This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Hida theory for special orders

Luca Dall’Ava
Abstract.

This note is devoted to the study of families of quaternionic modular forms arising from orders defined by Pizer. In this situation, the Hecke-eigenspaces are 2-dimensional contrary to the classical case of Eichler orders. The main result is a Control Theorem in the spirit of Hida, interpolating these 2-dimensional Hecke-eigenspaces. We restrict our attention to a definite rational quaternion algebra ramified at a single odd prime \ell.

2010 Mathematics Subject Classification: 11F11, 11R52.
Key words: Quaternion algebras, Hijikata–Pizer–Shemanske orders, Hida families, control theorems.

1. Introduction and statement of the result

Let \ell be an odd prime, N1N\geq 1 an integer prime to \ell and k2k\geq 2 an integer. Let BB be the unique, up to isomorphism, quaternion algebra over \mathbb{Q} ramified exactly at \ell and \infty. Take RR to be an Eichler order of level NN in BB and consider the space of \mathbb{C}-valued cuspidal quaternionic newforms with level RR, denoted by 𝒮knew(R,)\mathscr{S}_{k}^{new}(R,\mathbb{C}); we recall its precise definition in Section 2.6 but, roughly speaking, it represents the space of non-Eisenstein quaternionic modular forms which do not satisfy a lower level structure. The Jacquet–Langlands correspondence ensures an injective transfer between automorphic representations of the algebraic group associated with B×B^{\times} and GL2/GL_{2}/\mathbb{Q}, but at the level of automorphic forms it takes an explicit realization, often referred to as the Eichler–Jacquet–Langlands correspondence. More precisely, one obtains the Hecke-equivariant isomorphism 𝒮knew(R,)Sknew(Γ0(N),)\mathscr{S}_{k}^{new}(R,\mathbb{C})\cong S_{k}^{new}(\Gamma_{0}(N\ell),\mathbb{C}). On the other hand, in order to study modular forms with higher level structure at \ell, one needs more general orders, namely the special orders defined by Pizer and Hijikta–Pizer–Shemanske. As the precise definition of special orders does not contribute necessarily to the understanding of this introduction, we prefer to avoid technicalities and postpone it to Definition 2.1.1. In the case where RR is such a special order in BB, corresponding to level structure N2rN\ell^{2r} with r1r\geq 1, the relation between automorphic forms changes considerably. Before stating the precise relation, in order to be consistent with the notation present in [15], let us introduce the following (unfortunately unconventional but rather useful) piece of notation. Throughout the whole document, for any module MM, we write 2M2M for the direct sum MMM\oplus M. The Jacquet–Langlands correspondence, for r2r\geq 2, takes the explicit form of the following Hecke-isomorphism

(1.1) 2Sknew(Γ1(N2r),)𝒮knew(R,)χ2Sknew(Γ1(Nr),χ2,)χ¯,2S_{k}^{new}(\Gamma_{1}(N\ell^{2r}),\mathbb{C})\cong\mathscr{S}^{new}_{k}(R,\mathbb{C})\oplus\bigoplus_{\chi}2S_{k}^{new}(\Gamma_{1}(N\ell^{r}),\chi^{2},\mathbb{C})^{\otimes\overline{\chi}},

where two copies of Sknew(Γ1(N2r),)S_{k}^{new}(\Gamma_{1}(N\ell^{2r}),\mathbb{C}) must be taken into account and the sum of the twisted spaces Sknew(Γ1(Nr),χ2,)χ¯S_{k}^{new}(\Gamma_{1}(N\ell^{r}),\chi^{2},\mathbb{C})^{\otimes\overline{\chi}} (see beginning of Section 3.3) runs over certain primitive characters modulo r\ell^{r}. Equation (1.1) has a slightly more complicated expression for r=1r=1, but the above situation is already explanatory of the general phenomenon; an exhaustive statement can be found in Theorem 3.3.2. For any choice of an isomorphism in Eq. (1.1) we see that any classical newform of level N2rN\ell^{2r}, which is twist-minimal at \ell (as in Definition 3.3.4), lifts to two linearly independent quaternionic newforms with the same Hecke-eigenvalues away from the level. The above-mentioned situation has been extensively studied in a series of works by H. Hijikata, A. Pizer, and T. Shemanske, most notably [26] and [15]. In the light of this multiplicity, it is natural to ask whether these quaternionic modular forms still live in pp-adic families, for pp an odd prime different from \ell and prime to NN. In this note we provide a positive answer to this question.

As introduced above, let \ell, pp and NN be, in the order, two distinct odd primes and a positive integer prime to both \ell and pp. For the sake of simplicity, we restrict here to the case of trivial character at \ell and exponent 2r42r\geq 4; we refer the reader to Theorem 4.2.4 for the general statement. As in Definition 2.4 of [9], we consider \mathcal{R} to be the universal ordinary pp-adic Hecke algebra of tame level N2rN\ell^{2r}. Considering the Iwasawa algebra p[[p×]]\mathbb{Z}_{p}[\![\mathbb{Z}_{p}^{\times}]\!], \mathcal{R} represents the p[[p×]]\mathbb{Z}_{p}[\![\mathbb{Z}_{p}^{\times}]\!]-algebra of Hecke-operators acting on Hida families of tame level N2rN\ell^{2r}. For any continuous group homomorphism κ:p¯\kappa:\mathcal{R}\longrightarrow\overline{\mathbb{Q}_{p}}, we say that κ\kappa is an arithmetic homomorphism if its restriction to 1+ppp[[p×]]1+p\mathbb{Z}_{p}\subseteq\mathbb{Z}_{p}[\![\mathbb{Z}_{p}^{\times}]\!] defines a character of the form zzk2ε(z)z\longmapsto z^{k-2}\varepsilon(z), for k2k\in\mathbb{Z}_{\geq 2} and ε\varepsilon a pp-adic character of conductor pnp^{n}, n0n\geq 0. We recall that these homomorphisms are identified with points on the so-called weight space. As usual, we associate to each arithmetic homomorphism κ\kappa the couple (k,ε)(k,\varepsilon). For any κ\kappa we also denote its kernel by 𝒫κ\mathcal{P}_{\kappa} and the corresponding localization of \mathcal{R} by 𝒫κ\mathcal{R}_{\mathcal{P}_{\kappa}}. Let ff be a classical modular newform in Sk(Γ0(Np2r),)S_{k}(\Gamma_{0}(Np\ell^{2r}),\mathbb{C}) and assume that ff is twist-minimal at \ell. Moreover, if ff is pp-ordinary, we can consider the unique Hida family ff_{\infty} associated with ff by the works of Hida and Wiles. For each arithmetic homomorphism κ\kappa we denote by fκf_{\kappa} the specialization of ff_{\infty} at κ\kappa. We set FF (resp. FκF_{\kappa}) to be the field extension of p\mathbb{Q}_{p} generated by the Fourier coefficients of ff (resp. fκf_{\kappa}) and take 𝒪\mathcal{O} (resp. 𝒪κ\mathcal{O}_{\kappa}) to be its ring of integers. Fix now RR to be a maximal order in the quaternion algebra BB which contains the family of nested orders {Rn}\{R^{n}\},

(1.2) Rn+1RnR0R, Rn is a special order of level Npn2r.\cdots\subset R^{n+1}\subset R^{n}\subset\cdots R^{0}\subset R,\,\,\,\,\,\textrm{ $R^{n}$ is a special order of level $Np^{n}\ell^{2r}$.}

At all places q,q\neq\ell,\infty, we fix isomorphisms ιq:BqM2(q)\iota_{q}:B\otimes_{\mathbb{Q}}\mathbb{Q}_{q}\cong M_{2}(\mathbb{Q}_{q}) such that RnqR^{n}\otimes_{\mathbb{Z}}\mathbb{Z}_{q} is identified with the upper triangular matrices modulo NpnNp^{n}. For each nn we consider the compact open subgroup UnRn^:=Rn^U_{n}\subset\widehat{R^{n}}:=R^{n}\otimes_{\mathbb{Z}}\widehat{\mathbb{Z}} defined as

(1.3) Un={g=(gq)R^n×ιq(gq)(01)(modNpnq), for qNpn}.U_{n}=\left\{g=(g_{q})\in\widehat{R}^{n\times}\mid\iota_{q}(g_{q})\equiv\left(\begin{smallmatrix}*&*\\ 0&1\end{smallmatrix}\right)\pmod{Np^{n}\mathbb{Z}_{q}},\textrm{ for }q\mid Np^{n}\right\}.

Let Vk2(𝒪κ)V_{k-2}(\mathcal{O}_{\kappa}) be the dual of Lk2(𝒪κ)L_{k-2}(\mathcal{O}_{\kappa}), the space of homogeneous polynomials in 𝒪κ[X,Y]\mathcal{O}_{\kappa}[X,Y] of degree k2k-2, endowed with the action |up|_{u_{p}} of GL2(p)GL_{2}(\mathbb{Z}_{p}), induced by the left multiplication (abcd)(X,Y)t=(aX+bY,cX+dY)t\left(\begin{smallmatrix}a&b\\ c&d\end{smallmatrix}\right)(X,Y)^{t}=(aX+bY,cX+dY)^{t}. Denoting B^=B𝔸,f\widehat{B}=B\otimes\mathbb{A}_{\mathbb{Q},f} for 𝔸,f\mathbb{A}_{\mathbb{Q},f} the finite adèles of \mathbb{Q}, we consider, as in Definition 2.4.3, the space of quaternionic pp-adic modular forms of weight k2k\geq 2, character ε\varepsilon (of conductor pnp^{n}) and level UnU_{n},

(1.4) Sk(Un,ε,𝒪κ):={φ:B^×Vk2(𝒪κ)φ(bb~uz)=ε(z)zpk2φ(b~)|up, for bB×,b~B^×,uUn,z𝔸,f×}.S_{k}(U_{n},\varepsilon,\mathcal{O}_{\kappa}):=\Big{\{}\varphi:\widehat{B}^{\times}\rightarrow V_{k-2}(\mathcal{O}_{\kappa})\mid\varphi(b\tilde{b}uz)=\varepsilon(z)z_{p}^{k-2}\varphi(\tilde{b})|_{u_{p}},\\ \text{ for }b\in B^{\times},\tilde{b}\in\widehat{B}^{\times},u\in U_{n},z\in\mathbb{A}_{\mathbb{Q},f}^{\times}\Big{\}}.

More generally, let 𝖷\mathsf{X} be the subset of primitive vectors in p2\mathbb{Z}_{p}^{2}, namely the subset of vectors with at least one component which is not divisible by pp, and consider the space (𝖷,𝒪)\mathcal{M}(\mathsf{X},\mathcal{O}) of 𝒪\mathcal{O}-valued measures on 𝖷\mathsf{X}. We construct, following Definition 4.1.1, the space of measure-valued quaternionic modular forms

(1.5) S2(U0,(𝖷,𝒪)):={φ:B^×(𝖷,𝒪)φ(bb~uz)=φ(b~)|up, for bB×,b~B^×,uU0,z𝔸,f×},S_{2}(U_{0},\mathcal{M}(\mathsf{X},\mathcal{O})):=\Big{\{}\varphi:\widehat{B}^{\times}\rightarrow\mathcal{M}(\mathsf{X},\mathcal{O})\mid\varphi(b\tilde{b}uz)=\varphi(\tilde{b})|_{u_{p}},\\ \text{ for }b\in B^{\times},\phantom{.}\tilde{b}\in\widehat{B}^{\times},\phantom{.}u\in U_{0},\phantom{.}z\in\mathbb{A}_{\mathbb{Q},f}^{\times}\Big{\}},

for |up|_{u_{p}} the action of GL2(p)GL_{2}(\mathbb{Z}_{p}) induced by the left multiplication on the variables. By integration, we induce, for any arithmetic homomorphism κ=(k,ε)\kappa=(k,\varepsilon), a specialization map

(1.6) νκ:S2(U0,(𝖷,𝒪))Sk(Un,ε,𝒪)\nu_{\kappa}:S_{2}(U_{0},\mathcal{M}(\mathsf{X},\mathcal{O}))\longrightarrow S_{k}(U_{n},\varepsilon,\mathcal{O})

such that

(1.7) νκ(φ)(b~)(P):=pp×p×ε𝔸1(y)P(x,y)d(φ(b~))(x,y)\nu_{\kappa}(\varphi)(\tilde{b})(P):=\int_{p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times}}\varepsilon_{\mathbb{A}}^{-1}(y)P(x,y)d(\varphi(\tilde{b}))(x,y)

for ϕ\phi and b~\tilde{b} as above, and any PLk2(𝒪κ)P\in L_{k-2}(\mathcal{O}_{\kappa}); all details can be found in Section 4.1. Considering the ordinary component of S2(U0,ε,(𝖷,𝒪))S_{2}(U_{0},\varepsilon,\mathcal{M}(\mathsf{X},\mathcal{O})), which we denote by 𝕎\mathbb{W}, the specialization maps descend to maps between the ordinary components

(1.8) νκord:𝕎Sk(Un,ε,𝒪)ord,\nu_{\kappa}^{ord}:\mathbb{W}\longrightarrow S_{k}(U_{n},\varepsilon,\mathcal{O})^{ord},

for Sk(Un,ε,𝒪)ordS_{k}(U_{n},\varepsilon,\mathcal{O})^{ord} the subspace of pp-ordinary quaternionic forms in Sk(Un,ε,𝒪)S_{k}(U_{n},\varepsilon,\mathcal{O}). As the algebra \mathcal{R} acts on the space of Hida families, we can consider the ff_{\infty}-isotypic component

(1.9) (𝕎𝒪[[1+pp]])[f],\left(\mathbb{W}\otimes_{\mathcal{O}[\![1+p\mathbb{Z}_{p}]\!]}\mathcal{R}\right)[f_{\infty}],

that is, the component of 𝕎𝒪[[1+pp]]\mathbb{W}\otimes_{\mathcal{O}[\![1+p\mathbb{Z}_{p}]\!]}\mathcal{R} where the Hecke-operators act with the same \mathcal{R}-eigenvalues of ff_{\infty}. Up to a mild condition on the level N2rN\ell^{2r}, as explained in Remark 4.1.5, one can assume the \mathcal{R}-module 𝕎𝒪[[1+pp]]\mathbb{W}\otimes_{\mathcal{O}[\![1+p\mathbb{Z}_{p}]\!]}\mathcal{R} to be free, as we do here. We can hence state our main result under the above simplifying restrictions for the character and the power of \ell; the general statements are the content of Theorems 4.2.4 and 4.2.5.

Theorem A (Control theorem for special orders).

With the above notation, suppose that ff is twist-minimal at \ell. For any arithmetic homomorphism κ:p¯\kappa:\mathcal{R}\longrightarrow\overline{\mathbb{Q}_{p}}, the map νκ\nu_{\kappa} (of Proposition 4.2.1, induced by the specialization map) induces an isomorphism of 22-dimensional FκF_{\kappa}-vector spaces

(1.10) ((𝕎𝒪[[1+pp]])[f])𝒫κ/𝒫κ𝒫κ(Sk(Un,ε,Fκ)ord)[fκ].\left(\left(\mathbb{W}\otimes_{\mathcal{O}[\![1+p\mathbb{Z}_{p}]\!]}\mathcal{R}\right)[f_{\infty}]\right)\otimes_{\mathcal{R}}\mathcal{R}_{\mathcal{P}_{\kappa}}/\mathcal{P}_{\kappa}\mathcal{R}_{\mathcal{P}_{\kappa}}\overset{\cong}{\longrightarrow}\left(S_{k}(U_{n},\varepsilon,F_{\kappa})^{ord}\right)[f_{\kappa}].

The two main ingredients needed for the proof of Theorem A are the above isomorphism (1.1) and the seminal paper [13]. The results proved in [13] for definite quaternion algebras over totally real fields different from \mathbb{Q} remain true in the case of definite quaternion algebras over \mathbb{Q}, as already noticed in Section 3 of [21] and Section 4 of [17], and in the case of special orders, as remarked in Remarks 4.1.5 and 4.2.3. The strategy of the proof is then a generalization of the work [21], from which we take inspiration.

Theorem A extends the foundational results of Hida theory to the case of quaternionic modular forms with special level structure, allowing to consider quaternionic pp-adic families with tame level 2r\ell^{2r} over the quaternion algebra BB, which, we remark, is ramified at \ell. We highlight again that the situation discussed here differs markedly from the classical case of Eichler orders, where all the local non-archimedean automorphic representations at \ell are 1-dimensional. In particular, the novelty of this result lies in the rank of the Hecke-eigenspaces being and no more 1 as in the classical Eichler case.

An additional motivation for such a Control Theorem originates from the desire to study points outside the interpolation region of the triple product pp-adic LL-function, as treated in [6]. More precisely, the present study together with [6] are motivated by a conjecture of Bertolini–Seveso–Venerucci and by the wish to provide computational support to it.

The present work leaves open some questions which we briefly discuss in Section 4.3. The main one is whether it is possible to distinguish the 2-dimensional spaces of quaternionic modular forms attached to special orders, first in the case of a classical eigenspace, and then for families.

Acknowledgments: This note presents the content of a section of the author’s doctoral dissertation [7]; he expresses his gratitude to his supervisor Massimo Bertolini. Many thanks go also to Matteo Longo for several helpful discussions, among the others on [21] and [13]. The author is grateful to the anonymous referee for the valuable comments, suggestions, and questions which led to a significant improvement of the exposition. The author also wishes to thank Matteo Tamiozzo, for numerous mathematical conversations, and Jonas Franzel, for reading an early draft of this work and finding out various typos. The author is grateful to the Universität Duisburg–Essen, where the main part of this work has been carried out, as well as to the Università degli Studi di Padova (Research Grant funded by PRIN 2017 “Geometric, algebraic and analytic methods in arithmetic”) for their financial support.

2. Quaternionic orders and modular forms

We begin by recalling the definitions of the various quaternionic orders as well as the definition of quaternionic modular forms, both pp-adic and classical, for a definite quaternion algebra over \mathbb{Q}. Special orders are a generalization of the classical Eichler orders, which are needed for studying both higher ramification and the presence of a character at primes where the quaternion algebra is ramified. We refer the reader to [15] and [16] for all the details that we are not recalling here.

We fix, once and for all, a choice of field embeddings ¯p¯\overline{\mathbb{Q}}\hookrightarrow\overline{\mathbb{Q}_{p}}\hookrightarrow\mathbb{C}. For any prime qq we denote qq-adic valuation by νq\nu_{q}, normalized so that νq(q)=1\nu_{q}(q)=1.

2.1. Special orders

Let BB the unique, up to isomorphism, quaternion algebra over \mathbb{Q} with discriminant DD. Fix an isomorphism ιq:Bq:=BqM2(q)\iota_{q}:B_{q}:=B\otimes\mathbb{Q}_{q}\cong M_{2}(\mathbb{Q}_{q}) for each qDq\nmid D. We denote the reduced norm of bBb\in B by n(b)n(b)\in\mathbb{Q}. Let qq be an odd rational prime, and fix uu\in\mathbb{Z} to be a quadratic non residue modulo qq. The local field q\mathbb{Q}_{q} has a unique quadratic unramified extension q(u)\mathbb{Q}_{q}(\sqrt{u}) and two quadratic ramified ones, q(q)\mathbb{Q}_{q}(\sqrt{q}) and q(uq)\mathbb{Q}_{q}(\sqrt{uq}). For LqL_{q} one of these quadratic extensions, we denote by 𝒪Lq\mathcal{O}_{L_{q}} its ring of integers. Set

(2.1) M20(Nq):={γM2(q)γ(0)(modNq)}=M20(qνq(N)q),M_{2}^{0}(N\mathbb{Z}_{q}):=\left\{\gamma\in M_{2}(\mathbb{Z}_{q})\mid\gamma\equiv\left(\begin{smallmatrix}*&*\\ 0&*\end{smallmatrix}\right)\pmod{N\mathbb{Z}_{q}}\right\}=M_{2}^{0}(q^{\nu_{q}(N)}\mathbb{Z}_{q}),

and, for r1r\geq 1,

(2.2) M(Lq,r):=𝒪Lq+{xBqn(x)qq}r1=𝒪Lq+{xBqn(x)qr1q}.M(L_{q},r):=\mathcal{O}_{L_{q}}+\left\{x\in B_{q}\mid n(x)\in q\mathbb{Z}_{q}\right\}^{r-1}=\mathcal{O}_{L_{q}}+\left\{x\in B_{q}\mid n(x)\in q^{r-1}\mathbb{Z}_{q}\right\}.

We notice that, for r=1r=1, M(Lq,1)M(L_{q},1) is the unique maximal ideal of BqB_{q}.

Definition 2.1.1 ([16], Def. 6.1).

An order RR in BB is said to be a special order of level M=NDmM=N\cdot\prod_{\ell\mid D}\ell^{m_{\ell}} if

  1. (i)

    Rq:=RqR_{q}:=R\otimes\mathbb{Z}_{q} is conjugate to M20(Nq)M_{2}^{0}(N\mathbb{Z}_{q}) by an element of Bq×B_{q}^{\times} (via ιq\iota_{q}), for each qDq\nmid D\infty;

  2. (ii)

    there exists a quadratic extension LL_{\ell} of \mathbb{Q}_{\ell} such that RR_{\ell} is conjugate to M(L,m)M(L_{\ell},m_{\ell}), for each |D\ell|D.

In the following, we choose for each qDq\nmid D the isomorphism ιq\iota_{q} such that ιl(Rq)=M20(Nq)\iota_{l}(R_{q})=M_{2}^{0}(N\mathbb{Z}_{q}). If in the above definition we take the level MM to be such that D||MD||M, we obtain the usual definition of an Eichler order of level NN (see [25], page 344).

From now on, we assume DD to be odd and we fix a particular choice of special orders and quadratic field extensions. We follow the thorough summary given in Section 2.22.2 of [19], which is based on a careful analysis of [15] and takes into account more general orders. Let ff be any newform in S2(Γ1(NDe),)S_{2}(\Gamma_{1}(N\prod_{\ell\mid D}\ell^{e_{\ell}}),\mathbb{C}). In order to be able to lift ff to a quaternionic modular form, we fix the choice of the special order RR such that the quadratic extensions LL_{\ell} of \mathbb{Q}_{\ell} and the exponents mm_{\ell} are as follows. For any (odd) prime D\ell\mid D, if

  1. (1)

    ee_{\ell} is odd, we take LL_{\ell} to be the unramified extension of \mathbb{Q}_{\ell} and m=em_{\ell}=e_{\ell};

  2. (2)

    ee_{\ell} is even, we take LL_{\ell} to be one of the two ramified extension of \mathbb{Q}_{\ell} and m=em_{\ell}=e_{\ell}.

The case of even discriminant presents some further difficulties and, as our main case of interest is the case of \ell odd, we omit it and refer the reader to [15] and [19].

We recall a part of the notation already used in the Introduction.

Notation 2.1.2.

Let ^\widehat{\mathbb{Z}} be the profinite completion of \mathbb{Z}. We set B^=B𝔸,f\widehat{B}=B\otimes_{\mathbb{Q}}\mathbb{A}_{\mathbb{Q},f} and R^=R^\widehat{R}=R\otimes_{\mathbb{Z}}\widehat{\mathbb{Z}}, where 𝔸,f=^\mathbb{A}_{\mathbb{Q},f}=\mathbb{Q}\widehat{\mathbb{Z}} are the finite adèles of \mathbb{Q}.

Special orders satisfy properties similar to the Eichler ones.

Lemma 2.1.3.

R^×\widehat{R}^{\times} is a compact open subgroup of B^×\widehat{B}^{\times}. In fact, this is true for each one of its local components.

Proof.

This lemma is a classical result whenever RR is an Eichler order (see e.g. Sections 5.1 and 5.2 of [23]). We consider the case of a special order. Lemma 5.1.1 of [23] tells us that Rq×R_{q}^{\times} is compact in Bq×B_{q}^{\times}, independently of the order. By definition of special order, it is enough to consider M(L,r)M(L_{\ell},r). Since the reduced norm is continuous, {xBn(x)r1}\{x\in B_{\ell}\mid n(x)\in\ell^{r-1}\mathbb{Z}_{\ell}\} is open and thus, as the sum is a continuous homomorphism, we deduce the claim. ∎

Proposition 2.1.4 ([24], Proposition 2.13).

All special orders have finite class number. Moreover, it depends only on the level and not on the specific choice of the special order.

Lemma 2.1.5 ([16], Lemma 7.4).

Let RR be a special order of level NN. Then there exists a set of ideal class representatives {I1,,Ih}\{I_{1},\ldots,I_{h}\} for the left RR-ideal classes, such that Iiq=RqI_{i}\otimes\mathbb{Z}_{q}=R_{q} for all qq dividing the level.

2.2. Characters

Let RR be a special order of level M=N|DmM=N\cdot\prod_{\ell|D}\ell^{m_{\ell}} and let χ\chi be a Dirichlet character with conductor CC.

Assumption 2.2.1.

Assume that νq(N)νq(C)\nu_{q}(N)\geq\nu_{q}(C) for all qNq\mid N and, for each D\ell\mid D, that

(2.3) m{2ν(C)1if L is unramified over ,2ν(C)if L is ramified over .\displaystyle m_{\ell}\geq

The choice of character in Assumption 2.2.1 is motivated by the explicit form of the Jacquet–Langlands correspondence recalled in the Introduction (see Section 3.3 for details).

We want to extend χ\chi to a character χ~\widetilde{\chi} of R^×\widehat{R}^{\times} and for this purpose we must deal with several sub-cases. First of all, we decompose χ=qCχq\chi=\prod_{q\mid C}\chi_{q} by the Chinese Reminder Theorem and we define each χq~\widetilde{\chi_{q}} as follows.

  1. (1)

    If qMq\mid M and qCq\nmid C, we set χq~(α)=1\widetilde{\chi_{q}}(\alpha)=1 for each αRq\alpha\in R_{q}.

  2. (2)

    If qNq\mid N and qCq\mid C, we set χq~(α)=χq(d)\widetilde{\chi_{q}}(\alpha)=\chi_{q}(d) for α=(abcd)Rq=M20(Nq)\alpha=\left(\begin{smallmatrix}a&b\\ c&d\end{smallmatrix}\right)\in R_{q}=M_{2}^{0}(N\mathbb{Z}_{q}).

  3. (3)

    If qq is odd, qM/Nq\mid M/N and qCq\mid C we deal with three further sub-cases:

    1. (i)

      If qCq\mid\mid C and χq\chi_{q} is odd, we can always find a lift to 𝒪Lq/𝔪Lqq/qq\mathcal{O}_{L_{q}}/\mathfrak{m}_{L_{q}}\supseteq\mathbb{Z}_{q}/q\mathbb{Z}_{q} and thus to 𝒪Lq\mathcal{O}_{L_{q}}, which we call χLq\chi_{L_{q}}; here 𝔪Lq\mathfrak{m}_{L_{q}} is the maximal ideal of 𝒪Lq\mathcal{O}_{L_{q}}. Because of Assumption 2.2.1, Rq=M(Lq,mq)R_{q}=M(L_{q},m_{q}) is contained in M(Lq,2νq(C)1)M(L_{q},2\nu_{q}(C)-1) (if LqL_{q} is unramified) or in M(Lq,2νq(C))M(L_{q},2\nu_{q}(C)), hence we set χq~(α+β)=χLq(α)\widetilde{\chi_{q}}(\alpha+\beta)=\chi_{L_{q}}(\alpha) for each α+βRq=M(Lq,mq)\alpha+\beta\in R_{q}=M(L_{q},m_{q}) (and α𝒪Lq\alpha\in\mathcal{O}_{L_{q}}).

    2. (ii)

      If qeCq^{e}\mid\mid C, with e1e\geq 1, and χq\chi_{q} is even, we can always find a character ψ\psi such that ψ2=χq\psi^{2}=\chi_{q} and with conductor cond(ψ)=cond(χq)cond(\psi)=cond(\chi_{q}). As remarked in Section 7.2 of [16], the choice of this character is not important, but the fact that a particular choice is fixed is. We set χq~(α)=ψ(n(α))\widetilde{\chi_{q}}(\alpha)=\psi(n(\alpha)).

    3. (iii)

      If qeCq^{e}\mid\mid C, with e>1e>1, and χq\chi_{q} is odd, we write χq=εϕ\chi_{q}=\varepsilon\cdot\phi for a fixed choice of characters ε\varepsilon odd and with cond(ε)=qcond(\varepsilon)=q, and ϕ\phi even. Thus, proceeding analogously to the previous sub-cases, we set χq~=ε~ϕ~\widetilde{\chi_{q}}=\widetilde{\varepsilon}\cdot\widetilde{\phi}.

  4. (4)

    If q=2q=2, 2N/M2\mid N/M and 2C2\mid C, one proceeds in a similar way as in case 3.a3.a.

Patching together the local lifts, we define

(2.4) χ~(b):=qNχq~(bq),\widetilde{\chi}(b):=\prod_{q\mid N}\widetilde{\chi_{q}}(b_{q}),

for any bR^×b\in\widehat{R}^{\times}. In particular, if II is a lattice in BB such that Iq=Iq=RqI_{q}=I\otimes\mathbb{Z}_{q}=R_{q} for each q|Nq|N, and bIb\in I, we have

(2.5) χ~(b)=qNχq~(b).\widetilde{\chi}(b)=\prod_{q\mid N}\widetilde{\chi_{q}}(b).

We refer to [16], Section 7.2 for all the details.

2.3. Quaternionic modular forms of weight 22

Take BB as in the above Section 2.1, with RBR\subset B a special order of level MM. Recall that we fixed isomorphisms ιq:Bq:=BqM2(q)\iota_{q}:B_{q}:=B\otimes\mathbb{Q}_{q}\cong M_{2}(\mathbb{Q}_{q}) for each qDq\nmid D, such that ιq:Rq:=RqM20(Mq)\iota_{q}:R_{q}:=R\otimes\mathbb{Z}_{q}\cong M_{2}^{0}(M\mathbb{Z}_{q}). Set B(𝔸)×=(B𝔸)×B(\mathbb{A}_{\mathbb{Q}})^{\times}=(B\otimes_{\mathbb{Q}}\mathbb{A}_{\mathbb{Q}})^{\times} and

(2.6) R(𝔸)×={rB(𝔸)×(rq)q<R^×}.R(\mathbb{A}_{\mathbb{Q}})^{\times}=\{r\in B(\mathbb{A}_{\mathbb{Q}})^{\times}\mid(r_{q})_{q<\infty}\in\widehat{R}^{\times}\}.

We extend any character χ~\widetilde{\chi} as in the above Section 2.2 to R(𝔸)×R(\mathbb{A}_{\mathbb{Q}})^{\times} imposing χ~(b)=χ~(bf)\widetilde{\chi}(b)=\widetilde{\chi}(b_{f}), where bfR^×b_{f}\in\widehat{R}^{\times} is the finite part of bR(𝔸)×b\in R(\mathbb{A}_{\mathbb{Q}})^{\times}.

Definition 2.3.1.

We define the space of weight-22 quaternionic modular forms with level structure R(𝔸)×R(\mathbb{A}_{\mathbb{Q}})^{\times}, character χ\chi satisfying Assumption 2.2.1 and \mathbb{C}-coefficients, as the \mathbb{C}-vector space S2(R,χ~)S_{2}(R,\widetilde{\chi}) of all continuous functions φ:B(𝔸)×\varphi:B(\mathbb{A}_{\mathbb{Q}})^{\times}\longrightarrow\mathbb{C} satisfying

(2.7) φ(bb~r)=χ~1(r)φ(b~),\varphi(b\tilde{b}r)=\widetilde{\chi}^{-1}(r)\varphi(\tilde{b}),

for all bB×b\in B^{\times}, b~B(𝔸)×\tilde{b}\in B(\mathbb{A}_{\mathbb{Q}})^{\times} and rR(𝔸)×r\in R(\mathbb{A}_{\mathbb{Q}})^{\times}.

As in Chapter 5 of [15], we can decompose B(𝔸)×B(\mathbb{A}_{\mathbb{Q}})^{\times} as a finite union of distinct double cosets

(2.8) B(𝔸)×=i=1hB×xiR(𝔸)×B(\mathbb{A}_{\mathbb{Q}})^{\times}=\coprod_{i=1}^{h}B^{\times}x_{i}R(\mathbb{A}_{\mathbb{Q}})^{\times}

where h=h(R)h=h(R) is the class number of RR. Since BB is definite, the analogous decomposition holds for B^×\widehat{B}^{\times}, namely B^×=i=1hB×xi^R^×\widehat{B}^{\times}=\coprod_{i=1}^{h}B^{\times}\widehat{x_{i}}\widehat{R}^{\times}, with xi^=(xi,q)q<\widehat{x_{i}}=(x_{i,q})_{q<\infty}. By the above Lemma 2.1.5, the representatives xi=(xi,q)qB(𝔸)×x_{i}=(x_{i,q})_{q}\in B(\mathbb{A}_{\mathbb{Q}})^{\times} can be taken to lie in R(𝔸)×R(\mathbb{A}_{\mathbb{Q}})^{\times}, in particular xi,qRq×x_{i,q}\in R_{q}^{\times} for each prime q|Mq|M. If we fix the representatives in this way, we have an explicit description of quaternionic modular forms. By the definition of a quaternionic modular forms and the double coset decomposition, a quaternionic modular form φ\varphi is uniquely determined by its values on the representatives. More precisely, for i=1,,hi=1,\ldots,h, let Γ~xi:=B×xi1R×xi\widetilde{\Gamma}_{x_{i}}:=B^{\times}\cap x_{i}^{-1}R^{\times}x_{i} and define

(2.9) χ~,i:={cχ~(γ)c=c, for each γΓ~xi}.\mathbb{C}_{\widetilde{\chi},i}:=\left\{c\in\mathbb{C}\mid\widetilde{\chi}(\gamma)\cdot c=c,\textrm{ for each }\gamma\in\widetilde{\Gamma}_{x_{i}}\right\}.

As thoroughly explained in loc.cit., the above observations yield the identification

(2.10) S2(R,χ~)i=1hχ~,i,S_{2}(R,\widetilde{\chi})\cong\bigoplus_{i=1}^{h}\mathbb{C}_{\widetilde{\chi},i},

given by φ(φ(x1),,φ(xh))\varphi\longmapsto(\varphi(x_{1}),\ldots,\varphi(x_{h})). We are allowed to consider different coefficients, in fact the above identification still holds when we replace \mathbb{C} by (χ~)\mathbb{Q}(\widetilde{\chi}), the field extension of \mathbb{Q} generated by the values of the character χ~\widetilde{\chi}. By extension of scalars we recover S2(R,χ~)=S2(R,χ~;(χ))S_{2}(R,\widetilde{\chi})=S_{2}(R,\widetilde{\chi};\mathbb{Q}(\chi))\otimes\mathbb{C} and we can consider pp-adic coefficients S2(R,χ~;p¯)=S2(R,χ~;(χ))p¯S_{2}(R,\widetilde{\chi};\overline{\mathbb{Q}_{p}})=S_{2}(R,\widetilde{\chi};\mathbb{Q}(\chi))\otimes\overline{\mathbb{Q}_{p}}, for pp a prime which does not divide the reduced discriminant of BB.

Remark 2.3.2.

All the above constructions and definitions are, up to isomorphism, independent of the specific choice of the special order. Moreover, fixing compatible choices of the lifting characters χ~\widetilde{\chi}, all the constructions are compatible with respect to the inclusion of special orders.

We end this section with the following fact: often the groups Γ~xi\widetilde{\Gamma}_{x_{i}} have cardinality 22, i.e. Γ~xi={±1}\widetilde{\Gamma}_{x_{i}}=\{\pm 1\}.

Proposition 2.3.3 ([26], Proposition 5.12).

Let RR be a special order of level M2M\ell^{2} in the quaternion algebra over \mathbb{Q} ramified exactly at \ell and \infty. Then

(2.11) #R×={2 if >3,either 2 or 6 if =3.\#R^{\times}=\begin{cases}2&\textrm{ if }\ell>3,\\ \textrm{either $2$ or $6$}&\textrm{ if }\ell=3.\end{cases}

Moreover, if =3\ell=3 and 2|M2|M or MM is divisible by a prime q2(mod3)q\equiv 2\pmod{3}, then #R×=2\#R^{\times}=2.

2.4. pp-adic quaternionic modular forms for special orders

Let pp and \ell be two distinct rational odd primes. From now on, we denote by BB the (unique up to isomorphism) definite quaternion algebra over \mathbb{Q} with discriminant \ell and we fix RR to be a maximal order in BB. For NN a fixed positive integer, prime to both pp and \ell, consider a family of nested special orders {Rn}n0\{R^{n}\}_{n\geq 0} satisfying

(2.12) Rn+1RnR0R, Rn is a special order of level Npn2r,\cdots\subset R^{n+1}\subset R^{n}\subset\cdots R^{0}\subset R,\,\,\,\,\,\textrm{ $R^{n}$ is a special order of level $Np^{n}\ell^{2r}$,}

where r1r\geq 1. Up to conjugation, we can suppose that the orders RnR_{n} are all canonical orders of level Npn2rNp^{n}\ell^{2r}, that is, as in Definition 2.1.1. For any prime qq different from \ell, we assume that the fixed isomorphism ιq:BqM2(q)\iota_{q}:B_{q}\cong M_{2}(\mathbb{Q}_{q}) satisfies ιqRq×GL2(q)\iota_{q}R_{q}^{\times}\cong GL_{2}(\mathbb{Z}_{q}) and

(2.13) ιq(Rqn)×Γ0(Npnq):=M20(Npnq)GL2(q).\iota_{q}(R^{n}_{q})^{\times}\cong\Gamma_{0}(Np^{n}\mathbb{Z}_{q}):=M_{2}^{0}(Np^{n}\mathbb{Z}_{q})\cap GL_{2}(\mathbb{Z}_{q}).
Definition 2.4.1.

We define (cf. Lemma 2.1.3) open compact subgroups UnB^×U_{n}\subset\widehat{B}^{\times},

(2.14) Un:=U1(Rn):={g=(gq)R^n×ιq(gq)(01)(modNpnq), for qNpn}.U_{n}:=U_{1}(R^{n}):=\left\{g=(g_{q})\in\widehat{R}^{n\times}\mid\iota_{q}(g_{q})\equiv\left(\begin{smallmatrix}*&*\\ 0&1\end{smallmatrix}\right)\pmod{Np^{n}\mathbb{Z}_{q}},\textrm{ for }q\mid Np^{n}\right\}.

By construction, Un+1UnU0U_{n+1}\subset U_{n}\subset\ldots\subset U_{0}. Given any special order RR^{\prime}, we denote by U1(R)U_{1}(R^{\prime}) the corresponding compact open subgroup defined analogously to UnU_{n}.

For any commutative ring AA, we consider the left action of M2(A)M_{2}(A) on the polynomial ring A[X,Y]A[X,Y], defined as

(2.15) γP(X,Y):=P((X,Y)γ),\gamma\cdot P(X,Y):=P\left((X,Y)\gamma\right),

for PA[X,Y]P\in A[X,Y] and γM2(A)\gamma\in M_{2}(A). We denote by Lm(A)L_{m}(A) the submodule of A[X,Y]A[X,Y] consisting of homogeneous polynomials of degree mm; by definition, Lm(A)L_{m}(A) is stable under the action of M2()M_{2}(\mathbb{Z}). Its dual module Vm(A)V_{m}(A) is endowed with the right action

(2.16) μ|γ(P(X,Y)):=μ(γP((X,Y))),\mu|_{\gamma}(P(X,Y)):=\mu(\gamma\cdot P((X,Y))),

for any μVm(A)\mu\in V_{m}(A) and PLm(A)P\in L_{m}(A).

We take now 𝒪\mathcal{O} to be a finite flat extension of p\mathbb{Z}_{p}, which we assume to contain all the ϕ(Npn2r)\phi(Np^{n}\ell^{2r})-th roots of unity, where ϕ\phi is Euler’s totient function. Given an 𝒪\mathcal{O}-algebra AA, any AA-valued Dirichlet character ψ\psi modulo Npn2rNp^{n}\ell^{2r}, can be lifted to ψ𝔸:×\𝔸×A×,\psi_{\mathbb{A}}:\mathbb{Q}^{\times}\backslash\mathbb{A}_{\mathbb{Q}}^{\times}\longrightarrow A^{\times}, its adèlization, that is, the unique finite order Hecke character

(2.17) ψ𝔸:×\𝔸×/+(1+Npn2r^)×A×\psi_{\mathbb{A}}:\mathbb{Q}^{\times}\backslash\mathbb{A}_{\mathbb{Q}}^{\times}/\mathbb{R}_{+}(1+Np^{n}\ell^{2r}\widehat{\mathbb{Z}})^{\times}\longrightarrow A^{\times}

such that ψ𝔸(ϖq)=ε1(q)\psi_{\mathbb{A}}(\varpi_{q})=\varepsilon^{-1}(q), for every qNpn2rq\nmid Np^{n}\ell^{2r} and ϖq=(ϖq,lϖq,l=1 if lq,ϖq,q=q)𝔸,f×\varpi_{q}=(\varpi_{q,l}\mid\varpi_{q,l}=1\textrm{ if }l\neq q,\varpi_{q,q}=q)\in\mathbb{A}_{\mathbb{Q},f}^{\times}.

We fix such a Dirichlet character ψ\psi modulo Npn2rNp^{n}\ell^{2r} with small conductor at \ell. More precisely, as in [15], we enforce the following assumption.

Assumption 2.4.2.

The \ell-component of ψ\psi, ψ2r\psi_{\ell^{2r}}, is either the trivial character modulo \ell or an odd character of conductor exactly \ell.

Definition 2.4.3.

Let k2k\geq 2 be an integer and let UnU_{n} be as in Definition 2.4.1. For an 𝒪\mathcal{O}-algebra AA and an AA-valued Dirichlet character ψ=ψNpnψ2r\psi=\psi_{Np^{n}}\psi_{\ell^{2r}} (for ψNpn\psi_{Np^{n}} modulo NpnNp^{n} and ψ2r\psi_{\ell^{2r}} modulo 2r\ell^{2r}) we define the space of pp-adic quaternionic modular forms of weight kk, level Npn2rNp^{n}\ell^{2r} and character ψ\psi as

(2.18) Sk(Un,ψ,A):={φ:B^×Vk2(A)φ(bb~uz)=ψNpn,𝔸1(z)ψ2r,𝔸1(z)zpk2ψ2r~(u)φ(b~)|up, for bB×,b~B^×,uUn,z𝔸,f×}.S_{k}(U_{n},\psi,A):=\Big{\{}\varphi:\widehat{B}^{\times}\longrightarrow V_{k-2}(A)\mid\varphi(b\tilde{b}uz)=\psi_{Np^{n},\mathbb{A}}^{-1}(z)\psi_{\ell^{2r},\mathbb{A}}^{-1}(z)z_{p}^{k-2}\widetilde{\psi_{\ell^{2r}}}(u_{\ell})\varphi(\tilde{b})|_{u_{p}},\\ \text{ for }b\in B^{\times},\phantom{.}\tilde{b}\in\widehat{B}^{\times},\phantom{.}u\in U_{n},\phantom{.}z\in\mathbb{A}_{\mathbb{Q},f}^{\times}\Big{\}}.

This space can be identified with the space of functions φ:B×\B^×Vk2(A)\varphi:B^{\times}\backslash\widehat{B}^{\times}\longrightarrow V_{k-2}(A) satisfying

(2.19) φ(zb~)=ψNpn,𝔸1(z)ψ2r,𝔸1(z)zpk2φ(b~)\varphi(z\tilde{b})=\psi_{Np^{n},\mathbb{A}}^{-1}(z)\psi_{\ell^{2r},\mathbb{A}}^{-1}(z)z_{p}^{k-2}\varphi(\tilde{b})

for b~B×\B^×\tilde{b}\in B^{\times}\backslash\widehat{B}^{\times} and z𝔸,f×z\in\mathbb{A}_{\mathbb{Q},f}^{\times}, and such that (uφ)(b~):=φ|up1(b~u)=ψ2r~(u)φ(b~),(u\cdot\varphi)(\tilde{b}):=\varphi|_{u_{p}^{-1}}(\tilde{b}u)=\widetilde{\psi_{\ell^{2r}}}(u_{\ell})\varphi(\tilde{b}), for any uUnu\in U_{n} and any b~B^×\tilde{b}\in\widehat{B}^{\times}.

Remark 2.4.4.

The term pp-adic quaternionic modular forms refers to the fact that we are considering pp-adic coefficients, and the action at the place pp instead of the action at infinity (see the next Section 2.5).

2.5. Quaternionic modular forms of higher weight

The definition of classical quaternionic modular forms for higher weight is similar to the one for weight 2. We fix an identification ι:BM2()\iota_{\infty}:B_{\infty}\hookrightarrow M_{2}(\mathbb{C}) in order to compare pp-adic and classical quaternionic modular forms.

Definition 2.5.1.

We define the space of weight-kk, k2k\geq 2, quaternionic modular forms with level structure Rn(𝔸)×R^{n}(\mathbb{A}_{\mathbb{Q}})^{\times}, character χ\chi satisfying Assumption 2.2.1 and \mathbb{C}-coefficients, as the \mathbb{C}-vector space Sk(Rn,χ~)S_{k}(R^{n},\widetilde{\chi}) of all continuous functions φ:B(𝔸)×Vk2()\varphi_{\infty}:B(\mathbb{A}_{\mathbb{Q}})^{\times}\longrightarrow V_{k-2}(\mathbb{C}) satisfying

(2.20) φ(bb~br)=χ~1(r)|n(b1)|𝔸(k2)/2b1φ(b~)\varphi_{\infty}(b\tilde{b}b_{\infty}r)=\widetilde{\chi}^{-1}(r)|n(b_{\infty}^{-1})|_{\mathbb{A}}^{(k-2)/2}b_{\infty}^{-1}\cdot\varphi_{\infty}(\tilde{b})

for all bB×b\in B^{\times}, bB×b_{\infty}\in B_{\infty}^{\times}, b~B(𝔸)×\tilde{b}\in B(\mathbb{A}_{\mathbb{Q}})^{\times} and rRn(𝔸)×r\in R^{n}(\mathbb{A}_{\mathbb{Q}})^{\times}.

As explained in Chapter 2 of [13], we can identify classical and pp-adic modular forms. We identify p\mathbb{C}_{p} with \mathbb{C} compatibly with the fixed inclusion ¯p\overline{\mathbb{Q}}_{p}\hookrightarrow\mathbb{C} and associate (see also [17], Eq. (4.4)) to φSk(Un,ψ,p)\varphi\in S_{k}(U_{n},\psi,\mathbb{C}_{p}) the form Φ(φ)Sk(Rn,ψ~)\Phi_{\infty}(\varphi)\in S_{k}(R^{n},\widetilde{\psi}), defined as

(2.21) Φ(φ)(b~b)=|n(b~b)|𝔸(k2)/2b1(b~pφ(b~)),\Phi_{\infty}(\varphi)(\tilde{b}b_{\infty})=|n(\tilde{b}b_{\infty})|_{\mathbb{A}}^{(k-2)/2}b_{\infty}^{-1}\cdot\left(\tilde{b}_{p}\cdot\varphi(\tilde{b})\right),

for bB×b_{\infty}\in B_{\infty}^{\times} and b~B(𝔸)×\tilde{b}\in B(\mathbb{A}_{\mathbb{Q}})^{\times}.

2.6. Quaternionic Eisenstein series and newforms

We recall the notions of quaternionic Eisenstein series and quaternionic newforms as presented in [15], Chapters 5 and 7. For this section, we take AA to be a p\mathbb{Q}_{p}-module. We begin with the Eisenstein series part of Sk(Un,ψ,A)S_{k}(U_{n},\psi,A), that is

(2.22) SkEis(Un,ψ,A):={fSk(Un,ψ,A)g:𝔸,f×Ak1 s.t. f(b~)=g(n(b~))},S^{Eis}_{k}(U_{n},\psi,A):=\Big{\{}f\in S_{k}(U_{n},\psi,A)\mid\exists\phantom{.}g:\mathbb{A}_{\mathbb{Q},f}^{\times}\longrightarrow A^{k-1}\textrm{ s.t. }f(\tilde{b})=g(n(\tilde{b}))\Big{\}},

where n:B^×𝔸,f×n:\widehat{B}^{\times}\longrightarrow\mathbb{A}_{\mathbb{Q},f}^{\times} is the extension of the quaternionic norm to B^\widehat{B}. In other words, SkEis(Un,ψ,A)S^{Eis}_{k}(U_{n},\psi,A) is the space of quaternionic modular forms factoring through the reduced norm map. As proved by Propositions 5.2, 5.3 and the discussion after Proposition 5.4 in loc.cit., this space is often trivial, in fact

(2.23) SkEis(Un,ψ,A)={{0}if k>2 or ψNpn is non trivial,A[×:n((Rn)×)]if k=2 and ψNpn is trivial.S^{Eis}_{k}(U_{n},\psi,A)=\begin{cases}\{0\}&\textrm{if $k>2$ or $\psi_{Np^{n}}$ is non trivial,}\\ A^{[\mathbb{Z}_{\ell}^{\times}:n((R^{n}_{\ell})^{\times})]}&\textrm{if $k=2$ and $\psi_{Np^{n}}$ is trivial.}\end{cases}

In particular, SkEis(Un,ψ,A)S^{Eis}_{k}(U_{n},\psi,A) has at most rank 2. Defining the Petersson inner product as in [27] or [10], one can consider the orthogonal complement of SkEis(Un,ψ,A)S^{Eis}_{k}(U_{n},\psi,A) in Sk(Un,ψ,A)S_{k}(U_{n},\psi,A), namely

(2.24) 𝒮k(Un,ψ,A):={Sk(Un,ψ,A)/SkEis(Un,ψ,A)if k=2 and ψNpn is trivial,Sk(Un,ψ,A)otherwise.\mathscr{S}_{k}(U_{n},\psi,A):=\begin{cases}S_{k}(U_{n},\psi,A)/S^{Eis}_{k}(U_{n},\psi,A)&\textrm{if $k=2$ and $\psi_{Np^{n}}$ is trivial,}\\ S_{k}(U_{n},\psi,A)&\textrm{otherwise.}\end{cases}
Definition 2.6.1.

We call 𝒮k(Un,ψ,A)\mathscr{S}_{k}(U_{n},\psi,A) the space of AA-valued cuspidal quaternionic modular forms of level UnU_{n} and character ψ\psi.

Inside of this space, we find the so-called space of old forms, 𝒮kold(Un,ψ,A)\mathscr{S}^{old}_{k}(U_{n},\psi,A), defined to be the subspace of 𝒮k(Un,ψ,A)\mathscr{S}_{k}(U_{n},\psi,A) spanned by all 𝒮k(U1(R),ψ,A)\mathscr{S}_{k}(U_{1}(R^{\prime}),\psi,A) for each special order RRnR^{\prime}\subset R_{n} for which Sk(U1(R),ψ,A)S_{k}(U_{1}(R^{\prime}),\psi,A) makes sense. One should pay attention to fix a suitable ramified extension of \mathbb{Q}_{\ell}, but we point the reader to Remarks 7.13 and 7.14 of [15] for further details. Finally, we define the space of quaternionic newforms 𝒮knew(Un,ψ,A)\mathscr{S}^{new}_{k}(U_{n},\psi,A) as the orthogonal complement of 𝒮kold(Un,ψ,A)\mathscr{S}^{old}_{k}(U_{n},\psi,A), with respect to the Petersson inner product, inside 𝒮k(Un,ψ,A)\mathscr{S}_{k}(U_{n},\psi,A).

3. Hecke algebras and lifts to quaternionic modular forms

One of Hida’s main results is the extension of the classical duality between the Hecke algebra and the space of classical modular forms to pp-adic families. The analogous result can be recovered in the quaternionic setting, when one considers Eichler orders or special orders with odd exponent at the primes of ramification, but in the case of special orders with even exponent, this is no more true (see Remark 3.3.3). Even though one cannot speak about duality anymore, it is indeed possible to recover the correct dimension result for proving a rank-2 Hida theory.

3.1. Hecke operators

For any prime qq, recall the element introduced in Section 2.4, ϖq𝔸,f×\varpi_{q}\in\mathbb{A}_{\mathbb{Q},f}^{\times} such that ϖq,q=q\varpi_{q,q}=q and 11 otherwise. Let AA be again an 𝒪\mathcal{O}-algebra and take φSk(Un,A)\varphi\in S_{k}(U_{n},A). On this quaternionic space we have (for any b~B^×\tilde{b}\in\widehat{B}^{\times}) the Hecke operators TqT_{q},

(3.1) Tqφ(b~)={φ(b~(100ϖq))+a/qφ(b~(ϖqa01)) for each prime qNpn2r,φ|(100p)(b~(100ϖp))+a/qφ|(pa01)(b~(ϖpa01)) for q=p and n=0,T_{q}\varphi(\tilde{b})=\begin{cases}\varphi\left(\tilde{b}\left(\begin{smallmatrix}1&0\\ 0&\varpi_{q}\end{smallmatrix}\right)\right)+\displaystyle\sum_{a\in\mathbb{Z}/q\mathbb{Z}}\varphi\left(\tilde{b}\left(\begin{smallmatrix}\varpi_{q}&a\\ 0&1\end{smallmatrix}\right)\right)&\textrm{ for each prime }q\nmid Np^{n}\ell^{2r},\\ \\ \varphi|_{\left(\begin{smallmatrix}1&0\\ 0&p\end{smallmatrix}\right)}\left(\tilde{b}\left(\begin{smallmatrix}1&0\\ 0&\varpi_{p}\end{smallmatrix}\right)\right)+\displaystyle\sum_{a\in\mathbb{Z}/q\mathbb{Z}}\varphi|_{\left(\begin{smallmatrix}p&a\\ 0&1\end{smallmatrix}\right)}\left(\tilde{b}\left(\begin{smallmatrix}\varpi_{p}&a\\ 0&1\end{smallmatrix}\right)\right)&\textrm{ for }q=p\textrm{ and }n=0,\end{cases}

and the Hecke operators UqU_{q},

(3.2) Uqφ(b~)={a/qφ(b~(ϖqa01)) for qN,a/pφ|(pa01)(b~(ϖpa01)) for q=p and n>0.U_{q}\varphi(\tilde{b})=\begin{cases}\displaystyle\sum_{a\in\mathbb{Z}/q\mathbb{Z}}\varphi\left(\tilde{b}\left(\begin{smallmatrix}\varpi_{q}&a\\ 0&1\end{smallmatrix}\right)\right)&\text{ for }q\mid N,\\ \\ \displaystyle\sum_{a\in\mathbb{Z}/p\mathbb{Z}}\varphi|_{\left(\begin{smallmatrix}p&a\\ 0&1\end{smallmatrix}\right)}\left(\tilde{b}\left(\begin{smallmatrix}\varpi_{p}&a\\ 0&1\end{smallmatrix}\right)\right)&\textrm{ for }q=p\textrm{ and }n>0.\end{cases}

We also consider the quaternionic operator at \ell, U~\tilde{U}_{\ell} which is defined as

(3.3) U~φ(b~)=φ(b~ϖ~),\tilde{U}_{\ell}\varphi(\tilde{b})=\varphi\left(\tilde{b}\tilde{\varpi}_{\ell}\right),

for ϖ~\tilde{\varpi}_{\ell} such that ϖ~,\tilde{\varpi}_{\ell,\ell} is a units in the maximal order at \ell of norm n(ϖ~,)=n(\tilde{\varpi}_{\ell,\ell})=\ell, and ϖ~,q=1\tilde{\varpi}_{\ell,q}=1 elsewhere. For each dΔNpn2r:=(/Npn2r)×d\in\Delta_{Np^{n}\ell^{2r}}:=(\mathbb{Z}/Np^{n}\ell^{2r}\mathbb{Z})^{\times}, we also recall the diamond operator d\langle d\rangle with its usual definition on classical modular forms and straightforwardly extended to the pp-adic quaternionic case. On the space of classical modular forms Sk(Γ1(Npn2r),ψ,A)S_{k}(\Gamma_{1}(Np^{n}\ell^{2r}),\psi,A) we have the usual operators with a similar expression to the quaternionic ones except at \ell, where the definition of UU_{\ell} is analogous to the above UqU_{q} operators.

3.2. Hecke algebras

For each n1n\geq 1, let 𝖧n1(A)\mathsf{H}^{1}_{n}(A) be the Hecke algebra generated over AA by all Hecke operators and the diamond operators away from the level, which acts on Sk(Γ1(Npn2r),A)S_{k}(\Gamma_{1}(Np^{n}\ell^{2r}),A). We denote by 𝖧n(A)\mathsf{H}_{n}(A) the direct summand of 𝖧n1(A)\mathsf{H}^{1}_{n}(A) acting on Sk(Γ1(Npn2r),ψ,A)S_{k}(\Gamma_{1}(Np^{n}\ell^{2r}),\psi,A) and by 𝗁n(A)\mathsf{h}_{n}(A) the Hecke algebra acting on the space of newforms Sknew(Γ1(Npn2r),ψ,A)S_{k}^{new}(\Gamma_{1}(Np^{n}\ell^{2r}),\psi,A). For each m>nm>n we have the projection maps 𝖧m1(A)𝖧n1(A)\mathsf{H}^{1}_{m}(A)\twoheadrightarrow\mathsf{H}^{1}_{n}(A) and the same holds true for the subalgebras 𝖧n(A)\mathsf{H}_{n}(A) and 𝗁m(A)\mathsf{h}_{m}(A). We construct the projective limits with respect to these maps,

(3.4) 𝖧1(A)=lim𝖧n1(A),\displaystyle\mathsf{H}^{1}_{\infty}(A)=\varprojlim\mathsf{H}^{1}_{n}(A), 𝖧(A)=lim𝖧n(A)\displaystyle\mathsf{H}_{\infty}(A)=\varprojlim\mathsf{H}_{n}(A) and 𝗁(A)=lim𝗁n(A),\displaystyle\mathsf{h}_{\infty}(A)=\varprojlim\mathsf{h}_{n}(A),

together with the projection maps 𝖧1(A)𝖧(A)𝗁(A)\mathsf{H}^{1}_{\infty}(A)\twoheadrightarrow\mathsf{H}_{\infty}(A)\twoheadrightarrow\mathsf{h}_{\infty}(A). For any n1n\geq 1, we define 𝖧n1,ord(A)\mathsf{H}^{1,ord}_{n}(A) to be ordinary part of 𝖧n1(A)\mathsf{H}^{1}_{n}(A), namely the product of all the localizations of 𝖧n1(A)\mathsf{H}^{1}_{n}(A) on which UpU_{p} is invertible, and denote by 𝖾n\mathsf{e}_{n} the corresponding projector 𝖾n:𝖧n1(A)𝖧n1,ord(A)\mathsf{e}_{n}:\mathsf{H}^{1}_{n}(A)\twoheadrightarrow\mathsf{H}^{1,ord}_{n}(A). Similarly we define 𝖧nord(A)\mathsf{H}^{ord}_{n}(A) and 𝗁nord(A)\mathsf{h}^{ord}_{n}(A), together with the corresponding ordinary projectors, which we denote by the same symbol 𝖾n\mathsf{e}_{n}. Passing to the limit we obtain 𝖧1,ord(A)\mathsf{H}^{1,ord}_{\infty}(A), 𝖧ord(A)\mathsf{H}^{ord}_{\infty}(A) and 𝗁ord(A)\mathsf{h}^{ord}_{\infty}(A), each of them equipped with the corresponding ordinary projector 𝖾=lim𝖾n\mathsf{e}_{\infty}=\varprojlim\mathsf{e}_{n}.

Remark 3.2.1.

It is well known (see e.g. [18], Theorem 3) that Assumption 2.4.2 forces the Hecke operator UU_{\ell} to be trivial on the space of classical modular forms of level 2r\ell^{2r}. We can then identify each 𝗁n(A)\mathsf{h}_{n}(A) with the Hecke AA-algebra

(3.5) 𝗁n()(A)End(Sk(Γ1(Npn2r),ψ,A))\mathsf{h}^{(\ell)}_{n}(A)\subseteq End(S_{k}(\Gamma_{1}(Np^{n}\ell^{2r}),\psi,A))

generated by all diamond and Hecke operators, except UU_{\ell}.

On the quaternionic side we proceed similarly. For each n1n\geq 1, let 𝖧nB(A)\mathsf{H}^{B}_{n}(A) be the Hecke algebra acting on Sk(Un,ψ,A)S_{k}(U_{n},\psi,A), generated over AA by the Hecke and diamond operators. We denote by 𝗁nB(A)\mathsf{h}_{n}^{B}(A) the component acting on the space of newforms 𝒮knew(Un,ψ,A)\mathscr{S}_{k}^{new}(U_{n},\psi,A). For each n1n\geq 1 we have the projection maps 𝖧nB(A)𝗁nB(A)\mathsf{H}^{B}_{n}(A)\twoheadrightarrow\mathsf{h}_{n}^{B}(A) and we construct the projective limits with respect to these maps,

(3.6) 𝖧B(A)=lim𝖧nB(A)\displaystyle\mathsf{H}^{B}_{\infty}(A)=\varprojlim\mathsf{H}^{B}_{n}(A) and 𝗁B(A)=lim𝗁nB(A),\displaystyle\mathsf{h}^{B}_{\infty}(A)=\varprojlim\mathsf{h}^{B}_{n}(A),

together with the projection map 𝖧B(A)𝗁B(A)\mathsf{H}^{B}_{\infty}(A)\twoheadrightarrow\mathsf{h}^{B}_{\infty}(A). In the end, we define as above the ordinary Hecke algebras 𝖧nB,ord(A)\mathsf{H}^{B,ord}_{n}(A) and 𝗁nB,ord(A)\mathsf{h}^{B,ord}_{n}(A), and obtain 𝖧B,ord(A)\mathsf{H}^{B,ord}_{\infty}(A) and 𝗁B,ord(A)\mathsf{h}^{B,ord}_{\infty}(A) as inverse limit of the 𝖧nB,ord(A)\mathsf{H}^{B,ord}_{n}(A) and 𝗁nB,ord(A)\mathsf{h}_{n}^{B,ord}(A) respectively.

The Jacquet–Langlands correspondence provides a compatible morphism between the classical and the quaternionic side, that is

(3.7) JL:𝗁(A)𝖧B(A),JL_{\infty}:\mathsf{h}_{\infty}(A)\longrightarrow\mathsf{H}^{B}_{\infty}(A),

which preserves the Hecke and diamond operators away from the discriminant of the quaternion algebra.

Let Λ~=𝒪[[p×]]\tilde{\Lambda}=\mathcal{O}[\![\mathbb{Z}_{p}^{\times}]\!] be the finite flat extension of the Iwasawa algebra p[[p×]]\mathbb{Z}_{p}[\![\mathbb{Z}_{p}^{\times}]\!] obtained from 𝒪\mathcal{O}. We remark that by construction, the algebra 𝖧ord\mathsf{H}^{ord}_{\infty} is naturally a Λ~\tilde{\Lambda}-algebra; moreover, one can prove that it is finitely generated over Λ~\tilde{\Lambda}. We define the two universal Λ~\tilde{\Lambda}-adic Hecke algebras

(3.8) 𝖧univ:=\displaystyle\mathsf{H}_{univ}:= Λ~[Tq,Ul,d, for qNpn,lNp2r,dΔNpn2r],\displaystyle\tilde{\Lambda}[T_{q},U_{l},\langle d\rangle,\text{ for }q\nmid Np^{n},l\mid Np\ell^{2r},d\in\Delta_{Np^{n}\ell^{2r}}],
(3.9) 𝖧univB:=\displaystyle\mathsf{H}_{univ}^{B}:= Λ~[U~,Tq,Ul,d, for qNpn,lNp,dΔNpn2r]\displaystyle\tilde{\Lambda}[\tilde{U}_{\ell},T_{q},U_{l},\langle d\rangle,\text{ for }q\nmid Np^{n},l\mid Np,d\in\Delta_{Np^{n}\ell^{2r}}]

and, as in [21], we obtain the compatible morphisms

(3.10) 𝖧univ𝖧ord(A)\displaystyle\mathsf{H}_{univ}\longrightarrow\mathsf{H}^{ord}_{\infty}(A) and 𝖧univB𝖧B,ord(A).\displaystyle\mathsf{H}_{univ}^{B}\longrightarrow\mathsf{H}^{B,ord}_{\infty}(A).
Definition 3.2.2.

It is useful to formally introduce the notation considered in Remark 3.2.1. More precisely, let 𝖧\mathsf{H} be any one of the Hecke algebras defined above and let mm be any positive integer. We denote by 𝖧(m)\mathsf{H}^{(m)} the Hecke-subalgebra of 𝖧\mathsf{H} generated by the Hecke and diamond operators away from MM.

3.3. Quaternionic lifts of modular forms and the failure of the duality

We analyze more carefully [15], recalling the results which we need. Let ()\left(\frac{-}{\ell}\right) be the Kronecker character at \ell and F=Frac(𝒪)F=Frac(\mathcal{O}), a field extension of p\mathbb{Q}_{p}. For any space of modular forms Sk(M,ε,F)S_{k}(M,\varepsilon,F) and each Dirichlet character modulo MM, we denote by Sk(M,ε,F)χS_{k}(M,\varepsilon,F)^{\otimes\chi} the space of all the modular forms which are twists by χ\chi of modular forms in Sk(M,ε,F)S_{k}(M,\varepsilon,F).

Theorem 3.3.1 ([15], Theorem 7.10).

Let RR^{\prime} be a special order of level M2r+1M\ell^{2r+1} (so LL_{\ell} is the unramified quadratic extension of \mathbb{Q}_{\ell}). Let ε\varepsilon be a character modulo NN such that ε2r+1\varepsilon_{\ell^{2r+1}} is either the trivial character modulo \ell or an odd character modulo \ell. Suppose moreover that ε\varepsilon is even and that rν(cond(ε))r\geq\nu_{\ell}(cond(\varepsilon_{\ell})). Then there exist a Hecke–equivariant isomorphism

(3.11) 𝒮knew(U1(R),ε~,)Sknew(Γ1(M2r+1),ε,).\mathscr{S}_{k}^{new}(U_{1}(R^{\prime}),\widetilde{\varepsilon},\mathbb{C})\cong S_{k}^{new}(\Gamma_{1}(M\ell^{2r+1}),\varepsilon,\mathbb{C}).

The above theorem proves that, as in the case of Eichler orders, there is a one-to-one correspondence for special orders with odd exponent at \ell. The situation for even exponent is more complicated.

Theorem 3.3.2 ([15], Theorems 7.16 & 7.17).

Let \ell be an odd prime, and let r1r\geq 1 and k2k\geq 2 be integers. Let ψ\psi be a character modulo Npn2rNp^{n}\ell^{2r} such that ψ(1)=(1)k\psi(-1)=(-1)^{k}, it satisfies Assumptions 2.2.1 and 2.4.2, and such that cond(ψ)2r1cond_{\ell}(\psi)\leq 2r-1. Then the following decomposition of 𝗁n(Npn2r)()\mathsf{h}_{n}^{(Np^{n}\ell^{2r})}(\mathbb{C})-modules holds true.

  1. (a)

    If r=1r=1 and ψ2\psi_{\ell^{2}} is the trivial character:

    (3.12) 2Sknew(Γ1(Npn2),ψ,)𝒮knew(Un,ψ,)Sknew(Γ1(Npn),ψ,)()2Sknew(Γ1(Npn),ψ,)()χ/2Sknew(Γ1(Npn),χ2ψ,)χ¯2S_{k}^{new}(\Gamma_{1}(Np^{n}\ell^{2}),\psi,\mathbb{C})\cong\mathscr{S}^{new}_{k}(U_{n},\psi,\mathbb{C})\oplus S_{k}^{new}(\Gamma_{1}(Np^{n}\ell),\psi,\mathbb{C})^{\otimes\left(\frac{-}{\ell}\right)}\oplus\\ 2S_{k}^{new}(\Gamma_{1}(Np^{n}),\psi,\mathbb{C})^{\otimes\left(\frac{-}{\ell}\right)}\oplus\bigoplus_{\chi/\sim}2S_{k}^{new}(\Gamma_{1}(Np^{n}\ell),\chi^{2}\psi,\mathbb{C})^{\otimes\overline{\chi}}

    where the sum χ/\bigoplus_{\chi/\sim} runs over all the 12(3)\frac{1}{2}(\ell-3) classes of primitive characters modulo \ell excepting ()\left(\frac{-}{\ell}\right), modulo the equivalence χχ¯\chi\sim\overline{\chi}.

  2. (b)

    If r=1r=1 and ψ2\psi_{\ell^{2}} is a odd character modulo \ell:

    (3.13) 2Sknew(Γ1(Npn2),ψ,)𝒮knew(Un,ψ~,)χ/2Sknew(Γ1(Npn),χ2ψ,)χ¯2S_{k}^{new}(\Gamma_{1}(Np^{n}\ell^{2}),\psi,\mathbb{C})\cong\mathscr{S}^{new}_{k}(U_{n},\widetilde{\psi},\mathbb{C})\oplus\bigoplus_{\chi/\sim}2S_{k}^{new}(\Gamma_{1}(Np^{n}\ell),\chi^{2}\psi,\mathbb{C})^{\otimes\overline{\chi}}

    where ψ~\widetilde{\psi} is a lift of ψ\psi as in Section 2.2 and the sum χ/\bigoplus_{\chi/\sim} runs over all the 12(3)\frac{1}{2}(\ell-3) classes of primitive characters modulo \ell excepting ψ2¯\overline{\psi_{\ell^{2}}}, modulo the equivalence χχψ2¯\chi\sim\overline{\chi\psi_{\ell^{2}}}.

  3. (c)

    If r2r\geq 2 and ψ2r\psi_{\ell^{2r}} is either trivial or odd of conductor \ell:

    (3.14) 2Sknew(Γ1(Npn2r),ψ,)𝒮knew(Un,ψ~,)χ2Sknew(Γ1(Npnr),χ2ψ,)χ¯2S_{k}^{new}(\Gamma_{1}(Np^{n}\ell^{2r}),\psi,\mathbb{C})\cong\mathscr{S}^{new}_{k}(U_{n},\widetilde{\psi},\mathbb{C})\oplus\bigoplus_{\chi}2S_{k}^{new}(\Gamma_{1}(Np^{n}\ell^{r}),\chi^{2}\psi,\mathbb{C})^{\otimes\overline{\chi}}

    where ψ~\widetilde{\psi} is a lift of ψ\psi as in Section 2.2 and the sum χ\bigoplus_{\chi} runs over all the r2r1+r2\ell^{r}-2\ell^{r-1}+\ell^{r-2} classes of primitive characters modulo r\ell^{r}, modulo the equivalence χχψ2r¯\chi\sim\overline{\chi\psi_{\ell^{2r}}}.

Remark 3.3.3.
  1. (a)

    In the above theorem the decomposition is given as 𝗁n(Npn2r)()\mathsf{h}_{n}^{(Np^{n}\ell^{2r})}(\mathbb{C})-modules, but strong multiplicity one for classical modular newforms guarantees the decomposition to hold (at least) as 𝗁n()()\mathsf{h}_{n}^{(\ell)}(\mathbb{C})-modules. As already noticed in Remark 3.2.1, the Hecke algebra 𝗁n()()\mathsf{h}_{n}^{(\ell)}(\mathbb{C}) coincides with 𝗁n()\mathsf{h}_{n}(\mathbb{C}) since the Hecke operator UU_{\ell} is the 0-operator on this space.

  2. (b)

    The theorem implies that the duality between the Hecke algebra and the space of modular forms does not necessarily hold true for special orders with level 2r\ell^{2r}. This situation represents the main difference between this setting and the case of classical modular forms (and special orders with an odd power of \ell). We recall that, on the contrary, the Jacquet–Langlands correspondence does hold true, as well as the multiplicity one result for automorphic representations. This phenomenon is purely local, as already remarked in Example 2.6 of [19]. More precisely, the dimension of the local automorphic representation at \ell is bigger than 11 in the case of level 2r\ell^{2r} and determined by the minimal conductor of the modular forms. We refer to Section 5 of [4] for all the related details.

We recall the definition of a twist-minimal modular form.

Definition 3.3.4.

A modular form is twist-miminal if cond(πf,q)cond(πf,qχ)cond(\pi_{f,q})\geq cond(\pi_{f,q}\otimes\chi) for all qq-adic characters χ\chi, where πf=qπf,q\pi_{f}=\otimes^{\prime}_{q}\pi_{f,q} is the automorphic representation attached to ff and for any automophic representation π=qπq\pi=\otimes^{\prime}_{q}\pi_{q} we denote cond(πq)cond(\pi_{q}) the conductor of πq\pi_{q}.

Corollary 3.3.5.

Each twist-minimal modular eigenform in Sknew(Γ1(Npn2r),ψ,)S_{k}^{new}(\Gamma_{1}(Np^{n}\ell^{2r}),\psi,\mathbb{C}) lifts to (up to linear combinations) exactly two linearly independent quaternionic modular eigenforms in 𝒮knew(Un,ψ~,)\mathscr{S}^{new}_{k}(U_{n},\widetilde{\psi},\mathbb{C}) with the same Hecke eigenvalues for 𝗁n()()\mathsf{h}_{n}^{(\ell)}(\mathbb{C}).

Regardless of Remark 3.3.3.(b), one can still obtain an isomorphism between the space of quaternionic modular forms and the square of a suitable Hecke algebra, as in the following proposition.

Proposition 3.3.6.

Under the hypotheses of Theorem 3.3.2, there exists a \mathbb{C}-vector subspace Tk(n,r,ψ)T_{k}(n,r,\psi) of Sknew(Γ1(Npn2r),ψ,)S_{k}^{new}(\Gamma_{1}(Np^{n}\ell^{2r}),\psi,\mathbb{C}), which is a 𝗁n()()\mathsf{h}_{n}^{(\ell)}(\mathbb{C})-submodule satisfying

(3.15) 2Tk(n,r,ψ){𝒮knew(Un,ψ,)Sknew(Γ1(Npn),ψ,)() if r=1 and ψ is trivial,𝒮knew(Un,ψ,) otherwise.2T_{k}(n,r,\psi)\cong\begin{cases}\mathscr{S}^{new}_{k}(U_{n},\psi,\mathbb{C})\oplus S_{k}^{new}(\Gamma_{1}(Np^{n}\ell),\psi,\mathbb{C})^{\otimes\left(\frac{-}{\ell}\right)}&\textrm{ if $r=1$ and $\psi_{\ell}$ is trivial,}\\ \mathscr{S}^{new}_{k}(U_{n},\psi,\mathbb{C})&\textrm{ otherwise.}\end{cases}

Moreover, for 𝗁nT()\mathsf{h}_{n}^{T}(\mathbb{C}) the Hecke-subalgebra of 𝗁n()\mathsf{h}_{n}(\mathbb{C}) acting on Tk(n,r,ψ)T_{k}(n,r,\psi), we have an isomorphism of 𝗁nT()=𝗁nT,()()\mathsf{h}_{n}^{T}(\mathbb{C})=\mathsf{h}_{n}^{T,(\ell)}(\mathbb{C})-modules,

(3.16) (𝗁nT())2{𝒮knew(Un,ψ,)Sknew(Γ1(Npn),ψ,)() if r=1 and ψ is trivial,𝒮knew(Un,ψ,) otherwise.\left(\mathsf{h}_{n}^{T}(\mathbb{C})\right)^{2}\cong\begin{cases}\mathscr{S}^{new}_{k}(U_{n},\psi,\mathbb{C})\oplus S_{k}^{new}(\Gamma_{1}(Np^{n}\ell),\psi,\mathbb{C})^{\otimes\left(\frac{-}{\ell}\right)}&\textrm{ if $r=1$ and $\psi_{\ell}$ is trivial,}\\ \mathscr{S}^{new}_{k}(U_{n},\psi,\mathbb{C})&\textrm{ otherwise.}\end{cases}
Proof.

The first statement follows directly from Theorem 3.3.2 as noticed in Chapter 8 of [15]. The second part follows from Hom(2Tk(n,r,ψ),)Hom(Tk(n,r,ψ),)22Tk(n,r,ψ),Hom\left(2T_{k}(n,r,\psi),\mathbb{C}\right)\cong Hom\left(T_{k}(n,r,\psi),\mathbb{C}\right)^{2}\cong 2T_{k}(n,r,\psi), where the first isomorphism is due to the properties of Hom(,)Hom(-,\mathbb{C}) and the second is the Hecke-duality for classical modular forms restricted to Tk(n,r,ψ)T_{k}(n,r,\psi) (since the decomposition is Hecke-equivariant away from \ell). ∎

As in Section 3.2, taken AA an 𝒪\mathcal{O}-algebra, we define 𝗁T(A)=lim𝗁nT(A)\mathsf{h}^{T}_{\infty}(A)=\varprojlim\mathsf{h}_{n}^{T}(A) and 𝗁T,ord(A)=lim𝗁nT,ord(A)\mathsf{h}^{T,ord}_{\infty}(A)=\varprojlim\mathsf{h}_{n}^{T,ord}(A). We obtain injective homomorphisms 𝗁T(A)𝗁(A)\mathsf{h}^{T}_{\infty}(A)\hookrightarrow\mathsf{h}_{\infty}(A) and 𝗁T,ord(A)𝗁ord(A)\mathsf{h}^{T,ord}_{\infty}(A)\hookrightarrow\mathsf{h}^{ord}_{\infty}(A).

Definition 3.3.7.

For any module MM with an action of a suitable Hecke algebra, and any classical eigenform gg, we denote by M[g]M[g] the gg-isotypic component of MM, i.e. the biggest submodule of MM on which the Hecke algebra acts with the same eigenvalues of gg.

Proposition 3.3.8.

Let gg be a newform in Sknew(Γ1(Npn2r),ψ,F)S_{k}^{new}(\Gamma_{1}(Np^{n}\ell^{2r}),\psi,F) with k2k\geq 2 and ψ(1)=(1)k\psi(-1)=(-1)^{k}. Write ψ=ψNpnψ2r\psi=\psi_{Np^{n}}\psi_{\ell^{2r}} for ψNpn\psi_{Np^{n}} and ψ2r\psi_{\ell^{2r}} the component of ψ\psi, respectively, modulo NpnNp^{n} and 2r\ell^{2r}.

  1. (a)

    If r=1r=1 and ψ2\psi_{\ell^{2}} is the trivial character modulo \ell,

    (3.17) dimF(𝒮knew(Un,ψ~,F)[g])=dimF(𝒮k(Un,ψ~,F)[g])={2 if g is twist-minimal at ,1 if gSknew(Γ1(Npn),ψ,F)(),0 otherwise.\dim_{F}\left(\mathscr{S}^{new}_{k}(U_{n},\widetilde{\psi},F)[g]\right)=\\ \dim_{F}\left(\mathscr{S}_{k}(U_{n},\widetilde{\psi},F)[g]\right)=\begin{cases}2&\textrm{ if $g$ is twist-minimal at $\ell$},\\ 1&\textrm{ if }g\in S_{k}^{new}(\Gamma_{1}(Np^{n}\ell),\psi,F)^{\otimes\left(\frac{-}{\ell}\right)},\\ 0&\textrm{ otherwise.}\end{cases}
  2. (b)

    If either ψ2r\psi_{\ell^{2r}} is a non-trivial character modulo \ell or r2r\geq 2,

    (3.18) dimF(𝒮knew(Un,ψ~,F)[g])=dimF(𝒮k(Un,ψ~,F)[g])={2 if g is twist-minimal at ,0 otherwise.\dim_{F}\left(\mathscr{S}^{new}_{k}(U_{n},\widetilde{\psi},F)[g]\right)=\dim_{F}\left(\mathscr{S}_{k}(U_{n},\widetilde{\psi},F)[g]\right)=\begin{cases}2&\textrm{ if $g$ is twist-minimal at $\ell$},\\ 0&\textrm{ otherwise.}\end{cases}
Proof.

This is a straightforward consequence of Theorem 3.3.2 combined with the fact that strong multiplicity one applies to gg. ∎

3.4. Choice of a modular form

Let fS2(Γ1(Npn2r),ψ,)f\in S_{2}(\Gamma_{1}(Np^{n}\ell^{2r}),\psi,\mathbb{C}) be a fixed pp-ordinary newform, for n1n\geq 1 and with ψ\psi a Dirichlet character modulo Npn2rNp^{n}\ell^{2r} satisfying Assumptions 2.2.1 and 2.4.2. In this way, the automorphic representation associated with ff admits a Jacquet–Langlands lift. Moreover, we assume that the pp-adic Galois representation associated with ff is residually absolutely irreducible and pp-distinguished. Let F=p(f)F=\mathbb{Q}_{p}(f) be the finite extension of p\mathbb{Q}_{p} defined by ff and take 𝒪\mathcal{O} to be its ring of integers; note that 𝒪\mathcal{O} is a finite flat extension of p\mathbb{Z}_{p}. We denote by ff_{\infty} the unique Hida family passing through ff. By duality with the ordinary Hecke algebra, we know that ff_{\infty} defines a character, which we denote with the same symbol ff_{\infty},

(3.19) f:𝖧ord(F),f_{\infty}:\mathsf{H}^{ord}_{\infty}(F)\longrightarrow\mathcal{R},

where \mathcal{R} is the universal ordinary pp-adic Hecke algebra of tame level N2rN\ell^{2r} as in Definition 2.4 of [9]. The Jacquet–Langlands correspondence ensures that such character factors through the morphism to 𝖧B(F)\mathsf{H}^{B}_{\infty}(F); we keep denoting the corresponding map by f:𝖧B,ord(F)f_{\infty}:\mathsf{H}^{B,ord}_{\infty}(F)\longrightarrow\mathcal{R}.

4. The control theorem

In this last section, we prove a control theorem for special orders of even conductor at \ell. We introduce a space that is suitable for the pp-adic interpolation and we define some specialization maps. We consider again 𝒪\mathcal{O} to be the ring of integers of a fixed finite extension of p\mathbb{Q}_{p} and we take an 𝒪\mathcal{O}-algebra which we denote again by AA.

4.1. Specialization maps

Let 𝖷=(p×p)prim\mathsf{X}=(\mathbb{Z}_{p}\times\mathbb{Z}_{p})^{prim} be the set of primitive row vectors, that is, the vectors in p2\mathbb{Z}_{p}^{2} which have at least one component not divisible by pp. Denote by 𝒞(𝖷,A)\mathscr{C}(\mathsf{X},A) the space of AA-valued continuous functions on 𝖷\mathsf{X} and by (𝖷,A)\mathcal{M}(\mathsf{X},A) the space of AA-valued measures on 𝖷\mathsf{X}. We have a left M2(p)M_{2}(\mathbb{Z}_{p})-action on 𝒞(𝖷,A)\mathscr{C}(\mathsf{X},A) via

(4.1) γf(x,y)=f((x,y)γ),\gamma\cdot f(x,y)=f\left((x,y)\gamma\right),

for f𝒞(𝖷,A)f\in\mathscr{C}(\mathsf{X},A) and γM2(p)\gamma\in M_{2}(\mathbb{Z}_{p}), and the induced right action on (𝖷,A)\mathcal{M}(\mathsf{X},A) as

(4.2) μ|γ(f(x,y))=μ(γf(x,y)),\mu|_{\gamma}(f(x,y))=\mu(\gamma\cdot f(x,y)),

for μ(𝖷,A)\mu\in\mathcal{M}(\mathsf{X},A). Considering the action by UnU_{n}, with n1n\geq 1, we can notice that the subspace pp×p×𝖷p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times}\subset\mathsf{X} satisfies

(4.3) (pp×p×)(Un)p=(pp×p×)(p×ppnp1+pnp)=pp×p×.(p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times})\cdot(U_{n})_{p}=(p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times})\left(\begin{smallmatrix}\mathbb{Z}_{p}^{\times}&\mathbb{Z}_{p}\\ p^{n}\mathbb{Z}_{p}&1+p^{n}\mathbb{Z}_{p}\end{smallmatrix}\right)=p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times}.
Definition 4.1.1.

Let ψ\psi be a Dirichlet character modulo N2rN\ell^{2r} satisfying Assumptions 2.2.1 and 2.4.2. We define the measure-valued quaternionic modular forms with character ψ\psi as the space

(4.4) S2(U0,ψ,(𝖷,A)):={φ:B^×(𝖷,A)φ(bb~uz)=ψN,𝔸1(z)ψ2r,𝔸1(z)ψ2r~(u)φ(b~)|up, for bB×,b~B^×,uU0,z𝔸,f×}.S_{2}(U_{0},\psi,\mathcal{M}(\mathsf{X},A)):=\Big{\{}\varphi:\widehat{B}^{\times}\longrightarrow\mathcal{M}(\mathsf{X},A)\mid\varphi(b\tilde{b}uz)=\psi_{N,\mathbb{A}}^{-1}(z)\psi_{\ell^{2r},\mathbb{A}}^{-1}(z)\widetilde{\psi_{\ell^{2r}}}(u_{\ell})\varphi(\tilde{b})|_{u_{p}},\\ \text{ for }b\in B^{\times},\phantom{.}\tilde{b}\in\widehat{B}^{\times},\phantom{.}u\in U_{0},\phantom{.}z\in\mathbb{A}_{\mathbb{Q},f}^{\times}\Big{\}}.

This space can be identified with the space of functions φ:B×\B^×(𝖷,A)\varphi:B^{\times}\backslash\widehat{B}^{\times}\longrightarrow\mathcal{M}(\mathsf{X},A) satisfying

(4.5) φ(zb~)=ψN,𝔸1(z)ψ2r,𝔸1(z)φ(b~),\varphi(z\tilde{b})=\psi_{N,\mathbb{A}}^{-1}(z)\psi_{\ell^{2r},\mathbb{A}}^{-1}(z)\varphi(\tilde{b}),

for b~B×\B^×\tilde{b}\in B^{\times}\backslash\widehat{B}^{\times} and z𝔸,f×z\in\mathbb{A}_{\mathbb{Q},f}^{\times}, and such that φ|up1(b~u)=ψ2r~(u)φ(b~)\varphi|_{u_{p}^{-1}}(\tilde{b}u)=\widetilde{\psi_{\ell^{2r}}}(u_{\ell})\varphi(\tilde{b}) for any uU0u\in U_{0} and any b~B×\B^×\tilde{b}\in B^{\times}\backslash\widehat{B}^{\times}.

Take k2k\geq 2 and let ε:p×A×\varepsilon:\mathbb{Z}_{p}^{\times}\longrightarrow A^{\times} be any character which factors through (p/pmp)×(\mathbb{Z}_{p}/p^{m}\mathbb{Z}_{p})^{\times}. We extend ε\varepsilon multiplicatively to p\mathbb{Z}_{p} imposing ε(p)=0\varepsilon(p)=0. We define the specialization map

(4.6) νk,ε:S2(U0,ψ,(𝖷,A))Sk(Un,ψε,A(ε))\nu_{k,\varepsilon}:S_{2}(U_{0},\psi,\mathcal{M}(\mathsf{X},A))\longrightarrow S_{k}(U_{n},\psi\varepsilon,A(\varepsilon))

such that

(4.7) νk,ε(φ)(b~)(P):=pp×p×ε(y)P(x,y)d(φ(b~))(x,y),\nu_{k,\varepsilon}(\varphi)(\tilde{b})(P):=\int_{p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times}}\varepsilon(y)P(x,y)d(\varphi(\tilde{b}))(x,y),

where n=max{1,m}n=\max\{1,m\}, φS2(U0,ψ,(𝖷,A))\varphi\in S_{2}(U_{0},\psi,\mathcal{M}(\mathsf{X},A)), b~B×\B^×\tilde{b}\in B^{\times}\backslash\widehat{B}^{\times} and PLk2(A)P\in L_{k-2}(A).

Proposition 4.1.2.

The specialization maps νk,ε\nu_{k,\varepsilon} are well-defined and Hecke-equivariant for 𝖧univB\mathsf{H}^{B}_{univ}, where the equivariance at pp is meant as νk,ε(Tpφ)=Upνk,ε(φ)\nu_{k,\varepsilon}(T_{p}\varphi)=U_{p}\nu_{k,\varepsilon}(\varphi).

Proof.

Let φS2(U0,ψ,(𝖷,A))\varphi\in S_{2}(U_{0},\psi,\mathcal{M}(\mathsf{X},A)). Then, for any b~B×\B^×\tilde{b}\in B^{\times}\backslash\widehat{B}^{\times}, z𝔸,f×z\in\mathbb{A}_{\mathbb{Q},f}^{\times}, uUnu\in U_{n} and PLk2(A)P\in L_{k-2}(A), we have

(4.8) νk,ε(φ)(b~uz)|up1(P)=pp×p×ε(y)(up1P(x,y))d(φ(b~uz))(x,y)=ψN,𝔸1(z)ψ2r,𝔸1(z)ψ2r~(u)pp×p×(upzp)(ε(y)P((x,y)up1))d(φ(b~))(x,y)\nu_{k,\varepsilon}(\varphi)(\tilde{b}uz)|_{u_{p}^{-1}}(P)=\int_{p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times}}\varepsilon(y)(u_{p}^{-1}\cdot P(x,y))d(\varphi(\tilde{b}uz))(x,y)\\ =\psi_{N,\mathbb{A}}^{-1}(z)\psi_{\ell^{2r},\mathbb{A}}^{-1}(z)\widetilde{\psi_{\ell^{2r}}}(u_{\ell})\cdot\int_{p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times}}(u_{p}z_{p})\cdot\left(\varepsilon(y)P((x,y)u_{p}^{-1})\right)d(\varphi(\tilde{b}))(x,y)

and, since (x,y)up1=(,y+p)(x,y)u_{p}^{-1}=(*,y+p*), ε\varepsilon is extended to p\mathbb{Z}_{p} and P((x,y)zp)=zpk2P(x,y)P((x,y)z_{p})=z_{p}^{k-2}P(x,y), we obtain

(4.9) ψN,𝔸1(z)ψ2r,𝔸1(z)ψ2r~(u)pp×p×ε(y)ε(zp)(P((x,y)up1upzp))d(φ(b~))(x,y)=ψN,𝔸1(z)ε𝔸(z)1ψ2r,𝔸1(z)ψ2r~(u)zpk2pp×p×ε(y)(P((x,y)))d(φ(b~))(x,y)=ψN,𝔸1(z)ε𝔸(z)1ψ2r,𝔸1(z)ψ2r~(u)zpk2νk,ε(φ)(b~)(P).\psi_{N,\mathbb{A}}^{-1}(z)\psi_{\ell^{2r},\mathbb{A}}^{-1}(z)\widetilde{\psi_{\ell^{2r}}}(u_{\ell})\int_{p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times}}\varepsilon(y)\varepsilon(z_{p})\left(P((x,y)u_{p}^{-1}u_{p}z_{p})\right)d(\varphi(\tilde{b}))(x,y)\\ =\psi_{N,\mathbb{A}}^{-1}(z)\varepsilon_{\mathbb{A}}(z)^{-1}\psi_{\ell^{2r},\mathbb{A}}^{-1}(z)\widetilde{\psi_{\ell^{2r}}}(u_{\ell})z_{p}^{k-2}\int_{p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times}}\varepsilon(y)\left(P((x,y))\right)d(\varphi(\tilde{b}))(x,y)\\ =\psi_{N,\mathbb{A}}^{-1}(z)\varepsilon_{\mathbb{A}}(z)^{-1}\psi_{\ell^{2r},\mathbb{A}}^{-1}(z)\widetilde{\psi_{\ell^{2r}}}(u_{\ell})z_{p}^{k-2}\nu_{k,\varepsilon}(\varphi)(\tilde{b})(P).

The equivariance with respect to the TqT_{q} operators is obvious, as well as that for the operators UqU_{q} with qpq\neq p (also for U~\tilde{U}_{\ell}). To prove the equivariance at pp it is enough to note that we have

(4.10) νk,εφ|(100p)(b~(100p))(P)=𝖷χpp×p×(x,y)ε(y)P(x,y)d(φ|(100p)(b~(100p)))(x,y)=𝖷χpp×p×(x,py)ε(py)P(x,py)d(φ(b~(100p)))(x,y)=0\nu_{k,\varepsilon}\varphi|_{\left(\begin{smallmatrix}1&0\\ 0&p\end{smallmatrix}\right)}\left(\tilde{b}\left(\begin{smallmatrix}1&0\\ 0&p\end{smallmatrix}\right)\right)(P)=\int_{\mathsf{X}}\chi_{p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times}}(x,y)\varepsilon(y)P\left(x,y\right)d\left(\varphi|_{\left(\begin{smallmatrix}1&0\\ 0&p\end{smallmatrix}\right)}\left(\tilde{b}\left(\begin{smallmatrix}1&0\\ 0&p\end{smallmatrix}\right)\right)\right)(x,y)\\ =\int_{\mathsf{X}}\chi_{p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times}}(x,py)\varepsilon(py)P\left(x,py\right)d\left(\varphi\left(\tilde{b}\left(\begin{smallmatrix}1&0\\ 0&p\end{smallmatrix}\right)\right)\right)(x,y)=0

for χpp×p×(x,y)\chi_{p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times}}(x,y) the characteristic function of pp×p×p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times}. ∎

We must now investigate the properties of the space S2(U0,ψ,(𝖷,A))S_{2}(U_{0},\psi,\mathcal{M}(\mathsf{X},A)). We begin by noticing that the action on 𝒞(𝖷,A)\mathscr{C}(\mathsf{X},A) is exactly the one induced by the right action, defined by right multiplication, of M2(p)M_{2}(\mathbb{Z}_{p}) on 𝖷\mathsf{X}. We proceed similarly to Proposition 7.5 of [20] or Chapter 6 of [9] and, denoting by 𝖷n\mathsf{X}_{n} the set of primitive vectors in (/pn)2(\mathbb{Z}/p^{n}\mathbb{Z})^{2}, we recover 𝖷=lim𝖷n\mathsf{X}=\varprojlim\mathsf{X}_{n}, with respect to the canonical projection maps. We obtain then (𝖷,A)=lim(𝖷n,A)\mathcal{M}(\mathsf{X},A)=\varprojlim\mathcal{M}(\mathsf{X}_{n},A) (see e.g. Section 7 of [22]). Since 𝖷n\mathsf{X}_{n} is a finite set, (𝖷n,A)\mathcal{M}(\mathsf{X}_{n},A) is identified with the space Hom(𝖷n,A)Hom(\mathsf{X}_{n},A) of step functions. The action of U0U_{0} on 𝖷n\mathsf{X}_{n} is transitive and the stabilizer of (0,1)(0,1) is

(4.11) StabU0((0,1))={γU0(0,1)γ=(0,1)(abcd)=(c,d)=(0,1)}=Un.Stab_{U_{0}}((0,1))=\{\gamma\in U_{0}\mid(0,1)\gamma=(0,1)\left(\begin{smallmatrix}a&b\\ c&d\end{smallmatrix}\right)=(c,d)=(0,1)\}=U_{n}.

This shows that 𝖷n=U0/Un=(U0)p/(Un)p\mathsf{X}_{n}=U_{0}/U_{n}=(U_{0})_{p}/(U_{n})_{p} and then that (𝖷n,A)=HomUn(𝒪[U0],A)\mathcal{M}(\mathsf{X}_{n},A)=Hom_{U_{n}}(\mathcal{O}[U_{0}],A). We denote by B^p,×=B×\B^×/U0p\widehat{B}^{p,\times}=B^{\times}\backslash\widehat{B}^{\times}/U_{0}^{p} the profinite double quotient associated with U0p=U0B(𝔸,f(p))×U_{0}^{p}=U_{0}\cap B(\mathbb{A}_{\mathbb{Q},f}^{(p)})^{\times}, for 𝔸,f(p)\mathbb{A}_{\mathbb{Q},f}^{(p)} the ring of finite adèles away from pp. By Shapiro’s Lemma we obtain

(4.12) S2(U0,𝟏,(𝖷n,A))(Hom𝒪(𝒪[B^p,×],(𝖷n,A)))(U0)pS2(Un,𝟏,A),S_{2}(U_{0},\boldsymbol{1},\mathcal{M}(\mathsf{X}_{n},A))\cong\left(Hom_{\mathcal{O}}(\mathcal{O}[\widehat{B}^{p,\times}],\mathcal{M}(\mathsf{X}_{n},A))\right)^{(U_{0})_{p}}\cong S_{2}(U_{n},\boldsymbol{1},A),

as well as the analogous isomorphism when we consider a character ψ\psi. Equation (4.12) implies that

(4.13) S2(U0,ψ,(𝖷,A))=limS2(Un,ψ,A),S_{2}(U_{0},\psi,\mathcal{M}(\mathsf{X},A))=\varprojlim S_{2}(U_{n},\psi,A),

where the identification is 𝖧univB\mathsf{H}_{univ}^{B}-equivariant. We hence deduce that S2(U0,ψ,(𝖷,A))S_{2}(U_{0},\psi,\mathcal{M}(\mathsf{X},A)) is a compact 𝒪\mathcal{O}-module, since 𝒪\mathcal{O} is pp-adically complete and each S2(Un,ψ,A)S_{2}(U_{n},\psi,A) is a finitely generated free 𝒪\mathcal{O}-module. This allows us to define its ordinary part S2(U0,ψ,(𝖷,A))ordS_{2}(U_{0},\psi,\mathcal{M}(\mathsf{X},A))^{ord} as usual (see Section 2.4 of [21] and the references therein) as its direct summand on which the Hecke operator TpT_{p} acts invertibly. We shorten the notation and denote by 𝕎\mathbb{W} the space S2(U0,ψ,(𝖷,𝒪))ordS_{2}(U_{0},\psi,\mathcal{M}(\mathsf{X},\mathcal{O}))^{ord}. In particular, the Hecke-equivariance in the inverse limit construction of S2(U0,ψ,(𝖷,𝒪))S_{2}(U_{0},\psi,\mathcal{M}(\mathsf{X},\mathcal{O})), implies that S2(U0,ψ,(𝖷,𝒪))ord=limS2(Un,ψ,𝒪)ordS_{2}(U_{0},\psi,\mathcal{M}(\mathsf{X},\mathcal{O}))^{ord}=\varprojlim S_{2}(U_{n},\psi,\mathcal{O})^{ord}, where TpT_{p} is replaced by UpU_{p} on each component of the inverse limit. Proposition 4.1.2 shows that the specialization maps descend to Hecke-equivariant specialization maps between the ordinary components,

(4.14) νk,εord:𝕎Sk(Un,ψε,𝒪(ε))ord,\nu_{k,\varepsilon}^{ord}:\mathbb{W}\longrightarrow S_{k}(U_{n},\psi\varepsilon,\mathcal{O}(\varepsilon))^{ord},

with the same definition of νk,ε\nu_{k,\varepsilon} and where 𝒪(ε)\mathcal{O}(\varepsilon) is the finite extension of 𝒪\mathcal{O} generated by the values of ε\varepsilon.

Notation 4.1.3.

We need to introduce some more notation.

  1. (a)

    For any m1m\geq 1 and any character χ:p×p¯×\chi:\mathbb{Z}_{p}^{\times}\longrightarrow\overline{\mathbb{Q}_{p}}^{\times}, let Ψm,χ:𝖷p¯×\Psi_{m,\chi}:\mathsf{X}\longrightarrow\overline{\mathbb{Q}_{p}}^{\times} such that

    (4.15) Ψm,χ((x,y))={χ(y) if xpmp,0 otherwise.\Psi_{m,\chi}((x,y))=\begin{cases}\chi(y)&\textrm{ if }x\in p^{m}\mathbb{Z}_{p},\\ 0&\textrm{ otherwise.}\end{cases}

    In particular, Ψm,χ\Psi_{m,\chi} is homogeneous of degree χ\chi for each mm.

  2. (b)

    Let Λ=𝒪[[1+pp]]\Lambda=\mathcal{O}[\![1+p\mathbb{Z}_{p}]\!] be the extension of the classical Iwasawa algebra p[[1+pp]]\mathbb{Z}_{p}[\![1+p\mathbb{Z}_{p}]\!], obtained by 𝒪\mathcal{O}. We set 𝕎Ω:=𝕎ΛΩ\mathbb{W}_{\Omega}:=\mathbb{W}\otimes_{\Lambda}\Omega for any Λ\Lambda-algebra Ω\Omega.

  3. (c)

    We say that a homomorphism κ:p¯\kappa:\mathcal{R}\longrightarrow\overline{\mathbb{Q}_{p}} is an arithmetic homomorphism if its restriction to p×\mathbb{Z}_{p}^{\times} is of the form κ|p×(x)=xk2ε(x)\kappa_{|\mathbb{Z}_{p}^{\times}}(x)=x^{k-2}\varepsilon(x) for k2k\geq 2 and ε:p×p¯×\varepsilon:\mathbb{Z}_{p}^{\times}\longrightarrow\overline{\mathbb{Q}_{p}}^{\times} a character which factors through p×/(1+pnp)\mathbb{Z}_{p}^{\times}/(1+p^{n}\mathbb{Z}_{p}), with nn minimal. In this situation, we say that κ\kappa has weight kk and character ε\varepsilon of conductor pnp^{n}.

Lemma 4.1.4.

Let κ:p¯\kappa:\mathcal{R}\longrightarrow\overline{\mathbb{Q}_{p}} be an arithmetic homomorphism of weight kk and character ε\varepsilon of conductor pnp^{n}. Let FκF_{\kappa} be the field extension of FF containing the values of κ\kappa. The map νk,εord\nu_{k,\varepsilon}^{ord} induces the injective Hecke-equivariant homomorphism

(4.16) νk,εord:𝕎/𝒫κ𝕎Sk(Un,ψε,Fκ)ord,\nu_{k,\varepsilon}^{ord}:\mathbb{W}_{\mathcal{R}}/\mathcal{P}_{\kappa}\mathbb{W}_{\mathcal{R}}\hookrightarrow S_{k}(U_{n},\psi\varepsilon,F_{\kappa})^{ord},

where 𝒫κ\mathcal{P}_{\kappa} is the kernel of κ\kappa in \mathcal{R}.

Proof.

We begin noting that 𝒫κS2(U0,ψ,(𝖷,𝒪))=S2(U0,ψ,𝒫κ(𝖷,𝒪))\mathcal{P}_{\kappa}S_{2}(U_{0},\psi,\mathcal{M}(\mathsf{X},\mathcal{O}))=S_{2}(U_{0},\psi,\mathcal{P}_{\kappa}\mathcal{M}(\mathsf{X},\mathcal{O})), as it can be seen by applying twice Lemma 1.2 of [1] to S2(U0,ψ,(𝖷,𝒪))=H0(U0p,H1(F[B^p,×],(𝖷,𝒪)))S_{2}(U_{0},\psi,\mathcal{M}(\mathsf{X},\mathcal{O}))=H^{0}(U_{0}^{p},H^{1}(F[\widehat{B}^{p,\times}],\mathcal{M}(\mathsf{X},\mathcal{O}))). We prove now that 𝒫κ𝕎=ker(νk,εord)\mathcal{P}_{\kappa}\mathbb{W}=ker(\nu_{k,\varepsilon}^{ord}). Let φ𝒫κ𝕎\varphi\in\mathcal{P}_{\kappa}\mathbb{W}; therefore φ(b~)\varphi(\tilde{b}) lies in 𝒫κ(𝖷,𝒪)\mathcal{P}_{\kappa}\mathcal{M}(\mathsf{X},\mathcal{O}) for any b~B×\B^×\tilde{b}\in B^{\times}\backslash\widehat{B}^{\times}. Lemma 6.3 of [9] shows that φ(b~)𝒫κ(𝖷,𝒪)\varphi(\tilde{b})\in\mathcal{P}_{\kappa}\mathcal{M}(\mathsf{X},\mathcal{O}) if and only if φ(b~)(f)=0\varphi(\tilde{b})(f)=0 for each homogeneous function of degree κ\kappa. For each PLk2(Fκ)P\in L_{k-2}(F_{\kappa}), ε(y)P(x,y)\varepsilon(y)P(x,y) is homogeneous of degree κ\kappa and hence νk,εord(φ(b~))(P)=0\nu_{k,\varepsilon}^{ord}(\varphi(\tilde{b}))(P)=0 for each b~\tilde{b} and PP. Take now φker(νk,εord)\varphi\in ker(\nu_{k,\varepsilon}^{ord}) and let m1m\geq 1. Since TpT_{p} is invertible, let μ𝕎\mu\in\mathbb{W} be such that Tpmμ=φT_{p}^{m}\mu=\varphi. Let γa:=(pa01)\gamma_{a}:=\left(\begin{smallmatrix}p&a\\ 0&1\end{smallmatrix}\right) for a=0,,p1a=0,\ldots,p-1 and γ:=(100p)\gamma_{\infty}:=\left(\begin{smallmatrix}1&0\\ 0&p\end{smallmatrix}\right). The definition of the Hecke operator TpT_{p} in Section 3.1 does come from the coset decomposition U0γU0=α=0,,p1,γαU0U_{0}\gamma_{\infty}U_{0}=\bigsqcup_{\alpha=0,\ldots,p-1,\infty}\gamma_{\alpha}U_{0}. Then TpmT_{p}^{m} corresponds to a decomposition of the form iγm,iU0\bigsqcup_{i}\gamma_{m,i}U_{0}, where each γm,i\gamma_{m,i} is a product of mm matrices γα\gamma_{\alpha}, for α=0,,p1,\alpha=0,\ldots,p-1,\infty. We compute

(4.17) pp×p×Ψm,κ(x,y)d(φ(b~))(x,y)=ipp×p×Ψm,κ((x,y)γm,i)d(μ(b~γm,i))(x,y).\int_{p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times}}\Psi_{m,\kappa}(x,y)d(\varphi(\tilde{b}))(x,y)=\sum_{i}\int_{p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times}}\Psi_{m,\kappa}\left((x,y)\gamma_{m,i}\right)d(\mu\left(\tilde{b}\cdot\gamma_{m,i}\right))(x,y).

For each mm, Ψm,κ((x,y)γ)=0\Psi_{m,\kappa}\left((x,y)\gamma_{\infty}\right)=0 thus, Ψm,κ((x,y)γm,i)=0\Psi_{m,\kappa}\left((x,y)\gamma_{m,i}\right)=0 whenever γm,i\gamma_{m,i} contains a copy of γ\gamma_{\infty}. Therefore, only the matrices γm,i=j=0,m1γαji=(pmjαjipj01)\gamma_{m,i}=\prod_{j=0,m-1}\gamma_{\alpha_{j}^{i}}=\left(\begin{smallmatrix}p^{m}&\sum_{j}\alpha_{j}^{i}p^{j}\\ 0&1\end{smallmatrix}\right) contribute to the integral and we recognize that

(4.18) ipp×p×γm,i(ε(y)yk2)d(μ(b~γm,i))(x,y)=Upmpp×p×ε(y)yk2d(μ(b~))(x,y)=Upmνk,εord(μ(b~))(yk2).\sum_{i}\int_{p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times}}\gamma_{m,i}\cdot\left(\varepsilon(y)y^{k-2}\right)d(\mu\left(\tilde{b}\cdot\gamma_{m,i}\right))(x,y)\\ =U_{p}^{m}\int_{p\mathbb{Z}_{p}\times\mathbb{Z}_{p}^{\times}}\varepsilon(y)y^{k-2}d(\mu(\tilde{b}))(x,y)=U_{p}^{m}\nu_{k,\varepsilon}^{ord}(\mu(\tilde{b}))(y^{k-2}).

By construction, 0=νk,εord(φ(b~))=νk,εord(Tpmμ(b~))=Upmνk,εord(μ(b~))0=\nu_{k,\varepsilon}^{ord}(\varphi(\tilde{b}))=\nu_{k,\varepsilon}^{ord}(T_{p}^{m}\mu(\tilde{b}))=U_{p}^{m}\nu_{k,\varepsilon}^{ord}(\mu(\tilde{b})) and since UpU_{p} is invertible on the space Sk(Un,ψε,Fκ)ordS_{k}(U_{n},\psi\varepsilon,F_{\kappa})^{ord}, νk,εord(μ(b~))=0\nu_{k,\varepsilon}^{ord}(\mu(\tilde{b}))=0 and hence νk,εord(φ(b~))(yk2)=0\nu_{k,\varepsilon}^{ord}(\varphi(\tilde{b}))(y^{k-2})=0. Lemma 6.3 of [9] implies that φ(b~)𝒫κ𝕎\varphi(\tilde{b})\in\mathcal{P}_{\kappa}\mathbb{W}. ∎

Remark 4.1.5.

As in the case of Eichler orders, the space of quaternionic modular forms 𝒮k(Un,ψ~,𝒪)\mathscr{S}_{k}(U_{n},\widetilde{\psi},\mathcal{O}) is often finitely generated over p\mathbb{Z}_{p} and free, as it follows from the discussion in Section 2.3. In particular, this holds true under the conditions discussed in Proposition 2.3.3. Therefore, Lemma 4.1.4 implies that 𝕎/𝒫κ𝕎\mathbb{W}_{\mathcal{R}}/\mathcal{P}_{\kappa}\mathbb{W}_{\mathcal{R}} is p\mathbb{Z}_{p}-finitely generated and free. The discussion in Section 2.3 shows also that S2(U0,ψ,(𝖷,A))S_{2}(U_{0},\psi,\mathcal{M}(\mathsf{X},A)) is often Λ~{\widetilde{\Lambda}}-free and finitely generated, once again, for example under the conditions in Proposition 2.3.3. One can argue as in the proofs of Theorem 10.1, Corollary 10.3, and Corollary 10.4 of [13], since the results proved there for quaternionic modular forms over definite quaternion algebras hold in more generality for special orders which are split at the interpolation prime pp (see also Remark 4.2.3).

4.2. The proof of the control theorem

As in Section 3.4, we fix a pp-ordinary newform ff in S2new(Γ1(Npn2r),ψ,)S_{2}^{new}(\Gamma_{1}(Np^{n}\ell^{2r}),\psi,\mathbb{C}), for n1n\geq 1 and with ψ\psi a Dirichlet character modulo Npn2rNp^{n}\ell^{2r} satisfying Assumptions 2.2.1 and 2.4.2. We also assume that its associated pp-adic Galois representations is residually absolutely irreducible and pp-distinguished. Let f:𝖧B,ord(F)f_{\infty}:\mathsf{H}_{\infty}^{B,ord}(F)\longrightarrow\mathcal{R} the homomorphism associated in Section 3.4 with the Hida family passing through ff. Recall that F=p(f)F=\mathbb{Q}_{p}(f) and that 𝒪\mathcal{O} is its ring of integers. For any 𝒫κ\mathcal{P}_{\kappa} as in the above Lemma 4.1.4, we denote by fκBf^{B}_{\kappa} the composition

(4.19) fκB:𝖧univB𝖧B,ord(F)f𝒫κ,f^{B}_{\kappa}:\mathsf{H}_{univ}^{B}\longrightarrow\mathsf{H}^{B,ord}_{\infty}(F)\overset{f_{\infty}}{\longrightarrow}\mathcal{R}\longrightarrow\mathcal{R}_{\mathcal{P}_{\kappa}},

where the first map is the compatible morphism of Section 3.2 and the last map is the one to the localization of \mathcal{R} at the prime 𝒫κ\mathcal{P}_{\kappa}. We recall that \mathcal{R} is a Λ~\widetilde{\Lambda}-algebra; we identify any Λ~\widetilde{\Lambda}-algebra as a Λ\Lambda-algebra via the inclusion ΛΛ~\Lambda\hookrightarrow\widetilde{\Lambda} and write

(4.20) 𝕎~κ:=(𝕎Λ𝒫κ)[fκB]\widetilde{\mathbb{W}}_{\kappa}:=\left(\mathbb{W}\otimes_{\Lambda}\mathcal{R}_{\mathcal{P}_{\kappa}}\right)[f^{B}_{\kappa}]

for the isotypic component of the 𝒫κ\mathcal{R}_{\mathcal{P}_{\kappa}}-module 𝕎Λ𝒫κ\mathbb{W}\otimes_{\Lambda}\mathcal{R}_{\mathcal{P}_{\kappa}}, where the Hecke operators act as determined by fκBf^{B}_{\kappa}.

Proposition 4.2.1.

With the notation of Lemma 4.1.4, there is an induced injective homomorphism

(4.21) νκ:𝕎~κ/𝒫κ𝕎~κ(Sk(Un,ψε,Fκ)ord)[fκ],\nu_{\kappa}:\widetilde{\mathbb{W}}_{\kappa}/\mathcal{P}_{\kappa}\widetilde{\mathbb{W}}_{\kappa}\hookrightarrow\left(S_{k}(U_{n},\psi\varepsilon,F_{\kappa})^{ord}\right)[f_{\kappa}],

for fκf_{\kappa} the weight-κ\kappa specialization of ff_{\infty}.

Proof.

The proof is the same as of Proposition 3.5 in [21], since it does not depend on the choice of the quaternionic order. ∎

As one can note from Theorem 3.3.2, the case of level 2\ell^{2} and trivial character has to be handled with more care. The theory of Hida families for classical modular forms is well known and we can restrict our attention to the Hecke-submodules Sknew(Γ1(Npn),ψ,F)ordS_{k}^{new}(\Gamma_{1}(Np^{n}\ell),\psi,F)^{ord} with ψ\psi a Dirichlet character modulo NpnNp^{n}, with n1n\geq 1. We do not provide details here, but we refer to Chapter 7 of [14] and Section 2 of [21]. We construct the space of Λ~{\widetilde{\Lambda}}-adic modular newforms, level NpnNp^{n}\ell and character ψ\psi, as 𝕎:=limS2new(Γ1(Npn),ψ,F)ord\mathbb{W}^{\ell}:=\varprojlim S_{2}^{new}(\Gamma_{1}(Np^{n}\ell),\psi,F)^{ord}. Moreover, we can twist its Hecke action by the character ()\left(\frac{-}{\ell}\right) obtaining the corresponding space 𝕎,():=limS2new(Γ1(Npn),ψ,F)(),ord\mathbb{W}^{\ell,\left(\frac{-}{\ell}\right)}:=\varprojlim S_{2}^{new}(\Gamma_{1}(Np^{n}\ell),\psi,F)^{\left(\frac{-}{\ell}\right),ord}. As in Section 3.2 we have an action of the universal Hecke algebra 𝖧univ\mathsf{H}_{univ} on 𝕎,()\mathbb{W}^{\ell,\left(\frac{-}{\ell}\right)}. In particular, taking ff in Sknew(Γ1(Npn),ψ,F)(),ordS_{k}^{new}(\Gamma_{1}(Np^{n}\ell),\psi,F)^{\left(\frac{-}{\ell}\right),ord}, the module (𝕎,()Λ𝒫(k,ε))[f]\left(\mathbb{W}^{\ell,\left(\frac{-}{\ell}\right)}\otimes_{\Lambda}\mathcal{R}_{\mathcal{P}_{(k,\varepsilon)}}\right)[f] is a free rank-1 𝒫(k,ε)\mathcal{R}_{\mathcal{P}_{(k,\varepsilon)}}-module (see Proposition 2.17 and the proof of Theorem 2.18 in [21]).

Lemma 4.2.2.

Assume 𝕎\mathbb{W} to be Λ~{\widetilde{\Lambda}}-free and finitely generated (see Remark 4.1.5). Suppose that fT2(n,r,ψ)f\in T_{2}(n,r,\psi) and set, for any arithmetic homomorphism κ=(k,ε)\kappa=(k,\varepsilon),

(4.22) 𝕎κ:={𝕎~κ(𝕎,()Λ𝒫κ)[fκ] if r=1 and ψ is the trivial character,𝕎~κ otherwise,{\mathbb{W}_{\kappa}}:=\begin{cases}\widetilde{\mathbb{W}}_{\kappa}\oplus\left(\mathbb{W}^{\ell,\left(\frac{-}{\ell}\right)}\otimes_{\Lambda}\mathcal{R}_{\mathcal{P}_{\kappa}}\right)[f_{\kappa}]&\textrm{ if $r=1$ and $\psi_{\ell}$ is the trivial character,}\\ \widetilde{\mathbb{W}}_{\kappa}&\textrm{ otherwise,}\end{cases}

where we let 𝖧univ\mathsf{H}_{univ} act on 𝕎κ{\mathbb{W}_{\kappa}} via the homomorphism 𝖧univ𝖧univB\mathsf{H}_{univ}\rightarrow\mathsf{H}_{univ}^{B} induced by the Jacquet–Langlands correspondence. Then 𝕎κ{\mathbb{W}_{\kappa}} is a free rank-2 𝒫κ\mathcal{R}_{\mathcal{P}_{\kappa}}-module.

Proof.

We start dealing with the case 𝕎κ=𝕎~κ{\mathbb{W}_{\kappa}}=\widetilde{\mathbb{W}}_{\kappa}. We consider the pp-divisible abelian group (cf. Remark 4.1.5 and Section 2.3) 𝕍:=limS2ord(Un,ψ~,F/𝒪)\mathbb{V}:=\varinjlim S_{2}^{ord}(U_{n},\widetilde{\psi},F/\mathcal{O}), where the inductive limit is taken with respect to the restriction maps induced by the inclusions Un+1UnU_{n+1}\subset U_{n}. The Hecke and diamond operators (at least away from \ell) act on 𝕍\mathbb{V} since, as in the case of Eichler orders, the restriction maps in [13] (see Eqs. (2.9a), (2.9b) and (3.5)) are compatible with the Hecke action. Taking the Pontryagin dual of 𝕍\mathbb{V} we obtain the Hecke-equivariant isomorphism 𝕍^𝕎\widehat{\mathbb{V}}\cong\mathbb{W} (cf. Eqs. 4.12 and 4.13), which shows it is a free Λ~{\widetilde{\Lambda}}-module of finite rank. We denote by FκF_{\kappa} the field extension of FF generated by the values of ε\varepsilon and by 𝒪κ\mathcal{O}_{\kappa} its ring of integers, which we can assume to be finite flat over p\mathbb{Z}_{p}. Up to a scalar and up to taking the tensor product by 𝒪κ\mathcal{O}_{\kappa}, we can suppose fκf_{\kappa} to have coefficients in 𝒪\mathcal{O}. We observe that 𝕎~κ=𝕎[fκ]Λ𝒫κ\widetilde{\mathbb{W}}_{\kappa}=\mathbb{W}[f_{\kappa}]\otimes_{\Lambda}\mathcal{R}_{\mathcal{P}_{\kappa}}, as the action of the Hecke algebra is on the first component and the tensor product is just an extension of scalars. We can hence apply Theorem 9.4 of [13] (cf. Remark 4.2.3) to 𝕎[fκ]\mathbb{W}[f_{\kappa}] and obtain the isomorphism of 𝗁nT,ord(𝒪)\mathsf{h}_{n}^{T,ord}(\mathcal{O})-modules,

(4.23) 𝕎[fκ]𝕍[fκ]^Sknew(Un,ψε~,𝒪)[fκ].\mathbb{W}[f_{\kappa}]\cong\widehat{\mathbb{V}[f_{\kappa}]}\cong S_{k}^{new}(U_{n},\widetilde{\psi\varepsilon},\mathcal{O})[f_{\kappa}].

We remark that the last Hecke-equivariant isomorphism in the above Eq. (4.23) (as well as in Eq. (4.24)), comes from the restriction to Tk(n,r,ψε)T_{k}(n,r,\psi\varepsilon) of the Pontryagin duality established in Lemma 7.1 of [11]; under the hypotheses of Lemma 2.3.3 one has the isomorphism Sk(Un,ψε~,F/𝒪)Sk(Un,ψε~,𝒪)F/𝒪S_{k}(U_{n},\widetilde{\psi\varepsilon},F/\mathcal{O})\cong S_{k}(U_{n},\widetilde{\psi\varepsilon},\mathcal{O})\otimes F/\mathcal{O}, as in the proof of Theorem 10.1 in [13], and then Proposition 3.3.6 recovers the needed Hecke-isomorphism for quaternionic modular forms. Similarly to the above discussion for 𝕎\mathbb{W}^{\ell}, we can follow Section 2 of [21] and construct the interpolation module 𝕎2r=limnS2(Γ1(Npn2r),ψ,𝒪)ord\mathbb{W}^{\ell^{2r}}=\varprojlim_{n}S_{2}(\Gamma_{1}(Np^{n}\ell^{2r}),\psi,\mathcal{O})^{ord}, relative to the ordinary subspaces Sk(Γ1(Npn2r),ψε,𝒪)ordS_{k}(\Gamma_{1}(Np^{n}\ell^{2r}),\psi\varepsilon,\mathcal{O})^{ord}. We notice that under the hypothesis of Proposition 2.3.3, the space 𝕎2r\mathbb{W}^{\ell^{2r}} is free of finite rank. In particular, we can reproduce the above chain of isomorphisms and obtain 𝗁nT,ord(𝒪)\mathsf{h}_{n}^{T,ord}(\mathcal{O})-isomorphisms

(4.24) 𝕎2r[fκ]Sk(Γ1(Npn2r),ψε)ord[fκ]Tk(n,r,ψε)ord[fκ].\mathbb{W}^{\ell^{2r}}[f_{\kappa}]\cong S_{k}(\Gamma_{1}(Np^{n}\ell^{2r}),\psi\varepsilon)^{ord}[f_{\kappa}]\cong T_{k}(n,r,\psi\varepsilon)^{ord}[f_{\kappa}].

Applying Propositions 3.3.6 and 3.3.8, we deduce the isomorphism of 𝗁T,ord(𝒪)\mathsf{h}_{\infty}^{T,ord}(\mathcal{O})-modules,

(4.25) 𝕎[fκ]2𝕎2r[fκ].\mathbb{W}[f_{\kappa}]\cong 2\mathbb{W}^{\ell^{2r}}[f_{\kappa}].

Tensoring over Λ\Lambda with 𝒫κ\mathcal{R}_{\mathcal{P}_{\kappa}}, we obtain the isomorphism of 𝗁T,ord(𝒪)Λ𝒫κ\mathsf{h}_{\infty}^{T,ord}(\mathcal{O})\otimes_{\Lambda}\mathcal{R}_{\mathcal{P}_{\kappa}}-modules,

(4.26) 𝕎κ2(𝕎2rΛ𝒫κ)[fκ].{\mathbb{W}_{\kappa}}\cong 2\left(\mathbb{W}^{\ell^{2r}}\otimes_{\Lambda}\mathcal{R}_{\mathcal{P}_{\kappa}}\right)[f_{\kappa}].

As in the proof of Theorem 2.18 of [21], Proposition 2.17 of loc.cit. guarantees that (𝕎2rΛ𝒫κ)[fκ]\left(\mathbb{W}^{\ell^{2r}}\otimes_{\Lambda}\mathcal{R}_{\mathcal{P}_{\kappa}}\right)[f_{\kappa}] is a free 𝒫κ\mathcal{R}_{\mathcal{P}_{\kappa}}-module of rank 1, therefore 𝕎κ{\mathbb{W}_{\kappa}} is a free 𝒫κ\mathcal{R}_{\mathcal{P}_{\kappa}}-module of rank 2.

The case of r=1r=1 and trivial character at \ell is carried out similarly, once we define the pp-divisible abelian group

(4.27) 𝕍:=lim(S2new(Un,ψ~,F/𝒪)ordSknew(Γ1(Npn),ψ,F/𝒪)(),ord),\mathbb{V}:=\varinjlim\left(S_{2}^{new}(U_{n},\widetilde{\psi},F/\mathcal{O})^{ord}\oplus S_{k}^{new}(\Gamma_{1}(Np^{n}\ell),\psi,F/\mathcal{O})^{\left(\frac{-}{\ell}\right),ord}\right),

whose Pontryagin dual is 𝕎𝕎,()\mathbb{W}\oplus\mathbb{W}^{\ell,\left(\frac{-}{\ell}\right)}. ∎

Remark 4.2.3.
  1. (a)

    The congruence subgroup we consider, away from \ell, is the one denoted by V(Npn)V(Np^{n}) in [13] and one passes from this choice to the one used there by changing all the actions via (abcd)(dbca)\left(\begin{smallmatrix}a&b\\ c&d\end{smallmatrix}\right)\mapsto\left(\begin{smallmatrix}d&-b\\ -c&a\end{smallmatrix}\right).

  2. (b)

    We point out that Theorem 9.4 of [13] is stated under more strict hypotheses but, in the case of definite quaternion algebras, such hypotheses can be relaxed; this has been already noticed in [21] and [17] in order to work with Eichler orders for algebras over \mathbb{Q}, but Theorem 9.4 of [13] holds true also for special orders. This is due to the degree of generality in which the results of Chapter 8 of [13] are proved (as well as Lemma 2.1.3), together with the necessity of a controlled behavior only at the interpolation prime pp. Let us remark that we did not take into account the case of indefinite algebras, but that it seems to require a generalization of the spectral sequences approach contained in Chapter 9 of [13].

We can finally state the sought for Hida control theorem in the case of special orders of level 2r\ell^{2r}.

Theorem 4.2.4 (Control theorem for special orders).

With the above notation, suppose ff to be twist-minimal at \ell. For any arithmetic homomorphism κ:p¯\kappa:\mathcal{R}\longrightarrow\overline{\mathbb{Q}_{p}}, the map νκ\nu_{\kappa} of Proposition 4.2.1 induces an isomorphism of 22-dimensional FκF_{\kappa}-vector spaces

(4.28) 𝕎~κ/𝒫κ𝕎~κ(Sk(Un,ψε,Fκ)ord)[fκ].\widetilde{\mathbb{W}}_{\kappa}/\mathcal{P}_{\kappa}\widetilde{\mathbb{W}}_{\kappa}\overset{\cong}{\longrightarrow}\left(S_{k}(U_{n},\psi\varepsilon,F_{\kappa})^{ord}\right)[f_{\kappa}].

If r=1r=1, ff has trivial character at \ell and lies in Sknew(Γ1(Npn),ψ,Fκ)()S_{k}^{new}(\Gamma_{1}(Np^{n}\ell),\psi,F_{\kappa})^{\otimes\left(\frac{-}{\ell}\right)} (in particular, it is not twist-minimal at \ell), then the above isomorphism still holds, but the FκF_{\kappa}-vector spaces are 11-dimensional.

Proof.

Suppose ff to be twist-minimal. Because of Propositions 4.2.1 and 3.3.8 we know that

(4.29) dimFκ(𝕎~κ/𝒫κ𝕎~κ)2\dim_{F_{\kappa}}\left(\widetilde{\mathbb{W}}_{\kappa}/\mathcal{P}_{\kappa}\widetilde{\mathbb{W}}_{\kappa}\right)\leq 2

and thus it is enough to prove the opposite inequality. Lemma 4.2.2 shows that 𝕎~κ\widetilde{\mathbb{W}}_{\kappa} is a free κ\mathcal{R}_{\kappa}-module of rank 22. The case of r=1r=1, trivial character at \ell and fSknew(Γ1(Npn),ψ,Fκ)()f\not\in S_{k}^{new}(\Gamma_{1}(Np^{n}\ell),\psi,F_{\kappa})^{\otimes\left(\frac{-}{\ell}\right)} follows similarly. The remaining case accounts to the fact that the Jacquet–Langlands correspondence preserves twists. ∎

We can consider the finitely generated \mathcal{R}-module

(4.30) 𝕎:={((𝕎𝕎,())Λ)[f] if r=1 and ψ is the trivial character,(𝕎Λ)[f] otherwise.\mathbb{W}_{\infty}:=\begin{cases}\left(\left(\mathbb{W}\oplus\mathbb{W}^{\ell,\left(\frac{-}{\ell}\right)}\right)\otimes_{\Lambda}\mathcal{R}\right)[f_{\infty}]&\textrm{ if $r=1$ and $\psi_{\ell}$ is the trivial character,}\\ \left(\mathbb{W}\otimes_{\Lambda}\mathcal{R}\right)[f_{\infty}]&\textrm{ otherwise.}\end{cases}

Proceeding similarly as in the proof of the above theorem we notice that 𝕎Frac(Λ)\mathbb{W}_{\infty}\otimes Frac(\Lambda) is a 2-dimensional 𝒦\mathcal{K}-vector space, where 𝒦\mathcal{K} is the finite field extension of Frac(Λ)Frac(\Lambda) called the primitive component associated with the Hida family ff_{\infty} (see Section 3 in [12] in particular, Theorem 3.5 and also Theorem 2.6a of [9]). As noticed in Section 2.2 of [21], we point out that \mathcal{R} is the integral closure of Λ\Lambda in 𝒦\mathcal{K}. We can then formulate Theorem 4.2.4 highlighting this global \mathcal{R}-module.

Theorem 4.2.5.

With the above notation, suppose ff to be twist-minimal at \ell. For any arithmetic homomorphism κ:p¯\kappa:\mathcal{R}\longrightarrow\overline{\mathbb{Q}_{p}}, the map νκ\nu_{\kappa} of Proposition 4.2.1 induces an isomorphism of 22-dimensional FκF_{\kappa}-vector spaces

(4.31) 𝕎𝒫κ/𝒫κ𝒫κ(Sk(Un,ψε,Fκ)ord)[fκ].\mathbb{W}_{\infty}\otimes_{\mathcal{R}}\mathcal{R}_{\mathcal{P}_{\kappa}}/\mathcal{P}_{\kappa}\mathcal{R}_{\mathcal{P}_{\kappa}}\overset{\cong}{\longrightarrow}\left(S_{k}(U_{n},\psi\varepsilon,F_{\kappa})^{ord}\right)[f_{\kappa}].

If r=1r=1, ff has trivial character at \ell and lies in Sknew(Γ1(Npn),ψ,Fκ)()S_{k}^{new}(\Gamma_{1}(Np^{n}\ell),\psi,F_{\kappa})^{\otimes\left(\frac{-}{\ell}\right)} (in particular, it is not twist-minimal at \ell), then the isomorphism of 11-dimensional FκF_{\kappa}-vector spaces holds:

(4.32) ((𝕎Λ)[f])𝒫κ/𝒫κ𝒫κ(Sk(Un,ψε,Fκ)ord)[fκ].\left(\left(\mathbb{W}\otimes_{\Lambda}\mathcal{R}\right)[f_{\infty}]\right)\otimes_{\mathcal{R}}\mathcal{R}_{\mathcal{P}_{\kappa}}/\mathcal{P}_{\kappa}\mathcal{R}_{\mathcal{P}_{\kappa}}\overset{\cong}{\longrightarrow}\left(S_{k}(U_{n},\psi\varepsilon,F_{\kappa})^{ord}\right)[f_{\kappa}].
Corollary 4.2.6.

Let ff_{\infty} be a primitive Hida family of tame level N2rN\ell^{2r}, r1r\geq 1, tame character ψ\psi with its \ell-component, ψ\psi_{\ell}, as in Assumption 2.4.2. Suppose moreover ff_{\infty} to be twist-minimal at \ell. Then there exist two \mathcal{R}-linearly independent elements ϕf1\phi^{1}_{f_{\infty}} and ϕf2\phi^{2}_{f_{\infty}} in (𝕎Λ)[f]\left(\mathbb{W}\otimes_{\Lambda}\mathcal{R}\right)[f_{\infty}], which form a basis for ((𝕎Λ)[f])𝒦\left(\left(\mathbb{W}\otimes_{\Lambda}\mathcal{R}\right)[f_{\infty}]\right)\otimes\mathcal{K}. Moreover, for any arithmetic homomorphism κ\kappa, νκ(ϕf1)\nu_{\kappa}(\phi^{1}_{f_{\infty}}) and νκ(ϕf2)\nu_{\kappa}(\phi^{2}_{f_{\infty}}) form a FκF_{\kappa}-basis for (Sk(Un,ψε,Fκ)ord)[fκ]\left(S_{k}(U_{n},\psi\varepsilon,F_{\kappa})^{ord}\right)[f_{\kappa}].

Definition 4.2.7.

We denote by 𝒲f\mathcal{W}_{f_{\infty}} the \mathcal{R}-linear span of ϕf1\phi^{1}_{f_{\infty}} and ϕf2\phi^{2}_{f_{\infty}} and call it the subspace of special quaternionic Hida families associated with ff_{\infty}.

4.3. A small remark on related works and open questions

The mathematical literature about this situation of higher ramification at the primes at which the quaternion algebra ramifies is quite meager. Excluding the (singular and collective) works of Pizer, Hijikata and Shemanske, there are few other works considering special orders and they all share working with indefinite algebras. We already referred to [19], but we wish to point the reader’s attention also to the two works [5] and [8]. In particular, in [26], Pizer defines certain local operators acting on the quaternionic modular forms. The present note leaves unanswered whether the two linearly independent quaternionic modular forms, and then the two Hida families, can be distinguished via some of these local operators. We wish to address carefully this question in the near future.

References

  • [1] Anver Ash and Glenn Stevens. p-adic deformations of cohomology classes of subgroups of GL(n,)GL(n,\mathbb{Z}). Collectanea Mathematica, 48:1–30, 1997.
  • [2] Massimo Bertolini, Henri Darmon, and Adrian Iovita. Families of automorphic forms on definite quaternion algebras and Teitelbaum’s conjecture. Astérisque, (331):29–64, 2010.
  • [3] Kevin Buzzard. On p-adic Families of Automorphic Forms, pages 23–44. Birkhäuser Basel, Basel, 2004.
  • [4] Henri Carayol. Représentations cuspidales du groupe linéaire. Annales scientifiques de l’École Normale Supérieure, 4e série, 17(2):191–225, 1984.
  • [5] Miriam Ciavarella. Congruences between modular forms and related modules. Funct. Approx. Comment. Math., 41(part 1):55–70, 2009.
  • [6] Luca Dall’Ava. Approximations of the balanced triple product pp-adic LL-function. submitted, 2022.
  • [7] Luca Dall’Ava. Quaternionic Hida families and the triple product pp-adic LL-function. PhD thesis, Universtät Duisburg-Essen, 2021. available at https://duepublico2.uni-due.de/receive/duepublico_mods_00074866.
  • [8] Carlos de Vera-Piquero. The Shimura covering of a Shimura curve: automorphisms and étale subcoverings. J. Number Theory, 133(10):3500–3516, 2013.
  • [9] Ralph Greenberg and Glenn Stevens. pp-adic LL-functions and pp-adic periods of modular forms. Inventiones mathematicae, 111(2):407–448, 1993.
  • [10] Benedict H. Gross. Heights and the special values of LL-series. In Number theory (Montreal, Que., 1985), volume 7 of CMS Conf. Proc., pages 115–187. Amer. Math. Soc., Providence, RI, 1987.
  • [11] Haruzo Hida. Galois representations into GL2(p[[X]])\mathrm{GL}_{2}(\mathbb{Z}_{p}[\![\mathrm{X}]\!]) attached to ordinary cusp forms. Inventiones mathematicae, 85:545–614, 1986.
  • [12] Haruzo Hida. Iwasawa modules attached to congruences of cusp forms. Annales scientifiques de l’École Normale Supérieure, Ser. 4, 19(2):231–273, 1986.
  • [13] Haruzo Hida. On pp-adic Hecke algebras for GL2\operatorname{GL}_{2} over totally real fields. Annals of Mathematics, 128(2):295–384, 1988.
  • [14] Haruzo Hida. Elementary Theory of L-functions and Eisenstein Series. London Mathematical Society Student Texts. Cambridge University Press, 1993.
  • [15] Hiroaki Hijikata, Arnold Pizer, and Thomas R. Shemanske. The basis problem for modular forms on Γ0(N)\Gamma_{0}(N). Mem. Amer. Math. Soc., 82(418):vi+159, 1989.
  • [16] Hiroaki Hijikata, Arnold Pizer, and Thomas R. Shemanske. Orders in quaternion algebras. Journal für die reine und angewandte Mathematik, 394:59–106, 1989.
  • [17] Ming-Lun Hsieh. Hida families and pp-adic triple product LL-functions. Amer. J. Math., 143(2):411–532, 2021.
  • [18] Wen Ch’ing Winnie Li. Newforms and functional equations. Math. Ann., 212:285–315, 1975.
  • [19] Matteo Longo, Víctor Rotger, and Carlos de Vera-Piquero. Heegner points on Hijikata-Pizer-Shemanske curves and the Birch and Swinnerton-Dyer conjecture. Publ. Mat., 62(2):355–396, 2018.
  • [20] Matteo Longo, Victor Rotger, and Stefano Vigni. On rigid analytic uniformizations of Jacobians of Shimura curves. American Journal of Mathematics, 134(5):1197–1246, 2012.
  • [21] Matteo Longo and Stefano Vigni. A note on control theorems for quaternionic Hida families of modular forms. Int. J. Number Theory, 8(6):1425–1462, 2012.
  • [22] Barry C. Mazur and Peter Swinnerton-Dyer. Arithmetic of Weil curves. Inventiones mathematicae, 25(1):1–61, Mar 1974.
  • [23] Toshitsune Miyake and Yoshitaka Maeda. Modular Forms. Springer Monographs in Mathematics. Springer Berlin Heidelberg, 2006.
  • [24] Arnold Pizer. The action of the canonical involution on modular forms of weight 22 on Γ0(M)\Gamma_{0}(M). Math. Ann., 226(2):99–116, 1977.
  • [25] Arnold Pizer. An algorithm for computing modular forms on Γ0(N)\Gamma_{0}(N). Journal of Algebra, 64(2):340 – 390, 1980.
  • [26] Arnold Pizer. Theta series and modular forms of level p2Mp^{2}M. Compositio Math., 40(2):177–241, 1980.
  • [27] Hideo Shimizu. On zeta functions of quaternion algebras. Annals of Mathematics, 81(1):166–193, 1965.

L. Dall’Ava, Dipartimento di Matematica, Università degli Studi di Padova, Padova, Italy.

E-mail address: luca.dallava@math.unipd.it