_{\varepsilon}\|_{H^{1}_{x}}+\|\partial_{x}\rho_{\varepsilon}\|_{L^{2}_{x}}\|V_{\varepsilon}\|_{H^{1}_{x}}+\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}\right)\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}
+4(ρ¯ε1/2ε1ρεuεLx22+ε3ρ¯ε2αVεLx22)xVεLx22\displaystyle+4\left(\underline{\rho}_{\varepsilon}^{-1/2}\varepsilon^{-1}\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\varepsilon^{-3}\underline{\rho}_{\varepsilon}^{-2\alpha}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\right)\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}
+C(ε,ρ¯ε,ρ¯ε)(VεLx23xVεLx2+VεLx24).\displaystyle+C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\|V_{\varepsilon}\|_{L^{2}_{x}}^{3}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}+\|V_{\varepsilon}\|_{L^{2}_{x}}^{4}\right).

At first we use Young’s inequality to deduce

x2VεLx2x2ρεLx2ϵ16x2VεLx22+4ϵx2ρεLx22.\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}\leq\frac{\epsilon}{16}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+\frac{4}{\epsilon}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}.

Similarly, adjusting a few more terms we have the following inequality:

12ddtx2ρεLx22+12ddtxVεLx22+34εx2VεLx22F1(t)x2ρεLx22+F2(t)xVεLx22+G(t)\displaystyle\frac{1}{2}\frac{d}{dt}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}+\frac{1}{2}\frac{d}{dt}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+\frac{3}{4}\varepsilon\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}\leq F_{1}(t)\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}+F_{2}(t)\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+G(t) (91)

where

F1(t)=C(ε,ρ¯ε,ρ¯ε)(x2uεLx2+VεHx1+xρεLx2VεHx1+xVεLx22+1)\displaystyle F_{1}(t)=C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\|\partial_{x}^{2}u_{\varepsilon}\|_{L^{2}_{x}}+\|V_{\varepsilon}\|_{H^{1}_{x}}+\|\partial_{x}\rho_{\varepsilon}\|_{L^{2}_{x}}\|V_{\varepsilon}\|_{H^{1}_{x}}+\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+1\right)
F2(t)=4(ρ¯ε1/2ε1ρεuεLx22+ε3ρ¯ε2αVεLx22)\displaystyle F_{2}(t)=4\left(\underline{\rho}_{\varepsilon}^{-1/2}\varepsilon^{-1}\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\varepsilon^{-3}\underline{\rho}_{\varepsilon}^{-2\alpha}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\right)

and

G(t)=C(ε,ρ¯ε,ρ¯ε)(VεLx23xVεLx2+VεLx24).\displaystyle G(t)=C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\|V_{\varepsilon}\|_{L^{2}_{x}}^{3}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}+\|V_{\varepsilon}\|_{L^{2}_{x}}^{4}\right).

From our earlier estimates time interval (0,T)(0,T), we have

F1Lt1C(ε,ρ¯ε,ρ¯ε,T)(x2uεLt2Lx2+VεLt2Hx1+xρεLxLx2VεLt2Hx1+xVεLt2Lx22+T);\displaystyle\|F_{1}\|_{L^{1}_{t}}\leq C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon},T)\left(\|\partial_{x}^{2}u_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}+\|V_{\varepsilon}\|_{L^{2}_{t}H^{1}_{x}}+\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{x}L^{2}_{x}}\|V_{\varepsilon}\|_{L^{2}_{t}H^{1}_{x}}+\|\partial_{x}V_{\varepsilon}\|_{L_{t}^{2}L^{2}_{x}}^{2}+T\right);
F2Lt1C(ε,ρ¯ε,ρ¯ε,T)(ρ¯ε1/2ε1ρεuεLtLx22+ε3ρ¯ε2αVεLtLx22);\displaystyle\|F_{2}\|_{L^{1}_{t}}\leq C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon},T)\left(\underline{\rho}_{\varepsilon}^{-1/2}\varepsilon^{-1}\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}^{2}+\varepsilon^{-3}\underline{\rho}_{\varepsilon}^{-2\alpha}\|V_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}^{2}\right);
GLt1C(ε,ρ¯ε,ρ¯ε,T)(VεLtLx23xVεLt2Lx2+VεLtLx24).\displaystyle\|G\|_{L^{1}_{t}}\leq C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon},T)\left(\|V_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}^{3}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}+\|V_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}^{4}\right).

At this point, we observe that for, it holds

F1Lt1+F2Lt1+GLt1C(ε,ρ¯ε,ρ¯ε,E1,T).\displaystyle\|F_{1}\|_{L^{1}_{t}}+\|F_{2}\|_{L^{1}_{t}}+\|G\|_{L^{1}_{t}}\leq C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon},E_{1},T).

Integrating the equation (91) with respect to time along with the additional hypothesis

x2ρ0,εLx2+xV0,εLx2<,\|\partial_{x}^{2}\rho_{0,\varepsilon}\|_{L^{2}_{x}}+\|\partial_{x}V_{0,\varepsilon}\|_{L^{2}_{x}}<\infty,

and Grönwall’s inequality, we conclude

x2ρεLL2+xVεLL22+ε2x2VεL2L22\displaystyle\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{\infty}L^{2}}+\|\partial_{x}V_{\varepsilon}\|_{L^{\infty}L^{2}}^{2}+\dfrac{\varepsilon}{2}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}L^{2}}^{2}
C(ε,E2,ρ¯ε,T).\displaystyle\leq C(\varepsilon,{E_{2}},\underline{\rho}_{\varepsilon},T).

LL2L^{\infty}L^{2} estimate for x2uε\partial_{x}^{2}u_{\varepsilon}:

x2uεLL2\displaystyle\|\partial^{2}_{x}u_{\varepsilon}\|_{L^{\infty}L^{2}} 1λε(ρε)Lt,x(xVεLL2+λε(ρε)Lt,x(x2ρεLL2+xρεLL2)xuεLL2)\displaystyle\leq\left\|\dfrac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right\|_{L^{\infty}_{t,x}}\Bigg{(}\|\partial_{x}V_{\varepsilon}\|_{L^{\infty}L^{2}}+\|\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})\|_{L^{\infty}_{t,x}}(\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{\infty}L^{2}}+\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}L^{2}})\|\partial_{x}u_{\varepsilon}\|_{L^{\infty}L^{2}}\Bigg{)}
C(ε,E2,ρ¯ε,T).\displaystyle\leq C(\varepsilon,{E_{2}},\underline{\rho}_{\varepsilon},T).

L2L2L^{2}L^{2} estimate for x3uε\partial_{x}^{3}u_{\varepsilon}: From the expression

x3uε\displaystyle\partial_{x}^{3}u_{\varepsilon} =1λε(ρε)x2Vε2xλε(ρε)λε(ρε)xVε+2(xλε(ρε)λε(ρε))2Vε(λε(ρε)|xρε|2+λε′′(ρε)x2ρελε(ρε)2)Vε\displaystyle=\dfrac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\partial_{x}^{2}V_{\varepsilon}-\dfrac{2\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\partial_{x}V_{\varepsilon}+2\left(\dfrac{\partial_{x}\lambda_{\varepsilon}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right)^{2}V_{\varepsilon}-\left(\dfrac{\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})|\partial_{x}\rho_{\varepsilon}|^{2}+\lambda^{\prime\prime}_{\varepsilon}(\rho_{\varepsilon})\partial_{x}^{2}\rho_{\varepsilon}}{\lambda_{\varepsilon}(\rho_{\varepsilon})^{2}}\right)V_{\varepsilon}

and estimate (90), we get

x3uεLt2Lx2\displaystyle\|\partial_{x}^{3}u_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}\leq C(ρ¯ε,ρ¯ε)(x2VεLt2Lx2+(xρεLtLx212VεLtHx1)43+x2ρεLt2Lx22+VεHx1x2ρεLx2)\displaystyle C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\bigg{(}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}+\left(\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}^{\frac{1}{2}}\|V_{\varepsilon}\|_{L^{\infty}_{t}H^{1}_{x}}\right)^{\frac{4}{3}}+\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{t}L^{2}_{x}}^{2}+\|V_{\varepsilon}\|_{H^{1}_{x}}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}\bigg{)}
+C(ρ¯ε,ρ¯ε)(xρεLtLx2+xρεLtLx22)VεLtHx1.\displaystyle+C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})(\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}+\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}}^{2})\|V_{\varepsilon}\|_{L^{\infty}_{t}H^{1}_{x}}.

Therefore, we prove our desired Lemma. ∎

Proof of Proposition 3.11.

In order to prove the proposition, at first we notice that this corresponds to the case m=3m=3 and l=2l=2 in (52) and (51), respectively.

For m=3m=3 in (50) we obtain

12ddtx3ρεLx22C(x3uεLx2x3ρεLx22+x3ρεLx2x4uεLx2)\displaystyle\begin{split}\frac{1}{2}\frac{d}{dt}\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}&\leq C\left(\|\partial_{x}^{3}u_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{4}u_{\varepsilon}\|_{L^{2}_{x}}\right)\end{split} (92)

Similarly, l=2l=2 gives us

12ddt|x2Vε|2=x2((uε+λε(ρε)ρε2xρε)xVε)x2Vε+x2(λε(ρε)ρεx2Vε)x2Vεx2((λε(ρε)ρε+λε(ρε))(λε(ρε))2Vε2)x2Vε.\displaystyle\begin{split}\frac{1}{2}\frac{d}{dt}\int|\partial_{x}^{2}V_{\varepsilon}|^{2}=&-\int\partial_{x}^{2}\left(\left(u_{\varepsilon}+\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}^{2}}\partial_{x}\rho_{\varepsilon}\right)\partial_{x}V_{\varepsilon}\right)\partial_{x}^{2}V_{\varepsilon}\\ &+\int\partial_{x}^{2}\left(\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\partial^{2}_{x}V_{\varepsilon}\right)\partial_{x}^{2}V_{\varepsilon}\\ &-\int\partial_{x}^{2}\left(\dfrac{\big{(}\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})\rho_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}}{\big{(}\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}^{2}}V_{\varepsilon}^{2}\right)\partial_{x}^{2}V_{\varepsilon}.\end{split} (93)

Application of integration by parts for the terms in the right hand side of the above equation followed by an adjustment of terms leads us to get

12ddt|x2Vε|2+λε(ρε)ρε|x3Vε|2\displaystyle\frac{1}{2}\frac{d}{dt}\int|\partial_{x}^{2}V_{\varepsilon}|^{2}+\int\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}|\partial_{x}^{3}V_{\varepsilon}|^{2}
=uεx2Vεx3Vε+xuεxVεx3Vε+λε(ρε)ρε2x2ρεxVεx3Vε\displaystyle=\int u_{\varepsilon}\partial_{x}^{2}V_{\varepsilon}\partial_{x}^{3}V_{\varepsilon}+\int\partial_{x}u_{\varepsilon}\partial_{x}V_{\varepsilon}\partial_{x}^{3}V_{\varepsilon}+\int\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}^{2}}\partial_{x}^{2}\rho_{\varepsilon}\partial_{x}V_{\varepsilon}\partial_{x}^{3}V_{\varepsilon}
+(ρελε(ρε)λε(ρε)λε2)|xρε|2xVεx3Vε+x((λε(ρε)ρε+λε(ρε))(λε(ρε))2)Vε2x3Vε\displaystyle+\int\left(\dfrac{\rho_{\varepsilon}\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})-\lambda_{\varepsilon}(\rho_{\varepsilon})}{\lambda_{\varepsilon}^{2}}\right)|\partial_{x}\rho_{\varepsilon}|^{2}\partial_{x}V_{\varepsilon}\partial_{x}^{3}V_{\varepsilon}+\int\partial_{x}\left(\dfrac{\big{(}\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})\rho_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}}{\big{(}\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}^{2}}\right)V_{\varepsilon}^{2}\partial_{x}^{3}V_{\varepsilon}
+2((λε(ρε)ρε+λε(ρε))(λε(ρε))2)VεxVεx3Vε:=i=16Ki.\displaystyle+2\int\left(\dfrac{\big{(}\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})\rho_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}}{\big{(}\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}^{2}}\right)V_{\varepsilon}\partial_{x}V_{\varepsilon}\partial_{x}^{3}V_{\varepsilon}:=\sum_{i=1}^{6}K_{i}.

Recalling the inequality λε(ρε)ρεε\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}\geq\varepsilon, we conclude

λε(ρε)ρε|x3Vε|2ε|x3Vε|2.\int\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}}|\partial_{x}^{3}V_{\varepsilon}|^{2}\geq\varepsilon\int|\partial_{x}^{3}V_{\varepsilon}|^{2}.

Control for K1K_{1} : Here we have

|K1|uεLxx2VεLx2x3VεLx2ε16x3VεLx22+4ϵuεLx2x2VεLx22.\displaystyle|K_{1}|\leq\|u_{\varepsilon}\|_{L^{\infty}_{x}}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}\leq\dfrac{\varepsilon}{16}\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+\frac{4}{\epsilon}\|u_{\varepsilon}\|_{L^{\infty}_{x}}^{2}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}.

Proceeding similarly as in (86), we obtain

|K1|ε16x3VεLx22+4(ρ¯ε1/2ε1ρεuεLx22+ε3ρ¯ε2αVεLx22)x2VεLx22.\displaystyle|K_{1}|\leq\dfrac{\varepsilon}{16}\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+4\left(\underline{\rho}_{\varepsilon}^{-1/2}\varepsilon^{-1}\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\varepsilon^{-3}\underline{\rho}_{\varepsilon}^{-2\alpha}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\right)\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}. (94)

Control for K2K_{2} : Also, for this term we use Young’s inequality and the inequality (53) to get

|K2|xuεLx2xVεLxx3VεLx2ε16x3VεLx22+8ϵxuεLx22x2VεLx22.\displaystyle|K_{2}|\leq\|\partial_{x}u_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}V_{\varepsilon}\|_{L^{\infty}_{x}}\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}\leq\dfrac{\varepsilon}{16}\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+\frac{8}{\epsilon}\|\partial_{x}u_{\varepsilon}\|_{L^{2}_{x}}^{2}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}.

Hence, we have

|K2|ε16x3VεLx22+C(ε,ρ¯ε,ρ¯ε)(xuεLx22x2VεLx22+xuεLx22xVεLx22).\displaystyle|K_{2}|\leq\dfrac{\varepsilon}{16}\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\|\partial_{x}u_{\varepsilon}\|_{L^{2}_{x}}^{2}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|\partial_{x}u_{\varepsilon}\|_{L^{2}_{x}}^{2}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}\right). (95)

Control for K3K_{3} : We note that

|K3|\displaystyle|K_{3}| λε(ρε)ρε2Ltx2ρεLxxVεLx2x3VεLx2ε16x3VεLx22+C(ε,ρ¯ε,ρ¯ε)xVεLx22x3ρεLx22.\displaystyle\leq\left\|\dfrac{\lambda_{\varepsilon}(\rho_{\varepsilon})}{\rho_{\varepsilon}^{2}}\right\|_{L^{\infty}_{t}}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{\infty}_{x}}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}\leq\dfrac{\varepsilon}{16}\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}. (96)

Control for K4K_{4} : We start with the following estimate:

|K4|ρελε(ρε)λε(ρε)λε2LxxρεLx2xVεLx2x3VεLx2.\displaystyle|K_{4}|\leq\left\|\dfrac{\rho_{\varepsilon}\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})-\lambda_{\varepsilon}(\rho_{\varepsilon})}{\lambda_{\varepsilon}^{2}}\right\|_{L^{\infty}_{x}}\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{x}}^{2}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}.

Youngs inequality gives us

|K4|ε16x3VεLx22+C(ε,ρ¯ε,ρ¯ε)xVεLx22x2ρεLx24.\displaystyle|K_{4}|\leq\dfrac{\varepsilon}{16}\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{4}. (97)

Control for K5K_{5} : A direct calculation gives us the following identity

x((λε(ρε)ρε+λε(ρε))(λε(ρε))2)\displaystyle\partial_{x}\left(\dfrac{\big{(}\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})\rho_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}}{\big{(}\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}^{2}}\right) =[1λε(ρε)2(λε′′(ρε)ρε+2λε(ρε))λε(ρε)λε(ρε)3(λε(ρε)ρε+λε(ρε))]xρε.\displaystyle=\left[\frac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})^{2}}\left(\lambda_{\varepsilon}^{\prime\prime}(\rho_{\varepsilon})\rho_{\varepsilon}+2\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})\right)-\frac{\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})^{3}}\left(\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})\rho_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\right)\right]\partial_{x}\rho_{\varepsilon}.

As a consequence we have

[1λε(ρε)2(λε′′(ρε)ρε+2λε(ρε))λε(ρε)λε(ρε)3(λε(ρε)ρε+λε(ρε))]LxC(ρ¯ε,ρ¯ε).\displaystyle\left\|\left[\frac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})^{2}}\left(\lambda_{\varepsilon}^{\prime\prime}(\rho_{\varepsilon})\rho_{\varepsilon}+2\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})\right)-\frac{\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})^{3}}\left(\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})\rho_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\right)\right]\right\|_{L^{\infty}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon}).

hence, we obtain

|K5|C(ρ¯ε,ρ¯ε)xρεLx2VεLx2x3VεLx2.\displaystyle|K_{5}|\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}\rho_{\varepsilon}\|_{L^{2}_{x}}\|V_{\varepsilon}\|_{L^{\infty}_{x}}^{2}\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}.

Using the Young inequality we deduce

|K5|ε16x3VεLx22+C(ε,ρ¯ε,ρ¯ε)xρεLx22VεHx14.\displaystyle|K_{5}|\leq\dfrac{\varepsilon}{16}\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}\|V_{\varepsilon}\|_{H^{1}_{x}}^{4}. (98)

Control for K6K_{6} : Here we observe that

|K6|((λε(ρε)ρε+λε(ρε))(λε(ρε))2)LxxVεLx2VεLxx3VεLx2.\displaystyle|K_{6}|\leq\left\|\left(\dfrac{\big{(}\lambda^{\prime}_{\varepsilon}(\rho_{\varepsilon})\rho_{\varepsilon}+\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}}{\big{(}\lambda_{\varepsilon}(\rho_{\varepsilon})\big{)}^{2}}\right)\right\|_{L^{\infty}_{x}}\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}\|V_{\varepsilon}\|_{L^{\infty}_{x}}\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}.

This implies

|K6|ε16x3VεLx22+C(ε,ρ¯ε,ρ¯ε)VεHx14.\displaystyle|K_{6}|\leq\dfrac{\varepsilon}{16}\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|V_{\varepsilon}\|_{H^{1}_{x}}^{4}. (99)

Therefore, adding inequalities (94)-(99), we have

12ddt|x2Vε|2+58ε|x3Vε|2C(ε,ρ¯ε,ρ¯ε)xVεLx22x3ρεLx22+C(ε,ρ¯ε,ρ¯ε)((ρ¯ε1/2ε1ρεuεLx22+ε3ρ¯ε2αVεLx22)+xuεLx22)x2VεLx22+C(ε,ρ¯ε,ρ¯ε)(xVεLx22x2ρεLx24+(1+xρεLx22)VεHx14)\displaystyle\begin{split}&\frac{1}{2}\frac{d}{dt}\int|\partial_{x}^{2}V_{\varepsilon}|^{2}+\frac{5}{8}\varepsilon\int|\partial_{x}^{3}V_{\varepsilon}|^{2}\\ &\leq C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}\\ &+C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\left(\underline{\rho}_{\varepsilon}^{-1/2}\varepsilon^{-1}\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\varepsilon^{-3}\underline{\rho}_{\varepsilon}^{-2\alpha}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\right)+\|\partial_{x}u_{\varepsilon}\|_{L^{2}_{x}}^{2}\right)\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}\\ &+C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}^{2}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{4}+(1+\|\partial_{x}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2})\|V_{\varepsilon}\|_{H^{1}_{x}}^{4}\right)\end{split} (100)

Next, we would like to estimate x4uεLx2\|\partial_{x}^{4}u_{\varepsilon}\|_{L^{2}_{x}}. A direct computation leads to the following identity:

x4uε\displaystyle\partial_{x}^{4}u_{\varepsilon} =1λε(ρε)x3Vε(λε(ρε)λε(ρε)2+2λε(ρε)λε(ρε))xρεx2Vε\displaystyle=\frac{1}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\partial_{x}^{3}V_{\varepsilon}-\left(\dfrac{\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})^{2}}+\dfrac{2\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right)\partial_{x}\rho_{\varepsilon}\partial_{x}^{2}V_{\varepsilon}
((2λε(ρε)λε(ρε))(2λε(ρε)2λε(ρε)2λε(ρε)λε(ρε)2))|xρε|2xVε(2λε(ρε)λε(ρε)+λε(ρε)λε(ρε)2)x2ρεxVε\displaystyle-\left(\left(\dfrac{2\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})}\right)^{\prime}-\left(\dfrac{2\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})^{2}}{\lambda_{\varepsilon}(\rho_{\varepsilon})^{2}}-\dfrac{\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})^{2}}\right)\right)|\partial_{x}\rho_{\varepsilon}|^{2}\partial_{x}V_{\varepsilon}-\left(2\dfrac{\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})}+\dfrac{\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})^{2}}\right)\partial_{x}^{2}\rho_{\varepsilon}\partial_{x}V_{\varepsilon}
+(2(2λε(ρε)2λε(ρε)2λε(ρε)λε(ρε)2)(λε(ρε)λε(ρε)2))xρεx2ρεVε\displaystyle+\left(2\left(\dfrac{2\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})^{2}}{\lambda_{\varepsilon}(\rho_{\varepsilon})^{2}}-\dfrac{\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})^{2}}\right)-\left(\dfrac{\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})^{2}}\right)^{\prime}\right)\partial_{x}\rho_{\varepsilon}\partial_{x}^{2}\rho_{\varepsilon}V_{\varepsilon}
+(2λε(ρε)2λε(ρε)2λε(ρε)λε(ρε)2)(xρε)3Vε(λε(ρε)λε(ρε)2)x3ρεVε\displaystyle+\left(\dfrac{2\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})^{2}}{\lambda_{\varepsilon}(\rho_{\varepsilon})^{2}}-\dfrac{\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})^{2}}\right)^{\prime}(\partial_{x}\rho_{\varepsilon})^{3}V_{\varepsilon}-\left(\dfrac{\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon})}{\lambda_{\varepsilon}(\rho_{\varepsilon})^{2}}\right)\partial_{x}^{3}\rho_{\varepsilon}V_{\varepsilon}

We rewrite the abobe expression as

x4uε\displaystyle\partial_{x}^{4}u_{\varepsilon} =1(λε(ρε),λε(ρε),λε′′(ρε))x3Vε+2(λε(ρε),λε(ρε),λε′′(ρε))xρεx2Vε\displaystyle=\mathcal{R}_{1}(\lambda_{\varepsilon}(\rho_{\varepsilon}),\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon}),\lambda_{\varepsilon}^{\prime\prime}(\rho_{\varepsilon}))\partial_{x}^{3}V_{\varepsilon}+\mathcal{R}_{2}(\lambda_{\varepsilon}(\rho_{\varepsilon}),\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon}),\lambda_{\varepsilon}^{\prime\prime}(\rho_{\varepsilon}))\partial_{x}\rho_{\varepsilon}\partial_{x}^{2}V_{\varepsilon}
+3(λε(ρε),λε(ρε),λε′′(ρε))|xρε|2xVε+4(λε(ρε),λε(ρε),λε′′(ρε))x2ρεxVε\displaystyle+\mathcal{R}_{3}(\lambda_{\varepsilon}(\rho_{\varepsilon}),\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon}),\lambda_{\varepsilon}^{\prime\prime}(\rho_{\varepsilon}))|\partial_{x}\rho_{\varepsilon}|^{2}\partial_{x}V_{\varepsilon}+\mathcal{R}_{4}(\lambda_{\varepsilon}(\rho_{\varepsilon}),\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon}),\lambda_{\varepsilon}^{\prime\prime}(\rho_{\varepsilon}))\partial_{x}^{2}\rho_{\varepsilon}\partial_{x}V_{\varepsilon}
+5(λε(ρε),λε(ρε),λε′′(ρε))xρεx2ρεVε+6(λε(ρε),λε(ρε),λε′′(ρε))(xρε)3Vε\displaystyle+\mathcal{R}_{5}(\lambda_{\varepsilon}(\rho_{\varepsilon}),\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon}),\lambda_{\varepsilon}^{\prime\prime}(\rho_{\varepsilon}))\partial_{x}\rho_{\varepsilon}\partial_{x}^{2}\rho_{\varepsilon}V_{\varepsilon}+\mathcal{R}_{6}(\lambda_{\varepsilon}(\rho_{\varepsilon}),\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon}),\lambda_{\varepsilon}^{\prime\prime}(\rho_{\varepsilon}))(\partial_{x}\rho_{\varepsilon})^{3}V_{\varepsilon}
+7(λε(ρε),λε(ρε),λε′′(ρε))x3ρεVε:=i=17Di,\displaystyle+\mathcal{R}_{7}(\lambda_{\varepsilon}(\rho_{\varepsilon}),\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon}),\lambda_{\varepsilon}^{\prime\prime}(\rho_{\varepsilon}))\partial_{x}^{3}\rho_{\varepsilon}V_{\varepsilon}:=\sum_{i=1}^{7}D_{i},

where for each i=1,,7i=1,\cdots,7 we have

i(λε(ρε),λε(ρε),λε′′(ρε))LxC(ρ¯ε,ρ¯ε).\displaystyle\|\mathcal{R}_{i}(\lambda_{\varepsilon}(\rho_{\varepsilon}),\lambda_{\varepsilon}^{\prime}(\rho_{\varepsilon}),\lambda_{\varepsilon}^{\prime\prime}(\rho_{\varepsilon}))\|_{L^{\infty}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon}).

Therefore, we the following estimates:

D1Lx2C(ρ¯ε,ρ¯ε)x3VεLx2;\displaystyle\|D_{1}\|_{L^{2}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}};
D2Lx2C(ρ¯ε,ρ¯ε)x2VεLx2xρεLxC(ρ¯ε,ρ¯ε)x2VεLx2x2ρεLx2;\displaystyle\|D_{2}\|_{L^{2}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}};
D3Lx2C(ρ¯ε,ρ¯ε)xVεLx2xρεLx2C(ρ¯ε,ρ¯ε)xVεLx2x2ρεLx22;\displaystyle\|D_{3}\|_{L^{2}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{x}}^{2}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2};
D4Lx2C(ρ¯ε,ρ¯ε)xVεLx2x2ρεLxC(ρ¯ε,ρ¯ε)xVεLx2x3ρεLx2;\displaystyle\|D_{4}\|_{L^{2}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{\infty}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}V_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}};
D5Lx2C(ρ¯ε,ρ¯ε)VεLxxρεLxx2ρεLx2C(ρ¯ε,ρ¯ε)VεHx1x2ρεLx22;\displaystyle\|D_{5}\|_{L^{2}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|V_{\varepsilon}\|_{L^{\infty}_{x}}\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{x}}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|V_{\varepsilon}\|_{H^{1}_{x}}\|\partial_{x}^{2}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2};
D6Lx2C(ρ¯ε,ρ¯ε)VεLxxρεLxxρεLx22C(ρ¯ε,ρ¯ε)VεHx1xρεLx23;\displaystyle\|D_{6}\|_{L^{2}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|V_{\varepsilon}\|_{L^{\infty}_{x}}\|\partial_{x}\rho_{\varepsilon}\|_{L^{\infty}_{x}}\|\partial_{x}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|V_{\varepsilon}\|_{H^{1}_{x}}\|\partial_{x}\rho_{\varepsilon}\|_{L^{2}_{x}}^{3};
D7Lx2C(ρ¯ε,ρ¯ε)VεLxx3ρεLx2C(ρ¯ε,ρ¯ε)VεHx1x3ρεLx2;\displaystyle\|D_{7}\|_{L^{2}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|V_{\varepsilon}\|_{L^{\infty}_{x}}\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}}\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|V_{\varepsilon}\|_{H^{1}_{x}}\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}};

Now, going back to (92) and plugging the above estimate in it, we obtain

12ddtx3ρεLx22\displaystyle\frac{1}{2}\frac{d}{dt}\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2} C(ρ¯ε,ρ¯ε)x3VεLx2x3ρεLx2\displaystyle\leq C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}}
+C(ρ¯ε,ρ¯ε)(VεHx1+x3uεLx2)x3ρεLx22\displaystyle+C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\|V_{\varepsilon}\|_{H^{1}_{x}}+\|\partial_{x}^{3}u_{\varepsilon}\|_{L^{2}_{x}}\right)\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}
+C(ρ¯ε,ρ¯ε)(ρεHx2x3ρεLx2x2VεLx2)\displaystyle+C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\|\rho_{\varepsilon}\|_{H^{2}_{x}}\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}\right)
+C(ρ¯ε,ρ¯ε)(VεHx1(ρεHx2+ρεHx22+ρεHx23))x3ρεLx2.\displaystyle+C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\|V_{\varepsilon}\|_{H^{1}_{x}}\left(\|\rho_{\varepsilon}\|_{H^{2}_{x}}+\|\rho_{\varepsilon}\|_{H^{2}_{x}}^{2}+\|\rho_{\varepsilon}\|_{H^{2}_{x}}^{3}\right)\right)\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}}.

Now we add the above inequality with (100) and use the following inequality

C(ρ¯ε,ρ¯ε)x3VεLx2x3ρεLx2ε8x3VεLx22+C(ε,ρ¯ε,ρ¯ε)x3ρεLx22\displaystyle C(\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}}\leq\frac{\varepsilon}{8}\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}

to deduce

12ddtx3ρεLx22+12ddtx2VεLx22+12εx3VεLx22F~1(t)x3ρεLx22+F~2(t)x2VεLx22+G~(t)\displaystyle\frac{1}{2}\frac{d}{dt}\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}+\frac{1}{2}\frac{d}{dt}\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+\frac{1}{2}\varepsilon\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}_{x}}^{2}\leq\tilde{F}_{1}(t)\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{2}_{x}}^{2}+\tilde{F}_{2}(t)\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+\tilde{G}(t) (101)

where

F~1(t)=C(ε,ρ¯ε,ρ¯ε)(VεHx1+x3uεLx2+xuεLx2+x2VεLx22+VεHx12+ρεHx12+1),\displaystyle\tilde{F}_{1}(t)=C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\|V_{\varepsilon}\|_{H^{1}_{x}}+\|\partial_{x}^{3}u_{\varepsilon}\|_{L^{2}_{x}}+\|\partial_{x}u_{\varepsilon}\|_{L^{2}_{x}}+\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|V_{\varepsilon}\|_{H^{1}_{x}}^{2}+\|\rho_{\varepsilon}\|_{H^{1}_{x}}^{2}+1\right),
F~2(t)=C(ε,ρ¯ε,ρ¯ε)((ρ¯ε1/2ε1ρεuεLx22+ε3ρ¯ε2αVεLx22)+xuεLx22+ρεHx22)\displaystyle\tilde{F}_{2}(t)=C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\left(\underline{\rho}_{\varepsilon}^{-1/2}\varepsilon^{-1}\|\sqrt{\rho_{\varepsilon}}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\varepsilon^{-3}\underline{\rho}_{\varepsilon}^{-2\alpha}\|V_{\varepsilon}\|_{L^{2}_{x}}^{2}\right)+\|\partial_{x}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|\rho_{\varepsilon}\|_{H^{2}_{x}}^{2}\right)

and

G~(t)=C(ε,ρ¯ε,ρ¯ε)(x2uεLx22+x3uεLx22+(k=16ρεHx2k)(k=14VεHx1k)).\displaystyle\tilde{G}(t)=C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon})\left(\|\partial_{x}^{2}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|\partial_{x}^{3}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\left(\sum_{k=1}^{6}\|\rho_{\varepsilon}\|_{H^{2}_{x}}^{k}\right)\left(\sum_{k=1}^{4}\|V_{\varepsilon}\|_{H^{1}_{x}}^{k}\right)\right).

We add a few additional terms in the right hand side to write it in this general form. We note that, in interval (0,T)(0,T)

F~1Lt1+F~2Lt1+G~Lt1C(ε,ρ¯ε,ρ¯ε,E2,T).\displaystyle\|\tilde{F}_{1}\|_{L^{1}_{t}}+\|\tilde{F}_{2}\|_{L^{1}_{t}}+\|\tilde{G}\|_{L^{1}_{t}}\leq C(\varepsilon,\bar{\rho}_{\varepsilon},\underline{\rho}_{\varepsilon},E_{2},T).

Now, we introduce an additional hypothesis

x3ρ0,εLx2+x2V0,εLx2<.\|\partial_{x}^{3}\rho_{0,\varepsilon}\|_{L^{2}_{x}}+\|\partial_{x}^{2}V_{0,\varepsilon}\|_{L^{2}_{x}}<\infty.

Again we use Grönwall’s inequality to conclude

x3ρεLL2+x2VεLL22+εx3VεL2L22\displaystyle\|\partial_{x}^{3}\rho_{\varepsilon}\|_{L^{\infty}L^{2}}+\|\partial_{x}^{2}V_{\varepsilon}\|_{L^{\infty}L^{2}}^{2}+\varepsilon\|\partial_{x}^{3}V_{\varepsilon}\|_{L^{2}L^{2}}^{2}
C(ε,E3,xku0,εL2,xkρ0,εL2,ρ¯ε,T).,\displaystyle\leq C(\varepsilon,{E_{3}},\|\partial^{k}_{x}u_{0,\varepsilon}\|_{L^{2}},\|\partial^{k}_{x}\rho_{0,\varepsilon}\|_{L^{2}},\underline{\rho}_{\varepsilon},T).,

where

E3=E2+x3ρ0,εLx2+x2V0,εLx2.E_{3}=E_{2}+\|\partial_{x}^{3}\rho_{0,\varepsilon}\|_{L^{2}_{x}}+\|\partial_{x}^{2}V_{0,\varepsilon}\|_{L^{2}_{x}}.

We proceed analogously as in the proof of Lemma 6.1 to obtain the LL2L^{\infty}L^{2} estimate of x3uε\partial_{x}^{3}u_{\varepsilon} and the L2L2L^{2}L^{2} estimate of x4uε\partial_{x}^{4}u_{\varepsilon}. ∎

Next we will state and prove a generalized Poincaré inequality:

Proposition 6.2.

There exists a positive constant CC such that the following inequality holds

uLx1C(xuLx1+𝕋r|u|𝑑x),\displaystyle\|u\|_{L^{1}_{x}}\leq C\left(\|\partial_{x}u\|_{L^{1}_{x}}+\int_{\mathbb{T}}r|u|dx\right), (102)

for any uW1,1(𝕋)u\in W^{1,1}(\mathbb{T}) and any non-negative function rr such that

0<M0𝕋r𝑑x<,rLx(𝕋).\displaystyle 0<M_{0}\leq\int_{\mathbb{T}}r\ dx<\infty,\;\quad r\in L^{\infty}_{x}(\mathbb{T}). (103)
Proof.

We prove the statement by methods of contradiction. Suppose (102) is not true, then there exists a sequence {un}n\{u_{n}\}_{n\in\mathbb{N}} and {rn}n\{r_{n}\}_{n\in\mathbb{N}} such that

unLx1=1,xunLx1+𝕋rn|un|𝑑x1n\displaystyle\|u_{n}\|_{L^{1}_{x}}=1,\;\quad\|\partial_{x}u_{n}\|_{L^{1}_{x}}+\int_{\mathbb{T}}r_{n}|u_{n}|\ dx\leq\frac{1}{n}

and

rnr weakly-* in Lx.\displaystyle r_{n}\rightarrow r\text{ weakly-* in }L^{\infty}_{x}.

Therefore, we have

unWx1,12.\displaystyle\|u_{n}\|_{W^{1,1}_{x}}\leq 2.

As a consequence of compact embedding of Wx1,1W^{1,1}_{x} in Lx1L^{1}_{x}, we obtain

unu strongly in Lx1.\displaystyle u_{n}\rightarrow u\text{ strongly in }L^{1}_{x}.

Next, the bound xunLx11n\|\partial_{x}u_{n}\|_{L^{1}_{x}}\leq\frac{1}{n} yields

xun0 strongly in Lx1.\displaystyle\partial_{x}u_{n}\rightarrow 0\text{ strongly in }L^{1}_{x}.

The above two statements imply

unu strongly in Wx1,1 and xu=0 a.e..\displaystyle u_{n}\rightarrow u\text{ strongly in }W^{1,1}_{x}\text{ and }\partial_{x}u=0\text{ a.e.}.

Now, note that the weak-* convergence of rnr_{n} in LxL^{\infty}_{x} and strong convergence of unu_{n} in Lx1L^{1}_{x} helps us to deduce

𝕋r𝑑x=0,\displaystyle\int_{\mathbb{T}}r\ dx=0,

that contradicts the hypothesis (103). ∎

Acknowledgments

C. P. is supported by the SingFlows and CRISIS projects, grants ANR-18-CE40-0027 and ANR-20-CE40-0020-01 of the French National Research Agency (ANR). The work of N.C. and E.Z. is supported by the EPSRC Early Career Fellowship no. EP/V000586/1.


References