This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Heavy quarkonium spectral function in the spinning black hole background

Zhou-Run Zhu zhuzhourun@zknu.edu.cn School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou 466001, China    Manman Sun sunmm@zknu.edu.cn School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou 466001, China    Rui Zhou ruychou@zknu.edu.cn School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou 466001, China    Zhuang Ma mzhuang@zknu.edu.cn School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou 466001, China    Jinzhong Han hanjinzhong@zknu.edu.cn School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou 466001, China
Abstract

In this paper, we study the dissociation of heavy quarkonium in the spinning black hole background. Specifically, we analyze the spectral function of charmonium and bottomonium in the spinning black hole background and examine how the angular momentum affects the dissociation of J/ΨJ/\Psi and Υ(1S)\Upsilon(1S). From the results, we find that the angular momentum and temperature decreases the peak height and expands the peak width of the spectral function, thereby enhancing the dissociation of heavy vector mesons. Moreover, the angular momentum has a stronger dissociation effect in the transverse orientation, revealing the directional influence of angular momentum.

I Introduction

It is believed that heavy-ion collisions under extreme conditions have created the strongly coupled quark-gluon plasma (QGP) and provide insights into the nature of QGP Arsene:2004fa ; Adcox:2004mh ; Back:2004je ; Adams:2005dq . Heavy quarkonium (such as J/ΨJ/\Psi and Υ(1S)\Upsilon(1S)) consists of a heavy quark and antiquark. One significant piece of evidence for the formation of QGP is the suppression of heavy quarkonium due to Debye screening Matsui:1986dk . Heavy quarkonium influences the final yields and spectra since it strongly interacts with QGP. Heavy quarkonium mesons could be seen as a unique probe to investigate the properties of QGP. The melting or dissociation of heavy quarkonium can be related to the disappearance of particle peaks in the spectral function. The spectral function offers a deep understanding of the dissociation effects and behavior of heavy quarkonium states.

AdS/CFT correspondence Maldacena:1997re ; Witten:1998qj ; Gubser:1998bc is a valuable tool for studying the properties of strongly coupled plasma. From the holographic perspective, the gauge theory living on the boundary is dual to the gravitational theory in AdS space. This non-perturbative method has provided significant inspirations into the heavy flavor physics. The effect of temperature on scalar glueballs and scalar mesons has been studied in Colangelo:2009ra ; Miranda:2009uw . The studies of Dudal:2014jfa ; Braga:2018zlu ; Zhao:2021ogc examine the effect of magnetic field on the dissociation of heavy quarkonium mesons. The meson dissociation phenomenon can be related to the suppression of the peak height of the spectral function. The influences of temperature and chemical potential on the melting of heavy quarkonium have been discussed in Mamani:2013ssa ; Braga:2016wkm ; Braga:2017oqw ; Braga:2017bml ; Mamani:2022qnf . The researches of Braga:2015jca ; Braga:2015lck identify the masses and decay constants of the heavy quarkonium. The quasinormal modes of heavy quarkonium have been discussed in the holographic QCD models Braga:2019yeh ; Braga:2019xwl ; Zhao:2023yry . In Zhao:2023pne ; Braga:2023fac , the dissociation of heavy quarkonium mesons in the rotating plasma has been investigated. The dissociation effects of heavy quarkonium in the anisotropic background have been studied in Chang:2024ksq . The spectral functions in Gauss-Bonnet gravity can be found in Zhu:2024ddp .

In this paper, we want to explore the heavy quarkonium spectral function in the spinning black hole background. The main motivation is that the nonzero angular momentum is detected in non-central heavy ion collisions and a large portion of angular momentum can be transferred to the QGP medium Liang:2004ph ; Becattini:2007sr ; Baznat:2013zx ; STAR:2017ckg ; Jiang:2016woz . The angular momentum may produce significant observable effects on the physical quantities. Such as confinement-deconfinement phase transition Chen:2020ath ; Braga:2022yfe ; Zhao:2022uxc , energy loss Hou:2021own ; Chen:2022obe ; Chen:2023yug and entropy of heavy quarkonium Wu:2022ufk . Other significative researches are detailed in McInnes:2014haa ; McInnes:2016dwk ; Cai:2023cjl ; Zhang:2023psy ; Zhao:2024ipr .

In Zhao:2023pne ; Braga:2023fac , the authors extend the static background to a rotating background by a local Lorentz transformation Erices:2017izj ; BravoGaete:2017dso ; Awad:2002cz and analyze the spectral functions in rotating medium. However, this local rotating background, created by the local Lorentz transformation, only represents a small neighbourhood around a rotating radius and a domain range less than 2π\pi wide. Studying the heavy quarkonium behaviors in spinning black holes Hawking:1998kw ; Gibbons:2004ai ; Gibbons:2004js ; Garbiso:2020puw may be a meaningful work. In Garbiso:2020puw , the authors consider the Myers-Perry black holes which are vacuum solutions under Einstein gravity. The boundary in Myers-Perry black holes space is compact and the dual gauge theory is living on S3×S^{3}\times\mathbb{R}. In further research, the dual field theory is in non-compact spacetime when considering the planar black brane in the large black holes (high-temperature case). Thus, the spinning QGP medium lives on flat space 3,1\mathbb{R}^{3,1} in this case. Inspired by this, we want to investigate the spectral function and discuss the dissociation of heavy quarkonium in spinning black holes.

The paper is organized as follows. In Sec. II, we introduce the spinning Myers-Perry black hole. In Sec. III, we study the spectral function in spinning Myers-Perry black hole. The conclusion and discussion are given in Sec. IV.

II Spinning Myers-Perry black hole background

Before studying the spectral function of charmonium and bottomonium, we briefly review the spinning black hole background written by Hawking et al. The metric is given by Hawking:1998kw

ds2=Δρ2(dtHasin2θHΞadϕHbcos2θHΞbdψH)2+ΔθHsin2θHρ2(adtHrH2+a2ΞadϕH)2+ΔθHcos2θHρ2(bdtHrH2+b2ΞbdψH)2+ρ2ΔdrH2ρ2ΔθHdθH2+1+rH2L2rH2ρ2(abdtHb(r2+a2)sin2θHΞadϕHa(r2+b2)cos2θHΞbdψH)2,\begin{split}ds^{2}=&-\frac{\Delta}{\rho^{2}}(dt_{H}-\frac{a\sin^{2}\theta_{H}}{\Xi_{a}}d\phi_{H}-\frac{b\cos^{2}\theta_{H}}{\Xi_{b}}d\psi_{H})^{2}+\frac{\Delta_{\theta_{H}}\sin^{2}\theta_{H}}{\rho^{2}}(adt_{H}-\frac{r_{H}^{2}+a^{2}}{\Xi_{a}}d\phi_{H})^{2}\\ &+\frac{\Delta_{\theta_{H}}\cos^{2}\theta_{H}}{\rho^{2}}(bdt_{H}-\frac{r_{H}^{2}+b^{2}}{\Xi_{b}}d\psi_{H})^{2}+\frac{\rho^{2}}{\Delta}dr_{H}^{2}-\frac{\rho^{2}}{\Delta_{\theta_{H}}}d\theta_{H}^{2}\\ &+\frac{1+\frac{r_{H}^{2}}{L^{2}}}{r_{H}^{2}\rho^{2}}(abdt_{H}-\frac{b\left(r^{2}+a^{2}\right)\sin^{2}\theta_{H}}{\Xi_{a}}d\phi_{H}-\frac{a\left(r^{2}+b^{2}\right)\cos^{2}\theta_{H}}{\Xi_{b}}d\psi_{H})^{2},\end{split} (1)

with

Δ=1rH2(rH2+a2)(rH2+b2)(1+rH2L2)2M,ΔθH=1a2L2cos2θHb2L2sin2θH,ρ=rH2+a2cos2θH+b2sin2θH,Ξa=1a2L2,Ξb=1b2L2,\begin{split}\Delta=\frac{1}{r_{H}^{2}}(r_{H}^{2}+a^{2})(r_{H}^{2}+b^{2})(1+\frac{r_{H}^{2}}{L^{2}})-2M,\\ \Delta_{\theta_{H}}=1-\frac{a^{2}}{L^{2}}\cos^{2}\theta_{H}-\frac{b^{2}}{L^{2}}\sin^{2}\theta_{H},\\ \rho=r_{H}^{2}+a^{2}\cos^{2}\theta_{H}+b^{2}\sin^{2}\theta_{H},\\ \Xi_{a}=1-\frac{a^{2}}{L^{2}},\\ \Xi_{b}=1-\frac{b^{2}}{L^{2}},\\ \end{split} (2)

where tHt_{H}, LL and rHr_{H} denotes time, AdS radius and AdS radial coordinate respectively. (ϕH,ψH,θH)(\phi_{H},\psi_{H},\theta_{H}) represent angular Hopf coordinates. The angular momentum parameters are denoted by aa and bb. In this work, we take consider spinning Myers-Perry black hole case, namely a=ba=b Gibbons:2004ai ; Gibbons:2004js .

To facilitate the analysis, more convenient coordinates can be adopted and the mass can be reparameterized Murata:2008xr

t=tH,r2=a2+rH21a2L2,θ=2θH,ϕ=ϕHψH,ψ=2atHL2+ϕH+ψH,b=a,μ=M(L2a2)3.\begin{split}t=t_{H},\\ r^{2}=\frac{a^{2}+r_{H}^{2}}{1-\frac{a^{2}}{L^{2}}},\\ \theta=2\theta_{H},\\ \phi=\phi_{H}-\psi_{H},\\ \psi=-\frac{2at_{H}}{L^{2}}+\phi_{H}+\psi_{H},\\ b=a,\\ \mu=\frac{M}{(L^{2}-a^{2})^{3}}.\\ \end{split} (3)

The metric (1) can be rewrite as

ds2=(1+r2L2)dt2+dt2G(r)+r24((σ1)2+(σ2)2+(σ3)2)+2μr2(dt+a2σ3)2,\begin{split}ds^{2}=&-(1+\frac{r^{2}}{L^{2}})dt^{2}+\frac{dt^{2}}{G(\text{r)}}+\frac{r^{2}}{4}((\sigma^{1})^{2}+(\sigma^{2})^{2}+(\sigma^{3})^{2})+\frac{2\mu}{r^{2}}(dt+\frac{a}{2}\sigma^{3})^{2},\end{split} (4)

with

G(r)=1+r2L22μ(1a2L2)r2+2μa2r4,μ=rh4(L2+rh2)2L2rh22a2(L2+rh2),σ1=sinψdtdθ+cosψsinθdϕ,σ2=cosψdθ+sinψsinθdϕ,σ3=dψ+cosθdϕ,\begin{split}G(r)=1+\frac{r^{2}}{L^{2}}-\frac{2\mu(1-\frac{a^{2}}{L^{2}})}{r^{2}}+\frac{2\mu a^{2}}{r^{4}},\\ \mu=\frac{r_{h}^{4}(L^{2}+r_{h}^{2})}{2L^{2}r_{h}^{2}-2a^{2}(L^{2}+r_{h}^{2})},\\ \sigma^{1}=-sin\psi dtd\theta+cos\psi sin\theta d\phi,\\ \sigma^{2}=cos\psi d\theta+sin\psi sin\theta d\phi,\\ \sigma^{3}=d\psi+cos\theta d\phi,\\ \end{split} (5)

where

<t<,rh<r<, 0θπ,0ϕ2π, 0ψ4π.\begin{split}&-\infty<t<\infty,\ r_{h}<r<\infty,\ 0\leq\theta\leq\pi,\\ &0\leq\phi\leq 2\pi,\ 0\leq\psi\leq 4\pi.\end{split} (6)

In order to get the planar black brane, one can employ the coordinate transformation as Garbiso:2020puw

t=τ,L2(ϕπ)=x1,L2tan(θπ2)=x2,L2(ψ2π)=x3,r=r~,\begin{split}t=\tau,\\ \frac{L}{2}(\phi-\pi)=x_{1},\\ \frac{L}{2}tan(\theta-\frac{\pi}{2})=x_{2},\\ \frac{L}{2}(\psi-2\pi)=x_{3},\\ r=\tilde{r},\\ \end{split} (7)

where (τ,r~,x,y,z)(\tau,\widetilde{r},x,y,z) are new coordinates. In the next step, the coordinates can be scaled with a power of scaling factor β\beta

τβ1τ,x1β1x1,x2β1x2,x3β1x3,r~βr~,rh~βrh~.(β)\begin{split}\tau\rightarrow\beta^{-1}\tau,\\ x_{1}\rightarrow\beta^{-1}x_{1},\\ x_{2}\rightarrow\beta^{-1}x_{2},\\ x_{3}\rightarrow\beta^{-1}x_{3},\\ \tilde{r}\rightarrow\beta\tilde{r},\\ \tilde{r_{h}}\rightarrow\beta\tilde{r_{h}}.(\beta\rightarrow\infty)\\ \end{split} (8)

Then one can obtain the Schwarzschild black brane metric which is boosted in τx3\tau-x_{3} plane Garbiso:2020puw

ds2=r2L2(dτ2+dx12+dx22+dx32+rh4r4(1a2L2)(dτ+aLdx3)2)+L2r2r4rh4dr2,\begin{split}ds^{2}=&\frac{r^{2}}{L^{2}}(-d\tau^{2}+dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2}+\frac{r_{h}^{4}}{r^{4}(1-\frac{a^{2}}{L^{2}})}(d\tau+\frac{a}{L}dx_{3})^{2})+\frac{L^{2}r^{2}}{r^{4}-r_{h}^{4}}dr^{2},\end{split} (9)

where Schwarzschild black brane is recovered when a=0a=0.

In order to calculate conveniently, we replace the holographic fifth coordinate rr by 1/z1/z (r=1/zr=1/z)

ds2=1z2L2[dτ2+dx12+dx22+dx32+z4zh4(1a2L2)(dτ+aLdx3)2]+L2zh4z2(zh4z4)dz2.\begin{split}ds^{2}=&\frac{1}{z^{2}L^{2}}[-d\tau^{2}+dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2}+\frac{z^{4}}{z_{h}^{4}(1-\frac{a^{2}}{L^{2}})}(d\tau+\frac{a}{L}dx_{3})^{2}]+\frac{L^{2}z_{h}^{4}}{z^{2}(z_{h}^{4}-z^{4})}dz^{2}.\end{split} (10)

The temperature can be given byGarbiso:2020puw

T=L2a2zhπL3,T=\frac{\sqrt{L^{2}-a^{2}}}{z_{h}\pi L^{3}}, (11)

where zhz_{h} denotes the horizon. From the perspective of the temperature, the values of a should satisfy the condition a<La<L to ensure the temperature is positive.

III Spectral function in the spinning Myers-Perry black hole background

In this section, we will study the spectral function of charmonium and bottomonium by a phenomenological model proposed in Ref.Braga:2018zlu . One can derive the formulas of spectral function by following Ref.Braga:2018zlu . We investigate the spectral function in the spinning Myers-Perry black hole background. In order to facilitate calculation, we rewrite the metric (10) with a general form,

ds2=gττdτ2+gxx1(dx12+dx22)+gxx3dx32+gτx3dτdx3+gx3τdx3dτ+gzzdz2.\begin{split}ds^{2}=&-g_{\tau\tau}d\tau^{2}+g_{xx_{1}}(dx_{1}^{2}+dx_{2}^{2})+g_{xx_{3}}dx_{3}^{2}+g_{\tau x_{3}}d\tau dx_{3}+g_{x_{3}\tau}dx_{3}d\tau+g_{zz}dz^{2}.\end{split} (12)

The vector field Vm=(Vμ,Vz)V_{m}=(V_{\mu},V_{z}) denotes the heavy quarkonium and corresponds to gauge theory current Jμ=Ψ¯γμΨJ^{\mu}=\overline{\Psi}\gamma^{\mu}\Psi. The bulk action is Braga:2018zlu

I=d4x𝑑zQ4FmnFmn,I=-\int d^{4}xdz\frac{Q}{4}F_{mn}F^{mn}, (13)

where Fmn=mVnnVmF_{mn}=\partial_{m}V_{n}-\partial_{n}V_{m} and Q=geϕ(z)g52Q=\frac{\sqrt{-g}}{e^{\phi(z)}g^{2}_{5}}. The dilaton field ϕ(z)\phi(z) is used to characterise vector mesonsBraga:2018zlu ,

ϕ(z)=w2z2+Mz+tanh(1MzwΓ),\phi(z)=w^{2}z^{2}+Mz+\tanh(\frac{1}{Mz}-\frac{w}{\sqrt{\Gamma}}), (14)

where ww represents quark mass, Γ\Gamma is string tension and MM denotes non-hadronic decay. We consider that the metric (10) is not affected by the dilaton background. The energy parameters (ww, Γ\Gamma and MM) are determined by fitting the masses spectrum. The specific values of the energy parameters for charmonium and bottomonium are Braga:2018zlu

wc=1.2GeV,Γc=0.55GeV,Mc=2.2GeV;wb=2.45GeV,Γb=1.55GeV,Mb=6.2GeV.\begin{split}&w_{c}=1.2GeV,\sqrt{\Gamma_{c}}=0.55GeV,M_{c}=2.2GeV;\\ &w_{b}=2.45GeV,\sqrt{\Gamma_{b}}=1.55GeV,M_{b}=6.2GeV.\end{split} (15)

The spectral function can be calculated by membrane paradigm Iqbal:2008by . The equation of motion can be obtained from Eq.(13)

m(QFmn)=0,\partial^{m}(QF_{mn})=0, (16)

and the conjugate momentum of the gauge field for z-foliation

jμ=QFzμ.j^{\mu}=-QF^{z\mu}. (17)

One can assume that the plane wave solution for vector field is propagating in x3x_{3} direction. Then we can consider the equations of motion (16) have longitudinal and transverse channels. The longitudinal fluctuations are along (τ,x3\tau,x_{3}) and transverse fluctuations are along (x1,x2x_{1},x_{2}). Therefore, the longitudinal components of Eq.(16) are

zjτQ(gxx3gττ+gx3τgτx3)x3Fx3τ=0,zjx3+Q(gττgxx3+gτx3gx3τ)τFx3τ=0,x3jx3+τjτ=0.\begin{split}&-\partial_{z}j^{\tau}-Q(g^{xx_{3}}g^{\tau\tau}+g^{x_{3}\tau}g^{\tau x_{3}})\partial_{x_{3}}F_{x_{3}\tau}=0,\\ &-\partial_{z}j^{x_{3}}+Q(g^{\tau\tau}g^{xx_{3}}+g^{\tau x_{3}}g^{x_{3}\tau})\partial_{\tau}F_{x_{3}\tau}=0,\\ &\partial_{x_{3}}j^{x_{3}}+\partial_{\tau}j^{\tau}=0.\end{split} (18)

Adopting the Bianchi identity, one can obtain

zFx3τgzzQτ[gxx3jx3+gx3τjτ]gzzQx3[gττjτgτx3jx3]=0.\partial_{z}F_{x_{3}\tau}-\frac{g_{zz}}{Q}\partial_{\tau}[g_{xx_{3}}j^{x_{3}}+g_{x_{3}\tau}j^{\tau}]-\frac{g_{zz}}{Q}\partial_{x_{3}}[g_{\tau\tau}j^{\tau}-g_{\tau x_{3}}j^{x_{3}}]=0. (19)

One can get the conductivity of longitudinal channel as

σL(ω,p,z)=jx3(ω,p,z)Fx3τ(ω,p,z),zσL=zjx3Fx3τjx3Fx3τ2zFx3τ.\begin{split}&\sigma_{L}(\omega,\overrightarrow{p},z)=\frac{j^{x_{3}}(\omega,\overrightarrow{p},z)}{F_{x_{3}\tau}(\omega,\overrightarrow{p},z)},\\ &\partial_{z}\sigma_{L}=\frac{\partial_{z}j^{x_{3}}}{F_{x_{3}\tau}}-\frac{j^{x_{3}}}{F^{2}_{x_{3}\tau}}\partial_{z}F_{x_{3}\tau}.\end{split} (20)

Using Kubo formula, one can get the relations between the longitudinal AC conductivity σL\sigma_{L} and the retarded Green’s function

σL(ω)=GRL(ω)iω.\sigma_{L}(\omega)=-\frac{G^{L}_{R}(\omega)}{i\omega}. (21)

Combining Eq.(18), (19) with momentum limit PP = (ω\omega, 0, 0, 0), one can the flow equation of longitudinal channel

zσL=iωgxx3gzzQ(σL2Q2(gττgxx3+gτx3gx3τ)gxx3gzz).\partial_{z}\sigma_{L}=\frac{i\omega g_{xx_{3}}g_{zz}}{Q}(\sigma^{2}_{L}-\frac{Q^{2}(g^{\tau\tau}g^{xx_{3}}+g^{\tau x_{3}}g^{x_{3}\tau})}{g_{xx_{3}}g_{zz}}). (22)

The flow equation of transverse channel can be obtained from similar process

zσT=iωgxx1gzzQ(σT2Q2gzzgττgxx12).\partial_{z}\sigma_{T}=\frac{i\omega g_{xx_{1}}g_{zz}}{Q}(\sigma^{2}_{T}-\frac{Q^{2}g^{zz}g^{\tau\tau}}{g^{2}_{xx_{1}}}). (23)

Utilizing the regularity condition at horizon, the equation can be solved with zσL/T(ω,z)=0\partial_{z}\sigma_{L/T}(\omega,z)=0. Then one can get the expression of spectral function

ρ(ω)ImGR(ω)=ωReσ(ω,0).\rho(\omega)\equiv-ImG_{R}(\omega)=\omega Re\sigma(\omega,0). (24)
Refer to caption
Figure 1: Spectral functions for charmonium at T=0.6T=0.6 GeV for different values of angular momentum aa. The black, blue and red line denote a=0.1, 0.4a=0.1,\ 0.4, and 0.70.7, respectively. The solid line (dashed line) represents the longitudinal (transverse) channel.

In the limitation of the large black hole, the angular velocity Ω=a/L2\Omega=a/L^{2} Garbiso:2020puw . The linear velocity is the product of the angular velocity and the radius of rotation. However, the spinning Myers-Perry black hole (angular momentum parameters a=ba=b) is peculiar. From the results of the integral curves of the axial angular momentum Killing vector field, it can be found that there is no axis of rotation in the Myers-Perry black hole Amano:2023bhg . One can consider that the fluid flow lines for an embedding in 3\mathbb{R}^{3} lies on a torus Amano:2023bhg . Moreover, The ultra-local behavior of fluid flow can be considered as a uniform motion, which involved is that of uniformly rotating circles of a Hopf fibration of the 3-sphere constituting the spatial part of the four-dimensional spacetime Amano:2023bhg . The induced rotation has no axis in the dual field theory, thus it is hard to calculate the linear velocity. However, we can discuss the values of angular momentum aa from other certain restrictions. The background will rotate at the speed of light when one or both of Ξa\Xi_{a} and Ξb\Xi_{b} vanish (a=La=L or/and b=Lb=L) Hawking:1998kw . In order to ensure the temperature is positive, the values of a should satisfy the condition a<La<L. From the results of the momentum diffusion coefficient, one can find that the spinning black brane is stable when a<0.75La<0.75L Garbiso:2020puw . Therefore, it is advisable to set a<0.75La<0.75L in the numerical calculations.

In Ref. Amano:2023bhg , the authors investigate the hydrodynamics of the Myers-Perry black hole. They discover that low energy fluctuations treat rotating fluid as a boost with the boost parameter aa. The frequency and momentum of the collective excitations around rotating states are small compared to the temperature and angular momentum scale. This allows us to treat the rotating fluid as a boosted fluid on its relative scale. This finding suggests that at intermediate to high temperatures, the plasma may be well approximated by models of boosted fluids. The rotation has no axis in the dual field theory. Additionally, the behavior of fluid flow is uniform motion, as indicated by the results of the hydrodynamic modes, Lyapunov exponents, and butterfly velocities. Thus, the fluid flow for an embedding in 3\mathbb{R}^{3} is lying on a torus and is uniform motion in the Myers-Perry black hole. Therefore, we consider that the dissociation effect homogeneous in this peculiar and spinning Myers-Perry black hole.

In order to study how the angular momentum affects the dissociation of heavy vector mesons, we calculate the spectral functions in the spinning black hole background. In the calculations, we set L=1L=1 for simplicity. We investigate the dissociation behaviors with high temperature since the background geometry performs a planar limit black brane in large black hole (high-temperature case) Garbiso:2020puw . Additionally, the spinning black brane is stable when a<0.75La<0.75L and we will take a=0.1,0.4,0.7a=0.1,0.4,0.7 in the calculations.

In Fig. 1, we display the spectral functions for charmonium at T=0.6T=0.6 GeV for different values of angular momentum aa. The bell shape (peak feature) describes the quasiparticle state. The spectral function of charmonium may contain a set of peaks. The first, the second, the third peak corresponds to the 1S state (J/ΨJ/\Psi), 2S state, 3S state, respectively and so one. We focus on the influence of angular momentum and temperature on the 1S state (J/ΨJ/\Psi). The width of spectra is inversely proportional to decay rate which is related to the stability. The results show that increasing the angular momentum suppresses the height and broadens the peak width in parallel and transverse channels. This phenomenon implies that the angular momentum enhances the dissociation effect of J/ΨJ/\Psi. Moreover, it is evident that the angular momentum has a stronger dissociation effect in the transverse case, revealing the directional influence of angular momentum.

Refer to caption
Figure 2: Spectral functions for bottomonium at T=0.6T=0.6 GeV for different values of angular momentum aa. The black, blue and red line denote a=0.1, 0.4a=0.1,\ 0.4, and 0.70.7, respectively. The solid line (dashed line) represents the longitudinal (transverse) channel.

In Fig. 2, we plot the spectral functions for bottomonium at T=0.6T=0.6 GeV for different values of angular momentum aa. The spectral function of bottomonium also contain a set of peaks and we focus on the influence of angular momentum and temperature on the 1S state (Υ(1S)\Upsilon(1S)). It is obviously that the angular momentum decreases the height and enlarges the peak width of spectra, indicating the angular momentum favors the dissociation of Υ(1S)\Upsilon(1S). Furthermore, we observe that the angular momentum has a stronger dissociation effect in the transverse case. From the results of Figs. 1 and  2, one can summarize that the angular momentum promotes the dissociation of heavy quarkonium. This may be due to the angular momentum decreases the screening length of quark-antiquark pair, hence increases the quarkonium dissociation Zhu:2024dwx . Another physical interpretation is the angular momentum enhances the entropic force of quark-antiquark pair, thereby enhancing the dissociation Zhu:2024dwx .

In Figs. 3 and  4, we draw the spectral functions for charmonium and bottomonium at a=0.1a=0.1 for different values of temperature, respectively. One can observe that the temperature decreases the height and enlarges the peak width in parallel and transverse cases, revealing the temperature accelerates the dissociation of the heavy quarkonium. Furthermore, the angular momentum has a stronger dissociation effect in the transverse orientation.

Refer to caption
Figure 3: Spectral functions for charmonium at a=0.1a=0.1 for different values of temperature TT. The black, blue and red line denote T=0.6, 0.7T=0.6,\ 0.7, and 0.80.8 GeV, respectively. The solid line (dashed line) represents the longitudinal (transverse) channel.
Refer to caption
Figure 4: Spectral functions for bottomonium at a=0.1a=0.1 for different values of temperature TT. The black, blue and red line denote T=0.6, 0.7T=0.6,\ 0.7, and 0.80.8 GeV, respectively. The solid line (dashed line) represents the longitudinal (transverse) channel.

IV Conclusion and discussion

In this paper, we want to explore the dissociation of heavy quarkonium in the spinning black hole background. The nonzero angular momentum is detected in non-central heavy ion collisions and may produce significant observable effects on the heavy quarkonium. To be specific, we calculate the spectral functions and discuss the effect of angular momentum on the dissociation of J/ΨJ/\Psi and Υ(1S)\Upsilon(1S).

The results reveal that the angular momentum decreases the height and enlarges the peak width of spectral function, which indicates the angular momentum favors dissociation of J/ΨJ/\Psi and Υ(1S)\Upsilon(1S). Moreover, the angular momentum has a stronger dissociation effect in transverse case. Additionally, the temperature decreases the height and enlarges the peak width in parallel and transverse cases, revealing the temperature accelerates the dissociation of the heavy quarkonium.

We expect that the results of the spectral functions in the spinning black hole background could provide more insight into the investigation of the dissociation of heavy quarkonium. Finally, it is worth exploring the configuration entropy in spinning black hole background. We leave this work in the future.

Acknowledgments

The authors would like to acknowledge Yan-Qing Zhao for helpful discussion. Jinzhong Han is supported by the Foundation of the Natural Science Foundation of Henan Province under Grant No.242300421398. Rui Zhou is supported by the Science and Technology Development Plan Project of Henan Province No. 242102230085. Rui Zhou is also supported by the National Natural Science Foundation of China under Grant No. 12404470. Manman Sun is supported by the National Natural Science Foundation of China under Grant No.12305076. Zhou-Run Zhu is supported by the High Level Talents Research and Startup Foundation Projects for Doctors of Zhoukou Normal University No. ZKNUC2023018.

Data Availability Statement

This manuscript has no associated data or the data will not be deposited.

References

  • (1) I. Arsene et al. [BRAHMS Collaboration], Nucl. Phys. A 757, 1 (2005) doi:10.1016/j.nuclphysa.2005.02.130 [nucl-ex/0410020].
  • (2) K. Adcox et al. [PHENIX Collaboration], Nucl. Phys. A 757, 184 (2005) doi:10.1016/j.nuclphysa.2005.03.086 [nucl-ex/0410003].
  • (3) B. B. Back et al., Nucl. Phys. A 757, 28 (2005) doi:10.1016/j.nuclphysa.2005.03.084 [nucl-ex/0410022].
  • (4) J. Adams et al. [STAR Collaboration], Nucl. Phys. A 757, 102 (2005) doi:10.1016/j.nuclphysa.2005.03.085 [nucl-ex/0501009].
  • (5) T. Matsui and H. Satz, Phys. Lett. B 178, 416-422 (1986) doi:10.1016/0370-2693(86)91404-8
  • (6) J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231-252 (1998) doi:10.1023/A:1026654312961 [arXiv:hep-th/9711200 [hep-th]].
  • (7) E. Witten, Adv. Theor. Math. Phys. 2, 253-291 (1998) doi:10.4310/ATMP.1998.v2.n2.a2 [arXiv:hep-th/9802150 [hep-th]].
  • (8) S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett. B 428, 105-114 (1998) doi:10.1016/S0370-2693(98)00377-3 [arXiv:hep-th/9802109 [hep-th]].
  • (9) P. Colangelo, F. Giannuzzi and S. Nicotri, Phys. Rev. D 80, 094019 (2009) doi:10.1103/PhysRevD.80.094019 [arXiv:0909.1534 [hep-ph]].
  • (10) A. S. Miranda, C. A. Ballon Bayona, H. Boschi-Filho and N. R. F. Braga, JHEP 2009, no.11, 119 (2009) doi:10.1088/1126-6708/2009/11/119 [arXiv:0909.1790 [hep-th]].
  • (11) D. Dudal and T. G. Mertens, Phys. Rev. D 91, 086002 (2015) doi:10.1103/PhysRevD.91.086002 [arXiv:1410.3297 [hep-th]].
  • (12) N. R. F. Braga and L. F. Ferreira, Phys. Lett. B 783, 186-192 (2018) doi:10.1016/j.physletb.2018.06.053 [arXiv:1802.02084 [hep-ph]].
  • (13) Y. Q. Zhao and D. Hou, Eur. Phys. J. C 82, no.12, 1102 (2022) doi:10.1140/epjc/s10052-022-11065-7 [arXiv:2108.08479 [hep-ph]].
  • (14) L. A. H. Mamani, A. S. Miranda, H. Boschi-Filho and N. R. F. Braga, JHEP 2014, no.3, 58 (2014) doi:10.1007/JHEP03(2014)058 [arXiv:1312.3815 [hep-th]].
  • (15) N. R. F. Braga, M. A. Martin Contreras and S. Diles, Eur. Phys. J. C 76, no.11, 598 (2016) doi:10.1140/epjc/s10052-016-4447-4 [arXiv:1604.08296 [hep-ph]].
  • (16) N. R. F. Braga and L. F. Ferreira, Phys. Lett. B 773, 313-319 (2017) doi:10.1016/j.physletb.2017.08.037 [arXiv:1704.05038 [hep-ph]].
  • (17) N. R. F. Braga, L. F. Ferreira and A. Vega, Phys. Lett. B 774, 476-481 (2017) doi:10.1016/j.physletb.2017.10.013 [arXiv:1709.05326 [hep-ph]].
  • (18) L. A. H. Mamani, D. Hou and N. R. F. Braga, Phys. Rev. D 105, no.12, 126020 (2022) doi:10.1103/PhysRevD.105.126020 [arXiv:2204.08068 [hep-ph]].
  • (19) N. R. F. Braga, M. A. Martin Contreras and S. Diles, Phys. Lett. B 763, 203-207 (2016) doi:10.1016/j.physletb.2016.10.046 [arXiv:1507.04708 [hep-th]].
  • (20) N. R. F. Braga, M. A. Martin Contreras and S. Diles, EPL 115, no.3, 31002 (2016) doi:10.1209/0295-5075/115/31002 [arXiv:1511.06373 [hep-th]].
  • (21) N. R. F. Braga and L. F. Ferreira, Phys. Lett. B 795, 462-468 (2019) doi:10.1016/j.physletb.2019.06.050 [arXiv:1905.11309 [hep-ph]].
  • (22) N. R. F. Braga and R. Da Mata, Phys. Lett. B 804, 135381 (2020) doi:10.1016/j.physletb.2020.135381 [arXiv:1910.13498 [hep-ph]].
  • (23) Y. Q. Zhao and D. Hou, Phys. Lett. B 847, 138271 (2023) doi:10.1016/j.physletb.2023.138271 [arXiv:2305.07087 [hep-ph]].
  • (24) Y. Q. Zhao and D. Hou, Eur. Phys. J. C 83, no.11, 1076 (2023) doi:10.1140/epjc/s10052-023-12250-y [arXiv:2306.04318 [hep-ph]].
  • (25) N. R. F. Braga and Y. F. Ferreira, Phys. Rev. D 108, no.9, 094017 (2023) doi:10.1103/PhysRevD.108.094017 [arXiv:2309.11643 [hep-ph]].
  • (26) W. B. Chang and D. f. Hou, Phys. Rev. D 109, no.8, 086010 (2024) doi:10.1103/PhysRevD.109.086010 [arXiv:2403.04966 [hep-ph]].
  • (27) Z. R. Zhu, M. Sun, R. Zhou and J. Han, [arXiv:2401.05893 [hep-ph]].
  • (28) Z. T. Liang and X. N. Wang, Phys. Rev. Lett. 94 (2005), 102301 [erratum: Phys. Rev. Lett. 96 (2006), 039901] doi:10.1103/PhysRevLett.94.102301 [arXiv:nucl-th/0410079 [nucl-th]].
  • (29) F. Becattini, F. Piccinini and J. Rizzo, Phys. Rev. C 77 (2008), 024906 doi:10.1103/PhysRevC.77.024906 [arXiv:0711.1253 [nucl-th]].
  • (30) M. Baznat, K. Gudima, A. Sorin and O. Teryaev, Phys. Rev. C 88 (2013) no.6, 061901 doi:10.1103/PhysRevC.88.061901 [arXiv:1301.7003 [nucl-th]].
  • (31) L. Adamczyk et al. [STAR], Nature 548 (2017), 62-65 doi:10.1038/nature23004 [arXiv:1701.06657 [nucl-ex]].
  • (32) Y. Jiang, Z. W. Lin and J. Liao, Phys. Rev. C 94 (2016) no.4, 044910 [erratum: Phys. Rev. C 95 (2017) no.4, 049904] doi:10.1103/PhysRevC.94.044910 [arXiv:1602.06580 [hep-ph]].
  • (33) X. Chen, L. Zhang, D. Li, D. Hou and M. Huang, JHEP 07 (2021), 132 doi:10.1007/JHEP07(2021)132 [arXiv:2010.14478 [hep-ph]].
  • (34) N. R. F. Braga, L. F. Faulhaber and O. C. Junqueira, Phys. Rev. D 105 (2022) no.10, 106003 doi:10.1103/PhysRevD.105.106003 [arXiv:2201.05581 [hep-th]].
  • (35) Y. Q. Zhao, S. He, D. Hou, L. Li and Z. Li, JHEP 04 (2023), 115 doi:10.1007/JHEP04(2023)115 [arXiv:2212.14662 [hep-ph]].
  • (36) J. X. Chen and D. F. Hou, Eur. Phys. J. C 84, no.4, 447 (2024) doi:10.1140/epjc/s10052-024-12708-7 [arXiv:2202.00888 [hep-ph]].
  • (37) J. X. Chen, D. F. Hou and H. C. Ren, JHEP 03, 171 (2024) doi:10.1007/JHEP03(2024)171 [arXiv:2308.08126 [hep-ph]].
  • (38) D. Hou, M. Atashi, K. Bitaghsir Fadafan and Z. q. Zhang, Phys. Lett. B 817, 136279 (2021) doi:10.1016/j.physletb.2021.136279
  • (39) P. p. Wu, Z. q. Zhang and X. Zhu, Chin. Phys. C 46, no.11, 113103 (2022) doi:10.1088/1674-1137/ac814e [arXiv:2207.06122 [nucl-th]].
  • (40) B. McInnes, Nucl. Phys. B 887, 246-264 (2014) doi:10.1016/j.nuclphysb.2014.08.011 [arXiv:1403.3258 [hep-th]].
  • (41) B. McInnes, Nucl. Phys. B 911, 173-190 (2016) doi:10.1016/j.nuclphysb.2016.08.001 [arXiv:1604.03669 [hep-th]].
  • (42) Y. z. Cai and Z. q. Zhang, Chin. Phys. C 48, no.1, 015102 (2024) doi:10.1088/1674-1137/ad061f [arXiv:2310.13865 [hep-ph]].
  • (43) Z. q. Zhang, X. Zhu and D. f. Hou, Nucl. Phys. B 989, 116149 (2023) doi:10.1016/j.nuclphysb.2023.116149
  • (44) Y. Q. Zhao, X. L. Sheng, S. W. Li and D. Hou, [arXiv:2403.07468 [hep-ph]].
  • (45) C. Erices and C. Martinez, Phys. Rev. D 97 (2018) no.2, 024034 doi:10.1103/PhysRevD.97.024034 [arXiv:1707.03483 [hep-th]].
  • (46) M. Bravo Gaete, L. Guajardo and M. Hassaine, JHEP 04 (2017), 092 doi:10.1007/JHEP04(2017)092 [arXiv:1702.02416 [hep-th]].
  • (47) A. M. Awad, Class. Quant. Grav. 20 (2003), 2827-2834 doi:10.1088/0264-9381/20/13/327 [arXiv:hep-th/0209238 [hep-th]].
  • (48) S. W. Hawking, C. J. Hunter and M. Taylor, Phys. Rev. D 59, 064005 (1999) doi:10.1103/PhysRevD.59.064005 [arXiv:hep-th/9811056 [hep-th]].
  • (49) G. W. Gibbons, M. J. Perry and C. N. Pope, Class. Quant. Grav. 22, 1503-1526 (2005) doi:10.1088/0264-9381/22/9/002 [arXiv:hep-th/0408217 [hep-th]].
  • (50) G. W. Gibbons, H. Lu, D. N. Page and C. N. Pope, Phys. Rev. Lett. 93, 171102 (2004) doi:10.1103/PhysRevLett.93.171102 [arXiv:hep-th/0409155 [hep-th]].
  • (51) M. Garbiso and M. Kaminski, JHEP 12, 112 (2020) doi:10.1007/JHEP12(2020)112 [arXiv:2007.04345 [hep-th]].
  • (52) K. Murata, Prog. Theor. Phys. 121, 1099-1124 (2009) doi:10.1143/PTP.121.1099 [arXiv:0812.0718 [hep-th]].
  • (53) N. Iqbal and H. Liu, Phys. Rev. D 79, 025023 (2009) doi:10.1103/PhysRevD.79.025023 [arXiv:0809.3808 [hep-th]].
  • (54) Z. R. Zhu, S. Wang, X. Chen, J. X. Chen and D. Hou, [arXiv:2407.03633 [hep-ph]].
  • (55) M. A. G. Amano, C. Cartwright, M. Kaminski and J. Wu, Prog. Part. Nucl. Phys. 139, 104135 (2024) doi:10.1016/j.ppnp.2024.104135 [arXiv:2308.11686 [hep-th]].